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Introduction

The world we know would not be the same without the ease with wich
we store and transmit images and signals in nowadays applications. We
make extensive use of compression algorithms, which have been developed
to reduce irrelevance and redundancy of image data in order to store or
transmit them in an efficient form. However, image compression is still based
on a complete data acquisition process, that obeys the traditional Nyquist-
Shannon sampling theorem. Only later, when the most relevant information
are known, the desired image can be converted into a small digital data set.
In other words, we are stuck with acquiring a lot of redundant information,
just to throw part of them away during compression.

A recent mathematical theory, known as Compressed Sensing (CS), tries
to do much more: reduces the acquisition times and costs, thus lowering
the number of data acquired, while maintaining high reconstruction fidelity.
Taking advantage of some common properties of signals, like their sparsity
and compressibility, this theory uses some “hard maths” to acquire just as
many data as the most important ones, still ensuring exact reconstruction
of the desired signal. The most surprising fact is that its efficiency relies
on the possibility to choose randomly which information to gather from the
acquisition process, without any previous information about the signal we
are sensing. That is, we are bringing the compression right to the sensing
process: and that’s not only theory.

Many different applications have been proposed in the last few years,
but the most intresting results have risen from the diagnostic imaging field.
Magnetic Resonance Imaging (MRI), which is an essential medical imaging
tool, seems to be optimal for successful application of Compressed Sensing.
Often current medical imagery suffers from slow data acquisition processes
and long timing, and MRI is an important example of this. Even if this field
of science is at an open stage, applying CS to MRI offers potentially sig-
nificant scan time reductions, with clear benefits for patients and operating
costs reduction.

In this thesis we will give a brief introduction to this scenario. We
firstly revise some useful concepts about signal acquisition and elaboration.
In Chapter 2 we review the requirements for successful CS and its main
results, while in the next chapter we describe its natural fit to MRI. Lastly,
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iv INTRODUCTION

we give some interesting examples of practical applications of CS in MRI.
We try to emphasize an intuitive (yet precise) understanding of CS and of
its potential, and a general understanding of the the driving factors and
limitations in its application in MRI.
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Chapter 1

Useful Concepts on Signals
and MRI

In this chapter, we revise some basic concepts useful to understand the Com-
pressive Sampling Theory and its innovative power in the field of Diagnostic
Imaging. Although biological signals are often continuous-time by their
nature, computerized analysis makes extensive use of their discrete form
obtained through sampling. That’s why we introduce discrete time signals,
the Nyquist-Shannon sampling theorem and Fourier’s Series and Transform,
which are fundamental tools for signals’ frequency analysis [13]. Lastly, we
will revise also some basic Physics concepts about electronic and nuclear
spin resonance in order to understand how Magnetic Resonance Imaging
(MRI) actually works [10],[12].

1.1 Discrete Time Signals and Support of a Signal

Definition 1.1 (Discrete-Time Signal). A discrete-time signal x[n] is a time
series consisting of a sequence of values. It is a function defined only for
integer values of the indipendent variable n, that is

x : [n1, n2] 7→ R or (C) with −∞ < n1 < n2 < +∞. (1.1)

Such a signal x[n] is said to be periodic with period N, where N is a positive
integer, if it is unchanged by a time shift of N, i.e. if

x[n] = x[n+N ], ∀n ∈ N. (1.2)

The fundamental period N0 is the smallest positive value of N for which
eq.(1.2) holds.

Fundamental discrete-time signals are the Complex Exponential Signal,
defined by

x[n] = ejθ0n (1.3)
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4 CHAPTER 1. USEFUL CONCEPTS ON SIGNALS AND MRI

and Sinusoidal Signals, defined by

x[n] = A cos(θ0n+ φ). (1.4)

These signals are closely related to each other through the Euler’s Formula,

ejθ0n = cos(θ0n) + j sin(θ0n). (1.5)

We note that the fundamental complex exponential ej(2π/N)n is periodic
with period N. Furthermore, the set of all discrete-time complex exponential
signals that are periodic with period N is given by

φk[n] = ejkθ0n = ejk(2π/N)n, k = 0,±1,±2, . . . (1.6)

All of these signals have fundamental frequencies that are multiples of 2π/N
and thus are harmonically related. There are only N distinct signals in
the set given by eq.(1.6). This is a consequence of the fact that discrete-
time complex exponentials which differ in frequency by a multiple of 2π are
identical. Hence, it suffices to take k = 0, 1, . . . , N − 1.

Definition 1.2 (Support of a Signal). The support of a signal x[n] is the
smallest set of values [mx,Mx] for which

x[n] = 0 if n < mx or n > Mx. (1.7)

1.2 Fourier Series Representation of Discrete Time
Signals

Joseph Fourier introduced in the study of trigonometric series the funda-
mental idea that a periodic signal can be decomposed into the sum of a
(possibly infinite) set of oscillating functions, namely sines and cosines or
complex exponentials. In particular, the Fourier series representation of a
discrete-time periodic signal is a finite series. Using the set of harmonically
related complex exponentials defined in (1.6), we can consider the represen-
tation of a periodic sequence in terms of linear combinations of the sequences
φk[n]. It has the form

x[n] =
N−1∑
k=0

ake
jkθ0n, with θ0 =

2π

N
. (1.8)

This equation is referred to as the discrete-time Fourier series and the coef-
ficients ak as the Fourier series coefficients. Since the exponentials φk[n] are
linearly indipendent, we can solve (1.7) backwards, obtaining the coefficients
ak, as

ak =
1

N

N−1∑
n=0

x[n]e−jk(2π/N)n (1.9)
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We note that, if we consider more than N sequential values of k, the values
ak repeat periodically with period N as a consequence of eq.(1.6). All the
information about a periodic signal x[n], with period N , is thus contained in
its N Fourier series coefficients. In fact, as long as we know these N complex
numbers, we can recover the original signal perfectly thanks to eq.(1.8). In
other words, once we fix the set of φk[n], x[n] is equally described by its
discrete-time representation (in the time domain) and its Fourier coefficients
(in the frequency domain). This means that we can identify a relationship
between a periodic signal and its Fourier series coefficient, i.e.

x[n]
Fs←→ ak (1.10)

described by the Discrete-Time Fourier Series, (DTFS). It is an isometric
map

Fs : CN → CN (1.11)

with several properties:

• Linearity:

Ax[n] +By[n]
Fs←→ Aak +Bbk; (1.12)

• Time Shifting:

x[n− n0]
Fs←→ ake

−jk(2π/N)n0 ; (1.13)

• Time Reversal:

x[−n]
Fs←→ a−k; (1.14)

• Multiplication:

x[n]y[n]
Fs←→

N−1∑
l=0

albk−l = ak ∗ bk; (1.15)

• Periodic Convolution:

N−1∑
r=0

x[r]y[n− r] = x[n] ∗ y[n]
Fs←→ Nakbk; (1.16)

• Conjugation:

x[n]
Fs←→ a−k; (1.17)

where x[n] and y[n] are periodic signals with period N and ak and bk are
their Fourier Series coefficients. Since the DTFS is a linear and isometric
map form CN to CN it can be described by a matrix F , named Fourier
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Matrix. F is a square, complex-valued, symmetric matrix whose elements,

Fjk = e
2πjk
N , are primitives Nth roots of unity. Hence, if we define two arrays

x =


x(0)
x(1)

...
x(N − 1)

 and A =


a0

a1
...

aN−1

 (1.18)

we can describe the DTFS as x = FA. Moreover, if we multilpy F by a
normalization factor 1√

N
, the resulting matrix is unitary, that is the conju-

gate and the inverse matrix coincide. Formally, if we define U = 1√
N
F then

U
T

= U−1, so we can invert U obtaining

U−1 =
√
NF−1 =

1√
N
U
T −→ F−1 =

1

N
F
T
. (1.19)

Thus, inverting the DTFS equation x = FA, we obtain A = F−1x = 1
NF

T
x.

We note two important results:

• the DTFS can be described as a linear transformation associated to
the Fourier Matrix;

• DTFS and its inverse are almost identical, as a consequence of U being
unitary.

