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Introduction

The goal of this thesis is to introduce and prove the n! conjecture, this work
is mainly based on the work of Mark Haiman from 1992 to 2001.
The n! conjecture was for the first time approached to try to prove another
conjecture, the positivity conjecture about the Kostka coefficients Kλµ(q, t)
which states that they belongs to the polynomial ring N[q, t].
It was known that the modules involved in the n! conjecture are quotients of
the ring Rn of coinvariants for the action of Sn on C[x1, . . . , xn, y1, . . . , yn],
denoted as C[x,y], and also that Rn was isomorphic to the space of diago-
nal harmonics. Unfortunately, despite the computations suggesting that the
dimension of Rn should be (n+ 1)n−1, proving it resulted very hard.
In the spring of 1992 Procesi and Haiman discussed the topic: Procesi sug-
gested that the Hilbert scheme Hn and what we now call the isospectral
Hilbert scheme Xn should be relevant to the determination of the dimension
and character of Rn. Specifically, he observed that there is a natural map
from Rn to the ring of global functions on the scheme-theoretic fiber in Xn

over the origin in the symmetric power SnC2, and with some luck this map
could be an isomorphism! But let us make a step back and introducing the
n! conjecture properly.
Let µ = (µ1, µ2, . . . , µm) be a tuple of natural numbers such that

∑
i∈[m] µi =

n.
We define the Young Diagram associated to µ as the subset of N × N such
that

d(µ) = {(p, q) | p < µq+1}.

The conjecture states that if we take the alternating polynomial ∆µ defined
as ∆µ = det[x

pj
i y

qj
i ] for (pj , qj) ∈ µ and we compute the space of all deriva-

tives
Dµ = C[∂x, ∂y]∆µ,

the dimension of Dµ is always n!.
Now it is important to see that there are three main topics to treat:

1. The n! conjecture regarding the space Dµ

2. The positivity conjecture regarding the Kostka coefficients Kλµ(q, t)
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3. The isospectral Hilbert scheme of points Xn and its natural map

ρ : Xn → Hn

to the Hilbert scheme.

In this introduction my goal is to make clear the connections between the
points 1 and 3 as they are the main focus of this thesis. In Chapter 1 the
curious reader will also find a brief explaination of the connection between
points 2 and 1.
Let us begin with some mathematics.
The first thing that we can notice is that, if we take the ideal generated by
xpyq for (p, q) /∈ µ it is a monomial ideal, we will denote it by Iµ.
There is a very nice property of monomial ideals: they are the fixed points
of the action of T = (C∗)2 on the Hilbert scheme! Let’s see why.
It’s clear that T acts on C2 sending (a, b) to (t1a, t2b), very similarly T acts
on Hn = Hilbn(C2) by

(t1, t2)I = (t1, t2)(f1(x, y), . . . , fm(x, y)) → (f1(t1x, t2y), . . . , fm(t1x, t2y)),

so if I is monomial we can just factor the ti out without modifying anything.
The other important class of points of Hn are the generic points denoted by
I = I(S), the ideals which vanishes on a specified finite set of distinct points
S ⊆ C2 of cardinality n. In this very beautiful case I is radical and C[x, y]/I
is reduced and isomorphic to Cn. Intuitively we can think to I as a set of n
points with multiplicity one and to Iµ as the origin with multiplicity n.
Notice that in Hn the order of the points does not matter whether in Cn it
does, so it is natural to consider the map

σ : Hn → Cn/Sn

sending I to the unordered n-tuple (P1, . . . , Pn) = V (I) of points. Notice
that each P ∈ V (I) appears in the n-tuple a number of time equal to its
multiplicity.
Now σ is called the Hilbert Chow Morphism and it is a morphism of algebraic
varieties and note that for S = (P1, . . . , Pn) all distinct in Cn/Sn there is
only one ideal I = I(S) ∈ Hn such that σ(I) = S, thus, giving the fact that
the generic locus is dense in Hn the map is birational.
Later we will see that Hn can also be described as a certain blowup of
Cn/Sn, so we can look at the Hilbert scheme of points as a resolution of the
singularities of Cn/Sn.
To recap let us look at the following diagram:

C2n

Hn SnC2θ
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and notice that if we take a point I(S) ∈ Hn, we move it in SnC2 and then
we take the fiber in C2n these fibers have lenght n!, in fact they are the sets
of all possible orders of n distinct points.
Unfortunately this argument does not hold for the monomial ideals Iµ thus
we have to find another way to prove the conjecture.
An important property of finite flat morphism of schemes is that each fiber
has the same lenght.
Now suppose that we can find a scheme lying above Hn such that the map

ρ : Y → Hn

is flat and the fibers of a generic ideal I have lenght n!, then we can use that
property and conclude the proof! Sadly the trivial choice of completing the
above diagram with the fiber product does not work, the map is not flat.
Haiman’s is to complete the diagram above with the reduced fiber product of
Hn and C2n over SnC2, we will call this space the isospectral Hilbert scheme
and denote it with Xn.

Xn C2n

Hn SnC2

ρ

θ

Now because Hn is nonsingular and the projection ρ : Xn → Hn is finite,
Xn being Cohen-Macaulay is equivalent to ρ being flat.
In particular the procedure is the following: we define the sheaf B over
the Hilbert scheme of points Hn as the push-forward of OF where F is the
universal family of Hn. Then we prove that we can see Xn as Spec(B⊗n/J )
for a certain sheaf of ideals J and we prove that the ring

B⊗n/J ⊗OHn
Iµ

is Cohen-Macaulay and Gorenstein.
There exists a very strong result (see [5]) proving that, up to isomorphism, a
local Artinian C-algebra is Gorenstein if and only if it is of the form C[x]/J
where

J = C[∂x]p,

in other words J is the vector space generated bya polynomial p its partial
derivarives of all orders.
So, proving that our ring B⊗n/J ⊗OHn

Iµ is Gorenstein it is actually equiv-
alent to proving that it is of the form C[x]/J . Subsequently, with some
computations, we manage to identify this ideal J , and with it, the dimen-
sion and the structure of our ring.
The process of proving B⊗n/J ⊗OHn

Iµ Gorenstein is very insidious, approx-
imately it goes like that:
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• We prove that Xn is normal with a very ingenious argument using an
algebraic structure called Polygraphs.

• We prove that the Gorenstein property is equivalent to the n! conjec-
ture, thus even the opposite implication works.

• We prove the n! conjecture by hand for X3, then we start with an
induction argument.

• We use the equivalence: Cohen-Macaulay if and only if ρ flat for normal
varieties to suppose

ρ : Xn−1 → Hn−1

flat.

• We use this ipothesis to prove that if Xn−1 is Gorenstein then Xn is
Gorenstein too.

• X3 is Gorenstein because the n! conjecture holds, thusXn is Gorenstein
and the n! conjecture holds.

This thesis is organized into three chapters: the first one introduces the
conjectures formally, gives an example of the n! conjecture for small n and
delves into some element of representation theory of finite groups. In the
second chapter we dive into the algebraic geometry of the Hilbert scheme,
the isospectral Hilbert scheme and we give a proof of the conjecture. During
this proof we claim that the ideal

J = C[x,y]A

where A is the space of alternating polynomials is a free C[y]-module, the
proof of this fact will take the entire third chapter. Finally in the third
chapter we introduce polygraphs, a particular union of linear subspaces in
En × El where E = A2(C).
The motivation behind the name is that their constituent subspaces are the
graphs of linear maps from En to El.
The purpose of this section is to actually prove that the ring

O(Z(n, l))

of the polygraph Z(n, l) is a free k[y]-module. Finally we find a map between
this ring and J taht concludes the argument.



Chapter 1

The n! conjecture

1.1 The n! conjecture

The aim of this chapter is to introduce the n! conjecture and its connections
to the Hilbert scheme.
Let us start with two fundamental definitions:

Definition 1.1. A partition of a positive integer n is a sequence of positive
integers µ = (µ1, µ2, . . . , µl) satisfying µ1 ≥ µ2 ≥ · · · ≥ µl > 0 and n =
µ1 + µ2 + · · ·+ µl.

For instance, the number 4 has five partitions:

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

We can also represent partitions pictorially using Young diagrams as follows.

Definition 1.2. A Young diagram is a finite collection of boxes arranged in
left-justified rows, with the row sizes weakly decreasing. The Young diagram
associated to the partition µ = (µ1, µ2, . . . , µl) is the one that has l rows,
and µi boxes on the i-th row.

The Young diagrams corresponding to the partitions of 4 are:

Let M ⊆ N × N a finite subset of the first quadrant integer lattice with
|M | = n.
In particular, M for us will be the Young diagram of a partition µ of n
defined in the following way:

d(µ) = {(p, q) | p < µq+1}.

9
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For example we could set n = 3 and µ = (2, 1), in this case our lattice will be:

(0,0) (1,0)

(0,1)

Now, given our lattice M we can define a polynomial

∆µ(x1, y1, . . . , xn, yn) = ∆µ(x,y) = det[x
pj
i y

qj
i ]1≤i,j≤n

where we are denoting by (pj , qj) the points in M .
If we consider again the previous example we find:

∆µ(x,y) = det

1 x1 y1
1 x2 y2
1 x3 y3

 .

In this setting the conjecture is the following:

Conjecture 1.3. Let us define the space Dµ as

Dµ := C[∂x, ∂y]∆µ

then
dimDµ = n!.

Moreover Sn acts on it by the regular representation.

The next step is to explore the connections between this problem and
the Hilbert scheme of points Hn.

1.2 The Positivity conjecture

Now let us try to give some definitions regarding the theory of symmetric
functions and understand what is the connection between the Positivity con-
jecture and the n! conjecture.

Definition 1.4. Schur functions are a family of symmetric functions denoted
as sµ(x1, x2, . . . , xn), where µ is a partition of a non-negative integer d and
x1, x2, . . . , xn are variables. The formal definition of a Schur function is given
by:

sµ(x1, x2, . . . , xn) =
det
[
xµ+δ

]
det [xµ]
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where δ = (n− 1, n− 2, . . . , 0).
Notice that another formulation coming from the Vandermonde determinant
formula of these polynomials is

sµ(x1, . . . , xn) =

(∑
w∈Sn

ϵ(w) · w(xµ+δ)

)
·
∏
j<i

1

xi − xj
.

One of the most important feature of this class of polynomials is that they
form an orthogonal basis of the space of homogeneous degree d symmetric
polynomials in n variables.

