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Notation and conventions

We use natural units in which ~ = c = kB = 1. In these units, the reduced Planck mass is given
by MP l = (8⇡G)�1/2 ' 2.4 · 1018GeV.

Greek indices µ, ⌫ and so on go over the four spacetime coordinates xµ = (x0, x1, x2, x3), where x0

stands for the time coordinate.

Latin indices i, j, k and so on go over the three spatial coordinates.

Our metric signature is (�+++).

Spatial vectors are written in boldface.

Summation over repeated indices is assumed unless otherwise stated.

We use the symmetric Fourier convention

f(k) =

Z
d3x

(2⇡)3/2
f(x)e�ik·x f(x) =

Z
d3k

(2⇡)3/2
f(k)eik·x .
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Introduction

The widely accepted Hot Big-Bang model of Cosmology states that the very early universe was
dominated by matter distributions existing in the form of a hot and dense plasma of relativistic
particles, which is simply referred to as radiation. This plasma was distributed in a highly, but
not perfectly, homogeneous and isotropic manner, with the presence of very small anisotropies in
the energy/matter density, known as primordial cosmological perturbations, that are supposed to
constitute the seeds for the formation of the Large Scale Structures (LSS) we observe today in the
universe. Such inhomogeneities have left a trace under the form of temperature anisotropies in
an ubiquitous electromagnetic signal that we receive today from the early stage of the universe,
the Cosmic Microwave Background signal (CMB). The CMB temperature anisotropies were first
detected by the Cosmic Background Explorer (COBE) satellite [1], and subsequently they were an-
alyzed in depth from the Wilkinson Microwave Anisotropy Probe (WMAP) mission and the Planck
mission. The best CMB data are provided by the 2018 Planck measurements [2, 3], that provided
a very precise characterization of the primordial cosmological perturbations, and that have allowed
cosmological parameters to be constrained. In particular, the Planck data have established with
extremely high precision that the primordial density perturbations show a small deviation from
perfect scale invariance.

Inflation is a postulated period of accelerated expansion that took place well within the first second
of the universe, before the radiation dominated era (necessarily before the epoch of primordial
nucleosynthesis). It was initially introduced by Alan Guth in 1981 [4] in order to solve the hori-
zon, flatness and monopoles problems that plague the standard Hot Big-Bang cosmological model,
and, since its proposal, inflation has become the dominant paradigm able to provide a dynamical
mechanism for the generation of the primordial energy density perturbations in the early universe.
A period of accelerated expansion can be attained if the energy density of the universe is dominated
by an unconventional cosmic fluid with a su�ciently negative equation of state (pressure divided
by energy density). The most consolidated slow-roll inflationary models are based on the dynamics
of a single spin-0 field, the inflaton �, which dominates the energy budget with the vacuum energy
associated to its potential. In these models the necessary conditions required to realize an inflation-
ary expansion are obtained by the field � moving very slowly in a very flat region of its potential.
This kind of models predicts a nearly scale invariant power spectrum of Gaussian and adiabatic
primordial scalar density perturbations, in excellent agreement with the experimental observations
by Planck. Inflationary models also generally predict a stochastic background of primordial gravi-
tational waves (SGWB), corresponding to tensor metric perturbations generated during the rapid
expansion. This prediction is a unique and distinctive feature of inflationary cosmology, so that
the detection of primordial gravitational waves (more precisely the detection of a contribution to
the so called B-mode polarization in the CMB radiation) may be a ”smoking gun” probe of infla-
tion, if alternative mechanism able to produce gravitational waves are ruled out. However, no such

3



primordial signal has yet been detected.
The literature contains a huge number of di↵erent models of inflation. Each model correspond to
a given choice for the potential of the inflaton which fulfils the so called slow-roll conditions to
attain an accelerated expansion. In this regard it is of fundamental importance to emphasize that
the constraints on the physical cosmological observables provided by the Planck measurements also
provide powerful constraints to the parameters of the inflationary models [5], which allow us to
orient ourselves in the myriad of inflationary models proposed to date.

In canonical slow-roll models of inflation, the accelerated expansion occurs in a state which is
practically empty of any other particle, since the couplings of the inflaton field with other possible
degrees of freedom is assumed to be negligible, so that particle production is inhibited, and the
traces of any matter distribution are quickly diluted away by the expansion. This scenario causes
the universe to reduce to a supercooled state in which a thermalized radiation component is quasi
totally absent, so that a subsequent phase must be added in order to recover the hot initial con-
ditions of the standard cosmological model. Therefore, at the end of inflation, the inflaton field is
supposed to decay into lighter relativistic fields. This process, known as reheating [6], generates
the thermal bath of the hot Big-Bang era.
In some other models instead, the couplings of the inflaton can be relevant already during inflation,
leading to an e↵ective dissipative dynamics that is important also during the slow-roll phase. In
this thesis we critically review the two distinct scenarios in which these dissipative e↵ects are either
negligible or relevant during inflation. The first type of models belong to the more standard class
of theories of cold inflation. For the second case, we focus our attention on the so called models of
warm inflation, in which the dissipation sustains a bath of relativistic particles at thermal equilib-
rium, so that, even though the inflaton vacuum energy remains still the dominant component of
the universe energy budget for the accelerated expansion to take place, the inflationary universe is
not more on the ground state, and the transition to a thermalized radiation dominated universe
can happen smoothly, without the need of a separate reheating phase. The interaction between
the inflaton field and the thermal bath entails an overdamped motion for the homogeneous inflaton
configuration resulting from the backreaction of the produced particles, which allows the achieve-
ment of an inflationary expansion also through potentials that would otherwise be too steep to
support the slow-roll conditions. Moreover, even in the case in which the dissipative e↵ects are
small compared to the Hubble expansion damping (weak dissipation regime), they can still signifi-
cantly a↵ect the generation of both scalar and tensor primordial perturbations, leading for example
to a remarkable enhancement of the power spectrum of density perturbations for su�ciently high
temperatures. This generally lowers the ratio between the amplitudes of tensor and scalar pertur-
bations, providing a modified consistency relation for inflationary models.
The aim of these thesis is study the background evolution, the generation of both scalar and tensor
primordial perturbations, and the phenomenology of these two distinct inflationary scenarios.
In chapter 1 we give an introduction to the mathematical and phenomenological description of our
universe provided by the standard Big-Bang cosmological model, also focusing on the shortcomings
that a✏ict the model and their possible resolution through the inflationary paradigm.
In chapter 2 we review the standard single-field model of slow-roll inflation. In particular we re-
view the conditions that must be fullfilled in order to accomplish the inflationary expansion via the
realization of a slow-roll dynamics for the inflaton field, and we study the amplification mechanism
of quantum vacuum fluctuations of the inflaton and the metric tensor which yields the produc-
tion of classical primordial perturbations. Then, we derive their power spectrum, the associated
spectral index and the tensor-to-scalar perturbation ratio, which represent the physical observables
constrained by the CMB measurements.
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Introduction

In chapter 3, initially, we briefly see how, in presence of a non-negligible coupling with a significant
amount of thermalized radiation, it is more convenient the employment of a di↵erent mathematical
formalism in order to derive the e↵ective evolution equation for the inflaton field and its pertur-
bations. In the context of a multi-component interacting system, a realistic study of the time
evolution of its dynamical variables requires to take an average on some distribution function of
states. Therefore, we are rather concerned with a thermal averaged background inflaton field and
its small random thermal fluctuations. After that, we proceed with steps analogous to those of
the previous chapter: we derive the slow-roll conditions for inflation, which are modified by the
presence of dissipative e↵ects, then we study the evolution of the primordial perturbations, that
are of thermal origin in this case, and we finally compute the thermal contributions to the power
spectrum for scalar and tensor metric perturbation. These thermal contributions are added to the
standard ones arising from amplification of quantum fluctuations, and we recognize the regime in
which the former dominate over the latter.
We will conclude by summing up the main results and comparing the relative advantages and
disadvantages of the two scenarios.
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Chapter 1

The Hot Big Bang cosmological
model and the need of Inflation

1.1 A brief introduction

The standard cosmological model describing the evolution of our universe relies upon the validity
of Einstein’s theory of General Relativity (GR) and one fundamental assumption known as cos-
mological principle, which states that at su�ciently large scale (hundreds of Mpc) the observable
universe appears to be homogeneous and isotropic. This assumption is born out of several obser-
vations, among which the almost perfect uniformity of the temperature of the cosmic microwave
background radiation (CMB) coming from all direction in the sky, which gives us a picture of our
universe when it was about 380000 years old. Indeed, the typical size of CMB temperature fluctu-
ations, around the mean value TCMB = 2.725K, is measured to be of order �T/TCMB ⇠ 10�5.
It is not so di�cult to realize that the cosmological principle is violated today at relatively short
scales, the ones at which we see the universe material clumped into celestial objects such as stars,
galaxies and galaxy clusters. We think these structures originated by small primordial perturba-
tions of matter density superimposed to a perfect homogeneous background, which have grown in
time through the phenomenon of gravitational instability. The dynamics of the background corre-
sponds to the large scale behaviour of the universe, and it is usually studied separately from the

Figure 1.1: Temperature anisotropies in the CMB radiation around the background value measured by the
Planck satellite
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Chapter 1. The Hot Big Bang cosmological model and the need of Inflation

dynamics of the short scale inhomogeneities, whose evolution, as long as they remain small, can be
faced via linear perturbation theory.
By astronomical observations performed by Edwin Hubble in the late 20’s, we also have learned
our universe is expanding on large scales, in the sense that the space itself between any pair of
points separated by a large enough distance is increasing in time. In particular, far away galax-
ies are receding from us with a velocity proportional to their proper distance d, as stated by the
experimental Hubble law :

v = H0 d , (1.1)

where the proportionality constant H0 is known as the Hubble’s constant.

According to GR, the geometrical structure of spacetime, mathematically represented through
a 4-dimensional pseudo-Riemannian manifold, is encoded in the symmetric metric tensor g ⌘
gµ⌫dxµ ⌦ dx⌫ , whose evolution in presence of a distribution of matter/energy is determined by the
Einstein’s field equations (EFE), given by:

Gµ⌫ ⌘ Rµ⌫ �
1

2
Rgµ⌫ = 8⇡GTµ⌫ � ⇤gµ⌫ . (1.2)

Let us pause for a moment to give a short description of the quantities appearing on both sides of
this equation.
On the left hand side (l.h.s.), we find the Einstein’s tensor Gµ⌫ , constructed in terms of the Ricci
tensor Rµ⌫ and the scalar curvature R. Both this quantities are obtained by contraction of the
Riemann curvature tensor Rµ

⌫⇢�, which describes the intrinsic geometrical properties of spacetime.
It is defined as

Rµ
⌫⇢� ⌘ @⇢�µ⌫� � @��µ⌫⇢ + �µ↵⇢�↵⌫� � �µ↵��↵⌫⇢ , (1.3)

with �µ⌫⇢ the so called Christo↵el symbols, whose explicit expression is

�µ⌫⇢ =
1

2
gµ�(@⌫g⇢� + @⇢g⌫� � @�g⌫⇢) . (1.4)

The Christo↵el symbols are the coe�cients of the particular connection defined on the spacetime
manifold, known as the Levi-Civita connection. The introduction of a connection allows to specify
the covariant derivative rXT of a generic tensor field T along the direction of a tangent vector
field X = Xµ@µ.
In general, a connection is defined as a map which satisfies the following properties for all tensor
fields T , W and vector fields X,Y on a manifold [7]:

• rX(T +W ) = rXT +rXW ;

• r(fX+gY )T = frXT + grY T for all functions f , g ;

• rX(T W ) = W rXT + T rXW (Leibiniz rule) .

The covariant derivative of a vector field V = V µ@µ along a basis vector field @µ reads [7]

rµV
⌫ = @µV

⌫ + �⌫µ⇢V
⇢ . (1.5)

For a 1-form ↵ = ↵µdxµ we have

rµ↵⌫ = @µ↵⌫ � �⇢µ⌫↵⇢ , (1.6)

and for a generic tensor T = T↵...��...� @↵ ⌦ · · ·⌦ @� ⌦ dx� ⌦ · · ·⌦ dx�

rµT
↵...�
�...� = @µT

↵...�
�...� + �↵µ⇢T

⇢...�
�...� + · · ·+ ��µ⇢T

↵...⇢
�...� � �

⇢
µ�T

↵...�
⇢...� + · · ·� �⇢µ�T

↵...�
�...⇢ . (1.7)
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1.1. A brief introduction

The peculiarity of the Levi-Civita connection relies in the fact that it is the only one among the
infinite possible connections which satisfies the following properties [7]

�µ⌫⇢ = �
µ
⇢⌫ , (1.8)

rµg⌫⇢ = 0 , rµg
⌫⇢ = 0 . (1.9)

The first property says the Levi-Civita connection is symmetric in its lower indices. Such a con-
nection is said to be ”torsion-free”, in the sense that the antisymmetric torsion tensor defined as
T�µ⌫ = ��µ⌫ � ��⌫µ is vanishing. The second property tells us the metric tensor gµ⌫ is covariantly
constant, and we say that such a connection is ”compatible with the metric”. The metric compati-
bility, together with the Leibiniz rule of r, allows to freely move gµ⌫ and its inverse gµ⌫ inside and
outside rµ, i.e.

rµV
⌫ = rµ(g

⌫⇢V⇢) = g⌫⇢rµV⇢ .

Working directly on the definition (1.3) one finds that the Riemann curvature tensor has the
following symmetry properties [8, 9], usually expressed in terms of the covariant components
Rµ⌫⇢� = gµ↵R↵

⌫⇢� :

Rµ⌫⇢� = �R⌫µ⇢� ,

Rµ⌫⇢� = �Rµ⌫�⇢ ,

Rµ⌫⇢� = R⇢�µ⌫ ,

Rµ⌫⇢� +Rµ⇢�⌫ +Rµ�⌫⇢ = 0 .

From these properties it is also possible to derive a di↵erential identity for the curvature tensor,
known as Bianchi identity, which reads

r�Rµ⌫⇢� +r�Rµ⌫�⇢ +r⇢Rµ⌫�� = 0 . (1.10)

The Ricci tensor and the scalar curvature are then defined as

Rµ⌫ ⌘ R⇢
µ⇢⌫ , R ⌘ gµ⌫R

µ⌫ . (1.11)

The Ricci tensor results to be symmetric as a consequence of the various symmetries of the Riemman
tensor, i.e. Rµ⌫ = R⌫µ.
Going back to the Einstein equations (1.2), on the right hand side (r.h.s.) we find the symmetric
stress-energy tensor Tµ⌫ , which describes the matter content, and the cosmological constant ⇤. The
cosmological constant term can be seen as a contribution to the stress-energy tensor of the form
T⇤µ⌫ = � ⇤

8⇡Ggµ⌫ , so that we can absorb it as a vacuum energy in the general definition of Tµ⌫ ,
which will be given in section 1.3.
The equations (1.2) are completed by other two important relations known as (contracted) Bianchi
identity and continuity equation, respectively:

rµG
µ⌫ = 0 , (1.12)

rµT
µ⌫ = 0 . (1.13)

The first one is a di↵erential identity for the Einstein tensor Gµ⌫ which is obtained by contraction
of the homonymous identity (1.10) for the curvature tensor. The second one, instead, is a physical
statement about the local conservation of energy and momentum in the case we consider a flat
Minkowski spacetime, whereas, in presence of a gravitational field, i.e. in the case of a curved
spacetime, energy-momentum conservation does not hold in general and equation (1.12) rather
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Chapter 1. The Hot Big Bang cosmological model and the need of Inflation

provides the equations of motion of the matter distribution under the action of the gravitational
field alone [8].

Focusing on the background dynamics of the universe, the cosmological principle and the Hubble’s
law provide strong constraints on the form of the metric tensor which should describe a spatially
homogeneous and isotropic spacetime evolving in time because of the expansion. It can be shown
[8, 10] that the most general metric holding these properties, solution of (1.2) and (1.13), is the
Friedmann-Lemâıtre-Robertson-Walker metric (FLRW):

ds2 = �dt2 + a2(t)

"
dr2

1�Kr2
+ r2d✓2 + r2 sin2 ✓d�2

#
. (1.14)

Here, the coordinates (t, r, ✓,�) belong to a preferred reference frame, properly chosen to factor out
the e↵ect of the Hubble expansion. They are named comoving coordinates, and they are defined as
the coordinates of an observer co-moving with the expansion, also referred to as the fundamental
observer. The coordinate t is the proper time of the afore-mentioned observer, whose spatial co-
ordinates (r, ✓,�) do not change in time during the evolution. The dimensionless function a(t) is
called scale factor, and its role is to account for the evolution of the universe by changing the spatial
distances over time. For an expanding universe it is an increasing function of time, ȧ(t) > 0, and
it yields the physical coordinates once it is multiplied by the constant comoving ones. As required
by the cosmological principle, the spatial part of the metric, enclosed in the square brackets, is the
squared line element of a 3-dimensional maximally symmetric space with constant scalar curvature.
The quantity K is a constant related to the spatial curvature R of the space-like hypersurfaces at
fixed time t by the relation R = 6K [8], then it has the physical dimension of a length�2. If K > 0
the spatial metric is the one of a 3-dimensional sphere S

3, which corresponds to a spatially finite
universe (closed) with positive spatial curvature. If K < 0, the spatial metric is the one of a 3-
dimensional hyperboloid H

3, then we have a spatially infinite universe (open) with negative spatial
curvature. Finally, if K = 0, we obtain a spatial Euclidean metric, so the universe is spatially flat,
hence infinitely extended.
It can be noticed the presence of a redundancy in the description of the metric, since the latter
is left unchanged by a rescaling of the radial coordinate r ! r̃ = �r, which implies the following
redefinitions of the scale factor and of the spatial curvature a ! ã = a/�, K ! K̃ = K/�2, so
that the physical lengths do not vary. This scaling freedom can be used either to normalize K to
a constant k = 0,±1 once and for all, or to normalize the scale factor in a convenient way, e.g. by
setting its value at the present time t0 to unity, a(t0) = a0 = 1. We will use the first convention,

unless otherwise stated, which is simply obtained by choosing � = |K|1/2, if K 6= 0. In this case
a(t) inherits the dimension of a length, while the radial coordinate r becomes dimensionless.

On large scales, all the material filling the universe can be treated like a cosmic perfect fluid, defined
as one such that there is no bulk motion of particles and no heat conduction in the rest local inertial
frame (LIF) of any fluid element, hence any observer in this frame sees the fluid around him as
isotropic. That is exactly the symmetry of the space seen by the comoving observer, indeed the
comoving frame and the instantaneous rest frame of the fluid element coincide.
Let us consider the stress-energy tensor Tµ⌫ of the cosmic perfect fluid at some point Q of the
spacetime, and let us put ourselves in the rest LIF of a fluid element centered on Q. In this LIF,
the mentioned properties of the perfect fluid constrain the components of Tµ⌫ to be of the form:

T 00 = ⇢(t) , T 0i = T i0 = 0 , T ij = P (t)�ij , (1.15)

10



1.1. A brief introduction

where ⇢ and P are the rest energy density and the rest isotropic pressure of the fluid, which do not
depend on the spatial coordinates because isotropy and homogeneity.
Using the fact that, in the chosen frame, the metric tensor evaluated on Q is the Minkowskian one,
i.e. gµ⌫(Q) = ⌘µ⌫ , and that the fluid element’s four-velocity reads uµ = (1, 0, 0, 0), the stress-energy
tensor of the perfect fluid can be written as

Tµ⌫ =

0

BBB@

⇢(t) 0 0 0
0 P (t) 0 0
0 0 P (t) 0
0 0 0 P (t)

1

CCCA
= (⇢+ P )uµu⌫ + P⌘µ⌫ . (1.16)

This is a tensor relation, so it holds in all coordinates system. Moreover the point P is arbitrary,
hence this expression holds everywhere, and we can write

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫ . (1.17)

For each component of the cosmic fluid we have an equation of state relating ⇢ and P given by

P = w⇢ w = constant , (1.18)

with w depending on the specific fluid component. The most commonly encountered cases are:

w =

8
>><

>>:

0 non relativistic matter
1
3 radiation

�1 cosmological constant ⇤ .

(1.19)

Notice that the last case reproduces the contribution to Tµ⌫ given by the cosmological constant in
the case ⇢ = ⇤/8⇡G.
By inserting the FLRW metric (1.14) and the perfect fluid stress-energy tensor (1.16) in equa-
tions (1.2) and (1.13), we find the Friedmann equations describing the dynamics of the expanding
universe:

(00) component of (1.2) �! H2 =
8⇡G

3
⇢� k

a2
, (1.20)

(ij) component of (1.2) �! ä

a
= �4⇡G

3
(⇢+ 3P ) , (1.21)

⌫ = 0 component of (1.13) �! ⇢̇+ 3H(⇢+ P ) = 0 , (1.22)

with the dot indicating the derivative with respect to (w.r.t.) cosmic time. The function H(t) is
the Hubble parameter, defined as H(t) ⌘ ȧ

a . It has the dimension of inverse time and can be viewed
as the rate of the expansion of the universe. Moreover, the inverse of the parameter naturally sets
a characteristic time scale for the expansion, namely the Hubble time1 tH ⌘ H�1 (see equation
(1.32)).
This system contains three equations for three unknown variables (⇢(t), P (t), a(t)). However, only
two of these equations are independent, due to the continuity equation (1.13). For instance, it
possible to obtain the second equation (1.21) by di↵erentiating in time (1.20), and by combining
the resulting expression with third equation (1.22). The system is closed by the equation of state
(1.18).

1Looking at its definition written as tH = dt a

da
, the Hubble time is roughly the time needed to the the scale factor

to double.
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Chapter 1. The Hot Big Bang cosmological model and the need of Inflation

According to the current experimental observations, today we live in a universe which can be
considered spatially flat with good accuracy. In fact, as we will see in subsection 1.2.2, the degree of
flatness can be expressed in terms of the quantity ⌦k ⌘ �k/a2H2, which results to be an increasing
function of time. The Planck measurement [2] provide a current value of

��⌦k(t0)
�� < 10�3. We

therefore simplify our system of equations by assuming that the universe has always been flat, i.e.
setting k = 0 in (1.20).
By solving (1.22) we find that the energy density of each component evolve independently according
to:

⇢ = ⇢⇤

✓
a

a⇤

◆�3(1+w)

=) ⇢ /

8
>><

>>:

a�3 non relativistic matter

a�4 radiation

constant cosmological constant ⇤ ,

(1.23)

where ⇤ indicates a reference scale.
Then, considering separately each single component of the cosmic fluid2, if we insert the solution for
⇢ in (1.20) and solve we find the explicit expression for the scale factor in a spatially flat universe:

a(t) =

8
>><

>>:

a⇤
⇣

t
t⇤

⌘ 2
3(1+w)

, w 6= �1 =) a /
(
t
2
3 non relativistic matter

t
1
2 radiation

eHt , w = �1 cosmological constant ⇤ .

(1.24)

In the last case of exponential expansion with a constant Hubble parameter, one says the universe
goes through a de Sitter stage.
In deriving the solutions for w 6= �1 in (1.24), an integration constant is set to zero. This choice
correspond to picking the time of what is usually called the ”Big-Bang singularity”, defined by

a(tBB) = 0 , ⇢(tBB) =1 (1.25)

to be tBB = 0.
This is a physical singularity that signals the breakdown of GR at arbitrary high energies.
From (1.23) we deduce the evolution of the universe goes through di↵erent epochs, during which a
specific component of the cosmic fluid dominates the energy budget: if we go su�ciently backwards
in time, which means for very small values of the scale factor, a ⌧ 1, the total energy density is
radiation dominated (RD), i.e. most of the matter exists in the form of a very hot and dense
primordial plasma of relativistic particles; as a increases with time, there is a moment teq in which
the energy density of radiation and non-relativistic matter become comparable, followed by a matter
dominated epoch (MD); likewise, if we still go further in time there is a transition, occurring at an
instant t⇤, from the MD epoch to the actual one, dominated by the constant vacuum energy density
associated to the cosmological term, which is responsible for the accelerated Hubble expansion we
observe today (we will clarify the nature of ⇤ in section 1.3). Actually, what we really know is that
there are observational evidences [11] for the existence of an unknown form of energy (hence the
name dark energy) responsible for the current accelerated expansion. This energy uniformly fills
otherwise empty space without being diluted by the expansion, and it constitutes about the 68%
of the total energy of the present-day observable universe [2]. Several models have been proposed
over the years in order to explain the nature of dark energy [12], but if we assume that the source

2Strictly speaking, the variable ⇢ stands for the total energy density, which is the sum of the energy densities ⇢i
of each single component of the cosmic fluid, which means that that the Friedmann equations are coupled di↵erential
equations in the variables ⇢i. However the di↵erent scaling laws in (1.23) suggest the universe was dominated by a
single component for most of its history.
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1.2. The shortcomings of the model and the inflationary solution

of this energy has an equation of state with a constant w parameter, experimental observations
suggest w < �0.95 (95% C.L.) [2], hence the cosmological constant is the most direct explanation
consistent with the data.

1.2 The shortcomings of the model and the inflationary solution

The Hot Big-Bang cosmological model allows us to follow the evolution on large scale of the universe
from few instants before the Big-Bang singularity until today. Through this model we are able to
understand various observed phenomena like the abundance of light elements, explained by the
Big Bang Nucleosynthesis process (BBN), the origin of the CMB radiation and the Hubble’s law.
Nevertheless, it contains some issues in the form of fine-tuning problems.
A fine-tuning problem is present every time one has to require unnatural initial conditions on one or
more parameters of a theory in order that the theoretical predictions fit the observed experimental
data, otherwise inexplicable by the model. In this context, the term unnatural refers to the fact
that these parameters must be tuned so precisely that such a solution appears very unlikely from a
probabilistic point of view. Indeed, it usually comes out that the interval of acceptable values for
the parameters has substantially null measure in the space of all the possible ones, meaning that
this ”ad hoc” solution must be very improbable. Usually, providing a mechanism which is able
to yield the desired result in a dynamical way, without imposing any peculiar initial condition, is
preferred. In most instances, this choice needs the introduction of new physics.
In the following we show how the three main shortcomings of the Hot Big-Bang model, namely
the horizon problem, the flatness problem and the unwanted relics problem, can be economically
solved by the inflationary mechanism, consisting in a long enough primordial period of accelerated
expansion of the universe, i.e. ä(t) > 0.

1.2.1 The horizon problem

In order to discuss properly the problem it is mandatory to introduce the notion of cosmological
horizon. The existence in the model of a initial time tBB sets a limit to the greatest comoving
distance travelled by a light signal since the Big Bang singularity until today. Since no signal
is faster than light, this quantity corresponds to the linear size of the observable universe of a
fundamental observer, defined as the portion of the universe around a comoving observer which
is causally connected with him. It can be directly computed from the FLRW metric (1.14), by
setting ds2 = 0, as light travels along null geodesics. Without loss of generality, we can exploit the
homogeneity to set the radial coordinate r to the initial value r0 = 0, and the isotropy to just move
in a generic radial direction (d✓ = d� = 0) disregarding the initial angular variables ✓0,�0. Then,
one obtains the following comoving distance:

rph(t) ⌘
Z t

0

dt0

a(t0)
=

Z r

0

dr0p
1� kr2

, (1.26)

while the physical distance travelled is

dph(t) ⌘ a(t) rph(t) . (1.27)

If the integral converges (depending on the behaviour of a(t) near t = 0), the physical distance
(1.27) is finite and it is called particle horizon. At a given time t, particles separated by distances
greater than dph(t) have never communicated in the whole history of the universe.
For a spatially flat universe dominated by a perfect fluid with equation of state P = w⇢ with
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Chapter 1. The Hot Big Bang cosmological model and the need of Inflation

w 6= �1, if we insert the explicit expression for the scale factor (1.24) in the definition (1.27) we
obtain

dph(t) =
3(1 + w)

1 + 3w
t . (1.28)

Then, in a FLRW universe dph(t) is finite and positive for w > �1
3 , which means, by looking at the

acceleration equation (1.21), that dph(t) is finite i↵ the acceleration of the expansion is negative,
ä(t) < 0. Indeed, using the equation of state, equation (1.21) becomes

ä

a
= �4⇡G

3
⇢(1 + 3w) =) ä < 0 () w > �1

3
. (1.29)

The condition (1.29), known as strong energy condition (SEC), is satisfied by ordinary matter and
radiation, for which, as we already mentioned, w = 0 and w = 1/3, respectively. This means that
the MD and RD epochs consist into a period of negative accelerated expansion. A period of positive
accelerated expansion of the universe can be only driven by a non conventional perfect fluid with
w < �1

3 which must dominate the energy budget.

