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Abstract

This thesis aims to investigate the ground effect behavior of the Formula SAE car,
SGe-06, a competitive vehicle of the University of Padua during the academic
year 2022/2023.
Ground effect is a notable aerodynamic phenomenon resulting from the prox-
imity of the car to the ground, playing a crucial role in generating downforce
while minimizing drag.
The focus of this study is primarily on the vertical motion of the car induced by
aerodynamic loads under steady-state conditions. This heaving motion will be
analyzed using Computational Fluid Dynamics (CFD) simulations with the Star
CCM+ software. The simulations will contribute to evaluating the operational
height of the single seater at various velocities.
Furthermore, the dynamic effects of this vertical motion will be explored through
simulations using OpenFOAM. These dynamic simulations will be compared
with the static case and existing theoretical frameworks to gain a deeper under-
standing of the ground effect’s influence on the car’s aerodynamic behavior.





Sommario

Questa tesi si propone di analizzare il comportamento in effetto suolo della
vettura Formula SAE, SGe-06, un veicolo competitivo dell’Università di Padova
dell’anno accademico 2022/2023.
L’effetto suolo è un fenomeno aerodinamico derivante dall’interazione dell’auto
con il suolo, che svolge un ruolo cruciale nella generazione di deportanza
riducendo al minimo la resistenza aerodinamica.
Il focus di questo studio si incentra principalmente sul movimento verticale
dell’auto indotto dai carichi aerodinamici in condizioni stazionarie. Questo
movimento verticale sarà analizzato utilizzando simulazioni di Fluidodinam-
ica Computazionale (CFD) con il software Star CCM+. Le simulazioni con-
tribuiranno a valutare l’altezza operativa della monoposto a diverse velocità.
Inoltre, gli effetti dinamici di questo movimento verticale saranno esplorati at-
traverso simulazioni in OpenFoam. Queste simulazioni dinamiche saranno
confrontate con il caso statico e con i modelli teorici esistenti per acquisire una
comprensione più approfondita dell’influenza dell’effetto suolo sul comporta-
mento aerodinamico dell’auto.
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1.1 Formula SAE

Formula SAE is an international student design competition firstly proposed
by Society of Automotive Engineers (SAE).
It consists in the design and production of a single seater, that will be evaluated
by judges in events that take place in the most important circuits of the World.
Internal combustion or full electric cars that respect the regulations and pass all
the technical tests planned, can be part of the competition. In particular, each
contest consists of static and dynamic events.

Figure 1.1: The SGe-06 in action at the event of Formula SAE Italy

Statics are devided in three trials:

– Business Plan Presentation: each team has to create a business case for the
vehicle built;

– Cost Analysis: teams need to evaluate the costs of every single component
and process in building the car. This analysis needs to be very accurate
and must include every single aspect of the life of the car;

– Engineering Design: expert judges assess the design of every single part of
the car. Choices made need to be justified taking in consideration budget,
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CHAPTER 1. INTRODUCTION

constraints, time and other important factors in the design and production
phase.

Dynamic events consist in:

– Acceleration: a 75 m sprint from standing start;

– Skid-Pad: a 8 shaped track composed by two circles that tests the cornering
speed of the car;

– Autocross: one lap of a circuit with short straights, turns and hairpins, to
test speed and maneuverability of the car;

– Endurance and Efficiency: final test of the events that consists in a 22 km
race. At the end of the race fuel or energy consumption is evaluated.

During every event, judges give points to the team. The sum of all the points
received gives the overall classification.

3



1.1.1 Rulebook

With a lot of cars and Universities involved, competition is hard, but safety
needs to comes first. Having a well defined rulebook is indeed essential in
maintaining cars safe and at similar level of performance.
At the same time, it’s really beneficial for teams trying to interpret the rules, as
that could lead to significant gains in terms of speed of the car.
Regulations are slightly different in some competitions, but in general they
cover all aspects of the car’s construction and the progress of the race. Taking as
reference the Formula Student Rules 2023 [6], rulebook is devided in the following
chapters:

– Administrative Regulations: this section includes general requirements
for teams, giving rules of conduct, deadlines and documentation of the
competition;

– General Technical Requirements: it gives technical requirements in various
areas of the car, such as chassis design, aerodynamic devices and electrical
components;

– Internal Combustion Engine Vehicles: requirements specific for Internal
Combustion Engine Vehicle (CV);

– Electric Vehicles: requirements specific for Electric Vehicle (EV);

– Technical Inspections: this section gives all the information on how in-
spections are conducted, defining all the parts that must be presented and
checked;

– Static Events: rules of the static events presented earlier in this chapter;

– Dynamic Events: rules for the dynamics, including tires regulations in
rainy conditions and penalties.

It’s important for this thesis to list some specific rules in order to understanding
the constrains within which it operates.
In particular it’s interesting the General Technical Requirements chapter (T).

T2.1.2 The vehicle must be open-wheeled, single seat and open cockpit (a
formula style body) with four wheels that are not in a straight line.

T2.1.3 Open wheel vehicles must satisfy the following:

– The wheel/tire assembly must be unobstructed when viewed from the
side.

4
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– No part of the vehicle may enter a keep-out-zone defined by two lines
extending vertically from positions 75 mm in front of and 75 mm
behind the outer diameter of the front and rear tires in the side view of
the vehicle, with steering straight ahead.

This keep-out zone extends laterally from the outside plane of the wheel/tire
to the inboard plane of the wheel/tire assembly.

It’s important, during the design phase, to keep these zones unobstructed, al-
though devices in this zone could lead to a smaller tire wake, giving an aerody-
namic advantage.

T2.2.1 The minimum static ground clearance of any portion of the vehicle,
other than the tires, including a driver, must be 30 mm.

T2.2.2 Sliding skirts or other aerodynamic devices that by design, fabrication
or as a consequence of moving, contact the track surface are prohibited.

These two rules limit once again the aerodynamic performance that could be
obtained. This aspect of ground clearance will be widely discussed in the
following chapters.
Section T8 describe precisely the constraints on aerodynamic devices. The most
interesting for this thesis are reported:

T8.1.1 A specifically designed structure mounted on the vehicle to guide the
airflow around the vehicle, increasing the downforce acting on the vehicle
and/or lowering its drag. The mounting of this structure is not regarded as
an aerodynamic device, unless it is intentionally designed to be one.

T8.2.1 Height restrictions:

– All aerodynamic devices forward of a vertical plane through the rear-
most portion of the front face of the driver head restraint support,
excluding any padding, set to its most rearward position, must be
lower than 500 mm from the ground.

– All aerodynamic devices in front of the front axle and extending further
outboard than the most inboard point of the front tire/wheel must be
lower than 250 mm from the ground.

– All aerodynamic devices rearward of a vertical plane through the rear-
most portion of the front face of the driver head restraint support,
excluding any padding, set to its most rearward position must be
lower than 1.2 m from the ground.
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T8.2.2 Width restrictions:

– All aerodynamic devices lower than 500 mm from the ground and
further rearward than the front axle, must not be wider than a vertical
plane touching the most outboard point of the front and rear wheel/tire.

– All aerodynamic devices higher than 500 mm from the ground, must
not extend outboard of the most inboard point of the rear wheel/tire.

T8.2.3 Length restrictions:

– All aerodynamic devices must not extend further rearward than 250
mm from the rearmost part of the rear tires.

– All aerodynamic devices must not extend further forward than 700
mm from the fronts of the front tires.

T8.2.4 All restrictions must be fulfilled with the wheels pointing straight
and with any suspension setup with or without a driver seated in the vehicle.

These rules create boxes in which aerodynamic devices can be placed.

Figure 1.2: Boundary boxes for aerodynamic devices in the SGe-06 CAD
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CHAPTER 1. INTRODUCTION

1.2 The SGe-06

The SGe-06 is the car that Race UP Team Electric of University of Padua
designed and built in the academic year 2022/2023.
It competed in the events of Formula ATA, in Varano de’ Melegari (Italy) and
Formula Student East, at the Hungaroring (Hungary), obtaining respectively a
4th and an 8th place overall.
The vehicle is electric, with a LiPo battery with nominal capacity of 6,7 kWh. It’s
All Wheel Driven (AWD), with 4 synchronous motors of 35 kW with a maximum
torque of 21 Nm each.
Car has a wheelbase of 1.535 m, with front and rear push rod suspension scheme,
mounting 10 in OZ Racing rims and 16.2 in Hoosier tires.
It mounts a composite monocoque, composed by a sandwich of carbon fiber and
aluminium honeycomb, and a composite aeropack, mainly composed of carbon
fiber and rohacell.
Thanks to the materials used the car mass is around 200 kg.

Figure 1.3: The SGe-06 in action
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The aeropack includes:

– Front wing: contributes in creating downforce in the front part of the
vehicle. It’s a three elements wing, with the two flaps only connected to
the endplates, in order to create a beneficial vortex in the zone next to
the monocoque. Endplates are curved, creating an outwash effect, and
mount footplates that create a vortex to the rear of the car. This wing aims
to create a major outwash effect, while trying not to generate a massive
upwash. This is seen to be optimal for the other aerodynamic components;

– Undertray: it’s composed by two convergent - divergent channels mounted
on the sides of the monocoque. These elements expands the air under
the vehicle, working as Venturi’s channels. It contributes for the major
part of the total downforce, while minimizing drag thanks to the ground
proximity;

– Diffuser: it creates a third channel using the underside of the chassis,
expanding the remaining high - energy air. This component is effective in
shifting the vehicle’s center of pressure towards the rear;

– Rear wing: contributes in creating downforce at the rear. It’s a two element
wing, with curved endplates that helps creating a lower pressure at the
exit of the undertray. This wing is designed to have an high efficiency and
positioned to avoid the most of the wake generated by driver, mainhoop
and other elements at the front.

These pieces work together to obtain the maximum possible level of downforce
while keeping drag low, in order to reaching a good efficiency. All the aerody-
namic effects cited will be better explained in the next chapters.
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2
Case of Study
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2.1 Ground effect

Ground effect, a significant aerodynamic and hydrodynamic phenomenon,
manifests when an aircraft or a vehicle approaches close proximity to the ground
or any solid surface. This phenomenon is of utmost importance in both aero-
nautics and automotive engineering, as it profoundly influences aerodynamic
characteristics and overall performance.
In the realm of aeronautics [13], ground effect is experienced when an aircraft
operates within a wingspan’s distance from the ground. This proximity results
in modifications to lift and induced drag, enhancing fuel efficiency and lift - to
- drag ratio during takeoff, landing, and low - altitude flight.
Similarly, in automotive engineering, ground effect describes the aerodynamic
interaction between a vehicle and the ground surface. Engineers and designers
leverage this interaction to generate downforce, enhancing vehicle stability and
maneuverability, particularly at higher speeds and during cornering.
In both environments, when an aerodynamic surface is close to the ground
(which is creating either lift or downforce), wingtip vortices break, decreasing
the biggest contribute in 3D wings drag, and thus increasing the generated force
in the vertical direction, thanks to a smaller induced incidence angle, making
the wing more efficient. A similar effect can be observed adding endplates or
winglets at the tips of the wing, with the objective of reducing the influence of
the wingtip vortex, that will start closer to the extremity of the wing, creating a
wider low pressure surface and a more efficient wing.
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CHAPTER 2. CASE OF STUDY

Figure 2.1: Tip vortices behaviour in ground effect

In racing cars ground effect is usually not only exploited with wings close to the
ground, but also with the underside of the vehicle, working accordingly to the
Bernoulli’s Principle. This effect is indeed predominant in generating downforce
close to the ground, as the car and the ground work together to create a Venturi
channel.
In this thesis these listed effects will be analysed, evaluating the influence of the
ground proximity at different heights.
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2.1.1 Theoretical overview

It’s necessary for this thesis to introduce some theory of what has been dis-
cussed earlier in this chapter, referring in particular to [8] and [1].
Firstly it’s important to define the generation of lift around a 2D lifting airfoil
profile with a rounded Leading Edge (LE) and a tapered Trailing Edge (TE). If
there are no boundary layer separations present, then from Kutta - Joukowsky
𝐿 = 𝜌𝑣Γ, with Γ circulation, Γ > 0 if clockwise. What occurs in the initial
moments when the profile is struck by a flow, is the generation of circulation
Γ1 around it, caused by the release of opposite circulation Γ2 due to the coun-
terclockwise vorticity born in the boundary layer. This vorticity causes the
displacement of the stagnation point (the point where the pressure is maximum
and the velocity is zero) posteriorly until it coincides with the trailing edge,
as there are no expected boundary layer separation phenomena. The neces-
sary Γ for all this to happen is determined by the Kutta hypothesis, equal to
Γ𝐾𝑈𝑇𝑇𝐴 = Γ1 = −Γ2.
It follows that the lift - generating process is related to viscous phenomena,
which can be neglected only once established.

Figure 2.2: Kutta condition and lift generation

The Kutta condition states the necessity of having a finite angle or a cusp trailing
edge to fulfill the Kutta hypothesis which asserts that at the posterior stagnation
point, the jump in tangential velocity must be zero.
If we move to the three-dimensional case, additional effects that were absent
in the previously discussed scenario need to be considered. In space, at the
wingtips, vortices are observed, which influence the flow around the wings.
High pressure air tends in fact to reach the lower pressure at the upper side of
the lifting wing (the lower side in the downforce - production case). An induced
angle of attack 𝛼𝑖 is generated at the wing’s leading edge due to these vortices.
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CHAPTER 2. CASE OF STUDY

This induced angle of attack can create a drag force, known as induced drag,
given by: 𝐷𝑖 = 𝐿𝛼𝑖 .
In the three-dimensional case, even assuming the validity of potential theory, it
is possible to resolve D’Alembert’s paradox, which stated that 𝐷 = 0.
With the lifting - line theory, which prescribes a continuous circulation release
over the finite wing, gradually increasing from the center towards the wingtips,
it is possible to derive the equation for a monoplane. This equation allows for the
estimation of lift at each section of the finite wing, which can then be integrated
over the entire wing to obtain the total lift �̂�:

�̂� =

∫ −𝑏/2

𝑏/2
𝐿(𝑦0) 𝑑𝑦0 (2.1)

From which the lift coefficient can be derived:

𝑐𝐿 =
𝜋 · 𝐴𝑅 · 𝐴1

2 (2.2)

where 𝐴𝑅 is the aspect ratio of the finite wing, defined as 𝐴𝑅 = 𝑏
𝑐 =

𝑏2

𝑆 . Here, 𝑏
represents the wingspan, 𝑐 is the mean geometric chord, and 𝑆 is the wing area.
The parameter 𝐴1 is a coefficient associated with the finite wing.
If we consider induced drag, it can be expressed as:

�̂� =

∫ −𝑏/2

𝑏/2
𝐿(𝑦0) · 𝛼(𝑦0) 𝑑𝑦0 (2.3)

This leads to the induced drag coefficient:

𝑐𝐷𝑖 =
𝑐2
𝐿

𝜋 · 𝐴𝑅 · 𝑒 (2.4)

where 𝑐𝐷𝑖 is the induced drag coefficient and 𝑒 is the Oswald efficiency factor
related to the wing’s efficiency.
This induced drag is really important in applications considered in this thesis.
It’s in fact, as just seen, related to the wingtip vortex that, in the case of an
automotive profile that creates downforce, generates an upwash effect in the
incident airflow, causing also the reduction of created downforce, other than the
drag increase.
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Figure 2.3: Vortices system around 3D wings

When this vortex is sufficiently close to the ground, its structure breaks, follow-
ing a beneficial effect in both downforce and drag.
Together with this effect, a profile close to the ground creates a channel, that can
be seen as the Venturi one.
Considering, in fact, a generic duct that undergoes a reduction in its cross-
sectional area, with 𝐴1 the larger area and 𝐴2 the smaller area, according to the
equation of continuity in fluid dynamics, in steady-state incompressible condi-
tions, the mass flow rate into the first section must be equal to the mass flow rate
into the second section (𝐴 · 𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡).
Consequently, for a fluid with constant density (incompressible), as volumetric
flow can be expressed as the product of fluid velocity and the cross-sectional
area, it follows that the velocity in section 𝐴2 is greater than that in 𝐴1 (𝑣1 < 𝑣2).
Given these considerations and assuming no difference in elevation between the
two sections, we can adopt the axis of the duct as the height reference. This
eliminates a term in the Bernoulli equation (energy conservation), leading to the
following form:

𝑝 + 1
2𝜌𝑣

2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.5)
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CHAPTER 2. CASE OF STUDY

where 𝜌 represents density, 𝑝 is pressure, and 𝑣 is the fluid velocity.

Figure 2.4: Venturi effect and Bernoulli’s Principle

It is evident that an increase in fluid velocity results in a corresponding decrease
in the internal pressure of the fluid. In this example, 𝑝2 (pressure at 𝐴2) is
less than 𝑝1 (pressure at 𝐴1). Intuitively, one can comprehend the decrease in
pressure within the fluid in the tube section characterized by a smaller area and
higher velocity by considering that the pressure is utilized to accelerate the fluid.
In simple terms, the pressure difference at the ends of the constriction or fitting
zone is necessary to accelerate the fluid and ensure the constancy of the flow
(continuity equation).
In the case of a 2D profile the velocity increase can be seen at the closest part
to the ground. It’s important to notice that this increase in velocity can be
only present because after the narrowing, part or more of the initial area is
recovered. The exterior pressure is, in fact, atmospheric (or close to this value)
so, the ending area determines the mass flow in the considered channel and the
lowest pressure obtained at the narrowest point, having the flux to restore the
undisturbed conditions after the profile. This is similar to what happens also in
freestream conditions around a wing, where part of the pressure is recovered at
the TE.
Clearly this effect can be achieved using channels ad hoc, with a convergent (not
necessary in the 2D case), a flat zone close to the ground where lowest pressure
is achieved, and the essential divergent. Theoretically the bigger the ending
area of the divergent and, at the same time, the smaller the minimum area, the
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lower will be the minimum of pressure underneath. This is generally true, but
pressure gradients needs to be taken into account. Highly adverse pressure
gradients can in fact create boundary layer separation, limiting the downforce
creation.

