
Università degli studi di Padova

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in

Ingegneria delle Telecomunicazioni

TESI DI LAUREA

MOBILE CONTENT DELIVERY

NETWORK DESIGN AND

IMPLEMENTATION

RELATORE: Prof. Michele Zorzi

CORRELATORI: Daniele Munaretto, Gerald Kunzmann

LAUREANDO: Alberto Desiderà

Padova, 15 luglio 2013

ii

Nessuno effetto è in natura sanza ragione;

intendi la ragione e non ti bisogna sperienza.

(Leonardo da Vinci)

iv

Contents

Abstract 1

1 Introduction 3

2 Mobile video delivery architecture 5

2.1 Services and global requirements 5

2.2 Functional architecture . 7

2.2.1 Video service control, wireless access and mobility manage-

ment . 7

2.2.2 Transport optimisation . 8

2.3 Network topology . 12

3 MCDN description 13

3.1 Design . 15

3.2 Features . 18

3.3 Interfaces . 18

4 MCDN implementation 21

4.1 Requirements . 21

4.2 Entities . 23

4.2.1 Core Router . 23

4.2.2 Node . 25

4.2.3 Origin . 35

4.2.4 Portal . 37

4.3 Interfaces . 42

4.4 Real testbed implementation . 43

v

5 Results 47

5.1 Segmented videos and request routing 47

5.2 Popularity-based caching . 50

5.3 Robustness of the CDN component 52

5.4 Session continuity during handovers 53

5.5 Wireshark captures . 55

5.6 Practical scenarios . 59

5.7 Experimental results . 60

6 Conclusions 67

A Functional architecture: details 73

A.1 Video Services Control . 73

A.2 Wireless Access . 75

A.3 Mobility Management . 76

Bibliography 80

vi

List of Abbreviations

ALTO Application-Layer Traffic Optimisation

AM Application Manager (component / module)

AN Access Network

CDN Content Delivery Network (component / module)

CDNNC CDN Node Control (component / module)

CN Core Network

DASH Dynamic Adaptive Streaming over HTTP

DM Decision Manager (component / module)

FM Flow Manager (component / module)

HA Home Agent

HoA Home Address

IEEE The Institute of Electrical and Electronics Engineers

IETF The Internet Engineering Task Force

LMA Local Mobility Anchor

LMD Localized Mobility Domain

LTE Long Term Evolution

MAC Medium Access Control

MAG Mobile Access Gateway

MAR Mobile Access Router

MCDN Mobile Content Delivery Network

MEDIEVAL MultimEDia transport for mobIlE Video AppLications

MIPv6 Mobile IPv6

MM Mobility Management (component / module)

vii

MN Mobile Node

MTU Maximum Transmission Unit

NAT Network Address Translation

NO Network Operator

PMIPv6 Proxy Mobile IPv6

PoA Point of Attachment

QoE Quality of Experience

QoS Quality of Service

TO Transport Optimisation (component / module)

VoD Video on Demand

VoIP Voice over IP

VSC Video Service Control (component / module)

WA Wireless Access (component / module)

XLO Cross-Layer Optimisation (module)

viii

Abstract

Content Delivery Networks (CDNs) are designed to effectively support the deliv-

ery of continuous and discrete media to consumers. Enabling large scale content

distribution at a reasonable cost and without overloading the mobile core network

is a crucial design choice for Network Operators (NOs). Nowadays, a key task for

NOs is the development of efficient Mobile Content Delivery Networks (MCDNs)

due to the day-by-day increase of the video traffic volume in the network. In this

thesis, a novel concept of MCDN is designed and implemented in a real testbed

with the target of flexibly adapting the video caching in the cellular network to

the users dynamics. New challenges are discussed and practical considerations

for wide-scale deployment in next generation cellular networks are drawn.

Chapter 1

Introduction

The reality that we live every day is the mirror of how the demand for mobile

data services is quickly growing. In fact the number of wireless mobile subscribers

is exponentially increasing. This is motivated by: 3G and WLAN hotspots are

widely available, and by cheap tariffs (most of the mobile handsets are 3G and

WLAN capable). Moreover, applications designed for smartphones that make

use of Internet connectivity are pushed into the market every day, contributing

to an increase of the market penetration of such devices (i.e., iPhone, Android,

Blackberry and Windows Mobile phones). The increasing demand of mobile data

services from users is no longer a threat to operators, but a reality that needs

to be analysed and dealt with. Video is a major challenge for the future Inter-

net. This type of traffic represents almost 90% of the consumer traffic. However,

the current mobile Internet is not designed for video and its architecture is very

inefficient when handling video traffic. Our focus is how to address issues on

the problems faced by mobile operators when dealing with huge traffic increase

caused by the explosion of video services. The idea is that the future Internet ar-

chitecture should be tailored to efficiently support the requirements of this traffic.

Specific mechanisms for video should be introduced at all layers of the protocol

stack for enhancing the efficiency of video transport and delivery, resulting in

an increased Quality of Experience (QoE) to the user. Such mechanisms include

enhanced wireless access (with general abstractions for supporting heterogeneous

technologies), improved mobility (for opportunistic handovers across heteroge-

neous technologies), improved video distribution (with embedded caches in the

network), and flexible video service control and provisioning (for exploiting the

3

interactions with video applications). In particular we focus our efforts on the

transport optimization aspects regarding the video distribution and the mobility

management. We study critical aspects to be tackled and we propose a solution

which involves the negotiation of resource allocations at the wireless access and

implements optimal handover decisions based on the mobility module. MCDN is

designed to enhance video transport via caching strategies specifically designed

for enhancing the video performance and takes into account the environment of

the entire system is the mobility. MCDN integrates mobile delivery services that

optimize the transport of several contents including live video streaming, video

on demand and delivery of content assets. The purpose of our work is to design

and to implement a MCDN tailored to the challenging world of the mobile video

traffic over next generation cellular networks.

We want to remind the reader that the technology developed takes into account

the requirements of NOs for commercial deployment, and aims at improving the

QoE of users as well as reducing the costs for operators. Moreover, the technology

is implemented in a testbed that serves as a proof of concept as well as a basis

for future commercial deployments.

The thesis is organized as follows:

• Chapter 2 summarizes the Mobile Video Delivery general architecture, with

a detailed description of mobility aspects and enhanced wireless access;

• Chapter 3 introduces the concept of MCDN, the main topic of this thesis,

justifying our design choice and listing the aspects required for the devel-

opment of it. Then we list the functionalities required to make it work

properly within the cellular system;

• Chapter 4 discusses the technological requirements and how our solution

is implemented focusing on the entities and the system behaviour. It also

introduces a description of the demo implementation;

• Chapter 5 gives some results about the performance of our framework;

• Chapter 6 concludes the thesis highlighting the learned lessons and drawing

research directions for future work.

4

Chapter 2

Mobile video delivery

architecture

The mobile video delivery system we consider is taken form the FP7 European

funded project MEDIEVAL (MultiMEDia transport for mobIlE Video AppLica-

tions) [1]. Figure 2.1, see [2], shows MEDIEVAL’s vision, which aims at evolving

the Internet architecture for efficient video transport. The proposed architecture

follows a cross-layer design that, by exploiting the interaction between layers, can

increase the performance to values unattainable with individual developments [2].

Next, we briefly describe the MEDIEVAL architecture, to which we refer from

now on as our mobile video delivery architecture.

2.1 Services and global requirements

As for Figure 2.1, the MEDIEVAL services refer to a list of challenging user ser-

vices which are expected to dominate the traffic over the wireless networks in

the near future. In particular four types of services are chosen, which together

complete one another and would lead the technology development in the right

direction. In particular the typologies of video are the following: Personal Broad-

cast, MobileTV, Mobile Video on Demand (VoD) and Interactive Video, and in

the following we say what we mean by each of them.

The trend of user generated video content is now penetrating the social networks

such as Facebook, Twitter and others, where users are able to stream live content

5

Technical Approach
The key components of the MEDIEVAL
architecture are illustrated in the figure on the
right. The proposed architecture comprises the
following five key functionalities:
• Interaction with the underlying network

mechanisms to allow video services
optimally customise the network behaviour.

• Enhanced wireless access to optimise video
performance by exploiting the features of
each available wireless technology.

• Novel dynamic mobility architecture for next
generation mobile networks adapted to video
service requirements.

• Optimisation of the video transport by
means of Quality of Experience driven
network mechanisms, including caching and
network support for P2P video streaming.

• Support for broadcast and multicast video
services by introducing multicast mechanisms
at different layers of the protocol stack.

LTE

Internet

LTEWLAN

Local
Gateway

Local
Gateway

Mobile Network Provider

Video
Content &
Services

Other Mobile
Network Providers

Internet TV

Personal
Broadcasting

local
mobility

global
mobility

Multimode
terminal

Video on
Demand

Interactive
video

Video
Content &
Services

Content Provider

MEDIEVAL vision

Key Issues
The proposed architecture will address the
following five key issues:

• Specification of an interface between the

video services and the underlying network
mechanisms.

• Enhanced wireless access to optimise video
performance.

• Design of a novel dynamic mobility
architecture adapted to video service
requirements.

• Optimisation of the video delivery by means
of Quality of Experience (QoE) driven network
mechanisms.

• Support for broadcast and multicast video
services, including Internet TV and Personal
Broadcasting.

Expected Impact
Video services are a very promising business
case. One key goal of the project is to propose an
operator-driven architecture, resulting in an
integrated video solution that can be
implemented by an operator and offered to its
customers.

The research conducted in MEDIEVAL will also
aim at strengthening current mobile core and
video solutions, resulting in both IPR generation
(when applicable) as well as dissemination of
these results in prestigious scientific fora.

The project will follow and contribute to the main
standardisation bodies such as 3GPP, IETF and
IEEE, which have already detected the need for
video enhancements.

MEDIEVAL
October 2010

Figure 2.1: Mobile Video Delivery architecture: MEDIEVAL vision.

to a group of friends or any group of audience. This is why Personal Broadcast is

chosen, which challenges the uplink direction that receives fewer resources than

the downlink, in today’s architectures. MobileTV, which allows users to watch

TV programs in mobility and from anywhere anytime, is expected to become a

killer-application. Its network challenges, such as real-time streaming in a one

to many manner, benefit from multicast distribution and other network services

studied within MEDIEVAL. Mobile VoD is already by far the most demanding

download traffic in today’s networks, and the optimization in MEDIEVAL will

allow more users to share the network resources with increased QoE. Interactive

video services such as video conferencing and real-time interview may become a

demanding service, but since it is not yet seen as a killer-application from a user

behaviour perspective, MEDIEVAL will focus on the other first three services.

These services drive the main goal of the project, which consists in designing a

video-aware transport architecture suitable for commercial deployment by mobile

network operators. The proposed architecture aims at including video specific en-

hancements at each layer of the protocol stack to provide better video support at

a lower exploration cost. This key point of the project is achieved based on the

following requirements:

6

• Improve the user experience by allowing the video services to optimally

customize the network behaviour;

• Optimize the video performance by enhancing the features of the available

wireless accesses in coordination with the video services;

• Design a novel dynamic architecture for next generation mobile networks

tailored to the proposed video services;

• Perform a transport optimization of the video by means of QoE driven

network mechanisms, including MCDN techniques, which represent the core

of this work;

• Introduce multicast mechanisms at different layers of the protocol stack to

provide both broadcast and multicast video services, including Mobile

TV and Personal Broadcast.

2.2 Functional architecture

Next we present the overall design of the MEDIEVAL architecture to satisfy the

requirements identified previously. Hence, we introduce the description of the

subsystems that compose the four main blocks of the architecture: the Video

Services Control (VSC) subsystem, the Wireless Access (WA) subsystem, the

Mobility Management (MM) subsystem and the Transport Optimization (TO)

subsystem. In the next section we briefly describe the first three and we focus

more on TO subsystem. The global architecture with the functions comprised by

a MEDIEVAL network is depicted in Figure 2.2, taken from [2].

2.2.1 Video service control, wireless access and mobility

management

The video service control component is in charge of linking video services to the

underlying network delivery entities. It aims at enabling a reliable video delivery

chain over an evolved mobile network, which offers improved resources utilisation

and an enhanced user experience. To do this, a cross-layer set of interfaces are

built to make the components interact. This approach bridges the applications

to an improved network allowing video contents to be delivered to groups of users

7

Figure 2.2: MEDIEVAL functional architecture.

efficiently. Moreover, since the project let an operator provide Internet connec-

tivity through heterogeneous access technologies, the wireless access component

defines a solution to provide multiple accesses at the last hop, mainly focusing on

a novel joint abstract level, i.e., IEEE 802.11. Due to the mobility of the users a

mobility management component is designed to perform the handovers between

different points of access, without loosing the session continuity, i.e., using Dis-

tributed Mobility Management (DMM) functions [3, 4]. Multicast traffic delivery

and content distribution aspects are fully supported and integrated.

In our work we are interested in the MM, since this module enables a mobility

environment being agnostic of the lower layers. Thus, we use it and base our

project on the specifications of the module.

The project architecture is out of scope of our work, thus, we suggest the inter-

ested reader to go to Appendix A for more details.