1.3 Fourier Series Representation of Continuous-
Time Signals

Fourier series analysis evaluates also which periodic continuous-time signals
can be represented as a linear combination of complex exponentials. As we
did for discrete-time signals, we define the fundamental complex exponential
signal as

x(t) = ejω0t, with t ∈ R. (1.20)

It is always periodic with fundamental period T = 2π
ω0

and it can be expressed
as a combination of sines and cosines through Euler’s Formula (1.5). A set
of complex exponential

φk(t) = ejkω0t with k = 0,±1,±2, . . . (1.21)

is said to be harmonically related if each one of these signals has a fundamen-
tal frequency that is multiple of ω0, and therefore, each one is periodic with
period T (although their fundamental period is a fraction of T for |k| > 1).
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Thus, a linear combination of harmonically related complex exponentials of
the form

x(t) =

+∞∑
k=−∞

ake
jkω0t =

+∞∑
k=−∞

ake
jk( 2π

T
)t (1.22)

is also periodic with period T . As the Riesz-Fischer teorem guarantees [13],
eq.(1.22) describes a signal that converges to the original one, x(t), in a mean
square limit sense (yet not punctually). The term in (1.22) for k = 0 is a
constant defined by the average value of x(t) over one period, while the terms
with k = ±1 both have fundamental frequency equal to ω0, and are referred
to as first harmonic components. The representation of a periodic signal in
the form of eq.(1.22) is referred to as its Fourier Series representation. The
coefficients ak, referred to as the Fourier series coefficients, can be obtained
by

ak =
1

T

∫
T
x(t)e−jkω0t dt =

1

T

∫
T
x(t)e−jk( 2π

T
)t dt. (1.23)

Note that, in eq.(1.23), we will obtain the same result if we integrate over
any interval of length T . We want to stress that the relations obtained by
eq.(1.22) and eq.(1.23) are well defined (that is, the integral or the series do
not diverge) for a large class of signals, including those with finite energy
over a single period. The Fourier Series representation for continuous-time
signals has several properties, analogous to that we have already defined in
the discrete-time case, useful to reduce the complexity of the Fourier series
of many signals.

1.4 Continuous-time Fourier Transform

The results seen so far about Fourier Series apply only to periodic signals.
In this paragraph, we see how these concepts can be applied to signals that
are not periodic. The idea is to represent an aperiodic signal x(t) by first
constructing a periodic signal x̃(t) that is equal to x(t) over one period.
Then, as this period approaches infinity, x̃(t) is equal to x(t) over larger
and larger intervals of time, and the Fourier series representation for x̃(t)
converges to the so called Fourier Transform representation of x(t). A
rather large class of signals, including all signals with finite energy, can be
represented through a linear combination of complex exponentials close in
frequency. The resulting spectrum of coefficients in this representation is
called the Fourier Transform.

Definition 1.3 (Fourier Transform). Let x(t) be a continuous-time signal
with finite energy, i.e. ∫ +∞

−∞
|x(t)|2 dt < +∞. (1.24)
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Then its Fourier Transform X(jω) is defined as a mean-square limit by

X(jω) =

∫ +∞

−∞
x(t)e−jωt dt. (1.25)

Moreover, we can derive the original signal x(t) from its transform thanks
to the following theorem:

Theorem 1.4.1 (Inversion Theorem). Let x(t) be a continuous-time signal
for which (1.24) holds, and let X(jω) be its Fourier Transform. If both
are absolutely integrable, we can define a function g(t), that is

g(t) =
1

2π

∫ +∞

−∞
X(jω)ejωt dω. (1.26)

This function is well-defined, continuous and satisfies∫ +∞

−∞
|x(t)− g(t)| dt = 0. (1.27)

Moreover, if x(t) satisfies the Dirichelet Conditions, namely

• x(t) is absolutely integrable;

• x(t) has a finite number of maxima and minima within any finite in-
terval

• x(t) has a finite number of discontinuities within any finite interval,

then

g(t) = x(t) (1.28)

except where x(t) has a discontinuity.

The Fourier Transform has several properties. We underline that it
is linear and isometric, i.e. it preserves scalar product. It is worth to
emphasize that, although Fourier Transform has been introduced referring
to aperiodic signals, we can develop it for periodic signals too. In particular,
Fourier Transform of a periodic signal with Fourier coefficients ak consists
of a train of impulses occurring at the related frequencies and with area that
is proportional to the Fourier series coefficients, as we will see in the next
example. We want to stress that, since periodic signals do not satisfy (1.24),
their Fourier Transform is a generalized function obtained by analysis of the
inversion formula (1.26).

Example 1.4.1. Let x(t) = cos(ω0t) be the signal we want to transform. It
is clearly periodic, so we cannot use (1.25) to obtain its Fourier Transform.
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If we impose the complex exponential z(t) = ejω0t to have as its generalized
Fourier Transform Z(jω) = 2πδ(ω − ω0), we obtain

ejω0t =
1

2π

∫ +∞

−∞
Z(jω)ejωt dt

=
1

2π

∫ +∞

−∞
2πδ(ω − ω0)ejωt dt

that satisfies (1.26). So we can now write

x(t) = cos(ω0t) =
1

2

[
ejω0t + e−jω0t

]
and, thanks to linearity, we can finally find X(jω) as

X(jω) =
1

2
[2πδ(ω − ω0) + 2πδ(ω + ω0)]

= π[δ(ω − ω0) + δ(ω + ω0)]

As we mentioned earlier, the Fourier Transform of the periodic signal x(t)
consists of two impulses.

1.5 Discrete-time Fourier Transform

As in the previous paragraph, we introduce Fourier Transform for aperiodic
discrete-time signals too.

Definition 1.4 (Discrete-time Fourier Transform). Let x[n] be a discrete-
time signal with finite energy, i.e.

+∞∑
n=−∞

|x[n]|2 < +∞. (1.29)

Then its discrete-time Fourier Transform X(ejθ) is defined as a mean-square
limit by

X(ejθ) =
+∞∑

n=−∞
x[n]e−jθn. (1.30)

The inversion forumla is

x[n] =
1

2π

∫
2π
X(ejθ)ejθn dθ. (1.31)

Hence, even an aperiodic discrete-time signal can be thought as a linear
combination of a continuoum complex exponentials. In particular, eq.(1.31)
is a representation of x[n] as a linear combination of complex exponen-
tials infinitesimally close in frequency and with amplitude proportional to



10 CHAPTER 1. USEFUL CONCEPTS ON SIGNALS AND MRI

X(ejθ). For this reason, X(ejθ) is often referred to as the spectrum of x[n],
because it provides the information on how x[n] is composed at different
frequencies. The discrete-time Fourier transform shares many similarities
with the continuous-time case. The major difference lies in the periodicity
of discrete-time transform X(ejθ), since it is always 2π periodic. As in the
continuous-time case, discrete-time periodic signals can de described in the
transform domain by interpreting their transform as an impulse train in
the frequency domain.We note that their Fourier Transform is a generalized
function obtained by inspection of the inversion formula (1.31).

1.6 The Sampling theorem

We can always see a discrete-time signal as the sampled version of a particu-
lar continuous-time signal. In fact, we can sample a continuous-time signal,
that is, we can evaluate it only on a sequence of equally spaced values of the
indipendent variable t. The simplest way to do this is through the use of a
periodic impulse train multiplied by the continuous-time signal x(t) that we
wish to sample. This mechanism is known as impulse-train sampling, where
the periodic impulse train p(t) is the sampling function, the period T is the
sampling period and the fundamental frequency of p(t), ωs = 2π/T is the
sampling frequency. However, in the absence of any additional conditions,
we would not expect the original signal to be uniquely specified by its sam-
ples. This means that we cannot generally reconstruct it perfectly because
of the loss of information that sampling introduces. The Nyquist-Shannon
Sampling Theorem introduces some conditions that guarantee the possibil-
ity to recover perfectly certain signals from their samples. This result is
extremely important in practical applications of signal and system analysis.
Infact it defines a lower bound to the amount of “information” of a signal
we need to acquire.

Theorem 1.6.1 (The Nyquist-Shannon Sampling Theorem). Let x(t) be a
band-limited signal, with X(jω) = 0 for |ω| > ωM . Then x(t) is uniquely
determined by its samples x(nT ), n = 0,±1,±2, . . . if

ωs > 2ωM (1.32)

where

ωs =
2π

T
. (1.33)

Given these samples, we can reconstruct x(t) by generating a periodic im-
pulse train in wich successive impulses have amplitudes that are successive
sample values. This impulse train is then processed through an ideal low-
pass filter with gain T and cutoff frequency greater than ωM and less than
ωs − ωM . The resulting output signal will exactly equal x(t).
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The frequency 2ωM , which, under the sampling theorem, must be ex-
ceeded by the sampling frequency, is commonly referred to as the Nyquist
rate. We underline that ideal filters are generally not used (or not avaliable)
in practice for a variety of reasons. In fact, they are typically non-causal
and not input-output stable. In any practical application, the ideal lowpass
filter used in the theorem would be replaced by a nonideal filter H(jω) that
approximates the ideal one in the frequency band of interest. Interpolation,
that is, the fitting of a continuous signal to a set of sample values, is a
commonly used procedure to reconstruct a function, either approximately
or exactly, from its samples. When the Sampling Theorem conditions aren’t
met, it is impossible to reconstruct correctly the original signal by an ideal
low-pass filter. In this case there is a superposition, in the frequency domain,
of sampled signal’s Fourier Tranform that prevents the antitrasformated fil-
tered signal to be correct, as we will see in the next example. This effect
is referred to as aliasing, and it introduces unwanted artifacts in signals
reconstruction.