Definition 1.5. The Hall-Littlewood polynomials are symmetric polynomi-
als defined for a partition µ with parts µ1 ≥ µ2 ≥ . . . ≥ µn > 0. They are
given by the following expression:

Pµ(x1, . . . , xn; t) =

∏
i≥0

m(i)∏
j=1

1− t

1− tj

 ∑
w∈Sn

w

xµ1
1 · · ·xµn

n

∏
i<j

xi − txj
xi − xj

 ,

where µ is a partition of at most n with elements µi, and m(i) elements
equal to i, and Sn is the symmetric group of order n!.
Notice that when q = 0 we find that Pµ(x, 1) are Schur functions, in fact we
find

Pµ(x1, . . . , xn, 0) =

(∑
w∈Sn

ϵ(w) · w(xµ+δ)

)
·
∏
j<i

1

xi − xj
.

It is possible to expand the Schur polynomials in term of Hall-Littlewood
polynomials using some particular coefficients Kλµ(t) known as Kostka-
MacDonald coefficients.

sλ(x) =
∑
µ

Kλµ(t)Pµ(x, t)

In 1988 MacDonald introduced a new family of polynomials called Mac-
Donald Polynomials to unify two families of polynomials: the Hall-Littlewood
polynomials and the Jack polynomials (see [13]).
These polynomials, denoted as

Pλ(x, q, t)

depend on a partition λ, a set of n variables x = x1, . . . , xn and two real
parameters q, t.
We stil need a few other definitions to be able to state the positivity conjec-
ture:

Definition 1.6. We define the Macdonald Integral basis for the symmetric
functions as the set of functins satisfying the following two conditions:
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1.
Jλ =

∏
s∈λ

(
1− qaλ(s)t

lλ(s)+1
)
sλ +

∑
µ<λ

sµcµλ(q, t)

2.
⟨Jλ, Jµ⟩q,t = 0 for λ ̸= µ

where, given a partition λ we call aλ(s) the number of cells that lie to the
east of s in λ and we call lλ(s) the number of cells that are strictly north to
s.

It is a little bit technical to see how the scalar product in this space is
defined, see [16] for the details.
Notice that the coefficients cµλ(q, t) are determined by conditions 1 and 2
and are rational functions in q and t.
The (q, t)-Kostka coefficients are then given by the expression

Kλµ(q, t) = ⟨Jµ(X; q, t), sλ(X)⟩.

As defined, they are rational functions of q and t, but conjecturally they
are polynomials in q and t with nonnegative integer coefficients:

Kλµ(q, t) ∈ N[q, t].

The positivity conjecture has remained open since Macdonald formulated it
at the time of his original discovery.
But what is the connection between this claim and the Hilbert scheme of
points?
You can find an extensive explaination of the argument in [11]; as it is not
the main focus of this work, here we will just give a brief taste of the topic.
Let us start defining the ring Rn, properties of which are described by our
conjectures.
Let I be the ideal in C[x,y] generated by all Sn invariant polynomials with-
out constant term. We set

Rn = C[x,y]/I.

It is important to notice that I is an homogeneus ideal, since if p(x,y)
is an invariant polynomial without constant term, then so is each of its
homogeneus components of various degrees.
Actually the same is true for bidegrees, where we say that p(x,y) has bidegree
(i, j) if it has degree i in x and j in y. This means that I is a bihomogeneous
ideal and consequently Rn is a doubly graded ring.
Clearly there is an action of Sn into Rn which preserves the bidegree, so if
we write

Rn =
⊕
i,j

(Rn)i,j (1.1)
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each (Rn)i,j is a Sn submodule.
There is an alternative view of Rn, let us see a definition.

Definition 1.7. The apolar form is the nondegenerate symmetric bilinear
form ⟨·, ·⟩ defined by

⟨f, g⟩ = f(∂x1, . . . , ∂xn, ∂y1, . . . , ∂yn)g(x1, . . . , xn, y1, . . . , yn)|x=y=0.

From this definition the following proposition follows fairly naturally:

Proposition 1.8. If I is a homogeneous ideal, then its orthogonal comple-
ment H = I⊥ is a homogeneous space of polynomials, closed under the taking
of arbitrary partial derivatives. We also have H = {h | f(∂x, ∂y)h = 0 ∀f ∈
I}; in other words, regarding I as a system of polynomial partial differential
equations, H is its space of solutions. If H is any homogeneous space of
polynomials closed under partial derivatives, then I = H⊥ is a homogeneous
ideal with H = I⊥.

Definition 1.9. The space Hn of diagonal harmonics for Sn is I1, where I
is the ideal defining the ring Rn in Equation 1.1.

Now, given a bigraded space A =
⊕

i,j Ai,j we can define its associated
Hilbert series as

HA(t, q) =
∑
i,j∈N

tiqj dim(Ai,j).

Conjecture 1.10. For the Hilbert series associated to Rn the following
equation holds:

Hn(1, 1) = (n+ 1)n−1.

In particular notice that Hn(1, 1) is precisely the dimension of the di-
agonal harmonics Hn associated to In which is the ideal generated by all
Sn-invariant polynomials without constant term. This means that we can
restate the rephrase the conjecture 1.10 in the following way:

Conjecture 1.11. It is conjectured that

dimCRn = (n+ 1)n−1.

Now we are ready to see how the conjecture relating the Kostka coeffi-
cients is related (in particular implies) the n! conjecture.

Remark 1.12. Consider the ring C[x,y] =
⊕

r,sC[x,y]r,s as a doubly
graded ring with the Sn action respecting the grading. Clearly the poly-
nomial ∆µ is Sn alternating as it is defined as a determinant of a matrix,
moreover it is doubly homogeneous. It follows that the space Dµ is Sn-
invariant and has a double grading

Dµ =
⊕
r,s

(Dµ)r,s
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by the Sn invariant subspaces (Dµ)r,s = Dµ ∩ C[x,y]r,s.

Let us denote the irreducible Sn characters by χλ with the usual indexing
by partitions λ of n.

Remark 1.13. In the next section we will define what a linear representation
of a finite group is, for now it is enough to know that, given a representation
of G we associate g ∈ G to a matrix [g] ∈ GLn(C) and we define

χ(g) = tr([g]).

Conjecture 1.14. We have

K̃λµ(q, t) =
∑
r,s

trqs⟨χλ,ch(Dµ)r,s⟩.

where we set
K̃λµ(q, t) = tn(µ)Kλµ(q, t

−1)

and n(µ) =
∑

i(i− 1)µi.
Macdonald had shown that Kλµ is equal to χλ(1) which is the degree of the
irreducible Sn character χλ as it is the trace of the identity matrix or the
dimension of the space.
Therefore this conjecture implies the n! conjecture as it tells us the dimension
of the space Dµ.

1.3 Representation theory

In this section we will introduce some useful concepts in Representation
theory and the connection with our conjecture.
Let us start with some definitions:

Definition 1.15. Let G be a finite group, a representation of G on the
vector space Cn is a morphism

G→ GLn(C).

Equivalently we can define it as a morphism

Φ : G× Cn → Cn

such that:

• Φ(g, v) is linear over C

• Φ(e, g) = g with e the identity of G
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• Φ(g1g2, v) = g1Φ(g2, v).

Definition 1.16. We define the Regular representation of a finite group G
as a linear representation on the vector space

C|G| = Cg1 ⊕ Cg2 ⊕ · · · ⊕ Cgn

in the following way:

Φ(g, v) = Φ(g,
n∑

i=1

aigi) =
n∑

i=1

aiggi.

Now our goal is not only to prove that the vector space Dµ has dimension
n! bus also that it carries a regular representation of the group Sn, which is
a stronger claim!
Let us see what happens with small n’s.

Example 1.17. If we set n = 2 we have only 2 cases which are clearly
equivalent to each other: µ = (1, 1) and µ(2, 0), let us take the first.
The matrix is

Mµ =

(
1 x1
1 x2

)
with determinant ∆µ = x2 − x1.
If we compute the space of derivatives we find

Dµ = C · (1)⊕ C · (x2 − x1)

which has dimension equal to two.
Now we have to prove it carries the regular representation of S2.
Basically we have to find a map Φ such that the following diagram commutes:

calling p =
(
0 1
1 0

)
and −id the map sending x1 to x2 and viceversa we have

Dµ C2

Dµ C2

Φ

−id p

Φ

If we take v1 = x2 − x1 and v2 = 1 as a base of Dµ then we can send v1 to
(1,−1) and v2 to (1, 1). It is easy to verify that it works.
If we set n = 3 then we have three different cases, two of which are equivalent:

1. µ = (1, 1, 1) with diagram

(0,0) (1,0) (2,0)
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2. µ = (2, 1) with diagram

(0,0) (1,0)

(0,1)

3. µ = (3) with diagram

(0,0)

(0,1)

(0,2)

Let us do some computations for the second case.
The basis of D(2,1) = Dµ is

{y2 − y3, y3 − y1, x3 − x2, x1 − x3, 1,∆µ},

now we notice that if we permute two variables on ∆µ the result is −∆µ

while if we act with an order three permutation the result is ∆µ.
On the other hand if we permute two variables of one of the binomials the
result is another binomial or its opposite, while if we act with an order three
permutation the result is always another binomial.
We can now define the following map:

Φ : Dµ → S3

such that
Φ(1) = id,
Φ(yi − yj) = id− (i, j) + (i, k) + (j, k)− (i, j, k)− (i, k, j),
Φ(∆µ) = id+ (1, 2) + (2, 3) + (3, 1) + (1, 2, 3) + (1, 3, 2).
Notice that this map defines a group action

Dµ × S3 → Dµ.

Now we want to verify that it is well defined. Let us try to do it for the
only non trivial case: yi − yj which we can set as v = y1 − y2 without losing
generality.
If we apply (1, 2) to v we find −v thus we should have (1, 2)Φ(v) = −Φ(v):

(1, 2)Φ(v) =

= (1, 2)[id− (1, 2) + (2, 3) + (1, 3)− (1, 2, 3)− (1, 3, 2)]

= (1, 2)− id+ (1, 2, 3) + (1, 3, 2)− (2, 3)− (1, 3) = −Φ(v).



Chapter 2

The Hilbert scheme of points

In this chapter we will introduce the Hilbert scheme of points and we will
present and prove some of its very useful properties.