2.2.2 Transport optimisation

The Transport Optimisation subsystem [5, 6] provides optimised video traffic in

the mobile operator’s core network through intelligent caching and cross-layer

8

interactions. The main objective is two-fold: 1) reduce the load of the operator’s

backbone, 2) while still providing a satisfactory QoE to the users.

The first goal is addressed by establishing a MCDN, with a special focus on

the selection of optimal cache locations and node selection based on costs like

‘network distance’. This means that MEDIEVAL aims at service placement (i.e.,

finding optimal locations for deploying the CDN nodes considering, various cost

metrics, the design of the core network and operator policies), content placement

(i.e., the optimal distribution of content among the CDN nodes), and content

routing (i.e., choosing from the set of CDN nodes, providing the desired content,

the node or subset of nodes that minimises streaming costs).

The second goal is addressed by providing proper optimised resource allocation

and traffic engineering techniques in order to increase as much as possible the user

perceived quality (QoE) within the given resources in the network. Therefore,

the system performance is evaluated in a network-wide context using cross-layer

optimisation techniques. Information is collected from the other MEDIEVAL

subsystems, like MAC and buffer states from the Wireless Access, QoE-based

data about video sensitivity from the Video Services, and handover candidates

from the Mobility subsystem.

The Transport Optimisation subsystem is shown in Figure 2.3, from [2], and

is divided in two nearly independent components: the CDN and the Transport

Optimization components. We describe them briefly in the following subsections.

Then we will focus on the CDN component, which is the main topic of this thesis;

we will see more details about the architecture and also about the implementation.

For further details on Transport Optimization component please refer to D5.2 [5]

and D5.3 [7].

Transport Optimization component. The Transport Optimisation compo-

nent (TO) aims at providing optimised resource allocation and traffic engineering

techniques in order to increase as much as possible the user perceived experi-

ence (QoE) without increasing the load in the core network, eventually coping

with network congestions. Based on different input parameters ranging from the

physical layer to the application layer, it decides about the traffic engineering

techniques to be applied to the video flows. The description of the three modules

is as follows:

9

Figure 2.3: Functional Architecture of the Transport Optimization subsystem.

• Cross-layer optimisation module (XLO). This module resides in the node.

It reacts to the events in the network and it cooperates with the other layers

upon their requests. Inside the XLO module four optimisation algorithms

described in D5.2 [5], find the solution to optimise the transport under the

given constraints. The cross-layer information is used by the algorithms for

application and network-aware optimisations. The solutions computed by

the XLO module are not limited to the adaptation within the core network

side but also impact the other layers;

• Traffic engineering module (TE). It executes engineering techniques dic-

tated by the cross-layer optimization module, in order to handle problematic

flows. This module is placed in the node. The actions taken are listed as fol-

lows: scalable layer filtering, frame dropping, frame scheduling (this action

implies a re-prioritization of the different video packets) and transcoding;

• Core network monitoring module (CNM). The CNM module monitors the

core network and triggers the XLO module in case network congestion is

detected. It also provides useful information to the video control in order

to adapt the content taking into account the network status, buffer states,

delays, packet loss, and momentary service throughput.

10

CDN component. The CDN component (CDN) aims at the optimal place-

ment and management of CDN nodes and optimal selection of content locations

based on the specific layout of the operator’s core network and the policies defined

by the network operator. This also includes maintaining an efficient and stable

overlay topology for the control and management of the CDN nodes, performing

load-balancing among the cached video sources and network elements, as well as

relaying connections for mobility, caching, or confidentiality reasons. These deci-

sions require a continuous monitoring of the current conditions of the entire CDN

system, in particular the status and content distribution of the CDN nodes and

the popularity of the video content1. Using the collected data an optimal config-

uration of a set of servers for content distribution is dynamically maintained and

an optimal candidate from the set of available sources is selected for transmitting

the videos to the users.

The CDN component is composed of the following three modules:

• Decision Module (DM). It is the central module of the CDN component. It

decides when and where to store content in the CDN nodes, based on the

popularity of the video files. It is part of the session initiation and handover

preparations. Therefore, the decision module informs the mobile client

on which source should be used for streaming/downloading the content

(request routing), e.g., from either the (external) content provider or a

cached copy from one of the CDN nodes;

• CDN node control (CDNNC). It is responsible for management and control

of the operation of the CDN nodes. It is responsible for maintaining CDN

related status information such as the current load, (free) capacities, and

information about stored content. This information is provided to the de-

cision module. The CDNNC will also receive commands from the decision

module requesting it to store, move, replicate, or delete content, based on

the changing popularity of content, the mobility of users or user groups, or

congestion in certain parts of the core or access network that may require

shifting users and content to less congested parts of the network;

1Popularity of a video content, in this thesis, is considered on a per-segment/per-chunk basis

and not on full video basis. The details will follow.

11

• Application monitoring module (AM). It receives input from the decision

module about the request rate of certain videos. This information is then

used to calculate (and predict) a set of the most popular videos in the

different regions of the network. This popularity data is necessary for the

decision module to optimize the content placement.

2.3 Network topology

Here we provide the global structure of the MEDIEVAL system. In Figure 2.4 [2],

tha typical MEDIEVAL network topology is given, where the main nodes are the

Mobile Node, the Mobility Access Router (MAR), the Point of Attachment (PoA)

(WLAN, UMTS and LTE-A are the wireless access technologies considered), the

mobile MAR (mMAR), the Core Routers and the CDN nodes.

	

Administrative	
Domain	 2

Administrative	
Domain	 1

PoA

PoA

PoA

PoA LTE

MAR

LTEWLAN
PoA

MAR

PoA

PoAPoA

PoAPoA

Local	 Mobility	
Domain	 2

CDN

CDN

PoA

PoA

PoA

PoALTE

MAR

LTE WLAN
PoA

MAR

PoA

PoA PoA

PoA PoA

Local	 Mobility	
Domain

MN

MN

Internet

Video Content & Services
Content Providers

CDN

CDN

mMAR

mMAR

Over	 The	 Top	 (OTT)	
Video	 Servers

Personal	
Broadcasters

Network Transport

Core Router

Core Router

CDN node

CDN node

CDN node

CDN node

ISP
Video Server

ALTO ServerMIIS ServerSession
Management

Provisioning
Platform

Video Service
Portal

MN

Core Router

Core Router

Core Router

MN

MN

PBS	 (multicast	 traffic)

Figure 2.4: Physical MEDIEVAL deployment.

12

Chapter 3

MCDN description

A MCDN is a network of servers that cooperate transparently to optimize the

delivery of content to end users on any type of access network. As for traditional

CDNs, the primary purpose of a MCDN is to serve content to end users with high

availability and high performance. In addition, MCDNs can be used to optimize

content delivery for the unique characteristics of wireless networks and mobile

devices, such as limited network capacity, or lower device resolution. Content

adaptation can help address challenges inherent to mobile networks which have

high latency, higher packet loss and huge variation in download capacity.

In the MEDIEVAL project the CDN component provides a MCDN solution for

video delivery including network based caching, network guided optimisation of

content delivery and advanced multicast solutions. This includes maintaining an

efficient and stable overlay topology for the control and management of the CDN

nodes, performing load-balancing among the video sources and network elements,

selecting optimal content locations as well as relaying connections for mobility,

caching, or confidentially reasons. This requires a continuous monitoring of the

current conditions of the entire system, in particular the status and distribution

of the CDN nodes, as well as the popularity of content. Using the collected data

it dynamically maintains an optimal configuration of a set of servers for content

distribution and select optimal sources for transmitting the video to the user.

As shown in Figure 3.1, taken from [8], the CDN component consists of three

modules. The application monitoring module (AM) keeps track of the popular-

ity of content and provides this information to the decision module (DM). The

decision module is responsible for content and user related decisions, e.g., opti-

13

Figure 3.1: The CDN component.

mization of content placement with respect to demand patterns and optimization

of network resources and delivery delay by maintaining traffic locality. A first

step is to implement a more sophisticated selection algorithm for content loca-

tions that combines metrics like availability, bandwidth, memory capacity, and

latency in a robust way. The decision module interfaces both the Video Services

subsystem and the Mobility subsystem. If a user is requesting a video, the Video

Services subsystem will send a request to the decision module to find the optimal

content location for this user. Likewise, the Mobility subsystem is called to get

a weighting of possible handover candidates in case of user mobility. The CDN

node control (CDNNC) module is responsible for the lower level operation and

management of the content to keep the CDN operational and to maintain the

required level of performance and fault tolerance, such as load balancing mech-

anisms among CDN nodes. The CDN component drives optimization at several

stages of content handling:

• Pro-active off-line placement of content in the CDN nodes;

• On-line network guided selection of content locations from which to down-

load;

• On-line download and placement of contents in CDN nodes;

• Multicast content delivery, and Relay-assisted delivery.

Next, we summarize the key points for the design of such a system, then we

point out the main features to be realised and we show the involved interfaces.

In Chapter 4 we will describe the implementation details.

14

3.1 Design

We implement a customized software following the specifications required by the

MEDIEVAL system. Since mobile core networks are usually hierarchical, i.e.,

with a central core part as well as branches and leaves in different regions of a

deployment area, for example a country, the MCDN software has a hierarchi-

cal structure too. Thus, four main entities builds the overall structure, as for

Figure 3.2:

1. Core Router, which provides the services described in the CDN module.

2. Nodes, positioned at the edge of the network, that are grouped together

with the MARs. This entities have both caching and proxying functionali-

ties installed.

3. Origin, that is the entity where the original contents are stored, and is

positioned inside the Core Network. This is the main cache of the system.

4. Portal, the entity through which the users can access the contents.

Figure 3.2: MCDN software structure.

In Figure 3.2 the architectural structure of the software is depicted. In Chapter 4

we analyse it into details. Now we analyse the main features to be implemented

to realize the system.

The Core Router provides the component described before: DM, CDNNC and

15

AM. It is an entity that can manage a database of information about the popu-

larity of the contents and can manage them (i.e., making decisions on the storage

locality) using a database containing network status characteristics. These are

theoretically made available by the ALTO (Application-Layer Traffic Optimisa-

tion) [28] module, but in our work we did not use it. Moreover, the Core Router

can be called from the other entities in case they are not able to take decisions

(i.e., request routing1). The important aspect of this entity is that it is not fully

responsible of the request routing, since this feature is associated to the Nodes.

Another aspect to underline is the ability of wrap up together popularity infor-

mation obtained by the Nodes. This means, given local popularity information,

the AM module is able to store them in one main database and use it to make

decisions on delivering, deleting and maintaining contents in the different Nodes.

These actions are taken off-line and the entire system can continuously work

without interruptions.

The Core Router works as follows:

• It checks for local database information provided by the Nodes;

• It inserts them in the main database and handles the popularity values

stored into it (AM);

• Using these information, makes decisions about the managing of the Nodes’

caches (DM);

• In case of actions to be taken, it informs the CDNNC to perform them.

The Nodes are the combination of three functionalities: the local request routing,

the caching of the contents and the managing of information about local popular-

ity. The purpose of the first functionality is to understand if the request can be

performed directly from the local cache, which means that the request does not

travel through the Core Network. To find a solution to the problem of data flows

in the Core Network is one of the main objectives of our work. Moreover, if the

request routing can not be done by Nodes (i.e., the content is not stored locally),

they must contact DM to obtain the routing information. Obviously, the second

1Request routing: each individual request is routed in an optimized way, based on the

network topology, network load, service availability, per-server content availability and in-use

CDN policy.

16

functionality is strictly linked to the first one, since we store data inside the local

caches and to do that we get informed by the DM (through the CDNNC module)

about the data to be stored. The last functionality concerns the collection of

popularity values. Due to the nature of a MCDN it is clear that the popularity is

obtained at the edge of the network. This is simply the number of requests, for

a certain content, that travel through a Node in a given time interval (that can

be set taking into account the scalability issues). This information is stored in

the local database, that is uploaded into the Core Router. Thus, a Node works

as follows:

• It intercepts the requests sent by the users and performs the request routing

(using local information or contacting the DM);

• It updates the local popularity database with the number of requests and

sends it to the Core Router;

• It listens to the commands sent by CDNNC about managing the cache.

The Origin, as said before, is the main cache, located inside the Core Network,

where the original contents are stored. This entity gives access to the users to the

stored contents and provides to the Nodes the possibility to get the contents to

be stored in the local caches. The location of the Origin impacts the performance

of the overall system, and, should be located at an equal distance from all the

caches.

The Portal is a simple web page with video playing feature where the stored

contents in the Origin are shown and where the users can connect to retrieve

them. Moreover, through the Portal, we can simulate the popularity behaviour

of the videos and we also set the network parameters (provided by ALTO) to test

some critical network configuration. The structure of Portal is as follows:

• The Portal shows an Homepage where we can access the contents;

• Selecting one of the content we start playing it and some more details about

it are shown;

• We can navigate through the website to reach the Popularity Simulation

page and the Network Configuration page.

17

3.2 Features

The main features implemented are described here, while in Chapter 4 we analyse

them to understand how they are realized.

The first key aspect concerns the request routing. We move this functionality to

the edge of the network. In fact, most of CDN systems are based on a centralized

request routing, that means, a client, after a request, is redirected to the correct

cache and this action is taken by a centralized entity. Thus, the problem is that

the signalling inside the Core Network increases while the scope of our work is to

reduce it to the minimum.