Figure 2.5: Automotive application of the Venturi channel

Considering the 3D case, this effect is still valid, with some more complexities
related to the non - infinite channel, with lateral higher pressure air that tends to
reach the lower pressure. Originally in automotive skirts were used to increase
the suction effect, then banned for safety reasons and substituted by other sealing
solutions that include the use of beneficial vortices or a closer ride to the ground.
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CHAPTER 2. CASE OF STUDY

2.2 Applications

As mentioned, theories related to ground effect have been applied in both
aeronautic and automotive contexts, aiming to achieve a high lift - to - drag
ratio.
While this aerodynamic effect can manifest in any vehicle, some have been
purposefully designed to exploit its advantages.
A Ground - Effect Vehicle (GEV), also referred to as a Wing - In - Ground
(WIG) effect craft or ekranoplan (which translates to "screenglider" in Russian),
is specifically engineered to glide over flat surfaces, often above water. Some
models can operate over various level terrains such as frozen lakes or plains,
similarly to an hovercraft. A GEV is sometimes described as a transitional form
between a hovercraft and a seaplane. However, it lacks the hovercraft’s ability
to float at low speeds, given by onboard downward - directed fans that generate
a cushion of pressurized air that provides the necessary support, and unlike a
seaplane, a GEV is not typically designed to operate beyond ground effect [14].

Figure 2.6: WIG effect aircraft

Staying in the maritime domain, modern America’s Cup yachts (AC-75) also
partially utilize this effect, aiding both lift generation and propulsion through
sails.
On land, the ground-effect phenomenon is primarily explored in the realm of
racing cars. Extreme applications have seen the integration of fans to draw air
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from beneath the car, accompanied by skirts that seal the car to the ground,
as exemplified by the Brabham - Alfa Romeo BT46B. The Lotus 78, considered
the pioneer of wing cars, introduced instead inverted aerofoil - shaped side-
pods in Formula 1, a groundbreaking innovation that clearly paved the way for
contemporary undertrays.

Figure 2.7: The Lotus 78 in action
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3
Undertray design
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3.1 The SGe-06 undertray

The purpose of this section is to introduce the SGe-06 undertray, explaining
its features and the applied boundary conditions, while his design will be ad-
dressed in the next sections.
The objective at the basis was improving the previous year design for both aero-
dynamics and manufacturing, generating more downforce exploiting ground
effect. A better integration with the new rear wing, monocoque and new tyres
was also necessary to improve the overall performance of the vehicle.
Other than the general rule boxes described in the first chapter, boundary con-
ditions included, as just said, the new monocoque and the smaller tires, which
modified the rule boxes’ volume, the necessity of keeping a flat zone for radia-
tors positioning in front of the rear wheels and the imperative of maintaining a
clean airflow for the battery ducts in the upper side of the undertray.

Figure 3.1: 2022 undertray (orange) and the 2023 evolution (light blue)

During the design phase different aerodynamics concepts were analysed with
the most promising choice that turned out to be an evolution of last year’s
undertray. Prior to the optimization of the geometry, that will be discussed in
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CHAPTER 3. UNDERTRAY DESIGN

the next chapter, some choices were made in the aerodynamic concept, in order
to fulfill boundary conditions and to better achieve theoretical advantages of the
channel discussed earlier.
For the divergent:

– a large ending area inside the wheels to expand as much as possible with-
out reaching stall conditions;

– the divergent starts early, closer to the front of the car, to prevent strong
adverse pressure gradients, reducing stall risk;

– a low upwash effect is desirable, that would in fact reduce rear wing angle
of attack, degrading the overall performance;

– a striction in the lower zone of the divergent aims to reduce losses in that
area created by the air coming from the side of the car.

Figure 3.2: Divergent geometry

Flat - zone choices:

– this is the zone where low pressure occurs, so it’s crucial to keep it as tightly
sealed as possible by constructing a separate channel that is isolated from
the lateral zone;

– flat zone dimensions and position determine convergent and divergent
length in order to have a better optimized geometry.
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Figure 3.3: Flat - zone geometry

For the lateral - zone:

– smaller lateral flat plate compared to previous year, increasing channel
dimensions;

– this zone is essential in keeping the front tire wake outside the channel
and to create a first barrier for the air coming from the side;

– creation of a small lateral convergent - shaped geometry prevents losses
from the entering air and helps generating a more stable vortex to seal off
the undertray.

Figure 3.4: Lateral - zone geometry

Convergent choices:

– elimination of any mounting constraint under the monocoque, guarantee-
ing a more free geometry and thus a better airflow;
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CHAPTER 3. UNDERTRAY DESIGN

– a bigger leading edge is implemented to prevent losses;

– like the divergent it’s inside the wheels, to avoid their wake.

Figure 3.5: Convergent geometry

For the upper - zone:

– a different geometry between upper and lower zone is provided, shaping
the undertray similar to a profile;

– this geometry can be optimized to achieve a smooth flow to the battery
duct and to improve how the monocoque interacts with the undertray,
reducing interference effects.

Figure 3.6: Upper - zone geometry
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All these design choices, derived from a combination of theoretical consider-
ations, the specific requirements of the car, and the evolution from previous
concepts, have streamlined the subsequent optimization process. Additionally,
the position of the Centre Of Pressure (COP) was carefully considered and
monitored throughout the entire design process. This, in fact, coupled with
downforce generation, significantly contributes to the car’s performance and
maneuverability.
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CHAPTER 3. UNDERTRAY DESIGN

3.2 Parametric CAD geometry

Undertray’s design was developed in Catia V5.
The geometry is carefully constructed in order to be parameterized in all the
interesting aspects, with parameters that define lengths, angles and curves ten-
sions.
Firstly, basis lines and splines are determined, with the aim to be modifiable in
their geometric features, without exceeding boundary boxes and following the
choices explained in the previous chapter.
Surfaces are then constructed on these lines and closed together as a part body.

Figure 3.7: The skeleton of lines that describes and controls the undertray geom-
etry

Some of the geometry features that can be controlled thanks to this CAD are:

– divergent height: one of the most important parameters to optimize;

– divergent tensions: two curves from the flat - zone describe the divergent
shape internally and externally. Tension determines the grade of tangency
with the horizontal flat - zone. Lower values led to sharper curves near
the tangency constraint;

– flat - zone height: needs to be as lower as possible while higher than the
30mm from ground and the underside of the monocoque;
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– flat - zone position and length: with undertray’s start and end fixed, this
value determines convergent and divergent lengths other than flat zone
dimension. These values can assume independent values in the internal
and external part;

– flat - zone wideness: determines the wideness of the widest part of the
channel, determined from the most external part of the undertray;

– convergent height: important parameter to avoid losses earlier in the un-
dertray;

– LE tension: the tensions of the splines that describe the LE determines its
dimensions, inner sections are important for the undertray - monocoque
interference;

– upper - zone height: determines the dimensions of the different - shaped
upper surface of the undertray;

– lateral convergent wideness, height and position: to optimize the lateral
convergent.

Parameters range and values are selected in order to have a good balance between
optimization time and understanding of the parameter’s influence.
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CHAPTER 3. UNDERTRAY DESIGN

3.3 CFD optimization

The optimization phase was done using the CFD software Star CCM+, chang-
ing geometric parameters between every simulation. In this section only the
optimization procedure will be analysed, leaving the CFD implementation to
the next chapters.
The procedure can be divided into two steps:

– coarse optimization: wide range for the chosen parameters with a low
number of discrete values. This first step helps in understanding the
influence of parameters and can identify the range within which the best
results lie;

– fine optimization: with restricted ranges and a larger number of discrete
values to obtain the best possible result.

Every individual step is also subdivided into groups of parameters that are
optimized one after the other:

– flat - zone parameters;

– divergent parameters;

– convergent parameters;

– lateral - zone parameters;

– upper - zone parameters.

This choice derived from early studies that demonstrated which parameters
mostly affected others, and from the zone’s importance. It’s in fact beneficial to
initially determine the convergent and divergent lengths, modifying the flat -
zone, and then starting the optimization from the most influencing parameters
of the divergent to the least ones of the lateral - zone.
The objective of the optimization process for these parameters it’s the maximum
downforce generation, while drag and COP position are only checked at every
iteration.
The upper - zone optimization it’s the only step where downforce is not very
influenced, and thus drag and wall shear stress scenes are evaluated.
The optimization detailed results analysis is not objective of this thesis, so only
the results considered most influential and relevant to future studies will be
presented.
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Dividing as before the undertray in zones results showed for the flat - zone:

– best results are obtained for an external flat - zone length of 150 mm and
an internal one of 200 mm. This difference is due to the proximity of the
monocoque, with the internal part of the undertray that requires a longer
flat - zone in order to avoid interference disturbs;

– the widest the flat - zone the best the results are. A value of 100 mm brings
the higher value of downforce.

Figure 3.8: Body downforce [N] at 15 m/s vs flat internal lenght [mm]

Figure 3.9: Body downforce [N] at 15 m/s vs flat external lenght [mm]
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For the divergent:

– divergent height clearly shows how a bigger divergent final area led to
higher values of downforce. A value of 370 mm from the monocoque
lowest point is the safe maximum reached;

– divergent tensions are the most influencing parameter. A value of 0.1 leads
to the best results for the external part, while the internal curvature tends
to prefer higher values of tension, setting the optimal value to 1.3. This
demonstrates how the internal portion of the undertray requires lower
adverse pressure gradients due to the presence of the monocoque;

– the interaction of these divergent parameters and the flat - zone position-
ing is fundamental to obtain the best divergent geometry. During the
optimization process higher heights and tensions and flat - zones that start
rearward cause an higher upwash effect that makes the rear wing to lose
performance.

Figure 3.10: Body downforce [N] at 15 m/s vs divergent external tension

For the convergent:

– A maximum in downforce generation was found for a convergent height
of 80 mm from the monocoque lowest point.

29



Figure 3.11: Body downforce [N] at 15 m/s vs convergent height [mm]

During the whole optimization phase the downforce of the car was set as objec-
tive and a SHERPA algorithm was used to determine how to vary parameters at
each design iteration.

3.3.1 Theoretical overview

Optimization processes are commonly used in CFD.
One of the main methods used is the mathematical optimization, which involves
formulating CFD problems into mathematical models that can be optimized.
This often includes defining an objective function, which could be maximising
downforce, optimizing flow rate, or minimizing drag, depending on the specific
CFD problem. Constraints, such as geometric or physical limitations, are also
considered in the optimization process.

– objective function: in CFD, this represents what needs to be optimized, in
this case maximizing downforce;

– constraints: these can include limits on parameters, ensuring adherence to
physical laws, or maintaining geometrical properties;

– variable parameter adjustment: varying parameters like mesh density,
boundary conditions, or geometrical features to optimize the objective
function while considering the specified constraints with specific algo-
rithms.
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CHAPTER 3. UNDERTRAY DESIGN

The ultimate goal of mathematical optimization in CFD is to find the most effi-
cient and effective solutions for fluid flow problems, providing engineers with
insights to improve designs, reduce costs, enhance performance, and achieve
design objectives in a multidimensional parameter space.
The weighted sum objective function, 𝐹(𝑥), is a commonly used algorithm that
consists in the linear combination of individual objectives, each multiplied by a
weight that reflects its relative importance or priority:

𝐹(𝑥) =
𝑛∑︂
𝑖=1

𝑤𝑖 × 𝑓𝑖(𝑥) (3.1)

where:

– 𝐹(𝑥) is the aggregate (weighted sum) objective function to be maximized
or minimized.

– 𝑥 is the vector of decision variables.

– 𝑛 is the number of individual objectives.

– 𝑓𝑖(𝑥) is the 𝑖th individual objective function.

– 𝑤𝑖 is the weight associated with the 𝑖th objective.

The weights𝑤𝑖 play a crucial role in determining the trade-offs between different
objectives. This approach assumes linearity in the combination of objectives,
which may not always be the case. If non-linearity is a concern, other methods
like Pareto optimization may be more appropriate.
In Pareto optimization, the objective is to find a set of solutions that represent the
Pareto front, where no solution is superior to another concerning all objectives.
An improvement in one objective comes at the expense of another.
The Pareto optimization problem can be formulated for a maximization problem
as follows:

Maximise 𝐹(𝑥), subject to: 𝐹(𝑥) = [ 𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑚(𝑥)]

where:

– 𝑥 is the vector of decision variables.

– 𝑚 is the number of objectives to be maximized.

– 𝑓𝑖(𝑥) is the 𝑖th objective function to be maximized.
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In practice, Pareto optimization is often addressed using multi-objective evolu-
tionary algorithms as they are effective in finding and maintaining the Pareto
front efficiently.
The Pareto front, once obtained, provides a set of trade-off solutions for decision-
makers to choose from, depending on their preferences regarding the various
objectives being optimized.
Algorithms in optimization process are instead used to find the best solution or
configuration from a set of possible options while satisfying certain constraints.
There are a lot of optimization algorithms that helps in finding the final solution
sooner, learning from each iteration and avoiding some configurations based on
previous solutions.
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4
CFD simulation of the car
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4.1 Simulation preparation

For the 3D CFD simulations the software Star CCM+ was used. All these
simulations consist in half car simulations in straight motion, using the symme-
try property to lower the overall computational cost.
The modeled car is complete with all the main influencing details, including the
presence of driver, rotating wheels and modeled radiators, in order to obtain
results as close as possible to real conditions, while simplifying all the small
details that will not influence the external flux, such as buttons, switches and
small wires, other than all the internal part of the vehicle.

Figure 4.1: Geometry scene in Star CCM+

Before starting the CFD analysis, CAD geometry must be checked, ensuring the
absence of low quality bodies or surfaces, bad defined tangencies and sharp
edges (in this case all the TEs have a fillet of 0.1 mm radius), avoiding bad cells
in the meshing phase.
All the simulations will be run at the velocity of 15 m/s, that is considered to be
the mean velocity that the car maintain during a race. Considering standard air
characteristics:

𝜌 = 1.225 𝑘𝑔/𝑚3

� = 1.812 · 10−5 𝑃𝑎 · 𝑠
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and considering the car’s approximated total length of 2.85 m as the reference
length, Reynolds number can be computed:

𝑅𝑒 =
𝜌 · 𝑢 · 𝐿

�
≃ 2.9 · 106 (4.1)

Even though it’s not a very high Reynolds application, it’s sufficient to expect
a turbulent boundary layer, thus wall treatment will be crucial in setting the
simulation.

4.1.1 Theoretical overview

Wall treatment is a really important aspect o deal with in external aerody-
namics. Close to a body, as said earlier, viscous phenomena can’t be neglected
even at high Reynolds. This phenomenon takes place in a thin layer of fluid
close to the wall, called boundary layer. On the wall boundary conditions need
to be satisfied:

– no slip condition: �⃗� |𝜕𝐶 = 0;

– impermeability condition: 𝑣 |𝜕𝐶 = 0.

Where �⃗� is the velocity parallel to the wall and 𝑣 is the perpendicular one.
In the boundary layer the transition from boundary conditions to undisturbed
flux happens. This can assume different profile velocities depending on Reynolds
number:

– laminar boundary layer: the flow is smooth and streamlined. The velocity
of the fluid increases gradually from zero at the solid surface to the free -
stream velocity away from the surface. In particular, for 103 < 𝑅𝑒 < 106

Blasius equations provide a solution;

– transition phase: for 𝑅𝑒 ≃ 106, shape and length depend on the boundary
conditions;

– turbulent boundary layer: the flow is chaotic and characterized by irregular
fluctuations in velocity and pressure. Fluid particles move in a less orderly
fashion, causing mixing and eddies in the flow. Turbulent boundary layers
have higher velocity gradients near the surface, causing major wall shear
stresses;

– detached boundary layer: a geometry shape that creates strongly adverse
pressure gradients can cause the boundary layer detachment. This is
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delayed at higher Reynolds and with the presence of a turbulent boundary
layer. In applications, tools such as vortex generators are used to energize
the boundary layer, postponing its detachment.

Figure 4.2: Boundary layer definition

If the case of a turbulent channel is considered, some interesting notations on
the turbulent boundary layer can be obtained and then extended and used also
in external aerodynamics [12].
The mean velocity profile in the direction parallel to the wall, expressed in inner
coordinates, is given by:

– 𝑦+ =
𝑦

𝛿�
=

𝑈𝜏
� 𝑦;

– 𝑈+ = <𝑢>
𝑈𝜏

.