2.1 The Hilbert scheme and its Universal Family

Let us start with the definition:

Definition 2.1. The Hilbert scheme of points Hn of the affine plane is the
set of all ideals I ⊆ C[x, y] such that dimC(C[x, y]/I) = n. In other words
Hn parametrizes subschemes S ⊆ SpecC[x, y] for which S = SpecC[x, y]/I
is zero dimensional of lenght n.

Notice that this is the definition of the closed points of our scheme Hn

but it says nothing about its scheme structure. We will talk about it when
we will define the universal family F associated to Hn.

Theorem 2.2. [6] The Hilbert scheme Hn is a non singular, irreducible
variety over C of dimension 2n.

Now let us try to describe the scheme structure of Hn via explicit coor-
dinates on open affine subsets, indexed by partitions µ.
Given µ let us define

Bµ = {xhyk | (h, k) ∈ µ}

and
Uµ = {I ∈ Hn | Bµ spans C[x, y]/I} ⊆ Hn.

This means that for every I ∈ Uµ, Bµ is a basis modulo I thus for each xrys

there exists a unique expansion

xrys ≡
∑

(h,k)∈µ

crshk(I)x
hyk mod I

17
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where the coefficients crshk(I) define a collections of functions on Uµ.

Proposition 2.3. The sets Uµ are open affine subvarieties which cover Hn,
moreover the affine coordinate ring OUµ is generated by the functions crshk for
(h, k) ∈ µ and all the (r, s),

To prove that the sets Uµ cover Hn we rely on a theorem proved by
Gordan:

Theorem 2.4. [7] For every ideal I in a polynomial ring there is a basis B
modulo I, consisting of monomials, such that every divisor of a monomial in
B is also in B.

It is pretty clear that in our case such basis must be Bµ for some partition
µ. The next step is to notice that the scheme S = SpecC[x, y]/I has always
a finite number of points, in particular for each p ∈ S we can assign a
multiplicity mp equal to the lenght of the local ring (C[x, y]/I)p. The sum
of these multiplicities sum to n.
Now let us consider the scheme

C2n = SpecC[x1, y1, . . . , xn, yn] = SpecC[x,y]

the symmetric group Sn acts on it by permutating the factors. We will
denote by

SnC2 := C2n/Sn

The map
σ : Hn → SnC2

defined as
σ(I) = V (I)

can be shown to be a morphism and is called the Hilbert Chow morphism.

Proposition 2.5. [9] The Hilbert Chow morphism σ : Hn → SnC2 is a
projective morphism.

The next step of our description of the Hilbert scheme is proving that we
can look at it as a blow-up of SnC2.
Let A be the space of alternating polynomials in C[x,y]. For each subset
D = {(p1, q1), . . . , (pn, qn)} of N× N the determinant

∆D(x,y) = det[xpii y
qi
i ]

is well defined and belongs to A. Moreover {∆D} for each D spans A.
When D is the diagram of a partition µ we have ∆D = ∆µ.
Now let’s denote by Ad the space of all products f1 · f2 · . . . , ·fd with fi ∈ A
and we set A0 = C[x,y]/Sn.
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Theorem 2.6. The space R = A0 ⊕A1 ⊕ . . . is a graded C[x,y]/Sn-algebra
and

Hn
∼= ProjR.

Moreover the natural morphism θ : ProjR → SpecA0 = SpecC[x,y]/Sn is
exactly the Hilbert Chow morphism.

Proof. Let Y be the open subset of SpecC[x,y]/Sn consisting of n-tuples of
distinct points. For each set S ∈ Y there exists a unique ideal I ∈ Hn such
that V (I) = S. This means that we have a bijection

σ : YH = σ−1(Y ) ⊆ Hn → Y.

Now suppose I ∈ Uµ ∩ YH with S = V (I), the monomials xhyk ∈ Bµ are
a basis of OUµ so must describe linearly independent functions on S, thus
∆µ(x,y) ̸= 0.
Notice that ∆µ(x,y) depends on the ordering chosen for the points in S, but
∆D/∆µ does not!
So we have that σ∗(∆D/∆µ) is a regular function on Uµ ∩ YH .
Now let’s fix a partition µ = {(h1, k1), . . . , (hn, kn)} and remember our pre-
vious observation about Bµ being a basis of our ring modulo I, then we find
that the coefficients crshk(I) satisfy:

[x
hj

i y
kj
i ]i,j∈[n] ·


crsh1k1
·
·
·

crshnkn

 =


xr1y

s
1

·
·
·

xrny
s
n

 (2.1)

So given a diagram D = {(pl, ql)} we find the matrix equation:

[x
hj

i y
kj
i ]i,j∈[n] · [c

plql
hjkj

]j.l∈[n] = [xpli y
ql
i ]i.l∈[n],

tanking the determinants we find:

σ∗(∆D/∆µ) = det[cplqlhjkj
]j.l∈[n]

on Uµ ∩ YH , thus σ∗(∆D/∆µ) can be extent to a regular function fD over
the entire Uµ. For every two diagrams D1 and D2 we have

σ∗(∆D1 ·∆D2) = σ∗(∆D1/∆µ ·∆D2/∆µ) · σ∗(∆2
µ) = fD1 · fD2 · σ∗(∆2

µ).

Notice that this shows that σ∗(A2) is locally the principal ideal (∆2
µ) in

OUµ .
Now it’ clear that ProjR = ProjR2 that is the same as the blow up of
SpecC[x,y]/Sn along A2, so from the universal property of the blow up
there is a unique morphism α : Hn → ProjR such that θ ◦ α = σ:
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Hn SnC2

ProjR

σ

α
θ

Since ProjR is irreducible and birational to SnC2, α is surjective.
To prove that its an isomorphism we have to show that α is an embedding,
i.e. the map

α∗ : OProjR → OHn

is surjective.
If we try to solve the equations 2.1 using the Cramer’s rule we find

crshk(I) = ∆D/∆µ(S)

with D = µ\(h, k) ∪ (r, s).
This means that on Uµ ∩ YH , crshk = σ∗(∆D/∆µ) = α∗θ∗(∆D/∆µ), but
since crshk generates OUµ we have that α restricted to the closure of YH is an
embedding.
Since Hn is irreducible YH is dense so we conclude the proof.

Let us see and example for n = 2.

Example 2.7. In this case, as we have seen in the first chapter, we have
only two possible Young diagrams:

• µ = (2, 0) with ∆µ = x1 − x2,

• µ = (1, 1) with ∆µ = y1 − y2.

This means that a basis for the alternating polynomials A is J = {x1 −
x2, y1 − y2}.
The blow-up ProjS is covered by two affine open subsets

• Ux1−x2 = SpecA0[ y1−y2
x1−x2

],

• Uy1−y2 = SpecA0[x1−x2
y1−y2

].

while the Hilbert scheme H2 is covered by

• Wx = {I = (x2 − e1x+ e2, y − a1x− a0)},

• Wy = {I = (y2 − e′1y + e′2, x− a′1y − a0)}.
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Intuitively we can think about this covering as a way to paramtrize sets
of two points in the affine plane: consider the pair (u, v), (u′, v′), it can
be seen as the intersection between the three lines x = u, x = u′ and
(x− u)(v′ − v) = (y − v)(u′ − u) which are clearly elements in Wx.
In fact if we set e1 = −u− u′, e2 = u · u′, a1 = v−v′

u−u′ and a0 = u′·v−u·v′
u−u′ then

we find these lines.
This gives us explicit morphisms between Wx and Ux1−x2 , and similarly be-
tween Wy and Uy1−y2 .

To fix the ideas we do some other computations proving the n! conjecture
for n = 3. This will be very useful in the last section of this chapter as we
will require the conjecture to be true for this particular case.

Example 2.8. Let us consider the Young diagram µ = (2, 1) and it’s ideal

Iµ = (x2, xy, y2).

Now let’s take the open set

Uµ = {I ∈ H3 | {1, x, y} is a basis of R/I}

that is the set of I of H3 corresponding to three points non collinear.
We know that the tautological bundle B = π∗OF has fibers B(I) = R/I,
moreover we can caracterize Uµ as the non vanishing locus of the section
1 ∧ x ∧ y of the line bundle ∧3B.
Now notice that this section is represented by the alternarnating polynomial
∆µ(x,y) in the sense that it is the set in which this polynomial don’t vanish.
We will prove the ring morphism

C[∆L/∆µ ∀ L] → O(Uµ)

is a homomorphism so C[∆L/∆µ ∀ L] represents the ring of regular functions
on Uµ where L varies in the set of subsets of N×N of cardinality 3 different
from µ.
We can try to describe this ring in a more explicit way:
every I ∈ Uµ is in fact generated by

x2 − ax− by − g,

xy − cx− dy − h,

or, by symmetry, by

y2 − ex− fy − j,

xy − cx− dy − h,
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so in R/I we can reduce the monomial x2y in many ways:

x2y = (ax+ by + g)y = axy + by2 + gy =

= a(cx+ dy + h) + b(ex+ fy + j) + gy,

or

x2y = x(cx+ dy + h) = cx2 + dxy + hx =

= c(ax+ by + g) + d(cx+ dy + h) + hx.

We can do the same thing for the monomial xy2 finding:

xy2 = e(ax+ by + g) + f(cx+ dy + h) + jx

= c(cx+ dy + h) + d(ex+ fy + j) + hy.

These equations allow us to express some parameters with respect to
others for example:

h = be− cd,

g = b(c− f) + d(d− a),

j = e(d− a) + c(c− f).

This means that we can describe Uµ with just 6 parameters thus

Uµ = SpecC[a, b, c, d, e, f ] ∼= C6.

Now let’s consider the scheme X3 and let’s try to describe the set ρ−1(Uµ)
where ρ : Xn → Hn is the natural projection.
We know that its coordinate ring is

C[x,y,∆L/∆µ] = C[x,y, a, b, c, d, e, f ]/ ∼ .

with ∼ some equivalence relations.
Our goal is to prove that this ring is Cohen-Macaulay and Gorenstein above

Qµ = (Iµ, 0, 0, 0) = ρ−1(Iµ).