Another feature we introduce is the popularity-based caching. Since the system is

mobile, a new concept of popularity is foreseen. The caching is based on values

of popularity, thus, a specific algorithm based on these would be beneficial for

the system. However this is out of purpose of this thesis. Moreover, we study

also how the caching has to be done, in terms of technologies involved.

One important feature we provide is the robustness of the CDN component, which

means, in case of failures (e.g., Node fails or loses packets), the subsystem must

be able to react without introducing extra delay and without letting users know

about it. This aspect is very important since the users can be involved in some

failures, it is unavoidable, and following the QoE guidelines, they should continue

to use the service without knowing absolutely what has happened.

The last aspect to take into account is the ability of maintaining the session

continuity during mobility. In fact the CDN module works also when a user moves

from a PoA to another PoA. Thus, we pay attention to the sessions opened during

the streaming and manage them during the handovers among different Nodes.

3.3 Interfaces

The CDN architecture features several interfaces among its own modules and

external subsystems. A detailed description and specification of all internal in-

terfaces can be found in D5.2 [5] and D5.3 [7]. Next, we analyse the interfaces

included in our work.

• The DM CDNNC If is used by the DM to request and manage informa-

tion related to Nodes from the CDNNC module. Through this interface, the

18

DM initiates Nodes management operations, such as updating the content

stored in the CDN Nodes. It also enables the DM to get information on a

set of CDN Nodes, such as their current content or operational state;

• The CDNNC CDNnode If is used for low level CDN functionalities re-

lated to the control and management of the Nodes. This includes content

update requests, i.e., install and remove content from CDN nodes, status

information updates, as well as maintenance requests, e.g., to power down

nodes;

• The DM AM If is used by the DM to periodically request content popu-

larity information monitored by the AM. The response provides a list of the

‘Top 10’ most popular content in a certain region to the DM. Upon receipt

of the response message, the DM triggers the CDN algorithm to determine

whether the cached content in one of the Nodes should be updated. This

interface is also used to update the popularity database at the AM with

aggregated content popularity information gathered by the request routing.

19

20

Chapter 4

MCDN implementation

In this chapter we describe how the system is implemented, with focus on which

technologies are used and how. Then, we analyse how the entities of the system

described in the previous chapter work and what are the details and interesting

solutions that we have developed. Hence, we map the interfaces to the imple-

mented software modules. Finally, we describe a practical scenario implemented

in a real testbed in order to collect the results shown in Chapter 5.

4.1 Requirements

The entire system is IPv6-based since it gives us the possibility to use the DMM

[3], implemented to manage the handovers among different access technologies

and network regions. IPv6 well supports the mobility but it does not implement

the transparency to the end-user, since Network Address Translation (NAT) is

not implemented. Next, we describe how to address this issue with the tproxy

module [9, 10].

We focus on a streaming solution based on the HTTP protocol and indepen-

dent of media transport protocols such as Real Time Streaming Protocol (RTSP)

or Real Time Protocol (RTP). Thus, we can transport over HTTP any kind of

file, and the key aspect of this protocol is that it works well using proxies and

masquerading features. Furthermore, we use MPEG-DASH (Dynamic Adaptive

Streaming over HTTP) [11, 12, 13] as video streaming protocol. It is an adap-

tive bitrate streaming technology where a multimedia file is partitioned into one

or more segments and delivered to a client using HTTP. A media presentation

21

description (MPD) describes segment information (timing, URL, media charac-

teristics such as video resolution and bit rates). Segments can contain any media

data, however the specification provides guidance and formats with two types of

containers: MPEG-4 file format and MPEG-2 Transport Stream. One or more

representations (i.e., versions at different resolutions or bit rates) of multimedia

files are available, and the selection can be made based on the current network

conditions, device capabilities and user preferences. DASH is agnostic of the un-

derlying application layer protocol [14, 15, 16].

Using HTTP we can also adopt a simple Proxy Web Server for the proxy func-

tionalities and simple Web Server for caching.

In particular, in our work we use Squid as proxy server [17, 18] and Apache

as web server [19]. Squid in an open-source proxy server able also to do web

caching. It has a wide variety of uses, from speeding up a web server by caching

repeated requests, to caching web, DNS and other computer network lookups for

a group of people sharing network resources and to aiding security by filtering

traffic. Although primarily used for HTTP and FTP, Squid proxy server includes

limited support for several other protocols including TLS, SSL, Internet Gopher

and HTTPS.

The Apache HTTP server, commonly referred to as Apache, is a web server soft-

ware program notable for playing a key role in the initial growth of the World

Wide Web. Apache supports a variety of features implemented as compiled mod-

ules which extend the core functionality. These can range from server-side pro-

gramming language support to authentication schemes. Some common language

interfaces support Perl, Python and PHP.

Our framework is mainly written in Perl [20], that is an high-level, general-

purpose, interpreted and dynamic programming language. It is well supported

by Apache web server and Squid proxy server.

Moreover, our project is developed using the operating system Unix (in particular

Linux Ubuntu v10.04) and using IPv6.

As last key point, we say that the subsystem in built based on the distribution

of databases containing information about the popularity and also information

about the network status. We point out that, as proof of concept, simple text-

based databases are considered and next their structure and distribution are

shown.

22

We implement local (in the Nodes), main (in the Core Router) and network

information (in all the machines) databases in our framework.

4.2 Entities

We now analyse the details of each entity deployed in our system. We present, for

everyone, the software structure with a short description of the specific blocks.

Moreover, we say if Apache web server or Squid proxy server are involved in it,

and in case we give a short setting specification of them.

Inside each machine we set a configuration file (.pm in Perl), through which we

let the entities gather information such as IP addresses (to be communicated)

and paths of databases (to let scripts reach them). There are also some tuning

parameters, such as time interval between uploads (for databases in the Nodes)

and time interval between maintenance actions (for the main database in the

Core Router).

4.2.1 Core Router

The Core Router is made of four scripts: DMConfig.pm, DM.pl, CDNNC pop.pl,

serverDM.pl. They run using the main database. Stored in the machine there

are also local and network configuration databases.

We now shortly describe the scripts.

Figure 4.1: Core Router: modules involved (all databases).

• DMConfig.pm is the configuration file;

23

• DM.pl is the main script. It implements the functionalities of the AM and

DM. The AM is in charge of maintaining the popularity. At regular time

intervals computing, it checks for new local databases in the specific path.

It populates the main database that is structured as follows:

It is divided in ID CONTENT, the unambiguous name of the content in the

Origin (i.e., http://cache path/name of video/name of chunck.m4s). Then,

we find the FOOTPRINT and the IP of the Node from which we received the

popularity values of that content. With ID CONTENT, FOOTPRINT and

IP we can refer universally to a specific element, and it can be considered a

key in our database. For each entry we store also the AVAILABILITY, that

is a flag (‘Y’ or ‘N’), to indicate if the content is stored in the local cache or

not. The last fields are about the popularity values for the specific element.

LAST-UPDATES is composed of ten values, i.e., the number of requests in

a ∆T (time interval between two consecutive uploads), helpful to calculate

an universal value of popularity. TLS is the Time Last Seen, to take into

account also the expiration of an entry, for the sake of maintenance. Finally,

AVERAGE-POPULARITY is an average value among the chunk popularity

values to order the entries in the database.

The AM in the script is able to create, modify and manage the database.

Once the main database has been developed and optimized (in terms of

order of entries), the DM module starts managing the caches using the

information retrieved by the AM.

The DM module analyse the entries that are not cached yet, in order to

check if the popularity value is higher than that of the previously stored

files. To do this, it checks if the cache is free (i.e., under a certain threshold)

or not. The content is copied when the cache is free, otherwise it finds the

files stored with low popularity and, whether popularity is lower than the

managed one, they are deleted from the cache to make room for new entries.

This deleting action is done until the cache became free enough or until is

found a file with higher popularity than the managed one (in this case the

24

process is stopped, waiting for an increasing on popularity value).

The process restart from the beginning of the procedure following always

an AM-DM interaction;

• CDNNC pop.pl is responsible for carrying out the actions of the DM mod-

ule. It checks for active Nodes, checks for free space in the Nodes and sends

the action messages (i.e., copy or delete of files) to them if necessary. These

messages are sent to the server process running in background in the Nodes;

• serverDM.pl is a script that runs in background, through which the Nodes

can contact the Core Router if they can not manage some user’s requests.

As said before, the system tries to manage the requests locally, i.e., when

the requested content is stored in the caches, but in case the content is

not available, the Core Router looks for information about the availability

of files in the system. Then it recalls both the main database and the

network information database. If a content is stored in a cache closer than

the Origin (in terms of number of hops) to the Node asking for it and

in case that specific cache is not overloaded (in terms of number of users

that are served by it), the Core Router replies to the Nodes with the best

location, otherwise, if the conditions are not satisfied, it replies simply with

the Origin location. During the description of the Node entity, we analyse

more specifically how these messages are handled by the system.

4.2.2 Node

The Node is installed at the edge of the system. It computes the popularity values

using the user requests and maintains a cache to store the contents. Moreover,

it is transparent to the end-user and it intercepts and manages all the requests

passing through it. Then, we can identify two distinct roles of the Node: 1)

manager of CDN, 2) builder of a system of sophisticated networking rules to

create a proxy service that takes into account the mobility issues and leverages

the communication with the DMM system for the management of handovers.

To be consistent with the previous introduction, we list here the scripts used, the

software and databases involved. The Node uses four scripts: NodeConfig.pm,

whichServer.pl, DBNodeUpload.pl and serverMAR.pl. Moreover, both Apache

25

Figure 4.2: Node: modules involved (Apache, Squid and databases).

web server and Squid proxy server are used. There are also local and network

configuration databases stored in the Node.

Popularity features. We describe now in details how MPEG-DASH works.

As said before, it is an adaptive bitrate streaming technology where a multime-

dia file is partitioned into one or more segments and delivered to a client using

HTTP. From now on we refer to these segments (our content) as chunks. A me-

dia presentation description (MPD) describes chunks information (timing, URL,

media characteristics such as video resolution and bit rates). This MPD, a simple

XML file, is stored in the Origin and is not cached, due to the small dimension.

The user downloads and opens such a file through a video player (in our case

we used VLC [21], which is the first player that supports MPEG-DASH), starts

playing the video and requests the current chunk to the stream. Each chunk is

downloaded automatically via a simple HTTP GET request.

Every time a request is intercepted through the proxy, using the whichServer.pl

script, we store it in the local database, or if it is already there we increase its

popularity value, as in Figure 4.3(a). The local database is structured as follows:

26

The name of the local database is made of the tuple [IP-MAR] [FOOTPRINT]

[FOOTPRINT MASK], key for the uploading to the Core Router. ID CONTENT

is the unambiguous name of the chunk in the Origin (i.e., http:// cache path /

name of video / name of chunck.m4s). NUMBER OF VIEWS is the field where

we store the number of requests for that chunk during a certain time interval, ∆T

(e.g., [30, 60] s). AVAILABILITY, that is a flag (‘Y’ or ‘N’), is used to indicate

if the content is stored in the local cache or not; it is checked every ∆T. TLS, as

for the main database takes into account also the expiration of an entry, for the

sake of maintenance.

DBNodeUpload.pl (Figure 4.3(b)) is in charge of optimizing the local database

before uploading it. It updates the database with the last information available,

removing old entries and then ordering it in terms of popularity values. After up-

loading it to the Core Router, this script sets to zero the NUMBER OF VIEWS

field for all the chunks. In this way we compute incremental popularity values

for the videos (based on ∆T time interval).

Moreover, in the Node we can also find serverMAR.pl, through which the Core

Router, using the CDNNC module, informs the Node about actions to be taken

(i.e., chunk storing/deleting), Figure 4.3(c-d). This script is running in back-

ground like serverDM.pl and these are always up.

As depicted in Figure 4.2, the Apache web server is installed in the Node, due

to the caching functionalities. Using MPEG-DASH as streaming technology, the

chunks are transferred through HTTP protocol. We draw a graphical user inter-

face (GUI) through which we are able to monitor the cache status in each Node.

A self-explaining image is reported in Figure 4.4. The chunks stored in the cache

are reported based on the main video they belong to. We also show the memory

threshold of the cache and a status bar of it. The knowledge of the characteristics

of a cache is referred to as network information database. This GUI feature is

based on the use of the Apache web server.

To summarize how the management of popularity works, in Figure 4.3 the main

steps are reported.

27

Figure 4.3: Popularity values management.

28

Figure 4.4: Graphical User Interface for cache status.

Networking features. In this section we detail the networking aspects, to let

the system work as interceptor and request router in a transparent manner and

to face mobility issues. We use the Squid proxy server and, after setting iptables,

we study and use the TPROXY module.

First of all we analyse the interception of the user requests. This is critical to

make all system transparent to the end-user. A proxy is a server-like program,

receiving requests from clients, forwarding those requests to the real server on be-

half of users, and returning the response as they arrive. To simplify management

tasks of clients sitting behind proxy firewalls, the technique ‘transparent proxy-

ing’ was invented. Transparent proxying means that the presence of the proxy is

invisible to the user. Transparent proxying however requires kernel support (as

we reported in the requirements, we used Unix-based systems, and we installed a

kernel version newer than the 2.6.37 to be able to use the transparent proxying).