Example 1.6.1. Let x(t) be the signal we want to sample and then recon-
struct.

x(t) = cosω0t
Fs←→ X(jω0) = π[δ(ω − ω0) + δ(ω + ω0)]

so X(jω) is band-limited and we can apply the sampling theorem. Now we
choose the sampling rate as

ωs = 6ω0 = 6ωM > 2ωM

that satisfies the Sampling Theorem condition, and we use a lowpass ideal
filter with gain T and cutoff frequency of ωc = ωs

2 . In this way, we can
perfectly reconstruct the signal from its sampled version, as the teorem
guarantees (see also Fig.1.1), that is xr(t) = x(t).

Now we choose a new sampling rate as

ωs =
3

2
ω0 =

3

2
ωM < 2ωM

so that the Sampling Theorem condition is violated. In this case, choosing
the cutoff frequency of the lowpass filter as in the previous case, ωc = ωs

2 ,
the reconstructed signal is

xr(t) = F−1
s [Xr(jω)] = F−1

s [πδ(ω − ω0 + ωs) + πδ(ω + ω0 − ωs)]

= cos(ωs − ω0t) = cos

(
1

2
ω0t

)
6= x(t).

We can thus see the destructive effect of aliasing (see also Fig.1.2).
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Figure 1.1: (a) spectrum of the sinusoidal signal and (b) spectrum of the
sampled signal with ωs > 2ω0

Figure 1.2: spectrum of the sampled signal with ωs < 2ω0: we notice that
the impulses falling within the passband of the lowpass filter differs from
the spectrum of the original signal, fig1.1(a), thus the reconstructed signal
is affected by aliasing
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One of the best-known example of aliasing is the principle on which the
stroboscopic effect is based. In this case a disc, with a single radial line
marked on, rotates at a constant rate. A flashing strobe acts as a sampling
system, since it illuminates the disc for brief time intervals at a periodic
rate. When the strobe frequency is much higher than the rotational speed
of the disc, the speed of rotation of the disc is perceived correctly. When the
strobe frequency becomes less than twice the rotation frequency of the disc,
the rotation appears to be at a lower frequency than its actual one. When
the strobe frequency becomes less than that of rotation, the disc appears
to be rotating in the opposite direction! The stroboscopic effect is thus an
example of useful application of aliasing due to undersampling.

1.7 Electronic Spin and Nuclear Magnetic Reso-
nance

For the sake of simplicity, in this paragraph we will refer to the Hydro-
gen atom, although the concepts we will revise still remain valid for more
complex atoms or molecules. The hydrogen atom is the simplest element
in nature. It has just one proton (+) and one electron (-). Because of its
physical structure, the hydrogen atom’s proton spins on its axis. This gen-
erates a magnetic field that interacts with external magnetic fields. Because
of this spin rotation, a magnetic dipole is created along the axis of rotation.
The entire atom also spins around a second axis, like a top, moving within a
conelike trajectory (precession). If the spin and the precession axis of an hy-
drogen atom rotate in the same direction, we define it a low-energy nucleum.
Otherwise, if the spin and the precession axis rotate in opposite direction,
we call it a high-energy nucleum. Under normal conditions, a bunch of hy-
drogen atoms will have their precession axes randomly oriented in different
directions. When a strong magnetic field is applied, all the atoms line up
their precession axes in the same directions. In this case, if the atoms are
stimulated through the application of radio waves of a particular frequency
(called the resonance frequency), low-energy protons will absorb it to be-
come high-energy protons. When the trasmission of radio waves stops, the
low-energy protons return to their previous state. While they relax, they
release the energy they have absorbed in the form of a wave of precise fre-
quency that can be captured and analyzed. These waves describe precisely
the magnetic and chemical properties of the atoms they were released by.

1.8 Magnetic Resonance Imaging

Thanks to a technology that combines magnetic fields and radio waves, it
is possible to render high-quality images of soft tissues in the human body.
To do this, the Magnetic Resonance Scanner scans for the hydrogen atoms
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in these tissues. To detect the atoms, the area is initially subjected to a
powerful magnetic field and later stimulated using radio-frequency waves.
This process causes the atoms to release energy that is then detected by
the scanner and converted into images. The scanner is thus composed by a
superconducting magnet and its cooling system, and by a radio-frequency
transmitter (coil) that stimulates the atoms. The revolutionary features of
this tecnique is that it has no inconvenience to the patient, other than the
requirement to remain still for a while. Moreover, it does not require the
use of contrast agents or the use of X-rays, as in the case of radiography or
computerized tomography.



Chapter 2

A new way of sampling:
Compressed Sensing

As we saw in the previous chapter, the Sampling Theorem defines a strict
boundary to signal acquisition. That is, if we want to acquire a signal,
we have to satisfy Nyquist condition or we won’t be able to reconstruct
it correctly. However, we often treat signals (or images) whose information
content can be described by far less data than what Nyquist Theorem states.
That’s why, with the increasing interest in data storage and elaboration,
compression algorithms are now fundamental. They can reduce data sets by
order of magnitude, making systems that acquire extremely high resolution
images (or signals) feasible. There is an extensive body of literature on
image compression, but the central concept is to transform the image into an
appropriate basis and then code only the important expansions coefficients.
We underline that, according to this method, we have to acquire a certain
number of samples in order to satisfy the Sampling Theorem only to throw
part of them away with a compression algorithm. But is there a way to
avoid the large data acquisition? In other words, is it possible to build the
data compression directly into the acquisition? The answer is yes, and it is
what Compressed Sensing (CS) is all about. Since 2004 Emmanuel Candés,
Terence Tao and David Donoho developed the CS theory starting from some
simple ideas:

• if we know the image structure, we match the sensing method to it,
in order to minimize the number of measurements m needed to recon-
struct it faithfully; if we don’t know anything about the image we want
to acquire, the best way is to sense the signal in a complete random,
inchoerent and unstructured way;

• therefore we can reconstruct the signal only in a probabilistic sense,
meaning that with a certain probability we can recover the original
image from the samples we have randomly acquired;

15
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• we have to use a non-linear algorithm in order to recover with high
probability the correct signal, since we are trying to solve an undeter-
mined problem.

The mathematical theory underlying CS is deep and beautiful, and draws
from different fields, but the moral is very general: a good signal representa-
tion can aid the acquisition process and outrun the concept of information
acquisition we commonly have.

2.1 A new notion of “sampling”

Compressed Sensing and compression algorithms both take advantage of
the inner property of most signals to contain some redundancy. In fact,
the analysis in the transform domain of many signals and most of images
shows that a few information (i.e., coefficients in the transform domain)
could represent the entire signal, while the rest of the samples, with high
probability, will be zero-valued. For example, if we consider the simple
cosinusoidal signal of Example1.4.1 we can see how it is completely described
by just two impulses in the Fourier Transform domain, while its band, that
depends linearly on ω0, could increase at discretion (and thus could increase
the number of samples necessary to satisfy the Nyquist theorem). In other
words, often a signal contains less information then what we are constrained
to acquire by the Nyquist Sampling theorem. This is particularly true for
signals that, in some representation, are sparse, that is they can be usefully
described by a few coefficients.

Definition 2.1 (Sparsity of a signal). A signal x[n] is said to be S-sparse
if its coefficient series (when it is represented in a certain basis) has at most
S non-zero elements.

In the previous example, the cosinusoidal signal is 2-sparse in the Fourier
Transform domain. Clearly, if we could build an acquisition system that
samples only these two Fourier coefficients we would be able to rebuild
the entire signal without sampling it at high rate as we did in Example
1.6.1. What Compressed Sensing tries to do is then to reduce the number
of samples acquired, going far behind the Nyquist theorem and approaching
the S-sparsity of the analyzed signal.