Where 𝛿� is viscous length, reference scale for the layer closest to the surface,
the friction velocity𝑈𝜏 is defined as:

𝑈𝜏 =

√︃
𝜏𝑤
𝜌

(4.2)

and the wall shear stress is defined as:

𝜏𝑤 = �𝜌
𝑑 < 𝑢 >
𝑑𝑦

|︁|︁|︁|︁
𝑦=0

(4.3)

The three different types of dimensionless stresses with respect to 𝜏𝑤 as a func-
tion of the distance from the wall are as follows:

– viscous stresses (𝜏�): dominant in the region closest to the wall, defined as
𝜏� = � 𝑑<𝑢>𝑑𝑦 . They move closer to the wall with increasing 𝑅𝑒;
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– Reynolds stresses (𝜏𝑟): overcome by viscous stresses in the region closest
to the wall, defined as 𝜏𝑟 = −𝜌 < 𝑢′𝑣′ >, and important far from the wall.
They dominate more and more channel with increasing 𝑅𝑒;

– total stresses (𝜏𝑡): sum of viscous and Reynolds stresses, defined as 𝜏𝑡 =
𝜏� + 𝜏𝑟 .

Two main regions can be defined (with 𝛿 half channel’s height):

– inner region: close to the wall, dominated by viscous effects: 𝑦/𝛿 < 0.1;

– outer region: dominated by Reynolds stresses 𝑦/𝛿� > 100;

– overlap region: 𝑦+ > 50, 𝑦/𝛿 < 0.1 in which there’s a coexistence of the
two regions.

In the inner region’s other subdivisions can be defined:

– the viscous sublayer (𝑦+ < 5), 𝑈+ = 𝑦+, where the Reynolds stresses are
negligible compared to viscous stresses;

– the log - law region (𝑦+ > 30, 𝑦/𝛿 < 0.1), 𝑈+ = 1
𝑘 ln(𝑦+) + 𝐵, valid in the

overlap region;

– the buffer layer between the viscous sublayer and the log - law region
(5 < 𝑦+ < 30).

Additionally the outer layer is observed for 𝑦+ > 50, which connects with the log
- law of the inner layers in the overlap region with the defect law: 𝐵1 − 1

𝑘 ln( 𝑦𝛿 ).
The two logarithmic laws must coincide.
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Figure 4.3: 𝑦+ definition

During simulations, 𝑦+ value of the first elements on the wall must be checked in
order to clarify how well the boundary layer is described. If a value of 𝑦+ < 5 is
obtained, a precise description of the wall stresses is reached. For higher values
stresses are underestimated, instead for 𝑦+ > 30 the velocity profile is described
by the log - law.
A precise estimation of the boundary layer profile is essential in external aero-
dynamics studies, with the aim of predict eventual detachments and stall con-
ditions.
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4.2 Physics

The physics and models selection is fundamental to reach a stable and accu-
rate solution. In this case in Star CCM+ the physics selections made are:

– space: tree dimensional, half of the car is simulated;

– time: steady, Reynolds Averaged Navier Stokes (RANS) are used, time step
has no physical meaning;

– material: gas, air with 𝜌 = 1.225 𝐾𝑔/𝑚3 and � = 1.812 · 10−5 𝑃𝑎 · 𝑠;

– flow: coupled flow;

– equation of state: constant density, 𝜌 = 𝜌0;

– viscous regime: turbulent, as said 𝑅𝑒 ≃ 2.9 · 106;

– Reynolds - averaged turbulence: K - Omega Turbulence (SST (Menter) K -
Omega);

– wall treatment: all 𝑦+ treatment, trying to keep 𝑦+ < 5.

The article Best Practice Guidelines for Formula Student Cars [15] is followed for the
values set in the simulation.

4.2.1 Theoretical overview

It’s essential to introduce Navier - Stokes equations and methods used for
their solution in order to understand choices made [1], [2].
Navier - Stokes equations are a system of partial differential equations which
describes the motion of viscous fluids, expressing the conservation of momen-
tum and the conservation of mass for Newtonian fluids. For a compressible
fluid, the Navier - Stokes equations (mass and momentum conservation) can be
expressed together with the equation for the conservation of energy in the so
called conservation form as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝜌
𝜕𝑡 + ∇ · (𝜌u) = 0
𝜕(𝜌u)
𝜕𝑡 + ∇ · (𝜌u ⊗ u) = −∇𝑝 + ∇ · 𝝈 + 𝜌f

𝜕(𝜌𝐸)
𝜕𝑡 + ∇ · (𝜌u𝐸) = −∇ · (𝑝u) + ∇ · (𝝈 · u) + ∇ · (𝑘∇𝑇) + 𝜌f · u +𝑄

(4.4)
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with the viscous stress tensor 𝝈:

𝝈 = �(∇u + (∇u)𝑇) + �∇ · uI = 2�e − 2
3�(∇ · u)I (4.5)

Let us consider an incompressible flow such that 𝜌 = 𝜌(𝑥, 𝑡), 𝑘 = 𝑘(𝑥, 𝑡), and
� = �(𝑥, 𝑡) are constants. The equations in conservative form become:⎧⎪⎪⎨⎪⎪⎩

∇ · u = 0
𝜕u
𝜕𝑡 + ∇ · (u ⊗ u) = −∇𝑝

𝜌 + �∇2u + f
(4.6)

Here, � =
�
𝜌 represents the kinematic viscosity, where � is the dynamic viscosity,

𝜌 is the density, u is the velocity vector, 𝑝 is the pressure, and f represents any
external forces or body forces acting on the fluid.
Most fluid flows of engineering interest are characterized by irregularly fluc-
tuating flow quantities. Often these fluctuations are at such small scales and
high frequencies that resolving them in time and space comes at excessive com-
putational costs. Rather than employing Direct Navier - Stokes (DNS), which
involves solving the complete governing equations for turbulent flows, a more
cost-effective approach is to solve for averaged or filtered variables while approx-
imating the influence of the smaller turbulent structures. Turbulence models
offer various methodologies to represent and model these turbulent structures.
RANS turbulence models provide closure relations for the Reynolds - Averaged
Navier - Stokes equations, that govern the transport of the mean flow quanti-
ties. To obtain the Reynolds-Averaged Navier-Stokes equations, each solution
variable 𝜙 in the instantaneous Navier-Stokes equations is decomposed into its
mean, or averaged, value 𝜙 and its fluctuating component 𝜙′:

𝜙 = 𝜙 + 𝜙′ (4.7)

where 𝜙 represents velocity components, pressure, energy, or species concen-
tration. Incompressible Reynolds - Averaged Navier - Stokes equations are
obtained: ⎧⎪⎪⎨⎪⎪⎩

∇ · u = 0
𝜕
𝜕𝑡u + ∇ · (u ⊗ u) = −∇𝑝

𝜌 + ∇ · (2�e) − ∇· < u′u′ >
(4.8)
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with < u′u′ > Reynolds stresses that:

𝑡𝑟(< u′u′ >) = 2𝑘 (4.9)

k is the Turbulent Kinetic Energy (TKE) and its equation can be written as:

𝜕𝑘

𝜕𝑡
= 𝐶 + 𝐹 − 𝐷 + 𝑃 (4.10)

and its mean:
𝜕𝑘

𝜕𝑡
= C + F −D + P (4.11)

C is convective transport, F is spatial flux of k, D dissipation and P production. In
the mean field, for 𝑅𝑒 >> 1 and in steady state conditions, energy accumulated
in the termC it’s not dissipated by the termD that tends to 0, it follows that all the
energy is used to produce fluctuations (C ≃ P), that will be entirely dissipated
at the smaller scales in the fluctuation field, where P ≃ 𝐷. Smaller scales can be
considered universal.
It’s necessary to model Reynolds stresses in order to solve the equations. Eddy
viscosity models are based on the analogy between the molecular gradient-
diffusion process and turbulent motion and the most common model is known
as the Boussinesq approximation:⎧⎪⎪⎨⎪⎪⎩

T = −𝑝I + 2�e

− < u′u′ >= −2
3 𝑘I + 2�𝑇e

(4.12)

with �𝑇 turbulent viscosity, that’s the variable that needs to be modeled in order
to obtain a N equation system in N unknowns:⎧⎪⎪⎨⎪⎪⎩

∇ · u = 0
𝜕
𝜕𝑡u + ∇ · (u ⊗ u) = −∇( 𝑝𝜌 + 2

3 𝑘) + ∇ · [2(� + �𝑇)e]
(4.13)

Most frequently used turbulence models are the k - Epsilon, the K - Omega
and the Spalart - Almaras models. The first two are two equations models,
while the third one it’s a one equation model, valid for simple fluxes in external
aerodynamics.
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The K -Epsilon model:⎧⎪⎪⎨⎪⎪⎩
�𝑇 = 𝐶�

𝑘2

𝜖

𝜕𝜖
𝜕𝑡 + ∇ · (u𝜖) = ∇ · [( �𝑡𝜎𝜖 )∇𝜖] + 𝐶𝜖1

𝑝𝜖
𝑘 − 𝐶𝜖2

𝜖2

𝑘

(4.14)

This model shows good results outside the boundary layer, while the K - Omega
model works better in representing the adverse pressure gradient in turbulent
boundary layers:⎧⎪⎪⎨⎪⎪⎩

�𝑇 = 𝐶�
𝑘
𝜔

𝜕𝜔
𝜕𝑡 + ∇ · (u𝜔) = ∇ · [( �𝑡

𝜎𝜔
)∇𝜔] + 𝐶𝜔1

𝑝𝜔
𝑘 − 𝐶𝜔2𝜔

2
(4.15)

This model is sensitive to the input variables, leading to different results with
slightly different 𝜔𝑖𝑛 . For this reason combined models have been formulated:

– k - 𝜔 - BSL: k - 𝜖 far from the walls and k - 𝜔 close to them;

– k - 𝜔 - SST: BLS that transfer shear stresses at the walls.

A more expensive strategy of simulation could be the Large Eddy Simulation
(LES). These kind of simulations create models only for the smaller universal
scales, dissipating all the energy at the scale Δ chosen, while bigger eddies are
simulated. This allows to obtain a more universal model with only a constant
in the Smagorinski model and zero in the dynamic Smagorinski model.

Figure 4.4: Solution approaches comparison
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4.3 Regions

The half car is placed in a domain big enough to represent a real free stream
condition, with the presence of the moving ground. With respect to the reference
coordinate system origin, placed at half wheelbase of the car on the ground, the
domain extends for 24 m in the negative 𝑥 and 42 in the positive 𝑥, it’s 11 m
wide (positive 𝑦 direction) and 11 m high (𝑧 direction).

Figure 4.5: Domain of simulation

Surfaces representing the car and the domain are divided in regions’ boundaries,
in order to get assigned the right boundary conditions and to be better defined
in post processing.
Four regions define the whole simulation:

– One car and domain surfaces fluid region: the main surfaces are divided
in groups and assigned to specific boundary conditions;

– Two rotating Moving Reference Frame (MRF) fluid regions (front and rear):
essentials in defining the interfaces of the rims, to simulate the rotating
wheels;

– One porous region to simulate a simplified radiator geometry.

Each region is composed by boundaries. For the main region:

– Front Wing (FW): defined as a wall with no slip, contains all the front wing
elements;
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– Rear Wing (RW): wall with no slip, contains all the rear wing elements;

– Body: wall with no slip, contains all the remaining parts of the car that
don’t rotate. This boundary is the one used to evaluate the undertray
performance;

– Front axle: wall with no slip with an imposed rotation of 73.819 rad/s
around the wheel axis. It includes front tire, rim and brake disk;

– Rear axle: wall with no slip with an imposed rotation of 73.819 rad/s
around the wheel axis. It includes rear tire, rim and brake disk;

– Inlet: velocity inlet given in components, with an 𝑥 velocity of 15 m/s (that
corresponds to the wheels angular velocity);

– Outlet: pressure outlet that impose atmospheric pressure at the end of the
domain;

– Ground: wall with no slip with a velocity 𝑥 component of 15 m/s, in order
to simulate the moving car;

– Symmetry: symmetry plane of the half car;

– Top and Side: patches far from the car, Siemens suggests to put the sym-
metry condition, that in this case will not mirror anything;

– Shroud + Fan: group of boundaries that defines the interfaces of the
channel at the rear of the radiator and at end of the duct, where the fan is
placed. Fan interface is set with a specified volumetric flow rate.

– Other boundaries to create interfaces between different regions: these are
all wall regions with no slip condition that needs to be set in order to
include MRFs and radiator in the simulation.

The MRFs regions rotate at the same rate of the wheels and contains only two
boundaries. One determines the interfaces with the main region described
earlier, the other specifies the internal solid part of the rims (wall with no slip).
The porous region contains the radiator geometry, that is simplified as a block
with a porous inertial resistance of 192.529 𝑘𝑔/𝑚4 in the direction orthogonal
to radiator’s front surface (0 𝑘𝑔/𝑚4 in the other two directions) and a porous
viscous resistance of 773.353 𝑘𝑔/(𝑚3 · 𝑠) in the same direction, while 10000
𝑘𝑔/(𝑚3 · 𝑠) in the others. Interfaces are set as for the other regions.
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4.4 Meshing

Meshing phase is critical to achieve accurate and stable results. Computa-
tional cost must be considered, avoiding over defined meshes saving a lot of
time.
Mesh is built in the software Star CCM+. Three different mesh groups define
the meshes for car and domain, MRFs and the porous region.
As said earlier the wall treatment aims to reach a 𝑦+ < 5. To do so the first cell
thickness is set to an optimal value of 0.03 mm on wall boundaries, an optimized
value that derives from a first estimation done as follows:

– Prandtl friction coefficient for a turbulent boundary layer:

𝐶 𝑓 = 0.0576 · 𝑅𝑒− 1
5 ≃ 2.94 · 10−3 (4.16)

– wall shear stress estimation:

𝜏𝑤 =
1
2𝐶 𝑓 𝜌𝑈

2
𝑖𝑛 𝑓

≃ 0.40 𝑃𝑎 (4.17)

– friction velocity:

𝑈𝜏 =

√︃
𝜏𝑤
𝜌

≃ 0.57 𝑚/𝑠 (4.18)

– and thus the first cell thickness, with 𝑦+ = 1:

𝑦 =
� · 𝑦+
𝑈𝜏

≃ 2.57 · 10−5 𝑚 (4.19)

The main domain is meshed with trimmed cells that provides a robust and
efficient method of producing a high-quality grid for both simple and complex
mesh generation problems. It combines a number of highly desirable meshing
attributes in a single meshing scheme:

– predominantly hexahedral mesh with minimal cell skewness;

– refinement that is based upon surface mesh size and other user-defined
refinement controls;

– surface quality independence;

– alignment with a user-specified coordinate system.

For these reasons this is the mesh chosen also for the porous region of the
inclined radiators.
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Figure 4.6: Trimmed mesh for the car

Figure 4.7: Inclined radiators trimmed mesh section

For the MRFs polyhedral mesh is preferred. It provides a balanced solution for
complex mesh generation problems and it’s recommended for MRFs interfaces.
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Figure 4.8: MRFs polyhedral mesh particular

The most important commands in the mesh generation are the ones that control
the surface cells size and the prism layer, that represent the connection between
the first cell that determines the y+ and the first surface cell. The first ones are:

– Base Size (BS): set to 0.06 m

– Minimum Surface Size (MSS);

– Target Surface Size (TSS).

The base size determines the dimension of the reference cell. All the other cells
commands are set as relative to this value. Target and minimum surface size are
different for every car’s component, with values that were previously studied in
a mesh sensitivity analysis. With the trimmed cell mesh, cells can only double
in dimension at every step, so the values set in these commands will only be of
the type: 2𝑛 , 𝑛 ∈ Z.
For the prism layer definition:

– prism layer Near Wall Thickness (NWT): 0.03 mm;

– Prism Layer Total Thickness (PLTT);

– Number of Prism Layers (NPL).

The values of the last two commands are set differently for every component.
The sensitivity analysis, in fact, led to a correlation between these values and
the target surface size for each component with the method that follows:
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– quality parameters of the prism layer optimised in the sensitivity study:

- Stretch Factor (SF): defines the gradient of the geometric progression
in the prism layer, values range [1.2, 1.5];

- TSS and Last Prism Layer cell Thickness (LPLT) ratio: determines the
continuity between prism layer and core mesh. Safe maximum value
found is 3;

– NPL calculation from:

𝐿𝑃𝐿𝑇 = 𝑁𝑊𝑇 · 𝑆𝐹𝑁𝑃𝐿−1 (4.20)

=⇒ 𝑁𝑃𝐿 = log𝑆𝐹
𝐿𝑃𝐿𝑇

𝑁𝑊𝑇
+ 1 (4.21)

– PLTT calculation from the geometric progression:

𝑃𝐿𝑇𝑇 = 𝑁𝑊𝑇
1 − 𝑆𝐹𝑁𝑃𝐿

1 − 𝑆𝐹 (4.22)

This led to a continuous mesh close to the walls, fundamental for the simulation
quality.

Figure 4.9: Particular of the mesh for a front wing flap

For interfaces (non solid parts of MRFs and radiators and fan) the prism layers
number is set to 1 as recommended.
Volumetric refinements are also present to better capture wheels wake and the
rear wake of the car, with different steps in refinement.
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4.4.1 Sensitivity analysis

A sensitivity analysis for the mesh was done in order to calibrate the values
presented earlier. It’s in the interest of this thesis bringing the example on how
ground effect parts of the car have been studied and not entering in the detail of
every aspect studied during the analysis.
In general every critical part of the simulation was studied separately, start-
ing from a over refined mesh and slowly decreasing the number of elements,
verifying where the best trade off between computational cost and simulation
accuracy was. During this phase not only the presented commands were mod-
ified, but also wake and edge refinements were evaluated, adding controls or
volume refinements if necessary.
To study the meshing in ground effect, a generic double element wing was cho-
sen, with a 500 mm chord main and a 200 mm chord flap. Other than forces,
also TKE volume (above 6 J/kg) and vortices using Q - Criterion (1000 𝑠−2) are
monitored.