Real transparent proxying requires the following three features from the IP stack

of the computer in use:

1. redirecting sessions meant for the outer network to a local process using a

packet filter rule;

2. makes it possible for a process to listen to connections on a foreign address;

3. makes it possible for a process to initiate a connection with a foreign address

as a source.

For this purpose, as said before, we use TPROXY, an implementation of the

transparent proxy which works by marking packets and changing the route based

29

on the packet marking. The foreign address bind and TPROXY redirection is

enabled via a new socket option, IP TRANSPARENT. Without it neither the

bind nor the TPROXY target works. To work in a transparent way to the used

connections (simple HTTP connection in our case) are redirected via iptables. In

an IPv4 environment this is already supported and it is equivalent to the following

NAT rule:

iptables -t nat -A PREROUTING -j DNAT --to-dest <localip >

--to-port <proxyport >

where < localip > is the IP address of the interface where the packet entered the

IP stack and < proxyport > is the port where the proxy was bound to.

To do this in an IPv6 environment, where NAT is not implemented, we created

this rule

ip6tables -t mangle -A PREROUTING -s $PREF -p tcp --dport

80 -j TPROXY --tproxy -mark 0x1/0x1 --on -port 3129

where we manage, in the PREROUTING chain, the connections whit a certain

source ($PREF that is the set of ip addresses served by the Node) of protocol

TCP at port 80, marking them to be recognised by the TPROXY. In the end

we send them to the port of Squid proxy server, enabled to work with TPROXY

(in our case 3129, and it is declared also in the configuration of the Squid proxy

server as http port 3129 tproxy).

Then the marked sockets are routed locally and to do this we configure these

rules:

ip -f inet6 rule add fwmark 1 lookup 100 prio 500

ip -f inet6 route add local default dev $WLAN table 100

These rules have an high priority compared to the DMM rules, to let the system

work with it.

To listen to connections on a foreign address, as the presence of the proxy is

transparent to the client, we add a TPROXY rule automatically (e.g., to redirect

a connection meant for a given server on a port to a local process). To do

this, it is enough to call bind() on a socket with a foreign IP address, and if a

30

new connection to the given foreign IP address is routed through the proxy, the

connection is intercepted. The behaviour is the following:

• the proxy sets the IP TRANSPARENT socket option on the listening socket;

• the proxy then binds to the foreign address;

• the proxy accepts incoming connections.

It requires additional ip6tables rules with the socket module of the tproxy patches:

ip6tables -t mangle -N DIVERT

ip6tables -t mangle -A DIVERT -j MARK --set -mark 1

ip6tables -t mangle -A DIVERT -j ACCEPT

ip6tables -t mangle -A PREROUTING -p tcp -m socket -j

DIVERT

The overall setting of the iptables works with TPROXY module in interception

mode and it is summarized here below (the order of rules is important since it

defines the priorities in the chain).

Interception rules

ip -f inet6 rule add fwmark 1 lookup 100 prio 500

ip -f inet6 route add local default dev $WLAN table 100

ip6tables -t mangle -N DIVERT

ip6tables -t mangle -A DIVERT -j MARK --set -mark 1

ip6tables -t mangle -A DIVERT -j ACCEPT

ip6tables -t mangle -A PREROUTING -p tcp -m socket -j

DIVERT

ip6tables -t mangle -A PREROUTING -s $PREF -p tcp --dport

80 -j TPROXY --tproxy -mark 0x1/0x1 --on -port 3129

Now we describe the request routing of the user requests using Squid proxy

server. We know that all the requests from users, passing through the Node, are

intercepted and passed to Squid proxy server. It analyses them and decides if a

request can be served directly by the local cache, the Origin or other caches. To

do this, Squid proxy server recall a function, the whichServer.pl script, which is

an ‘helper’, i.e., it is able to elaborate the requests.

31

Two possible solutions for the problem of the request routing are the use of a

redirector or a re-writer.

• Redirection is a defined feature of HTTP where a status code between 300

and 399 is sent to the requesting client along with an alternative URL. A

redirector helper in Squid proxy server uses this feature of HTTP to re-

direct the client browsers to alternative URLs. We may be familiar with

302 responses to POST requests or between domains;

• A re-writer does not use this feature of HTTP, but merely mangles the URL

into a new form. HTTP defines many features which this breaks. This can

cause problems at both the client and server and for this should be avoided

in favour of true redirection whenever possible. Moreover, this causes many

problems with the TPROXY module, due to local-loops arising from the

use of the packets marking, which, when they are rewritten from Squid

proxy server, lose the reference in the chain of the internal connection of

the system.

To overcome the issues of these two solutions, where the first one introduces

a lot of useless signalling and the second one does not work with TPROXY

and introduces mobility problems, we select HTTP routing. In the Squid proxy

server we write a reachability setting of the caches, based on their tagging. In

the configuration file of the software (set for each Node), we create the tags, as

reported here:

check if helper sent "OK tag=CACHE_ID" and pass it to

server CACHE_IP_ADDR

acl cacheOkay tag CACHE_ID

cache_peer CACHE_IP_ADDR parent 80 0 no-tproxy name=

ApacheCACHE_ID

cache_peer_access ApacheCACHE_ID allow cacheOkay

cache deny all

This sequence is written for each involved cache, and with this solution every

Squid proxy server installed in the Nodes can manage the requests in this way.

Through these instructions we impose rules of access to the caches, reachable

with a reference, e.g., the IP address. Then the helper whichServer.pl takes a

32

request, it replies to the Squid proxy server with a tag, to know how to reach

the chunks stored in a cache. As said before, this procedure avoids redirection

messages because it handles the connections to the caches, without informing

the user about the relocation. Now we describe how whichServer.pl, the helper,

works. Captured the request, an HTTP GET message, whichServer.pl gets the

URL of the chunk as in Figure 4.5(a). First of all, the helper checks if the chunk

is cached locally, using the local database, and if true, the helper returns to the

Squid proxy server the tag associated to the local cache, shown in Figure 4.5(b).

If it is not locally available whichServer.pl sends to the Core Router a message

to find the best location. The Core Router has complete knowledge of the other

caches location and of the status of the entire network (distances between the

Nodes and their load), and it can decide the best location from which to serve

the user’s requests as for Figure 4.5(c). Then it returns to the Squid proxy server

a tag, if the reference is to another cache, or an escape sequence in case the best

location is the Origin. The software, upon receiving the reply, opens the neces-

sary connections using the information retrieved, as in Figure 4.5(d).

This method works also when the users move towards another node and an han-

dover is being performed. In fact, via DMM we can handle mobility without

interruptions or connection resets. If the user is connected to a Node, he is as-

sociated to it by a specific IP address for the Node. The requests are passing

through the Squid proxy server of the Node and, moreover, using the specific

iptable rules shown above, we allow only those connections to be intercepted and

analysed. When the user moves towards a different access, he is associated with

a new IP address, linked with the new Node. In the meantime the DMM is tak-

ing care of the connections set up with the original Node, opening a temporary

tunnel to complete the old requests. Intercepting is disabled in the Squid proxy

server of the new Node. Instead, the new requests are analysed and elaborated

by the new Node, and finally the tunnel is closed and the session continues. This

feature is implemented thanks to VLC player, which is not susceptible to IP ad-

dress changes during the streaming session, since a request for a chunk is a new

HTTP GET instruction, that means a new connection. The session of the overall

system is kept without letting know the user.

To summarize how the networking and the request routing work, we show in Fig-

ure 4.5 the steps described above.

33

Figure 4.5: Management of video requests.

34

4.2.3 Origin

The Origin is implemented together with the Portal in the same machine. This

implementation choice is only for content managing and Portal displaying con-

venience. Here we describe only the functionalities of the Origin and in the next

section those of the Portal, keeping in mind that these are working together.

Figure 4.6: Origin: entities involved (Apache and database).

The Apache web server is installed in the Origin, that represents the central

cache. We have no scripts or databases involved since all features of the Origin

Figure 4.7: Origin: example of cache organization.

35

are provided by Apache web server. One important aspect is that in the main

cache, the Origin, all the files are stored, not only the popular chunks. More-

over, not only the chunks are cached, but also the MPD (Media Presentation

Description) and the MP4 control file for each content. Further more, the main

cache is structured as for Figure 4.7. As depicted here, all the files are stored in

the Apache web server folder (i.e., /var/www/). The names of the main folders

(BigBuckBunny 15 900kbps, Ed 10 500kbps, Sintel 5 800kbps) are used to dis-

tinguish the different contents. In this way we can insert, without ambiguity, the

links to the contents in the MPD files.

For the sake of clarity, we report here a section of an MPD file:

<?xml version="1.0" encoding="UTF-8"?>

<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema"

xmlns="urn:mpeg:mpegB:schema:DASH:MPD:DIS2011"

xsi:schemaLocation="urn:mpeg:mpegB:schema:DASH:MPD:DIS2011"

profiles= "urn:mpeg:mpegB:profile:dash:isoff-basic-on-demand:cm"

type="OnDemand"

mediaPresentationDuration="PT0H8M10.02S"

minBufferTime="PT1.5S">

<name>Big Buck Bunny</name>

<subname>5 sec</subname>

<description>Big Buck Bunny plot.</description>



<width>960</width>

<height>720</height>

<segment>PT5.00S</segment>

<Period>

<Group segmentAlignmentFlag="true" mimeType="video/mp4">

<Representation mimeType="video/mp4" width="960" height="720" startWithRAP="true" bandwidth="907879">

<SegmentInfo duration="PT5.00S">

<InitialisationSegmentURL sourceURL="http://Origin/BigBuckBunny_5_900kbps/bunny_5_900kbps_dash.mp4"/>

<Url sourceURL="http://Origin/BigBuckBunny_5_900kbps/bunny_5s1.m4s"/>

<Url sourceURL="http://Origin/BigBuckBunny_5_900kbps/bunny_5s2.m4s"/>

...

All the links refer to the Origin caches (see ‘http://Origin/’), thus, the requests

sent by the users are always referring to it.

36

4.2.4 Portal

The Portal (Figure 4.6) is made of several scripts divided in three parts. Origin-

Config.pm is the configuration file and then we have:

• The main Portal pages, i.e., index.pl, FindFiles.pl, request.pl and about.html.

We have also css (cascading style sheets) and js (javascripts) files for the

sake of presentation;

• The popularity simulator page, i.e., pop settings.pl, SimCreateDBs.pl and

SimSendDBs.pl;

• The network configuration page, i.e., net settings.pl and NetCreateDB.pl.

In the machine there is also the network configuration database. Next we show

how it is done.

The index.pl is the script to build the home page, where the users can see all

the stored contents. The homepage is shown in Figure 4.8. All the contents are

Figure 4.8: Portal: homepage site.

collected and managed by the script FindFiles.pl. This is able to look for all the

MPD files inside the Apache web server folder and, using the stored information,

communicates them to the index.pl. When selecting one of the videos, we recall

37

the request.pl script which opens a new page where there is more information

about the file and there is also an embedded player, based on the VLC web

plugin [21], through which the selected video starts playing (Figure 4.9). The

Figure 4.9: Portal: player page, with video description and VLC-player embedded.

request.pl, in practice, automatically asks the VLC web plugin to download the

MPD file to play it. Moreover, there is a page, about.html, where we describe

the MEDIEVAL project and we report the MEDIEVAL partners, for the sake of

completeness (see Figure 4.10).

The popularity simulator page gives the user the possibility to perform simula-

tions about the popularity distribution of the videos, or further in, of the chunks

of the videos. In Figure 4.11 we simply build artificial local databases to be dis-

tributed among the Nodes. These databases are handled by the Nodes as the real

ones. Substantially, using pop settings.pl (reachable from the Portal using the

link called ‘Popularity settings’), for any video and for any Node, we decide how

many requests we want to simulate and how those are distributed. The graphics

in Figure 4.11 are such that in the x axis we have the entire length of the video

file and in y axis we have the percentage of requests to the video chunk contain-

ing that instant. In the left side of Figure 4.11 we can see the options for the

video Big Buck Bunny : we can choose initially the Node for which we want cre-

ate the database taking into account the maximum number of requests (through

which we can decide if the Node is overloaded or not). Chosen the number of

requests for the video, we can then select the percentage for every distribution.

38

Figure 4.10: Portal: page with the project partners.

Figure 4.11: Portal: popularity simulator page, with the available settings.

39

The possibility are: decreasing exp, gaussian, increasing exp, searching, view all

and jumping. We can simply set the distribution to 100% gaussian, for example,

and see that in the Node the chunks stored are those in the middle of the entire

video length.

After setting the parameters, we can click the button ‘Save the popularity set-

ting’, as reported in the right side of Figure 4.11. With this, after some checks

for percentages and number of requests (within specified bounds), we recall Sim-

CreateDBs.pl which creates the database, following the structure reported for

the local database, with the correct name for each one. Then SimSendDBs.pl

is the scripts that periodically uploads these to the specific Node. This action

continuously run and through it we can change the popularity distribution asymp-

totically, which means we continue to upload the same database (until we do not

further change it) to the Node and finally we can see that in the local cache we

have the chunks following the distribution values of the database. This requires

some uploads since the changes of the popularity values are not instantaneous,

but are carried out weighting them and considering also the average values.