Until now we have considered just one sampling method, the impulse-
train sampling, but we can simply generalize our notion of sampling. In our
acquisition system, we can obtain each mesurement yk as an inner product
against a different test function φk:

yk = 〈x, φk〉 for k = 1, . . . ,m, (2.1)

where x is the discrete-time signal expressing the image. In this way, the
choice of the φk allows us to choose in which domain we gather the infor-
mation about the image. For example, if the φk are sinusoids at different
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frequencies, we are directly collecting Fourier coefficients, while if they are
indicator functions on squares, we are just collecting pixels. We stress that,
so far, we have assumed that we have complete control over which φk to
use, while it is not always true in real image acquisition. Moreover, since
the measurements y1, . . . , ym are in some sense a coded version of the im-
age x, we will refer to these generalized kinds of samples as coded imaging.
Shortly, if we combine all the m φk in a matrix Φ, then we can describe the
vector Y of the samples acquired through a linear transformation. Formally,
if

Y =

 y1
...
ym

 (2.2)

then we can rewrite eq.(2.1) as

Y = ΦX, where Φ =

φ1
...
φm

 (2.3)

is an m × n matrix whose rows are the test functions φi, while X is the
vector (with dimension n ≥ m) of the complete signal x. Our goal is then
to choose the test functions φk in order to minimize the number of measure-
ment m we need to reconstruct X faithfully. The simplest idea is to match
these test functions to the image structure. In other words, we try to make
measurements in the same domain in which we would compress the image,
and in which it is possibly sparse. With the φk matched to the signal struc-
ture, we reconstruct our image using a simple regression algorithm, the least
squares1, finding the closest image that matches the observed projection
onto the span of [φ1, . . . , φm]:

X̂ = Φ∗(ΦΦ∗)−1Y, (2.4)

where Φ is the linear operator we introduced, that maps the image to a set
of m measurements, Φ∗ is its adjoint, and Y is the m-vector of the observed
values. The effectiveness of this strategy is determined by how well images
of interest can be approximated in the fixed linear subspace spanned by the
φk. We now demonstrate why this method fails in most of cases, even if it
is an interesting starting point to understand the CS theory. Unfortunately
this strategy isn’t adaptive because of its simplistic approach: even if the
image changes, and so does its structure, we are stuck recording the same
m transform coefficients for every image, while the important coefficients to

1The method of least squares is a standard approach to the approximate solution of
overdetermined systems, i.e., sets of equations in which there are more equations than
unknowns. “Least squares” means that the overall solution minimizes the sum of the
squares of the errors made in the results of every single equation.
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Figure 2.1: (a) A sparse vector. If we try to sample it with no knowledge of
its structure, we will see zero-valued samples most of the time. (b) Examples
of pseudorandom incoherent test vectors φk. With each measurement of (a)
with a test vector from (b) we gather a little bit of information about which
components are active.

reconstruct the image could vary. Since compression algorithms have the
entire image and its transform to examine, they can abridge the complexity
of this problem with ease [6]. The same advantage is not afforded to an
acquisition system, that has no way to judge which transform coefficients
are important until after the image is sampled! To outrun this problem, we
modify the test function φk and the matrix Φ while we persist using a linear
acquisition system.

The best way to achieve an adaptive approximation performance with
a predetermined set of linear mesurement is to choose the φk to be com-
pletely unstructured and noise-like, although we have then to modify our
reconstruction algorithm. The central result of CS, as we will see deeply in
the next paragraphs, is that from m of these noise-like, incoherent measure-
ment, we can renconstruct the image as well as if we had observed its most
important coefficients. In order to do so, while we know that the image we
are trying to acquire is sparse in some domain, it is critical to choose our
measurement functions (and their linear combinations) not to be. In fact, if
we don’t know where the important values are, sampling the transform co-
efficients directly (that is, using sinusoids for the φk we introduced, in order
to collect Fourier coefficients) will be chiefly fruitless effort, since we will see
most of the sampled values that are very close to zero. Instead, if we take
combinations of the transform coefficients, using incoherent φk, we gather a
little bit of information about the whole signal with each measurement (see
also Fig.2.1). We now have to formalize how to modify the test vectors φk
in order to obtain noise-like, incoherent measurements. First of all, we have
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to rewrite Φ as an orthogonal matrix 2, with

Φ∗Φ = nI. (2.5)

In this way, the observed transform coefficients are still described by eq.(2.3).
Of course, if all of the n coefficients of X are observed, we simply have
to apply 1

nU
∗ to the vector of observations Y to recover X. Instead, we

are analyzing the case in which only a small part of the components of Y
are actually observed. Given a subset Ω ⊂ {1, . . . , n} of size |Ω| = m,
the challenge is to infer the n-dimensional vector X from the shorter m-
dimensional vector of observations Y = ΦΩX, that is we wish to solve an
undetermined system of equations. Published results ([8]) take φk to be
a realization of Gaussian white noise, or a sequence of Bernoulli random
variables taking values ±1 with equal probability (similarly to Fig.2.1 (b)).

Sometimes a signal we want to acquire could have a sparse representation
in a basis different from the one defined by the measurement system Φ [4].
In these cases we introduce a pair of orthonormal basis (Φ,Ψ), where the
former is the measurement basis introduced earlier, while the latter is the
one we use to describe the signal x[n]. For instance, if the signal we wish to
recover from m measurement is not sparse in the time domain, its expansion
in the basis Ψ could be sparse, that is

f(t) =
n∑
j=1

xjψj(t), f = Ψx, and Y = Φf, (2.6)

(where the waveforms ψj are the columns of Ψ). Our goal is then to search
for the coefficient sequence in the Ψ-domain that explains the samples ob-
tained in the domain Φ, enjoying the properties

Ψ∗Ψ = I, Φ∗Φ = nI, (2.7)

(as always, I represents the identity matrix). Hence, we can define a new
matrix U as

U = ΦΨ, (2.8)

whereupon we can define a new parameter µ(U), also referred to as mutual
coherence.

2In linear algebra, an orthogonal matrix is a square matrix with real entries whose
columns and rows are orthogonal unit vectors (i.e., orthonormal vectors). Equivalently, a
matrix Q is orthogonal if its transpose is equal to its inverse: QT = Q−1, which entails
QTQ = QQT = I, where I is the identity matrix. An orthogonal matrix Q is necessarily
invertible (with inverse Q−1 = QT ), unitary and normal (Q∗Q = QQ∗). As a linear
transformation, an orthogonal matrix preserves the dot product of vectors, and therefore
acts as an isometry of Euclidean space, such as a rotation or reflection. In other words, it
is a unitary transformation.
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Definition 2.2 (mutual coherence). Given two bases Ψ and Φ we define
their mutual coherence as

µ(Φ,Ψ) = max
1≤k,j≤n

| 〈φk, ψj〉 |, (2.9)

µ(U) = µ(Φ,Ψ) = max
k,j
|Uk,j |. (2.10)

This parameter is a rough characterization of the degree of similarity
between the sparsity and measurement system, thus it can be interpreted as
a measure of how concentrated the rows of U are. Since each row of U has
an l2-norm equal to

√
n, µ will take values between 1 and

√
n. When the

rows of U are perfectly flat, that is |Uk,j | = 1 for each k, j (as in the case
when U is the discrete Fourier Transform), we will have µ(U) = 1, and we
will achieve the maximum incoherence possible. If a row of U is maximally
concentrated (all the row entries but one vanish), then µ(U) =

√
n and we

have obtained an (undesiderable) coherent measurement system. For µ to be
close to its minimum value of 1 (that is, to attain incoherent measurements)
each of the measurement vectors φk must be ”spread out” in the Ψ domain.
This parameter is particularly relevant for the CS theory, since it expresses
the relationship between the sensing modality (Φ) and the signal model (Ψ),
that affects the number of measurements required to reconstruct a sparse
signal.

2.2 The recovery method

We just saw how, measuring a series of random combinations of the entries
of x observing its inner product with the random vectors φk, we measure the
signal globally, learning something new about the sparse vector with every
measurement. This random sensing strategy works because each sparse
signal will have a unique set of measurements.