The previous properties are equivalent to C[x,y,∆L/∆µ] being a free C[a, b, . . . , f ]
module of rank 3! (because ρ has degree 6). We can express the coordinate
ring of the scheme theoretic fiber of ρ−1(Iµ) as C[x,y]/J , let’s try to get
some element of J .
Take

ρ∗ : C[∆L/∆µ]
∼−→ C[x,y]/J ∼= C[x,y,∆L/∆µ]/(a, b, . . . , f)

and notice that, since Sn respect the fibers of ρ, if q(x,y) ∈ C[x,y]/J is in
C[x,y]Sn then

q(x,y) = σ(q(x,y)) = ρ∗(σt(a, . . . , f)) = −ρ∗(t(a, . . . , f)) = −q(x,y)
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so C[x,y]ϵ ⊆ J .
Moreover we have x2i , xiyi and y2i in J because each of them are equal to a
linear equation with parameters (a, b, . . . , f) so they are in (a, b, . . . , f).
Now it is time to copute Jµ which is the annihilating ideal of ∆µ:

det

1 x1 y1
1 x2 y2
1 x3 y3

 = x2y3 + x1y2 + y1x3 − y1x2 − x1y3 − y2x3

thus the annihilating ideal is generated by:

C[x,y]ϵ⊕ < x2i , y
2
i , xiyi > .

Now it’s clear that J = Jµ thus

C[x,y]/J = C[x,y]/Jµ,

so C[x,y]/J is Gorenstein because Jµ is the annihilating ideal of a Macaulay
inverse system generated by one element.
Finally

dim(Dµ) = dim(C[x,y]/Jµ) = 3! = 6.

Now that we have proved this very important theorem we can define
another useful feature of the Hilbert scheme of points, its universal family.
Let us start with the set theoretic definition of it:

Definition 2.9. Let F be the subscheme of Hn × C2 defined on the closed
points as

F = {(I, P ) | P ∈ V (I)} (2.2)

We will call F the universal family of Hn.
Now our goal is to describe how to give a scheme structure to F .
Notice that F comes with a projection π : F → Hn and that the fibers of a
point I ∈ Hn will be the subscheme V (I) ∈ C2.

It is important to notice that we can define the universal family of the
Hilbert scheme of points in a much more general way, it is, in fact, a direct
consequence of the functorial definition of this scheme; let us see how.

Definition 2.10. Let C be a locally small category and Set be the category
of sets. For each object A of C we define the functor

Hom(−, A) : C → Set

mapping the elements B of C to the set Hom(B,A).

Definition 2.11. Given a functor F : C → Set we say it is representable if
it is naturally isomorphic to Hom(−, A) for some object A of C.
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Now according to Yoneda’s Lemma, natural transformations from the
functor hA : C → Set mapping to an object X to hom(X,A) are in one-to-
one correspondence with the elements of F (A).
Now we define the Hilbert scheme of points functorially:

Definition 2.12. Let Sch be the category of schemes over C and let Set be
the category of sets.
For each X ∈ Sch we define

HilbnC2 : Sch → Set

sending T to G defined as:
{Z ⊆ C2 × T | Z → T is flat, Z → T is proper, and Zt ⊂ C2

is 0 dimensional of lenght n ∀ t ∈ T}, where Zt is the fiber in Z over t ∈ T .

Grothendieck proved that this functor is representable [8], this means
that it is equivalent to a functor

Hn : Sch → Set

such that T goes to Hom(T,Hn).
We have defined the Hilbert scheme of points Hn.
From this very general definition, we notice that we can consider

Hn(Hn) = Hom(Hn, Hn)

which contains the identity, thus, going back to definition 2.12 and taking
the corresponding Z ⊆ Hn × Cn is enough to define our space. This is the
universal family of Hn.

Now we can define the sheaf B as π∗OF and notice that we have a ho-
momorphism between OHn → B so that B has a structure of OHn-algebras.
Moreover local coordinates on F are generated by local coordinates on Hn

pulled back by π plus the coordinates (x, y) of C2, that makes B a sheaf of
OHn-algebras generated by (x, y).

Proposition 2.13. The following two statements are true:

• F is flat and finit of degree n over Hn,

• if Y ⊂ T × C2 closed subscheme which is flat and finite of degree n
over a scheme T there is a unique morphism ϕ : T → Hn making the
following diagram commutative.

Y T × C2 T

F Hn × C2 Hn

ϕ
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Proof. A special case of the Grothendieck’s construction claims the existence
of the Hilbert scheme Ĥn = Hilb(P2)[8] with a universal family F̂ for which
the universal property holds.
We identify C2 as the complement of the projective line Z at infinity in P2.
Now consider the projection of F̂ ∩ (Ĥn ×Z) onto Ĥn: the image is a closed
subset of Ĥn, moreover its complement Hn is the largest subset such that
the restriction F of F̂ to Hn is contained in Hn × C2.
Intuitively we can think about this construction in the follwing way:
Ĥn × Z can be seen as the set of tuples (p1, . . . , pn) × pn+1 such that pn+1

is in Z, imagine F̂ as (I, pi) where pi ∈ V (I) and I as V (I).
In this way we can see that the image of the projection is the set of tuples
(p1, . . . , pn) where at least one pi is in Z thus the complementar is exactly
the set of tuples with all the points in the complex plane which is Hn.
The required universal property of Hn and F now follows immediately from
that of Ĥn and F̂ .

2.2 The Isospectral Hilbert scheme

Now we are ready to introduce the isospectral Hilbert scheme of points and
prove that, like the simple Hilbert scheme, it can be seen as a blow-up.

Definition 2.14. The isospectral Hilbert scheme Xn is the reduced fiber
product

Xn C2n

Hn SnC2

f

ρ

σ

Intuitively we can think about it as the closed points

{(I, P1, . . . , Pn) | σ(I) = (P1, . . . , Pn)} ⊆ Hn × C2n.

Theorem 2.15. Defining Jd = C[x,y]Ad we have

Xn
∼= ProjC[x,y][tJ ] = ProjT

Proof. Let us consider the following commutative diagram:

ProjT C2n

Hn = ProjS SnC2
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Remember that Xn is the reduced subscheme of Hn ×C2n so since ProjT is
reduced we have ProjT ⊂ Xn.( 01J3 [15])
Now it’s possible to prove that, thanks to the irreducibility of Hn, also Xn

is irreducible. We found a closed proper subset of Xn, so we must have
ProjT = Xn.

Now we need to state and prove a few easy properties of this structure
that we will use during the proof of the main theorem.

Lemma 2.16. Let k and l be positive integers such that k+ l = n. Suppose
U ⊆ C2n is an open set consisting of points (P1, . . . Pk, Q1, . . . , Ql) where
Pi ̸= Qj for all i, j.
Now identify C2n with C2k × C2l, then the preimage f−1(U) in Xn is iso-
morphic as a scheme over C2n to the preimage f−1

k (U)×f−1
l (U) in Xk×Xl.

Proof. Consider the diagram of Proposition 2.13 with Xn instead of T .
Let Y = (ρ × 1)−1(F ) ⊆ Xn × C2 be the universal family of Xn. The fiber
V (I) of Y over a point (I, P1, . . . , Pk, Q1, . . . , Ql) ∈ f−1(U) is the disjoint
union of closed subschemes V (Ik) and V (Il) in C2 of lengths k and l, re-
spectively, with σ(Ik) = (P1, . . . , Pk) and σ(Il) = (Q1, . . . , Ql). Thus over
f−1(U), Y is the disjoint union of flat families Yk, Yl of degrees k and l.
By the universal property, we get induced morphisms Φk : f−1(U) → Hk, Φl :
f−1(U) → Hl and Φk × Φl : f

−1(U) → Hk × Hl. The equations σ(Ik) =
(P1, . . . , Pk), σ(Il) = (Q1, . . . , Ql) imply that Φk×Φl factors through a mor-
phism α : f−1(U) → Xk ×Xl of schemes over C2n.
Conversely, on (fk × fl)

−1(U) ⊆ Xk × Xl, the pullbacks of the universal
families from Xk and Xl are disjoint and their union is a flat family of de-
gree n. By the universal property there is an induced morphism Ψ : (fk ×
fl)

−1(U) → Hn, which factors through a morphism β : (fk×fl)−1(U) → Xn

of schemes over C2n. By construction, the universal families on f−1(U) and
(fk×fl)−1(U) pull back to themselves via β ◦α and α◦β, respectively. This
implies that β ◦α is a morphism of schemes over Hn and α◦β is a morphism
of schemes over Hk×Hl. Since they are also morphisms of schemes over C2n,
we have β ◦ α = 1f−1(U) and α ◦ β = 1(fk×fl)−1(U). Hence α and β induce
mutually inverse isomorphisms f−1(U) ∼= (fk × fl)

−1(U).

Theorem 2.17. [10] The isospectral Hilbert scheme Xn is irreducible of
dimension 2n.

Proposition 2.18. [4] The closed subset V (y1, . . . , yn) in Xn has dimension
n.

Lemma 2.19. [2] Let Gr be the closed subset of Hn consisting of ideals I
for which σ(I) contains some points with moltiplicity at least r. Then Gr
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has codimension r − 1 and has a unique irreducible component of maximal
dimension.

2.3 The Nested Hilbert scheme

Definition 2.20. The nested Hilbert scheme Hn−1,n is the reduced closed
subscheme defined on the closed points as

Hn−1,n = {(In−1, In) | In ⊂ In−1} ⊆ Hn−1 ×Hn.

There exists a result analog to the Fogarty’s theorem but for the nested
Hilbert scheme and it is the following.

Theorem 2.21. [3] The nested Hilbert scheme is non-singular and irre-
ducible of dimension 2n.

First let’s notice that both Hn and Hn−1,n are respectively open subsets
of Hilbn(P2) and Hilbn−1,n(P2) and, given the projection between these two
schemes, Hn−1,n is exactly the preimage of Hn, thus the morphism

Hn−1,n → Hn

is a projective morphism.
From the definition is clear that if σ(In−1) = (P1, . . . , Pn−1) then σ(In) =
(P1, . . . , Pn−1, Pn) for some Pn thus the coordinate of this last points are
regular functions on Hn−1,n resulting from the difference

xn = (x1 + · · ·+ xn)− (x1 + · · ·+ xn−1)

(same idea for yn).
This means that we have a morphism

σ : Hn−1,n → Sn−1C2 × C2 = C2n/Sn−1

and
α : Hn−1,n → Hn × C2

sending (In−1, In) to (In, Pn) that is precisely the universal family F over
Hn.

Now we have to define the nested isospectral Hilbert scheme that will
come necessary for the induction proof of our big theorem claiming the nice
properties of Xn.