Figure 4.12: Portal: network configuration page, with the available settings.

The network configuration page gives to the users the possibility of setting some

network parameter and create the network information database to be flooded on

every entity of the system. Selecting the ‘Network settings’ link in the Portal we

40

access the net settings.pl script as shown in Figure 4.12. Before describing it we

report here the structure of its database. For instance, if the network is composed

by the Origin (IP address [6001::101]) and one Node (IP address [5001::51]) and

their distance, in hops, is 7, with the Node 80% loaded, with maximum num-

ber of request 300, footprint [3001::]/64 and cache size 800 MB, the database is

structured as follows:

[6001::101];[6001::101];0;0;1000000; ORIGIN

[6001::101];[5001::51];7;0;0;0

[5001::51];[5001::51];0;0.8;300;[3001::] _64 ;800

[5001::51];[6001::101];7;0;0;0

In particular Origin has infinite cache size, the maximum number of requests is set

to a very high number and load always set to 0. It is considered always reachable

and available, to ensure reliability to the system in any working conditions.

As shown in Figure 4.12, we can see the old values of the network and set all the

new network parameters for each node: load, maximum number of users, cache

size in MB, number of hops to the Origin and to every other Node. Then, clicking

on the button ‘Save the popularity setting’ all the checks are done and, if are fine,

the script NetCreateDB.pl is recalled. This script creates a database with the

structure analysed above and in the end floods it to all the machines. Since this

database is static (as long as we change it from the Portal), the flooding is done

only once and no repeatedly. It is not modified by the machines since it is used

only for consulting purpose.

41

4.3 Interfaces

In Chapter 3 we listed the interfaces involved in the CDN module. We now gives

the implementation details of our interfaces.

• DM CDNNC If is implemented using DM.pl and DBNodeUpload.pl

Requests and Response messages are HTTP connections, made with sock-

ets.

– DM CDNNC CDNUpdate made using the main database;

– DM CDNNC CDNStatus made using network information and local

databases;

– DM CDNNC functions use the information obtained by DBNodeU-

pload.pl.

All these functions are sent to CDNNC pop.pl that executes the commands.

• The CDNNC CDNnode If is implemented using CDNNC pop.pl

Requests and Response messages are HTTP connections, made with sock-

ets.

– CDNNC CDNnode CDNUpdate executes send file and delete file in-

structions;

– CDNNC CDNnode CDNStatus executes free space and activenode in-

structions.

• The DM AM If is implemented using DM.pl

Requests and Response messages are HTTP connections, made with sock-

ets.

– This interface is implemented together with DM.pl (function man-

age file inside that file).

– Moreover, we implemented serverDM.pl that interacts with DM.pl pro-

cess to obtain popularity information to reply to the requests from the

Nodes.

42

4.4 Real testbed implementation

Our framework is implemented in a real testbed which makes it possible to assess

the performance implemented functionalities. In our case, we test the networking

features and the popularity management concept. This is important also for the

testing of communication with the other modules of the system. We describe the

test scenario as the following use case [7]:

A user through his mobile node (MN) is accessing both a video service

(Video flow) and VoIP (VoIP flow) when connected to the first PoA

(MAR1), that offers 3G connectivity. He is playing the video using

VLC Media Player and DASH. The MPD is downloaded and the

player starts to request the chunks listed in it. All the HTTP requests

pass through the request routing in the MAR, which intercepts and

analyses all of them and if the chunks of the video are available in the

local cache (co-located with the MAR), the request is forwarded to

the local cache and the requested chunk is replied directly from there.

Since the first chunks of the video are, in general, the more popular,

also in the demo the first minutes of the video are available in the local

cache, and the user is thus, retrieving the chunks from it. The user

in the meantime is moving and at a certain point his MN discovers

a WiFi connectivity PoA (MAR2) that is offloaded or at least is less

loaded than the previous PoA; due to this it triggers an handover due

to transport optimization and in the end it is connected to MAR2.

Now the video flow, that is not anchored, goes through this PoA and

on the contrary VoIP flow stays anchored to MAR1 (the traffic is

tunnelled between the MAR anchoring the flow and the MAR serving

the MN). This happens because the VoIP flow is not as heavy as

video. The local cache in MAR2 also contains the requested chunks

for the video and, thus, the video is now streamed from his cache;

but, since the video continues and the chunks towards the end of the

video are no longer as popular as the first minutes of the video, they

are not available in the local cache. Then the MAR, upon receiving

a request for these chunks, sends a request to the DM to check the

best location of them. The DM selects the best cache (Origin or other

43

cache/MAR) to serve the MN and takes this decision based, amongst

others, on the availability of the content in other caches, the current

load of these caches, and the PoA of the user. Then, in the demo, the

user moves out of WiFi coverage and goes under LTE which means

that, this time, the handover is triggered by loss of coverage. VoIP

is still anchored to MAR1 but the video now is streamed via MAR3,

where the local request routing in coordination with the DM is taking

over the role to choose the best location for streaming the video to

the user. In the entire demo, the user is unaware of what is happening

but he can see where the chunks are taken reading the name of the

cache directly from the video.

DEMONSTRATION 1
MOBILITY AND CDN SCENARIO

DEMO DESCRIPTION

 Dynamic & Distributed Mobility Management (DMM) concept:
“anchors to the edge” as deployed in the default gateway of the
mobile node

 Intelligent video distribution systems (distributed caching with
central control)

 Integration of CDN nodes/caches inside the mobile network
 IP flow selected mobility
 Logical Interface concept at the MN (the radio interfaces are

grouped under a single virtual network interface seen by upper
layers)

 IEEE 802.21 as cross layer solution for mobility optimization
 Unified management for both 3GPP and not 3GPP accesses
 Economic benefits for operators (this may vary on data traffic

patterns and/or mobile network topologies)

 A mobile node MN is accessing both a video service
(Video flow) and VoIP (VoIP flow)

 The video is available in the Video Server and caches
 The caches are co-located with MARs
 While the mobile node is moving around, the best cache

is selected to serve it
 Different handover triggers mechanisms/logic

Sequence of the demo:

1. MN attaches to MAR1 (3G technology) and starts/gets a

VoIP flow
2. MN starts video application and gets video (from cache1

or VoD Server)
3. MN discovers a WiFi PoA (MAR2) and attaches to it:

Handover triggered by the network due to caching
optimization

4. VoIP flow stays anchored to MAR1 (the traffic is
tunnelled between the MAR anchoring the flow and the
MAR serving the MN), video flow comes now from
cache2

5. MN moves out of WLAN coverage and goes under
MAR3 (LTE): handover triggered by loss of coverage

6. VoIP is still anchored to MAR1. The video flow comes
from cache3

KEY CONCEPTS & BENEFITS

September 2012, Alcatel-Lucent Bell Labs, Paris

Source

RRDM

Mobile
Node

CDN CacheCDN CacheCDN Cache

Mobile
Node

Content
Portal

LTE
Access Network

WiFi
Access Network

3G
Access Network

VoD server

Cache1 Cache2 Cache3

MAR1 MAR2 MAR3

CN – VoIP terminal

MN MNMN

Video
flow

Video
flow

Video
flow

VoIP
flow

VoIP
flow

VoIP
flow

MAR = Mobility Access Router
Figure 4.13: Real testbed architecture.

For the sake of completeness, the architecture of the real testbed is depicted in

Figure 4.13.

We designed and tested our module and software first of all in DOCOMO Com-

munications Laboratories Europe located in Munich. There we used only two

Nodes via WiFi. This is the minimum setting for testing all the functionalities

implemented and the networking features installed (also DMM). The testbed is

based only on virtual machines and all the WiFi networks are virtualized.

We emphasize the fact that, to stress more the system, and to highlight the cru-

cial aspects, such as the request routing, the local caches are fulfilled. In this

44

way, by appropriately labelling chunks in the local caches, it is visually simple to

understand how we move from a Node to another one. We report in Figure 4.14

a sequence of screenshots of how the system works and how it works for the user.

These screenshots were captured from the testbed.

Figure 4.14: Real testbed playback: video sequences.

45

46

Chapter 5

Results

We remind the description of the features in Section 3.2 and we analyse in details

how these features are built and how our system works, based on the implemen-

tation details reported in Chapter 4. We first describe the benefits of segmented

video streams in combination with request routing, followed by the assessments

of popularity-based caching, the robustness of the in-network CDN system and

the session continuity during handovers.

5.1 Segmented videos and request routing

In order to access the MCDN functionalities, we use a video streaming scenario

where the video is segmented into chunks (DASH). Segmented videos are usually

used in peer-to-peer video applications to overcome the limitation of asymmetri-

cal Internet access, or in adaptive video streaming, allowing the client to adapt

to dynamic bandwidth conditions. In the latter approach, the client can choose

among video coding scheme when requesting the next chunk. The client is in-

formed about available bitrates in the form of ‘manifest’ file (called MPD file for

DASH) during the session setup. The manifest file for a video contains infor-

mation about the URLs of each combination of encoding and chunk, i.e., a list

of URLs for all chunks of encoding 1, chunks of encoding 2, and so on. In our

project we use segmented video in a novel way to also 1) introduce in-network

caches and 2) adapt to the mobility of the user. We realized, in the testbed, the

redirection of requests to the appropriate copy of the segment, via a transparent

proxy at the Node. The proxy is intercepting all HTTP requests (this could also

47

be narrowed down, e.g., to specific ports). To do it, we recall the ’Core Router’

section of Chapter 4, and specifically the list of interception rules, here reported:

ip -f inet6 rule add fwmark 1 lookup 100 prio 500

ip -f inet6 route add local default dev $WLAN table 100

ip6tables -t mangle -N DIVERT

ip6tables -t mangle -A DIVERT -j MARK --set -mark 1

ip6tables -t mangle -A DIVERT -j ACCEPT

ip6tables -t mangle -A PREROUTING -p tcp -m socket -j

DIVERT

ip6tables -t mangle -A PREROUTING -s $PREF -p tcp --dport

80 -j TPROXY --tproxy -mark 0x1/0x1 --on -port 3129

As we said, these rules let the Node catch the HTTP requests coming from the

client, and, by marking them, they redirect those to the specific Squid proxy

server installed in the Core Router.

As the segments of the video are rather short, we are flexible in adapting to

mobility of users and availability of cached content. For each request the Squid

proxy server in the Node is first checking the availability of the requested file in

the local cache and, if available, forwards the request to it. Otherwise, the request

routing in the Node contacts the DM to find the optimal source for downloading

the content, and the request is forwarded to that source. Note that the whole

process is transparent to the user.

In the previous Chapter a configuration example for the Squid proxy server is

reported to work in this way. Here we report the list of rules we implement to

make it run.

acl localnet src 10.0.0.0/8 # RFC1918 possible internal

network

acl localnet src 172.16.0.0/12 # RFC1918 possible internal

network

acl localnet src 192.168.0.0/16 # RFC1918 possible internal

network

acl localnet src fc00 ::/7 # RFC 4193 local private

network range

acl localnet src fe80 ::/10 # RFC 4291 link -local (

directly plugged) machines

48

acl localnet src 2100::/8 # SUBNET of MAR1

acl localnet src 2200::/8 # SUBNET of MAR2

acl localnet src 2300::/8 # SUBNET of MAR3

acl SSL_ports port 443

acl Safe_ports port 80 # http

acl Safe_ports port 21 # ftp

acl Safe_ports port 443 # https

acl Safe_ports port 70 # gopher

acl Safe_ports port 210 # wais

acl Safe_ports port 1025 -65535 # unregistered ports

acl Safe_ports port 280 # http -mgmt

acl Safe_ports port 488 # gss -http

acl Safe_ports port 591 # filemaker

acl Safe_ports port 777 # multiling http

acl CONNECT method CONNECT

external_acl_type whichServer cache =0 %URI /home /.../ CDN/

whichServer.pl

acl findServer external whichServer

check if helper sent "OK tag =500051" and pass to MAR1

acl apache51Okay tag 500051

cache_peer [5000::51] parent 80 0 no-tproxy name=

Apache500051

cache_peer_access Apache500051 allow apache51Okay

cache deny all

check if helper sent "OK tag =500052" and pass to MAR2

acl apache52Okay tag 500052

cache_peer [5000::52] parent 80 0 no-tproxy name=

Apache500052

cache_peer_access Apache500052 allow apache52Okay

cache deny all

check if helper sent "OK tag =500053" and pass to MAR3

acl apache55Okay tag 500053

49

cache_peer [5000::53] parent 80 0 no-tproxy name=

Apache500053

cache_peer_access Apache500053 allow apache53Okay

cache deny all

http_access allow manager localhost

http_access deny manager

http_access deny !Safe_ports

http_access deny CONNECT !SSL_ports

http_access allow findServer

http_access allow localhost

http_access allow to_localhost

http_access allow localnet

http_access allow all

cache deny all

http_port 3128

http_port 3129 tproxy

With this Squid proxy server configuration, installed in each Node, we can process

every request, recalling the script whichServer.pl through the line ’external acl type

whichServer cache=0 %URI home...CDNwhichServer.pl’. The script is able

to read the content requested and to check its availability. By being able to dy-

namically redirect requests to any available copy of the requested content, the

CDN system also supports traffic optimisation actions, like selecting a different

path between application and source, e.g., through changing the wireless access

(vertical or horizontal handover) or selecting a different copy of the requested

content in the network (e.g., caching Node).