To recover an S-sparse vector X from Y = ΦX, inverting the measure-
ment process, we have to solve an optimization problem. Since we have less
samples than the required ones to reconstruct the signal perfectly (according
to the Nyquist Sampling theorem) we are trying to solve an undetermined
problem (that is, a system which has multiple or infinite solutions, in op-
position to a system with a unique solution). At first glance, solving the
undetermined system of equations appears hopeless; but suppose now that
the signal is compressible, meaning that it depends on a number of degrees of
freedom which is smaller than N . For instance, if our signal is sparse, then
the problem changes radically, making the search for the solutions feasible.
The fundamental idea that allows us to overcome this problem is to look
for the sparsest signal that satisfies the sampled values. In other words, we
assume that we are dealing with a signal x that we know sparse in some
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Figure 2.2: (a) l1 ball with radius r. (b) l1 minimization recovers the sparsest
vector of all the set of vectors that share the same measurement values Y ;
(c) l2 minimization isn’t effctive because it can’t recover spase vectors.

basis and that we sampled it with a set of m incoherent, noise-like test func-
tion φk, obtaining a measurement vector Y . Thus we search for a signal
that matches exactly the sampled values at their frequencies, and that is
zero-valued elsewhere, so that it is the sparsest of the infinite set of signals
which maps to Y . At first, the best recovery algorithm seems to be

min
X̃

#[i : X̃(i) 6= 0] subject to ΦX̃ = Y. (2.11)

The functional #[i : X̃(i) 6= 0] is simply the number of nonzero terms in
the candidate vector X̃, and it is sometimes referred to as the l0 norm.
The problem with eq.(2.10) is that solving it directly is infeasible, since it
is combinatorial and NP-hard3 [6]. If we relax the boundaries defined by
eq.(2.10) we obtain a convex program that works almost as well and that is
far easier to solve:

min
X̃
||X̃||l1 subject to ΦX̃ = Y, (2.12)

where

||X̃||l1 =

n∑
i=1

|X̃i|. (2.13)

The main diffrence between these two strategies is the substitution of sum of
magnitudes in place of size of the support; even though they are fundamen-
tally different, they produce the same results in many interesting situations.

We will now show why the geometry of l1 norm minimization works
well as a substitute for sparsity. Referring to Fig(2.2) we see how the l1

3NP-hard (non-deterministic polynomial-time hard), in computational complexity the-
ory, is a class of problems that are, informally, “at least as hard as the hardest problems in
NP”. NP-hard problems have a deep theoric and practical relevance. In fact, if a problem
P is provable to be equivalent to a well-known NP-hard problem, then it is demonstrated
that is nearly impossible to find an efficient way to solve it.
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“ball”, that is the set of points of the space with equal l1-norm from a given
point (the centre), is clearly anisotropic. If we compare it with the standard
Euclidean l2 ball, which is spherical and thus completely isotropic, we note
that it is pointy along the axis, and this property is the fundamental key
that favors sparse vectors. In fact, the l1 ball of radious r contains all the
points of R2 such that |α(1)| + |α(2)| ≤ r. If we now search for a sparse
α0 that satisfies Y = Φα0, the only intersection point between the l1 ball
(that represents the sparsity hypotesis) and the line H (that represents the
congruence with the samples acquired) recovers the sparsest vector that
satisfies eq.(2.12) (see also Fig.(2.2), (b)). The point labeled α0 is a sparse
vector, since only one of its two components are nonzero, of which we make
one measurement, while the line labeled H is the set of all α that share the
same measurement value. To pick the point with minimum l1 norm we can
imagine the l1 ball to start with tiny radius and then expanding it until it
touches H. This first point of intersection is by definition the solution to
eq.(2.12). The anisotropy of the l1 ball, combined with the flatness of the
space H results in a unique solution that coincides with the original sparse
signal α0. On the contrary, minimizing the l2 norm does not recover α0,
because the l2 ball is isotropic and thus recovers a solution α∗l2 that will in
general not be sparse at all.

Intuitively, the l2 norm penalizes large coefficients heavily, therefore solu-
tions tendo to have many smaller coefficients, hence not to be sparse. In the
l1 norm, many small coefficients tend to carry a larger penalty than a few
large coefficients, therefore small coefficients are suppressed and solutions
are often sparse [1].

2.3 The new sampling theorem

In this paragraph we will exactly formalize the intuitions about CS we have
introduced so far.

Let x be a signal defined with respect to a certain orthonormal basis Ψ,
so that x = ΨX (where X is thus the vector of coeffcients that describes the
signal on Ψ), and let be yk = 〈x, φk〉 = 〈ΨX,φk〉. Then, as we saw in the
previous paragraph, we can recover the original signal x starting from the
samples yk thanks to the l1 minimization. We will now discuss the number
of samples necessary to recover the signal with a negligible error.

Theorem 2.3.1 (The New Sampling Theorem). [3] Assume that a signal
x ∈ RN has its coefficient vector X that is S-sparse and that we are given m
of its samples in the generic domain Φ with frequencies selected uniformly
at random. Suppose that the number of observations obeys

m ≥ C · µ2(Ψ,Φ) · S · log n, (2.14)
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for some small constant C.Then minimizing l1 reconstructs x exactly with
overwhelming probability. In details, if the constant C is of the form 22(δ+1)
in (2.14), then the probability of success exceeds 1−O(N−δ).

The first conclusion is that one suffers no information loss by measuring
just about any set of m frequency coefficients. The second is that the signal
x can be exactly recovered by minimizing a convex functional which does not
assume any knowledge about the number of nonzero coordinates of X, their
locations, and their amplitudes which we assume are all completely unknown
a priori. In fact, the theorem does not require any knowledge about the
position of the nonzero elements of X but only their number S. Moreover,
the importance of the coerence parameter is now clear: if we choose a couple
of basis (Ψ,Φ) such that µ(Ψ,Φ) = 1 (that is, we have maximum incoherence
between the sensing and the sparsity basis), the number of samples we need
to reconstruct X correctly is the order of magnitude of S · log n.

To illustrate the deep innovation this theorem introduces over the classic
Nyquist-Shannon Theorem we will develop a brief comparison [7]. Suppose
that a signal x has support Ω in the frequency domain and has B = |Ω|. If
Ω is a connected set, we can think of B as the bandwidth of x. If in addition
the set Ω is known, then the classical Nyquist-Shannon sampling theorem
states that x can be reconstructed perfectly from B equally spaced samples
in the time domain, while the reconstruction is simply obtained by linear
interpolation. Now suppose that the set Ω, still of size B, is unknown and
not necessarily connected. In this situation, the Nyquist-Shannon theory
is unhelpful. However, Theorem(2.3.1) asserts that far fewer samples are
necessary. Solving eq(2.12) will recover X perfectly from about B·logN time
samples. What is more, these samples do not have to be carefully chosen;
almost any sample set of this size will work. Thus we have a nonlinear
analog to the classical sampling theorem: we can reconstruct a signal with
arbitrary and unknown frequency support of size B from about B · logN
samples arbitrarily chosen.

While this seems to be a great achievement, one could still ask whether
this is optimal, or if we could do it with even fewer samples. The an-
swer is that in general, we cannot reconstruct S-sparse signals with fewer
samples. This is a consequence of a uniform uncertainty principle (UUP)
introduced by Candés and Tao ([3]). The UUP essentially states that the
m × n sensing matrix Φ obeys a “restricted isometry hypothesis. Let ΦT ,
with T ⊂ 1, . . . , n be the submatrix (with dimensions m × |T |) obtained
extracting the columns of Φ corresponding to the indices chosen in T . Then
we define the S-restricted isometry constant δS of Φ as the smallest quantity
that satisfies

(1− δS)||X||2l2 ≤ ||ΦTX||2l2 ≤ (1 + δS)||X||2l2 (2.15)

for all subsets T with |T | ≤ S . This property essentially requires that every
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Figure 2.3: (a) The logan-Shepp phantom test image. (b) Sampling grid in
the frequency plane. (c) Minimum energy reconstruction. (d) Reconstruc-
tion obtained by l1 minimization. The recostructed image is an exact replica
of (a).

set of columns with cardinality less than S approximately behaves like an
orthonormal matrix. Then our matrix Φ obeys the UUP since, for any S-
sparse vector X, the energy of the measurements ΦX will be comparable to
the energy of X itself:

1

2
· m
n
· ||X||22 ≤ ||ΦX||

2
2 ≤

3

2
· m
n
· ||X||22, (2.16)

where, as usual, m is the number of sampled values observed, while n is the
dimension of the complete vector X. We call this an uncertainty principle
because the proportion of the energy of X that appears as energy in the
measurement is roughly the same as the undersampling ratio m/n. To
understand how the UUP affects sparse recovery, we demonstrate that it is
fundamental for the unicity of the recovery algorithm’s solution [6]. In fact,
if we suppose that eq.(2.16) holds for sets of size 2S, while we keep measuring
our S-sparse vector as above Y = ΦX, we could ask if is there any other
S-sparse (or sparser) vector X ′ that shares the same measurements. If there
were such a vector, then the difference h = X − X ′ would be 2S-sparse
and have Φh = 0: these two properties are though incompatible with the
UUP. In short, if the UUP holds at about the level S, the minimum l1-norm
reconstruction is provably exact.