Another fundamental cosmological distance is represented by the Hubble radius, or its comoving
counterpart, the comoving Hubble radius :

RH(t) ⌘ 1

H(t)
=

a(t)

ȧ(t)
, rH(t) ⌘ RH(t)

a(t)
=

1

a(t)H(t)
=

1

ȧ(t)
. (1.30)

Given a comoving observer, let us consider the points around him on a sphere of comoving radius
r. At time t, the physical distance of these points from the observer is d(t) = a(t)r, and it increases
with the expansion. The points recede from the observer with a velocity

v(t) ⌘ ḋ(t) = ȧ(t)r = H(t)d(t) . (1.31)

This last expression allows to define the Hubble radius RH(t) as the physical radius of a sphere
centered on a comoving observer whose points recede with a velocity equal to the speed of light.
Reminding the definition of the characteristic Hubble time tH = H�1, the Hubble radius can also
be regarded as the physical distance travelled by light within tH . Then, at a given time t, particles
separated by distances greater than RH(t) are not in causal contact at that moment but they could
have communicated in an earlier stage. More precisely, they are not locally in causal contact, i.e.
within the past Hubble time interval, but they may be globally, i.e. in the whole history of the
universe.
The explicit computation of the Hubble radius for a universe dominated by a conventional perfect
fluid yields

RH(t) = H�1 =
3(1 + w)

2
t , (1.32)

which combined with (1.28) leads to

dph(t) =
2

1 + 3w
RH(t) . (1.33)

Then, in standard cosmology we have dph ⇠ RH . This is the reason why one usually refers to both
dph and RH as the ”horizon”, even if their physical meaning is very di↵erent.
Usually, the evolution of the causal connection throughout the history of the universe is represented
by plotting RH(t) / rH(t) over time, and comparing the physical/comoving length scales �phys /
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1.2. The shortcomings of the model and the inflationary solution

� with it. In a FLRW universe filled by an ordinary fluid the comoving Hubble radius is a strictly
increasing monotonic function since

ṙH(t) = � ä(t)

ȧ2(t)
=) ṙH(t) > 0 for w > �1

3
, (1.34)

while the comoving lengths are constant. Equivalently, the Hubble radius always grows faster than
the physical length scales. Indeed, from the Friedmann equation, one has RH(t) ⇠ a2 (RD) or
RH(t) ⇠ a3/2 (MD), while �phys ⇠ a. In other words, the dimension of the causal connected region
around a fundamental observer grows in time and in particular, for standard cosmology, all the
length scales enter the causal horizon for the first time since t = 0.
The fact that the causal horizon is an increasing function of the cosmic time allows us to use the
comoving distance rph(t) as a di↵erent time coordinate known as conformal time, denoted with ⌧
and such that d⌧ = dt

a(t) . Then

⌧ ⌘ rph(t) =

Z t

0

dt0

a(t0)
. (1.35)

We now have all the instruments to properly discuss the horizon issue. It arises by a careful
observation of the CMB signal. This radiation was emitted about 380000 years after the Big Bang
singularity, when the universe cooled enough to allow the formation of the first hydrogen atoms,
and consequently the thermal decoupling of photons from the primordial plasma [13]. At that
moment, the latter started to free stream along the geodesics of the FLRW universe, until they
were revealed by our detectors.
Remarkably, as we said at the beginning of the chapter, the photons of this radiation share almost
the same temperature, no matter the direction in the sky we look at. However, we now show that,
according to standard cosmology, CMB photons coming from regions in the sky separated by an
angular distance greater than �✓ ' 1.7� were outside each other’s particle horizon at the instant of
decoupling, the last time microphysics can e↵ectively act to smooth out temperature fluctuations.
By �✓ we intend the angle which today is subtended by a region of the universe whose dimension at
the instant tdec of decoupling was of the order of the particle horizon dph(tdec). At the present time
t0, this region has grown due to the expansion of the universe of a factor a(t0)/a(tdec) ⌘ a0/adec.
Then, using the today particle horizon dph(t0) to estimate the linear dimension of our observable
universe, and given that dph(t0)� dph(tdec), the angle �✓ is roughly obtained by

�✓ ⇡
a0
adec

dph(tdec)

dph(t0)
. (1.36)

The emission of the CMB radiation took place during the MD epoch. If we make the approximation
of considering the universe today as still matter dominated3, from (1.24) and (1.28) we have:

a(t) = a0

✓
t

t0

◆2/3

, H(t) =
2

3t
, dph(t) = 3t , (1.37)

where the above relations are valid for teq  t  t0.

Using H(t) = H0

⇣
a0
a(t)

⌘3/2
, the particle horizon can be written as

dph(t) = 2H(t)�1 = 2H�1
0

✓
a(t)

a0

◆3/2

. (1.38)

3The universe was matter dominated for most of the time since matter-radiation equality at teq ⇡ 70000 years
[2]. The age at which matter and the cosmological constant had equal energy density is relatively recent, at t⇤ =
9.8± 1.0Gyr [14].
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Chapter 1. The Hot Big Bang cosmological model and the need of Inflation

Then, the angle �✓ becomes

�✓ ⇡
✓
adec
a0

◆1/2

. (1.39)

The value of the scale factor in the past can be related to the present one via the cosmological
redshift parameter z

a(t0)

a(t)
= 1 + z(t) , z(t) ⌘ �0 � �t

�t
(1.40)

where z(t) is the redshift at the time t, defined as the relative variation of the wavelength � of a
light signal emitted at time t and detected at time t0. By definition, z = 0 today, and 1 + z ' z
for z � 1. We can therefore write

�✓ ⇡ (1 + zdec)
�1/2 . (1.41)

From the Planck data [2], zdec = 1089.80± 0.21 (68% C.L.), then

�✓ ⇡ z�1/2
dec ⇡ 0.03rad =) �✓ ⇡ 1.7� (1.42)

Now we can easily realize where the problem arises: the above considerations implies that patches
of the universe separated by more than �✓ ' 1.7� had never been in causal contact when the CMB
radiation was emitted, but today they practically share the same thermodynamic properties! This
is very counterintuitive, because we should expect to measure significant variations of temperature
over the sky on such an angular scale, but instead we observe everywhere the same temperature
TCMB, up to very small fluctuations of order 10�5.

As previously mentioned, there are mainly two ways to solve the problem. One is to assume an
initial condition consisting of an almost perfectly homogeneous and isotropic universe, presenting
the right small amount of anisotropies in order to get, by subsequent evolution, the large scale
structure we observe today. This solution implies a fine tuning problem.
Alternatively, a more compelling solution is suggested by the following rewriting of the causal
horizon rph(t)

rph(t) =

Z t

0

dt0

a(t0)
=

Z a

0

da0

a0
1

a0H
=

Z ln a

�1
rH d ln a0 , (1.43)

where we see how the the comoving Hubble radius rH is the instantaneous contribution per loga-
rithmic interval of the scale factor to the comoving particle horizon rph. The origin of the horizon
problem lies in the fact that, since in standard cosmology rH is always an increasing function, we
expect the largest contribution to rph to come from recent times. Therefore, there is no hope that
a super-Hubble sized region at early times could have been in causal contact at an earlier stage,
because rph ⇠ rH . Instead, this eventuality might occur in the case we have rph � rH today,
which can be realized through the introduction of a new phase before the radiation dominated
epoch, called inflation, characterized by a decreasing comoving Hubble radius, ṙH(t) < 0, so that
rph receives most of its contribution from primordial epochs. A decreasing comoving Hubble radius
implies that, during inflation, the physical length scales �phys = a� grow faster than the Hubble
radius RH = H�1 ⇠ an (n < 1), as shown in figure 1.2. Thus, length scales which were outside the
Hubble horizon at the time of CMB, and which are well inside the Hubble horizon today, could
have already been inside RH during the inflationary phase, which subsequently caused their horizon
exit through the accelerated expansion. Hence, CMB photons emitted from causally disconnected
regions at the moment of decoupling, which today share nearly the same temperature, had a chance
to reach thermal equilibrium in an earlier epoch. This argument would explain the uniformity of
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1.2. The shortcomings of the model and the inflationary solution

the CMB radiation.
We see from (1.34) that, contrary to the standard cosmological evolution, the requirement ṙH(t) < 0
leads to a period characterized by an accelerated expansion, ä(t) > 0, hence dominated by an un-
conventional perfect fluid with w < �1

3 . This condition defines what we call an inflationary phase.

Figure 1.2: Graphical representation of the solution to the horizon problem [15]. Contrary to standard
cosmology, where any physical length scale starts larger than RH and then crosses the Hubble horizon only
once, during inflation the latter remains almost constant, so that it is possible for physical length scales which
were causally connected during inflation to leave the Hubble horizon because of the accelerated expansion
and then re-enter the horizon at RD or MD epoch. The dotted line denotes the super-horizon stage of the
length scale �.

Let us now estimate the amount of inflation required to solve the horizon problem.
In order to quantify how much the universe has grown during the accelerated expansion we define
the number of e-folds N as

eN(t) ⌘
a(tf )

a(t)
, t < tf (1.44)

where tf stands for the instant of cosmic time at which inflation ends. Then, during inflation, N
can be regarded as an inverse time variable, as N(t) decreases as t increases, with N = 0 at t = tf .
Since everywhere we look in the sky we see a uniform CMB radiation with the same temperature,
if we want the horizon problem to disappear we must at least require that the largest observable
length scale we can probe today is inside the causal horizon at decoupling. However, in principle,
this can also be true for larger scales and the problem would still be solved.
We can estimate the dimension of the actual observable universe with the comoving distance trav-
elled by photons from the instant of decoupling until today (since before tdec photons could not
free stream because of the strong thermal coupling with the primordial plasma), given by

Z t0

tdec

dt

a(t)
=

Z t0

tdec

d ln a

aH
. (1.45)
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With the introduction of the inflationary phase, the comoving particle horizon accumulated until
the moment of decoupling is now

Z tdec

t⇤

dt

a(t)
=

Z tdec

t⇤

d ln a

aH
, (1.46)

with t⇤ a generic instant during inflation, t⇤ < tf . Therefore, the afore-mentioned requirement
reads Z t0

tdec

d ln a

aH

Z tdec

t⇤

d ln a

aH
. (1.47)

which sets an upper bound on t⇤, or a lower bound on the number of e-folds N(t⇤) ⌘ N⇤, represented
respectively by the values tCMB and N(tCMB) ⌘ NCMB at which the CMB scale enters the causal
horizon, i.e. such that the inequality (1.47) is saturated.
The integrals on both sides of (1.47) are dominated by the moment when the comoving Hubble
radius is the largest, i.e by t = t0 for the l.h.s. and by t = t⇤ for the r.h.s., so the previous inequality
can be approximated as

1

a0H0
 1

a⇤H⇤
, (1.48)

which, rearranged, yields

H�1
0  a0

a⇤
H�1

⇤ =
af
af

a0
a⇤

H�1
⇤ =)

af
a⇤

= eN⇤ �
afH⇤
a0H0

. (1.49)

We want to rewrite the ratio of the scale factors on the r.h.s. in terms of the temperatures of
the universe today and at the end of inflation, i.e. T0 and Tf . After inflation, a thermalization
process of the material filling the universe is necessary to obtain a transition to the initial RD
epoch of the Hot Big Bang model. Hence, the universe is reheated up to a temperature Treh, at
which radiation becomes the dominant component. In this discussion we assume an instantaneous
thermalization, i.e. the reheating temperature coincides with the temperature at the end of infla-
tion, Tf ⌘ Treh. Assuming also an adiabatic expansion, we have that the entropy S in a comoving
volume is conserved. The total entropy density of all particle species is defined as [16]

s ⌘ 2⇡2

45
g⇤S(T )T

3 , (1.50)

where g⇤S(T ) is the e↵ective number of relativistic degrees of freedom in entropy at temperature T .
Then, the conservation of S reads

S = sa3 =
2⇡2

45
g⇤S(T )T

3a3 = const =) a / g�1/3
⇤S (T )T�1 . (1.51)

The function g⇤S(T ) undergoes significant variations everytime the temperature T of the primordial
plasma drops below the mass threshold of a particle species that becomes non-relativistic and
annihilates into relativistic species in the plasma.
To estimate the required number of e-folds, we approximate the behaviour of the scale factor as
a / T�1, neglecting the temperature dependence of g⇤S(T ). Hence, the previous inequality becomes

eN⇤ & T0

H0

H⇤
Treh

. (1.52)

We now consider the case of a quasi -exponential accelerated expansion, instead of an exactly
exponential one (the reason of the ”quasi” will be clarified in section 1.3). This period coincides
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1.2. The shortcomings of the model and the inflationary solution

with a quasi de Sitter stage, during which the energy of the universe is dominated by a perfect
fluid with w ⇡ �1, and the Hubble parameter HI(t), although a function of time, remains nearly
constant. After these considerations, we can write

HI ' constant =) H2(t⇤) ' H2(tf ) ⇠
T 4
reh

M2
P l

, (1.53)

where the dependence on the temperature in the second equality comes from the first Friedmann
equation, and derives from the previous assumption of instantaneous reheating of the universe after
inflation, which leads to a RD epoch with ⇢ / T 4. We also introduced the reduced Planck mass,
MP l = (8⇡G)�1/2 ⇠ 1018GeV.
From experimental measurements [2, 17] we know that

T0 = (2.72548± 0.00057)K (95% C.L.) , (1.54)

H0 = (67.66± 0.42)Kms�1Mpc�1 (68% C.L.) , (1.55)

which converted in natural units yield T0 ' 2.4 · 10�13GeV and H0 ' 1.54 · 10�42GeV. Then, the
inequality (1.52) becomes (10 ' e2,3)

eN⇤ & 1029
Treh

MP l
=) N⇤ & 67 + ln

✓
Treh

MP l

◆
. (1.56)

The Planck data [5] puts an upper bound on the energy scale of inflation, which implies an upper
bound on the Hubble parameter HI during the accelerated expansion given by

HI

MP l
< 2.5 · 10�5 (95% C.L.) . (1.57)

From (1.53) we have

Treh

MP l
⇠
✓

HI

MP l

◆1/2

< (2.5 · 10�5)1/2 = 5 · 10�3  ! Treh < 1.2 · 1016GeV . (1.58)

A lower bound is placed on the reheating temperature by primordial nucleosynthesis (BBN), Treh <
TBBN ⇠ 10�2GeV [18]. Then, from (1.56) we obtain

N⇤ > NCMB ' [21, 62] . (1.59)

1.2.2 The flatness problem

Analogously to the horizon problem, also the flatness problem stems from an experimental obser-
vation, related, in this case, to the spatial curvature of the universe.
Let us start by the Friedmann equation (1.20) with the inclusion of the curvature term

H2 =
⇢

3M2
P l

� k

a2
, (1.60)

and let us rewrite it so to make the problem more transparent. To this goal we define the critical
energy density ⇢c(t) ⌘ 3H2(t)M2

P l, which corresponds to the energy density of flat universe (k = 0)

with Hubble rate H. We also define the two parameters ⌦(t) ⌘ ⇢(t)
⇢c(t)

and ⌦k(t) ⌘ � k
a(t)2H2(t) .

Dividing both side of (1.60) by H2(t), we obtain

⌦(t) + ⌦k(t) = 1 . (1.61)
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Our universe is either flat, of very close to flat, to very high accuracy. Specifically, the parameter
⌦k, that measures the departure from flatness, is constrained by CMB observations [2] to be

��⌦k(t0)
�� =

��1� ⌦(t0)
�� = 0.0007± 0.0019 (68% C.L.) . (1.62)

In order to understand the reason why this experimental evidence leads to a fine tuning problem,
let us study the time evolution of the parameter ⌦k(t) in standard cosmology. From equations
(1.20) and (1.23) we have:

��⌦k(t)
�� = |k|

a2(t)H2(t)
/
(
a2(t) RD

a(t) MD
. (1.63)

We can use this relation to relate the current value of the curvature parameter to the value it had
at a time t1 before the matter-radiation equality time teq,

⌦k (t1)

⌦k (t0)
=
⌦k (t1)

⌦k

�
teq
� ⌦k

�
teq
�

⌦k (t0)
=

a2 (t1)

a2
�
teq
� a

�
teq
�

a (t0)
=

a2 (t1)

a2 (t0)

a (t0)

a
�
teq
� (1.64)

We can therefore write
⌦k (t1)

⌦k (t0)
' zeq

z2(t1)
. (1.65)

From the Planck data [2] zeq = 3387 ± 21 (68% C.L.). To estimate the redshift at early times, we
use the fact that the temperature of the thermal bath scales as T / a�1 (disregarding the change
in the relativistic degrees of freedom). Given the current CMB temperature (1.54) and the fact
that

��⌦k(t0)
�� < 10�3, we therefore obtain

��⌦k (t1)
�� '

��⌦k (t0)
�� 3.387 · 104

 
10�13GeV

T (t1)

!2

. 10

 
10�13GeV

T (t1)

!2

. (1.66)

If we consider a temperature close to the onset of BBN, which means T (t1 = tBBN ) ⇠ MeV, we
find

��⌦k(tBBN )
�� . 10�19. Assuming a temperature at the Planck scale T (t1 = tP l) ⇠ 1019GeV

results in
��⌦k(tP l)

�� . 10�63. From this extreme fine-tuning, we conclude that a universe as close
to flat as the observed one is very unnatural in standard cosmology.

One solution to this problem is to assume that the universe is exactly flat. Alternatively, since
|⌦k| / a�2 ' e�2N in an inflationary universe (H ' constant), one can imagine that the curvature
parameter is of order one at the onset of inflation, and that it is then decreased by the inflationary
expansion. The minimum duration of inflation required to produce the small values of the curvature
just computed depends on what we assume as the reheating temperature at which the thermal
bath of the standard RD epoch was formed (also in this discussion, for simplicity, we assume
instantaneous reheating after inflation). Indeed, if we choose t1 as the time at the end of inflation,
t1 = tf ⌘ treh, from (1.66) we obtain

N & ln

✓
Treh

T0

◆
' 53 + ln

✓
Treh

1010GeV

◆
. (1.67)

Given the previous bounds on Treh used at the end of subsection 1.2.1, we have

N & [25, 67] . (1.68)
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1.2.3 The unwanted relics problem

There might be some additional challenges in embedding the standard cosmology in a particle
physics theory. If the early universe had a temperature greater than T ⇠ 1014 � 1016 GeV, and if
Grand Unified Theories4 (GUT) are realized in nature, then these symmetries were unbroken at
those high temperatures. As the temperature drops below this value, a variety of stable, super-heavy
particles called topological defects or topological solitons, are typically formed as a consequence of a
second-order phase transition triggered by the spontaneous symmetry breaking (SSB) of the global
subgroup of the GUT gauge group.
Before explaining the reason why these objects are ”unwanted”, let us give an insight into the
mathematical framework.

In classical field theory, a topological soliton is defined to be a particular class of solutions of the
field equation of motion corresponding to finite energy and topologically stable configurations of
the field.
In general, given a theory with gauge group G, which undergoes a spontaneous breaking into a
subgroup H, there will be soliton solutions associated to the symmetry breaking G ! H if the
degenerate vacuum manifold G/H has a non trivial topological structure. More in detail, the ho-
motopy group ⇧d(G/H), defined as the set of homotopy classes of the maps Sd ! G/H, with d
the dimension of the boundary of the physical space in which the theory lives, must be not trivial.
In other words, not all the possible vanishing energy (vacuum) configuration are equivalent, in the
sense that they cannot be all related to any other one by a gauge transformation. Then, the space
of degenerate vacua splits up in di↵erent homotopy equivalence classes.
Moreover, the requirement of finite energy put a constraint on the asymptotic behaviour of the
solitons: at the boundary of space they must behave as vanishing energy configurations, otherwise
the integration of the Hamiltonian density over space would yield infinite energy. Hence, if not
all vacua are homotopically equivalent, we can have as well the existence of homotopically distinct
soliton solutions which interpolates between di↵erent vacua.
Then, topological stability refers to the fact that these solutions cannot be continuously mapped
into each other and to the vacuum state, i.e. the corresponding quantum particles of the associated
QFT do not decay. Instead, field configurations associated to elementary particles, are smooth fluc-
tuations of the vacuum. From a physical point of view, the mapping from a soliton configuration
to a vaccum configuration throughout the entire space is not allowed because it entails an amount
of energy which becomes infinitely large in the thermodynamic limit [20].
The nature of a cosmological defect depends on the details of the symmetry breaking pattern.
The most notable example are magnetic monopoles, i.e. point-like defects appearing in a SO(3)
gauge theory, in which SO(3) is spontaneously broken to U(1) by a Higgs triplet �a transforming
in the adjoint representation (’t Hooft Polyakov monopoles). We can also have one dimensional
structures, as well as cosmic strings, or 2-dimensional ones like domain walls, and so on. The latter
arise by the SSB of discrete symmetries. We refer to [13, 20] for more details about solitons and
their role in the cosmological framework.

The cosmological production mechanism of topological defects is known as Kibble mechanism [21].
In short, it relies upon the fact that, during the GUT phase transition, the finite particle horizon

4A Grand Unified Theory is a high-energy completion of the Standard Model (SM) of particle physics which tries
to combine the fundamental interactions of Nature, with the exception of gravity, into a unique gauge interaction
specified by a gauge symmetry group containing the SM one, the latter given by SO(3)⇥ SU(2)L ⇥U(1)Y. We refer
the reader to [19] for more details on the argument.
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Chapter 1. The Hot Big Bang cosmological model and the need of Inflation

dph(t) sets an upper bound on the correlation length ⇠ of the field inducing the spontaneous breaking
of the symmetry group, call it �. The correlation length ⇠ corresponds with the distance over which
the vacuum expectation value (VEV) h�i acquired by the field after the SSB is correlated, implying
that, if two generic points of the universe are separated by a distance l > ⇠, then there is a possibility
that the two points will be in two di↵erent vacua of the system. In that case, there could be a
topological defect configuration which smoothly interpolates between these two regions of space
being in di↵erent ground states, allowing for the existence of a transition region of false vacuum.
If we roughly estimate the characteristic size of a topological defect through the correlation length
⇠, we expect that at least one defect per horizon volume should arise after the phase transition
because of the causality bound on ⇠, i.e.

ndef (tGUT ) ⇠ ⇠�3 & d�3
ph (tGUT ) . (1.69)

This lower bound on ndef leads to a serious problem in standard cosmology, since, if these relics
do not annihilate e�ciently, we should expect an overabundance in their current number density
[22–24], inconsistently with experimental observations. Furthermore, these massive relics behave as
pressurless dust. Their energy density scales more slowly with the expansion than that of radiation,
so they can become the dominant component of the universe at dangerously early times, e.g. before
the BBN mechanism.
These unwanted particles, if present at the onset of inflation, were diluted away to a completely
negligible (and completely unobservable) abundance by the inflationary expansion. It is important
to notice that we have also to require that the reheating temperature, at which the standard RD
era begins after inflation, must be smaller than the GUT energy scale, Treh < TGUT , otherwise the
GUT symmetry would be restored and the cosmological defects would be formed again through
the same mechanism. Another bound must also be imposed on Treh in order to avoid the thermal
production in the early RD stage of the universe of massive unwanted thermal relics predicted by
supersymmetric theories, such as gravitinos [25, 26]. This last bound is very model dependent,
since it depends on the specific particle content we are assuming.

1.3 The Inflaton field

From what we have seen so far, it is possible to summarize the definition of inflation and the
condition necessary to achieve it as

INFLATION ⌘ ä > 0 () P < �1

3
⇢ . (1.70)

We end the first chapter by showing how a period of accelerated expansion in the early universe can
be implemented by assuming the existence of a quantum field, usually referred to as the inflaton
field.

As said at the end of subsection 1.1, the current exponentially accelerated expansion is well ex-
plained by the cosmological term ⇤gµ⌫ we find in the Einstein equations (1.2), which today results
to be dominant w.r.t. the other sources of energy contained in the stress-energy tensor Tµ⌫ . We
have already pointed out that this term is equivalent to an additional stress-energy tensor of the
form T⇤µ⌫ = � ⇤

8⇡Ggµ⌫ , belonging to a perfect fluid filling the universe with constant energy density

and isotropic pressure given by P⇤ = �⇢⇤ = � ⇤
8⇡G (w = �1).

In cosmology, within the context of GR, this form of energy is attributed to the vacuum, the lat-
ter simply understood as empty space. More precisely, in a Quantum Field Theory (QFT), the
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1.3. The Inflaton field

vacuum is the lowest energy state of the theory. We call the energy of this state the ”zero-point
energy” of the system5. In fact, given a particle species with its stress-energy tensor, one can show
[27] on very general grounds that the vacuum expectation value of the latter assumes the form
h0|Tµ⌫ |0i ⌘

⌦
Tµ⌫

↵
= �h⇢i gµ⌫ . Then, once inserted in the Einstein equations,

⌦
Tµ⌫

↵
mimics the

e↵ects of an e↵ective cosmological constant ⇤eff = 8⇡G h⇢i.
The true vacuum state of a QFT, corresponding to the absolute minimum configuration of the
potential of the field theory, is stable, i.e. h⇢i is constant. This means that if inflation was driven
by the true vacuum energy of a field theory, we would obtain a pure never ending de Sitter phase
with w = �1 exactly. Instead, we want inflation to stop at some point, since we would like to
recover the standard Big Bang cosmological model.
Historically, in the first model of inflation proposed (Alan Guth, 1981 [4]), the driving energy be-
hind the exponential de Sitter expansion was the one associated to a false vacuum rather than a
true vacuum, the former corresponding to a metastable local minumum of the potential. Once the
universe cools enough due to the expansion, inflation can end because the system abruptly reaches
the true stable vacuum through a first order phase transition6. The latter implies the phenomenon
of bubble nucleation, i.e. the random formation of bubbles of true vacuum separated by spacetime
regions of false vacuum, where the transition has not yet occured. These bubbles expand and if they
met each other they merge together. Moreover, when the bubbles met, the collision of their walls
heats up the universe by giving rise to the thermal plasma of standard cosmology. The problem
with this idea is that the bubble coalescence should fill at least a portion of the universe equal to
the size of the observable universe today, but the background spacetime of false vacuum around
them is inflating, so these bubbles actually never met to form such a big region as we require, so
we remain with separate empty bubbles.
This problem, known under the name of ”Graceful exit problem”, was solved by the works of Linde
and Albrecht, Steinhardt [28, 29], who realized that a field seating in a local or global minimum of
its potential is not necessary in order to have inflation. The accelerated expansion can also consists
into a quasi de Sitter phase with w ' �1, which can be attained by a field moving very slowly in a
region where its potential is very flat, so that, while in this region of the potential, the field mimics
a vacuum energy.

Let’s assume the inflaton field is a scalar field, function of the comoving coordinates, �̂(t,x). In
this case, the total classical action in a curved spacetime is given by

STOT = SEH + S� + S�, ,A,� (1.71)

=
1

16⇡G

Z
d4x
p
�g

⇣
R+ L

⇥
�,�;µ

⇤
+ L�, ,A,�

⌘
, (1.72)

where g = det(gµ⌫), R is the Ricci scalar, SEH is the Einstein Hilbert action which gives rise,
through the least action principle, to the l.h.s. of the Einstein equations (1.2), S� is the inflaton
action and finally S�, ,A,� is the action describing the dynamics of all the other fundamental fields
(matter fields, gauge fields and other scalar fields) and their coupling with the inflaton.
The generic form of a, minimally coupled 7, density lagrangian for the inflaton field is

L
⇥
�, @µ�

⇤
= �1

2
gµ⌫@µ�@⌫�� V (�) , (1.73)

5It is fair to say that, although we can have a “pictorial” interpretation of this energy as due to the continuous
formation and distruction of virtual pairs admitted by Heisenberg uncertainty principle, we currently do not have a
way to reliably compute this vacuum energy.