5.2 Popularity-based caching

The popularity-aware content placement algorithm is accessed using a request

generator implemented in the testbed (see Figure 4.11). As we are not able to

connect hundreds or thousands of clients to the testbed, generating real requests

for videos, the request generator can be used to generate artificial requests at

50

different Nodes. Via GUI, we can specify the regional popularity of the different

videos available in the testbed, as well as compose the viewing behaviour for each

video. For example users usually start watching the movie from the beginning,

but after some time a user may stop the video, as he does not like the movie or

he is distracted by some other issue. Thus, the popularity of chunks of a spe-

cific movie is fairly high for the first chunks and getting smaller for last chunks

(‘decreasing exp.’ distribution). For other types of videos, the popularity distri-

bution of the chunks may be different, e.g., a user may skip through a tutorial

video to search for a particular topic he is interested in (distribution ‘jumping’),

or he already knows a certain sequence within a YouTube video where he is di-

rectly jumping to that scene but not exactly hitting the right spot (distribution

‘Gaussian’). The popularity distribution can be changed dynamically during the

simulation.

The request generator takes the input from the popularity distribution and emu-

lates user requests for the chunks of all videos based on the specified popularity

distribution. The number of requests for each chunk is not deterministic, rather

a random function that ensures small variations in the requested pattern. The

new pattern is monitored at the Node and an aggregated report is periodically

sent to the AM. The DM periodically requests the updated content popularity,

and depending on the specified reporting and on updated frequencies, DM starts

adapting the content in the local caches to the new content popularity. Figure 4.4

shows the content available in the cache located at Node resulting from a spe-

cific popularity distribution. For the video ‘Big Buck Bunny’, the first 4 chunks

are stored in the cache, whereas later chunks are below the dynamic popularity

threshold and, thus, are not cached locally. This threshold is calculated weighting

instantaneous and averaged values of popularity, in order to avoid useless actions.

Basically, the updated frequencies determine the reaction time of the CDN sys-

tem towards changes in the content popularity. There is a trade-off between low

update frequencies, i.e., low overhead in signalling and processing, and fast reac-

tion to quick changes, e.g., in case of flash crowds. The operator may also decide

to implement a more complex algorithm in the request routing capable of rec-

ognizing sudden changes of the popularity and triggering the DM by sending an

immediate report. In the real testbed, we decided to study the trade-off between

overhead and speed. Then, we are able to demonstrate the impact of changing

51

the popularity of the cached content within a reasonable time of a few minutes.

The prototype behaves as expected and is correctly adapting to the new content

popularity distribution.

This feature is realized inside the Portal (Chapter 4), and it is reachable, specif-

ically, through the popularity simulator page. We chose 3 ‘standard’ videos and

realize one generator for each Node. In this way we can stress the system and

prove that it works also for a large number of requests.

5.3 Robustness of the CDN component

Our goal in this section is to show the robustness of the system in case of failures

of Nodes or packet losses. If a Node fails, the DM will not receive any message

from such Node and after a timer expires, it will redirect incoming requests to

other caches or to the Origin server. In the worst case, the user may realize this

outage with a short disruption of the playback, yet, in most cases, the applica-

tion can survive several seconds thanks to its internal buffer. In the meantime

the request routing will be aware of the non-responsive Node and, assuming a

re-transmission-like algorithm in the application, the next request for the missing

chunk will be redirected to another node.

In case of failure of the AM, there is no possibility to update the content pop-

ularity distribution. This means, the DM is not aware of changes in popularity

and, thus, will not be able to update the content in the Nodes. This implies

that the system will not operate in optimal mode, but as severe changes in the

popularity distribution are quite rare, the system will still show almost optimal

performance. Even in case of one video, e.g., some top news, suddenly being re-

quested in a flash-crowd like manner, the system would still perform better than

a system without any in-network caching functionality.

Similarly, if a CDNNC fails, the communication with the attached Node(s) is

lost. Yet, requests can still be forwarded to these Node(s), as long as they are

still up and running. Only content update and status request messages cannot

be processed, thus, the Node will not be able to change its cached content.

52

5.4 Session continuity during handovers

The system is able to provide a non-anchored application-layer-based mobility

support for videos. For each request of a chunk a new HTTP is set up. When the

user moves and connects to a new PoA, an HTTP session for the next request

will be established through the new PoA. This means, the ongoing playout of the

video can continue with the next segment. In addition, the mobility management

is applied to the currently streamed segment, thus, by anchoring that flow, the

HTTP session is not lost and the segment is streaming to the end user. In that

way, we can provide a continuous playback of the video to the user. The mobility

management must not anchor the flow during the whole video session, but only

seconds to few minutes to complete the started segment.

The performance of this application-layer-based mobility support is mainly de-

pendent on the duration of the segments. Short segments enable high flexibility

during mobility, and the anchor for the ongoing segment is only needed for a

short period. However, in current applications the anchor must be set up in any

case in order to provide smooth playback of the video and avoid problems. Short

segments increase the overhead of the system linearly: the size of the manifest

file is almost increasing linearly with the number of the referred segments, the

request routing interrupts each segment, and the overhead for establishing the

HTTP connections as well as the number of packets to transmit will increase

with shorter segments. Thus, a trade-off between flexibility and overhead must

be considered. In our prototype, we tested several lengths of the segments (from

1 second to 15 seconds), and finally choose a duration of 5 seconds to have a

stable system, and being able to demonstrate the non-anchored handover within

a reasonable response time.

As a result we report in the next page the sequence of messages travelling through

the Nodes during handovers performed in the real testbed, to highlight the sta-

bility and continuity of the video session.

53

REQUEST FROM MAR1 (MPD+MP4 control files from origin)
1366209463.341 2100::21f:3bff:fe6b:ea4b TCP_MISS/206 011549 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5_900kbps_dash.mpd - HIER_DIRECT/6000::102

1366209463.371 2100::21f:3bff:fe6b:ea4b TCP_MISS/206 001208 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5_900kbps_dash.mp4 - HIER_DIRECT/6000::102

1366209466.296 2100::21f:3bff:fe6b:ea4b TCP_MISS/206 644606 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s1.m4s - FIRSTUP_PARENT/5000::51

1366209471.216 2100::21f:3bff:fe6b:ea4b TCP_MISS/206 613061 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s2.m4s - FIRSTUP_PARENT/5000::51

1366209475.645 2100::21f:3bff:fe6b:ea4b TCP_MISS/206 646902 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s3.m4s - FIRSTUP_PARENT/5000::51

MAR1->MAR2
1366209479.683 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 338212 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s4.m4s - FIRSTUP_PARENT/5000::52

1366209486.327 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 643752 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s5.m4s - FIRSTUP_PARENT/5000::52

1366209491.719 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 717152 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s6.m4s - FIRSTUP_PARENT/5000::52

1366209495.273 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 710915 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s7.m4s - FIRSTUP_PARENT/5000::52

1366209500.427 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 338403 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s8.m4s - FIRSTUP_PARENT/5000::52

1366209506.097 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 435621 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s9.m4s - FIRSTUP_PARENT/5000::52

1366209511.211 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 698744 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s10.m4s - FIRSTUP_PARENT/5000::52

MAR2->MAR3
1366209516.613 2300::21f:3bff:fe6b:ea4b TCP_MISS/206 514706 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s11.m4s - FIRSTUP_PARENT/5000::53

1366209518.381 2300::21f:3bff:fe6b:ea4b TCP_MISS/206 318445 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s12.m4s - FIRSTUP_PARENT/5000::53

...

54

5.5 Wireshark captures

We report Wireshark captures to check the interfaces messages, to better under-

stand how the low-level signalling during the mobility.

We briefly list the addresses of the used machines, in this way it is more clear read-

ing and understanding the captures: client to MAR1 [3001::101], client to MAR2

[4001:101], MAR1 to client [3001::51], MAR1 to network [5001::51], MAR2 to

client [4001::52], MAR2 to network [5001::52], Core Router [5001::1] and Origin

[6001::101].

For the study we considered two different scenarios and we analyse different sig-

nalling using different behaviour of the system.

Configuration 1

In the first configuration we boot the system. In MAR1 there is one chunk (first

chunk of ‘Big Buck Bunny’). In MAR2 there are two chunks (the first two chunks

of the same file).

The testing about the content availability and the behaviour of the system follows

these steps:

• Connection with MAR1 established. Start playing the video. The messages

between client and MAR1 are reported in Figure 5.1;

Figure 5.1: Wireshark capture: MAR1, client-side interface

55

• The first chunk is taken directly from the local cache. In Figure 5.2 we do

not see the messages for the first chunk, because they are not going inside

the network: the client is directly served;

Figure 5.2: Wireshark capture: MAR1, system-side interface

• The second chunk is not in the local cache; the Squid proxy server makes a

request to the Core Router for the best location, as reported in Figure 5.2.

Since the second chunk is in the cache of MAR2, and MAR2 is a possible

best location, the flow goes to it, as in Figure 5.3;

Figure 5.3: Wireshark capture: MAR2, system-side interface

56

• The third chunk is not in the local cache; the Squid proxy server makes a

request to DM as before. Now the flow goes directly to the Origin, because

the third chuck is not stored anywhere in the Nodes.

Configuration 2

In MAR1 there is one chunk (first chunk of Big Buck Bunny). In MAR2 there

are two chunks (the first two chunks of the same file). Now the testing about the

handover and the behaviour of the system follows:

• Start with MAR2 connection established. Start playing the video. Depicted

in Figure 5.4.

Figure 5.4: Wireshark capture: MAR2, client-side interface

• The first chunk is taken directly from the local cache;

• After that we disconnect from MAR2 and a connection is established with

MAR1 (Handover). This shown in Figure 5.5, where we can see the mes-

sages passing in the client-side interface of MAR1;

57

Figure 5.5: Wireshark capture: MAR1, client-side interface

• The second chunk is taken from local cache. The third chunk is not in the

local cache and due to this the Squid proxy server makes a request to DM as

seen in Configuration 1. Now the flow goes directly to the Origin, because

the third chuck is not stored anywhere, as in Figure 5.6.

Figure 5.6: Wireshark capture: MAR1, system-side interface

58

5.6 Practical scenarios

Actually, the performance of the system is difficult to assess from a prototype,

as the size of the system and the number of requests are fewer compared to a

real implementation. Moreover, hardware and code are not optimised compared

to an actual high-performance product. Thus, in order to assess the performance

of our in-network CDN approach, we look at the savings and costs of the CDN

component. We distinguish four cases:

1. The requested content is available in the cache attached to the local Node;

2. The local cache does not host the requested content and the request is

forwarded to another copy;

3. The content is not available in the mobile network;

4. A network without in-network CDN functionalities.

The performance can be measured in terms of signalling, computation, and la-

tency. In all cases, the request is intercepted at the Node, requiring some addi-

tional processing capacities and adding a small overhead on the latency. In case

1) the request can directly be served by the local cache, i.e., the total round-trip-

time (RTT) of the request is much smaller compared to case 2) where content

is requested from another cache or (case 3)) from the Origin server outside the

mobile network (assuming a high-performance Node). There is no traffic in the

mobile core network, thus, transport costs and network load in the mobile net-

work is significantly reduced.

In cases 2) and 3) the request routing is contacting the DM in order to get the

optimal location for each specific request. That is, additional signalling, process-

ing, and latency overhead is introduced for each request. In case 2), the total

RTT may still be smaller than in a network without in-network caches (case 4)),

while in case 3), due to the additional packet interception at the Node and the

signalling exchange with the DM, the total RTT will be definitely larger than in

case 4).

Yet, looking at the popularity distributions observed, caching around 20% of the

requested videos, results in serving up to 80% of the requests from the local

cache. This means that most of the requests benefit from the in-network caching,

59

whereas only a smaller percentage of requests for less-popular content experience

longer latencies. Similarly, for 80% of the requests, the load in the network is re-

duced significantly (the big data part must not be transferred through the whole

core network) compared to 20% of requests where a minor signalling overhead is

introduced (just two small packets to request the optimal copy from the DM).

Moreover, assuming that the operator runs a firewall and performs deep packet

inspection at the gateways of its network, in 80% of the cases this processing is

not utilized, but traded against the request routing at the Node in 100% of the

requests.

Another advantage of in-network caching is that in cases 1) and 2) the operator

is in control of the Nodes, ensuring a certain QoS, whereas for an external source,

its QoS is out of the operator’s influence. Overall, the additional effort and costs

of in-network caching are easily compensated by its benefits.

5.7 Experimental results

In this section we present some numerical results obtained by experimental trials.

In this experiments we focus our analysis on the number of messages travelling

through the system. Further, we study the volume (bytes) of the requests for

the MPD, MP4, chunks and the volume of messages for the optimal cache selec-

tion. We distinguish between useful traffic, i.e., chunks without overhead, and

signalling. Moreover, we separate the traffic in Core Network flows (internal) and

Access Network flows (external). Now, we briefly show the parameters used to

perform the tests. We fix the number of total requests (on a per-chunk basis)

to 1500000. The number of videos to be played (which means the number of

MPD and MP4 files requested is fixed too) is set to 1000. In [7] we can read that

the average duration of a video is 4.3 minutes which corresponds to 258 seconds.