Figure 4.10: Sensitivity study geometry and volume refinements for ground
effect treatment

After determining the volume refinements, the base size is changed, keeping
these values fixed:

– SF = 1.4;

– LPLT = 2;
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– NWT = 3.0 · 10−5 m;

– main element:

- TSS = 16 % (relative to base size);
- MSS = 4 %;

– flap element:

- TSS = 8 %;
- MSS = 1 %;

– TEs absolute size = 1 · 10−4 m.

Results showed:

BS [m] ClA [𝑚2] CdA [𝑚2] Vortices volume [𝑚2] TKE volume [𝑚2]
0.04 0.464 0.088 3.34 1.79
0.045 0.465 0.088 3.34 1.80
0.05 0.465 0.088 3.34 1.85
0.055 0.461 0.088 3.34 1.90
0.06 0.464 0.089 3.32 1.92
0.065 0.468 0.091 3.15 1.58
0.07 0.469 0.091 3.24 1.52

Table 4.1: Base size variation for mesh sensitivity analysis

BS [m] ClA error [%] CdA error [%] Vortices error [%] TKE error [%]
0.04 0 0 0 0
0.045 0.2 0 0 0.6
0.05 0.2 0 0 3.4
0.055 0.6 0 0 6.1
0.06 0 1.1 0.6 7.3
0.065 0.9 3.4 5.7 11.7
0.07 1.1 3.4 3.0 15.1

Table 4.2: Errors in the simulation for different base sizes

It can be seen how the volume of TKE is a critical value, clearly influenced by
cells dimensions. A lower accuracy in the wake could lead to worse results in
components at the back, directly influenced by its volume. Forces are good for
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values of base size lower than 0.6 m, that is the value used in the complete mesh
with final refinements that keep the TKE error lower and a surface proximity
refinement that fills spaces lower than 60 mm with a minimum number of 8 cells
(excluding prism layer cells).
For each base size, prism layer values varied automatically as described before.
With a fixed base size of 0.06 m, the stretch factor is then varied to determine its
influence:

SF ClA error [%] CdA error [%] Vortices error [%] TKE error [%]
1.3 0 0 0 0
1.4 0.2 0.2 4.2 1.4
1.5 1.1 0.5 4.3 4.6
1.6 1.6 0.8 4.4 6.3
1.7 1.8 0.9 4.8 6.8
1.8 2.6 1.5 4.8 9.2

Table 4.3: Errors in the simulation for different stretch factors

The safe maximum stretch factor turned out to be 1.5. A value of 1.4 is chosen
for the final mesh.
A final check of the previously calculated NWT was done to see its influence in
the solution. New values of maximum 𝑦+ and surface average 𝑦+ are taken into
account:

NWT [m] ClA [%] CdA [%] Vor. [%] TKE [%] Max 𝑦+ Avg 𝑦+
7.5 · 10−6 0 0 0 0 3.4 0.18
1.5 · 10−5 0.2 0.6 2.5 1.2 3.6 0.36
3 · 10−5 0.4 1.3 6.1 3.6 4.2 0.72

Table 4.4: Errors in the simulation for different near wall thickness

The value of 0.03 mm gives a good estimation of forces and wakes, while keeping
the average 𝑦+ < 1 and the maximum 𝑦+ < 5. Higher values will cause a
lower quality in wall treatment, bringing errors in predicting boundary layer
detachments and drag forces.
This example of analysis was done for every other component of the car, and
then the final mesh was assembled.
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4.5 Solvers

As mentioned previously, the preference here is for a coupled solver over a
segregated one.
In the segregated flow solver, the integral conservation equations for mass and
momentum are tackled sequentially. The nonlinear governing equations are
iteratively solved one after another for the solution variables. The segregated
solver employs a pressure - velocity coupling algorithm to satisfy the mass con-
servation constraint on the velocity field. This is achieved by solving a pressure -
correction equation derived from the continuity and momentum equations. Es-
sentially, it seeks a predicted velocity field that fulfills the continuity equation,
which is achieved through pressure - correction, a method often called predictor
- corrector approach. The pressure as a variable is obtained from this pressure -
correction equation.
In contrast, with the coupled solver, the conservation equations for continu-
ity, momentum, energy, and species are simultaneously solved as a vector of
equations. The velocity field is derived directly from the momentum equa-
tions. The pressure is calculated from the continuity equation, and the density
is determined from the equation of state when necessary. This method is more
computationally demanding but tends to achieve better convergence with fewer
iterations.
The discretization schemes for the convective and diffusive fluxes chosen is the
MUSCL - 3rd order/CD scheme that is a blend between a MUSCL 3rd - order
upwind scheme and the 3rd - order central - differencing reconstruction scheme.
It provides improved (reduced) dissipation when compared with the second-
order scheme.
The coupled system of equations can be solved using either an implicit or an
explicit time - integration scheme. In transient simulations this is a key aspect
for achieving time consistent solutions, with the Courant Friedrichs Lewy (CFL)
number that is crucial for the solution accuracy [2]:

𝐶𝐹𝐿 =
𝑢Δ𝑡

Δℎ
(4.23)

with Δ𝑡 timestep and Δℎ grid dimension. This number must be < 1 or less with
explicit time integration schemes in transient simulation. It in fact represents the
rate at which information, denoted by the velocity 𝑢, traverses a computational

52



CHAPTER 4. CFD SIMULATION OF THE CAR

grid cell of size Δℎ during a unit of time Δ𝑡. If the Courant number exceeds the
unity, it implies that information propagates through more than one grid cell
during each time step. This can result in inaccuracies in the solution and may
potentially lead to non - physical results or divergence of the solution.
Implicit schemes alleviate such strict CFL condition allowing the use of time
steps where the Courant number is higher than 1, however, this limit should
not be exceeded in large areas of the computational domain, as this can lead to
incorrect results.
CFL can be controlled varying the mesh dimension and the timestep. Adaptive
timestep can be good in keeping the CFL number under a specified value, but if
mesh definition is inadequate, it could lead to very small timestep and thus too
long simulation time.
In the case of steady state simulations, timestep lose its physical meaning, al-
lowing higher CFL number, that can make the simulation faster.
In Star CCM+ an automatic CFL feature is used for implicit schemes. It adjusts
the CFL number in response to Algebraic Multi Grid (AMG) solver convergence
behavior to maintain the specified target number of cycles. It targets a balance
between the cost of forming the linear system and the cost of solving it. Tra-
ditional iterative solvers like Jacobi, Gauss - Seidel, or ILU slow down as mesh
sizes increase, causing a quadratic rise in computational time. Multigrid meth-
ods enhance solver speed by iteratively addressing error reduction in a hierarchy
of coarsened linear systems. This hierarchy allows efficient reduction of low -
frequency errors, which standard iterative methods struggle with. Key steps in
multigrid methods include cell agglomeration to form coarser grid levels, trans-
ferring residuals from fine to coarser levels (restriction), and moving corrections
from coarser to finer levels (prolongation). Star CCM+ offers two methods for
accelerating linear solvers: preconditioned conjugate - gradient for incompress-
ible flows and bi - conjugate gradient stabilized for other cases. The second
one will be used in the simulations presented together with Gauss - Seidel as
relaxation scheme.
The higher the target cycles, the higher the CFL number that can be obtained,
with a faster convergence in terms of iteration, but an higher iteration time. 6
AMG target cycles are chosen as trade off, that, together with the defined mesh,
keeps the CFL number varying between 50 and 200 during the simulation. The
AMG maximum cycles are instead 30, with a convergence tolerance of 0.05 that
exits the cycle when reached.
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Explicit relaxation is a scaling factor that is used to relax all coupled flow cor-
rections explicitly before they are applied to the flow solution. This generally
improves numerical stability and convergence, particularly when running at a
high CFL number. For the unsteady solver, the default is 1 in order to be time
accurate, in this case of steady state simulation the value of 0.2 showed better
results.
Field are initialized with a grid sequencing, that performs the normal initializa-
tion followed by the computation of an approximate inviscid solution to the flow
problem, reaching higher values of CFL, that is beneficial for the fisrt iterations,
acting as a relaxation.
For the k - omega turbulence an under - relaxation factor of 0.8 is used, together
with an AMG cycle with an higher convergence tolerance of 0.1.

4.6 Post processing

Post processing simulation results it’s really important in order to understand
the airflow around the car and to verify theoretical hypothesis or predicted
behaviours.
Scenes in Star CCM+ are used for this purpose, with vector and scalar field that
are investigated. Interesting scenes of the simulation with the car at 40 mm from
the ground (standard height) are presented.
Pressure coefficient scene together with TKE above 7 J/kg shows well how
undertray works. Lowest pressure is located at the end of the flat - zone and
then recovered towards the end of the divergent. It can be seen how front wing
works in a similar way, and how its outwash effect helps in keeping front tyres
wakes outside the undertray. The major part of turbulences are created by the
driver and components around him, which implies that the rear wing had to be
carefully designed and positioned to avoid the majority of these disturbances,
that would lead to great losses in downforce creation.
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Figure 4.11: Pressure coefficient scene + TKE - underside view

Figure 4.12: Pressure coefficient scene + TKE - upper side view

Also the wall shear stresses scene is significantly important to check. Here
boundary layer detachments can be seen easily, and it gives a good understand-
ing on how airflow behaves close to the walls. It can be seen how the paths
under the car are quite smooth, with the exception of the monocoque - under-
tray interference disturbs that create some losses in the inner part. The upper
- zone of the undertray keeps clean the area close to the monocoque, where
battery cooling duct inlet lays.
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Figure 4.13: Wall shear stresses - underside view

Figure 4.14: Wall shear stresses - upper side view

Velocity scene is instead used only at some interesting sections of the car, to
check the presence of detachments or the airflow in the radiators. From the
presented figures, it can be seen how undertray and rear wing works together,
with a low upwash effect from the undertray that doesn’t influence rear wing
angle of attack. Radiator flow and tyres wakes can be checked, with the rear tyre
wake significantly smaller thanks to the presence of the radiator duct in front of
it.
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Figure 4.15: Velocity scene - 𝑦 = 0.3 m section

Figure 4.16: Velocity scene - 𝑦 = 0.4 m section

Also vortex scene is commonly used to check vortices presence and their inten-
sities. It can be immediately seen the big vortex created by the rear wing, that
can be compared with the one at the outboard points of the front wing, that’s
significantly smaller. This is in accordance to the ground effect theories that
have been discussed in the previous chapters. The undertray is sealed by two
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vortices: one that follows the external edge, born after the lateral convergent;
the other one that follows the inner edge of the channel.

Figure 4.17: Vortex scene - upper side view

Figure 4.18: Vortex scene - underside view
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Streamlines can be also used, mostly for checking the general behaviour of the
3D flow.

Figure 4.19: Streamlines scene
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4.7 Results of the analysis and validation

The simulation converges and gives as an output the values of downforce,
drag and 𝑦 momentum of the entire car and its main components singularly.
Convergence is checked during the whole simulation through the residuals
monitor and the forces plotting. The stopping criteria of the simulation is the
downforce plot, when it becomes asymptotic (0.2 N of maximum variation in 100
iterations) the simulation stops. Residuals all reach a value of 10−4, that could
be even lower, but this early stop in the simulation saves a lot of calculation time.
Also the 𝑦+ value is monitored, ensuring that the expected maximum value is
confirmed during the whole simulation. This can be done through the wall 𝑦+

plot and the scene, that shows better the behaviour of 𝑦+ around the car (higher
shear stresses brings higher values of 𝑦+).

Figure 4.20: Residuals of the simulation
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Figure 4.21: Downforce monitor plot

Figure 4.22: 𝑦+ monitor plot
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Figure 4.23: 𝑦+ scene

As done before with the scenes, results for the simulation at standard height of
40 mm are presented and analysed:

Region Downforce [N] ClA [𝑚2] Drag [N] CdA [𝑚2]
Front wing 183.4 1.331 23.4 0.170

Body 233.4 1.694 97.4 0.707
Rear Wing 160.4 1.164 69.4 0.504

Full car 577.4 4.190 182.8 1.326

Table 4.5: Forces and moments results at 40 mm height

Undertray creates the major part of the downforce and, together with the front
wing, they exploit the ground proximity. Rear wing isn’t affected by ground
effect, this can be seen from the high drag creation with respect to the front
wing.
All the components works together generating 577.4 N of downforce at 15 m/s
(𝜌 = 1.225 𝑘𝑔/𝑚3), and a corresponding ClA (Cl per unit area) of 4.19 𝑚2. The
moment generated by the forces of drag and lift with respect to the mean point
of the wheelbase around the 𝑦 axis is of −0.26 𝑁 ·𝑚, that correspond to a center
of loads 40 mm before the origin, in the direction of the negative 𝑥. This means
that the car has almost a 50 - 50 distribution of loads, slightly more loaded at the
front axis. This distribution, together with the forces, is expected to change with
a reduced height from the ground, with ground effect components that will be
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highly affected by the height change.
This simulation setting will be the base for the next chapter results. The models,
mesher and solvers have all been validated inside the Formula SAE team of the
University of Padua, and on track loads acquisition has been argument of recent
thesis. The most recent comparison between acquired data and simulations
showed a mean error of 10% in forces estimation, that is an expected value
considering also the possibility of measuring errors due to the presence of
wind gusts or variations in the air density, together with car’s manufacturing
imperfections, that after some reverse engineering, thanks to the 3D scan of some
components and the entire car, showed errors of similar nature and magnitude.
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5
Heaving motion - Static case
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5.1 Parametric CAD geometry

In this chapter the main objective is to repeat the results presented earlier
for a set of different car’s height from the ground. To do so a parametric CAD
of the car in Catia V5 is created, capable of changing car’s suspensions setup
by modifying some parameters. This is achieved by assembly constraints, that
correlates the desired position of the car to the suspensions geometry. In the
case of a change in heave (ride height), car translates along the 𝑧 direction and
suspension elements follow this movement keeping the same original contact
points with both chassis and the hubs. With this CAD geometry it’s easy to
change the configuration of the car from straight line to cornering, including
pitch and roll angles.
As already discussed, the standard minimum height of the standing still car in
ready to race conditions is 40 mm. Other heights that will be studied are in the
range of [10, 60] mm, to have a good understanding of the phenomena.
Geometries are exported in STP extension and then imported in 𝑆𝑡𝑎𝑟𝐶𝐶𝑀+ to
run the simulations as described.

Figure 5.1: Parametric CAD at 10 mm height from the ground
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Figure 5.2: Parametric CAD at 60 mm height from the ground

5.2 Simulations results

Results obtained from the simulations are reported in the following tables.
For the lift coefficient per unit area:

h [mm] ClA [𝑚2] ClA Body [𝑚2] ClA FW [𝑚2] ClA RW [𝑚2]
10 2.635 0.566 1.003 1.067
15 2.918 0.791 1.061 1.068
20 3.251 1.039 1.117 1.094

22.5 3.913 1.382 1.482 1.049
25 4.063 1.540 1.467 1.054

27.5 4.255 1.724 1.441 1.090
30 4.331 1.784 1.416 1.131
35 4.286 1.765 1.374 1.145
40 4.190 1.694 1.331 1.164
45 4.010 1.548 1.281 1.180
50 3.852 1.415 1.252 1.184
55 3.709 1.312 1.215 1.183
60 3.606 1.228 1.186 1.193

Table 5.1: ClA at different ride heights
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For the drag coefficient per unit area:

h [mm] CdA [𝑚2] CdA Body [𝑚2] CdA FW [𝑚2] CdA RW [𝑚2]
10 1.132 0.553 0.163 0.464
15 1.190 0.596 0.164 0.479
20 1.210 0.610 0.167 0.486

22.5 1.218 0.624 0.168 0.477
25 1.228 0.630 0.170 0.480

27.5 1.257 0.649 0.170 0.491
30 1.286 0.668 0.171 0.499
35 1.309 0.694 0.171 0.498
40 1.326 0.707 0.170 0.504
45 1.337 0.717 0.167 0.506
50 1.337 0.715 0.165 0.506
55 1.329 0.707 0.164 0.508
60 1.342 0.721 0.164 0.511

Table 5.2: CdA at different ride heights

It’s immediately visible how variations in force coefficients are important. This
means that an estimation of the real ride height at different velocities is essential
to comprehend the real loads acting on the car.
Data obtained are plotted into graphs to better understand the behaviour at
different heights.

Figure 5.3: ClA - height

The expected behaviour is obtained. There’s a peak in the total downforce
around 30 mm height, with higher rides that show a quasi - linear decrement
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in downforce. For too low ride heights there’s a fast drop in the ClA, created by
the stall of the ground effect elements. Even if this is just a static analysis, it’s
important to verify that in operational heights car is far from stall conditions.