6The first order phase transition entails the quantum tunnelling of the potential barrier separating the local
minimum from the absolute one, which can only happen at su�ciently low temperatures, such that the barrier is low
enough.

7We are not considering interaction terms with gravity as �2R.

23



Chapter 1. The Hot Big Bang cosmological model and the need of Inflation

where we replaced the covariant derivatives with ordinary partial derivatives, since the two coincide
for the case of a scalar quantity.
The potential V (�) coincides just with the quadratic mass term 1

2m
2
��

2 in the case of a free inflaton
field, but in general it also accounts for self-interactions of � and, possibly, also e↵ective interactions
with other fields, obtained by integrating them out8.
The stress-energy tensor is defined as

Tµ⌫ ⌘
�2p
�g

�Smatter

�gµ⌫
=
�2p
�g

�(S� + S�, ,A,�)

�gµ⌫
. (1.74)

During the inflationary phase, the energy contribution of the other particle species, which are in the
form of a radiation fluid, is subdominant w.r.t. the inflaton one. Then, the inflaton stress-energy
tensor T �µ⌫ is obtained from the definition (1.74), by neglecting the S�, ,A,� term of the total action.
In the most general case of a non-minimally coupled scalar field, the infinitesimal variation �S of
the action due to an infinitesimal variation �gµ⌫ of the metric tensor, up to linear order in �gµ⌫ , is
given by

�S
�
gµ⌫ , @⇢g

µ⌫
�
=

Z
d4x

"
�(
p
�gL�)
�gµ⌫

�gµ⌫ +
�(
p
�gL�)

�(@⇢gµ⌫)
@⇢�g

µ⌫

#
(1.75)

=

Z
d4x

"
�(
p
�gL�)
�gµ⌫

� @⇢
�(
p
�gL�)

�(@⇢gµ⌫)

#
�gµ⌫ , (1.76)

where, passing from the first to the second line, we applied the Leibniz rule on the second term of
(1.75), and then the divergence theorem, combined with the fact that the variations �gµ⌫ are taken
to be vanishing at the boundaries of spacetime. Hence, we get

T �µ⌫ =
�2p
�g

�S

�gµ⌫
=
�2p
�g

"
�(
p
�gL�)
�gµ⌫

� @⇢
�(
p
�gL�)

�(@⇢gµ⌫)

#
(1.77)

For a minimally coupled scalar field, the second term of the last expression is null, while the first
provides

T �µ⌫ =
�2p
�g

"
�1

2

p
�g@µ�@⌫��

1

2

�
p
�g

�gµ⌫
g⇢�@⇢�@���

�
p
�g

�gµ⌫
V (�)

#
(1.78)

= @µ�@⌫�+ gµ⌫


�1

2
g⇢�@⇢�@��� V (�)

�
(1.79)

= @µ�@⌫�+ gµ⌫L� . (1.80)

where in the first step we used

�
p
�g

�gµ⌫
= �1

2

p
�ggµ⌫ . (1.81)

As previously discussed, inflation cannot be driven by the energy of a stable vacuum configuration,
h�i = constant, otherwise it would last forever. For this reason, we require the expansion to be
generated by a dynamical evolution of the ground state configuration.

h0| �̂(t,x) |0i = �0(t) , (1.82)

8In fact, a quadratic potential all throughout inflation is ruled out by CMB data [2].
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1.3. The Inflaton field

which has no dependence on the spatial coordinates, due to the properties of homogeneity and
isotropy of the background where the dynamics takes place. This condition allows the accelerated
expansion to have an end when, because of some specific dynamical mechanism, the inflaton energy
density is not more the dominant one.
In order to simplify the study of the evolution of �̂(t, ~x), we split the field in its classical ground
state configuration, plus the inhomogeneous quantum fluctuations around this background value,

�̂(t,x) = �0(t) + �̂�(t,x) , (1.83)

and, in addition, we assume the fluctuations to be small w.r.t. the classical background, i.e. :

h ˆ��2(t,x)i ⌧ �20(t) . (1.84)

In the next chapters, this last condition will enables us to tackle the equations of motion by means
of perturbation theory.
In the reminder of this chapter we focus instead on the dominant classical dynamics. For the
homogeneous and isotropic configuration �0(t) in a FLRW spacetime, the stress-energy tensor
(1.80) is:

T 0
0 = �


1

2
�̇20(t) + V (�0)

�
= �⇢�(t) (1.85)

T i
j =


1

2
�̇20(t)� V (�0)

�
�ij = �ijP�(t) . (1.86)

The resulting form of T �µ⌫ is the one of a perfect fluid at rest, with ⇢�(t) and P�(t) respectively the
energy density and the isotropic pressure associated to the inflaton field.
If, during the dynamical evolution, V (�0) � �̇20(t), then we get an equation of state P� ⇡ �⇢� ⇡
�V (�0), with w ⇡ �1, which yields a quasi de Sitter phase. Physically, this condition means that
the inflaton is slowly rolling down its potential, which is the reason why the evolution in this period
is said to follow a slow-roll regime. A slow-roll regime can be achieved by choosing a su�ciently flat
potential, because the kinetic energy contribution is suppressed, while the potential V (�) ' const
comes to dominate the energy density.
We conclude that an inflationary expansion can be driven by the vacuum energy of a scalar field,
which dominates the energy content of the universe with a suitably flat potential.

As seen, the conditions necessary to realize the inflationary mechanism merely require the inflaton
field to dominate the energy budget of the universe, but they do not prohibit at all the presence of
several other fields besides the inflaton. In presence of other particle species, the inflaton unavoid-
ably interacts with them. This fact led to the development of two main dynamical realization of
cosmological inflation, which substantially di↵er in the way the interactions are treated.
In the original picture, known as cold inflation, the inflaton interactions with the other species are
totally negligible during inflation. The result is an adiabatic accelerated expansion during which
our universe super-cools, reaching a final state with a temperature too low to allow a good ther-
malization of particles (recall T / a�1). Hence, a primordial plasma must form after inflation, in
order to recover the initial conditions of the Hot Big Bang cosmological model. In the simplest
model, the interactions between the inflaton and other species cannot longer be neglected in the
post-inflationary phase, giving rise to the decay of the inflaton into the lighter relativistic particles
species which generate the plasma. Specifically, in this picture, the accomplishment of the slow-
roll regime required to drive inflation constraints the inflaton potential V (�) to be extremely flat.
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Chapter 1. The Hot Big Bang cosmological model and the need of Inflation

When the potential starts to steepen, the slow-roll conditions are no longer met, inflation ends and
interactions are no more considered negligible, so they are turned on. From a phenomenological
point of view, the interactions imply the decay of the inflaton into relativistic particles, introducing
a dissipative e↵ect which converts the energy stored in the inflaton potential into radiation energy
density, with a consequent production of entropy. The universe is then heated up, and the primor-
dial plasma is achieved.
This first scenario is by far the most studied one in the literature. There is however an alternative
scenario, known as warm inflation, in which the interactions of the inflaton with other species are
relevant also during inflation, so that a thermal bath of non-negligible temperature T is also present
during the inflationary expansion. The thermal bath present at some given time t during inflation
is diluted by the expansion, so that the bath needs to receive continuous supply by the dissipation
of the energy stored in the inflaton field due to its decay. In particular, the presence of the interac-
tions leads to an e↵ective form of friction on the motion of the inflaton, so that a slow-roll regime
can be achieved even for a steep potential. Therefore, radiation production may occur concurrently
with the inflationary expansion, and reheating is completed at the end of inflation by the same
interactions that are e↵ective also during the inflationary stage.
In the next two chapters we are going to outline the main aspects of these two di↵erent realizations
of inflation, while also highlighting their di↵erences.
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Chapter 2

Cold Inflation

In this chapter we describe the general features of the first inflationary scenario, also known as
isoentropic inflation. In particular, we discuss how the small seeds of primordial energy density
perturbations are generated via the inflationary mechanism, starting by the coupled quantum fluc-
tuations of the inflaton field and the metric tensor.
Before getting into the explicit calculations, let us first illustrate qualitatively how this physical
process works. As mentioned, during inflation, the energy content of the universe is dominated
by the vacuum energy of the inflaton field, so that the stress energy tensor T �µ⌫ constitutes the
main source of spacetime curvature present in the r.h.s. of the EFE (1.2). Intrinsic quantum

fluctuations �� of this field lead to perturbations of its stress energy tensor, �T �µ⌫ , which in turn
gives rise, through the Einstein’s equations, to the generation of ripples in the spacetime metric
w.r.t. the homogeneous and isotropic FLRW background; at the same time, these fluctuations �gµ⌫
of the metric tensor enter the inflaton equations of motion, backreacting on the evolution of ��.
Actually, as we will see, the perturbations �� and �gµ⌫ are related by a gauge choice issue a↵ecting
the general definition of the cosmological perturbations, which can be traced back to the freedom
of choice of the spacetime coordinate frame one uses to describe the system. It follows that it is
su�cient to compute the evolution of a unique gauge invariant degree of freedom, called curvature
perturbation, which accounts for the only independent dynamical degree of freedom from which the
inflaton and the geometry can be obtained in any specific gauge.
The prolonged accelerated inflationary expansion stretches the Fourier modes of the perturbations
from microphysical to cosmological scales by far larger than the causal Hubble horizon, which
instead remains almost constant. As a consequence, quantum fluctuations are excited from the
ground state, and on super-horizon scales they can be treated as classical perturbations. Once a
mode is taken to such a large scale, it is unable to evolve because of causality reasons, and its
amplitude becomes nearly frozen-in. After the end of accelerated expansion, the Hubble radius
starts to grow faster than the physical length scales, and as soon as the di↵erent wavelengths of
the fluctuations re-enter the horizon at matter or radiation dominated epoch, these perturbation
start undergoing the gravitational collapse that results in the formation of the large scale structures
in our universe (galaxies and clusters of galaxies). It is possible to select the time for the initial
conditions of the primordial perturbations at t ⇠ 1s after the Big Bang singularity, corresponding
to temperatures around T ⇠ 1MeV , when the run-up to BBN begins. The reason for this choice, as
observed in [16], comes from the fact that at this time all the length scales of cosmological interest,
i.e. the ones which can potentially undergo the gravitational instability mechanism, are still well
outside the Hubble horizon, so that the gravitational collapse cannot have been e↵ective yet at
those scales, and those modes are still frozen in the state set by inflation.
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Chapter 2. Cold Inflation

We proceed in steps. After deriving the equations of motion of the inflaton field, we first focus
on the evolution of its classical background configuration on the FLRW spacetime, by specifying
the conditions necessary to realize the slow-roll regime and their implications on the dynamical
equations and on the potential V (�). Then, we then move to the study of the evolution of the
cosmological perturbations by means of linear perturbation theory. This perturbative approach is
justified by the CMB experimental measurements, which yield temperature/density anisotropies of
the order �T/T ⇠ 10�5. It should be clear by now that, since inflaton field and spacetime metric
fluctuations cannot be disentangled, an exhaustive treatment of the cosmological perturbations
require the study of a system of coupled di↵erential equations, given by the perturbed Einstein’s
and inflaton’s equations of motion. For the sake of simplicity, we start by considering the evolution
of just the quantum fluctuations of a test1 scalar field in an unperturbed FLRW background metric,
treating in particular the case of a massive real scalar field in a quasi-de Sitter stage. We then
study the actual case of the inflaton perturbations coupled to the spacetime metric. Our final goal
is the computation of the power spectrum of these perturbations, that, as we shall see, accounts for
all the observed properties of these fluctuations as probed by the CMB anisotropies.
The arguments and the results reported in this chapter are mainly based on ref. [16, 30, 31].

2.1 Inflaton field evolution equation in an expanding universe

Let us start by deriving the equations of motion of a scalar field �(t, ~x) on a FLRW background.
We do so from a least action principle, i.e. by imposing

�STOT

��
= 0 . (2.1)

In the context of cold inflation, the contribution S�, ,A,� to STOT , containing the interactions of
the inflaton with the radiation fluid, is neglected, and we have

�STOT

��
= 0 =)

�S�
��

= 0 ()
�L�
��
�
 
�L�
��;µ

!

;µ

= 0 , (2.2)

from which, using the density lagrangian (1.73)

@V (�)

@�
� (��;µ);µ = 0 , (2.3)

where ;µ is a short notation for the covariant derivative rµ. The term �;µ ;µ is the D’Alambertian
of � in a curved spacetime, i.e. the Laplace-Beltrami operator for a pseudo-Riemannian manifold
with signature (3, 1), given by

�;µ ;µ =
1p
�g

�
gµ⌫
p
�g�;⌫

�
;µ

. (2.4)

We now put ourselves in a fixed spatially flat FLRW spacetime, whose metric tensor is

gµ⌫ = diag
⇣
�1, a2, a2, a2

⌘
(2.5)

1With this term we mean a field that contributes negligibly to the smacetime expansion.
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Figure 2.1

Hence, we have
p
�g = a3, so from (2.4) follows the Klein-Gordon equation of motion for a scalar

field in a flat FLRW spacetime:

�̈+ 3H�̇� r
2�

a2
= �@V (�)

@�
. (2.6)

Notice that, in the case the field does not evolve in an expanding background, i.e. a(t) = constant
and H = 0, we recover the Klein-Gordon equation of a scalar field in Minkowski spacetime.

2.2 Background dynamics

Let us focus on the dynamics of the background classical configuration �0(t) ⌘ �(t). In this case,
the equations determining the evolution of the inflaton and of the FLRW expanding universe are:

8
<

:
�̈+ 3H�̇+ V 0(�) = 0

H2 =
⇢�

3M2
Pl

= 8⇡G
3

⇣
1
2 �̇

2 + V (�)
⌘

,
(2.7)

where 0 ⌘ dV/d�, and we used, in the Friedmann equation, the assumption that � dominates the
energy density.
Notice that, in the equation of motion, the potential gradient acts as a force F = �V 0(�), while the
expansion of the universe is responsible for a friction term Ff = �3H�̇ which opposes the evolution
of phi down the potential.

The primordial density perturbations are nearly scale invariant. Namely, modes that leave the
horizon at di↵erent times during inflation are produced with nearly the same amplitude. This
requires a nearly time translational invariance of the system, that can be realized if the inflaton
moves very slowly (so that modes that leave the horizon at di↵erent times probe nearly the same
conditions on the inflaton). As we discuss below, this require the smallness of the so called slow-roll
parameters (to be introduced shortly), which in turns requires

V (�)� �̇2 , |�̈| ⌧ 3H|�̇| . (2.8)

With these approximations, the system of equations (2.7) simplifies into
(

3H�̇ ' �V 0(�)

H2 ' 8⇡G
3 V (�) ' const. .

(2.9)
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To check wether he conditions (2.8) are met, it is convenient to introduce the slow-roll parameters

✏ ⌘ � Ḣ

H2
⌘ ⌘ � �̈

H�̇
, (2.10)

which are nothing but the relative variation of H and the �̈ within a Hubble time interval.
The significance of ✏ is more clear from:

ä = ˙(aH) = aH2(1� ✏) , (2.11)

from which one can see that ✏ < 1 is su�cient to realize inflation. However, we now show that the
conditions (2.8) are more restrictive, as they require ✏⌧ 1. To see this, we di↵erentiate the second
of equation (2.7) to write

2HḢ =
8⇡G

3
(�̇�̈+ V 0(�) �̇) . (2.12)

Using the first of (2.7) we rewrite this as

Ḣ = �4⇡G�̇2 . (2.13)

From this, we obtain

✏ ⌘ � Ḣ

H2
=

4⇡G�̇2

H2
' 3

2

�̇2

V (�)
⌧ 1 , (2.14)

where the second of (2.9) has been used in the approximation and where the final condition is the
first condition in (2.8). We thus proven that (2.8) require ✏⌧ 1. It is then immediate to note that
the second of (2.8) implies |⌘|⌧ 1.
It is convenient to relate the slow roll quantities (2.10) to combinations of the potential and its
derivative. From the first of (2.9) and from (2.14) we have

✏ ' 3
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�̇2

V (�)
' 1

16⇡G

✓
V 0

V

◆2

⌘ ✏V . (2.15)

Moreover, di↵erentiating the first of (2.9) with respect to time, and dividing the resulting expression
by 3H2�̇ we obtain

� �̈

H�̇
' Ḣ

H2
+

V 00

3H2
. (2.16)

Using (2.10) and the second of (2.9) we rewrite this as

⌘ + ✏ ' 1

8⇡G

V 00

V
⌘ ⌘V , (2.17)

which also needs to satisfy |⌘V |⌧ 1, as this is true for the l.h.s. of the expression. From this last
equation, and from (2.15), we see that the slow-roll conditions can be cast as the smallness of the
quantities

✏V =
1

16⇡G

✓
V 0

V

◆2

, ⌘V =
1

8⇡G

V 00

V
(2.18)

which are immediately related to the inflaton potential and its first two derivatives. Below, these
combinations are related to properties of the observed fluctuation. These relations will enforce the
smallness of the slow-roll parameters.
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In slow roll inflationary models, the conditions (2.8), or, equivalently, the smallness of (2.18)
typically hold throughout inflation. When the steepness of the potential starts to become significant,
the slow-roll conditions, expressed by ✏, |⌘|⌧ 1, begin to fail. From (2.11) we see that, by definition,
inflation ends when ✏ reaches the value ✏ = 1. From this moment, the inflaton starts to oscillate
around the global minimum of its potential, as sketched in figure 2.1. While oscillating, the field
decays into lighter relativistic particles, which heat up the universe through the production of
entropy. This is the reheating phase, at the end of which, the universe becomes radiation dominated,
so the initial conditions of the Hot Big Bang cosmological model are recovered.

2.3 Quantum fluctuations of a scalar field on an unperturbed
background spacetime

Starting from the e.o.m (2.6), we use the splitting (1.83) in order to perform a linear expansion
of the derivative of the potential in the fluctuation �� around the background solution �0(t). We
obtain

�̈0 + �̈�+ 3H(�̇0 + ˙��)� r
2��

a2
= �@V

@�
(�0)�

@2V

@�2
(�0)��+ O

⇣
��2

⌘
, (2.19)

which, considering the e.o.m. of �0(t) in (2.7), provides the linear e.o.m. for the fluctuations ��:

�̈�+ 3H ˙��� r
2��

a2
= �@

2V

@�2
(�0)�� . (2.20)

We convert this equation in conformal time ⌧ , and rescale the field according to

��(⌧,x) = a(⌧)��(⌧,x) . (2.21)

This gives

��00 �r2��+

✓
a2V,���

a00

a

◆
�� = 0 , (2.22)

where prime denotes derivative w.r.t. conformal time d
d⌧ = a d

dt and where ,� denotes the derivative
of the inflaton potential w.r.t. the inflaton field. The rescaling eliminated the term proportional to
the first derivative out of this equation. The V,�� term in (2.22) corresponds to the square mass m2

�
of the perturbation ��. During slow-roll inflation, the second of (2.9) and the condition |⌘V | ⌧ 1
implies

m2
�

H2
=

V,��
H2

' 3

8⇡G

V,��
V

= 3⌘V ⌧ 1 , (2.23)

which puts a constraint on the inflaton mass.
In presence of a linear equation of motion invariant under spatial translations, as the one we have
for the perturbation, it is convenient to perform a Fourier decomposition of the field. One can
indeed show that, as a consequence of translation invariance, the di↵erent Fourier modes of ��
evolve independently [31]. Working in a spatially flat spacetime enables to expand the field using
a complete set of plane waves, otherwise we should use the Helmholtz functions Qk, solutions of
the generalized Helmholtz equation r2

kQk + |k|2Qk = 0, with r2
k the Laplace-Beltrami operator

for 3-dimensional curved Riemannian manifolds [32]. Then, the expansion reads

��(⌧,x) =

Z
d3k

(2⇡)3/2
��k(⌧)e

ik·x , (2.24)
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with the Fourier modes ��k(⌧) satisfying equation (2.22) in momentum space,

��00
k +

✓
k2 + a2m2

� �
a00

a

◆
��k = 0 . (2.25)

In addition, the reality condition ��⇤ = �� implies ��⇤
k = ���k.

For each mode k, equation (2.25) coincides with the simple equation of motion of an harmonic
oscillator with a time dependent frequency

!2
k(⌧) = (k2 + a2m2

� � a00/a) , (2.26)

due to the expansion of the universe.

2.3.1 Canonical quantization

To quantize the scalar perturbations �� by using the canonical quantization technique: we promote
the classical field ��(⌧,x) to a quantum operator �̂�(⌧,x) satisfying the equal time Canonical
Commutation Relations (CCR) together with its conjugate field. Equivalently, the Fourier modes
��k are promoted to field operators �̂�k, which, given the linearity of equation (2.25) and the
reality condition, can be expressed as

�̂�k(⌧) = uk(⌧)âk + u⇤k(⌧)â
†
�k . (2.27)

Here, the mode function uk(⌧) and its complex conjugate u⇤k(⌧) are two linearly independent so-
lutions of (2.25), which are only functions of the modulus of the wavenumber k = |k| (and not
also of the direction of the wavevector) as the same is true for !k(⌧). This is due to the isotropy
of the FLRW geometry on which the perturbation is quantized. The constant operator âk and its
hermitian conjugate â†k are, respectively, the annihilation and creation operators, corresponding to
the quantized coe�cients of the general solution, fixed by the initial conditions.
Then, the quantum field operator �̂�(⌧,x) reads:

�̂�(⌧,x) =

Z
d3k

(2⇡)3/2

h
uk(⌧)âke

ik·x + u⇤k(⌧)â
†
ke

�ik·x
i

. (2.28)

If the modes functions are normalized according to the Wronskian condition

u⇤ku
0
k � uku

0⇤
k = �i , (2.29)

the ladder operators satisfy the CCR

[âk, âk0 ] =
h
â†k, â

†
k0

i
= 0 ,

h
âk, â

†
k0

i
= �3(k� k

0) . (2.30)

The free2 vacuum state of the theory is defined via the prescription

âk |0i = 0 , (2.31)

i.e. it is annihilated by âk, for any k, while multi-particle excited states are produced by repeated
application of the creation operators,

��{nk}
↵
=

1pQ
k nk

Y

k

⇣
â†k

⌘nk

. (2.32)

2By perturbing the equations of motion at linear order we are not considering contributions coming from self-
interactions and e↵ective interaction of �, given by higher order derivatives of the potential.
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2.3. Quantum fluctuations of a scalar field on an unperturbed background spacetime

Actually, the vacuum state is not uniquely determined. Indeed, we are totally free to write the
general solution (2.27) using a di↵erent set of mode functions, e.g. vk(⌧), leading to

�̂�k(⌧) = vk(⌧)b̂k + v⇤k(⌧)b̂
†
�k , (2.33)

where b̂k and b̂†k constitute a new set annihilation and creation operators, related to the old one by
the Bogoliubov transformations3. Using the same prescription (2.31) used to define the a-vacuum
state |0ia, we can then define a new b-vacuum state, |0ib, which in general contains particles created
from the vacuum |0ia, and vice versa, i.e.

bh0| â
†
kâk |0ib 6= ah0| b̂

†
kb̂k |0ia 6= 0 . (2.34)

Therefore, the non-uniqueness of the mode functions results in an ambiguity in the computation of
the correlator h0|�̂�k�̂�k0 |0i, which plays a crucial role in an inflationary model, as we will see.
In a static Minkowski spacetime, the normalization condition (2.29) in combination with the re-
quirement that |0i must be the minimum energy state result to be su�cient to uniquely determine
the mode function and, consequently, the vacuum state. In this case, one obtains [33]

uk(⌧) =
e�i!k⌧

p
2!k

, (2.35)

with !k = (k2 +m2
�)

1/2, since a = 1.
Instead, in the case of an expanding FLRW universe with a time dependent frequency, there is no
time translation invariance and therefore no notion of constant energy, so the above conditions are
not able to determine the vacuum. However, we have !k �! k in the asymptotic past / deep UV
regime, corresponding to ⌧ ! �1, when all comoving scales k were well inside the Hubble horizon,
k � aH. In this regime the frequency !k is very slowly varying in time, i.e. !0

k/!
2 ⌧ 1. This

adiabatic variation allows to choose the so called adiabatic vacuum in the asymptotic past / deep
UV regime, which approximates the concept of Minkowski vacuum. Then we require

uk(⌧)
k�aH����! e�ik⌧

p
2k

. (2.36)

This procedure is called the Bunch-Davis vacuum choice. Once the general solution of equation
(2.25) has been found, we will completely determine the mode functions by requiring the validity
of (2.36).

2.3.2 Exact solution

As anticipated, we now assume a quasi de Sitter stage, so that we can write explicitly the temporal
dependence of the frequency !k(⌧) in terms of the non vanishing slow-roll parameters. Exploiting
the fact that ✏, ⌘ ⌧ 1 during inflation, we can work to first order in these slow-roll parameters.
Within this approximation, ✏ and ⌘ can be treated as constants. Indeed, by deriving the definitions
(2.10) in time, we have

✏̇ = � Ḧ

H2
+ 2

Ḣ2

H3
= ✏

 
Ḧ

Ḣ
� 2

Ḣ

H

!
(2.37)

= ✏

 
2
�̈

�̇
+ 2✏H

!
= ✏(�2H⌘ + 2✏H) ⇠ O

⇣
✏2, ⌘2

⌘
, (2.38)

3A Bogoliubov transformation is an isomorphism between two sets of annihilation and creation operators, providing
two di↵erent representations of the algebra defined by the CCR.
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where in the third equality we used equation (2.13) and its time derivative to write the ratio Ḧ/Ḣ
in terms of time derivatives of the field �.
In the the case of ⌘, we start by rewriting the parameter in the following way

⌘ = ✏� ✏̇

2✏H
, (2.39)

where we used (2.38). The time derivative reads

⌘̇ =
✏̇

2
+

1

2H

✓
✏̇

✏

◆2

� ✏̈

2✏H
⇠ O

⇣
✏2, ⌘2

⌘
. (2.40)

Then, equations (2.38), (2.40) tell us that we can safely neglect ✏̇, ⌘̇ if we work at first order in
slow-roll.
By integrating the definition of the conformal time, one finds that, for small values of ✏, the scale
factor can be expressed as

a(⌧) ' � 1

⌧H(1� ✏) . (2.41)

Starting by H = ȧ/a = a0/a2, and using ✏ = �Ḣ/H2 = �H 0/aH2, if we repeat the same steps
used in (2.11) to obtain ä in terms of ✏, we get an analogous relation for a00, which is

a00 = a3H2(2� ✏) =) a00

a
= a2H2(2� ✏) . (2.42)

From the expression (2.41) for the scale factor we get

a00

a
= a2H2(2� ✏) ' 1

⌧2(1� ✏)2 (2� ✏) '
1 + 2✏

⌧2
(2� ✏) ' 2
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✓
1 +
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2
✏

◆
, (2.43)

and also

m2
�a

2 '
m2
�

H2⌧2(1� ✏)2 '
m2
�

H2⌧2
(1 + 2✏) ' 3⌘V

⌧2
(1 + 2✏) ' 3⌘V

⌧2
, (2.44)

where we used (2.23).
Using the expressions (2.43) and (2.44), the equation of motion (2.25) for the mode functions can
be rewritten as

u00k(⌧) +

 
k2 �

⌫2 � 1
4

⌧2

!
uk(⌧) = 0 , (2.45)

where ⌫2 = 9
4 + 3✏� 3⌘V , which implies 3

2 � ⌫ ' ⌘V � ✏, at first order.
If we now make a change of variable, from ⌧ to z ⌘ �k⌧ > 0, and trade the function uk(⌧) with

fk(z) ⌘ uk(⌧)p
�⌧ =

q
k
zuk(z), the di↵erential equation (2.45) can put in the form

d2fk
dz2

+
1

z

dfk
dz

+

 
1� ⌫2

z2

!
fk = 0 . (2.46)

This is a homogeneous Bessel equation of order ⌫, and its general solution is given by

fk(z) = c1(k)H
(1)
⌫ (z) + c2(k)H

(2)
⌫ (z) , (2.47)

which leads to
uk(⌧) =

p
�⌧

h
c1(k)H

(1)
⌫ (�k⌧) + c2(k)H

(2)
⌫ (�k⌧)

i
, (2.48)

34



2.3. Quantum fluctuations of a scalar field on an unperturbed background spacetime

where H(1)
⌫ and H(2)

⌫ are two linear independent solutions of (2.47), known as Hankel functions.
Let us study the behaviour of the solution in the two limiting case of z = �k⌧ � 1, corresponding
to sub-horizon scales �phys ⌧ H�1  ! k � aH, and z ⌧ 1, corresponding to super-horizon
scales �phys � H�1  ! k ⌧ aH. Observe that c1(k) and c2(k) are free coe�cients of the linear
combination, which signal the non-uniqueness of the mode functions. They are fixed by imposing
the asymptotic behaviour (2.36) on sub-horizon scales.