We can calculate the average number of chunks per video. In our simulations,

we consider the following chunk lengths: 1, 2, 5, 10 and 15 seconds. We use a

sample video with average bitrate of 900kbps, from which we compute the size

of a chunk. We study the distribution of the messages at one Node, and all the

requests going to Origin or to the local cache. When the cache is not empty, some

requests can be served directly form the local cache, thus, we model this scenario

using the Zipf’s law (extension of Pareto’s 80-20 rule). The Zipf’s law is the

60

way to link the storage percentage of the cache to the number of requests served

directly. If the cache is filled with 10% of popular chunks, we can serve directly

65% of the requests. When the cache is filled with 20% of popular chunks, we

can serve directly 80% of the requests.

Figure 5.7: Traffic volume in CN and AN.

In Figure 5.7, we show the traffic volume as a function of the percentage of stored

chunks in the local cache. We underline that the traffic volume is the sum of in-

ternal and external video flows. We see that the total traffic for short video

chunks (1 and 2 s) is the highest. This is more evident when the cache is almost

empty (left side of the figure). When the cache is full, the chunk length has no

impact on the overall traffic. This is the reason why the number of requests for

the location from which to retrieve the content is high when the cache is empty.

Viceversa, once the cache is full, the requests go to zero due to the fact that

the Node knows locally how to react to the requests. The number of messages

depends on the chunk size, since the requests are sent on a per-chunk basis. The

signalling messages increase the system load but, as we can see in Figure 5.8,

the traffic in the Core Network gets smaller. However, the traffic keeps greater

than zero because of the MPD and MP4 messages, which are retrieved from the

Origin.

61

Through the measurements, we find that for the considered video, at 900kbps,

in case of 10% of cache load, we guarantee the following link bitrate, taking into

account the introduced overhead (Table 5.1).

Chunk length (s) 1 2 5 10 15

Bitrate (kbps) 1028100 994670 966990 954770 951590

Overhead (%) 14.2 10.5 7.44 6.08 5.73

Table 5.1: Bitrate and overhead in case of 10% of cache load

1 2 5 10 15
0

2

4

6

8

10

12

14

16

18

20

Chunk length

Pe
rc

en
ta

ge
 o

f o
ve

rh
ea

d
in

 th
e

C
N

Figure 5.8: Traffic volume inside the CN: each group of bars represents the level

of the cache load, form 0% (left) to 100% (right).

We know also that the chunk length impacts on the reactivity of the system to

the handovers. In fact, in case of handovers during the download of a chunk, the

system opens a tunnel to maintain the connection until the end of the procedures.

This is beneficial for the system stability and the QoE of the user, but it increases

the overhead. With small chunks the system maintains the tunnel for a short time

interval, opposite to the case with large chunks. Moreover, the tunnel limits the

Maximum Transmission Unit (MTU), thus, long packets are fragmented leading

to additional overhead. In our scenarios, the range of requests performed during

handovers goes from 0% to 5% of the total number of requests in the system

(Figure 5.9, Figure 5.10). In the graphs we observe that with increasing values

of requests with handover, small chunks perform the best. 10 and 15 seconds long

chunks gradually increase the traffic, due to the tunnel and further fragmentation

62

Figure 5.9: Traffic volume with tunnelling: percentage of requests with handover

set to 0%, 1% and 2% (from top to bottom side)

63

Figure 5.10: Traffic volume with tunnelling: percentage of requests with handover

set to 3%, 4% and 5% (from top to bottom side)

64

overhead. 2 seconds long chunks perform best, since they are less fragmented,

thus, the overhead introduced is only due to the tunnel. The signalling overhead

is smaller compared to short chunks. The overhead introduced in case of empty

cache is not too heavy, and they perform better in presence of handover since

the chunks flow through the tunnel only for a short time interval. 1 second long

chunks show globally high overhead.

Figure 5.11: Total traffic volume as a function of requests during handover, for

the specific scenario with 10% of cache load.

Now, we focus our study on the scenario with 10% of cache load. We select this

value from the Zipf’s law since this percentage of cache occupancy corresponds to

serving 65% of the total requests. In Figure 5.11 we show the total traffic volume

in function of the number of requests during the handover. 2 seconds long chunks

65

Figure 5.12: Overhead percentage as function of requests during handover. The

bars in each group represent the chunk length, form 1 s (left) to 15 s (right).

perform best since they introduce the smallest amount of overhead in presence of

handovers. Moreover, in Figure 5.12, we show each contribution of the measured

overhead (signaling overhead and tunneling overhead). With longer chunks than

2 s the tunneling overhead is the main contribution in presence of handovers.

This is the reason of the quick growth of traffic volume as for Figure 5.11.

66

Chapter 6

Conclusions

In this Chapter we underline the good results obtained followed by a list of

learned lessons and by some research directions for future work. The system,

Figure 6.1: Docomo Euro-Labs.

as we thought about it, works in practice and is implemented in real testbeds.

We report here some images of the testbeds and of the team that supported our

work during the development period. The implementation was not an immediate

process, but we passed trough many configurations to obtain a working final

version. We present some important learned lessons during the development of

our system. Here we report the crucial ones:

• Squid proxy server supports IPv6 from version 3.1;

• To use Squid proxy server in a transparent way (no NAT in IPv6) TPROXY

is needed. This package is part of the latest releases of iptables (from version

1.4.10 on);

67

• Ubuntu 10.04 is an old version. We needed to recompile the kernel with

version 2.6.39 to operate with Netfilter. It was necessary to install iptables

with TPROXY;

• To make the system running we studied a particular setting for ip6tables.

We introduced the marking of the packet and the routing of these packets

where needed;

• Packet routing, the critical challenge, was addressed as follows:

– Initially we set up an IPv4 system and we used a simple NAT to

perform the redirection;

– Moving to IPv6 there was a problem of local loop. We worked with

the ports of the Squid proxy server and the Apache web server (cache

server), and with the redirection codes offered by HTML messages. It

was not efficient since introduced useless signalling messages;

– Then we tried to find a different solution. Using the 302 code, that

means the HTML redirection, but without changing the ports: thus,

once we make a request for video, if we are routed to machines different

from the actual Node, the Squid proxy server redirects directly (it

works because we are not routing locally). If the request must be

served by the local cache, then the Squid proxy server sends back to

the client a response with 302 code in the header and the client make

a new request to the Node. In this case the request goes directly to

the Apache web server because of the routing tables (we avoid Squid

proxy server for the local requests). It was not efficient due to the

signalling introduced by the redirection with 302 code;

– The final and clean solution was such that using external acl type and

cache peer in the Squid proxy server; this, we routed packets without

the local loop problem. In this case we used tags and no-tproxy option

for the requests going out from the Squid proxy server. This was

beneficial for the system since we saved signalling and useless messages

in the whole Core Network.

68

• The first DASH player implementation is the DASH VLC plugin of the

Institute of Information Technology (ITEC) [23]. With this first version we

faced some problems:

– The stable version (version newer than the 2.0) has no buffer for DASH,

but we needed it since we make decisions in real-time: it is not working

properly;

– The git (nightly-build) version was not stable, but had an implemen-

tation of the buffer. The problem with this version was that also

‘pipelining’ and ‘persistent connections’ were introduced, but they

were not completely managed following the specifications of [22] in

section-14.10. The behaviour was anomalous with the Squid proxy

server (not working properly);

– If the handover was too slow (mainly due to the communication be-

tween interfaces) the VLC crashed;

– The VLC web plugin, which was used to show the videos directly on

the web browser, through the portal, can be compiled from the sources

of the VLC that we installed in the machine. However the size of the

buffer can not be changed on the fly. It was fixed, and equal to the

default value in VLC.

• We faced a problem between DMM and Squid proxy server, since the last

one automatically introduces some rules in the iptables, DMM does it as

well. To avoid this conflict we increased the priority value for the rules

introduced by the Squid proxy server (and for the rules created to work

with it); since typically DMM works with priority 1000, at least set priority

999;

• Perl was the programming language in use. The built modules for it are

not fully supporting IPv6. This is why, sometimes, to do some particu-

lar network procedures was necessary to recall a system command, which

did the instruction directly in linux (for example LWP::Simple module for

download does not work, thus, we simply used WGET).

The MCDN we focused on in our study is efficient and stable. We list here, to

conclude our thesis, a list of future work directions we think could be considered

69

Figure 6.2: Alcatel-Lucent Bell Labs France.

to improve our work and to extend the functionalities of the system to a wide

range of scenarios.

• Use of functionalities of MPEG-DASH for video bitrate adaptation, to im-

prove not only the video steams, but also their bandwidth. This is under

study in DOCOMO Laboratories, with our support and contribution;

Figure 6.3: Real testbed at Eurecom, Sophia-Antipolis.

• Introduction of a module to detect the type of users in the system in or-

der to make decisions based on mobile or static aspects. The system we

implemented is meant for mobile scenarios. If a user is static, pipelining

70

and persistent connections could be a good solution to avoid additional

overhead;

• Another improvement could be trying to install and make the MCDN run

on Mini-PCs or, also better, Routers based on Unix operating system. This

could be a good solution to save installation costs and to spread faster such

a system. This is under study by the project’s partners, with our support

and contribution.

As final remark we can say that our implementation is full running and shows

the benefits of the MEDIEVAL Transport Optimization system. We are satisfied

of the results we achieved which will be disseminated in international events.

71

72

Appendix A

Functional architecture: details

A.1 Video Services Control

The video service control (VSC) subsystem [24] is responsible for linking the ser-

vices and the underlying network delivery entities. It aims at enabling a reliable

video delivery over an evolved mobile network, which offers improved resources

utilisation and an enhanced user experience, by proposing a new cross-layer set

of interfaces from video service controls to video applications, to mobility, and

to transport optimisation. This subsystem also proposes a set of innovative ser-

vice controllers to support a new world of video applications, leveraged by the

social networking trend, hiding the service management issues from the multime-

dia applications, in order to allow new video-related services, with QoS support,

improving resource utilisation and application flexibility.

Last, the subsystem also provides reliable and adaptive content delivery in inher-

ently unreliable networks, maximising the users’ quality of experience, taking into

account the network dynamics as well as other potential factors, such as moneti-

sation schemes or user differentiation, for the variety of video-rich applications.

The video service control is mainly responsible for:

• Service provisioning which is further segmented into services, contents and

user attributes;

• Session management and network monitoring, which initiates service ses-

sions and provides ongoing measurements of the underlying networks con-

ditions;

73

• Video control, which is responsible to control the content generation and

delivery, based on session measurements and network events, like handovers

or resource changes in the network. It is also responsible for providing

the network with sensitivity graphs, to allow network adaptation, such as

resource allocation to different flows;

• Content adaptation and transport, which is responsible to perform content

adaptation, content protection and packet marking, in order to signal the

underlying networks about packet prioritisation.

The innovative design of video services links video applications with the Core

Network mechanisms through the use of enablers for the communication with the

other modules of the architecture. To deal with the increasing demand for video

traffic, the networks face challenges of transport optimization on one hand and

user QoE on the other hand. Thus, the goal of this subsystem is to define video

aware service control interfaces and mechanisms to deal with both aspects. Video

service control shall provide video relevant information to the mobility functional

entity, using the video aware interface for heterogeneous wireless access, mak-

ing possible to reach an optimal mobility decision. Furthermore, video services

control interacts with transport optimization module in order to exchange a set

of quality parameters that will impact the network usage and the video service

configurations.

Figure A.1: Functional Architecture of the Video Services Control subsystem.

The video services shall receive relevant transport and mobility data in order to

improve its operations such as impact momentary video and channel coding. In

order to link the video applications with the evolved video delivery network, a set

74

of signalling interactions are defined making possible the establishment, modifi-

cation or release of transport channels to convey multimedia content to multiple

users. These new interactions bridge the applications to an improved distribution

network allowing the multimedia contents to be delivered to groups of users in

the most efficient way.

Figure A.1, see [2], depicts the architecture of the Video Service Control subsys-

tem. For a detailed description on the full architecture please check D2.2 [24].

A.2 Wireless Access

The main reference model of the project consists in an operator supporting con-

nectivity through heterogeneous access technologies [25]. Thus, the objective of

the wireless access study is to describe the architectural solutions envisioned to

provide enhanced video delivery in the last (wireless) hop, mainly focusing on

novel access techniques.

According to how they make use of the wireless medium, we can classify access

techniques into contention-based, such as the IEEE 802.11 standard for Wireless

Local Area Networks (WLANs), and coordination-based, as the Long Term Evo-

lution Advanced (LTE-A) of the Universal Mobile Telecommunications System

(UMTS). For each access category, the project aims at developing novel mech-

anisms to enhance video transmission over these wireless accesses, providing a

satisfactory QoE and enabling cross-layer optimisations in the interaction with

upper layers. In order to include this optimisation, cross-layer signalling is imple-

mented between the lower layers of the wireless access and the video application

and services, as well as with mobility services. This is accomplished by the def-

inition of an abstraction layer and its associated functions, together with some

ad-hoc features designed to further enhance the video flow transfer over the air.