Definition 2.22. The nested isospectral Hilbert scheme Xn−1,n is the re-
duced fiber product Hn−1,n ×Hn−1 Xn−1.
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There is also an alternative formulation we will use during the proof: we
can in fact identify Xn−1,n as the reduced fiber product in the diagram

Xn−1,n C2n

Hn−1,n Sn−1C2 × C2σ

Intuitively we can think about it as the set of tuples

(In−1, In, P1, . . . , Pn)

such that σ(In) = (P1, . . . , Pn) and σ(In−1) = (P1, . . . , Pn−1).

Lemma 2.23. Let k+l = n and U ⊆ C2n open such that (P1, . . . , Pk, Q1, . . . , Ql) ∈
U if and only if Pi ̸= Qj for all i, j.
Then the preimage of U in Xn,n−1 is isomorphic as a scheme over C2n to
the preimage of U in Xk ×Xl−1,l.

Proof. Thanks to Lemma 2.16 we know that f−1(U) ⊆ Xn is isomorphic to
(fk × fl)

−1(U) ⊆ Xk ×Xl and same thing holds for Xn−1.
We can think about Xn,n−1 as a subset of Xn × Xn−1 where In ⊆ In−1.
Notice that this is just the closed subset of (Xk ×Xl−1)× (Xk ×Xl) where
Ik, P1, . . . , PK are the same and Il ⊆ Il−1. But that is exactlyXk×Xl,l−1.

Proposition 2.24. The closed subset V (y1, . . . , yn) ⊆ Xn−1,n has dimension
n.

Lastly we need a technical lemma regarding the dimension of the fibers
of the morphism

α : Hn−1,n → Hn × C2

that we will use during the final proof.

Lemma 2.25. Let d be the dimension of the fiber of the former morphism
α over a point (I, P ) ∈ F , and let r be the multiplicity of P in σ(I). Then
d and r satisfy the inequality

r ≥
(
d+ 2

2

)
.

Proof. Remember that Hn−1,n is defined as {(In, In−1) | In ⊂ In−1} so we
need to understand what are the possibile ideals In−1 given In = I.
Notice that if we consider the local ring (R/I)P = (C[x,y]/I)P the In−1 are
the lenght one ideals in it. In fact suppose I =

∏n
i=1(x− ai), P = (x− a1)

and In−1 =
∏

i∈[n]\j(x− ai), then in (R/I)P , In−1 looks like (x− a1) which
has lenght 1 in it.
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We can also see them as the one dimensional subspaces of soc(R/I)P where
with this notation we indicate the socle of the localized ring (R/I)P .
Therefore the fiber of α is the projective space P(soc(R/I)P ) of dimension d
thus dim(soc(R/I)P ) = d+ 1.
Now notice that, under the action of T2, the closure of every orbit contains
a monomial ideal Iµ, intuitively it is true because we can send ai → xi
arbitrarly close to zero so morally zero, and since F is finite over Hn every
point of F must have a pair (Iµ, 0) ∈ F in the closure of its orbit as well.
This means that if we take a point such that the dimension of its fiber
is maximized, there exists a Iµ in the closure of its orbit with the same
dimension therefore the dimension of the fiber is maximized on a point Iµ.
The socle of R/Iµ has dimension equal to the number of corners of the
diagram µ, if this number is s we have

n ≥
(
s+ 1

2

)
.

This means that for every Artin local ring R/I generated over C by two
elements, the socle dimension s and the lenght n ofR/I will satisfy n ≥

(
s+1
2

)
.

Now the ring (R/I)P is an Artin local ring of lenght r generated by two
elements with socle dimension d+ 1 so we conclude the proof.

2.4 Calculation of canonical line bundles

This section is a key point for this thesis, and after two fundamental defini-
tions we will able to understand why.

Definition 2.26. A Noetherian local ring R is called Cohen-Macaulay if
there exists a R-regular sequence x1, . . . , xd of the maximal ideal such that
R/(x1, . . . , xn) has dimension 0.

Definition 2.27. Noetherian local ring R of dimension zero (equivalently,
withR of finite length as anR-module) is Gorenstein if and only if homR(k,R)
has dimension 1 as a k-vector space, where k is the residue field of R.

If ρ : X → H is a finite morphism of equidimensional schemes of the
same dimension, with H smooth, then X is Cohen-Macaulay if and only
if ρ is flat (See Miracle Flatness 00R4 [15]). For X quasiprojective over C
it follows from duality theory that X is Cohen-Macaulay if and only if the
dualizing complex ωX reduces to a sheaf on each connected component of
X. (See 0AWT in [15] for the definitions and the proofs)
In particular, X is Gorenstein if and only if ωX reduces to a line bundle (i.e.,
a locally free sheaf of rank 1) on each connected component of X.
Remember that we can see both Hn and Xn as blow-up constructions, which
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means that we have a line bundle O(1) induced by this representation.
Moreover, given Hn = ProjT and Xn = ProjS[tJ ] ∼= Proj⊕d≥0J

d, we have

OXn(k) = ρ∗OHn(k).

There is a way to describe the tautological bundle O(1) in term of push
forward of the bundle over F :
Let us take π : F → Hn and notice that since π is an affine morphism we
have F = SpecB where B is π∗F .
Now B is flat and finite of degree n over Hn thus it is a locally free sheaf of
OHn-modules of rank n.
Now let us state the following very important proposition.

Proposition 2.28. [9, Proposition 2.6] There is an isomorphism ∧nB ∼=
O(1) of line bundles over Hn.

We still need to know the canonical sheaves on Hn and Hn,n−1 and to
compute them we make use of the fact that invertible sheaves on a normal
variety are isomorphic if they have isomorphic restrictions to an open set
whose complement has codimension at least 2. (See [12, Proposition 1.11])

Definition 2.29. Let z = ax + by a linear form in the variables x, y. We
denote with Uz the open subset of Hn consisting of the ideals I for which z
generates the C algebra R/I.
We will also denote Uz the preimmage of Uz under the projection Hn−1,n →
Hn.

Notice that z generates R/I if and only if {1, z, . . . , zn−1} is a linearly
independent set and this is an open condition.

Lemma 2.30. The complement of Ux ∪ Uy has codimension 2 both in Hn

and Hn−1,n.

Proof. Let Z = Hn\(Ux ∪ Uy) and let W be the generic locus of Hn. Re-
member that the Hilbert-Chow morphism induces an isomorphism between
W and SnC2, moreover the image of Z∩W is the set of points where some two
of the Pi have the same x-coordinate and another two the same y-coordinate.
Intuitively we can say that if we quotient our ring R by an ideal

∏
(x−ai, y−

bi) and we want V (I) not to be a subset of a smooth curve, we need some
sort of fat point that comes out whenever we have ai = aj or bi = bj for
some i, j.
This locus has codimension two.
The complement of W has one irriducible component of dimension 2n − 1
and an open set of this component consists in ideals such that σ(I) has a
point of multiplicity two and the other all distinct. This open set is clearly
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not contained in Z so Z intersected the complement of W has codimension
at least 2.
This proves the statement for Hn, let’s see what happens in Hn−1,n.
We know from proposition 2.25 that α has fibers of dimension d only over
Gr for r ≥

(
d+2
2

)
and it’s possible to prove that the union of these fibers has

codimension at leat
(
d+1
2

)
.

This solves the cases when d > 1, when d = 1 let’s define the set Gs ⊂ Hn

as the set of ideals such that V (I) contains a point of multiplicity at least
S. We notice that the fibers of dimension 1 on G3 occurs only over non
curvilinear points, but the non curvilinear locus of G3 has codimension at
least 3 and this concludes the proof.

Lemma 2.31. The canonical sheaf ωHn on the Hilbert scheme is trivial, i.e.
ωHn

∼= OHn.

Proof. First it is clear that the 2n-form dxdy = dx1∧· · ·∧dxn∧dy1∧· · ·∧dyn
is Sn invariant (if you apply an odd permutation to this form you get a minus
sign from the x and a minus sign form the y coordinates thus they just cancel
out).
This means that it defines a 2n form on the smooth locus in SnC2 and
therefore, thanks to the Hilbert Chow morphism, a rational 2n form on Hn.
Take I ∈ Hn, it is generated as an ideal in R by two polynomials

xn − e1x
n−1 + e2x

n−2 − · · ·+ (−1)nen

y − (an−1x
n−1 − an−2x

n−2 + · · ·+ a0)
(2.3)

where the first one indicates the x-coordinates of the n points and the second
one determines the y coordinates.
Conversely for every choice of parameters e and a we have that these poly-
nomials determine a point I ∈ Hn.
On the open set where each σ(I) has different x coordinates the first of the
two polynomials in 2.3 is of the form∏

i∈[n]

(x− xi)

and this implies that ek is just the k elementary symetric function ek(x).
To determine ak it is enough to find the interpolating polynomial Φa(x) sat-
isfying Φa(xi) = yi for all i which means solving a system of linear equation
that is just a matrix identity

(y1, . . . , yn) = (a0, . . . , an−1)M (2.4)

where M is the Vandermonde matrix in the x variables.
This implies the following identity

da = ∆(x)−1dy
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where ∆ is the determinant of M . Merging this equality with the well known
equality

de = ∆(x)dx

given by the symetric functions we find

da de = dx dy

which proves that dx dy is a nowhere vanishing regular section of ω on Ux.
Clearly the same proof is valid for Uy so we find that ω ∼= O on Ux∪Uy thus
everywhere thanks to Lemma 2.30.

Proposition 2.32. The canonical sheaf ωHn−1,n is isomorphic to O(1, 1)
where

O(l, k) = On−1(k)⊗On(l)

and On is the pullback from Hn on to Hn−1,n.

Proof. We have tautological sheaves Bn−1 and Bn pulled back from Hn−1

and Hn. The kernel L of the canonical surjection Bn → Bn−1 is the line
bundle with fiber In−1/In at the point (In−1, In). From Proposition 2.28 we
have L = O(−1, 1). On the generic locus, the fiber In−1/In can be identified
with the one-dimensional space of functions on V (In) that vanish except
at Pn. Thus the ratio of two sections of L is determined by evaluation at
x = xn, y = yn.

Regarding the polynomials in 2.3 as regular functions on Ux×C2, they are
the defining equations of the universal family Fx = π−1(Ux) over Ux ⊆ Hn,
as a closed subscheme of the affine scheme Ux × C2. We can use these
defining equations to eliminate en and y, showing that Fx is an affine cell
with coordinates x, e1, . . . , en−1, a0, . . . , an−1.