• Sub-horizon regime (k � aH)

For large values of the argument z, the special functions H(1)
⌫ (z) and H(2)

⌫ (z) assume the
asymptotic form [34]

H(1)
⌫ (z)

z�1⇠
r

2

⇡z
ei(z�⌫

⇡

2�
⇡

4 ) , H(2)
⌫ (z)

z�1⇠
r

2

⇡z
ei(�z�⌫ ⇡

2�
⇡

4 ) . (2.49)

Since we require the mode function uk to approach the Minkowskian mode on small scales,

uk(⌧)
k�aH⇠ e�ik⌧

p
2k

, we must fix c1(k) =
p
⇡
2 ei

⇡

2 (⌫+
1
2 ) and c2(k) = 0, which provide the exact

solution

uk(⌧) =
p
�⌧
p
⇡

2
ei

⇡

2 (⌫+
1
2 )H(1)

⌫ (�k⌧) . (2.50)

• Super-horizon regime (k ⌧ aH)

For small values of the argument z, the special function H(1)
⌫ (z) has the asymptotic expansion

[34]

H(1)
⌫ (z)

z⌧1⇠ e�i⇡2

⇡
2⌫�(⌫)z�⌫ , (2.51)

where � is the Euler Gamma function. Plugging this expression in (2.50), after some manip-
ulations, gives

uk(⌧)
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�(32)
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1
2�⌫ , (2.52)

with �(3/2) =
p
⇡/2.

Hence, using the expression for the scale factor at zeroth order in slow roll, a ⇡ � 1
⌧H , the

behaviour of the mode functions ��k well outside the horizon results:
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�(⌫)
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3
2�⌫ . (2.53)

It’s important to notice the very weak temporal dependence of the solution, since 3
2 � ⌫ '

⌘V � ✏ ⌧ 1. So, on super-horizon scales, the Fourier modes can be considered, with a very
good approximation, as constant functions with amplitude

|��k| = 2⌫�
3
2

 
�(⌫)

�(32)
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Hp
2k3

✓
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◆ 3
2�⌫

(2.54)

' Hp
2k3

✓
k

aH

◆ 3
2�⌫

. (2.55)

We conclude that, as long as the wavelength of the perturbations of the field � is inside the Hubble
horizon, they remain on the vacuum state. Instead, when the wavelength gets stretched to super-
horizon scales by the accelerated expansion, the modes are frozen in. It can be argued, see for
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Chapter 2. Cold Inflation

instance [35], that the large amplification leads to a quantum to classical transition of the modes,
which mostly takes place at horizon crossing. After horizon crossing, the perturbations can be
treated as classically evolving stochastic variables, whose statistics is encoded in their correlation
functions. The details of this classicalization are not fully understood yet [35] and are beyond the
scope of this thesis.

2.3.3 Power spectrum of a stochastic field

All the cosmological perturbation fields, as well as the perturbations in the energy density and in
the inflaton field, are treated as stochastic/random fields. A stochastic field is a function �(t,x)
which takes on each point a random configuration according to a probability distribution functional
Pr[�]. We will just consider perturbation fields with zero mean,

⌦
�(t,x)

↵
= 0, where the brackets

denote the ensemble average, i.e.

⌦
�(t,x)

↵
=

Z
D�Pr[�]�(t,x) = 0 . (2.56)

In general, one defines the n-point correlation function as the expectation value of the product of
n fields � evaluated at di↵erent spatial points. Thus, for a given field, we have an infinite set of
correlators.
In particular, the 2-point correlation function is

⇠(x,y) ⌘
⌦
�(t,x)�(t,y)

↵
=

Z
D�Pr[�]�(t,x)�(t,y) . (2.57)

On the basis of the validity of the cosmological principle, we require statistical homogeneity and
isotropy, meaning that the statistical properties of the translated field and the rotated field are the
same of the original one, i.e.

Pr
⇥
�(t,x)

⇤
= Pr

⇥
�(t,x� a)

⇤
= Pr[�(t, R̂x)] , (2.58)

for any constant vector a and rotation R̂. For the two point correlation function, these conditions
separately imply the relations

⇠(x,y) = ⇠(x� a,y � a) 8a (2.59)

⇠(x,y) = ⇠(R̂�1
x, R̂�1

y) 8R̂ , (2.60)

which, combined, provide

⇠(x,y) = ⇠(R̂�1(x� y)) 8R̂ =) ⇠(x,y) = ⇠(|x� y|) . (2.61)

So, the two point correlator depends only on the distance between the two points.
Considering the Fourier transform of the stochastic field �

�(t,k) =

Z
d3x

(2⇡)3/2
�(t,x)e�ik·x , (2.62)

one can construct the n-point correlators in Fourier space. Demanding the invariance of ⇠(x,y)
under translations and rotations puts a constraint on the form of the two-point correlation function
in Fourier space, which reads

⌦
�(t,k)�(t,k0)

↵
= P (k)�3(k+ k

0) , (2.63)
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where P (k) is the power spectrum. The presence of the delta function encodes the requirement of
homogeneity, and it means that di↵erent modes are statistically independent. The dependence of
P on just the modulus k ⌘ |k|, instead, comes from the isotropy. These features are valid also for
higher correlators.
Inverting (2.62), one can compute the variance of the field � as

h�2(t,x)i = ⇠(0) =

Z
d3k

(2⇡)3
P (k) =

Z 1

0

dk

2⇡2
k2P (k) =

Z 1

0

dk

k

k3

2⇡2
P (k) =

Z
d(lnk)�(k) ,

(2.64)

where we defined the adimensional power spectrum as �(k) = k3

2⇡2P (k). Thus, the power spectrum
is a measure of the amplitude of the perturbations at a given scale k.
The slope of the adimensional power spectrum is described by the spectral index n(k), given by

n(k)� 1 =
d ln�(k)

d ln k
. (2.65)

For a constant value of n(k) ⌘ n, the adimensional power spectrum has a simple power law
dependence from k, which can be written w.r.t. a reference ”pivot” scale k0

�(k) = �(k0)

✓
k

k0

◆n�1

. (2.66)

A particular value is represented by n(k) ⌘ 1. In this case �(k) is said to be scale invariant, and
we have a so called Harrison-Zel’dovich power spectrum. The scale invariance refers to the fact
that, for such a power spectrum, the two point correlation function is invariant under a rescaling
of the spatial coordinates, namely if x �! �x, where � > 0 is some constant, one finds that

⌦
�(t,�x)�(t,�y)

↵
=
⌦
�(t,x)�(t,y)

↵
. (2.67)

Indeed, writing (2.57) in terms of the two point correlator in Fourier space (2.63), and using
�3(�(k+ k

0)) = ��3�3(k+ k
0), one can simply show that (2.67) is verified if P (k) / 1

k3 , or equiva-
lently �(k) = constant.

The simplest type of random field is a Gaussian random field, i.e. characterized by a Gaussian
probability distribution functional. CMB data indicate that the primordial perturbations are con-
sistent with Gaussianity within the experimental bounds [3]. For a Gaussian distribution with zero
mean all the statistical informations are contained in the two-point correlation function computed
above, or, equivalently, in their power spectrum. Specifically, odd-n point correlators vanish, while
even-n point correlators can be written as products of two point correlators, for instance
⌦
�(t,x1)�(t,x2)�(t,x3)�(t,x4)

↵
=
⌦
�(t,x1)�(t,x2)

↵ ⌦
�(t,x3)�(t,x4)

↵
+ two permutations. (2.68)

The observed Gaussianity is explained within the inflationary paradigm described above. As we
have showed, within the linear approach, the solutions of the coupled equations of motion for the
cosmological perturbations are determined by the inflationary initial conditions, consisting of the
quantum fluctuations of the inflaton field in its vacuum state evaluated at the time of horizon
exit. We have shown that the Fourier modes ��k of the (rescaled) quantum fluctuations have the
dynamics of a quantum harmonic oscillator, and, as we learn from the study of this kind of system,
the probability distribution of each mode ��k in the vacuum state is Gaussian, with a variance
given by the modulus square of the mode function [33, 36],

��h��k|0i
��2 / exp[�|��k|2/|uk|2] . (2.69)
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More generally, using the CCR (2.30) for the ladder operators, the two point correlation function
for the inflaton field fluctuations �� = ��/a reads

h0| ˆ��k ˆ��k0 |0i = |uk|2

a2
�3(k0 � k) = P (k)�3(k0 � k) , (2.70)

with

P (k) = |��k|2 =
|uk|2

a2
. (2.71)

Since the linear evolution does not mix di↵erent Fourier modes, these statistical properties are
inherited by the primordial cosmological perturbations at horizon re-entry, and in particular by the
CMB anisotropies, which are then predicted to be Gaussian distributed at linear order.
Actually, during inflation, the initial Gaussian perturbations stay almost, but not quite, Gaussian.
Indeed, the very nature of the gravitational dynamics and the unavoidable presence of interactions
of the scalar field � with itself and other fields, are sources of non-linearities in the inflationary
dynamics, which produce deviations from a pure Gaussian statistics for the perturbations, namely
non-vanishing odd-n correlators. However, the flatness condition on the scalar potential constrains
the interaction terms to be very small, hence the non-linearities are suppressed, as well as the non-
Gaussian features. The detection of a certain amount of non-Gaussianity [3], or the determination
of bounds on it, is a powerful probe of the theory of inflation, because it could put precise con-
straints on the inflaton potential, helping to discriminate between the many available inflationary
models.

2.4 Quantum fluctuations of a scalar field on a perturbed space-
time

Before facing the problem of the coupled evolution of the inflaton field fluctuations and the space-
time metric ones, let’s go first through a general definition of the cosmological perturbations and
the associated gauge issue, hence the distinction between metric and matter perturbations and the
introduction of the fundamental curvature perturbation, together with a description of its main
properties. In particular, we will see how, under a specific assumption, this kind of perturbation
has the attractive feature of remaining constant throughout the period between the crossing of
the Hubble horizon by a given Fourier mode and the horizon re-entry, which includes the end of
inflation, the reheating phase and the transition to the radiation dominated epoch. It is thanks
to this property that we are able to predict cosmological observables as the power spectrum of
curvature perturbations at horizon re-entry, because the physics involved during this stage of the
evolution of the universe is not very well understood. The way the power spectrum computed at
horizon re-entry, during the RD era, is related to the observed power spectrum of CMB temperature
fluctuations, in the MD era, is beyond the aim of this thesis.

2.4.1 The gauge issue of cosmological perturbations

A cosmological perturbation in a given quantity represented by a generic tensor field T , is nothing
but the di↵erence between the value T (t,x) assumed on the physical perturbed spacetime, and the
value T0(t) assumed on a background unperturbed spacetime, represented by the FLRW one:

�T (t,x) = T (t,x)� T0(t) . (2.72)

The background value T0 depends only on the cosmic time because homogeneity and isotropy, and
the perturbations �T are taken to be very small compared to T0, |�T |⌧ |T0|.
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2.4. Quantum fluctuations of a scalar field on a perturbed spacetime

Figure 2.2: The gauge transformation can be seen as a change of the correspondence map between the
perturbed and the background spacetime, or as an automorphism on the background spacetime.

In the context of GR, the di↵erence (2.72) is meaningless, because we are comparing tensors eval-
uated on points of two di↵erent pseudo-Riemannian manifolds, i.e. elements belonging to two
di↵erent vector spaces. Di↵erential geometry teaches us that, in order to make the comparison
meaningful, it’s necessary to introduce a map, or more precisely a di↵eomorphism, which estab-
lishes a one-to-one correspondence between the points of the manifolds M and M0, associated,
respectively, to the physical spacetime and the background spacetime. Basically, the map enables
to define a transportation law for tensors from a given point of M to another point of M0, or vice
versa, which then allows to write (2.72) as a di↵erence between tensors evaluated on the same point.
Here, indeed, the generic coordinates (t,x) are intended as those of the unperturbed spacetime.
A gauge choice, essentially, coincides with the choice of a specific correspondence map, while a
change of this map is a gauge transformation. It’s easy to understand how the freedom in choos-
ing the map gives rise to an ambiguity in the definition of the perturbations: referring to figure
2.2, let’s initially consider a map  : M �! M0, which identifies a generic point O 2 M with a
point P =  (O) 2 M0; as said, the map  also endows the tensor field T , evaluated on O, with
a representation on P , given by a tensor T , to be compared with the tensor T0 evaluated on P .
However, instead of  , we could use a new di↵eomorphism ', which will identify the same point P
with a di↵erent point O0 2 M, such that P = '(O0), and will provide another representation of T
on P , namely T'. Then, we end up with two possible expressions for the perturbation �T ,

�T = T � T0

�T' = T' � T0 ,

which, in general, are di↵erent, �T 6= �T'.
We would like to understand how a tensor changes under a gauge transformation, i.e. we want

to establish a relation between di↵erent representations of a tensor on M0. In order to do this,
it’s necessary to vary our point of view. Instead of a change of the point on M with which P
is identified, a gauge transformation can as well be seen as a one-to-one correspondence between
di↵erent points in the background spacetime M0. Indeed, let xµ be a coordinate system on M0, and
xµ(P ) the coordinates of P . If Q 2M0 is the point, with coordinates xµ(Q), such that Q = '(O),
then the gauges  and ' uniquely determine a di↵eomorphism ⇥ : M0 �!M0 such that ⇥(P ) = Q,
given by ⇥ ⌘ ' � �1. Now the gauge transformation is represented by the map ⇥. This is what is
usually called an active approach, since the transformation ⇥ moves each point to another in M0

within a given coordinate system xµ. If ⇠µ is the vector field on M0 whose local flux, defined by its
integral curves, coincides with the map ⇥, then we can write the transformation from P to Q as

dxµ(�)

d�
= ⇠µ =) xµ(Q) = xµ(P ) + �⇠µ(x(P )) + O

⇣
�2, ⇠2

⌘
, (2.73)
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where � is an arbitrary parameter for the integral curves. Notice we are considering an infinitesimal
transformation with |⇠µ|⌧ 1, so we can neglect higher order terms.
It’s also possible to adopt a passive approach to gauge transformations, in which the point remains
fixed: if yµ is another coordinate system on M0 such that yµ(Q) = xµ(P ), we have at first order

yµ(Q) = xµ(P ) ' xµ(Q)� �⇠µ(x(P )) (2.74)

' xµ(Q)� �⇠µ(x(Q)) . (2.75)

The above expression is nothing but a coordinate transformation of the point Q, and since the
point Q is arbitrary, this argument extends to all points of M0. The passive approach results to be
more convenient than the active one, because we know how tensors transform under a coordinate
transformation. However, we have to point out that a gauge transformation is not exactly a
coordinate transformation. A proof of this is the fact that, as we will see, scalar quantities do not
transform trivially.
Using the passive approach, it comes out that, given a gauge transformation  �! ' defined by
the vector field ⇠µ, the representation T of a generic tensor field T transforms, at linear level,
according to

T' = T + L⇠T0 , (2.76)

where L⇠ is the Lie derivative along the direction of the vector field ⇠. This implies the following
relation between the perturbations in the two di↵erent gauges:

�T' = �T + L⇠T0 . (2.77)

We refer to [37] for a complete demonstration of (2.77).
The Lie derivative for a scalar field �, for a covariant vector field Vµ and for a tensor field of rank
(0,2) Tµ⌫ are given by:

L⇠� = ⇠µ�,µ (2.78)

L⇠Vµ = ⇠⇢Vµ,⇢ + V⇢⇠
⇢
,µ (2.79)

L⇠Tµ⌫ = ⇠⇢Tµ⌫,⇢ + T⇢⌫⇠
⇢
,µ + Tµ⇢⇠

⇢
,⌫ . (2.80)

The important concept to keep in mind is that the gauge choice leads to the choice of a coordinate
system on M0, which means to perform a threading of spacetime into time-like curves with fixed
spatial coordinates xi (corresponding to the worldlines of possible observers), and a slicing into
space-like hypersurfaces with constant time coordinate x0. Obviously, there is no preferred coor-
dinate system/gauge from a physical point of view: the final result of a calculation cannot depend
on this arbitrary choice.

2.4.2 Metric perturbations

The perturbation of the geometrical part of the Einstein’s equations is entirely due to the perturba-
tion of the spacetime metric. Analogously to the field decomposition (1.83), also the metric tensor
can be written as

gµ⌫(⌧,x) = g(0)µ⌫ (⌧) + �gµ⌫(⌧,x) , (2.81)

with g(0)µ⌫ the spatially flat FLRW metric tensor in comoving coordinates (⌧,x), given by

ds2 = a2(⌧)(�d⌧2 + �ijdx
idxj) . (2.82)
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2.4. Quantum fluctuations of a scalar field on a perturbed spacetime

The perturbation at linear order w.r.t. the homogeneous background solution can be put in the
form [30]:

g00 = �a2(⌧)(1 + 2�(⌧,x)) (2.83)

g0i = a2(⌧)!i(⌧,x) (2.84)

gij = a2(⌧)
�
(1� 2 (⌧,x))�ij + �ij(⌧,x)

�
, (2.85)

where � and  are scalar functions, !i a vector, and �ij a traceless tensor, �i
i = 0.

Following [31], one can decompose both matter and metric perturbations into scalar, vector and
tensor components (SVT), according to how they transform under spatial rotations. The SVT
decomposition is very useful because it can be shown that, at linear order, the di↵erent types of
perturbations evolve independently, which means that can be studied separately assuming that the
other types are absent, whether or not this is true in nature. Then, !i and �ij can be decomposed
as:

!i = @i!k + !?
i (2.86)

�ij = Dij�k + 2�?
(i,j) + �T

ij , (2.87)

where Dij = @i@j� 1
3�ijr

2 is a traceless derivative operator, !k and �k are the scalar contributions,

!?
i and �?

i are the transverse (i.e. solenoidal) vector contributions4 satisfying @i!?
i = @i�?

i = 0,

and finally �T
ij is the tensor component, which is both traceless and transverse, �T i

i = @i�T
ij = 0.

This last perturbation of the metric is the dynamical variable describing gravitational waves.
Since first order vector perturbations are not excited in presence of a scalar field driving inflation,
and, if present, their amplitude would decay with the expansion of the universe [38], we can safely
neglect them. Moreover, exploiting the fact that scalar and tensor components evolve independently
at first order, we can just keep the scalar perturbations:

g00 = �a2(⌧)(1 + 2�(⌧,x)) (2.88)

g0i = a2(⌧)@i!k(⌧,x) (2.89)

gij = a2(⌧)
⇣
(1� 2 (⌧,x))�ij +Dij�k(⌧,x)

⌘
. (2.90)

Let’s now consider a gauge transformation. As seen, it implies an infinitesimal coordinate trans-
formation defined by the vector field ⇠µ,

xµ �! x̃µ = xµ + ⇠µ . (2.91)

The components of ⇠µ can also be decomposed into scalar and vector components,

⇠0 = ↵(⌧,x) (2.92)

⇠i = @i�(⌧,x) + vi(⌧,x) , (2.93)

with @ivi = 0.
After a gauge transformation, the metric tensor transforms according to (2.77) as

�gµ⌫ �! �̃gµ⌫ = �gµ⌫ + L⇠g
(0)
µ⌫ . (2.94)

4Here, the terms parallel and transverse refer to the fact that, in Fourier space, these components of the pertur-
bation are respectively parallel and perpendicular to the wavevector k
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Using the formula (2.80) for the Lie derivative of a tensor, which in the case of the metric tensor
reduces to

L⇠gµ⌫ = ⇠µ;⌫ + ⇠⌫;µ , (2.95)

we get the following transformations for the scalar perturbations

�̃ = �+ ↵0 +H↵ (2.96)

 ̃ =  �H↵� 1

3
r2� (2.97)

�̃k = �k + 2� (2.98)

!̃k = !k � ↵+ �0 . (2.99)

The components vi of ⇠µ contribute to the transformed vector perturbations !̃?
i and �̃?

i , that we
are neglecting, while, remarkably, the tensor perturbation �T

ij is gauge invariant at first order.

2.4.3 Matter perturbations

For matter perturbations we mean perturbations of the quantities appearing in the homogeneous
stress energy tensor of a perfect fluid (1.16), namely perturbations of the energy density ⇢, of the
pressure P and of the four-velocity uµ of the comoving observer with respect to their background
FLRW values. It is also possible to account for imperfections of the cosmic fluid by adding to
the definition (1.16) of the stress-energy tensor for a perfect fluid the so called anisotropic stress
⌃µ⌫ , constrained by the conditions u⌫⌃µ⌫ = ⌃µ

µ = 0 [31]. The anisotropic stress vanishes in the
unperturbed FLRW universe, so in this case ⌃µ⌫ represents a first order perturbation. However,
for minimally coupled single-field models of inflation, the anisotropic stress vanishes at first order
[39], then we disregard this kind of perturbations.
For our purposes, we are just interested in the scalar perturbation of the energy density and the
pressure:

⇢(⌧,x) = ⇢0(⌧) + �⇢(⌧,x) (2.100)

P (⌧,x) = P0(⌧) + �P (⌧,x) , (2.101)

which undergo the gauge transformations

�⇢ �! �̃⇢ = �⇢+ L⇠⇢0(⌧) = �⇢+ ⇢00↵ (2.102)

�P �! ˜�P = �P + L⇠P0(⌧) = �P + P 0
0↵ , (2.103)

where we used (2.78).
Thus, although being scalar quantities, �⇢ and �P do not remain invariant as in the case of a simple
coordinate transformation.
In a multi-component system, large scale matter perturbations5 can be mainly distinguished in
adiabatic, or curvature, matter perturbations and isocurvature, or entropic, matter perturbations.
The first type are perturbations in all the cosmological species that a↵ect the total energy density
of the system while keeping constant the relative abundance of the di↵erent components. The
second type, instead, are perturbations in the individual components of the cosmic fluid which
leave unperturbed the total energy density. Therefore, while adiabatic perturbations induce a
perturbation in the spatial curvature through the Einstein’s equation, entropic perturbations does
not. This explains why they are respectively called curvature and isocurvature.

5With large scale perturbations we mean perturbations which have been smoothed on a cosmological scale much
greater than the Hubble horizon.

42



2.4. Quantum fluctuations of a scalar field on a perturbed spacetime

As we are going to argue, single-field models of inflation predict that the primordial perturbations
are purely adiabatic, therefore we will not consider at all isocurvature perturbations.
The origin of the term adiabatic can be explained as follows: as shown in [40], for single-field
inflation the large scale fluctuations of the inflaton field can be identified with a local shift along
the trajectory of the homogeneous background solution �0(⌧), i.e. the inflaton field �(⌧,x) at some
spacetime point of the perturbed universe is the same as in the background universe but evaluated
at a slight di↵erent time ⌧ + �⌧(x), depending on the position,

�(⌧,x) = �0(⌧ + �⌧(x)) ' �0(⌧) + �00�⌧(x) =) ��(⌧,x) = �00�⌧(x) . (2.104)

In other words, on scales well outside the horizon, each region evolves like a separate FLRW universe.
The local time shift causes di↵erent regions of the universe to inflate by di↵erent amounts. From the
first Friedmann equation (1.20) we can understand how these di↵erences in the local expansion of
the universe, described by a perturbation of the Hubble parameter �H(⌧,x), induce a perturbation
in the inflaton vacuum energy density, that is ultimately inherited by any scalar quantity X of the
cosmic fluid after inflation. The time displacement causes the same relative change �⌧ = �X/Ẋ for
all quantities, meaning that the perturbation is democratically shared by all the species. However,
it does not give rise to perturbations in the ratio between number density of di↵erent species,
because, before horizon re-entry, there can be no e↵ective particle flow (and hence no heat flow)
between di↵erent regions on such cosmological scales. Then, in this case, all the perturbations of
the cosmological fluid satisfy the adiabaticity condition

�

 
ni

nj

!
= 0  ! Sij ⌘

�ni

ni
� �nj

nj
= 0 for all species i and j , (2.105)

where we defined the quantity Sij , usually called entropy perturbation. If inflation is driven by
more than one filed, isocurvature perturbations modes can arise [41], which means Sij 6= 0.
In the most general case, a perturbation can be decomposed in its adiabatic and isocurvature
contributions. For example, for the pressure perturbation we have

�P = �Pad + �Piso = P 0
0 �⌧(x) + �Piso =

P 0
0

⇢00
�⇢+ �Piso , (2.106)

where the ratio P 0
0/⇢

0
0 is the adiabatic sound-speed c2s = (@P/@⇢)

��
S
, computed at constant entropy

S. Notice that the isocurvature pressure perturbation

�Piso = �P � P 0
0

⇢00
�⇢ , (2.107)

is gauge invariant.

2.4.4 Common gauge choices and gauge invariant perturbations

There are two kind of approach we can adopt to tackle the gauge issue about the definition of the
cosmological perturbations. One simply consists into a gauge fixing procedure, which implicitly
defines a specific coordinate system on the perturbed spacetime. In this case, using certain coor-
dinates rather than others can greatly simplify the computations, because we are free to exploit
the gauge transformations to move to a particular gauge where some perturbations are vanishing.
On the other hand, the removal of a matter perturbation could lead to the appearance of a met-
ric perturbation, or vice versa, and this arbitrary trade can generate some confusion about the
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distinction between physical and fictitious perturbations. The alternative approach is indeed to
work with quantities given by gauge invariant combinations of matter and metric perturbations.
By definition, these perturbations are the real physical degrees of freedom, because they cannot be
removed by a gauge transformation.

We now list some of the most common gauge choices, and then we will introduce the gauge in-
variant quantities which play a crucial role in the computation of the primordial energy density
perturbations, by also specifying their physical interpretation.

• Poisson gauge

It is defined by performing a coordinate transformation such that !k = �k = 0 in the new
coordinate system.
It is also known as the longitudinal or Newtonian gauge, because it can be shown, by un-
folding the linearly perturbed Einstein’s equations, that within this gauge the remaining two
scalar perturbations of the metric � and  satisfy a Poisson-like equation r2f(x) = 4⇡Gg(x),
which reminds the behaviour of the Newtonian gravitational potential.

• Spatially flat gauge

It is defined by selecting the constant-time hypersurfaces whose intrinsic spatial curvature,
represented by the Ricci scalar R, is left unperturbed. At linear order, for a perturbed
spatially flat FLRW spacetime, we have [38]

R =
4

a2
r2 ̂ , (2.108)

with  ̂ =  + 1
6r

2�k. This quantity is called the curvature perturbation, since, as we can
see from (2.108), in momentum space it is proportional to the perturbation of the spatial
curvature w.r.t. the background value (the latter is zero in this case).
The spatially flat gauge is then defined by performing a coordinate transformation such that
 = �k = 0.

• Uniform expansion rate gauge

Let us introduce the expansion rate of the t = const. hypersurfaces

✓ ⌘ Nµ
;µ , (2.109)

where Nµ is the unit time-like vector orthogonal to the hypersurfaces. In the unperturbed
FLRW spacetime we have the uniform background value ✓ = 3H. On a perturbed spacetime,
at first order in the metric perturbations, the expansion rate is [39, 42]

✓ =
3

a

✓
H �H�� 0 � 1

3
r2!k

◆
. (2.110)

Then the uniform expansion rate gauge is defined by imposing the condition

�✓ ⌘ H�+ 0 +
1

3
r2!k = 0 . (2.111)

• Comoving gauge

This gauge is fixed by setting the coordinate system of an observer comoving with the cosmic
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2.4. Quantum fluctuations of a scalar field on a perturbed spacetime

fluid, meaning that, in this frame, the fluid around the observer is isotropic and there is
no flux of energy, i.e. the components T 0

i of the stress-energy tensor are vanishing. During
inflation, this condition implies [30] �� = 0.