Figure 5.4: CdA - height

The Cda - h graph is really good in showing the benefits of ground effect. The
gains in downforce are in fact followed by a continuous drag reduction, caused
by the reduced intensity of tip vortices. The downforce loss at low rides is
instead the reason of the final drop in the drag monitor.
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Figure 5.5: ClA Body - height

Figure 5.6: CdA Body - height

The body behaves similarly to the whole car. Its performance decreases rapidly
with heights lower than 25 mm, with losses that arise from the inner part of the
undertray and can be clearly seen from scenes.
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Figure 5.7: Pressure coefficient scene + TKE at 50 mm height from the ground

Figure 5.8: Pressure coefficient scene + TKE at 20 mm height from the ground

Differences between an high setup and a too low one can be clearly seen. Stall
of the undertray is the main cause of the downforce loss.
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Figure 5.9: ClA Front Wing - height

Figure 5.10: CdA Front Wing - height

Front wing increases its ClA linearly reducing height, with a maximum at 22.5
mm. A sudden stall creates a big loss in downforce. The three elements wing ap-
pears to be really sensitive at height changes, with a degradation in performance
that’s not gradual and predictable as the one experienced by the body.
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Figure 5.11: Pressure coefficient scene + TKE at 50 mm height from the ground

Figure 5.12: Pressure coefficient scene + TKE at 22.5 mm height from the ground

High differences of pressure distribution under the front wing are visible be-
tween an high case and the maximum ClA case.
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Figure 5.13: Vortex scene at 50 mm height from the ground

Figure 5.14: Vortex scene at 22.5 mm height from the ground

It’s clearly visible how the tip vortex is reduced in a lower case, causing a drag
reduction.
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Figure 5.15: ClA Rear Wing - height

Figure 5.16: CdA Rear Wing - height

Rear wing is not strongly affected by ground effect, but a correlation to the rest of
the car behaviour can be noted. When the front wing creates more downforce,
in fact, rear wing loses a bit of performance due to the major upwash effect
generated at the front, reducing rear wing’s angle of attack. A similar pattern
to the front wing ClA can be verified. For what concerns CdA, once again it’s
possible to see how much more drag this wing creates compared to the front
one.
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Figure 5.17: Velocity scene at 50 mm height from the ground

Figure 5.18: Velocity scene at 22.5 mm height from the ground

A slightly major upwash effect reducing rear wing angle of attack is visible when
front wing generates more downforce.
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5.3 Ride height prevision

Assuming that these coefficients are not function of the velocity, assumption
perfectly fine with the range of velocities the car can reach, with a maximum
velocity of 110 km/h, at different velocities, ride height will change due to the
load on the car. As seen, this load is also function of the ride height, so an
iterative approach is necessary to find the real final height.
Total ClA and CdA curves will be used for this cause, with the assumption that
the phenomenon of change in ride height is sufficiently small and slow that the
variation of loads acting on the car can be considered quasi - steady, so curves
can be considered valid. The transient phase is neglected, with interest in only
the final static equilibrium.
A Matlab script is done for this cause. It includes the suspension geometry,
thanks to which a load applied to the car can be converted in a heaving motion
using the iterative approach in order to find the equilibrium point.
The CFD analysis is done in straight line, thus in the code only the straight line
speed will be put as input, without considering any acceleration, that would
need a further study for force determination.
At the mean velocity of 15 m/s:

– heave = 2.46 mm;

– ClA = 4.29 𝑚2;

– CdA = 1.32 𝑚2.

The heave is minimum, but the increased ClA with respect to the standard height
(ClA = 4.19), makes this heaving motion preciser.
At the higher speed reachable by the car, 30 m/s:

– heave = 9.69 mm;

– ClA = 4.30 𝑚2;

– CdA = 1.28 𝑚2.

Heave and ClA increase, CdA decreases as height from the ground reduces.
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Figure 5.19: Heave predicted in function of car’s velocity

Similarly to forces, heave increase is almost quadratic with velocity, with varia-
tions due to the non constant ClA considered.
It can be seen how for a velocity up to 30 m/s the 𝑧 displacement of the car is
maximum at around 10 mm. For this range of heigh, [30, 40] mm, all the com-
ponents of the car can exploit their best performance, with stalls that happens
at lower heights.

Figure 5.20: Rear and front heaves iterations plot for a velocity of 20 m/s

From graphs it’s possible to see how front suspensions gets a slightly major
heave compared to the rear ones. This is due to the different springs resistance
coefficients (k) caused by different motion ratios between front and rear sus-
pensions. Other factors such as Center Of Mass (COM) and COP can modify
front and rear suspensions heave, but don’t really affect the mean car’s heave.
For example, a center of pressure slightly forward the wheelbase center (55%
front - 45% rear), that could be the case at higher speeds, with the car closer to

78



CHAPTER 5. HEAVING MOTION - STATIC CASE

the ground and the front wing moving the COP towards the front thanks to its
increased ClA, values obtained at 30 m/s are:

– heave = 9.73 mm;

– ClA = 4.30 𝑚2;

– CdA = 1.28 𝑚2;

– pitch = 0.1 deg.

Even with an increased displacement at the front axle, the total pitch angle of
the car can be neglected, and the total heave can be considered unchanged.

5.3.1 The code

The code from which results are taken is shown in this section, where some
features are explained.
At first essential data are presented, ClA and CdA included, that are vectors fitted
by a polynomial 6𝑡ℎ degrees function. Motion ratios interpolation functions are
also defined to change the motion ratio values of front and rear suspensions
when they compress [7]. Initial conditions are set:

1 %% Data

2

3 w = 1.535; % wheelbase

4 tf = 1.23; % track front

5 tr = 1.2; % track rear

6 m_s = 270-4*9; % sprung mass

7 z_g = 0.30; % CoM height

8 a = 0.55*w; % CoM front axle

9 b = 0.45*w; % CoM rear axle

10 z_a = 0; % CoP height

11 a_a = 0.45*w; % Cop front axle

12 b_a = 0.55*w; % Cop rear axle

13 m = 270; % total mass

14 rho = 1.225; % air density

15 H = [-0.030 -0.025 -0.020 -0.015 -0.010 -0.005 0 0.005 0.010 0.015

0.020];

16 CLA = -4.190; % ClA at standard height

17 CLAH=-[2.635 2.918 3.251 4.063 4.331 4.286 4.190 4.010 3.852 3.709

3.606];

18 pCLA=polyfit(H,CLAH,6);
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19 CDA = 1.326; % CdA at standard height

20 CDAH = [1.132 1.190 1.210 1.228 1.286 1.309 1.326 1.337 1.337 1.329

1.342];

21 pCDA = polyfit(H,CDAH,6);

22 k_f0 = 61294; % front spring k

23 k_r0 = 61294; % rear spring k

24 k_t = 88000; % Hoosier tires k

25 k_arb_f = 372255; % k anti roll bar front

26 k_arb_r = 425914; % k arb rear

27 g = 9.81;

28 pr = 1.0e+04 * [-1.552620638539592 0.170806966768406

-0.016940792238554 0.001396349979041 0.000120742987204

0.000114063370171];

29 % 5th degree interpolation motion ratio rear

30 pf = 1.0e+05*[-8.079809067062426 -0.256226574060929

-0.000446723507707 -0.000040120084565 0.000028045499374

0.000011860530909];

31 % 5th degree interpolation motion ratio front

32 paf = [-14021.7414291225 -1032.33348807123 -140.699590315231

2.60685298092043 1.70680464991742];

33 % 4th degree interpolation mr arb front

34 par = [-6009.69325415841 -605.939783087960 -79.8948555541866

11.4729158462236 1.63381160238139];

35 % 4th degree interpolation mr arb rear

36

37 %% Initial values

38

39 % X

40 xfr0 = 0;

41 xfl0 = 0;

42 xrr0 = 0;

43 xrl0 = 0;

44 % Motion Ratio

45 mrfr = 1.14;

46 mrfl = 1.14;

47 mrrr = 1.187;

48 mrrl = 1.187;

49 % Motion Ratio Arb

50 mr_arb_fr = 1.708;

51 mr_arb_fl = 1.708;

52 mr_arb_rr = 1.633;

53 mr_arb_rl = 1.633;

54 % k springs
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55 k_fr = k_f0/(mrfr^2);

56 k_fl = k_f0/(mrfl^2);

57 k_rr = k_r0/(mrrr^2);

58 k_rl = k_r0/(mrrl^2);

59 % dz

60 dz_g = 0;

61 dz_a = 0;

62 % dF

63 dF_f = 0;

64 dF_r = 0;

65 % F arb

66 F_arb_f = 0;

67 F_arb_r = 0;

68 % k ride

69 k_rfr = k_fr;

70 k_rfl = k_fl;

71 k_rrr = k_rr;

72 k_rrl = k_rl;

73 % heave and roll

74 hf = 0;

75 hr = 0;

76 r_f = 0;

77 r_r = 0;

Code 5.1: Data and initial conditions for heave roll and pitch calculation

Calculation can then begin. At first it execute an evaluation of the different
heights from the ground for every tire (the two fronts and the two rears obtain
identical results for straight line analysis), it renew the values of motion ratios,
the various stiffness and accelerations and then execute the first real iteration.
The values of ClA and CdA are renewed for the new height reached and another
iteration starts. Every iteration’s displacement results are compared to the pre-
vious ones. Convergence is reached when this error is lower than a value close
to 0.0001 (scaled every iteration to help convergence).

1 %% Calculation

2

3 ef0 = 0.0001; % max error

4 ef = ef0; % max error first iteration

5 e = 1; % initial error

6 i = 0;

7 xm = 0.035; % max displacement

8 s = 0; % damping
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9 n = 1000; % max iterations

10

11 while e>ef && i<n

12 if i<2

13 xfr = -(0.5*(- 0.5*rho*v^2*CLA*b_a/w - m_s*a_x/w*(z_g + dz_g)

- 0.5*rho*v^2*CDA*(z_a + dz_a)) + dF_f)/k_rfr;

14 xfl = -(0.5*(- 0.5*rho*v^2*CLA*b_a/w - m_s*a_x/w*(z_g + dz_g)

- 0.5*rho*v^2*CDA*(z_a + dz_a)) - dF_f)/k_rfl;

15 xrr = -(0.5*(- 0.5*rho*v^2*CLA*a_a/w + m_s*a_x/w*(z_g + dz_g)

+ 0.5*rho*v^2*CDA*(z_a + dz_a)) + dF_r)/k_rrr;

16 xrl = -(0.5*(- 0.5*rho*v^2*CLA*a_a/w + m_s*a_x/w*(z_g + dz_g)

+ 0.5*rho*v^2*CDA*(z_a + dz_a)) - dF_r)/k_rrl;

17

18 xfr=xfr-s*(xfr-xfr0); % similar to a damping

19 xfl=xfl-s*(xfl-xfl0);

20 xrr=xrr-s*(xrr-xrr0);

21 xrl=xrl-s*(xrl-xrl0);

22 end

23

24 % roll front e rear

25 r_f = 180/pi*atan((xfl-xfr)/tf); % roll front in degrees

26 r_r = 180/pi*atan((xrl-xrr)/tr); % roll rear in degrees

27

28 hf = (xfr+xfl)/2;

29 hr = (xrr+xrl)/2;

30

31 % limits

32 if abs(xfr)>xm

33 xfr=xm*sign(xfr);

34 end

35 if abs(xfl)>xm

36 xfl=xm*sign(xfl);

37 end

38 if abs(xrr)>xm

39 xrr=xm*sign(xrr);

40 end

41 if abs(xrl)>xm

42 xrl=xm*sign(xrl);

43 end

44 % dz

45 dz_g = ((xfr+xfl)*b/w+(xrr+xrl)*a/w)/2;

46 dz_a = ((xfr+xfl)*b_a/w+(xrr+xrl)*a_a/w)/2;

47 % Motion Ratio Front
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48 mrfr = pf(1)*xfr.^5 + pf(2)*xfr.^4 + pf(3)*xfr.^3 + pf(4)*xfr.^2

+ pf(5)*xfr + pf(6);

49 mrfl = pf(1)*xfl.^5 + pf(2)*xfl.^4 + pf(3)*xfl.^3 + pf(4)*xfl.^2

+ pf(5)*xfl + pf(6);

50 % Motion Ratio Rear

51 mrrr = pr(1)*xrr.^5 + pr(2)*xrr.^4 + pr(3)*xrr.^3 + pr(4)*xrr.^2

+ pr(5)*xrr + pr(6);

52 mrrl = pr(1)*xrl.^5 + pr(2)*xrl.^4 + pr(3)*xrl.^3 + pr(4)*xrl.^2

+ pr(5)*xrl + pr(6);

53 % Motion Ratio Arb

54 mr_arb_fr = paf(1)*hf.^4 + paf(2)*hf.^3 + paf(3)*hf.^2 + paf(4)*

hf.^1 + paf(5) + 0.025*r_f;

55 mr_arb_fl = paf(1)*hf.^4 + paf(2)*hf.^3 + paf(3)*hf.^2 + paf(4)*

hf.^1 + paf(5) - 0.025*r_f;

56 mr_arb_rr = par(1)*hr.^4 + par(2)*hr.^3 + par(3)*hr.^2 + par(4)*

hr.^1 + par(5) + 0.1*r_r;

57 mr_arb_rl = par(1)*hr.^4 + par(2)*hr.^3 + par(3)*hr.^2 + par(4)*

hr.^1 + par(5) - 0.1*r_r;

58 % k springs

59 k_fr = k_f0/(mrfr.^2);

60 k_fl = k_f0/(mrfl.^2);

61 k_rr = k_r0/(mrrr.^2);

62 k_rl = k_r0/(mrrl.^2);

63 % k arb

64 ka_fr = k_arb_f/(mr_arb_fr^2);

65 ka_fl = k_arb_f/(mr_arb_fl^2);

66 ka_rr = k_arb_r/(mr_arb_rr^2);

67 ka_rl = k_arb_r/(mr_arb_rl^2);

68 % k tot (equivalent spring)

69 Kfr = k_fr+ka_fr;

70 Kfl = k_fl+ka_fl;

71 Krr = k_rr+ka_rr;

72 Krl = k_rl+ka_rl;

73 % k ride

74 k_rfr = Kfr*k_t/(Kfr + k_t);

75 k_rfl = Kfl*k_t/(Kfl + k_t);

76 k_rrr = Krr*k_t/(Krr + k_t);

77 k_rrl = Krl*k_t/(Krl + k_t);

78 % k ride axles

79 k_r_f = k_rfr+k_rfl;

80 k_r_r = k_rrr+k_rrl;

81 k_torx_f = k_r_f*tf^2/2; % torsional stiffness front axle

82 k_torx_r = k_r_r*tr^2/2; % torsional stiffness rear axle
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83 k_torx = k_torx_f+k_torx_r;

84 % roll centers height

85 df_x = 1.4167*(xfr+xfl)/2+0.032;

86 dr_x = 1.8*(xrr+xrl)/2+0.048;

87 df_r = -0.0003172*r_f^2;

88 dr_r = -0.0008894*r_r^2;

89 df = df_x+df_r;

90 dr = dr_x+dr_r;

91 d = df*b/w+dr*a/w; % roll center

92 dF_f = k_torx_f/k_torx*m_s*a_y*(z_g-d)/tf+m*a_y*b/w*df/tf; % Fz

front

93 dF_r = k_torx_r/k_torx*m_s*a_y*(z_g-d)/tr+m*a_y*a/w*dr/tr; % Fz

rear

94

95 if i>1

96 xfr = -(0.5*(- 0.5*rho*v^2*CLA*b_a/w - m_s*a_x/w*(z_g + dz_g)

- 0.5*rho*v^2*CDA*(z_a + dz_a)) + dF_f)/k_rfr;

97 xfl = -(0.5*(- 0.5*rho*v^2*CLA*b_a/w - m_s*a_x/w*(z_g + dz_g)

- 0.5*rho*v^2*CDA*(z_a + dz_a)) - dF_f)/k_rfl;

98 xrr = -(0.5*(- 0.5*rho*v^2*CLA*a_a/w + m_s*a_x/w*(z_g + dz_g)

+ 0.5*rho*v^2*CDA*(z_a + dz_a)) + dF_r)/k_rrr;

99 xrl = -(0.5*(- 0.5*rho*v^2*CLA*a_a/w + m_s*a_x/w*(z_g + dz_g)

+ 0.5*rho*v^2*CDA*(z_a + dz_a)) - dF_r)/k_rrl;

100

101 xfr=xfr-s*(xfr-xfr0);

102 xfl=xfl-s*(xfl-xfl0);

103 xrr=xrr-s*(xrr-xrr0);

104 xrl=xrl-s*(xrl-xrl0);

105 end

106

107 if i==0

108

109 plot (i,xfr,’.k’)

110 hold on

111 plot (i,xfl,’.b’)

112 plot (i,xrr,’.r’)

113 plot (i,xrl,’.g’)

114 title (’Iteration history’)

115 xlabel (’Number of iterations’)

116 ylabel (’Vertical displacement’)

117

118 xfr = -(0.5*(- 0.5*rho*v^2*CLA*b_a/w - m_s*a_x/w*(z_g + dz_g)

- 0.5*rho*v^2*CDA*(z_a + dz_a)) + dF_f - F_arb_f)/k_rfr;
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119 xfl = -(0.5*(- 0.5*rho*v^2*CLA*b_a/w - m_s*a_x/w*(z_g + dz_g)

- 0.5*rho*v^2*CDA*(z_a + dz_a)) - dF_f + F_arb_f)/k_rfl;

120 xrr = -(0.5*(- 0.5*rho*v^2*CLA*a_a/w + m_s*a_x/w*(z_g + dz_g)

+ 0.5*rho*v^2*CDA*(z_a + dz_a)) + dF_r - F_arb_r)/k_rrr;