The theoretical power of the results shown so far has several practical
experiments to support it. The true power of Compressed Sensing isn’t its
complete mathematical unified theory, but its stability, robustness (i.e. ver-
sus measurement errors) and its generality, since it can be applied widely to
any basis used to describe the signal. Probably the most famous example
to show how well it applies to sense and recovery sparse signal is the so
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called Longan-Shepp phantom test image (Fig 2.3). This example considers
the problem of reconstructing a two-dimensional image from samples of its
discrete Fourier Transform on a star-shaped domain. To recover the orig-
inal signal, (c) assumes that the Fourier coefficients at all the unobserved
frequencies are zero (thus reconstructing the image with minimum energy).
This l2 strategy doesn’t work well, since it suffers from severe artifacts. On
the contrary, a strategy based on convex optimization (d), gathers exact
reconstruction of the image.

Although the acquisition process is simple, solving the recovery program
is computatively burdersome. Fortunately there have been drastic advances
in the field of convex optimization that make it tractable on the image
quality and dimension we are usually intrested in. As a general rule, solving
an l1 minimization program is about 30 or 50 times more expensive than
solving an l2 problem. Improving the algorithmic efficiency is thus one of
the CS research goals in the last few years.
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Chapter 3

The Natural Fit Between CS
and MRI

Compressed Sensing clearly offers some useful properties for signal acqui-
sition and elaboration, since it can drastically reduce sampling time and
dataset. Consequently it has found serveral applications in many different
fields, from astronomy to communication networks. We will focus our atten-
tion on its potential in the diagnostic imaging field, in particular on its appli-
cation to Magnetic Resonance Imaging. In fact, MR images are inherently
sparse and incoherent, two properties we now know fundamental in order
to apply efficiently the CS theory. Moreover, as we saw in the first chapter,
MRI presents no inconvenience for the patient, but has an inherently slow
data acquisition process which causes long scanning time. CS can overcome
this weakness by undersampling the desired images, thus scanning faster,
or alternatively, improving MR imagery resolution. Consequently, applying
CS to MRI offers potentially significant scan time reductions, with bene-
fits for patients and health care economics [2]. Another follow-up is that
dynamic-3D imaging (such as acquisition of heart motion) could improve
image definition, avoiding blur and out-focusing due to unintended motions.

In this chapter we will revise at first the properties of MRI that are
particularly significant for CS and describe their natural fit; then we will see
how to implement the CS theory in a realistic and effective way.

3.1 MRI properties and constraints

The MRI signal is generated by protons in the body, mostly those in water
molecules. The application of a strong static magnetic field and a radio
frequency excitation field produces a net magnetic moment that precesses
at a frequency proportional to the static field strenght. The transverse
magnetization m(~r) and its corresponding emitted RF signal (detected by
a receiver coil) can be made proportional to many different physical prop-

27
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erties of tissues [2]. MR images reconstruction attempts to visualize the
spatial distribution of the transverse magnetization. This practice, called
Spatial Encoding, directly samples the spatial frequency domain of the im-
age, thus extracting a Fourier relation between the received MR signal and
the magnetization distribution. Since encoded information are obtained by
superimposing additional gradient magnetic fields on top of the strong static
field, the total magnetic field will vary with position as B(x) = B0 + Gxx
(where Gx is the gradient field that varies linearly in space). If we take
into account all the three Cartesian axes, we will have Gx, Gy, Gz to be
our gradient field’s components, that could vary independently from each
other. These gradient are limited in amplitude and slew rate1, which are
both system specific, by physical constraints. In fact, high gradient am-
plitudes and rapid switching can produce peripheral nerve stimulation and
must be avoided, then providing a physiological limit to system speed and
performance.

Gradient-induced variation in precession frequency causes the develop-
ment of a linear phase dispersion. Therefore the receiver coil detects a signal
encoded by the linear phase, in the form of a Fourier Integral [9],

s(t) =

∫
R
m(~r)e−j2π

~k(t)·~r dr, (3.1)

where m(~r) is the transverse magnetization at position ~r, while k(t) ∝∫ t
0 G(s) ds describes formally the sampling trajectory. In other words, the

received signal at time t is the Fourier Transform of m(~r) sampled at the
spatial frequency ~k(t) [2].

Since the spatial frequency space is crossed by our sampling trajec-
tory ~k(t), that depends on the gradient waveforms ~G(t), it can be alter-
natively called k-space. What we are free to develop in this contest is
~G(t) = [Gx(t), Gy(t), Gz(t)]

T and thus the k-space sampling pattern. Tradi-
tionally it is designed to meet the Nyquist criterion, depending on the desired
resolution and field of view of the image. The most popular trajectory used
is a set of lines from a Cartesian grid, which guarantees robustness to many
sources of system imperfections. Of course, violation of the Nyquist criterion
in this acquisition scenario causes image artifacts in linear reconstruction.

If we abandon the traditional method in favor of the CS approach, seek-
ing a drastic performance growth, we have to satisfy some basic criteria.
In fact, the CS approach requires that: (a) the desired image has a sparse
representation in a known transform domain (i.e. it is compressible), (b) the
aliasing artifacts due to k-space undersampling are incoherent (noise like) in
that transform domain, (c) a non-linear reconstruction method is used both
to enforce sparsity of the image and consistency with the acquired data [1].

1The slew rate of a system is defined as the maximum rate of change (expressed in
time units) of the output signal, when the whole system has an impulse as its input.
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As we will see in the next paragraphs, each of these requirements is fully
satisfied by MR imaging.

3.2 Sparsity and Sparsifying Transform

Most MR images are sparse in an appropriate transform domain. In fact,
when an image does not already look sparse in time, frequency or pixel
domain, we can always apply a sparsifing transform to it. As we saw in
the previous chapter, it is an operator that maps a vector of image data
to a sparse vector in some bases. We currently possess a set of transform
that can sparsify many different type of images. Piecewise constant images
can be well sparsified by spatial finite-differencies, that is computing the
difference between close pixels (it applyies well to images where boundaries
is what we are most interested in). Real-life images are known to be often
sparse in the discrete cosine transform (DCT) or in the wavelet transform
domain, mostly used in JPEG and MPEG compression standards.

For example, angiograms, which are images of blood vessels, contain
primarily contrast enhanced blood vessels on an empty background, thus
already look sparse in the pixel representation. They can be made even
sparser by spatial finite-differencing. More complex imagery, such as brain
images, can be sparsified in more sophisticated domains, such as the wavelet
domain. Sparse representation is not limited to still imagery. Often videos
can safely be compressed much more heavily. Dynamic MR images are
highly compressible as well, since they are extremely sparse in the temporal
dimension. For example, the quasi-periodicity of heart images has a sparse
temporal Fourier transform [2].

The transform sparsity of MR images can be demonstrated by apply-
ing a sparsifying transform to a fully sampled image and reconstructing
an approximation to the image from a subset of the largest transform co-
efficients. The sparsity of the image is then expressed by the percentage
of transform coefficients sufficient for diagnostic-quality reconstruction. Of
course, diagnostic quality is a subjective parameter that depends on the spe-
cific application. But we know from CS theory that the number of samples
acquired depends on a quality parameter C that ensures faithful reconstruc-
tion of the image. Thus, rising its numerical value we can suit any accuracy
requirement, at the cost of an increased number of sample to acquire.

To illustrate this, Michael Lustug, David Donoho and John M. Pauly [1]
performed this experiment on two representative MR images: an angiogram
of a leg and a brain image. The results show that a reconstruction involving
5%− 10% of the largest transform coefficients guarantees good consistency
with the original images.
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Figure 3.1: Various sampling trajectories and their PSF. From left to right:
random 2D lines, random 2D points (also seen as cross-section of random
3D lines), radial, uniform spirals, variable density spirals, variable density
perturbed spirals.

3.3 Incoherent Sampling and Point Spread Func-
tion

A central point to design a CS scheme for MRI is then to select a subset
of the frequency domain which can be efficiently sampled and that leads to
incoherent aliasing interference in the sparse transform domain.

In the original CS theory we assumed to sample a truly random subset
of the k-space to guarantee a very high degree of incoherence. Neverthless
complete random sampling in all dimensions is generally impractical, be-
cause of hardware and physiological constraints. Sampling trajectories have
to follow smooth lines or curves to be implemented in practice and to be
robust to non-ideal situations. Then, we aim to design a practical sampling
scheme that emulates the interference results of complete random sampling
but takes into account structural constraints.