• Uniform energy density gauge

It is found by selecting the constant time slicing where there is no perturbation in the energy
density, namely �⇢ = 0.

Let’s now define the gauge invariant curvature perturbation on uniform energy density hypersurfaces
as

�⇣ ⌘  ̂+H
�⇢

⇢00
. (2.112)

In a generic gauge, it is related to the curvature perturbation  ̂ (i.e. the perturbed gravitational
potential) and to the energy density perturbations �⇢ on that gauge.
Using the transformation laws (2.97), (2.98) and (2.102), it’s straightforward to show that, despite
 ̂ and �⇢ are gauge dependent, this quantity assumes the same value on any gauge. Moreover, as
anticipated at the beginning of this subsection, we clearly see how the physical perturbation ⇣ can
be entirely put on a metric or a matter perturbation according to the chosen gauge, from which
the physical interpretation also derives: as suggested by the name itself, if we move to the uniform
energy density gauge, ⇣ represents the gravitational potential on the spatial slices where �⇢ = 0,
�⇣ =  ̂|�⇢=0

; this can be achieved by just a time translation, since

�̃⇢ = �⇢+ ⇢00↵ = 0 =) ↵ = ��⇢/⇢00 . (2.113)

Otherwise, if we put on the spatially flat gauge,  ̂ = 0, such a combination can be regarded as the
perturbation of the total energy density.

Another useful gauge invariant variable is given by the comoving curvature perturbation, defined as

R ⌘  ̂+H
��

�00
, (2.114)

which is a combination of the curvature perturbation and the inflaton’s fluctuation. Using the
transformation law for the scalar field �� �! �̃� = ��+ �00↵, it’s easy to verify that this quantity
is gauge invariant.
In the comoving gauge, it coincides with the gravitational potential perturbation on the constant
time slices with �� = 0, R =  ̂|��=0

, reached by performing the time translation ⌧ �! ⌧ + ↵, with
↵ = ���/�00.

Finally, a gauge invariant measure of the inflaton’s fluctuations is given by

Q ⌘ ��+  ̂
�00
H

=
�00
H

R , (2.115)

known as the inflaton perturbation on spatially flat slices, or the Sasaki-Mukhanov variable, whose
physical meaning can be easily deduced.
Notice that the definition of ⇣ is very general, in the sense that it applies to any epoch in the history
of the evolution of the universe. During slow roll inflation, the total energy density coincides with
the vacuum energy density of the inflaton, and we have

⇢̇0 = �3H(⇢0 + P ) = �3H�̇20 , (2.116)

�⇢ ' @V

@�0
�� ' �3H�̇0�� , (2.117)
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which imply

�⇣ ⌘  ̂+H
�⇢

⇢00
=  ̂+H

�⇢

⇢̇0
⇡  ̂+H

��

�̇0
= R . (2.118)

The linearly perturbed Einstein equations provide another relation between ⇣ and R, given by the
gauge transformation [43]

�⇣k = Rk +
k2

a2H2

2⇢0
3(⇢0 + P )

 k . (2.119)

Hence, we see that the Fourier modes of ⇣ and R are equivalent on super-horizon scales,

�⇣k ' Rk for k ⌧ aH. (2.120)

Moreover, the perturbed continuity equation rµTµ⌫ = 0 provides the following evolution equation
for the perturbation ⇣ in the uniform energy density gauge [31]

⇣̇k = �H �Piso

⇢0 + P0
+

k2

(aH)2
(. . . ) , (2.121)

where the dots stand for a finite quantity. As a consequence of (2.121), in absence of isocurvature
pressure perturbations, �Piso = 0, the curvature perturbation ⇣ is practically conserved on super-
horizon scales, and the same is true for R, due to (2.120). As argued in subsection 2.4.3, this
is the case for single-field models of inflation. Basically, these two variables are not a↵ected by
the physics governing the super-horizon evolution of the cosmological perturbations between the
moment when the Fourier modes wavelengths cross the horizon, during inflation, and the time
they re-enter the horizon, during the radiation dominated epoch (see figure 2.3). This turns out to
be a very nice feature, because we know very little about the details of what happens from after
inflation up to the radiation dominated era, say the BBN. Then, given the physical meaning of the
curvature perturbations ⇣ and R, the importance of these two gauge invariant combinations lies in
their ability to connect inflationary theoretical predictions made at horizon crossing, as the power
spectrum for the inlaton field perturbations, with late-time observables computed at horizon re-
entry, as the power spectrum for the primordial perturbations in the energy density/temperature.
Indeed, this is exactly the next step: in the next subsection we will compute the comoving curvature
perturbation R generated during inflation on super-horizon scales (as seen, the choice to compute
R rather than ⇣, is irrelevant), hence the associated power spectrum �R(k). We adopt a gauge
fixing approach, by using the longitudinal gauge.

2.4.5 The comoving curvature perturbation in the longitudinal gauge

We are not going to explicitly perform all the calculations involved in the derivation of the curva-
ture perturbation, which entails the linear perturbation of each term of the Einstein’s equations
(1.2) and of the Klein-Gordon equation (2.3) for the inflaton field. We will limit ourselves to report
the main steps of this perturbative procedure, necessary to compute R. The results which follows
are summarized from [30].

The linearly perturbed Klein-Gordon equation provide the evolution equation for the Fourier mode
��k, which written in cosmic time t reads [30]

¨��k + 3H �̇�k +
k2

a2
��k � �̇k�̇0 � 3�̇0 ̇k +

k2

a2
!kk�̇0 + ��kV,�� + 2�kV,� = 0 . (2.122)
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Figure 2.3

We now move in the longitudinal gauge, where the scalar perturbations !k and �k are set to zero.
From the non-diagonal part (i 6= j) of the (ij)-component of the linearly perturbed Einstein’s
equations one finds6

�Gij = �T �ij �! @i@j( � �) = 0 =)  = � , (2.123)

which means that we are left with a single independent scalar perturbation, say  . The (0i)-
component of the equation also provides

 ̇k +H k = 4⇡G�̇0��k = ✏H2 ��k

�̇0
, (2.124)

where we used (2.14).
We know that on super-horizon scale the fluctuations become practically frozen, and we can consider
 k as nearly constant, in the sense that its relative variation within a time interval of the order
of the characteristic expansion time H�1 is very small, i.e | ̇k| ⌧ |H k|. Then, the last equation
implies a relation between  k and ��k given by

 k ' ✏H
��k

�̇0
, (2.125)

which allows to write the comoving curvature perturbation on super-horizon scale just in terms of
the inflaton fluctuation ��k, as

Rk =  k +H
��k

�̇0
= (1 + ✏)H

��k

�̇0
' H

��k

�̇0
. (2.126)

It remains to solve equation (2.122), which in the longitudinal gauge becomes

¨��k + 3H �̇�k +
k2

a2
��k � 4�̇0 ̇k + 2 kV,� + ��kV,�� = 0 . (2.127)

6The relation which follows is strictly true in absence of anisotropic stress.
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Using again the fact that | ̇k| ⌧ |H k| we have | ̇k�̇0| ⌧ | kV,�| , and exploiting (2.125) and
the slow roll relation V,� ' �3H�̇0, equation (2.127) can be rewritten as

¨��k + 3H �̇�k +

 
k2

a2
+m2

� � 6✏H2

!
��k = 0 . (2.128)

By trading the cosmic time t with the conformal time ⌧ and the perturbation field ��k with the
usual rescaled field ��k = a��k we get

��00
k +

✓
k2 + a2m2

� �
a00

a
� 6✏a2H2

◆
��k = 0 , (2.129)

which at first in order in the slow-roll parameters becomes

��00
k +

 
k2 +

⌫2 � 1
4

⌧2

!
��k = 0 , (2.130)

with ⌫2 = 9/4 + 9✏� 3⌘V , and ⌫ ' 3/2 + 3✏� ⌘V at first order.
We have already solved this kind of equation in subsection 2.3.2, in the case of an unperturbed
background spacetime. On super-horizon scales, we have found the solution

|��k| '
Hp
2k3

✓
k

aH

◆ 3
2�⌫

, (2.131)

which yields the following adimensional power spectrum for the comoving curvature perturbation
on super-horizon scales

�R(k) =
H2

�̇20
���(k) =

H2

�̇20

k3

2⇡2
|��k|2 =

 
H2

2⇡�̇0

!2✓
k

aH

◆3�2⌫

. (2.132)

We have shown this quantity remains constant until horizon exit during the radiation dominated
epoch, so we can evaluate it at the instant t⇤H(k) of horizon crossing of some mode k, such that
k = aH,

�R(k) =

 
H2

2⇡�̇0

!2 ����
t⇤
H
(k)

. (2.133)

The scale dependence is now inside t⇤H(k), because each mode cross the horizon at di↵erent time.
The spectral index at first order in ✏ and ⌘V results

nR(k)� 1 = 3� 2⌫ = 2⌘V � 6✏ , (2.134)

which means that single-field inflationary models predict a small, but not vanishing, deviation from
a scale invariant Harrison-Zel’dovich power spectrum. From the Planck CMB data [2] we have a
measured spectral index for the scalar perturbations given by

ns = 0.9649± 0.0042 (68% C.L.) , (2.135)

which is 8� away from ns = 1, consistently with theoretical predictions.
The nearly scale invariance is not so surprising if we look at equation (2.133): as we know, H and
�̇0 change very slowly in time during inflation, resulting in a weak dependence on the instant of
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horizon crossing, which in turn has a weak dependence on the scale, due to the extremely rapid
expansion. Indeed, assuming an exponential expansion, a = eHt, we have

k = Ha = HeHt⇤ =) t⇤(k) = H�1ln

✓
k

H

◆
, (2.136)

then a weak logarithmic scale dependence.
To summarize, we found that standard single-field models of slow-roll inflation predict that, starting
by the vacuum fluctuations of a scalar field, the inflationary mechanism is able to generate nearly
Gaussian and adiabatic primordial energy density perturbations with an almost scale invariant
power spectrum.

2.5 Primordial tensor perturbations

Inflationary models also predict a stochastic background of primordial gravitational waves produced
during inflation and amplified by the accelerated expansion. They consist of a signal coming
from every direction in the sky that exhibit a spectrum in the whole frequency domain, whereas
gravitational waves produced, for example, by the collision and merger of compact objects come
from a specific direction and they have a spectrum peaked around a particular range of frequency.
Gravitational waves are described by the traceless and transverse components �T

ij of the tensor
perturbations of the spatial part of the metric, which satisfy the conditions

�T
ij = �T

ji , �T i
i = 0 , @i�T

ij = 0 . (2.137)

The symmetric condition reduces the 9 initial degrees of freedom into 6, while the traceless and
transverse conditions (defining the so called T-T gauge) provide other 4 constraints. Therefore,
there remain 2 independent physical degrees of freedom, corresponding to two possible polarizations
of the waves that are usually denoted with � = (+,⇥). Then, the tensor perturbation can be
decomposed in Fourier space as

�T
ij(t,x) =

X

�=+,⇥

Z
d3k

(2⇡)3/2
��(t,k)✏

�
ij(k)e

ik·x , (2.138)

where ✏�ij are the polarization tensors, which have the following properties

✏�ij = ✏�ji , ✏�
i
i = 0 , ki✏�ij = 0 (2.139)

⇣
✏�ij(k)

⌘⇤
= ✏�ij(�k) , ✏�ij(k)✏

⇤ij
�0 (k) = ���0 . (2.140)

At linear order in perturbation theory we can disregard scalar and vector perturbations of the
metric, since they evolve independently, so that the perturbed Einstein equations provide the
following equation of motion for the tensor mode7 [31]

�̈T
ij + 3H�̇T

ij �
r2�T

ij

a2
= 0 . (2.141)

Treating the polarization states as scalar fields, i.e. setting �+,⇥ ⌘
p
32⇡G�+,⇥8, we can see

that they satisfy an equation which has the same form of equation (2.20) for the fluctuations of

7This equation is valid during inflation in absence of anisotropic stress, otherwise the traceless and transverse
component of the latter would constitute a source term on the r.h.s. of the equation.

8The normalization factor in front of the scalar field comes from the Einstein-Hilbert action, and from this writing
it is clear that �+,⇥ is dimensionless.
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a minimally coupled scalar field, but with a vanishing mass. Therefore, in order to solve (2.141),
we can simply adapt the previous results found at the end of subsection 2.3.2 to the massless case
V,�� = 0.
On sub-horizon scales, k � aH we find an oscillating solution with a decreasing amplitude, whereas
on super-horizon scales, k ⌧ aH, the fluctuations become classical and they are nearly frozen in,
with a quasi scale invariant amplitude given by

���+,⇥
�� =
p
32⇡G

���+,⇥
�� =
p
32⇡G

Hp
2k3

✓
k

aH

◆ 3
2�⌫

, (2.142)

where in this case we have 3
2 � ⌫ ' �✏⌧ 1 at first order in slow-roll, since ⌘V = 0.

We define the power spectrum of tensor perturbations as the sum of the power spectra for the two
polarizations

�T (k) ⌘ 2��(k) , ��(k) =
k3

2⇡2
P�(k) =

k3

2⇡2
���+,⇥

��2 . (2.143)

Therefore we obtain

�T (k) =
2

⇡2

✓
H

MP l

◆2✓ k

aH

◆�2✏

, (2.144)

or

�T (k) =
2

⇡2

✓
H

MP l

◆2 ����
t⇤
H
(k)

, (2.145)

if evaluated at the moment of horizon crossing.
The spectral index for tensor perturbations is defined as

nT (k) ⌘
d ln�T (k)

d ln k
, (2.146)

so, at first order in the slow-roll approximation, we have

nT (k) = �2✏ , (2.147)

meaning that the tensor power spectrum is almost scale-invariant, as the scalar one.
The detection of the amplitude of the primordial gravitational waves is crucial to estimate the
energy scale Einf ' V 1/4 associated to inflation, since during inflation

�T '
2

3⇡2
V

M4
P l

. (2.148)

We can ultimately define the tensor-to-scalar perturbation ratio as

r ⌘ �T

�R
. (2.149)

The scalar power spectrum (2.133) can be rewritten in terms of the slow-roll parameter ✏ as

�R =
1

8⇡2✏

✓
H

MP l

◆2

, (2.150)

then the tensor-to-scalar ratio reads

r = 16✏ = �8nT . (2.151)
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This is a significant consistency relation since it holds for any single-field model of slow-roll inflation.
The combined BICEP/Keck and Planck results [44] provide a constraint on the tensor-to-scalar
ratio given by

r < 0.036 (95% C.L.) , (2.152)

which translates into a constraint on the energy scale of inflation through the relation

V ' 3⇡2

2
r�RM

4
P l . (2.153)

Given the bound (2.152) on r and the value �R ' 2.1 · 10�9 from the Plank measurements [2] we
have

V 1/4 < 1.4 · 1016GeV . (2.154)

51





Chapter 3

Warm Inflation

In this chapter we deal with an alternative realization of inflation, where the scalar inflaton field is
no more assumed to be an isolated non-interacting quantum field1, but it is regarded as an open
sub-system which noticeably interacts with other quantum radiation fields.
The warm inflationary phase is defined as an accelerated expansion phase driven by the dominant
potential energy of a scalar inflaton field whose motion is overdamped by the thermal contact with
a radiation component, that arises from the thermalization of particles produced by the inflaton
itself. We explore the warm inflationary scenario by proceeding in steps similar to those followed
in the cold scenario. In section 3.1, we briefly discuss the microscopic basis of the inflaton field
dynamics in a thermal environment. We will understand how the evolution of the field can be e↵ec-
tively described in the context of non-equilibrium Thermal Quantum Field Theory by an e↵ective
phenomenological equation of motion, where the backreaction of the radiation fields on the inflaton
is partly incorporated by an extra friction term in addition to the Hubble damping.
In section 3.2 we look at the implications on the background evolution of the inflaton-bath sys-
tem arising by the supplementary friction term, whose e↵ect is to further slow down the inflaton
field, allowing to trigger a slow-roll inflationary phase for a wider range of potentials. At the same
time, the interaction at the basis of this friction induces a su�ciently strong dissipation of the
inflaton vacuum energy which considerably feeds the radiation bath, so to prevent its otherwise
total dilution caused by the Hubble expansion. In this way the universe does not super-cool as
in standard cold inflation, because a substantial radiation component can survive throughout the
accelerated expansion. It follows that the inflaton energy density ⇢� falls more rapidly than the
radiation energy density ⇢r because of decay, so that, in the warm scenario, the inflationary phase
can directly end in a radiation dominated phase at the moment when a smooth crossover occurs
between ⇢r and ⇢�, hence a separate reheating phase must not be necessarily invoked.
In section 3.3 we investigate the impact of the thermal environment on the generation mechanism
of curvature perturbations. In warm inflation, the main features to the scalar power spectrum arise
from thermal fluctuations in the radiation component. The latter can be e↵ectively encoded by
a stochastic noise term in the evolution equation of the inflaton field which acts as a source for
random inflaton thermal fluctuations. The fluctuations in the radiation and the inflaton field are
generally coupled to each other due to the temperature dependence of the friction coe�cient, and
it is generally hard to obtain an exact solution for the coupled system of the fluctuation evolution
equations. An approximated formula for the scalar curvature power spectrum can be analytically
derived in the limit in which the friction coe�cient is temperature-independent. In this regime, we

1Or better, the inflaton field interacts with nothing else besides gravity.
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are able to obtain a result for the scalar spectral index. It turns out that, for temperatures T > H,
the thermal contribution to the scalar curvature power spectrum dominates over the quantum con-
tribution.
Finally, in section 3.4, we see how a thermal component in the spectrum of the primordial grav-
itational waves can be sourced by transverse and traceless modes of the anisotropic stress tensor
of the radiation fluid arising by dissipative e↵ects due to thermal fluctuations. For large enough
temperatures, this contribution can overcome the one given by the quantum vacuum fluctuations.

3.1 E↵ective evolution equation for the inflaton field in the ”in-in”
CTP formalism

Intrinsically, warm inflation constitutes an out-of-thermal-equilibrium problem, due to the fact that
the dynamical processes take place over an evolving background spacetime and the achievement of
a possible thermalized state must pass through a non-equilibrium phase. This scenario essentially
requires an overdamped relaxation of the inflaton field to an equilibrium point concurrently with
radiation production due to dissipation of its vacuum energy. Since its appearance in literature [45,
46], the reliability of this picture as a description of the early universe has been hindered by the
plausibility of its dynamic realization from first principles quantum field theory, mainly because of
the lack of a theoretical understanding of non-equilibrium quantum field systems, but also because
of the belief that inflation involves timescales that are too short for an e↵ective particle production
and thermalization to occur [47]. The description of this inflationary scenario was indeed an impor-
tant motivation for delving into the study of non-equilibrium dynamics within Thermal Quantum
Field Theory [48–50], a combination of QFT with the notions of statistical thermodynamics.
From a statistical mechanics perspective, the system as a whole would try to equally distribute the
available energy, therefore the inflaton field is expected to dissipate its excess energy to the radia-
tion fields, so that the thermal equilibrium of the universe is achieved as a result of an irreversible
flow of energy. However, strictly speaking, this is a question that can be addressed only through
a detailed calculation. Several studies [51–53] suggest that particle production through dissipative
e↵ects are naturally present in interacting fields systems. In particular these e↵ects appear more
manifest when a ”system-environment” approach is applied, in which the e↵ective evolution of a
small portion of the whole system is analyzed by averaging out the remaining degrees of freedom
of the rest of the world. This decomposition method constitutes a more economical way to study
the non-equilibrium dynamics, since we only focus on the evolution of the modes of interest rather
than keeping track of each mode, which could be a really demanding task. By the use of several
techniques for finite temperature QFT, as the CTP functional integral formalism [48, 54, 55], it
is shown [51, 56–62] that, when the small scale behaviour of the environment degrees of freedom
is integrated out, a simple picture emerges where the evolution of a thermally averaged configura-
tion of the inflaton field is determined by a stochastic Langevine-like evolution equation, typical of
an open dissipative system feeling a random noise exerted by the external environment to which
it is coupled. However, the non-equilibrium dissipative dynamics is well defined and understood
only in a close-to-local thermal equilibrium (LTE) regime, realized when the macroscopic motion
of the whole system is very slow compared to the time scales of the microscopic dynamics, so that
the fields can quickly respond and adapt to changes in the thermodynamic variables. Still today
we have a limited understanding of dissipative dynamics in strongly out-of-equilibrium conditions,
therefore, up to now, a realization of the warm inflationary picture from first principle quantum
field theory is achieved only under the restrictive assumption of quasi-equilibrium conditions [51,
58, 63].
We now provide some basics on Thermal QFT and its formulation within the Schwinger-Keldysh
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CTP (or ”in-in”) formalism in Minkowski spacetime, also discussing the motivations for the in-
troduction of this formalism [60, 64, 65]. Then, we will see how its application leads to the
phenomenological evolution equation for the inflaton field.

Because of the non-negligible presence during inflation of a bath of thermally excited radiation
fields, the whole quantum fields system does not remain in the vacuum state but it rather ran-
domly samples all the possible microscopic thermal states belonging to a given statistical ensemble
according to a statistical distribution operator ⇢̂. The latter represents the density matrix operator
describing the mixed state of the entire quantum system.
The time dependent description of a non-equilibrium system is given by the time evolution of
its density matrix ⇢̂(t), determined by the Liouville-von Neumann equation (in the Schrodinger
picture)

i
@⇢̂(t)

@t
= [Ĥ(t), ⇢̂(t)] , (3.1)

where the Hamiltonian of the system Ĥ(t) is time dependent. Once an initial statistical configu-
ration of quantum fields ⇢̂(t0) ⌘ ⇢̂0 is specified for some instant t0 usually taken in the asymptotic
past, t0 �! �1, equation (3.1) admits the formal solution

⇢̂(t) = Û(t)⇢̂0Û
†(t) , Û(t) = T exp

 Z t

t0

dt0Ĥ(t0)

!
, (3.2)

where T denotes the time ordered product. Actually, the above evolution operator Û holds only
for closed systems.
In a quantum statistical framework, the physically interesting quantities of the system are rep-
resented by expectation values of the quantum operators, obtained by performing an ensemble
average weighted by ⇢̂. Hence, in this context, the n-point correlation functions for a generic field
theory of field �̂ are given by

hT[�̂(x1) . . . �̂(xn)]i ⌘ Tr
h
⇢̂0T[�̂(x1) . . . �̂(xn)]

i
, Tr[⇢̂] =

X

i

h�i| ⇢̂ |�ii = 1 (3.3)

where
�
|�ii

 
is a complete set of orthonormal states for the Hilbert space of the system. The

dynamical information of the ensemble averages is contained in the time dependent fields �̂(xi) in
the Heisenberg picture.
The expectation values in (3.3) cannot be easily obtained within the conventional ”in-out” for-
malism of QFT. In order to understand the reason, let us take a step back to the standard QFT
approach. The latter is based on the ”in-out” generating functional Z[J ], which is given by the
vacuum persistence amplitude in presence of an external interaction source J(x)

Z[J ] = eiW [J ] ⌘ h0out|0iniJ = h0out|Texp

 
i

Z +1

�1
d4xJ(x)�̂(x)

!
|0ini , (3.4)

where W [J ] is the connected generating functional.
The above transition amplitude admits the following path integral representation

Z[J ] =

Z
D� ei(S[�]+J ·�) , (3.5)

with the dot ”·” standing for a spacetime integration.
The states |0ini and |0outi in (3.4) denote the vacuum state in the interaction picture at t = �1
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and t = +1 respectively, while �̂(x) is the Heisenberg field in the interaction picture evolving
according to the ”free” Hamiltonian Ĥ(t) of the system. Essentially, we let the in-vacuum evolve
under the ”interacting Hamiltonian” represented by the source term ĤI

int = �
R
d3xJ(x)�̂(x), and

then we compare the resulting state at t = +1 with the out-vacuum.
In a non-equilibrium setting, in general, the states |0ini and |0outi are not equivalent, so that
the correlation functions obtained by functional di↵erentiation w.r.t. the source J(x) are actually
matrix elements rather than expectation values2. Therefore, whereas the ”in-out” formulation is
well suited to address problems of particle physics in absence of a thermal environment, where
we are mostly interested in transition probability amplitudes (i.e. scattering S-matrix elements)
between initial and final states constructed upon the vacuum state, the same formulation is not
suitable to trace the time evolution of an expectation value in a non-equilibrium thermodynamic
system.
Following the idea of Schwinger and Keldysh [54, 55], in order to overcome this problem we define
the following ”in-in” generating functional [64, 65]

Z[J+, J�] = eiW [J+,J�] ⌘ J�
h0in|0iniJ+ (3.6)

where instead we let the in-vacuum evolve under two distinct external sources J� and J+ and then
we compare the resulting states in the far future. We can write the above expression by inserting
a summation over a complete set of out states given by eigenvectors of the Heisenberg field at time
t = +1, i.e. �̂(+1,x) | outi =  (x) | outi. Then we have

Z[J+, J�] =

Z
D h0in| outiJ� h out|0iniJ+ . (3.7)

In this case Z[J+, J�] is seen to be a sum over the configurations  at t = +1 of the amplitude
for the quantum state to evolve forward in time under the source J+ from |0ini to | outi, times the
amplitude for the state | outi to evolve backwards in time under the source J� to the state |0ini.
Explicitly, the expression (3.7) reads

Z[J+, J�] =

Z
D h0in|T̃ exp

 
�i

Z +1

�1
d4xJ�(x)�̂(x)

!
| outi

⇥ h out|Texp

 
i

Z +1

�1
d4xJ+(x)�̂(x)

!
|0ini , (3.8)

where T̃ denotes the anti-temporal order operator.
The generalization of (3.8) to a quantum-statistical system described by a matrix density ⇢̂ is [60,

2In standard QFT of particle physics this problem is solved by assuming that the system adiabatically follows the
non-degenerate ground state of the free theory upon slow switching o↵ the interactions in the distant past and future.
This assumption allows to directly relate the interacting vacuum state to the free vacuum state (Gell-Mann Low
theorem [66]), and consequently to express the correlation functions written in terms of the interacting Heisenberg
fields as a perturbative expansion of correlation functions written as expectation value, w.r.t. the free ground state, of
free fields in the interaction picture. However, for an irreversible non-equilibrium dynamics the adiabatic assumption
fails, since the system does not asymptotically come back to the same state.
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67]

Z[J+, J�, ⇢̂] ⌘ Tr

2

4
Z

D T̃ exp

 
�i

Z +1

t0

d4xJ�(x)�̂(x)
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⇥ h out|T exp

 
i

Z +1

t0

d4xJ+(x)�̂(x)

!
⇢̂(t0)

3

5 . (3.9)

We can see that Z[J+, J�, ⇢̂] is a normalized (Z[0, 0, ⇢̂] = 1) generating functional for the quantum
expectation values (3.3), that are obtained by functional di↵erentiation w.r.t. J+ and J� and then
setting J+ = J� = 0. Notice that Z[J+, J�, ⇢̂] also generates expectation values other than the
time-ordered ones.
The so called CTP (Closed Time Path), or real-time, Schwinger-Keldysh formalism3 provides a
functional integral representation of the ”in-in” generating functional (3.9) which yields real and
causal e↵ective actions, field equations and expectation values [48, 60, 64, 65].
To derive the path integral representation we evaluate the trace by considering two di↵erent com-
plete sets of eigenvectors of the Heisenberg field at initial time t = t0,

�̂(t0,x) |�ini = �(x) |�ini , (3.10)

�̂(t0,x)
���0in

↵
= �0(x)

���0in
↵

, (3.11)

so that equation (3.9) becomes

Z[J+, J�, ⇢̂] =

Z
D�D�0D h�in|T̃ exp
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Z +1
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d4xJ�(x)�̂(x)
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Z +1

t0

d4xJ+(x)�̂(x)

!
���0in

↵ ⌦
�0in

��⇢̂0
���in

↵
, (3.12)

which can be written as

Z[J+, J�, ⇢̂] =

Z
D�+D��ei[(S[�

+]+J+·�+)�(S[��]+J�·��)] h��0 |⇢̂0|�
+
0 i , (3.13)

where the functional integration is taken over field configurations �+(x) and ��(x) which coincide
on the hypersurface at t = +1, �+(+1,x) = ��(+1,x), and |�±0 i is the quantum state corre-
sponding to the field configuration �±(t0,x).
Observe that the doubling of the sources implies a doubling of the degrees of freedom. Also, unlike
the conventional ”in-out” formalism, the time variable of the paths runs along the closed contour
C = C+ [ C� represented in figure 3.1, going from t = t0 to t = +1 (forward branch C+) and
back (backward branch C�). Hence the name CTP.
Analogously to the standard case, if the interactions are weak, the path integral representation
allows a computation of the correlation functions (3.3) through a diagrammatic perturbative ex-
pansion written in terms of a specific set of Feynman rules obtained by the classical relativistic
action of the theory.
As usual, the ”in-in” quantum e↵ective action for the averaged fields �̄+, �̄� in presence of the

3This formalism was originally developed for non-relativistic quantum many-body field theory [54, 55], and then
it was extended to the relativistic case, even on a curved spacetime background [64, 65].
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Figure 3.1

Figure 3.2

sources can be defined as the Legendre transform of the connected generating functional W [J+, J�],
i.e.