121 xrl = -(0.5*(- 0.5*rho*v^2*CLA*a_a/w + m_s*a_x/w*(z_g + dz_g)

+ 0.5*rho*v^2*CDA*(z_a + dz_a)) - dF_r + F_arb_r)/k_rrl;

122 i = 1;

123 end

124

125 h = (hf+hr)/2

126 CLA = polyval(pCLA,h)

127 CDA = polyval(pCDA,h)

128

129 F_arb_f = -(xfr/mr_arb_fr^2-xfl/mr_arb_fl^2)*k_arb_f/2;

130 F_arb_r = -(xrr/mr_arb_rr^2-xrl/mr_arb_rl^2)*k_arb_r/2;

131

132 % error

133 e = max([abs(xfr-xfr0) abs(xfl-xfl0) abs(xrr-xrr0) abs(xrl-xrl0)

]);

134 % convergence help

135 s = (1-exp(-i/n)); % change s to retry iteration

136 ef = ef0*(1-s)^(1/s); % scaled error at i

137

138 i = i+1;

139 xfr0 = xfr;

140 xfl0 = xfl;

141 xrr0 = xrr;

142 xrl0 = xrl;

143 end

Code 5.2: Heave roll and pitch calculation

Displacements results are plotted every iteration.
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5.4 Results analysis and further studies

Ground effect has seen to be relevant in force coefficients variations with
height and with the consideration of the real forces acting at different heights, it
was possible to determine a more precise height of the car from the ground.
In the range of heights in which car operates, all the aerodynamic components
works without reaching stall conditions, so the design of all the components
won’t need any modification to adapt at lower heights from the ground.
If smaller ground clearance were reached, the loss in performance could lead to
aerodynamic instabilities, changing the car’s behaviour, that’s not desirable. A
solution for the undertray performance loss could be the use of vortex generators
similar to the ones already present at the LE of the front wing. These elements
could help energizing the boundary layer in the inner part of the undertray,
where detachment starts, creating a small increase in drag, but bringing a strong
benefit in the overall performance at lower heights, were undertray starts its ClA
decay.
All the considerations done in the present chapter are for a steady or quasi
- steady case, in which aerodynamic components operate at every instant as
they operate in steady conditions and transient phases are neglected. This
assumption is really strong, but justified by the slightly changes in ClA and CdA
in the small range of displacement of the car.
A dynamic analysis of the entire car heaving would be interesting to see how
really coefficient varies with time, but extremely expensive in computational
terms.
If we consider the case of a wing creating downforce in freestream, only its
dynamic movement would create changes in forces, with clearly no effect in static
case [3],[11]. The downward motion reduces the wing’s angle of attack, with an
upwash effect that sums its velocity component with the one of the incoming
flow. The upward motion would cause instead an increased angle of attack.
This behaviour is classical and for an oscillating airfoil (in heave and/or pitch)
can be described with the Theodorsen function 𝐶(𝑘) = 𝐹(𝑘) + 𝑖𝐺(𝑘), that model
the changes in amplitude and phase of the sinusoidal unsteady aerodynamic
forces relative to the quasi - steady forces for different reduced frequencies 𝑘:

𝑘 =
𝜔𝑐
2𝑉 = 𝜋

𝑇𝑎𝑒𝑟

𝑇𝑚
(5.1)
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with 𝑐/2 = 𝑏, 𝑇𝑎𝑒𝑟 = 𝑐/𝑉 characteristic time of interaction between a fluid
particle and the airfoil,𝑇𝑚 oscillation time. The quasi - steady approach provides
reasonably accurate results for 𝑇𝑎𝑒𝑟 << 𝑇𝑚 , alternatively it can be found that for
a oscillating motion of heave 𝑧 = 𝑧0𝑒

𝑖𝜔𝑡 and pitch � = �0𝑒
𝑖𝜔𝑡 , the lift force

generated by the profile is:

𝐿 = {𝜋𝜌𝑏2[−𝜔2𝑧0 + 𝑖𝜔𝑉�0 + 𝜔2𝑏𝑎�0]+
+2𝜋𝜌𝑉𝑏(𝐹 + 𝑖𝐺)[𝑖𝜔𝑧0 +𝑉�0 + 𝑖𝜔𝑏(0.5 − 𝑎)�0]}𝑒 𝑖𝜔𝑡

(5.2)

In the case of an heaving airfoil in ground effect, forces response could not be
harmonic due to the presence of the moving ground, making this relation not
valid. A simulation of the case is needed to try to predict a possible behaviour.
This will be the main objective of the next chapter.
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6
Heaving motion - Dynamic Case
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6.1 OpenFOAM

A simulation of a 2D airfoil in oscillating heaving motion is chosen to verify
the dynamic behaviour of an aerodynamic component in ground effect [5]. To
do so, the open source software OpenFOAM is chosen.
OpenFOAM allows highly controllable simulations, with models, discretization
schemes and solvers that can be easily changed in order to achieve a better
convergence. An OpenFOAM case is divided into 3 main directories:

– system: contains the information on parameters associated with the solu-
tion procedure itself. It contains at least the following 3 files:

- controlDict, which contains information on run control parameters
including start time, end time, time step and data output;

- fvSchemes, which contains information on the discretization schemes
used in the solution;

- fvSolution, which contains information on the equation solvers, tol-
erances and other algorithm controls.

Additional files can be included, such as the blockMeshDict which can be
used to automatically generate a mesh;

– constant: contains all the information that are kept constant during a
simulation. It can contain the following dictionaries:

- physicalProperties, a file containing informations on quantities such
as viscosity;

- polyMesh, a full description of the case mesh;

– 0: contains information on initial conditions and boundary conditions.

Firstly a steady state simulation at different instant heights is brought on to
replicate the results obtained for the car in the previous chapter and used to
validate the analysis with respect to two PhD thesis [4], [9].
Then an oscillating motion is imposed to the airfoil in ground effect thanks to a
morphing mesh and results are analysed and compared with the static case.
The airfoil, whose geometry is taken from [4], has chord 𝑐 = 1 m, it’s immersed
in air 𝜌 = 1 𝑘𝑔/𝑚3 � = 3.26 · 10−5 𝑚2/𝑠 at the usual velocity of 15 m/s, that
produce a Reynolds number of 𝑅𝑒 = 4.6 · 105, as the one used in the references.
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6.2 Static analysis

As said before, a static analysis of the phenomenon is done to initialize the
case and validate the models.
Heights, measured from the closest point of the profile to the ground, chosen
for the study are:

– 100 mm

– 120 mm

– 130 mm

– 140 mm

– 160 mm

– 180 mm

– 200 mm

– 300 mm

Every height correspond to a RANS simulation with k - omega turbulence model.
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6.2.1 Geometry and meshing

The aerofoil geometry investigated is a derivative of the LS(I)-0413 MOD
profile of NASA, whose coordinates are taken from the reference case, has a
chord of 1 m and an angle of attack of 3.6 deg.

Figure 6.1: High pressure airfoil side Figure 6.2: Low pressure airfoil side

Domain extends for 4 m in front of the airfoil and 9 m at the back and it’s
3.24 m high. The defined mesh is structured with 89,428 quad elements with
non orthogonality value less than 40 (that is important for schemes and solvers
definition).
𝑦+ value is keep as low as possible both for the ground and the airfoil, trying
to find a good compromise between results accordance and computational cost,
knowing that this mesh will be the same for the dynamic case, which would
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require too much computational time and resources for over defined meshes.
The mesh is 3D, with only one element in the 𝑦 direction (normal to the 2D case)
of unit length, in order to obtain a reference unit area of the airfoil.

Figure 6.3: Generated OpenFOAM mesh for the airfoil at minimum height

Mesh boundary conditions are set all to patches with exception to the ground
and the airfoil, set as walls.
In the 0 folder all the initial conditions are set. U file is reported due to its
importance in determining the boundary conditions:

1 dimensions [0 1 -1 0 0 0 0];

2

3 internalField uniform (15 0 0);

4

5 boundaryField

6 {

7 inlet

8 {

9 type fixedValue;

10 value $internalField;

11 }

12

13 outlet

14 {

15 type inletOutlet;

16 inletValue uniform (0 0 0);

17 value $internalField;

18 }
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19

20 ground

21 {

22 type fixedValue;

23 value $internalField;

24 }

25

26 wing

27 {

28 type movingWallVelocity;

29 value uniform (0 0 0);

30 }

31

32 top

33 {

34 type slip;

35 }

36

37 front

38 {

39 type empty;

40 }

41

42 back

43 {

44 type empty;

45 }

46 }

Code 6.1: U initial conditions

6.2.2 Models, schemes and solvers

As said, for the static case simulations RANS with k - omega SST turbulence
are used.
In the constant folder, momentumTransport, in fact, shows:

1 simulationType RAS;

2

3 RAS

4 {

5 model kOmegaSST;

6
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7 turbulence on;

8

9 printCoeffs on;

10 }

Code 6.2: momentumTransport

which identifies the model used.
In system, controlDict indicates the application to run the simulation, simple-
Foam is the best one for steady state incompressible flows. Simulation stops
after 4000 iterations and print out forces and forces coefficient, residuals and 𝑦+

value on walls thru the OpenFOAM libraries:

1 application simpleFoam;

2

3 startFrom latestTime;

4

5 startTime 0;

6

7 stopAt endTime;

8

9 endTime 4000;

10

11 deltaT 1;

12

13 writeControl runTime;

14

15 writeInterval 100;

16

17 purgeWrite 0;

18

19 writeFormat binary;

20

21 writePrecision 6;

22

23 writeCompression off;

24

25 timeFormat general;

26

27 timePrecision 6;

28

29 runTimeModifiable true;

30

31 functions
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32 {

33 forces

34 {

35 type forces;

36 libs ("libforces.so");

37 writeControl timeStep;

38 writeInterval 10;

39 patches (wing);

40 rho rhoInf;

41 log true;

42 rhoInf 1;

43 CofR (0 0 0);

44 }

45 forceCoeffs1

46 {

47 type forceCoeffs;

48 libs ("libforces.so");

49 writeControl timeStep;

50 writeInterval 10;

51 log yes;

52 patches (wing);

53 liftDir (0 -1 0);

54 dragDir (1 0 0);

55 pitchAxis (0 0 1);

56 rho rhoInf;

57 rhoInf 1;

58 magUInf 15;

59 lRef 1;

60 Aref 1;

61 CofR (0 0 0);

62 }

63 residuals

64 {

65 type residuals;

66 libs ("libutilityFunctionObjects.so");

67 writeInterval 100;

68 fields (p U e k omega nuTilda);

69 }

70 yPlus

71 {

72 libs ("libfieldFunctionObjects.so");

73 type yPlus;

74 writeControl adjustableRunTime;
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75 writeInterval 100;

76 }

77 }

Code 6.3: controlDict - static case

fvSolution set the solvers for p, U, k and omega, defines simple algorithm and
relaxation factors:

1 solvers

2 {

3 p

4 {

5 solver GAMG;

6 tolerance 1e-7;

7 relTol 0.1;

8 smoother GaussSeidel;

9 }

10

11 U

12 {

13 solver smoothSolver;

14 smoother GaussSeidel;

15 tolerance 1e-8;

16 relTol 0.1;

17 nSweeps 1;

18 }

19

20 k

21 {

22 solver smoothSolver;

23 smoother GaussSeidel;

24 tolerance 1e-8;

25 relTol 0.1;

26 nSweeps 1;

27 }

28

29 omega

30 {

31 solver smoothSolver;

32 smoother GaussSeidel;

33 tolerance 1e-8;

34 relTol 0.1;

35 nSweeps 1;

36 }
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37 }

38

39 SIMPLE

40 {

41 nNonOrthogonalCorrectors 0;

42 }

43

44 relaxationFactors

45 {

46 fields

47 {

48 p 0.3;

49 }

50 equations

51 {

52 "(U|k|omega)" 0.7;

53 }

54 }

55

56 cache

57 {

58 grad(U);

59 }

Code 6.4: fvSolution - static case

linear solver used are Generalized Geometric Algebraic Mltigrid (GAMG) for
pressure (recommended) and the smoothSolver for the others quantities, which
consists in a solver smoothed by another linear solver, in this case the Gauss
Seidel method. Non orthogonal correctors for the simple algorithm are set to
0 since there’s no necessity to recalculate the value of p for meshes with non
orthogonality less than 40. Relaxation factors are set to a default value for this
external aerodynamics incompressible case.
fvSchemes defines discretization schemes for convective, diffusive and gradient
terms:

1 ddtSchemes

2 {

3 default steadyState;

4 }

5

6 gradSchemes

7 {
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8 default Gauss linear;

9 grad(p) Gauss linear;

10 grad(U) Gauss linear;

11 }

12

13 divSchemes

14 {

15 default none;

16 div(phi,U) bounded Gauss linearUpwind grad(U);

17 div(phi,k) bounded Gauss linearUpwind grad(omega);

18 div(phi,omega) bounded Gauss linearUpwind grad(omega);

19 div((nuEff*dev2(T(grad(U))))) Gauss linear;

20 }

21

22 laplacianSchemes

23 {

24 default Gauss linear corrected;

25 }

26

27 interpolationSchemes

28 {

29 default linear;

30 }

31

32 snGradSchemes

33 {

34 default corrected;

35 }

36

37 wallDist

38 {

39 method meshWave;

40 }

Code 6.5: fvSchemes - static case

time discretization isn’t necessary in steady state. Convective terms (divSchemes)
use a second order accurate scheme bounded (Gauss linear upwind), more stable
than the unbounded one (Gauss linear). laplacianSchemes and snGradSchemes
(diffusive terms) use a fully orthogonal scheme, that’s the best choice for good
quality meshes. Gradient terms avoid limiters increasing accuracy.
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6.2.3 Plots and post processing

Residuals are saved during the iterations and its plots monitored through the
application foamMonitor. These plots define how well the simulation converges
and represent only the initial residual, before the linear solver. This is a default
in OpenFOAM, with initial residuals that give a better understanding of the
simulation convergence, while final residuals are easily lowered earlier.
Forces are collected in files from which a Python script extract their values in
a format more compatible with Fortran90 and Gnuplot. Thanks to Gnuplot it’s
possible to print out the force coefficient plot with respect to iterations.
For example at the height 160 mm:

Figure 6.4: Residuals plot - 160 mm static case

Initial residuals reach sufficiently low values and force coefficients show a good
convergence of the values.
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Figure 6.5: Cl plot - 160 mm static case

Figure 6.6: Cd plot - 160 mm static case

The post processing is executed in Paraview. Contours of velocity and pressure
are created and the plot of the pressure coefficient around the airfoil is extracted.
Scenes and plots extracted in this phase have mainly the objective to validate the
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simulations, in order to have a good starting point for the dynamic analysis.
Scenes for the case at 160 mm height:

Figure 6.7: Velocity scene - 160 mm static case

Figure 6.8: Pressure scene - 160 mm static case

102



CHAPTER 6. HEAVING MOTION - DYNAMIC CASE

6.2.4 Results of the analysis and validation

Studying a ground effect case in 2D, the Cd won’t be an important value to
take in consideration for the analysis. For this reason the Cl values will be the
ones reported more frequently.
Values of Cl and Cd for different height from the ground are:

h [mm] Cl Cd
100 1.396 0.056
120 1.403 0.049
130 1.406 0.046
140 1.412 0.043
160 1.413 0.039
180 1.400 0.035
200 1.379 0.033
300 1.242 0.025

Table 6.1: Force coefficients - OpenFOAM static case

It can be immediately clear that the behaviour seen in the static analysis of
the whole car is confirmed also for a 2D airfoil, with an increase in Cl with
smaller heights from ground, with the profile that behaves as a Venturi channel,
and a decrease after the profile gets too close, due to the stall. In 2D Cd grows
constantly moving towards the ground as expected, since there aren’t tip vortices
and induced drag.
The Cl - h curve can be compared with the one obtained by David and Zerihan
[4] through a wind tunnel simulation of the same case:

Figure 6.9: Cl plot with respect to h validation
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Curve obtained has the same trend of the exact one, with a slightly overestima-
tion of Cl. It’s possible to notice how both maximum in downforce are around
the height of 150 mm and the stall is well predicted by the model.
Pressure coefficient around the airfoil are also compared at some height from
the ground:

Figure 6.10: Cp plot - 180 mm height

Figure 6.11: Cp plot - 130 mm height
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Figure 6.12: Cp plot - 180 mm height
real case

Figure 6.13: Cp plot - 130 mm height
real case

For both heights considered, Cp is sufficiently well predicted, confirming what
has been seen for the Cl. A slightly minor Cp in the low pressure side justifies
the small overestimation seen for the downforce.
Comparing the results obtained between different heights it’s noticeable how
lower pressure coefficients are obtained at lower heights, with a stronger adverse
pressure gradient that at a too low ground proximity creates a stall, visible both
from the velocity scene and the Cp plot, with a characteristic shape in the lower
part of the profile near the trailing edge, with higher values of Cp reached earlier.
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Figure 6.14: Cp plot - 300 mm height

Figure 6.15: Cp plot - 100 mm height
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Figure 6.16: Velocity scene - 300 mm height

Figure 6.17: Velocity scene - 100 mm height
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6.3 Dynamic analysis

The same airfoil in the domain considered earlier is then put in an oscillatory
motion, to verify its dynamic behaviour in ground effect. Results will then
be analysed and some hypothesis of the car’s behaviour in a similar situation,
extending the results obtained, will be made.
Qualitative results can also be compared to the similar work bring out by Molina
and Zhang [10].
Three different analysis will be made, varying the amplitude and the period of
the cosinusoidal motion:

– 𝐴 = 50 mm, 𝜔 = 6.28 rad/s, 𝑇𝑚 = 1 s;

– 𝐴 = 15 mm, 𝜔 = 6.28 rad/s, 𝑇𝑚 = 1 s;

– 𝐴 = 15 mm, 𝜔 = 3.14 rad/s, 𝑇𝑚 = 2 s.