We have to keep in mind that our goal is to allow rapid data collection,
thus maintaining software and hardware implementation as simple as pos-
sible. Moreover, most MR images don’t have a uniform energy distribution
in k-space. Thus a uniform random distribution of samples wouldn’t be as
effective as expected. In fact, most energy of the MR images is concen-
trated close to the centre of the k-space, suggesting use of a variable-density
sampling scheme. To match this property, we should sample randomly with
sampling density scaling according to the distance from the k-space origin.
Variable density acquisition trajectories such as Cartesian, radial and spiral
imaging have been proved to have apparently incoherent aliasing, so that
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the interference appears as white noise in the image domain. Cartesian grid
undersampling is by far the simplest to implement: we should just modify
the acquisition method of a traditional scanner so that it simply drops entire
lines of phase encodes from an existing complete grid. In this way scan time
reduction is exactly proportional to the degree of undersampling. However,
it is suboptimal, since the achievable incoherence is significantly worse than
with truly random sampling. On the other hand, radial and spiral imaging
are more complex to implement, but could recreate a somewhat irregular
acquisition that achieves high incoherence, yet allowing rapid collection of
data. Fig.3.1 shows some of the most used sampling trajectories.

To compare the efficiency of the scheme proposed, we need a quanti-
tative measure of incoherence that allows us to put their performances in
comparison. The Point Spread Function (PSF) is a natural tool to mesure
incoherence and a practical implementation of the mutual coherence we in-
troduced in the previous chapter.

Definition 3.1 (Point Spread Function). Suppose that we sample a subset
S of the k-space, and that FS is the Fourier transform evaluated on the
frequency subset S. If F ∗S denotes the adjoint operation (that we can imagine
as a simple zero-filling followed by the inverse Fourier transform) we define
the Point Spread Function (PSF) as the matrix with elements

PSF (i, j) = (F ∗SFS)(i, j). (3.2)

Under complete sampling, the PSF becomes the identity matrix with all
the off-diagonal terms equal to zero. Undersampling the k-space induces
nonzero off-diagonal terms, which shows that linear reconstruction of pixel
i suffers interference by a unit impulse at pixel j 6= i.

Under undersampling conditions, let ei be the i-th vector of the natural
basis (having “1” at the ith position and zero elsewhere). Then PSF (i, j) =
e∗jF

∗
SFSei measures the contribution of a unit-intensity pixel at the ith

position to a pixel at the jth postion. In other words, the PSF measures
how zero-filling linear reconstruction produces aliasing, leaking energy from
pixel to pixel. This energy then shows up in the image as aliasing artifacts
and blurring (see also Fig.3.2). In this context we define coherence to be the
maximum off-diagonal value in the PSF matrix that describes the image of
interest.

As we saw earlier, MR images are at most sparse in the transform domain
rather than in the usual pixel domain. According to this, we generalize the
notion of PSF to Transform Point Spread Function (TPSF), which measures
how a single transform coefficient of the underlying object influences other
transform coefficients of the undersampled image.

In order to do this, we recall the orthogonal sparsifying transform Ψ we
introduced in the previous chapter. Then TPSF is given by

TPSF (i, j) = (Ψ∗F ∗SFSΨ)(i, j). (3.3)
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Figure 3.2: The PSF of random 2D k-space undersampling. We note how
undersampling results in incoherent interference in the reconstructed image
domain.

With this notation, coherence is measured as the maximum off-diagonal
value of the TPSF matrix as well. Of course, we are looking for small
coherence, i.e. incoherence.

In conclusion, we aimed to find an optimal sampling scheme that maxi-
mizes the incoherence for a given number of samples. However, we have to
keep in mind that this problem is combinatorial and might be considered in-
tractable. Since we know that choosig samples at random usually results in
a good, incoherent solution, practical procedures build a probability density
function (that takes into account what we saw about variable density trajec-
tory and the image’s energy density distribution) upon a complete Cartesian
sampling grid. Then, simply drawing indices at random from the pdf, we
undersample the grid. Repeating this procedure iteratively and choosing the
pattern that exibits the lowest interference might seem wasteful, but turns
out to be optimal since the sampling pattern so obtained can be used again
for future scans.

3.4 Non-linear Reconstruction and Thresholding
Method

As we know from the CS theory, the recovery method is complex and com-
putatively heavy. To get an intuition about how it can be realistically imple-
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Figure 3.3: Heuristic procedure for reconstruction from undersampled data.
(1) A sparse signal and its k-space domain representation (2). The signal is
undersampled in its k-space either through pseudo-random undersampling
(higher dots line) and equispaced undersampling (lower dots line). The
latter results in signal aliasing preventing recovery (3a), while the former
(3) can be recovered by use of iterative thresholding: some components rise
above the noise level (4) and can be recovered (5). Their contribution to
interference is calculated (6) and can be subtracted from the whole signal(7),
thus lowering the total interference level.

mented and to show how incoherence is fundamental for the feasibility of CS
in MRI, we will first develop an intuitive exampe of 1D signal reconstruction
(Fig. 3.3).

A sparse signal is undersampled; since it is already sparse in the trans-
form domain, we can think its sparsifying transform to be simply the iden-
tity. The common procedure of zero-filling the missing values and inverting
the Fourier transform generates artifacts that depend upon the sampling
pattern used. We can now distinguish two different cases, depending on
whether we use equispaced undersampling or random undersampling.

Equispaced k-space undersampling and reconstruction generates coher-
ent aliasing. In fact, the reconstructed signal shows a superposition of shifted
signal replicas that results in inherent ambiguity. Since every signal copy is
equally likely, it is impossible to determine which signal is the original one,
leading to the impossibility of signal reconstruction.

On the other hand, random undersampling results in a complete dif-
ferent situation. The Fourier reconstruction shows incoherent artifcts that
behave much like additive random noise to the original signal’s transform.
Of course, the aliasing artifacts aren’t noise, rather interferences that can
be explained with an energy-distribution argument. In fact, random under-
sampling reconstruction causes leakage of energy away from the individual
nonzero coefficients of the original signal that tends to spread randomly to
other reconstructed signal coefficients, including those wich had been zero
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in the original signal.
If we have a certain knowledge of the underlying original signal and of

the sampling pattern, it is possible to calculate this leakage analytically.
Then a plausible recovery method relies on a nonlinear iterative procedure
(also shown in Fig. 3.3), based on thresholding. If we analyze the recon-
structed image and pick up only the strongest component of the signal, we
are able to calculate the interference they caused in the overall reconstruc-
tion. Therefore, subtracting this interference from the entire signal, we can
reduce the total interference level, thus allowing smaller components, previ-
ously submerged, to stand out and be recovered. Iterative repetition of this
procedure permits to recover the rest of the sigal components.

We will now formalize the image reconstruction strategy by slightly mod-
ifying equation (2.12) in order to make it more robust to non-ideal situations,
since we have always to take into account some errors, noise and imperfec-
tion of the system. Recalling that the image of interest is a vector X, that
Ψ denotes the linear transformation from pixel to an appopriate sparsifying
domain, that ΦS represents the undersampled Fourier transform and that
Y stands for the reconstructed image vector, we can write

minimize ||ΨX||1
so that ||ΦSX − Y ||2 < ε.

(3.4)

As we saw in the CS theory, this constrained optimization problem exploits
l1 minimization to enforce sparsity. The second equation in (3.4) introduces
a new bond, since ε represents roughly the expected noise level, thus con-
trolling the fidelity of the reconstruction to the measured data.

In other words, among all the solutions consistent with the acquired
data, eq.(3.4) finds the solution that is compressible by the transform Ψ
[1]. Since iterative algorithms used to solve such optimization problem in
effect perform thresholding and interference cancellation at each iteration,
it is now explicit how such formal approach relates to the informal idea we
introduced earlier.

Of course, eq.(3.4) can be further refined in many practical cases. For
example, when finite differences are used as sparsifying transform, the objec-
tive in this equation is usually referred to as Total Variation (TV), since it
computes the sum of the absolute variations in the image. Even when other
sparsifing transform are used, often a TV penalty is included as well, requir-
ing the image to be sparse by both specific transform and finite-differences
at the same time. In the latter case, the problem is modified as follows

minimize ||ΨX||1 + αTV (X)

so that ||ΦSX − Y ||2 < ε,
(3.5)

where α is a parameter that balances Ψ sparsity with finite-differences spar-
sity.
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Lastly, eq.(3.4) should take into account that instrumental sources of
phase error can cause low-order phase variation in MRI. These variations
don’t provide any physical information, but create artificial variation in the
image that makes it more difficult to sparsify. To restrain this unwanted
drawback, we introduce a low-resolution estimation of each pixel’s phase,
obtained by sampled k-space information. Then, this phase information is
incorporated by slightly modifying eq.(3.4) so that ||ΦSPX−Y ||2 < ε, where
P is a diagonal matrix whose entries give the estimated phase of each pixel.