�[�̄+, �̄�] ⌘W [J+, J�]� J+ · �̄+ + J� · �̄� , (3.14)

where �̄± = ±�W [J+, J�]/�J±, and we assume that �̄±(J+, J�) is invertible.
The field equations satisfied by �̄± are

� �[�̄+, �̄�]

��̄±
= ⌥J± . (3.15)

When J+ = J� = J the averaged fields coincide with the average h�̂iJ of the Heisenberg field �̂ in
presence of the single source J . In particular, taking J = 0 we obtain the physical averaged field
�̄+ = �̄� = �̄ ⌘ h�̂i. Then, equation (3.15) becomes the dynamical equation for �̄:

� �[�̄+, �̄�]

��̄+

�����
�̄+=�̄�

= 0 . (3.16)

The computations are generally performed in the Keldysh representation, defined by a linear trans-
formation of the fields �̄+ and �̄�, namely

�c =
�̄+ + �̄�

2
, �� = �̄+ � �̄� . (3.17)

In the limit J+ = J� = 0, �c coincide with physical field �̄, while �� = 0. In this representation
the e↵ective equation of motion (3.16) for the averaged field becomes

� �[�c,��]

���

����
��=0

= 0 . (3.18)

The CTP formalism is able to handle equilibrium as well as non-equilibrium dynamics.
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Since in the warm iflation scenario the system is supposed to remain close to LTE throughout its
evolution, and given that the thermalization process erases the memory of the initial condition, it
is convenient to choose as initial condition a free theory with a thermal distribution of states4 i.e.

we take ⇢̂0 = ⇢̂eq / e��Ĥ, where Ĥ depends on the ensemble chosen to represent the system. For

a canonical ensemble, Ĥ is equal to some time independent initial Hamiltonian Ĥ0. We therefore
define the time dependent Hamiltonian as Ĥ(t) = Ĥ0 for t  t0, where t0 denotes an initial time at
which the CMB modes are well inside the horizon, and Ĥ(t) = Ĥdyn(t) for t > t0, where Ĥdyn(t) is
the interacting Hamiltonian that determines the dynamics of the system. In our cosmological con-
text, the time dependence of the Hamiltonian comes from the evolution of the background metric
and of the inflaton field, and, due to this time dependence, the evolution at times t > t0 will lead
in general to a non-thermal density matrix. Moreover, we need to assume that the expansion is
”slow” in order to achieve a near-equilibrium condition, where the precise meaning of ”slow” will
be specified later.

The initial thermal distribution can be regarded as a time evolution operator e�iĤ0�t with imaginary-
time interval �t = (t0 � i�) � t0 = �i�, so that the CTP generating functional (3.13) becomes a
path integral in which the time integration is taken along the three branched path represented in
figure 3.2, namely from t0 to +1, back to t0 and finally from t0 to t0� i�. Because of the trace in
the definition of Z[J+, J�, ⇢̂], the functional integration is now performed over time periodic field
configurations with period �i�. Moreover, it can be proven that the choice of the time path is
actually irrelevant as long as its extremities do not change and the imaginary part of t along the
path is never increasing [69].
As argued in [60], the choice of the path depends on the problem at hand. If the system remains
at thermal equilibrium throughout its evolution, that means Ĥ(t) = Ĥ0 =) ⇢̂(t) = ⇢̂eq 8t, then
we are not interested on the time development of the ensemble averages, which are static, so the
simplest choice for the time path is to go straight from t0 to t0 � i� along the imaginary axis; in
this case the ”in-in” CTP formalism reduces to the imaginary-time Matsubara formulation of finite
temperature QFT [70]. Instead, in the case of a non-equilibrium dynamics, we want to know the
real time evolution of the averaged observables, therefore we choose to follow the three branched
path which encompasses non-thermal states at times t0 < t < +1.

The formalism described up to now is adopted, for example, in [59, 61], where the approach to
equilibrium of a weakly self-coupled scalar field � (the inflaton) is tackled by applying a somewhat
blurred ”system-bath” separation. Basically, the non-equilibrium e↵ective equation of motion for
the system of interest, given by the thermal averaged field h�i� ⌘ �̄, is obtained by integrating
out the short wavelength modes of the field itself, which may act as a thermal bath driving the
slowly varying background configuration to equilibrium. The procedure involves the perturbative
computation of the CTP e↵ective action and the use of the least action principle. In [58, 59] the
same computation is also done in presence of other scalar fields which also serve as the bath, and
it comes out that the form of the resulting e↵ective equation of motion is the same.
Following [59], we can consider the classical action on flat Minkowski spacetime for a self-interacting
scalar field �

S[�, J ] =

Z

C
d4x

✓
�1

2
(@µ�)

2 � V0(�) + J�

◆
, (3.19)

4This is actually a limitation of the Schwinger-Keldysh formalism itself, which can only e�ciently deal with
thermal initial density matrices. Since there are problems where it is important to keep track of the initial conditions
explicitly, extensions of the formalism have been developed to describe non-equilibrium dynamics of quantum systems
starting from arbitrary initial density matrices [68].
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where V0(�) is the zero temperature potential presenting a quartic self-interaction

V0(�) =
m2

2
�2 +

�

4!
�4 . (3.20)

The time integration is along the closed path C5 going from t0 = �1 to +1 and then back to
�1. Moreover, the field satisfies periodic boundary conditions �(t,x) = �(t � i�,x), which will
lead to the appearance of the finite temperature T in the computations.
Starting from the classical action (3.19), the CTP generating functional (3.13) is constructed by
doubling the sources and the field variables along the path C, � ! (�+,��). Therefore, by
decomposing the field as �± = �̄± + ⌘±, with ⌘± denoting the quantum fluctuations with zero
mean, h⌘±i� = 0, the CTP e↵ective action �[�c,��] for the thermal averaged fields in the Keldysh
basis can be computed perturbatively via a diagrammatic loop expansion, in the limit of vanishing
sources. Then, the application of the variational principle (3.18) provides an e↵ective equation of
motion for the physical background field �c = �̄ which exhibits space and time non-locality, and
that can be expressed in the form [59, 61, 72]


�@2 +m2 +

�

3!
�̄2(x)

�
�̄(x) +

Z
d4x0⌃[�̄](x, x0)✓(t� t0)�̄(x0) = ⇠1(x)�̄(x) + ⇠2(x) , (3.21)

where the function ⌃[�̄](x, x0) is related to self energy amplitude of the field, and ⇠1, ⇠2 are two
random fields whose origin will be clarified shortly.
Heuristically, the appearance of non-local terms can be understood as follow [73]: the interactions
with other fields imply quantum corrections to the classical action coming from loop diagrams
where virtual particles are emitted o↵ �̄, propagate in space and time, and then are reabsorbed
by �̄. At thermal equilibrium, meaning for a space and time constant background field �̄, these
loops just yield quantum and finite temperature corrections to the classical potential V0(�), which
are summarized by an e↵ective potential Veff (�̄, T ) that can be identified with the thermodynamic
free-energy density of the system (see Appendix A). Di↵erently, in a non-equilibrium situation with
an evolving background field �̄(t,x), the emission and the absorption points of virtual particles in
the loop diagrams involve products of configurations of �̄ on di↵erent spacetime points, thus the
introduction of integral correction terms (non-local) that will give rise not only to e↵ective potential
corrections but also to dissipative e↵ects.
The random terms on the r.h.s. of equation (3.21) arises from imaginary contributions to CTP
e↵ective action quadratic in �� that carry information about the fluctuations of the solution of
the e↵ective field equation. These quadratic terms in �[�c,��] can be decoupled by means of a
Hubbard–Stratonovich transformation [56, 59, 61], which allows to attribute the imaginary part
Im�[�c,��] to the result of a Gaussian functional integration over some auxiliary random fields ⇠1
and ⇠2:

ei�[�c,��] =

Z
D⇠1P [⇠1]

Z
D⇠2P [⇠2] e

i(Re�[�c,��]+
R
d4x[��(x)�c(x)⇠1(x)+��(x)⇠2(x)]) , (3.22)

where P [⇠1] and P [⇠2] are Gaussian distribution functionals with zero mean, i.e.

h(. . . )i⇠i ⌘
Z

D⇠iP [⇠i](. . . ) = 0 , h⇠i(x)i⇠i = 0 (i = 1, 2) . (3.23)

5It can be shown [71] that, in the limit t0 ! �1, this time path is actually equivalent to the one in figure 3.2, since
correlation functions involving fields evaluated on the vertical imaginary segment vanishes due the Riemann-Lebesgue
lemma.
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This trick leads to the introduction of two source terms in the CTP e↵ective action, i.e.

�[�c,��] �! �0[�c,��, ⇠i] = Re�[�c,��] +

Z
d4x[��(x)�c(x)⇠1(x) + ��(x)⇠2(x)] . (3.24)

When the variational principle (3.18) is applied to �0, the real part gives rise to the l.h.s. of (3.21),
while the source terms give rise to the stochastic terms � ⇠1 and ⇠2 on the r.h.s..
Stochastic non-linear and non-local di↵erential equations such as (3.21) are impossible to solve
analytically, and they are also notoriously di�cult to tackle numerically. Consequently, one usually
try to express the second term on the l.h.s. of (3.21) in an approximate local form, where the
concept of localization depends on the particular length and time scales at play.
The spatial non-locality is handled by arguing that the inflaton field is presumably nearly homo-
geneous during inflation, i.e. its Fourier expansion is dominated by the large wavelength (or small
wavenumber) oscillating modes, so that one can approximate by considering only the zero external
momentum contribution to the loop diagrams. This removes the emergence of additional spatial
gradient terms from the local description.
The treatment of the temporal non-locality is instead more involved. In ref. [74] appropriate con-
ditions are identified that allow the approximation of the temporal non-local e↵ects by local terms,
and such that a local approximation for the equation of motion is in very good agreement with the
full numerical solution of the non-local equation.
It emerges that the temporal localization requires the existence of a separation of timescales in the
system, provided by the assumption of a near LTE evolution. In this case we can reasonably state
that the background field changes adiabatically, namely its macroscopic motion is much slower than
the microphysical dynamics. In other words, we can write the nth power of the inflaton field as

�̄n(t0,x0) ' �̄n(t,x0) + n(t0 � t)�̄n�1(t,x0) ˙̄�(t,x0) , (3.25)

if we consider time intervals (t0 � t) of order of the timescale ⌧ set by the microscopic degrees of

freedom, since we are assuming ⌧ ˙̄�⌧ �̄.
Therefore, inserting (3.25) in the integrand of equation (3.21), we obtain local terms that are
corrections to the mass and the interaction vertex contributing to the e↵ective potential, but also

dissipative local terms proportional to ˙̄�.
The result is a Langevin-like stochastic di↵erential equation which, redefining for simplicity of
notation �̄ ⌘ �, reads [59]:

�̈(x)�r2�(x) + �(�, T )�̇(x) +
@Veff (�, T )

@�
= �(x)⇠1(x) + ⇠2(x) . (3.26)

Besides the correction Veff to the potential V0, the thermal environment e↵ectively backreacts on
the system through a local and deterministic friction force ��̇ and some stochastic noise forces,
a multiplicative (field dependent) one � ⇠1, and an additive one ⇠2. These ”forces” are physically
interpreted as the action of the thermal noise due to the multiple interactions with the environment,
which induce random inhomogeneities in the solution �(t,x) of equation (3.26) even if � had been
initially prepared to be homogeneous. The source of stochastic evolution can be removed by
taking the ensemble average h i⇠ of (3.26) over the noise fields. Therefore we split the complete
solution �(t,x) in the zero mode (homogeneous) configuration �0(t) ⌘ h�(t,x)i⇠, solution of the
deterministic l.h.s. of (3.26), plus small noise-induced random thermal fluctuations ��(t,x) around
the deterministic trajectory. Then we write

�(t,x) = �0(t) + ��(t,x) ,
⌦
��(t,x)

↵
⇠
= 0 . (3.27)
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The quasi-equilibrium condition also allows to establish a fluctuation-dissipation relation between
the amplitude of the fluctuations of the random noise fields ⇠1 and ⇠2 and the dissipation coe�cient
�. In [59] it is shown that, in a weakly interacting model (� ⌧ 1), the dominant contribution to
� comes from the multiplicative noise field ⇠1, since the contribution from ⇠2 results to be higher
order in �. In the high temperature regime the fluctuation-dissipation relation for the noise field
⇠1 reads [59]

lim
T!1

⌦
⇠1(t,x)⇠1(t

0,x0)
↵
⇠1

= 2 � T �(t� t0)�(x� x
0) . (3.28)

Actually, the noise field is generally colored, i.e. its correlation function is time dependent, with
correlation time given by the relaxation time ⌧rad of the heat bath fields generating the noise.
However, as the interaction rate of radiation scales with T , in the limit of very high temperatures
the noise becomes white, namely time uncorrelated, because the microscopic interactions with the
radiation bath are virtually instantaneous (⌧rad �! 0) compared to the macroscopic motion of the
classical field �.

The dissipation coe�cient � quantifies the strength of the dissipative process, by describing the rate
at which the scalar field � transfers its energy to the thermal bath. Microscopically, it is generally
related to the relaxation time (the inverse of the decay width) of the particles directly coupled
with the inflaton field. Accordingly, we can distinguish direct decay models of warm inflation, in
which the field � directly decays into light radiation fields, from indirect decay models, in which
the inflaton is coupled to a set of heavy bosonic and fermionic ”catalyst” fields X whose mass mX

can even be larger than the temperature of the universe. These catalyst fields in turns couple with
the bath fields, so that the decay of the inflaton into the radiation fields is mediated by a virtual
particle channel. Therefore, � can be related either to the relaxation time of radiation [62] or to
the relaxation time of intermediate massive particles6 [76].
The simpler direct decay models are particularly di�cult to realize: in the high temperature regime,
the direct coupling of the inflaton with thermally excited fields leads to harmful large thermal cor-
rections to the e↵ective potential which could make the model unstable, since the friction coe�cient
cannot counteract the increase in the steepness of the potential. These models require a highly fine
tuned model building to work around this issue [63]. In this regard, indirect decay models proved
to be a more consistent realization of warm inflation. Indeed, in this context, a possible solution
to the problem is given by a two stage decay mechanism based on supersymmetry (SUSY) [51]:
the key point is that the heavy X fields are basically in their ground state (they are not thermally
excited), so the loop corrections to the inflaton potential are only of quantum origin, and they can
be controlled by SUSY7. Nevertheless, also these kind of models presents a technical di�culty, since
a large multiplicity of mediator fields is required to achieve an e�cient energy transfer capable of
sustaining the thermal bath for a su�cient number of e-folds [77, 78], and, although technically
consistent, this would mean that warm inflation can be realized only in special scenarios [79].
The explicit temperature and field amplitude dependence �(�, T ) is established by the model con-
tent. In particular, if we consider some specific indirect decay models treated in [80], the dissipation
coe�cient � was found to have the following generic dependence on the inflaton field amplitude �,
temperature T and on the mass mX of the X fields coupled to the inflaton [72, 80]

�(�, T ) = C�
T c�2a

m2b
X

, c+ 2a� 2b = 1 (3.29)

6In this case the decay width is related through the optical theorem [75] to the imaginary part of the self-energy
diagram of the considered particles. The processes contributing to the decay width clearly involve out of shell particle
states, otherwise the conservation of energy would be violated.

7Even if SUSY is explicitly broken, the corrections to the potential are proportional to the mass di↵erence of the
supersymmetric partners, and therefore they are smaller.
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where C� is a dimensionless constant that carries the details of the microscopic model used to
derive the dissipation coe�cient, such as the di↵erent coupling constants and the multiplicity of
the catalyst fields of the model.
For example, for what concerns the temperature dependence, at low temperature regimes (the lat-
ter understood as T < mX) we have c = 3, while at high temperature regimes (T > mX) we have
c = �1.

The CTP formalism as well as the results quoted so far can be extended to curved spacetime [58, 65,
81]. It follows that, for a spatially flat expanding FLRW metric, the e↵ective stochastic equation
of motion for the thermal averaged field is given by

�̈(x)� a�2(t)r2�(x) + [3H + �(�, T )]�̇(x) +
@Veff (�, T )

@�
= ⇠(x) , (3.30)

where the scale factor and the Hubble friction term arise due to the coupling of the field � with
the expanding background metric. For simplicity, we will restrict ourselves to an additive Gaussian
white noise ⇠(x) approximation. The generalization of the high temperature fluctuation dissipation
theorem (3.28) to an expanding universe is

⌦
⇠(t,x)⇠(t0,x0)

↵
⇠
= a�3 (2T�eff ) �(t� t0)�(x� x

0) , (3.31)

where now (t,x) denote comoving cosmological coordinates, and we also account for e↵ects of the
expansion on the noise field through the coe�cient �eff ⌘ � + 3H 8.
Having reviewed the microscopic origin of the phenomenological equation (3.30), in the next section
we proceed to its solution. However, we want to stress the fact that, even if the CTP formalism can
be applied in principle in situations far from equilibrium, the local Langevin-like e↵ective equation
of motion (3.30) is only adequate to study the approach to equilibrium of the field � in a ther-
malized, adiabatic and perturbative regime that can be realized in a close-to-thermal equilibrium
situation.
Therefore, before moving on, we want to close this section with a summary of the consistency con-
ditions [58, 83] which must be satisfied by any QFT based microscopic model of warm inflation in
order to validate the assumptions leading to the derivation of equation (3.30), as well as of the other
macroscopic equations we will encounter in the next sections, that describe the phenomenology of
this inflationary scenario.
The adiabatic-condition requires that all the time scales of the microphysical dynamics deter-
mining the dissipative and noise e↵ects must be faster than all the time scales associated to the
macroscopic evolution of the system. In warm inflation there are two macroscopic time scales,
provided by the Hubble expansion rate and the rate of change of the background inflaton field
�0(t), so we can distinguish the �0 adiabatic condition

��1
i ⌧

�0

�̇0
, (3.32)

and the thermal adiabatic condition

��1
i ⌧ H�1 , (3.33)

where �i denotes, for a given model, the decay rates of the fields responsible for the dissipative
motion of �, including also the bath fields in case of models in which radiation does not directly

8A more accurate estimate of �eff can be found in [82], obtained through a matching procedure in the sub-horizon
limit. However, corrections on the given value of �eff have little e↵ects on the final power spectrum generated by
the thermal fluctuations.
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interact with the inflaton field. In a cosmological setting the inequality (3.33) states that the
microscopic dynamic timescales are much faster than the expansion time scale. It automatically
implies the condition �rad � H, which guarantees instantaneous thermalization of the relativistic
particles produced via inflaton decay. This legitimizes the assumption, used in the entire discussion
above, of a well defined temperature parameter T , that can be used to describe the state of radiation
in an expanding universe. By further requiring that �rad � Ṫ /T , radiation can be manteined in
a close to thermal equilibrium state. Moreover, since at high temperature �rad is set by T [84]
according to �rad ⇠ ↵T , for some model dependent coe�cient ↵, the thermalization condition also
implies (for ↵ ⇠ O(1))

T � H . (3.34)

We will see that this last condition actually represents the dividing point between cold and warm
inflation, since it defines the regime in which the thermally induced fluctuations of � will dominate
over the vacuum quantum fluctuations amplified by the inflationary expansion.
Another very important bound on T is set by requiring that the temperature must be su�ciently
high to make significant the thermal fluctuations of the fields, otherwise the fields excitations would
be suppressed by Boltzmann exponential factors, as well as the dissipation coe�cient [80]. Then
we require

T � mi(T ) , (3.35)

with mi(T ) the finite temperature e↵ective masses of the particle fields.
Finally, the infrared condition states that the Compton wavelength of all the particle excitations
of the model must be much smaller than the Hubble radius H�1 during inflation, i.e.

m�1
i (T )⌧ H�1 . (3.36)

which automatically implies (3.34) via the use of (3.35). Combined with the thermal-adiabatic con-
dition, the infrared condition allows to perform approximate computation within a flat spacetime
framework, ignoring the e↵ects of the expansion on microphysics processes.

The Axion-like warm inflation model

An inflationary scenario driven by axion-like particles was initially suggested in 1990 [85], as natural
inflation. An axion is a pseudo Nambu-Goldstone boson arising from the spontaneous symmetry
breaking of a U(1) global symmetry that is anomalous under a given gauge group. As a Nambu-
Goldstone boson, the axion enjoys a shift symmetry which protects its potential from both large
quantum and thermal corrections, since it requires that the interaction terms in the action involve
only derivatives of the field. However, the shift symmetry is explicitly broken at the quantum
level, and this anomaly leads to the appearance in the low-energy e↵ective action for the axion of a
non-renormalizable coupling with the gauge fields Aa

µ, that reproduces the variation of the action of
the associated ultraviolet theory under an anomalous U(1) transformation. The axion-gauge field
coupling is given by

Lint =
↵

4f
� G̃aµ⌫Gaµ⌫ , (3.37)

where G̃aµ⌫ is the dual gauge field strength, G̃aµ⌫ = 1
2✏

µ⌫⇢�Ga
⇢�, G

a
µ⌫ = @µAa

⌫ � @⌫Aa
µ + gfabcAb

µA
c
⌫ ,

with g and fabc, respectively, the coupling and the structure constant of the Yang-Mills gauge
group. ↵ is a dimensionless constant, while f is a constant with the dimension of a mass that is
related to the SSB energy scale.
The explicit symmetry breaking generates a periodic e↵ective potential for the axion of the form
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V (�) = V0

h
1� cos

�
�/f

�i
[86], which provides a mass term proportional to f�1 when expanded

about the vacuum configuration.
These symmetry properties makes the axion the simplest spin-zero degree of freedom with a non-
trivial radiatively stable potential, and hence a well motivated candidate for the inflaton field.
Another interesting feature of natural inflation models that makes them very attractive in the
context of slow-roll inflation, is that, if we consider an abelian gauge group U(1), the axion-like
coupling (3.37) generates an amplification of the gauge fields modes of one of the helicities by a

factor / exp{⇡⇠}, with ⇠ = ↵�̇0
2fH , which leads to a strong particle production at the expense of

the kinetic energy of the inflaton [87]. Due to the exponential dependence of the amplification,
for large enough values of the parameter ⇠, the gauge field production can strongly backreact on
the evolution of the homogeneous inflaton field �0 through a term ↵

4f G̃
aµ⌫Gaµ⌫ on the r.h.s. of its

equation of motion that slows down the rolling of �0, so that the slow-roll regime can be realized
in these models even for steep potentials [87, 88]. Moreover, the large amount of radiation quanta
produced during inflation may largely enhance the gauge fields interaction rates, which could be
able to overcome the exponential dilution, thus, naturally leading to thermalization and formation
of a hot plasma [89]. Therefore, a warm inflation dynamics might emerge naturally in these types
of models given appropriate parameters [89–92].

3.2 Background dynamics

In this section we see how the phenomenological picture of the warm inflationary scenario emerges
from the study of the large scale behaviour of the inflaton-bath system, namely by the dynamical
evolution equations of the homogeneous thermal averaged inflaton field �0(t) and the thermal ra-
diation component on the expanding FLRW background spacetime. The arguments reported here
are mainly based on refs. [45, 82, 93, 94].

From (3.30) we have that the equation of motion for the homogeneous component of the inflaton
field is

�̈0(t) + [3H + �(�0, T )]�̇0(x) + V,� (�0, T ) = 0 , (3.38)

where we have redefined Veff (�0, T ) ⌘ V (�0, T ). As mentioned, the e↵ective finite temperature
potential must be regarded as the Helmholtz free-energy density of the ”inflaton + bath” system.
For an e↵ective number g⇤(T ) of relativistic bath fields coupled to �, the thermodynamic potential
at temperature T > H,m� admits the following general expression9 including both quantum and
finite temperature corrections [95, 96]

V (�0, T ) = �
⇡2

90
g⇤(T )T

4 +
1

2
�m2(�0, T )�

2
0 + V0(�0) . (3.39)

The first term is minus the pressure exerted by the thermal radiation of relativistic fields. We can
realize this by noticing that the factor ⇡2T 4/90 associated to each relativistic degree of freedom is
exactly half the pressure of a black body radiation, since the electromagnetic radiation carries two
independent polarization states. V0(�0) refers to the inflaton e↵ective potential at zero temperature,
and the factor �m2(�0, T ) account for thermal corrections to the inflaton potential.
Therefore, in this new scenario, the cosmic fluid is a mixture of mutually interacting radiation and

9Actually, this expression for the e↵ective potential is valid within thermal QFT on flat Minkowski spacetime.
However, the set of consistency conditions listed at the end of the previous section allow to use it also in a FLRW
background spacetime.
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scalar field, whose total energy density and pressure are

⇢(�0, T ) =
1

2
�̇20 + U(�0, T ) , (3.40)

P (�0, T ) =
1

2
�̇20 � V (�0, T ) , (3.41)

with U the internal energy density of the whole system. The latter is related to the free-energy
density (3.39) by the thermodynamic relation U = V + Ts, where s is the entropy density, quite
dominated by the radiation component, s = sr, and given by

sr = �V,T . (3.42)

where ,T denotes the derivative w.r.t. the temperature.
The zero curvature Friedmann equation (1.20) relates the expansion rate H to the total energy
density ⇢

3H2 = 8⇡G⇢ . (3.43)

The last relevant equation is the one describing entropy density production due to the energy
transfer from the inflaton field to the thermal bath. It is given by the ⌫ = 0 component of the
continuity equation (1.13) for the total energy-momentum tensor,

⇢̇+ 3H(⇢+ P ) = 0 , (3.44)

which, making use of (3.40) and (3.41), becomes

�̇0�̈0 + V,� �̇0 + V,T Ṫ + Ṫ sr + T ṡr + 3H(�̇20 + Tsr) = 0 . (3.45)

Then, using (3.38) and (3.42) we obtain

T (ṡr + 3Hsr) = ��̇20 . (3.46)

In general, the scalar field and radiation contributions to the total energy density ⇢ cannot be
unambiguously separated. However, viable models of warm inflation need a mechanism, such
as supersymmetry, that suppresses huge high temperature thermal corrections to the potential
[97], which could prevent the slow-roll realization of the inflationary expansion. If we neglect the
thermal corrections �m2(�0, T ) in the e↵ective potential, we obtain a relationship between entropy
and radiation energy density

sr = �V,T =
2⇡2

45
g⇤T

3 =) ⇢r =
⇡2

30
g⇤T

4 =
3

4
sT , (3.47)

where we have taken for granted that all the relativistic species are at thermal equilibrium at
temperature T (i.e. that g⇤ = g⇤s). As a consequence, the field and temperature dependence of the
total energy density (3.40) can be disentangled

⇢(�0, T ) =
1

2
�̇20 + V0(�0) +

⇡2

30
g⇤T

4 = ⇢� + ⇢r . (3.48)

Only in this case, the time evolution is described by the following system of equations
8
>><

>>:

�̈0 + 3H(1 +Q)�̇0 + V,�= 0 ,

3H2 = 8⇡G(⇢� + ⇢r) ,

⇢̇r = �4H⇢r + ��̇20 ,

(3.49)

66



3.2. Background dynamics

where we used the expressions in (3.47) to rewrite (3.46) in terms of ⇢r. We have also introduced a
parameter Q describing the e↵ectiveness of thermal dissipation relatively to the expansion damping,
defined as

Q ⌘ �

3H
, (3.50)

which allows to identify two di↵erent regimes of warm inflation, namely

• Q  1 (�  3H), we are in the weak dissipation regime: dissipation is not strong enough
to a↵ect the background inflaton field evolution, but the thermal fluctuations of the radia-
tion energy density are still able to significantly a↵ect the inflaton field fluctuations and the
spectrum of primordial perturbations;

• Q � 1 (� � 3H), we are in the strong dissipation regime: dissipation dominates both the
background dynamics and the fluctuations.