The first simulation has a wide oscillation in a short period of time, exaggerating
the dynamic effects, with a fast moving airfoil between the minimums and
maximums of the function. The second one has a reduced amplitude, closer
to the one experienced by the car, that will imply slower transitions between
maximum and minimum positions. The last simulation doubles the period of
oscillation, halving 𝜔 and so the reduced frequency 𝑘, theoretically bringing the
solution closer to the steady state one.

6.3.1 Dynamic mesh

The method chosen to simulate the oscillating airfoil is the one using a
morphing mesh. The starting mesh from the steady state analysis is deformed
following the airfoil movement, changing cell sizes and positions. This can lead
to bad quality cells and is in fact used only because the oscillation amplitudes
are small, making the remeshing unnecessary.
To do so, in constant, the file dynamicMeshDict is added:

1 mover

2 {

3 type motionSolver;

4

5 libs ("libfvMeshMovers.so" "libfvMotionSolvers.so");

6
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7 motionSolver displacementSBRStress;

8

9 diffusivity inverseDistance (wing ground);

10 }

Code 6.6: dynamicMeshDict

This file defines the solver for the motion, that in this case is a displacement solver
called SBR Stress, that’s an evolution of the Laplacian displacement solver, based
on solving the cell centre solid body rotation stress equations for the motion
displacement:

∇ · (𝛾∇x) + ∇ · 𝛾[(∇x𝑇 − ∇x) − 𝑡𝑟(∇x)I] = 0 (6.1)

with 𝛾 motion diffusivity, x point displacement and the first term of the equation
∇ · (𝛾∇x) Laplacian displacement.
Diffusivity is important to maintain cells around the walls fixed, deforming only
the ones that are in zones of less interest. In this case inverseDistance is used
on the walls (the airfoil and the ground), a more restrictive diffusivity method
such as quadratic inverseDistance would have fixed the position of too many
cells between airfoil and ground, causing a wide deformation of few cells that
will create a bad quality mesh.
In the 0 folder is necessary to add the desired displacements of mesh boundaries
in the file pointDisplacement:

1 dimensions [0 1 0 0 0 0 0];

2

3 internalField uniform (0 0 0);

4

5 boundaryField

6 {

7 wing

8 {

9 type myoscillatingDisplacement;

10 amplitude (0 -0.05 0);

11 omega 6.28;

12 value uniform (0 0 0);

13 }

14

15 front

16 {

17 type empty;
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18 }

19

20 back

21 {

22 type empty;

23 }

24

25 ".*"

26 {

27 type fixedValue;

28 value uniform (0 0 0);

29 }

30 }

Code 6.7: pointDisplacement

inlet, outlet, top patch and ground are fixed. Wing is instead described by an
oscillatory movement, with an amplitude and a omega. It can be noticed how
the type of motion is myoscillatingDisplacement instead of the OpenFOAM stan-
dard oscillatingDisplacement. This is due to a change in the standard definition
of the oscillation motion, that is a sine, into a cosine function, to better adapt to
the problem as will be explained later, by creating a new OpenFOAM library. To
do so in $WM_PROJECT_USER_DIR a path equal to the one that identifies the
standard oscillatingDisplacement is created, with the last folder called myoscil-
latingDisplacements containing the original files .C and .H modified with a my
at the beginning. In .C, the line 111 that defines the sine motion function is
changed to:

1 Field<vector >::operator=(amplitude_*cos(omega_*t.value())-

amplitude_)

Code 6.8: myoscillatingDisplacement function changes

To make this change effective, the Make folder relative to the oscillatingDisplace-
ment must be created in the new path in the same position of the original one,
with inside the files called files and options. In particular files must be modified
with the new libraries:

1 derivedPoint = pointPatchFields/derived

2

3 $(derivedPoint)/myoscillatingDisplacement/

myoscillatingDisplacementPointPatchVectorField.C

4
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5 LIB = $(FOAM_USER_LIBBIN)/libmyfvMotionSolvers

Code 6.9: new library definition in files

Running the wmake, OpenFOAM compiles the new libraries and creates the new
motion myoscillatingDisplacement.
This choice, as anticipated, was necessary to obtain the desired oscillatory mo-
tion. In fact, airfoil lowest point from the ground (100 mm) is chosen as starting
position in order to have only bigger cells under the profile during the whole
morphing process, avoiding too compressed cells or the creation of invalid cells
at the lower heights from the ground, bringing bad quality cells when they
are more important. So the new motion is a cosine function, that needs to be
translated in the origin:

𝐴 · cos(𝜔 · 𝑡) − 𝐴 (6.2)

to start from a minimum, 𝐴 should be negative.

6.3.2 Models, schemes and solvers

The simulation starts from the fields of the last iteration of the static case at
100 mm height from the ground. To do so the application mapFields is used.
Also this set of simulations will be RANS solved with kOmegaSST model, with
the difference of being transient simulations, often referred to as Unsteady RANS
(URANS), in which time discretization is important and Courant number must
be checked constantly as already anticipated in the previous chapters.
In this case controlDict is set as follows:

1 libs ("libmyfvMotionSolvers.so");

2

3 application pimpleFoam;

4

5 startFrom latestTime;

6

7 startTime 0;

8

9 stopAt endTime;

10

11 endTime 2;

12

13 deltaT 1e-5;

14
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15 writeControl adjustableRunTime;

16

17 writeInterval 1e-2;

18

19 purgeWrite 0;

20

21 writeFormat binary;

22

23 writePrecision 10;

24

25 writeCompression off;

26

27 timeFormat general;

28

29 timePrecision 6;

30

31 runTimeModifiable true;

32

33 adjustTimeStep yes;

34

35 maxCo 0.8;

Code 6.10: controlDict - dynamic case

It’s immediately clear how time treatment changes from the static case. The
starting delta time imposed in the simulation is 1 · 10−5 s and the adjustableRun-
Time feature is chosen. This control allows the automatic change of the timestep
in order to respect the maximum Courant number indicated, that is set to be
0.8 to stay in safe conditions. OpenFOAM automatically increase the timestep
when it’s possible, making the simulation faster, and lowers it when CFL reaches
critical values, slowing down the simulation in favour of accuracy.
Functions requested are the same from the steady state case, but the additional
library libmyfvMotionSolvers needs to be mentioned to run the simulation with
the new command myoscillatingDisplacement.
For every case the end time is set after two periods are completed, 2 s in the
first two cases, 4 s in the third one. Notably, the behaviour observed in the
second period mirrors that of the third period in early studies. Consequently,
for analytical purposes, it is deemed reasonable to treat the second period as a
regime condition.
The fvSchemes are kept similar to the steady state ones, that showed good re-
sults, with small changes in the divSchemes for k and omega, in search of more
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accuracy:

1 ddtSchemes

2 {

3 default CrankNicolson 0.7;

4 }

5

6 gradSchemes

7 {

8 default Gauss linear;

9 grad(p) Gauss linear;

10 grad(U) Gauss linear;

11 }

12

13 divSchemes

14 {

15 default none;

16 div(phi,U) Gauss linearUpwind grad(U);

17 div(phi,k) Gauss limitedLinear 1;

18 div(phi,omega) Gauss limitedLinear 1;

19 div((nuEff*dev2(T(grad(U))))) Gauss linear;

20 }

21

22 laplacianSchemes

23 {

24 default Gauss linear corrected;

25 }

26

27 interpolationSchemes

28 {

29 default linear;

30 }

31

32 snGradSchemes

33 {

34 default corrected;

35 }

36

37 wallDist

38 {

39 method meshWave;

40 }

Code 6.11: fvSchemes - dynamic case
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Time discretization scheme chosen is a Crank - Nicholson blended with Euler
at the value of 0.7. This means that the used scheme is almost a pure Crank -
Nicholson second order accurate implicit scheme, with a small value of relax-
ation to obtain a better stability.
Fundamental for the simulation convergence is also the solver used for the cal-
culations, already indicated in the controlDict: pimpleFOAM, a transient solver
for incompressible, turbulent flow of Newtonian fluids on a moving mesh. Its
settings are indicated in fvSolution, together with the definition of the other
linear solvers and the relaxation factors, that in this case are:

1 solvers

2 {

3 "pcorr.*"

4 {

5 solver GAMG;

6 tolerance 1e-7;

7 relTol 0;

8 smoother GaussSeidel;

9 }

10

11 p

12 {

13 $pcorr;

14 tolerance 1e-6;

15 relTol 0.01;

16 }

17

18 pFinal

19 {

20 $p;

21 tolerance 1e-7;

22 relTol 0;

23 }

24

25 "(U|k|omega)"

26 {

27 solver smoothSolver;

28 smoother symGaussSeidel;

29 tolerance 1e-06;

30 relTol 0.1;

31 }

32
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33 "(U|k|omega)Final"

34 {

35 $U;

36 tolerance 1e-07;

37 relTol 0;

38 }

39

40 cellDisplacement

41 {

42 solver GAMG;

43 tolerance 1e-7;

44 relTol 0;

45 smoother GaussSeidel;

46 }

47 }

48

49 PIMPLE

50 {

51 momentumPredictor yes;

52 correctPhi yes;

53 nOuterCorrectors 50;

54 nCorrectors 3;

55 nNonOrthogonalCorrectors 1;

56

57 outerCorrectorResidualControl

58 {

59 p

60 {

61 tolerance 1e-4;

62 relTol 0;

63 }

64 }

65 }

66

67 relaxationFactors

68 {

69 fields

70 {

71 p 0.3;

72 pFinal 1;

73 }

74 equations

75 {
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76 "(U|k|omega)" 0.7;

77 "(U|k|omega)Final" 1.0;

78 }

79 }

80

81 cache

82 {

83 grad(U);

84 }

Code 6.12: fvSolution - dynamic case

Changes with respect to the static case are visible. Final quantities identify
the last value of the field for each timestep. They are requested with stricter
tolerances in order to obtain a more precise final iteration, while keeping the
first iterations of the same timestep faster thanks to the smaller tolerances used.
The presence of the pimple algorithm permits to still have relaxation factors for
the value of p, U, k and omega, but their final values at each timestep needs to
be calculated without any relaxation in order to be time consistent.
The pcorr and cellDisplacement quantities are strictly related to the morphing
mesh and are solved at the start of every timestep to correct the solution to the
mesh change.
What coordinates the whole solution is the pimple solver, defined in its section,
whose algorithm will be treated in the next theoretical overview.

6.3.3 Theoretical overview

The pimple algorithm, which stands for piso (Pressure Implicit with Splitting
of Operators) and simple (Semi-Implicit Method for Pressure-Linked Equations),
it’s an iterative method that combines the two algorithms, the first one typical
of transient simulations, while the first one, as already said, is classical for the
steady state ones.
In general, within in time the algorithms solve a pressure equation, to enforce
mass conservation, with an explicit correction to velocity to satisfy momentum
conservation. They optionally begin each step by solving the momentum equa-
tion, the so-called momentum predictor [2].
While all the algorithms solve the same governing equations, the algorithms
principally differ in how they loop over the equations. In the case of the pimple
algorithm, loop is controlled in the fvSolution file by these input parameters:
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– momentumPredictor: switch that controls solving of the momentum pre-
dictor. Typically set to no for some flows, including low Reynolds number
and multiphase, set to yes in the case treated;

– nOuterCorrectors: it enables looping over the entire system of equations
within one time step, representing the total number of times the system
is solved. It must be ≥ 1, if it’s set to 1 the algorithm chosen is the piso
one. Larger numbers correspond to the pimple algorithm, that loops like
a simple algorithm inside the same timestep. In the simulations a value of
50 will be used, but a residual control is added to stop the loops when the
tolerance on pressure is reached;

– nCorrectors: sets the number of times the algorithm solves the pressure
equation and momentum corrector in each step. It’s typically set to 2 or 3.
It’s a great parameter to help convergence, but computational demanding.
In the simulations the value of 3 will be used;

– nNonOrthogonalCorrectors: specifies repeated solutions of the pressure
equation, used to update the explicit non - orthogonal correction of the
Laplacian term ∇2𝑝; typically set to 0 for steady-state and 1 for transient
cases. Major numbers could help in the case of meshes with a high non
orthogonality. In the case treated a value of 1 is chosen due to the good
quality mesh used.

In particular, the pimple loop is essentially a predictor - corrector algorithm
(as discussed in [16]), that in an incompressible problem can be described as
follows:

– predictor: predicts the pressure field p, discretizes the momentum equa-
tion based on p, and solves the linear system of u;

– corrector: constructs and discrete the pressure equation based on the up-
dated velocity field;

– solves the produced linear system of p;

– updates the velocity field based on the new pressure field.

In terms of equations, for 2 loops (nOuterCorrectors = 2):

𝜕u
𝜕𝑡

+ u · ∇u = −
∇𝑝
𝜌

+ �∇2u (6.3)

∇2𝑝 = 𝑓 (u,∇𝑝) (6.4)
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→ 𝑝new

→ corrects u with 𝑝new → ucorrected

→ ucorrected and 𝑝new for the second loop

𝜕u
𝜕𝑡

+ u · ∇u = −
∇𝑝
𝜌

+ �∇2u (6.5)

∇2𝑝 = 𝑓 (u,∇𝑝) (6.6)

→ 𝑝new

→ corrects u with 𝑝new → ucorrected

A number > 1 for the nCorrectors forces the solution of the equation ∇2𝑝 =

𝑓 (u,∇𝑝) more times in the same loop.
A number > 0 for nNonOrthogonalCorrectors means that the pressure field is
corrected more often: ∇2𝑝 = 𝑓 (u,∇𝑝) → 𝑝new → ∇2𝑝new = 𝑓 (u,∇𝑝new).
In the case of study the additional parameter correctPhi is set to yes, this is
required for moving meshes, when non - conservative fluxes may adversely
affect the prediction - part of the solution algorithm.
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6.3.4 Plots and post processing

Similarly to the static case, initial residuals can be plotted, ensuring the
convergence of the analysis, the example of the first dynamic case is reported:

Figure 6.18: Initial residuals plot - first dynamic case

Final residuals are difficult to extract due to the high number of loops and
correction per timestep, but a classical timestep solution from the log file of the
first dynamic simulation is reported:

1 Courant Number mean: 0.03830375014 max: 0.7961923356

2 deltaT = 9.615384615e-05

3 Time = 0.998173s

4

5 PIMPLE: Iteration 1

6 GAMG: Solving for cellDisplacementx , Initial residual = 3.98915685e

-06, Final residual = 6.849449974e-08, No Iterations 8

7 GAMG: Solving for cellDisplacementy , Initial residual =

0.01379196604, Final residual = 5.542660852e-08, No Iterations 4

8 GAMG: Solving for pcorr, Initial residual = 1, Final residual =

5.864329887e-07, No Iterations 1000

9 GAMG: Solving for pcorr, Initial residual = 0.2199107821, Final

residual = 9.957794281e-08, No Iterations 512
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10 time step continuity errors : sum local = 3.984107427e-16, global =

2.162928274e-17, cumulative = -8.457096724e-10

11 smoothSolver: Solving for Ux, Initial residual = 6.254373643e-05,

Final residual = 1.099463018e-07, No Iterations 1

12 smoothSolver: Solving for Uy, Initial residual = 0.0001016654866,

Final residual = 1.358196202e-07, No Iterations 1

13 GAMG: Solving for p, Initial residual = 0.2901361726, Final residual

= 0.002067847672, No Iterations 6

14 GAMG: Solving for p, Initial residual = 0.008191287276, Final

residual = 7.959008533e-05, No Iterations 111

15 time step continuity errors : sum local = 8.468891828e-11, global =

3.939484692e-12, cumulative = -8.417701877e-10

16 GAMG: Solving for p, Initial residual = 0.188488328, Final residual

= 0.001569122041, No Iterations 6

17 GAMG: Solving for p, Initial residual = 0.005904987227, Final

residual = 5.734323036e-05, No Iterations 111

18 time step continuity errors : sum local = 6.095309446e-11, global =

2.803457387e-12, cumulative = -8.389667303e-10

19 GAMG: Solving for p, Initial residual = 0.1886594434, Final residual

= 0.001653022362, No Iterations 6

20 GAMG: Solving for p, Initial residual = 0.005957906408, Final

residual = 9.86365954e-08, No Iterations 513

21 time step continuity errors : sum local = 1.048508515e-13, global =

3.306971376e-15, cumulative = -8.389634233e-10

22 PIMPLE: Iteration 2

23 smoothSolver: Solving for Ux, Initial residual = 2.26879405e-05,

Final residual = 4.813264249e-08, No Iterations 1

24 smoothSolver: Solving for Uy, Initial residual = 5.739080022e-05,

Final residual = 1.143557692e-07, No Iterations 1

25 GAMG: Solving for p, Initial residual = 0.02610869272, Final

residual = 0.0002588895453, No Iterations 14

26 GAMG: Solving for p, Initial residual = 0.00183913786, Final

residual = 1.805928988e-05, No Iterations 88

27 time step continuity errors : sum local = 1.871998739e-11, global =

-1.110581282e-12, cumulative = -8.400740046e-10

28 GAMG: Solving for p, Initial residual = 0.01801475291, Final

residual = 0.0001651179362, No Iterations 15

29 GAMG: Solving for p, Initial residual = 0.001264752893, Final

residual = 1.235106228e-05, No Iterations 93

30 time step continuity errors : sum local = 1.279651069e-11, global =

-7.26412467e-13, cumulative = -8.40800417e-10

31 GAMG: Solving for p, Initial residual = 0.01808153755, Final

residual = 0.0001803164008, No Iterations 14
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32 GAMG: Solving for p, Initial residual = 0.001279932576, Final

residual = 9.97009243e-08, No Iterations 438

33 time step continuity errors : sum local = 1.033105753e-13, global =

-3.296566796e-15, cumulative = -8.408037136e-10

34 ...