To achieve efficient video transport in heterogeneous networks, a high trans-

parency and seamless intercommunication within the subsystems are needed.

Moreover, the designed framework should be able to operate in each type of the

considered wireless technologies. For each type of wireless access, the subsystem

aims at developing novel mechanisms to enhance video transmission over wireless

access, allowing adequate QoS support and enabling cross-layer optimizations in

the interaction with upper layers. In order to provide common optimizations

75

Figure A.2: Functional Architecture of the Wireless Access subsystem.

applicable to both technologies, two families of mechanisms have been identified,

that can be applied with subtle differences to both technologies. The analysed

methodologies include both algorithms for packet prioritization and selection and

strategies to improve the actual bandwidth that can be extracted from the wire-

less medium. The Wireless Access subsystem is depicted in Figure A.2, from [2].

For a detailed description of the wireless access components please refer to deliv-

erable D3.2 [25], where the interaction between each module is fully described.

A.3 Mobility Management

Most of the currently standardized IP mobility management solutions which have

shown little deployment penetration, like [29], or [30] rely to a centralized mobil-

ity anchor entity. This centralized node is in charge of the mobility control and

the user data forwarding, that is, it is both the central point for data and user

plane; this o why current mobility solutions are prone to several problems and

limitations. This has triggered big mobile operators to look for novel mobility

management approaches which are more distributed in nature, and that allow

to enable mobility on demand for particular types of traffic (instead of mobility

enabled by default for all the traffic of a particular user). This effort is known as

Distributed Mobility Management (DMM) [3, 4].

MEDIEVAL mobility architecture [26] is characterized by the following: 1) it

follows a DMM approach, where mobility is anchored at the very edge of the

network, 2) it adopts an hybrid approach, where network-based mobility man-

agement solutions are used whenever possible, and client-based solutions are used

76

otherwise, and 3) due to the video-centric nature of the project, multicast traffic

delivery and content distribution aspects are fully supported and integrated in

the mobility management solution.

As described before, current mobility management solutions, such as Mobile and

Proxy Mobile IPv6, rely on the existence of a central entity anchoring both control

and data plane. That is, the Home Agent (HA) and Localized Mobility Anchor

(LMA) are in charge of tracking the location of the mobile nodes and redirecting

traffic towards their current topological location. While these solutions have been

fully developed during the past years, there are also several limitations that have

been identified:

• Sub-optimal routing. Data traffic always traverses the central anchor, re-

gardless the current geographical position of the communication end-points.

With a distributed mobility architecture, the anchors are located at the very

edge of the network which means that data paths tend to be shorter;

• Scalability problems. In current mobility architectures, network links and

nodes have to be provisioned to manage all the traffic traversing the central

anchors. This poses several scalability and network design problems. A

distributed approach is more scalable, as the tasks are shared among several

network entities;

• Reliability. Centralized anchoring points represent a potential single point

of failure;

• Lack of fine granularity on the mobility management service. Current solu-

tions define mobility support on a per-user basis. A finer granularity would

allow, for example, that only those IP flows that really require it to benefit

from session continuity;

• Signalling overhead. This is related to the previous limitation because mo-

bility management involves a certain amount of signalling. If mobility sup-

port can be dynamically enabled and disabled on a per-application basis,

some location updates can be saved.

The MEDIEVAL mobility architecture is based on the concept of Distributed Mo-

bility Management, for the development of both network-based and host-based

77

mobility management. The access network is organized in Localized Mobility Do-

mains (LMD) in which a network-based scheme is applied. Users are expected to

be most of the time roaming within a single LMD, but, for those cases where this

is not possible, a host-based DMM approach is followed. In order to integrate

both approaches, so a mobile node can simultaneously have sessions managed

by a network-based approach and a host-based approach, we introduce a novel

architectural element called Mobile Access Router (MAR). An MAR is a network

entity implementing all the functionalities of its counterparts in the standard

mobility protocols (MIPv6 and PMIPv6), so it is able to play the role of plain

access router, home agent, local mobility anchor and mobile access gateway on a

per-address basis.

Nevertheless, MEDIEVAL project poses new challenges in distributing video con-

tent with defined Quality of Experience (QoE) requirements. In order to be able

to always guarantee these requirements, users’ traffic might be redirected or of-

floaded looking for the best network and terminal conditions for video transmis-

sion.

The mobility subsystem is based on the Distributed Mobility Management con-

cept and enriched by its per-flow granularity awareness, which enables to provide

differentiated treatment to video data packets and to other traffic. The archi-

tecture of the subsystem is shown in Figure A.3, from [2], and it is composed of

three components: Connection Manager (CM), Flow Manager (FM) and Mobil-

ity Engine (ME). We next summarize the main features of these components; for

additional details, please refer to D4.1 [26] and D4.2 [27].

Figure A.3: Functional Architecture of the Mobility Management subsystem.

78

Mobile Engine. The mobility engine (ME) is the main component of the mo-

bility subsystem. It basically takes care of two critical functionalities: 1) Han-

dover control and 2) IP address continuity. The handover control part consists in

performing the operations required for achieving a Make-Before-Break handover,

namely: signal power sensing, best Point of Attachment (PoA) selection, resource

preparation, detachment/attachment detection, link establishment, IP configura-

tion and resource release. This phase is assisted and controlled by means of

IEEE 802.21 infrastructure and Neighbour Discovery signalling. While this first

functionality has to be performed in any change of PoA, there are also certain

handovers in which the continuity of some IP addresses need to be maintained.

In those cases, the second functionality (IP address continuity) is also required,

and basically consists in triggering the MEDIEVAL IP flow mobility procedures,

namely sending the required mobility messages and tunnel management and rout-

ing operations.

The mobility engine component is composed of the following three modules:

• Unicast Mobility Engine (UME). It is the module in charge of perform-

ing the unicast IP mobility operations and signalling following the DMM

paradigm. This module is implemented both on the network and client side;

• Multicast Mobility Engine (MUME). It manages the IP mobility support

for the multicast flows. This module is implemented only on the network

side;

• NEMO Mobility Engine (NME). This module is in charge of extending the

MEDIEVAL access network so it also comprise mobile platforms, not only

fixed ones. That means that an MN will not only be able to roam between

fixed attachment points to the infrastructure, but also between fixed and

mobile ones.

Flow Manager. The Flow Manager (FM) resides in the MAR. The most im-

portant function is the management of data flows. The mobility management is,

in fact, applied on a per-flow basis. The FM is the main path of communication

between the Mobility Subsystem and external subsystems such as Wireless Ac-

cess, Transport Optimization and Video Service Control, playing therefore a key

role in the whole architecture.

79

The main focus of the FM within the mobility framework is to keep track of data

flows that traverse it and manage the data flows to provide the mobile user with

the best possible service. To this purpose the FM leverages on two advantages:

1) the tight relationship it has with the remaining MEDIEVAL mobility compo-

nents; 2) the FM’s central position on the MAR where it has a good perspective

of both the access network as well as the infrastructure near the access, enabling

it to gather information from both perspectives to provide better decisions.

Connection Manager. The Connection Manager (CM) resides in the client

and is responsible to manage all connectivity actions required in the terminal side.

The CM is a Media Independent Handover (MIH) user that interacts with the

wireless access networks using 802.21 primitives in order to implement mobility,

routing and flow handling.

The CM implements access network policies, selecting the preferred access inter-

face to use or splitting the traffic along the multiple access networks available,

when the terminal is able to use them simultaneously. These policies can be

provisioned on the CM by multiple sources, namely CM GUIs, applications and

operators.

80

Bibliography

[1] MEDIEVAL (MultiMEDia transport for mobIlE Video AppLications),

2010, [Online]. Available: http://www.ict-medieval.eu/

[2] MEDIEVAL, Deliverable D1.1, Preliminary architecture design.

[3] T. Melia, F. Giust, R. Manfrin, A. de la Oliva, C. J. Bernardos, and M.

Wetterwald, IEEE 802.21 and Proxy Mobile IPv6: A Network Controlled

Mobility Solution, Future Network and Mobile Summit 2011 Conference

Proceedings, June 2011.

[4] T. Melia, C. J. Bernardos, A. de la Oliva, F. Giust, and M. Calderon, IP

Flow Mobility in PMIPv6 Based Networks: Solution Design and

Experimental Evaluation, Wireless Personal Communication, vol. Special

issue, 2011.

[5] MEDIEVAL, Deliverable D5.2, Final Specification for transport

optimization components & interfaces.

[6] D. Munaretto, T. Melia, S. Randriamasy and M. Zorzi, Online path

selection for video delivery over cellular networks, IEEE Globecom

(QoEMC), December 2012.

[7] MEDIEVAL, Deliverable D5.3, Advanced CDN mechanisms for video

streaming.

[8] MEDIEVAL, Deliverable D5.1, Transport Optimization: initial architecture.

[9] tproxy project, July 2008. [Online]. Available:

http://www.balabit.com/support/community/products/tproxy

81

[10] netfilter.org project, November 1999. [Online]. Available:

http://www.netfilter.org/

[11] C. Müller and C. Timmerer, A Test-Bed for the Dynamic Adaptive

Streaming over HTTP featuring Session Mobility, In Proceedings of the

ACM Multimedia Systems Conference 2011, San Jose, California, February

23-25, 2011.

[12] I. Sodagar, The MPEG-DASH Standard for Multimedia Streaming Over the

Internet, IEEE Multimedia, IEEE MultiMedia, October-December 2011,

pp. 62-67.

[13] T. Stockhammer, I. Sodagar, MPEG DASH: The Enabler Standard for

Video Deliver Over The Open Internet, IBC Conference 2011, Sept 2011.

[14] S. Lederer, C. Müller, B. Rainer, C. Timmerer, and H. Hellwagner,

Adaptive Streaming over Content Centric Networks in Mobile Networks

using Multiple Links, In Proceedings of the IEEE International Workshop

on Immersive & Interactive Multimedia Communications over the Future

Internet, Budapest, Hungary, June, 2013.

[15] I. Sodagar and H. Pyle, Reinventing multimedia delivery with

MPEG-DASH, SPIE Applications of Digital Image Processing XXXIV,

Sept 2011.

[16] T. Stockhammer, Dynamic Adaptive Streaming over HTTP-Design

Priciples and Standards, MMSys 11: Proceedings of the second annual

ACM conference on Multimedia systems New York, ACM Press, February

2011, S. 133-144.

[17] squid-cache.org: Optimising Web Delivery, 1990, [Online]. Available:

http://www.squid-cache.org

[18] Saini K., Squid Proxy Server 3.1 Beginner’s Guide, Packt Publishing

Limited, 2011.

[19] Apache HTTP Server Project, February 1995, [Online]. Available:

http://httpd.apache.org

82

[20] S. Cozens and P. Wainwright, Beginning Perl (Programmer to

Programmer), Wrox Press, May 2000.

[21] C. Müller and C. Timmerer, A VLC Media Player Plugin enabling

Dynamic Adaptive Streaming over HTTP, In Proceedings of the ACM

Multimedia 2011 , Scottsdale, Arizona, November 28, 2011.

[22] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T.

Berners-Lee, Hypertext Transfer Protocol – HTTP/1.1, RFC 2616, June

1999. [Online]. Available: http://tools.ietf.org/html/rfc2616

[23] UNI Klagenfurt, Institute of Information Technology - ITEC. [Online].

Available: http://www.uni-klu.ac.at/tewi/inf/itec/

[24] MEDIEVAL, Deliverable D2.2, Final Specification for video service control.

[25] MEDIEVAL, Deliverable D3.2, Final Specifications for the Wireless Access

functions and interfaces.

[26] MEDIEVAL, Deliverable D4.1, Light IP Mobility architecture for Video

Services: initial architecture.

[27] MEDIEVAL, Deliverable D4.2, IP Multicast Mobility Solutions for Video

Services.

[28] ALTO: IETF application-layer traffic optimization (active WG). [Online].

Available: http://tools.ietf.org/wg/alto/

[29] D. Johnson, C. Perkins and J. Arkko, Mobility Support in IPv6, RFC 3775,

June 2004. [Online]. Available: http://tools.ietf.org/html/rfc3775

[30] S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil,

Proxy Mobile IPv6, RFC 5213, August 2008. [Online]. Available:

http://tools.ietf.org/html/rfc5213

83

Acknowledgements

There are many people I would like to thank you for the opportunity and the

help given me in this course of study.

First of all I would like to thank Prof. Michele Zorzi who gave me the chance to

experience this unforgettable thesis work. Of course, thanks to the efforts made

by Daniele, and initially also Davide, who advised me very well and supported

me all of the time!

Then, I would like to thank all colleagues of DOCOMO Euro-Labs, Munich,

for welcoming me in the best of ways. In particular, the ’coffee-group’, David,

Wolfgang, Xueli, Joan, Bo, Sandra, led by Gerald and Dirk, extraordinary people

who gave me gorgeous opportunities for growth, professional and not. In those 5

months I learned more than in the previous 5 years.

A special thanks also to Telemaco, Carlos and Fabio, who helped me during the

first days of implementation and integration (and not only). Thank you very

much for your patience! Thank you all!

Alberto Desiderà