Given that also the ratio Q evolves during inflation, we may have models where the dissipation
regimes alternate.
Notice how the above dynamical system reduces to the standard evolution equations (2.7) of the
cold scenario in the limit Q⌧ 1 in which the interactions of the inflaton field are ine↵ective.
It is now more evident from the last equation of (3.49) that the amount of radiation during inflation
is determined by two competing e↵ects: the first term on the r.h.s. is a sink term arising from the
Hubble expansion which depletes the radiation away, while the second one acts like a source term
feeding radiation via dissipation of the inflaton field energy.
Similarly, by rewriting the first of (3.49) in terms of the inflaton energy density ⇢� we have

⇢̇� = �(3H + �)�̇20 , (3.51)

which implies that ⇢� is a monotonic decreasing function, because of the combined e↵ect of Hubble
redshift and decay.

We can assume that warm inflation is preceded by a RD era, and it starts when the approximately
constant vacuum energy of the inflaton field equals the decreasing radiation energy density falling
as ⇢r ⇠ a�4. In a first moment the radiation component is redshifted away by the quasi-exponential
expansion, but it is generally assumed that, when the inflaton decay becomes e↵ective, the rate of
radiation production through dissipation is su�cient to balance its depletion due to the expansion,
so that the radiation energy density reaches a nearly steady state regime, meaning that

|⇢̇r|
⇢r
⌧ H , (3.52)

which fulfills the mentioned consistency condition Ṫ /T ⌧ H ⌧ �rad.
The universe stops inflating and it smoothly enters a RD era at the moment when the quasi-stable
radiation component exceeds the falling inflaton field energy.

The realization of a warm inflationary phase yielding a nearly scale invariant power spectrum
requires the slow-roll conditions

V (�0)� �̇20/2 + ⇢r , |�̈0| ⌧ (3H + �)|�̇0| (3.53)
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in combination with the additional strong dissipation condition10

Q� 1 . (3.54)

Within the slow-roll and strong dissipation regime the system of equations (3.49) is approximated
by 8

>><

>>:

3HQ�̇0 + V,�' 0 ,

3H2 ' 8⇡GV ,

4H⇢r ' ��̇20 ,

(3.55)

where we have dropped the highest derivative terms. The last equation yields the quasi-stationary
value reached by radiation energy density

⇢r '
��̇20
4H

=
3Q

2

✓
1

2
�̇20

◆
, (3.56)

which shows that the parameter Q must be large as supposed in order to obtain a substantial
radiation component, since the kinetic energy is very small during the slow-roll regime of inflation.

Also in this case the validity of the slow-roll approximation can be cast as conditions on the size
of a set of slow-roll parameters. If the thermal corrections are subdominant, as assumed up to
now, we can neglect the temperature dependence of the inflaton potential V and the dissipation
coe�cient �, and the set of slow-roll parameters is given by

✏V ⌘
1

16⇡G

✓
V,�
V

◆2

, ⌘V ⌘
1

8⇡G

V,��
V

, � ⌘ 1

8⇡G

�,� V,�
�V

, (3.57)

where � is a new slow-roll parameter which constrains the field dependence of V and �.
The slow-roll regime requires ✏V ⌧ Q, |⌘V | ⌧ Q, |�| ⌧ Q. In order to check this conditions let us
compute the ✏ and ⌘ parameters (2.10) in the warm inflationary regime.
Using the second of (3.55) and its time derivative we have

✏ ⌘ � Ḣ

H2
' 1

Q

1

16⇡G

✓
V,�
V

◆2

=
✏V
Q
⌧ 1 . (3.58)

To compute the ⌘ parameter we di↵erentiate the first of (3.55), obtaining

�̈0 '
V,�� �̇0
3HQ

�
�,� V,� �̇0
9H2Q2

, (3.59)

which plugged in the definition of ⌘, using the second of (3.55), provides

⌘ ⌘ � �̈0

H�̇0
' � 1

Q
(⌘V � �)⌧ 1 . (3.60)

Similarly, computing the relative variation of radiation energy density within a Hubble time we
have

1

H

⇢̇r
⇢r
' � 1

Q
(2⌘V � ✏V � �)⌧ 1 . (3.61)

10Actually, a warm inflation scenario is achieved when the thermal fluctuations significantly alter the spectrum
of primordial perturbations, hence also in the weak dissipation regime, but the most interesting features arise for
Q � 1, so we restrict to this case.
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3.3. Thermal fluctuations evolution

From (3.58), (3.60) and (3.61), the aforementioned conditions on ✏V , ⌘V and � follow.
As anticipated, in a strong dissipation regime (Q � 1) the flatness conditions on the inflaton
potential are relaxed, so that the slow-roll regime can be accomplished even for steeper potentials.
In the case we do not neglect the temperature dependence of V and �, we have to introduce two
additional slow-roll parameters

b =
TV,�T
V,�

, c =
T �,T
�

, (3.62)

which quantify thermal contributions to, respectively, the e↵ective potential and the dissipation co-
e�cient. A stability analysis [97] of the dynamical system (3.49) shows that a stable and su�ciently
prolonged attractor solution can only exist if

0 < b⌧ 1 , |c| < 4 . (3.63)

As previously argued, the condition on b is necessary to suppress dangerous thermal corrections to
the potential. Instead, the physical meaning of the condition on c is evident from the last equation
of (3.49): the radiation energy density will reach a stable equilibrium point if radiation is produced
with a rate � / T c equating or exceeding the one at which it is depleted by the expansion, given by
4H⇢r / T 4; then we cannot obtain a stationary radiation energy density if � falls as T 4 or faster.
As seen in the previous section, calculation of the dissipation coe�cient for di↵erent models yield
values of c = �1 and c = 3 which are consistent with the condition imposed on c.
From (3.56), using the first and the second equation of (3.49), we can find a relation between the
radiation energy density and inflaton energy density in terms of the slow-roll parameter ✏V

⇢r '
3Q

2

✓
1

2
�̇20

◆
' 1

12Q

✓
V,�
H

◆2

' ✏V
2Q

⇢� , (3.64)

which shows that ⇢r ⌧ ⇢� in the slow-roll regime, since ✏ ⌧ 1, thus guaranteeing a period of
accelerated expansion. This relation may not hold at the start and the end of the warm inflationary
phase, as during this periods the steady-state condition on the radiation energy density is violated.
However, it was verified by numerical modelling that (3.64) holds very well during most of the
inflationary phase [93]. The same relation also establishes a connection between temperature and
inflaton potential

T 4 ' ✏V V

2↵Q
, ↵ ⌘ ⇡2g⇤

30
. (3.65)

Recalling the meaning of ✏, from (3.58) we have that warm inflation ends when ✏V ' Q, which,
looking at (3.64), is equivalent to say that ⇢r ' ⇢�.

3.3 Thermal fluctuations evolution

In this section we explore the behaviour of thermal fluctuations during warm inflation, and we
see how they constitute the primary source of primordial density perturbations. Our analysis will
closely follow refs. [82, 94].

The evolution of the inflaton field thermal fluctuations modes goes through three di↵erent regimes,
depending on the relative importance between thermal noise, expansion and curvature perturba-
tion. The transition between these regimes occurs at two instants, identified with the freeze-out
instant tF and the horizon crossing instant.
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In cold inflation, these two moments coincide, since we recall that, given a quantum fluctuation
mode of comoving wavenumber k, its amplitude is essentially frozen at the instant t of horizon
crossing when k = a(t)H(t), or ,equivalently, at the instant t = tF when the decreasing physical
wavenumber kph(t) = k/a(t) falls below the freeze-out wavenumber scale kF = H. Analogously,
also the inflaton thermal fluctuations in the warm scenario present such a freeze-out scale, but it
is quite di↵erent from the horizon crossing scale.
Initially, as assumed, the thermal noise e↵ects dominates over the expansion, so that the inflaton
field is able to reach the thermal equilibrium with the radiation component. As the universe ex-
pands, the interactions with the thermal environment become less e�cient, until the moment tF
at which the thermal noise starts to have an irrelevant e↵ect on the development of the inflaton
fluctuations, meaning that for t > tF the inflaton field and the radiation component are no more
considered to be in thermal equilibrium, and the evolution of the inflaton fluctuations becomes
increasingly deterministic.
We will see shortly that the warm inflation freeze-out scale kF is always larger than H, meaning
that the freeze-out time of a mode always precedes its horizon crossing instant. Whilst the small
scale inflaton fluctuations are freezing out, the metric fluctuations resulting by the perturbations
in the total energy density remain relatively small. In fact, at this stage, they can be safely ne-
glected in the Langevine equation (3.30) with a suitable gauge choice [98, 99]. Eventually, once the
wavelength of the perturbations exceed the cosmological horizon, the metric perturbations become
important and we end up with the generation of a large scale curvature perturbation. Furthermore,
di↵erently from the cold scenario, the large scale perturbations generated are already classical on
creation, since they are induced by classical thermal fluctuations. Thus, the warm scenario has no
quantum-to-classical transition problem [35].

3.3.1 The origin of the freeze-out length scale and the perturbed system

Following [83], we can estimate the freeze-out wavenumber kF by focusing on the stage when the
fluctuation modes evolve on a dynamic timescale su�ciently fast for the mode to thermalize, such
that we can ignore the e↵ects of the expansion. In other words, we consider physical wavenumbers
kph(t) su�ciently large that the evolution of kph(t), H(t), and �0(t) is adiabatic relative to the
evolution of ��k(t) within a Hubble time interval �t = H�1. In this regime the flat spacetime
equation of motion for the inflaton field (3.26) is approximately valid and the evolution equation
for the modes ��k(t) is obtained by substitution of the inflaton field splitting (3.27) in equation
(3.26) and taking the Fourier transform. Retaining only the terms linear in the fluctuations we
have

¨��k + � ˙��k +
⇣
V,�� + k2ph

⌘
��k = ⇠k , (3.66)

with correlation function for the Fourier transform of the noise field ⇠k given by

⌦
⇠k(t))⇠�k0(t0)

↵
⇠
= 2�T �(t� t0)�(k� k

0) . (3.67)

On the considered time scale we can ignore the time variation of H, kph, � and V,��, and we can
fix the value of these quantities at an intermediate instant during the considered time interval. In
this case, (3.66) coincides with the equation of motion of a damped harmonic oscillator immersed
in a fluid and in presence of an external stochastic driving force.
We are interested in the overdamped regime in which we can neglect the second order time derivative
of ��, realized when � > (V,�� + k2ph)

1/2. Equation (3.66) is then approximated by

� ˙��k +
⇣
V,�� + k2ph

⌘
��k = ⇠k . (3.68)
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3.3. Thermal fluctuations evolution

The above equation has the same form of the velocity equation for a free Brownian particle in a
fluid, whose solution, given the initial condition ��k(t⇤) at some initial time t⇤, reads

��k(t) ⇡
1

�
e�(t�t⇤)/⌧

Z t

t⇤

dt0e(t
0�t⇤)/⌧⇠k(t

0) + ��k(t⇤)e
�(t�t⇤)/⌧ , ⌧ ⌘ �

V,�� + k2ph
, (3.69)

where the first term on the r.h.s. is the stochastic contribution from the noise which acts to
thermalize the fluctuation, while the second term contains the memory of the initial condition at
time t = t⇤. The stochastic average of the solution is given by

h��k(t)i⇠ = ��k(t⇤)e
�(t�t⇤)/⌧ . (3.70)

Using (3.67) and h⇠ki = 0, the two point correlation function in Fourier space is

h��k(t)���k0(t)i⇠ ⇡ �
3(k� k

0)
T

V,�� + k2ph

⇣
1� e�2(t�t⇤)/⌧

⌘
+ h��k(t⇤)���k0(t⇤)i⇠ e

�2(t�t⇤)/⌧ .

(3.71)
We see that the averaged fluctuation may relax to the equilibrium value h��k(t)i⇠ = 0 within a
timescale fixed by the relaxation time interval ⌧ , once the exponential decaying terms becomes
negligible. However, due to the presence of thermal noise, the average of the squared fluctuations
approaches a non-vanishing value related to the equilibrium temperature T .
Therefore, the fluctuation mode can thermalize within a Hubble time, as required, only if its
physical wavenumber kph is su�ciently large such that

⌧ < tH  ! �

V,�� + k2ph
< H�1 =)

V,�� + k2ph
�H

> 1 . (3.72)

In a strong dissipative regime, the slow-roll condition ⌘V ⌧ Q implies V�� ⌧ �H, then the
inequality (3.72) holds approximately for physical wavenumbers kph that satisfy

kph > kF '
p
�H . (3.73)

Notice that
kF =

p
�H =

p
3QH � H , (3.74)

meaning that, as anticipated, the freeze-out time well precedes the moment of horizon crossing at
kph = H.
Once the physical wavenumber of a fluctuation mode drops below kF , the relaxation time becomes
bigger and bigger than the Hubble time, so the averaged fluctuation remains essentially frozen at
the value h��k(tF )i assumed at the freeze-out time. Actually the freeze-out scale kF acquires a
weak time dependence from the Hubble parameter, but in practise we can treat it as constant,
since H varies very little during inflation.

A more accurate calculation of the freeze-out scale kF and of the fluctuations amplitude can be
performed by explicitly solving the set of cosmological perturbation equations of the inflaton-
radiation system on an expanding background.
In the context of warm inflation there are cosmological perturbations in the inflaton field, the
radiation and the gravitational field, and in general they are intimately coupled.
From equation (3.30), by perturbing at first order, we obtain the equation of motion for the inflaton
fluctuations ��

�̈�� a�2r2��+ (3H + �) ˙��+ (��)�̇0 + �V,�= ⇠ , (3.75)
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where �� and �V,� are the perturbations of the dissipation coe�cient and of the derivative of the
e↵ective potential.
The inhomogeneous energy-momentum flux from the inflaton field to the thermal bath gives rise to
fluctuation �⇢r in the energy density of radiation. The evolution equation for �⇢r can be obtained
by perturbing a covariant energy-momentum balance equation written in terms of a total energy-
momentum tensor [82, 100, 101]. We have

¨�⇢r + 9H ˙�⇢r +

✓
20H2 +

1

3
k2a�2

◆
�⇢r = �k2a�2J + 5H�E + ˙�E , (3.76)

where �E and J are, respectively, the perturbed fluxes of energy and momentum, given by [82]

�E = �̇2�� , J = ���̇�� . (3.77)

The inflaton fluctuations will also generate metric inhomogeneities which enter the evolution equa-
tions (3.75) and (3.76) [94, 99, 101]. However, in linear perturbation theory, if we put ourselves
in the uniform expansion rate gauge (�✓ = 0) the metric perturbations entering the evolution
equations can be discarded on sub-horizon scale, k � aH, when we work at the leading order in
the slow-roll approximation [98, 99]. Therefore, equations (3.75) and (3.76) apply to intermediate
length scales that lie between the microscopic scales of the thermal bath and the cosmological
horizon scale.
In the most general case in which both � and V are functions of the field amplitude and the
temperature we have

�� = �,� ��+ �,T �T , (3.78)

�V,� = V,�� ��+ V,�T �T . (3.79)

The �T terms couple the perturbations of the inflaton and the energy density of radiation since

�⇢r
⇢r

= 4
�T

T
. (3.80)

Using the first and the third of the slow-roll equations (3.55), these contributions can be written
in terms of the parameters b and c as

V,�T �T = bV,�
�T

T
' �bH

�̇0
�⇢r , (3.81)

�,T �T = c
H�⇢r

�̇0

�̇20�

4H⇢r
' c

H

�̇0
�⇢r . (3.82)

Since we require b ⌧ 1 the V,�T �T term can be neglected, while the �,T �T term is leading or-
der in the slow-roll approximation and it should be considered in the analysis of the coupled system.

Furthermore, unlike the cold scenario, entropic (isocurvature) perturbations are also important
in warm inflation. They can arise, for example, due to thermal fluctuations in the radiation or
through particle production induced by the interactions between the cosmic fluid components, that
can lead to fluctuations in the relative number densities of di↵erent species at fixed total energy
density. The generation of isocurvature perturbations is very model dependent, and it can a↵ect the
evolution of the curvature perturbation, giving an additional contribution to the power spectrum
of the primordial scalar perturbations. Indeed, the possible presence of non-adiabatic pressure
perturbations �Piso may provide a non trivial evolution of the curvature perturbation ⇣ (and R)
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on super-horizon scales, since it is no longer frozen as in single field cold inflationary models.
However, a numerical integration of the linearly coupled perturbation equations of the inflaton-
radiation system has been performed by the authors of [94], including also metric and entropic
perturbations. This analysis demonstrated that, under certain model conditions and within the
slow-roll approximation, the system rapidly converges to a solution with a single free parameter
as the length scales exceed the horizon; in particular, it emerges that only one perturbation mode,
the adiabatic curvature perturbation, survives on super-horizon scales and it approaches a constant
value, while the entropic perturbation vanishes.
Even if the isocurvature perturbations decay on large scales, they can still influence the evolution
of the curvature perturbation on sub-horizon scales, with an even more significant impact if we
consider a temperature dependent dissipation coe�cient [94]. Nonetheless, we follow assume a
regime (as studied in [94]) in which the isocurvature modes are negligible, relaying on the fact
that, according to the constraints on inflation set by the Plank measurements [5], isocurvature
perturbations, if they exist, must provide a subdominant contribution to the scalar power spectrum.
Given the above considerations, we can entirely describe the scalar perturbations through the linear
curvature perturbation on uniform energy density hypersurfaces

⇣ = � ̂�H
�⇢

⇢̇
' � ̂� H

�̇
�� = R , (3.83)

where we used that ⇢ ' V during inflation.
If we consider the spatially flat gauge ( ̂ = 0) we obtain

⇣ ' �H

�̇
�� =) P⇣(k) =

H2

�̇2
P�(k) . (3.84)

In the spatially flat gauge the inflaton field fluctuation coincides with the gauge invariant Mukhanov-
Sasaki variable (2.115). Evaluating this quantity in the uniform expansion rate gauge we can find
a relationship between the inflaton field perturbation �� in the two gauges:

Q ̂=0 = Q�✓=0 =) �� ̂=0 = ���✓=0 +
�̇

H
 ̂�✓=0 . (3.85)

The linearly perturbed Einstein equations provide the relation [99]

�k2

a2
 ̂� �✓H = 4⇡G�⇢ , (3.86)

which evaluated in the uniform expansion rate gauge yields

 ̂�✓=0 = �
4⇡Ga2

k2
�⇢�✓=0 ' �

4⇡Ga2

k2
V,����✓=0 . (3.87)

Therefore, in the slow-roll approximation, from (3.85) we obtain

�� ̂=0 ' ���✓=0 �
�̇

H

4⇡Ga2

k2
V,����✓=0 ' ���✓=0 + 3

a2H2

k2
✏V
Q
���✓=0 , (3.88)

which means that, to leading order in slow-roll, the inflaton fluctuation in the uniform expansion
rate gauge and in the spatially flat gauge coincide. Then, we can use the leading order solution of
equation (3.75) to compute the power spectrum (3.84).
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3.3.2 Uncoupled fluctuations

Here we restrict to the case in which the friction coe�cient does not depend on temperature, i.e.

� ⌘ �(�)  ! c = 0 . (3.89)

This implies that the perturbations of the inflaton and the radiation do not couple, since the leading
order coupling term (3.82) does not appear in the inflaton perturbation equation. Then, we can
only focus on the evolution of the inflaton field fluctuations, which will determine the primordial
energy density perturbations.
From (3.75), by taking the Fourier transform we obtain

¨��k + (3H + �) ˙��k +

 
�,� �̇0 + V,��+

k2

a2

!
��k = ⇠k . (3.90)

The correlation function for the noise field in the k-space is
⌦
⇠k(t))⇠�k0(t0)

↵
⇠
= a�3 (2�effT ) �(t� t0)�(k� k

0) . (3.91)

Introducing the time coordinate z ⌘ k
a(t)H(t) and using the slow-roll parameters ✏, ⌘V and �, we are

led to

(1� ✏)2��00k +


✏0(✏� 1)� (3Q+ 2)

(1� ✏)
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�
��0k +
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1 +

3Q
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✓
⌘V
Q
� �

1 +Q

◆#
��k

= (2�effT )
1/2(1� ✏)1/2⇠̂k , (3.92)

where prime denotes the derivative with respect to z. Moreover we have rescaled the noise field ⇠
as

⇠k(t) �! ⇠̂k(z) ⌘
a2

k2
(2T�eff )

�1/2 (1� ✏)�1/2⇠k (3.93)

so that, using the following relation

�(z � z0) =
a

k(1� ✏)�(t� t0) , (3.94)

the correlation function for the noise field ⇠̂k(z) reads

h⇠̂k(z))⇠̂�k0(z0)i⇠ = k�3 �(z � z0)�(k� k
0) . (3.95)

At zero order in the slow-roll approximation, the fluctuation equation of motion becomes

��00k � (3Q+ 2)z�1��0k + ��k = (2�effT )
1/2⇠̂k . (3.96)

To recast the above di↵erential equation to a more familiar form we define the fluctuation field
variable ��̃k ⌘ z�⌫��k, where ⌫ ⌘ 3/2(Q + 1). Under this change of variable, the previous
di↵erential equation becomes

z2��̃00k + z��̃0k + (z2 � ⌫2)��̃k = z2�⌫(2�effT )
1/2⇠̂k , (3.97)

which is a inhomogeneous Bessel equation of order ⌫.
This equation can be solved via Green function method, which provides the following solution [82]

��k(z) =

Z 1

z
dz0G(z, z0)(z0)1�2⌫(2�effT )

1/2⇠̂k(z
0) , (3.98)
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where the retarded Green function G(z, z0) can be expressed in terms of the Bessel functions of the
first and second kind J⌫(z) and Y⌫(z) of order ⌫ as (see Appendix B.1)

G(z, z0) = �⇡
2
z⌫z0⌫(J⌫(z)Y⌫(z

0)� J⌫(z
0)Y⌫(z)) for z0 > z . (3.99)

Corrections due to the time dependence of ⌫ are higher order in the slow-roll approximation.
Then, using the expression (3.95) for the correlation function of the noise field, the two point
correlation function for the inflaton field thermal fluctuations in Fourier space reads

⌦
��k(z)���k0(z)

↵
⇠
= k�3

Z 1

z
dz0G2(z, z0)(z0)2�4⌫(2�effT ) �

3(k� k
0) , (3.100)

from which we can identify the inflaton field power spectrum with

P�(k, z) = k�3
Z 1

z
dz0G2(z, z0)(z0)2�4⌫(2�eff (z

0)T (z0)) . (3.101)

When the order ⌫ is large (Q � 1), the above integral presents a saddle point at z = zF ⌘ z(tF )
given by [82]

zF = (3⌫)1/2 =
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◆ 1
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◆ 1
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'
r

3

2
(H(zF )�(zF ))

1/2 .

(3.102)
We identify the saddle point zF (or tF ) with the freeze-out time of the fluctuation mode with
comoving wavenumber k.
The presence of the saddle point allows to evaluate the �effT term in (3.101) at z = zF and to
take it out of the integral. Then we rewrite (3.101) as (�eff ' � for Q� 1)

P�(k, z) = k�3(2�(zF )T (zF ))F (z) , F (z) ⌘
Z 1

z
dz0G2(z, z0)(z0)2�4⌫ . (3.103)

The integral function F (z) is examined in Appendix (C). For large values of ⌫ and fixed z, this
integral can be analytically approximated by equation (C.10), which inserted in the above expression
for the inflaton field power spectrum yields

P�(k, z) ⇡
p
⇡

2
k�3

p
�H T

✓
1 + z2

H

�

◆
. (3.104)

Notice that at early times (z � 1) the amplitude of the inflaton field thermal fluctuations is
very large. As the value of z decreases with time, the fluctuations amplitude decreases as well,
and P�(k, z) approaches a nearly constant value P�(k) once z drops below the freeze-out time
zF ⇠ (H/�)1/2.
A heuristic derivation of the inflaton fluctuations amplitude, that is compatible with the above
(more accurate) result, is obtained in [83] and showed in Appendix D.
From (3.84), we have that the curvature perturbation adimensional power spectrum generated by
the inflaton thermal fluctuations at the moment z = 1 of horizon crossing is given by

�th
⇣ (k) =

k3

2⇡2
P⇣(k, 1) ⇡

1

4⇡3/2
H5/2�1/2 T

�̇2
, (3.105)

that, using the first and the second of (3.55), can be rewritten as

�th
⇣ (k) ⇡

p
3

4⇡3/2
4⇡G

✏V
Q5/2H T . (3.106)

75



Chapter 3. Warm Inflation

During warm inflation, both quantum and thermal fluctuations of the inflaton field are responsible
for the generation of a scalar adiabatic curvature perturbation. In order to establish the relative
importance of these two contributions we compare the result (3.106) with the scalar power spectrum
(2.150) generated in cold inflation by the quantum fluctuations, that can also be expressed as

�qu
⇣ (k) ⇡ 1

4⇡2
4⇡G

✏V
H2 . (3.107)

Their ratio is
�th
⇣ (k)

�qu
⇣ (k)

⇠ Q5/2 T

H
, (3.108)

hence, in order for the thermal spectrum to dominate over the quantum spectrum of fluctuations
it is required that, even in the weak realization Q  1 of warm inflation11, the condition T > H
must be satisfied.
The spectral index of the adiabatic scalar perturbations is

n⇣ � 1 =
d lnP⇣
d ln k

. (3.109)

It can be expressed in terms of the slow-roll parameters by writing the logarithmic interval in
comoving wavenumber as

d ln k = d ln a(t) =
ȧ

a
dt = Hdt =

H

�̇
d� ' �8⇡GV Q

V,�
d� , (3.110)

where we used the slow-roll equations (3.55) in the last equality. Therefore, we have

n⇣ � 1 = �
V,�

8⇡GV Q

d ln

d�

 
H5/2�1/2 T

�̇2

!
. (3.111)

Expressing the temperature via equation (3.65) and using the slow-roll equations (3.55) we obtain

n⇣ � 1 =
1

Q

✓
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4
✏V +

3

2
⌘V �

9

4
�

◆
, (3.112)

to be compared with the result (2.134) provided by the cold scenario. Analogously, (3.112) shows
a small deviation from a scale invariant power spectrum if the slow-roll conditions are satisfied,
consistently with the experimental observations. The presence of the new slow-roll parameter �
shows the dependence of the spectrum on the derivative of the dissipation coe�cient.

3.4 Thermal spectrum of tensor perturbations

Following [102], in this section we estimate the thermal component of the power spectrum of tensor
perturbations in warm inflation. This contribution is sourced by the transverse-traceless modes
of the anisotropic stress tensor that, in this scenario, are developed by dissipative e↵ects arising
from thermal fluctuations and the interactions between the inflaton field and the radiation fluid.
The final result is given in terms of the length scale `mfp denoting the the mean free path of the
particles in the thermal bath. This is a model dependent quantity which captures the microphysical

11We remind that by weak realization we mean a regime in which the thermal bath provides a negligible backreaction
on the evolution of the background inflaton, but it still controls the generation of its perturbations.
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details, defined as `mfp ⌘ (�n)�1, where � is the interaction cross section of the warm sector and
n is the number density of radiation. The consistency requirement of radiation being in thermal
equilibrium imposes the condition `�1

mfp � H.