35 PIMPLE: Iteration 6

36 smoothSolver: Solving for Ux, Initial residual = 2.12412882e-07,

Final residual = 2.12412882e-07, No Iterations 0

37 smoothSolver: Solving for Uy, Initial residual = 3.746545564e-07,

Final residual = 3.746545564e-07, No Iterations 0

38 GAMG: Solving for p, Initial residual = 6.660833102e-05, Final

residual = 7.224679115e-07, No Iterations 5

39 GAMG: Solving for p, Initial residual = 2.678958171e-06, Final

residual = 7.55360342e-07, No Iterations 1

40 time step continuity errors : sum local = 7.759388169e-13, global =

3.549794054e-15, cumulative = -8.409622078e-10

41 GAMG: Solving for p, Initial residual = 5.370588674e-05, Final

residual = 9.962541915e-07, No Iterations 6

42 GAMG: Solving for p, Initial residual = 2.537929804e-06, Final

residual = 7.86334491e-07, No Iterations 3

43 time step continuity errors : sum local = 8.077543894e-13, global =

-2.323130225e-14, cumulative = -8.409854391e-10

44 GAMG: Solving for p, Initial residual = 5.276359697e-05, Final

residual = 9.911565032e-07, No Iterations 7

45 GAMG: Solving for p, Initial residual = 2.489207039e-06, Final

residual = 9.82512751e-08, No Iterations 94

46 time step continuity errors : sum local = 1.009277038e-13, global =

-4.438484572e-15, cumulative = -8.409898776e-10

47 PIMPLE: Converged

48 Doing final iteration

49 PIMPLE: Iteration 7

50 smoothSolver: Solving for Ux, Initial residual = 1.048341791e-07,

Final residual = 2.204477177e-09, No Iterations 1

51 smoothSolver: Solving for Uy, Initial residual = 1.882534584e-07,

Final residual = 1.301356568e-09, No Iterations 1

52 GAMG: Solving for p, Initial residual = 0.2743782153, Final residual

= 0.002514568522, No Iterations 5

53 GAMG: Solving for p, Initial residual = 0.01202640473, Final

residual = 0.0001187479976, No Iterations 109

54 time step continuity errors : sum local = 1.064038545e-10, global =

-4.580082365e-12, cumulative = -8.455699599e-10

55 GAMG: Solving for p, Initial residual = 0.2069682659, Final residual

= 0.001932275222, No Iterations 5
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56 GAMG: Solving for p, Initial residual = 0.008458428204, Final

residual = 8.342702986e-05, No Iterations 111

57 time step continuity errors : sum local = 7.488150863e-11, global =

-3.207179161e-12, cumulative = -8.487771391e-10

58 GAMG: Solving for p, Initial residual = 0.2070622312, Final residual

= 0.001930625997, No Iterations 5

59 GAMG: Solving for p, Initial residual = 0.008461074543, Final

residual = 9.924075659e-08, No Iterations 519

60 time step continuity errors : sum local = 8.909250192e-14, global =

-2.752655844e-15, cumulative = -8.487798918e-10

61 smoothSolver: Solving for omega, Initial residual = 2.395115419e-06,

Final residual = 1.16337789e-08, No Iterations 1

62 smoothSolver: Solving for k, Initial residual = 1.295011867e-05,

Final residual = 6.660959204e-08, No Iterations 1

63 PIMPLE: Converged in 7 iterations

64 ExecutionTime = 77357.87624 s ClockTime = 77984 s

65

66 forces write:

67 sum of forces:

68 pressure : (4.995938838 183.7683503 1.496218718e-11)

69 viscous : (1.414762971 0.05697095052 6.336857517e-15)

70 porous : (0 0 0)

71 sum of moments:

72 pressure : (91.88417516 2.497969419 -67.44080192)

73 viscous : (0.02848547526 0.7073814855 0.05101090163)

74 porous : (0 0 0)

75 forceCoeffs write:

76 Cm = -0.5990203646

77 Cd = 0.05698401608

78 Cl = 1.634002856

79 Cl(f) = 0.2179810633

80 Cl(r) = 1.416021793

Code 6.13: pimpleFoam timestep log

The loop refers to the time 0.998173s, it can be noticed how Courant number is
kept under the limit value of 0.8 while the timestep is increased to 9.6 · 10−5 s,
almost ten times the starting value.
There are 6 pimple iterations, then the convergence of the nOuterCorrectors is
reached and the final iteration with no relaxation to regain the time consistency
is started. Each iteration the pressure field is solved 3 times (nCorrectors) and
corrected twice (nNonOrthogonalCorrectors).
Residuals are lowered easily in the first 6 pimple loops (that are actually like
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simple ones), then in the last pimple iteration initial residual for p grows again
due to the change in relaxation, but it’s brought down again inside the loop in a
faster way that it would have been in the case of a piso algorithm.
After some predefined timesteps, forces and force coefficients are printed out.
The already mentioned Python script, together with a Fortran script, launch
Gnuplot, plotting and saving plots of Cl - h, Cl - t, Cd - h and Cd - t. The Fortran
script reads and treats forces data as follows:

1 program

2

3 use,intrinsic :: iso_fortran_env ,only: rp => real64

4 implicit none

5

6 character*256 :: ctmp

7 integer :: fid,err

8 integer :: i=0,num_lines=0

9 real(rp), allocatable :: time(:),lift(:),drag(:),momentz(:),

height(:),cl(:),cd(:)

10

11 open(newunit=fid,file="forces.txt",status="unknown",iostat=err)

12

13 do while(err==0)

14 num_lines=num_lines+1

15 read(fid,*,iostat=err) ctmp

16 end do

17

18 num_lines=num_lines -1

19

20 allocate(time(num_lines),lift(num_lines),drag(num_lines),momentz(

num_lines),height(num_lines),cl(num_lines),cd(num_lines))

21

22 rewind(fid)

23 do i=1,num_lines

24 read(fid,*) time(i),lift(i),drag(i),momentz(i)

25 end do

26

27 do i=1,num_lines

28 height(i)=-0.05_rp*cos(6.28_rp*time(i))+0.05_rp

29 cl(i)=lift(i)/(0.5_rp*15_rp**2_rp)

30 cd(i)=drag(i)/(0.5_rp*15_rp**2_rp)

31 end do

32

33 close(fid)
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34

35 open(newunit=fid,file="forces_plot.txt",status="unknown",iostat=

err)

36

37 if(err==0) then

38 do i=100,num_lines

39 write(fid,*) height(i),time(i),cl(i),cd(i)

40 end do

41 end if

42

43 close(fid)

44

45 deallocate(time,lift,drag,momentz,height,cl,cd)

46

47 call execute_command_line("gnuplot -p // graph.dat")

48

49 end program

Code 6.14: Fortran90 script for post processing

The initial timesteps are skipped to improve result visualization, removing
the initial oscillations during the less informative transition phase between the
steady state (which initializes the solution) and the oscillating problem.
Also the satisfaction of regime conditions indicates that the simulation has con-
verged.
Field of p, U and TKE will be analysed in Paraview.

6.3.5 Results of the analysis

The results for the three simulations are reported and analysed in this chap-
ter.
The first simulation features an oscillation amplitude of 50 mm, leading to a
maximum displacement of 100 mm from the starting point, at 100 mm from the
ground. 𝜔 = 6.28 rad/s, which implies a period of 1 s. Speaking in terms of
reduced frequencies: 𝑘 = 0.21. The high number shows the predominance of
the dynamic effects with respect to the steady state ones, so a really different
behaviour from static case is expected.
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Cl and Cd are reported in function of time:

Figure 6.19: Cl vs t - first dynamic case

Figure 6.20: Cd vs t - first dynamic case

The force coefficients oscillate with the airfoil in time, with the Cd that assumes a
quasi - cosinusoidal shape with a phase shift, similar to the theory of Theodorsen.
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The Cl curve is instead different, with smaller peaks of Cl. It’s immediately clear
that the simulation reaches regime conditions early, with a behaviour that is
different between the descending and ascending phase, noticeable from the non
symmetric oscillation.
To better understand the forces variations, Cl and Cd are referred to the height
from the ground:

Figure 6.21: Cl vs h - first dynamic case

Cl is considerably higher that the one measured in steady state conditions. The
peak is also shifted closer to the ground, with the airfoil that reaches a Cl value
around 1.7 at an height close to 100 mm (that correspond to the zero in the
graphs) instead of the 1.4 at 150 mm of the static case. An hysteresis behavior is
also present:

– in the upward motion a loss in Cl is reported, strong for low height where
the motion velocity is slow, reduced for heights higher than 130 mm, with
vertical speeds of the profile that contrast the downforce loss generating
an augmented relative angle of attack;

– in the downward motion the opposite behaviour happens, with the min-
imum in Cl reached at 190 mm during the upward motion, where both
effects of relative angle of attack and ground effect are in contrast for
downforce creation. At low heights the reduced angle of attack is instead
beneficial, helping the profile to delay the boundary layer separation and
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the partial stall of the profile, causing early downforce losses. The peak
in downforce is in fact reached in this phase, with boundary layer that
detaches really close to 100 mm.

– Boundary layer reattaches during the upward motion phase at higher
heights than the downward motion.

Figure 6.22: Cl vs h - first dynamic case

It’s clear how the motion of the profile increases the effect of downforce gain
with ground proximity, with the profile that can go really low without stalling.
This is confirmed by the scenes extracted in paraview:

Figure 6.23: Pressure scene at peak Cl - first dynamic case
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Figure 6.24: Velocity scene at 1.25 s - first dynamic case

Figure 6.25: Velocity scene at 1.5 s - first dynamic case
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Figure 6.26: Velocity scene at 1.75 s - first dynamic case

Figure 6.27: Velocity scene at 2 s - first dynamic case

This first case uses a wide range of displacement, that involves a fast motion of
the airfoil. To analyse a case closer to the one of the car, the second one sets the
amplitude value to 15 mm, that implies a maximum vertical displacement of 30
mm (from 100 mm to 130 mm), with the same period of 1 s.
This choice will introduce slower movements, that should bring the solution a
little bit closer to the steady state case, even if 𝑘 is unchanged.
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Cl and Cd with respect to time:

Figure 6.28: Cl vs t - second dynamic case

Figure 6.29: Cd vs t - second dynamic case

Curves are similar to a shifted cosinusoid. Peak in Cl is close to the minimum
height (that happens at 1 s and 2 s) also in this case. Lower maximum values
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of Cl and Cd can be noted, while lower values are clearly higher thanks to the
smaller maximum height from the ground. With the height in the 𝑥 axis:

Figure 6.30: Cl vs h - second dynamic case

Figure 6.31: Cd vs h - second dynamic case

Hysteresis is still present and the shape is clearly different from the first case,
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but the main effect is confirmed: the boundary layer reattaches at higher heights
in the upward motion that it detaches at during the downward motion. The
smaller range of motion doesn’t allow the profile to exit the ground proximity
and benefit from the relative angle of attack created by the air downwashing the
profile, so the Cl - h curve isn’t eight - shaped like the previous one.
Cd curve is substantially unchanged in shape, but lower values of drag coefficient
are reached.
Again, scenes confirm what graphs told. A smaller pressure gradient can be
noticed with the respect of the previous case. Scenes of TKE are reported for
this case to better show the trend followed by the airfoil wake. Higher values of
𝑘 imply bigger detachments.

Figure 6.32: Pressure scene at peak Cl - second dynamic case
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Figure 6.33: TKE scene at 1.25 s - second dynamic case

Figure 6.34: TKE scene at 1.5 s - second dynamic case
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Figure 6.35: TKE scene at 1.75 s - second dynamic case

Figure 6.36: TKE scene at 2 s - second dynamic case

Force coefficients obtained from these first two simulations have higher values
than the static case, confirming that a downward movement close to the ground
can enhance the ground effect. The third analysis aims to obtain a behaviour
closer to the steady state one making the reduced frequency 𝑘 smaller, following
Theodorsen theory. This is done by halving 𝜔, doubling the period of motion.
The chosen range of motion is the one of the second case, that featured a more
interesting behaviour, remaining highly influenced by the ground for the entire
motion.
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Curves in time for this case:

Figure 6.37: Cl vs t - third dynamic case

Figure 6.38: Cd vs t - third dynamic case

Curves are similar in shape to the previous case considered, but phase shift
from a cosinusoidal function is here important, with maximum that happens
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around 0.5 s earlier than the time of 2 s that corresponds to the minimum
height. Minimum value of Cl are again higher than the previous case, while the
maximum Cl reached is significantly lower. With the height in the 𝑥 axis:

Figure 6.39: Cl vs h - third dynamic case

Figure 6.40: Cd vs h - third dynamic case
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While the Cd behaviour was quite similar in the past two cases, here smaller
variations between upward and downward motion can be found, identifying a
behaviour that is getting closer to the one of the steady state case.
Cl - h curve is once again different. The maximum in downforce generation
is reached at bigger heights, with the stall that is anticipated compared to the
previous case, clearly caused by the slower movement, reducing the effect dis-
cussed before. In the upward motion, for the same reason, the reattachment
happens earlier and downforce can increase again. At these heights the airfoil
behaviour is similar to the one of the static case, this is also clear from the scenes,
with pressure gradients that keeps getting closer to the ones experienced in the
static case and velocity scenes that show a bigger detachment of the boundary
layer for small heights from the ground.

Figure 6.41: Pressure scene at peak Cl - third dynamic case
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Figure 6.42: Velocity scene at 2.5 s - third dynamic case

Figure 6.43: Velocity scene at 3 s - third dynamic case
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Figure 6.44: Velocity scene at 3.5 s - third dynamic case

Figure 6.45: Velocity scene at 4 s - third dynamic case
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7.1 Results comparative analysis

An overview of the ground effect phenomenon has been covered, studying
at first the behaviour of a Formula SAE car, analysing how its aerodynamic
components react to the ground proximity, then a an oscillating airfoil in ground
effect has been studied, trying to discover the dynamic effect of an aerodynamic
surface close to the ground.

Figure 7.1: Streamlines in the undertray at 30 mm height from the ground

The comparative analysis between the static behaviors of the car and the 2D air-
foil demonstrates remarkable consistency. Both exhibit analogous interactions
with the ground, displaying Cl curves in alignment with established theories.
Notably, parallels exist in pressure reduction at decreased heights and the con-
sequent loss of downforce due to boundary layer detachments is for both cases
present.
Acknowledged this, some evaluation of the possible behaviour of the car in dy-
namic conditions can be made from what has been discovered from the transient
simulations in OpenFOAM.
It’s possible to verify that in dynamic conditions ground effect is augmented,
with the 2D airfoil that could reach smaller heights without losing performance,
increasing the value of Cl created, depending on the frequency and amplitude
of the oscillation. For a car that reaches 100 km/h in 2.7 s, characteristic oscilla-
tion periods can be reasonably low, similar to the ones considered in the cases
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simulated, telling that important dynamic effects can be experienced, even if the
amplitude of motion is very restricted and in very few race conditions is possible
to experience these fast height variations.
It’s imperative to acknowledge the inherent complexity of three-dimensional car
study, where not all effects can be observed by extrapolating results from simpler
two-dimensional case. However, the general behaviour obtained, considering
the good match between the other studies, could be considered a possible quali-
tative prediction of the phenomenon and good starting point for eventual further
studies.
In summary, the ground effect plays a pivotal role in generating downforce for
road vehicles. In specific instances, this effect can be amplified, potentially lead-
ing to higher Cl peaks due to downward vertical motions. In extreme cases this
effect could cause dynamic instabilities, with car subject to high variations of
the value of downforce and sudden changes in car height, creating a danger-
ous vicious cycle. In Formula 1 this theory could be associated as one of the
responsible of the porpoising phenomenon, where extreme velocities and small
ride heights increase the effect observed in this thesis.

7.2 Further studies

To achieve better results ensuring the actual influence in downforce varia-
tions of dynamic height oscillations, more computationally demanding analysis
should be done.
The inherently unsteady nature of the problem emphasizes the need for height-
ened accuracy in predicting boundary layer detachment and wake behavior.
These aspects have been identified as pivotal factors in comprehending and ef-
fectively addressing this phenomenon, so higher fidelity LES simulations should
be ran, exiting from the 2D domain.
As said this thesis had the purpose of giving an overview of the phenomenon,
so oscillations analysed derived directly from the 2D steady state validated case.
To better comprehend if the car effectively experience similar oscillation fre-
quencies, discovering how strong is the effect applied, further analysis of the car
behaviour in motion should be done.
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