Over the curvilinear locus, the morphism α : Hn−1,n → F restricts to
a bijective morphism of smooth schemes, hence an isomorphism. Under
this isomorphism x corresponds to the x-coordinate xn of the distinguished
point, and modulo xn we can replace the elementary symmetric functions
ek(x) with e′k = ek(x1, . . . , xn−1), for k = 1, . . . , n − 1. As in the proof of
Proposition 3.6.3, we now calculate that a nowhere vanishing regular section
of ω on Ux ⊆ Hn−1,n is given by

tx =
1∏n−1

i=1 (xn − xi)

dxn ∧ dαn∏n−1
i=1 (yn − yi)

dx ∧ dy.

By symmetry,

ty = − 1∏n−1
i=1 (yn − yi)

dyn ∧ dαn∏n−1
i=1 (xn − xi)

dx ∧ dy
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is a nowhere vanishing regular section of ω on Uy.
Now, at every point of Ux, the ideal In−1 is generated modulo In by

xn−1
n − e′1x

n−2
n + · · ·+ (−1)n−1e′n−1 =

n−1∏
i=1

(x− xi),

so this expression represents a nowhere vanishing section sx of L on Ux.
Similarly,

∏n−1
i=1 (y−yi) represents a nowhere vanishing section sy of L on Uy.

By the observations in the first paragraph of the proof, the ratio sx/sy is the

rational function
∏n−1

i=1 (xn−xi)∏n−1
i=1 (yn−yi)

on Hn−1,n. Since we have nowhere vanishing
sections tx, ty of ω on Ux and Uy with ty/tx = sx/sy it follows that we have
ω ∼ L−1 = O(1,−1) on Ux ∩ Uy and hence everywhere, by Lemma 2.30.

2.5 The ideal sheaf of Xn

Let us start recalling the notation and where we are with the proof of the
conjecture:

• We define Jµ as the annihilating ideal of ∆µ which means:

Jµ = {p ∈ C[x,y] | p(∂x, ∂y)∆µ = 0}.

• We call Rµ the ring C[x,y]/Jµ.

• Rµ is Gorenstein and it has the same dimension as a vector space as
Dµ.(See [5, Proposition 4])

To give an idea of why the latter statement is true, we can notice that Jµ
is the annihilating ideal of the Macaulay inverse system generatd by ∆µ.
In fact it is possible to prove that if M ⊆ R is the annihilating ideal of a
Macaulay inverse system generated by one element then R/M is Gorenstein.
There is a nice way to describe the ideal Jµ by using the alternating operator

Θϵ : C[x,y] → A

such that
Θϵ(g) =

∑
ω∈Sn

ϵ(ω)ωg

where ϵ(ω) is the sign of the permutation.

Proposition 2.33. The ideal Jµ is equal to the set of polunomials p ∈ C[x,y]
such that the coefficient of ∆µ in Θϵ(gp) is zero for all g ∈ C[x,y].
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This statement makes sense because if we set D = {(p1, q1), . . . , (pn, qn)}
the set of coordinates of a subset of N × N of cardinality n then the deter-
minant of the matrix defined in the first chapter is exaclty

∆D = Θϵ(xp,yq).

This means that the set of all ∆D is a basis of A.
Let us see the proof.

Proof. Observe that the constant term of g(∂x, ∂y)p(∂x, ∂y)∆µ is, apart
from a constant factor, the coefficient of ∆µ in A. Hence if p(∂x, ∂y)∆µ =
0, the characterization certainly holds. Conversely, if the characterization
holds, then p(∂x, ∂y)∆µ has the property that it and all its partial derivatives
of all orders have zero constant term.
By Taylor’s theorem this implies that p(∂x, ∂y)∆µ = 0.

Now we notice that we can describe the closed points of Xn as a subset
of the following set:

F×n

/∼ = {(I1;P1; . . . ; In;Pn) | Pi ∈ V (Ii) ∀ i}

where the equivalence relation ∼ means I1 = I2 = · · · = In and denote with
ρ the projection Hn × C2n → Hn.
Thanks to this description we can define Xn as a scheme over Hn by

Xn = SpecB⊗n/J

for some sheaf of ideals J . Our next goal is to describe it.

Proposition 2.34. Let

Φ : B⊗n → (B⊗n
)∗ ⊗ ∧nB

the homomorphism induced by

B⊗n ⊗B⊗n → B⊗n → ∧nB

where the first map is the product and the second is the alternating operator.
Then the ideal J is the kernel of Φ.

Proof. First let us specify where the map comes from:
Given a map

α : B⊗n ⊗B⊗n → ∧nB

it’s clear it induces a map

α′ : B⊗n → Hom(B⊗n
,∧nB)
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such that α′(s) = αs : B
⊗n → ∧nB.Now it’s easy to see that Hom(B⊗n

,∧nB) ∼=
(B⊗n

)∗ ⊗∧nB, using the map that associates the pair f, w ∈ (B⊗n
)∗ ⊗∧nB

to the map that sends s ∈ B⊗n to f(s) · w belonging to Hom(B⊗n
,∧nB).

Now let
Θϵf =

∑
ω∈Sn

ϵ(ω)ω(f)

be the alternation operator.
Notice that s ∈ kerΦ if and only if Θ(sg) = 0 ∀ g ∈ B⊗n .
Now if s ∈ J then clearly Θ(sg) is still in J (as it is a combinations of
elements in the ideal J ).
Let’s call V the set of points in Fn

Hn
such that ∃ i ̸= j such that Pi = Pj ,

notice that Xn ⊔ V = Fn

Hn
.

Now consider s ∈ J , then s must vanishes in Xn, moreover for all g, Θ(gs)
is alternating so it vanishes on V as well as in Xn.
This implies that s belongs to kerΘ.
Then suppose s /∈ J , then it will not vanishes on Xn so there exists x =
(I;P1; . . . ;Pn) with Pi ̸= Pj such that s(x) ̸= 0, so we can find g such that
gs(ω(x)) = 0 for all 1 ̸= ω ∈ Sn but gs(x) ̸= 0.
For example, we can take g as follows:

g =
∑
i∈[n]

∏
j∈[n]\i

(Xi − Pj)

The inverse system of an S-submoduleN of a moduleM is the annihilator
I of N in S.
In other words it’s the set of elements in S such that for all n ∈ N we have
sn = 0.
Now let’s consider the set Dµ = p(∂x, ∂y)∆µ and it’s annihilating ideal
Jµ = {p ∈ C[x,y] | p(∂x, ∂y)∆µ = 0}.

Remember that with Iµ we denote the ideal generated by all monomials
with esponents not in µ:

Iµ = (xiyj | (i, j) /∈ µ)

This implies that in the ring:

B⊗n
(Iµ) = C[x,y]/(

∑
i∈[n]

Iµ(xi, yi))

the image of ∆L (that is a polynomial in C[x,y]ϵ) vanishes for all L ̸= µ and
the image of ∆µ spans the space ∧nB(Iµ).
The reason why the first claim is true is that if L ̸= µ there exist a point
(pj , qj) not in the Young diagram of µ so the monomial xpji y

qj
i will always

be in Iµ(xi, yi). Now consider the following diagram:
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C[x,y] B⊗n
(Iµ) ∧nB(Iµ)

π

Θ|∆µ

β

and notice that it’s commutative.
To verify this it’s enough to check it on the generator ∆µ, but Θ|∆µ

(∆µ) =
∆µ = β · π(∆µ). This observation yelds to the following proposition:

Proposition 2.35. The ideal Jµ is the kernel of the composite map

C[x,y] → B⊗n
(Iµ) → B⊗n

(Iµ)
∗ ⊗ ∧nB(Iµ)

Proof. We will prove this statement in the next very important theorem so
let us try to understand clearly what we mean with the notation B(I).
First consider the commutative diagram

π−1(I) F

{I} Hn

π π

and remember that we defined the sheaf B as the push forward of the sheaf
OF through the projection map π : F → Hn.
If we see F as Spec(B) then π−1(I) is exactly Spec(B⊗OHn

I) thus we denote

B(I) := B ⊗OHn
I.

In particular for the mononial ideal Iµ we have:

B(Iµ) := B ⊗OHn
Iµ.

Now let us state the key result of this work.

Theorem 2.36. Let Qµ the unique point of Xn lying over Iµ.
The following are equivalent:
1) Xn is locally Cohen-Macaulay and Gorenstein at Qµ

2) the n!-conjecture holds for the partition µ.

Proof. The sheaf homomorphism Φ in 2.35 can be identified with a linear
homomorphism of vector bundles over Hn:

Φ(I) : B⊗n
(I) → (B⊗n

(I))∗ ⊗ ∧nB(I).

where I is a point in the generic locus of Hn.
Remember that for a linear map it’s true that the map rkΦ(I) is lower
semicontiuous, that implies the set {I ∈ Hn | rkΦ(I) ≥ r} to be open for
all r.
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Now notice that if the rank of Φ(I) is constant on an open set U then the
cokernel of Φ is locally free on U(and vicecersa).
The reason is that for each I you can see the cokernel as(

(B⊗n
)∗(Iµ)⊗ ∧nB(I)

)
/
(
Φ(I)(B⊗n

(I))
)

and being both locally free sheaves, the cokernel will be locally free.
Clearly the same holds for the image of Φ.
Now notice that for a generic point I the fiber consists of n! points on Xn

(one for each possible permutation of the n points), so the generic rank of Φ
is n!.
Now suppose that the n! conjecture holds for µ:
remember the map:

C[x,y] (B⊗n
)∗(Iµ)⊗ ∧nB(Iµ)

C[x,y]/Iµ

η

π
Φ

since η and Φ have the same image we have that rkΦ(Iµ) = n!.
Also n! is the rank of Φ(I) for I in the generic locus which is dense, so rkΦ
is locally constant (equal to n!) around Iµ.
Using our first observation regarding the morphism 2.35 we find that the
image of Φ

Φ(C[x,y]/Iµ) = ρ∗OXn

is locally free, ρ is flat of degree n! and Xn is locally Cohen-Macaulay at Qµ.
Now we have to prove that OXn,Qµ is Gorenstein:
letM be the maximal ideal of the local ring OHn,Iµ , sinceXn is finite overHn

the ideal N =MOXn,Qµ is a parameter ideal. A parameter ideal is an ideal
generated by elements that are algebraically independent over the base ring.
In this case if we take p1, . . . , pm a set of independent generators of M and a
ring homomorphism Φ : OHn,Iµ → OXn,Qµ it is clear that Φ(p1), . . . ,Φ(pm)
must be independent over the base ring OHn,Iµ .
Since Xn is locally Cohen Macaulay at Qµ, OXn,Qµ is Gorenstein if and only
if OXn,Qµ/N is Gorenstein.
By definition we have OXn,Qµ/N