From the linearly perturbed Einstein equations, the tensor fluctuations equation in Fourier space
reads (�T

ij ⌘ �ij)

�̈ij + 3H�̇ij +
k2

a2
�ij =

2

a2M2
P l

⇧kl
ij ⌃kl , (3.113)

where ⇧kl
ij (k) ⌘ ⇧k

i (k)⇧
l
j(k) � 1

2⇧ij(k)⇧kl(k) is the projector on the transverse-traceless modes,
with

⇧ij ⌘ �ij � k̂ik̂j , (3.114)

and ⌃ij is the anisotropic stress associated to the radiation bath.
Rewriting the above equation in conformal time we have

�00
ij + 2

a0

a
�0
ij + k2�ij =

2

M2
P l

⇧kl
ij ⌃kl . (3.115)

By solving this equation through the Green function method we have

�ij(⌧,k) =
2

M2
P l

Z
d⌧ 0

a2(⌧ 0)
Gk(⌧, ⌧

0)⇧kl
ij (k)

Z
d3x

(2⇡)3/2
e�ik·x⌃kl(⌧

0,x) , (3.116)

where the a2(⌧) factor comes from a field redefinition in order to obtain a canonically normalized
kinetic term in the lagrangian density, which brings ⌃µ⌫ �! 1

a2⌃µ⌫ .
The given solution is valid for any form of the scale factor. In the approximation of an exact de
Sitter background metric (i.e. at leading order in slow-roll), the Green function is (see Appendix
B.2)

Gk(⌧, ⌧
0) =

1

k3⌧ 02
[(1 + k2⌧⌧ 0) sin

�
k(⌧ � ⌧ 0)

�
� k(⌧ � ⌧ 0) cos

�
k(⌧ � ⌧ 0)

�
]✓(⌧ � ⌧ 0) . (3.117)

Here we restrict the computation of the thermal power spectrum into the so called hydrodynamic
regime, in which we consider comoving distances and conformal time intervals larger than the
comoving mean free path of the thermal bath, since modes with short wavelength (�ph < `mfp)
provide a subdominant contribution [102].
In the mentioned regime the thermal bath can be treated as a classical and relativistic fluid, and
statistical mechanical fluctuations in such a radiation fluid can be described using the Landau
and Lifshitz hydrodynamics theory for near thermal equilibrium random fluids [100, 103], where
stochastic source terms are added to the deterministic hydrodynamics equations. The microscopic
physics become manifest in the form of dissipative terms like bulk and shear viscosities, that
are related to the two-point correlation functions of the stochastic sources through fluctuation-
dissipation relations. In particular we have [103, 104]

h⌃ij(⌧,x)⌃kl(⌧
0,x0)i = 2T (c)

"
⌘(c)(�ik�jl + �il�jk) +

✓
⇣(c) � 2

3
⌘(c)

◆
�ij�kl

#
�(⌧ � ⌧ 0)�3(x� x

0) ,

(3.118)
where h. . .i denotes a stochastic ensemble average, while ⌘ and ⇣ are, respectively, the shear and bulk
viscosity. The superscript index refers to comoving quantities, T (c) = aT , ⌘(c) = a3⌘, ⇣(c) = a3⇣.
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From (3.116), the two point correlation function reads

h�ij(⌧,k)�ij(⌧,k
0)i = 4

M4
P l

Z
d⌧ 0

a2(⌧ 0)

Z
d⌧ 00

a2(⌧ 00)
Gk(⌧, ⌧

0)Gk0(⌧, ⌧ 00)⇧kl
ij (k)⇧

mn
ij (k0)

⇥
Z

d3xd3x0

(2⇡)3
e�ik·x�ik0·x0 h⌃kl(⌧

0,x)⌃mn(⌧
00,x0)i , (3.119)

which, using (3.118), becomes

h�ij(0,k)�ij(0,k
0)i = 48

M4
P l

Z
d⌧ 0

a4(⌧ 0)
G2

k(0, ⌧
0)T (c)(⌧ 0)⌘(c)(⌧ 0) �3(k+ k

0) , (3.120)

where we ignored the term in the square brackets of (3.118) proportional to �ij�kl, that is projected
out by ⇧kl

ij , and we used the relation ⇧kl
ik(k)⇧

kl
ik(k) = 3. Furthermore, we have also set ⌧ = 0, since

we consider the tensor spectrum evaluated at the end of inflation, at large scales k � aH.
Then, the thermal adimensional power spectrum of tensor perturbations reads

�th
T (k) =

24k3

⇡2M4
pl

Z
d⌧ 0

a4(⌧ 0)
G2

k(0, ⌧
0)T (c)(⌧ 0)⌘(c)(⌧ 0) . (3.121)

The explicit expression of the shear viscosity ⌘ depends on the specific interactions within the
thermal bath, but it is possible to find a lower and an upper bound on its value that induce
corresponding bounds on the thermal spectrum:

• Lower bound

A lower bound on the shear viscosity is given by [105]

⌘(c) � s(c)

4⇡
=

⇡

90
g⇤T

3a3 , (3.122)

with s(c) the comoving entropy density. Therefore we have

�th
T (k) � 4k3

15⇡M4
P l

g⇤T
4
Z

d⌧ 0G2
k(0, ⌧

0) , (3.123)

where we assumed a constant temperature. Evaluation of the integral provides
Z

d⌧ 0G2
k(0, ⌧

0) =
⇡

6k3
=) �th

T (k) � 2

45M4
P l

g⇤T
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32⇡2
⇢r
M4

P l

. (3.124)

The inflationary expansion requires that radiation must be a subdominant component in the
energy density, ⇢r ⌧ ⇢� ' 3H2M2

P l, or T ⌧
p
HMP l. Then, if the bound is saturated, we

obtain

�th
T (k)⌧ 4

⇡2
H2

M2
P l

= 2�q
T (k) (3.125)

i.e. the contribution arising from the amplification of quantum vacuum fluctuations dominates
over the contribution arising from thermal fluctuations.

• Upper bound

In [106] the shear viscosity is computed for a model where the thermal bath is represented
by a weakly coupled real scalar field with negligible mass and a quartic self-interaction. The
computation yields the approximate result

⌘(c) ⇡ `(c)mfp T
(c) 4, (3.126)
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which inserted in (3.121), and neglecting the time dependence of `mfp and T , gives
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24k3`mfpT 5

⇡2M4
P l
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d⌧ 0G2

k(0, ⌧
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M4
P l

. (3.127)

From the thermal equilibrium requirement, `mfp ⌧ H�1, we obtain the inequality .

�th
T (k)⌧ 4T 5

⇡M4
P lH

. (3.128)

Using T ⌧
p
HMP l, the above inequality can be rewritten as
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From the bound (1.57) on H provided by Planck measurements [5] we have

�th
T (k)⌧ 4⇡ · 102�q

T (k) ⇠ 103�q
T (k) , (3.130)

which means that �th
T (k) may exceed �q

T (k) for relatively large value of the temperature of
the thermal bath.

In the case in which the spectrum of tensor modes retains its dominant vacuum form �q
T (k), the

tensor spectral index in the strong dissipation regime is simply

nT (k) = �2
✏V
Q

. (3.131)

Moreover, since the power spectrum of scalar perturbations is enhanced by thermal contribution,
in warm inflation the tensor-to-scalar perturbation ratio r is suppressed compared to the value
(2.151) obtained in standard cold inflation. Therefore we have the following modified consistency
relation

r '
�q

T

�th
T

'
2
⇡2

H2

M2
Plp

3
8⇡3/2

H T
✏V M2

Pl

Q5/2
= �8nT

1p
3⇡

H

T

1

Q3/2
, (3.132)

that implies r ⌧ 8|nT | for T � H, even in the the weak dissipation regime Q  1, and that
translates in smaller inflationary energy scales in the warm scenario than in the cold one. As
a consequence, this feature enlarges the class of inflationary potentials that are observationally
consistent with the data. For example, within standard slow-roll inflation, monomial potential
are ruled out by the constraints provided by the Plank data [5], since the predicted value for
the tensor–to–scalar ratio is beyond the upper bound (2.152) established by the measurements.
However, in virtue of the modified consistency relation (3.132), these kind of potentials can be
rehabilitated in a warm infation scenario, as shown in [107, 108]. Furthermore, this modified
relation may allow to distinguish between the two inflationary scenarios in a model independent way
if primordial gravitational waves from inflation are found and their spectrum accurately measured.
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Conclusions

In this thesis we reviewed the main aspects of what, up to now, are believed to be the two possible
dynamical realizations of the inflationary paradigm: cold and warm inflation.
A significant di↵erence lies in the background evolution and the phenomenology of the system and
in the origin of the primordial cosmological perturbations.
In standard cold single-field inflation possible dissipative e↵ects are neglected, therefore the acceler-
ated expansion, triggered by the slow-rolling of the scalar inflaton field, takes place in a practically
perfect vacuum state and the primordial perturbations are sourced by amplification of the coupled
quantum vacuum fluctuations of the inflaton and the metric tensor. As the wavelength of the
fluctuation modes is stretched to length scales exceeding the Hubble cosmological horizon, they
are essentially frozen in. After horizon crossing it is commonly believed that the modes behave as
classical stochastic variables, whose amplitude retains a constant value until horizon re-entry, when
they set the initial conditions for the formation and the evolution of the large scale structures.
The amplitude of scalar curvature and tensor metric perturbation at horizon crossing, k = aH, is
predicted to be �q

⇣ ⇠
H2

2⇡�̇
and �q

T ⇠
H2

M2
Pl

.

In warm inflation, instead, the accelerated expansion is still triggered by the dominant vacuum
energy of a scalar inflaton field which slowly rolls down its potential, but the interactions with the
ambient degrees of freedom are no longer ignored. This leads to a dissipative dynamics in which
the vacuum energy of the inflaton is transferred to the environment by production of relativistic
particles through a continuous decay of a fraction of the inflation field. This production must be
strong enough to sustain a significant, but still subdominant, amount of radiation during the slow-
roll regime, so that the whole system is now described by a density matrix corresponding to some
excited quantum-statistical mixed state. If, as it is commonly assumed, the interaction rates of the
decay products are much faster compared to the dynamics of the expanding background metric and
the homogeneous inflaton field, a nearly thermal equilibrium condition can be achieved with the
generation of a thermal heat bath. Therefore, considering an initial thermal distribution of states,
the integration of the environment degrees of freedom through the use of the CTP Schwinger-
Keldysh formalism yields an e↵ective dynamics for the inflaton field which exhibits dissipative
and fluctuating phenomena representing the backreaction of the produced radiation. These e↵ects
are described, respectively, by non-local terms and random noise fields appearing in the stochas-
tic evolution equation for the thermal average of the inflaton field, and they are connected by a
fluctuation-dissipation relation. Under the adiabaticity condition on the evolution of the inflaton,
justified by the assumed regime of quasi-equilibrium, it is possible to perform a local approxima-
tion of the equation of motion which, aside from contributions to the thermal e↵ective inflaton
potential, provides an additional local friction term. The strength of the additional friction force is
controlled by a dissipation coe�cient �, which generally is function of the inflaton field amplitude
and the temperature. The presence of dissipation modifies the standard slow-roll conditions on the
inflationary potential ✏V ⌧ 1, ⌘V ⌧ 1, providing ✏V ⌧ Q, ⌘V ⌧ Q,� ⌧ Q, where the parameter
Q is the ratio between the dissipation coe�cient and the Hubble parameter, Q ⌘ �/3H, while � is
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an additional slow-roll parameter which controls the field dependence of the dissipation coe�cient.
Accounting also for the temperature dependence of the potential and the dissipation coe�cient,
necessary conditions to obtain a stable attractor solution for the background system of equations
must be imposed, namely the suppression of thermal corrections to the potential and a su�ciently
fast production rate of radiation. From a model building perspective, the most interesting realiza-
tion of warm inflation is in the so called strong dissipation regime, when the dissipative coe�cient
dominates over the Hubble expansion damping (Q � 1). In fact, in this case, the background
inflaton is strongly slowed down by the friction force originated by the particle production, so that
slow-roll inflation is realized even for steep potentials.
Also the dynamics of the noise-induced inflaton thermal fluctuations is radically modified: the
perturbation modes get frozen much before than the instant of horizon crossing, at the moment
when their physical wavenumber drops below the freeze-out value kF '

p
�H � H such that the

thermalization e↵ects of the noise exerted by the thermal bath become negligible. Isocurvature
perturbations are also generated in general in the warm scenario due to interactions between the
components of the cosmic fluid. These may a↵ect the evolution of the adiabatic curvature perturba-
tion on super-horizon scale, but numerical simulations of the system of cosmological perturbations
[94] show that this type of perturbations decay on large scales, so we can still consider the conser-
vation of the curvature perturbation on length scales larger than the horizon valid. Moreover, it
can be assumed that their influence on sub-horizon scales can also be neglected, since, according
to the Planck data, the eventual contribution of entropic perturbations to the power spectrum is
suppressed compared to the adiabatic one.
The power spectrum of adiabatic scalar curvature perturbations receives an additional contribution
arising from the coupled inflaton and radiation thermal fluctuations. In the simplified case in which
the dissipation coe�cient does not depend on temperature, the system of thermal fluctuations de-
couples and it is possible to perform an analytical computation of the scalar power spectrum. We

find a thermal contribution �th
⇣ ⇠

H5/2�1/2T
�̇2

, that dominates over the one coming from quantum

vacuum fluctuations when the ambient temperature is greater than the Hubble parameter, T > H,
independently on the considered dissipation regime, so that this last inequality can be seen as the
defining condition of warm inflation.
Regarding the tensor metric perturbations, we have seen that the power spectrum of primordial
gravitational waves generated during warm inflation includes a thermal component mainly sourced
by the hydrodynamic thermal modes with wavelength larger than the mean free path lmfp of the

heat bath. The thermal contribution reads �th
T ⇠ lmfp

T 5

M4
Pl

, and it can dominate over the vacuum

component for su�ciently high temperatures. If the tensor modes are una↵ected by the coupling
with the thermal bath, warm inflation predict a tensor-to-scalar perturbation ratio that is sup-
pressed by at least a factor T/H compared to the one of the cold scenario.
The most important results are represented by equations (2.134) and (3.112) for the spectral index
of scalar adiabatic perturbations, which tell us that both inflationary pictures predict a nearly scale
invariant power spectrum for primordial scalar perturbations if conditions for the slow-roll regime
are satisfied by a suitable inflaton e↵ective potential, in excellent agreement with the measurement
(2.135) provided by the Planck CMB data. Also the derived theoretical predictions (2.147) and
(3.131) for the tensor spectral index indicate a scale invariant spectrum of stochastic primordial
gravitational waves generated by both cold and warm inflation. However, no tensor modes resulting
from an inflationary expansion have been detected yet.

Generally speaking, we can say that warm inflation appears to be a broader picture, since the
extent of radiation production during inflation is variable, so that cold inflation emerges as the
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limiting case of zero radiation production.
As in the context of warm inflation, gaps in our comprehension of dissipative quantum field theory
in far out-of-equilibrium conditions also leave incompleteness in the post-inflationary reheating
phase associated to the cold scenario. However, apart from modifying the inflaton field e↵ective
potential through quantum corrections, in the standard cold inflation picture the interactions and
the resulting particle production are tacitly assumed to exert a negligible influence on the generation
of the initial conditions for large scale structures formation, namely on the main observational
predictions. Nevertheless, this assumption is not justified. On the other hand, even if the warm
inflation picture makes no a priory assumption that particle production does not a↵ect large scale
structure formation, up to now, a realistic realization of this scenario requires the achievement of
a close-to-thermal equilibrium regime that needs to be verified by explicit computation, but that
generally is simply assumed in most of the works present in literature through the imposition of
appropriate self-consistency conditions, whose validity may be very arduous or even impossible to
achieve [47].
Ultimately we can summarize the advantages deriving from the warm scenario as follows,

• it appears to be a more general and natural realization of inflation (at least from a ther-
modynamic point of view), since no a priory assumption on the couplings of the inflaton is
made, at the expense of the imposition of few consistency conditions deriving from gaps in
our knowledge about strongly out-of-thermal equilibrium phenomena;

• model building is facilitated: the dissipative evolution widely enlarges the class of inflaton
potentials which are able to sustain a slow-roll regime. Furthermore, compelling monomial
potentials that in the cold scenario are ruled out by constraints imposed by the Planck data,
can be rehabilitated thanks to the prediction (3.132) of a suppressed tensor-to-scalar ratio;

• warm inflation overcomes the quantum-classical transition problem [35], since the macroscopic
dynamics of the background field and thermal fluctuations are classical from the onset;

• warm inflation smoothly terminates into a radiation dominated era, thus the additional re-
heating phase is not required.

Perhaps, an adequate understanding of particle production in quantum field theory may help us
in the future to understand which or to what extent either of these two pictures is valid. Anyway,
a broader perspective on the description of the early universe is required until clear experimental
evidence strongly supports one inflationary scenario over the other, while also acknowledging the
possibility that neither of the two pictures could be a faithful representation of the primordial stage
of the universe before the well consolidated radiation dominated era of the Hot Big-Bang model.
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Appendix A

Thermodynamic free energy

For a thermodynamic system at thermal equilibrium with Hamiltonian Ĥ, the free-energy F is
defines as

F ⌘ � 1

�
lnZ� , Z� = Tr[e��Ĥ]. (A.1)

where Z� is the thermal partition function.
In presence of an external source J(x) the (non-normalized) thermal generating functional is

Z� [J ] = Tr[ei
R
d4xJ(x)�̂(x)e��Ĥ] = eiW� [J ] = ei(�[�̄J ]+

R
d4xJ(x)�̄J (x)) , (A.2)

where the last equality follows from the definition of �[�̄J ], and the time integration is now taken,
as discussed in section 3.1, on the compact interval [0,�i�]. In general �[�̄J ] admits the derivative
expansion [50]

�[�̄J ] =

Z
d4x


1

2
Z�(@µ�̄J)

2 � Veff (�̄J) + terms containing p � 4 derivatives

�
, (A.3)

where Z� is the wavefunction renormalization factor.
For constant �̄J , which in turns implies constant J(x) = J , if we denote with ⌦ the volume of the
system, the expression (A.2) becomes

Z� [J ] = e��⌦(Veff (�̄J )�J�̄J ) J!0�! Z� = e��⌦Veff (�̄) =) F = ⌦Veff . (A.4)

For a canonical statistical ensemble, the free-energy F is called Helmholtz free-energy, usually
denoted with A. In terms of thermodynamic variables it is defined as

A ⌘ U � TS , (A.5)

where U and S are the internal energy and the entropy of the system, respectively. These quantities,
together with the temperature T , the pressure P and volume ⌦ of the system are also related
through the Euler relation U = TS � P⌦. The comparison of the two thermodynamic relations
gives A = �P⌦, which simply states that the pressure of the system is minus of the Helmholtz free
energy density.
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Appendix B

Green functions

B.1 Inflaton field fluctuations

We must solve the inhomogeneous Bessel function (3.97) subject to the initial condition ��̃k(zi) =
��̃0k(zi) = 0 at the initial time zi �!1.
Using the Green function method, the solution for equation (3.97) can be expressed as

��̃k(z) =

Z 1

0
dz0G̃(z, z0)(z0)2�⌫(2�effT )

1/2⇠k , (B.1)

where G̃(z, z0) is the Green function for the problem, i.e. the so called fundamental solution of the
di↵erential operator

Lz ⌘ z2
d2

dz2
+ z

d

dz
+ (z2 � ⌫2) , (B.2)

that satisfies
LzG̃(z, z0) = �(z � z0) . (B.3)

Being G00 proportional to the Dirac delta, the first derivative of the fundamental solution presents
a jump discontinuity in z = z0. Then, G(z, z0) is solution of the associated homogeneous Bessel
equation for z 6= z0, which is continuous in z = z0 and such that

G̃0(z0+, z
0)� G̃0(z0�, z

0) = p(z0) . (B.4)

The function p(z0) is found by integrating (B.3) over the interval [z0 � ✏, z0 + ✏], and then taking
the limit ✏ �! 0, that yields

p(z0) =
1

z02
. (B.5)

The homogeneous equation has the two linearly independent solutions ��̃(1)k (z) = J⌫(z) and

��̃(2)k (z) = Y⌫(z). The generic solution can be written as

G̃(z, z0) =

(
C1(z0)J⌫(z) + C2(z0)Y⌫(z) 0 < z < z0

D1(z0)J⌫(z) +D2(z0)Y⌫(z) z0 < z <1 .
(B.6)

Imposing the boundary conditions at z = zi we have D1(z0) = D2(z0) = 0, thus G̃(z, z0) = 0 for
z0 < z. Imposing the continuity of the Green function and the discontinuity of its first derivative
at z = z0 we have (

C1(z0)J⌫(z0) + C2(z0)Y⌫(z0) = 0

�C1(z0)J 0
⌫(z

0)� C2(z0)Y 0
⌫(z

0) = 1/z02 .
(B.7)
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Solving the first equation for C2 and substituting in the second equation we have

C2(z
0) = �C1(z

0)
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. (B.8)

Using the relation [34]
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⌫(z)� J⌫(z)Y
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, (B.9)

we obtain
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2z0
J⌫(z
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Therefore, the Green function reads

G̃(z, z0) = � ⇡

2z0
[J⌫(z)Y⌫(z

0)� Y⌫(z)J⌫(z
0)]✓(z0 � z) , (B.11)

which plugged in (B.1) yields the solution

��̃k(z) = �
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2

Z 1

z
dz0[J⌫(z)Y⌫(z

0)� Y⌫(z)J⌫(z
0)](z0)1�⌫(2�effT )

1/2⇠k . (B.12)

B.2 Tensor metric perturbations

Introducing the rescaled variable hij ⌘ a�ij , the equation of motion (3.115) for the metric tensor
perturbations assumes the form,

h00ij +

✓
k2 � 2

⌧2

◆
hij =

2a

M2
P l

⇧kl
ij Tkl , (B.13)

where we used a00/a ' 2/⌧2 at leading order in the slow-roll approximation.
We look for a fundamental solution G(⌧, ⌧ 0) of the di↵erential operator

L⌧ ⌘
d2

d⌧2
+ k2 � 2

⌧2
, (B.14)

written in the form
G(⌧, ⌧ 0) = G̃(⌧, ⌧ 0)✓(⌧ � ⌧ 0) , (B.15)

such that

L⌧ G̃(⌧, ⌧ 0) = 0 , G̃(⌧, ⌧) = 0 ,
dG̃(⌧, ⌧ 0)

d⌧

����
⌧=⌧ 0

= 1 . (B.16)

In fact, one can verify that, using the above conditions, we have L⌧G(⌧, ⌧ 0) = �(⌧ � ⌧ 0).
The function G̃(⌧, ⌧ 0) is given by a linear combination of two linearly independent solutions F1,2(⌧)
of the homogeneous equation associated to (B.13)

 
d2

d⌧2
+ k2 � 2

⌧2

!
Fi(⌧) = 0 , i = 1, 2 . (B.17)

We choose the solution F1 that approaches the positive frequency adiabatic mode (2.36) at early
times

lim
⌧�!�1

F1(⌧) =
e�ik⌧

p
2k

(B.18)
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and we can also set F2 = F ⇤
1 , since they are linearly independent.

Such solutions are given by

F1(⌧) =
e�ik⌧

p
2k

✓
1� i

k⌧

◆
, F2(⌧) = F ⇤

1 (⌧) , (B.19)

and a linear combination that satisfies the conditions (B.16) is
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F 0
1(⌧
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Therefore we have

G(⌧, ⌧ 0) =
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k(⌧ � ⌧ 0)

�
] ✓(⌧ � ⌧ 0) . (B.21)

The Green function Ḡ(⌧ � ⌧ 0) for the original tensor perturbation �ij is given by

Ḡ(⌧ � ⌧ 0) = a(⌧ 0)

a(⌧)
G(⌧, ⌧ 0) =

⌧

⌧ 0
G(⌧, ⌧ 0) , (B.22)

that can be showed to satisfy

 
d2

d⌧2
+ 2

a0

a

d

d⌧
+ k2

!
Ḡ(⌧, ⌧ 0) = �(⌧ � ⌧ 0) . (B.23)

So, finally we have

Ḡ(⌧, ⌧ 0) =
1

k3⌧ 02
[(1 + k2⌧⌧ 0) sin

�
k(⌧ � ⌧ 0)

�
� k(⌧ � ⌧ 0) cos

�
k(⌧ � ⌧ 0)

�
] ✓(⌧ � ⌧ 0) . (B.24)
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Appendix C

Integrals

Substituting the expression (3.99) of the Green function in the definition of F (z) we have

F (z) =
⇡2

4

Z 1

z
dz0(J⌫(z)Y⌫(z

0)� J⌫(z
0)Y⌫(z))

2z2⌫(z0)2�2⌫ . (C.1)

For large ⌫ and fixed z the Bessel functions J⌫(z) and Y⌫(z) have the asymptotic forms [34]

J⌫(z) ⇠
1p
2⇡⌫

✓
ez

2⌫

◆⌫
, Y⌫(z) ⇠ �

r
2

⇡⌫

✓
ez

2⌫

◆�⌫
, (C.2)

through which we can write

J⌫(z)Y⌫(z
0) ⇠ 1

⌫

✓
z

z0

◆⌫
, J⌫(z

0)Y⌫(z) ⇠
1

⌫

✓
z0

z

◆⌫
. (C.3)

Given that z0 > z, for ⌫ � 1 the combination J⌫(z)Y⌫(z0) in (C.1) is subdominant, so the leading
contribution is

F (z) ⇡ ⇡2

4
z2⌫Y 2

⌫ (z)

Z 1

0
dz0J2

⌫ (z
0)(z0)2�2⌫ . (C.4)

where we also extended the integration interval to [0,1), since the small z contributions to the
integral are negligible.
We can approximate the Bessel function Y⌫(z) with the following ascending series [34]

Y⌫(z)
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2
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4
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1 +
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+ . . .

!
, (C.5)

where �(⌫) is the Gamma function, and we used �(⌫) = (⌫ � 1)! . It follows that
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The integral in (C.4) belongs the following class of standard integrals [34]
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91



Appendix C. Integrals

In our case we have a = 1 and � = 2⌫ � 2, which implies

Z 1

0
dz0J2

⌫ (z
0)(z0)2�2⌫ =

21�2⌫p⇡ � (2⌫ � 2)
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2
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⌘ . (C.8)

Moreover, using the asymptotic approximation �(x+ ↵) ⇠ �(x)x↵ for x� 1, we obtain

Z 1

0
dz0J2

⌫ (z
0)(z0)2�2⌫ ⌫�1⇡ 2�2⌫
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r
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Plugging the approximate estimates (C.6) and (C.9) in (C.4) we have

F (z) ⇡ ⇡2
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⌫ (z)

Z 1

0
dz0J2

⌫ (z
0)(z0)2�2⌫ ⇡

r
⇡

32⌫

 
1 +

z2

2⌫
+ . . .

!
. (C.10)
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Appendix D

Heuristic derivation of the freeze-out
fluctuation amplitude

Assuming a non trivial distribution of inflaton particles nk, which for su�ciently fast interactions
should approach the Bose-Einstein distribution at the ambient temperature T , nk = (e�!k � 1)�1,
the square of the fluctuation amplitude at the moment of freeze-out can be computed through
the formula for the variance of a bosonic field within equilibrium thermal QFT on flat Minkowski
spacetime [96, 109], i.e.

h��2i� =
1

(2⇡)3

Z

kF�shell
d3k

nk

!k
=

1

2⇡2

Z

kF�shell
dk

k2

q
k2 +m2

�

 
e
�
q

k2+m2
� � 1

! , (D.1)

where we retained only the contribution from wavenumbers within the kF -shell kF e�1/2 < k <
kF e1/2.
Assuming T � kF � m2

�, the above integral yields the approximate result

h��2i� ⇡
1

2⇡2

Z

kF�shell
dk k2

T

k2 +m2
�

⇡ kFT

2⇡2
, (D.2)

which, using (3.73), yields

h��2i� ⇡
p
�H T

2⇡2
. (D.3)
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