Development of fast algorithms to solve eq.(3.4) accurately is an increas-
ingly popular research topic. As we know, the iterative reconstruction is
more computationally intensive than linear reconstruction. However, some
of the methods proposed in the last years show great potential to reduce the
overall complexity [1].

Experiments of reconstructions from undersampled accelerated acquis-
tion have shown that the l1 reconstruction tends to slightly shrink the mag-
nitude of the reconstructed sparse coefficients. Therefore the resulting re-
constructed coefficients are often smaller than the original ones. We can
conclude that, in CS, images with high contrast can be easier undersam-
pled and reconstructed, since high contrast often results in large distinct
sparse coefficients. As a consequence, these coefficients can be recovered
even at high acquisition accelerations, while features with lower contrast
will be completely submerged in the noise level, i.e. are irrecoverable. We
want to stress this last umpteenth CS peculiarity: while, with traditional
acquisition methods, increased acceleration usually causes loss of resolution
or increase interference (that results in blurring), CS accelerated acquisition
looses low-contrast features in the images. Therefore, CS is particularly at-
tractive for applications where images exhibit high resolution, high contrast
features and rapid imaging is desiderable.
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Chapter 4

Application of Compressed
Sensing to MRI

In this section we will describe several potential applications of CS in MRI,
all inspired to the work of M. Lustig, D. Donoho, M. Santos, J. Pauly [1],
[2]. The main goal of these simulations was to test CS performances in im-
age reconstruction, with increased undersampling, compared to traditional
methods, such as low-resolution sampling or linear reconstruction method.
The second aim was instead to demonstrate the effectiveness of variable den-
sity random undersampling over uniform density random undersampling.

It is worth mentioning that different applications have to face different
constraints, imposed by MRI scanning hardware or by patient considera-
tions. Therefore, the three requirements for successful CS reconstructions
are differently matched in different applications. The inherent freedom to
choose sampling trajectories and sparsifying transform in CS theory allows
to offset these constraints.

All the experiments were performed on a 1.5T Signa Excite scanner,
while all the CS reconstruction were implemented in Matlab.

4.1 Rapid 3D Angiography

Angiography is the most promising application for CS in MRI. In fact, the
problem matches the CS requirements and angiography often needs to cover
large field of view with high resolutions and crucial scan times.

Angiography is important for diagnosis of vascular diseases. Since im-
portant diagnostic informations are contained in the blood dynamics, often
a contrast agent is injected to increase blood signal compared to the back-
ground tissue. Angiograms appear to be sparse already to the naked eye
and can be further sparsified by finite-differencing. The need for high tem-
poral and spatial resolution strongly encourages undersampling, and CS can
improve current strategies reducing the resulting artifacts.

37
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Figure 4.1: 3D contrast enhanced angiography. Left: random undersampling
strategy. Right: performance comparison of different strategies. Even with
10-fold undersampling CS reconstruction is trustworthy. It achieves artifacts
reduction over linear reconstruction and resolution improvement over low-
resolution acquisiton.

The sampling strategy consists in the acquisition of a variable density,
pseudo-random subset of equispaced parallel lines of the k-space. In this
way undersampling is combined with incoherent acquisition (see also Fig.
4.1). CS is able to significatively accelerate MR angiography, as it recov-
ers most of the information revealed by Nyquist sampling even with 10-fold
undersampling (i.e. an acceleration factor of 10). Moreover, nonlinear re-
construction clearly outperforms linear reconstruction, since CS manages to
avoid most of the artifacts that result from undersampling.

4.2 Whole Heart Coronary Imaging

MRI is emerging even as a non-invasive alternative to the X-ray coronary
angiography, which is the standard test to evaluate coronary artery disease.
This kind of diagnostic examination requires a very high resolution imaging,
since coronary artery are always in motion. Precise synchronization, motion
compensation and scan speed are fundamental requirements to offset the
cardiac cycle and the respiratory motion blurring. Moreover, the standard
practice to acquire the images during a short breath-held interval defines
strict timing, which suggests the CS application.

A multi-slice acquisition method1 with efficient spiral k-space trajectory,
and finite-differences (to sparsify the piece-wise smooth coronary images)
results in good CS reconstruction. In fact, undersampling artifacts are sup-
pressed without degrading the image quality.

1In 3D MRI imaging it is possible to selectively excite thin slices through the whole vol-
ume. This method reduces the data collection to 2D k-space for each slice, thus simplifying
the complete volumetric acquisition.
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Figure 4.2: 3D brain imaging. Left: random undersampling strategy. Right:
CS outperforms linear reconstruction in aliasing artifacts suppression, low-
resolution acquisition in definition, and is comparable to a full Nyquist-
sampled image even with reduced scan time.

4.3 Brain Imaging

Brain scans are actually the most common clinical application of MRI. Most
of these scans are 2D Cartesian multi-slice acquisitions. Exploiting the brain
images transform sparsity in the wavelet domain, CS application can reduce
collection time while improving the resolution of current imagery.

Undersampling differently and randomly each slice promotes incoher-
ence, obtaining perfect reconstruction of the desired image even with a
speedup factor of 2.4. Moreover, if we include a TV penalty in the re-
construction algorithm (eq.(3.5)), the CS strategy perfectly recovers most
of the image’s details. Even with high undersampling, CS manages to re-
construct the images with quality comparable to a full Nyquist sampled set
(see also Fig.4.2).

4.4 Random undersampling strategies in compar-
ison

Lastly, we want to persuade the reader of the deep importance of which
random undersampling strategy to use. In order to do so, we compare CS
reconstruction performances with two linear schemes: low-resolution (LR)
and zero-filling with density compensation (ZF-w/dc). The latter consists
of a reconstruction by zero-filling the missing k-space data and applying
a density compensation computed from the pdf from which the random
samples were drawn. LR, instead, consists of reconstruction from a Nyquist
sampled low-resolution acquisition.

The low-resolution reconstruction shows a decrease in resolution as the



40 CHAPTER 4. APPLICATIONS

Figure 4.3: Reconstruction artifacts as a function of acceleration. CS with
variable density undersampling significantly outperforms other reconstruc-
tion methods even with increased acceleration.

data acquisition accelerates, loosing small structures and showing diffused
boundaries. The ZF-w/dc reconstruction exhibits a decrease in apparent
SNR2 because of the incoherent undersampling interference, which com-
pletely obscures dim and small features. The uniform density undersampling
interfrence is significantly larger than in the variable density case.

With an 8-fold acceleration (i.e. acquiring approximatively 3 times more
samples than the sparse coefficients) we get exact recovery from both uni-
form density and variable density undersampling. But, with increased accel-
eration (as with 12-fold and 20-fold acceleration) only the variable density
undersampling gives us exact recovery, while uniform density random un-
dersampling causes most of the features to disappear in the background.

Therefore, once again performance is traded-off with hardware/software
complexity. For many applications, in which low accelerations are sufficient
to meet the required specific, uniform density random undersampling is to
prefer, since it is simpler to implement. For specific applications, in which
high-resolution and short timing are fundamental restraints, it is worth-
while using variable-density random undersampling to achieve cutting-edge
performances.

2Signal-to-noise ratio (often abbreviated SNR) is a measure used in science and engi-
neering that compares the level of a desired signal to the level of background noise. It is
defined as the ratio of signal power to the noise power. A ratio higher than 1:1 indicates
more signal than noise.



Conclusions

In this thesis, we presented the CS theory and the details of its implemen-
tation for rapid MR imaging.

As we saw, Compressed Sensing is an hard mathematical theory that
has developed since 2004. It is fascinating for its random approach, its
completeness and robusteness, as well as for its wide range of applications
in many different fields of science and engineering, that makes it astonishing.
This theory, as we discussed deeply, could competely rewrite the Information
Theory history. Indeed, it goes beyond the traditional Nyquist-Shannon
limitations we encounter in signal acquisition and elaboration. In particular,
its implementation in MRI could be fundamental in future Bioengineering
applications. We are sure that, when technology, signal processing and
optimization algorithms will be available for economical implementation and
diffuse distribution, CS based MRI will be preferred to traditional imaging
because of the advantages it offers for patients and health care economics.

We focused our attention on the natural fit between CS and MRI, and we
reported experimental verification of several implementations for 2D and 3D
imaging. Moreover, we underlined how MR images sparsity can be exploited
to significantly reduce scan time, or alternatively, improve the resolution of
MR imagery. However we have to keep in mind that CS-MRI is still in its in-
fancy. Many crucial issues remain unsettled, including optimizing sampling
trajectories, developing improved sparse transforms, studying reconstruction
quality in terms of clinical significance, and improving the speed of recon-
struction algorithms. Contemporary and future research has to face many
tough challenges to turn this approach into great opportunities in improved
medical care.
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