∼= Φ(Iµ) ⊗OHn
OHn,Iµ so the map Φ(Iµ)

factors as

Φ(Iµ) : B
⊗n

(Iµ) → OXn,Qµ/N → (B⊗n
(Iµ))

∗ ⊗ ∧nB(Iµ). (2.5)

Remember that the kernell of η is Jµ so its image is isomorphic to C[x,y]/Jµ,
moreover the second morphism above is surjective so we find

OXn,Qµ/N
∼= C[x,y]/Jµ.
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We already proved that Jµ is the annihilating ideal of a Macaulay inverse
system generated by one element so the latter space is Gorenstein, this proves
our initial claim.
Conversely suppose Xn locally Gorenstein at Qµ, then OXn,Qµ/N is Goren-
stein and so isomorphic to C[x,y]/J for some ideal J .
We will prove something even stronger than the n! conjecture, in fact we
will prove that B(I) affords the regular Sn-representation for all I thus
B(I) ∼= B(Iµ).
We know that p∗OXn is locally free of rank n! around Iµ. It’s not difficult to
see that OXn is Sn-equivariant, plus the morphism of sheaf p∗ respects the
action so p∗OXn is a Sn-module.
The isotypic components of such a bundle are direct summands of it and
hence locally free themselves, so the character of Sn on the fibers is con-
stant.
We know that we can write our bundle as a direct sum of irriducible compo-
nents (the isotypic components of our representation), and since the starting
bundle is locally free, its components must be locally free as well.
Therefore the character of Sn on the fibers must be constant because any
automorphism of the vector bundle that permutes the isotypic components
must preserve that character.
Finally if we take a general point I, the fibers are the coordinate rings of the
Sn orbits of points (P1, . . . , Pn) ∈ C2n with all Pi distinct. Therefore every
fiber affords the regular representation of Sn.
Now, since Xn is a scheme over Hn, the group scheme Sn acts on Xn via
permutation of the n points. This action induces an Sn-action on the inverse
image sheaf p∗OXn as follows: for any permutation σ ∈ Sn and any open
subset U ⊆ Hn, we define σ(p∗OXn)(U) as OXn(σ(p

−1(U)). Notice that if
(P1, . . . , Pn) are all distinct, so I is in the generic locus, the fiber p∗OXn(I) is
the coordinate ring of the orbit of those points, thus there exists an injective
map

Sn → GL(p∗OXn(I)).

Since the action of Sn on Xn is compatible with the morphism p : Xn → Hn

and also clearly with the projection Xn → Xn/Sn it follows that that p∗OXn

is a sheaf of Sn-modules on Hn.
The socle of C[x,y]/J is a one dimensional Sn-invariant subspace.
It affords a regular representation, so such simple submodules are only
(C[x,y]/J )Sn which are the constants and (C[x,y]/J )ϵ the space of al-
ternating polynomials modulo J . The socle must therefore be the latter
space. Now if we consider the factorization of the map Φ(Iµ) in 2.5 we have
J ⊆ Jµ = ker η. Supose Jµ/J ≠ 0, then we must have soc(C[x,y]/J ) ⊆
Jµ/J as the socle is contained in every non zero ideal. But this would imply
(C[x,y]/Jµ)ϵ = 0 (it means that Jµ contains all the alternating polynomials)
hence ∆µ ∈ Jµ which is absurd.
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2.6 Fundational results for the final proof

In this section we provide two other necessary results to prove the conjecture.
To prove them we need a result claiming that the ring ideal generated by the
alternating polynomials C[x,y]ϵ is a C[y]-free module. To show this lemma
we need polygraphs, a construction we will introduce in the third chapter.

Lemma 2.37. Let J = C[x,y]A the ideal generated by A = C[x,y]ϵ. Then
Jd is a free C[y]-module for all d.

The proof of this lemma is based on the fact that R(n, l), that is the
coordinate ring of the polygraph Z(n, l), which we will define later, is a free
C[y]-module.
In fact we will se that R(n, l) = C[x,y,a,b]/I(n, l) is a G-invariant ideal for
G the cartesian product of d copies of Sn.
This means that G acts on R(n, l) and we claim that Jd is isomorphic as
a C[x,y]-module to the space R(n, l)ϵ of G-alternating elements of R(n, l)
which is a free C[y]-module.
Let us prove it formally.

Proof. Set l = nd, and let Z(n, l) be the polygraph over C, a subspace
arrangement in (C2)n × (C2)l. Let G = Snd be the Cartesian product of d
copies of the symmetric group Sn, acting on (C2)n× (C2)l by permuting the
factors in (C2)l in d consecutive blocks of length n. In other words, each
w ∈ G fixes the coordinates x, y on (C2)n, and for each k = 0, . . . , d − 1,
it permutes the coordinate pairs akn+1, bkn+1 through akn+n, bkn+n among
themselves.

Let R(n, l) = C[x,y,a,b]/I(n, l) be the coordinate ring of Z(n, l). By
Theorem 3.5, R(n, l) is a free C[y]-module. Due to the symmetry of its
definition, I(n, l) is a G-invariant ideal, so G acts on R(n, l). We claim that
Jd is isomorphic as a C[x,y]-module to the space R(n, l)ϵ of G-alternating
elements of R(n, l). Each x-degree homogeneous component of R(n, l) is
a finitely generated y-graded free C[y]-module. Since R(n, l)ϵ is a graded
direct summand of R(n, l), it is a free C[y]-module, so the claim proves the
Lemma.

Let f0 : [l] → [n] be defined by f0(kn+ i) = i for all 0 ≤ k < d, 1 ≤ i ≤
n. Restriction of regular functions from Z(n, l) to its component subspace
Wf0 is given by the C[x,y]-algebra homomorphism ψ : R(n, l) → C[x,y]
mapping akn+i, bkn+i to xi, yi. Observe that ψ maps R(n, l)ϵ surjectively
onto C[x,y]Ad = Jd.

Let p be an arbitrary element of R(n, l)ϵ. Since p is G-alternating, p
vanishes on Wf if f(kn + i) = f(kn + j) for some 0 ≤ k < d and some
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1 ≤ i < j ≤ n. Thus, the regular function defined by p on Z(n, l) is
determined by its restriction to those components Wf such that for each
k, the sequence f(kn + 1), . . . , f(kn + n) is a permutation of {1, . . . , n}.
Moreover, for every such f , there is an element w ∈ G carrying Wf onto Wf0 .
Hence p is determined by its restriction to Wf0 . This shows that p vanishes
on Z(n, l) if ψ(p) = 0, that is, the kernel of the map ψ : R(n, l)ϵ → Jd is
zero.

The consequence of this lemma is the following very important corollary:

Corollary 2.38. The projection Xn → Cn = SpecC[y] of Xn of the y
coordinates is flat.

Proof. Notice that
Xn = ProjC[x,y][tJ ]

and, being Jd a free C[y]-module, the projection induces a flat map between
free C[y] modules.
Remember that every projective module is flat and every free module is
projective.(05CF [15])

Now observe that
J ⊆

⋂
i<j

(xi − xj , yi − yj)

because every alternating polynomial vanishes whenever two or more coor-
dinates coincides.
Moreover it is possible to prove that

Jd =
⋂
i<j

(xi − xj , yi − yj)
d (2.6)

for all d ≥ 0.(See [10])

Proposition 2.39. The isospectral scheme Xn is arithmetically normal in
its projective embedding over C2n as the blow-up Xn = ProjS[tJ ]. In par-
ticular Xn is normal.

Proof. Arithmetically normal means that S[tJ ] is a normal domain, that is
an integral domain such that each localization is equal to its integral closure
in its field of fraction.
S[tJ ] is already a normal domain: S =

⊕
d≥0A

d is normal if Ad is normal,
but each localization of it is an integral domain, that implies being an inte-
grally closed domain.
The powers of an ideal generated by a regular sequence are integrally closed,
as is an intersection of integrally closed ideals, so Jd is integrally closed.
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The next Lemma is a central result for our proof, but before stating it
we try to give a general overview of what a derived functor is.
The derived direct image functor is a way of "sheafifying" a functor that
assigns to each sheaf on a source scheme X a sheaf on a target scheme Y via
a morphism of schemes f : X → Y . More specifically, given a morphism of
schemes f : X → Y and a sheaf F on X, the direct image functor

f : Sh(X) → Sh(Y )

assigns to F the sheaf f(F) on Y defined by

(f∗F)(U) = F(f−1(U))

for any open subset U ⊆ Y . However, in general, the direct image functor is
not exact, meaning that it may not preserve exact sequences of sheaves. To
remedy this, one can define the derived direct image functor

Rf : D(Sh(X)) → D(Sh(Y ))

as a way of making f∗ exact. Here, D(Sh(X)) and D(Sh(Y )) denote the
derived categories of sheaves on X and Y , respectively, which are categories
that encode cohomological information about sheaves.
Intuitively, the derived direct image functor Rf∗ replaces the sheaf f(F) with
a complex of sheaves that encodes the cohomology of f(F). This complex of
sheaves is constructed by applying the "derived functor" of f∗, which involves
taking a "resolution" of F (i.e., replacing F with a complex of sheaves that
is quasi-isomorphic to F) and then applying f∗ to the complex.

Lemma 2.40. [10, Lemma 3.8.5] Let g : X → Y be a proper morphism.
Let z1, . . . , zm ∈ OX(X) be global regular functions, Z = V (z1, . . . , zn) and
U = X\Z.
Suppose the following conditions hold:

1. The zi form a regular sequence in the local ring OX,P for all P ∈ Z.

2. The zi form a regular sequence in the local ring OY,Q for all Q ∈
g−1(Z).

3. Every fiber of g has dimension less then m− 1.

4. The canonical homomorphism OX → Rg∗OY restricts to an isomor-
phism on U .

Then Rg∗OY = OX , i.e., the canonical homomorphism is an isomorphism.
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2.7 Proof by induction: Xn−1,n Cohen Macaulay

For technical reasons we want to start the induction for n = 3, but fortu-
nately the cases n = 1 and n = 2 are very easy.
For n = 1 we have S1 = {1} so C[x, y]Sn = C[x, y] and C[x, y]ϵ = C[x, y] as
well because there are no odd permutations.
This means that we can describeH2 as Proj

⊕
C[x, y] that is just SpecC[x, y] =

A2.
For n=2 we have that every pair of points (P1, P2) are generated by complete
intersection ideals, i.e. the sequence of generators is regular iff P1 ̸= P2. The
Hilbert scheme H2 defined as ProjS is just the blow-up of C4 along the
diagonal thus the fiber product over S2C2 is itself. We know that H2 is non
singular and so is X2.
Moreover for n=2 it’s pretty easy to prove directly the n!-conjecture, and
since we proved that it is equivalent toXn being Cohen-Macaulay and Goren-
stein we conclude.
Now assume by induction that Xn−1 is Cohen-Macaulay and Gorenstein,
then pn−1 : Xn−1 → Hn−1 is flat.
This implies that in the following diagram even p′ is flat:

Y Hn−1,n

Xn−1 Hn−1

p
′

p

On the generic locus, where all points are distinct, the above diagram coin-
cides locally with:

Y Sn−1C2 × C2

C2(n−1) Sn−1C2

p
′

p

which shows that Y is generically reduced (hence reduced) as well as irre-
ducible and birational to C2n. This means that Y = Xn−1,n and since p′ is
flat and finite and Hn−1,n is non singular, Xn−1,n is Cohen-Macaulay.

2.8 Proof by induction: Xn Gorenstein

Let us recap where we are:
we know that if X is a Noetherian scheme with dualizing complex ωX , to
prove that it is Gorenstein it is enough to prove that ωX is a line bundle.(
0AWT [15])
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It’s easy to prove thatXn−1,n is Gorenstein, in fact we know from Proposition
2.32 that the canonical sheaf ωHn−1,n is O(1,−1).
Now by construction, supposing Xn−1 Gorenstein, we have that

ωXn−1,n = O(−1, 0)⊗O(1,−1) = O(0,−1)

thus our scheme Xn−1,n is Gorenstein.
Now we want to use this fact to prove that Xn is Gorenstein, in particular
that ωXn = O(−1).
The proof relies on the following claim, whose proof can be found in here
[10]. Considering the projection

g : Xn−1,n → Xn

we claim that
Rg∗Xn−1,n = OXn .

By the projection formula, since O(0,−1) = g∗OXn(−1) is pulled back from
Xn, this implies also Rg∗O(0,−1) = OXn(−1). Now

O(0,−1)[2n] = ωXn−1,n [2n]

is the dualizing complex on Xn−1,n, so by the duality theorem it follows that
O(−1)[2n] is the dualizing complex on Xn. In other words, Xn is Gorenstein,
with canonical sheaf ωXn = O(−1), which is what we wanted to prove.
To prove the inductive base we know from Theorem 2.36 that it is not only
true that if Xn is Gorenstein then the n! conjecture holds, but even the other
way around!
So with the previous induction process we reach the case n = 3 for which it
is fairly easy to prove by hand our conjecture (see example 2.8; this means
that X3 is Gorenstein.
Finally remember that for Noetherian schemes, Gorenstein implies Cohen-
Macaulay [1] thus we proved these two properties for our scheme Xn.
Let us remark the idea of the previous proof:

Remark 2.41. Let us remark the idea of the previous proof:

• We just proved that Xn−1 Gorenstein implies Xn Gorenstein.

• Thanks to Theorem 2.36 Xn is Gorenstein if and only if the n! conjec-
ture holds.

• For X3 we proved by hand the n! conjecture, thus it is Gorenstein.

• Xn is Gorenstein thus the n! conjecture holds.





Chapter 3

Polygraphs

In this chapter we will investigate polygraphs, particular arrangements of
points in the space arising by graphs of linear functions from En to El

where E = A2.
Let us start fixing some notation: let E be A2(k) where k is a 0 characteristic
field.
Given a function f : [l] → [n] there is a linear morphism πf : En → El such
that

πf (P1; . . . ;Pn) = (Pf(1); . . . ;Pf(n)).

In the following lines we will denote the coordinates of En × El by

x,y,a,b = x1, y1, . . . , xn, yn, a1, b1, . . . , al, bl.

Now let Wf ⊂ En × El be the graph of πf , using the coordinates defined
above we find that Wf = V (If ) where

If =
∑
i∈[l]

(ai − xf(i), bi − yf(i)).

(Remember that V (I + J) = V (I) ∩ V (J)).
Notice that we have to describe a set of n points in dimension n + l, so we
need n(n+ l) equations, but the first n coordinates of each point is already
fixed so it is equivalent to describe n points in dimension l.
This requires only nl equations that are exactly:{

ai − xf(i) = 0

bi − yf(i) = 0

for each i ∈ [l] and Pf(i) = (xf(i), yf(i)) ∈ (Pf(1); . . . ;Pf(n)).
Now we can define polygraphs:

Definition 3.1. The polygraph Z(n, l) ⊂ En × El is the subspace:

Z(n, l) =
⋃

f :[n]→[l]

Wf

45
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We can see Z(n, l) as a subscheme of En × El so we can identify P ∈
Z(n, l) as a prime ideal of k[x,y,a,b].
In fact our space is simply an affine space and Z(n, l) a set of points, thus
we can think about it as a subspace of the Hilbert scheme of points of the
starting affine space.
Our goal is to prove the following theorem:

Theorem 3.2. The coordinate ring R(n, l) = O(Z(n, l)) of the polygraph
Z(n, l) is a free k[y]-module.

To explain why we need this theorem let us give an example when E =
A1(k), so our coordinates are just x,a.

Example 3.3. In this case the ideal of Z(n, l) is

I =
∑
i∈[l]

∏
j∈[n]

(ai − xj)


and notice that if xi ̸= xj for all i, j ∈ [n] then the ideal is reduced.
Moreover it has l generators and its codimension is exactly l so it is a com-
plete intersection ideal, hence O(Z(n, l)) is Cohen-Maculay.
Moreover its finitely generated so R(n, l) is a free k[x]-module.
Now if we consider the finite flat morphism

Z(n, l) → En

we can intuitively define the degree of the morphism as the number of times
a point in En is covered by the map, so in our case the degree is equal to
the number of graphs that is nl.

Now in two set of variables the ideal

I =
∑
i∈[l]

∏
j∈[n]

(ai − xj , bi − yj)


still defines Z(n, l) as a set but this time is not reduced anymore and R(n, l)
is not Cohen-Macaulay.

Definition 3.4. Let Z(n, l) be a polygraph and consider r ∈ [n] ∪ {0},
k ∈ [l] ∪ {0} and m ∈ Z. We define

Y (m, r, k) =
⋃
f,T

V (xj | j ∈ T ) ∩Wf

where T ranges over subsets of [n] such that

|T ∩ [r]\f([k])| ≥ m.
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Intuitively Y (m, r, k) is built taking the points of each graph that belong
to certain ideals, in partiular ideals generated setting some coordinates to
zero, and unify them.
We define I(m, r, k) as the ideal of Y (m, r, k) seen as a closed reduced sub-
scheme of Z(n, l).
Now we can state the precise version of Theorem 3.2 using the previous
definition.

Theorem 3.5. The coordinate ring R(n, l) of the polygraph Z(n, l) is a free
k[y]-module with a basis B such that every ideal I(m, r, k) is spanned as a
k[y]-module by a subset of B.

To prove this theorem we will use induction building the basis B out of
the basis of R(n− 1, l) and R(n, l − 1).
To show that what we build is a basis we will use the following fact:
if we take a space on which the y coordinates are independent, its coordinate
ring is a torsion-free k[y]-module.
If the y-coordinates of the subspaces are dependent, it means that there
exists a polynomial in k[y] that vanishes on all the y-coordinates of the sub-
spaces. This polynomial would then annihilate the corresponding elements
in the coordinate ring of each subspace, which would make those elements
torsion elements in the coordinate ring. In general, a module is torsion-free
if and only if it has no nonzero elements that are annihilated by a nonzero
element of the ring. So if there exists a nonzero polynomial in k[y] that
vanishes on all the y-coordinates of the subspaces being considered, then
the coordinate rings of these subspaces would not be torsion-free modules
over k[y]. On the other hand, if the y-coordinates of the subspaces are in-
dependent, then it is not possible for a nonzero polynomial in k[y] to vanish
on all the y-coordinates of the subspaces simultaneously.

To prove that a subset of a torsion-free k[y]-module is a free module
basis, it suffices to verify it locally on an open locus U2 ⊂ Spec k[y] whose
complement has codimension two. [14]
Intuitively we could say that removing codimension greater than 2 subscheme
does’t change the module of global regular function, they are ’to small’.

Lemma 3.6. Theorem 3.5 holds for Z(n, 0).

Proof. Clearly Z(n, 0) = En and so R(n, 0) = k[x,y] that is a free k[y]-
module.
Now we have to check what happen to the ideals Y (m, r, k):
k must be 0 so we have union of subspaces where at least the firsts m
coordinates are 0.
It is ideal I(m, r, 0) is generated by

I(m, r, 0) =
∑
T

∏
j∈T

xj
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where T is each subset of [r] of size r −m+ 1.
The reason why it is true is the goal is to set a size of T such that for each
choice of

(
r
|T |
)
j we have at least m different xj .

So suppose we select j1 from each T where it is contained, then we remain
with (

r

|T |

)
−
(
r − 1

|T | − 1

)
=

(
r − 1

|T |

)
different sets, let us do it again for the second element j2, then j3 untill we
reach jm−1, at that point we must have at least one set:(

r −m+ 1

|T |

)
= 1 =⇒ |T | = r −m+ 1

The set B of all monomials in the x coordinates is a free k[y]-module basis
of R(n, 0), with subsets spanning every ideal generated by monomials in x.
In particular, each ideal I(m, r, 0) is spanned by a subset of B.

Now let us define the open sets Ûk where we will reduce our arguments.

Definition 3.7. The set Ûk is the open locus in Spec k[y] where the coor-
dinates y1; . . . ; yn assume at least n− k + 1 distinct values.
Moreover for any scheme π : Z → Spec k[y] we define Uk to be π−1(Ûk).

To treat R(n, l) as a k[y]-module, we will want to localize with respect to
prime ideals in k[y], that is, at points Q ∈ Ûk ⊂ Spec k[y]. To extract local
geometric information about Z(n, l) as a subscheme of En×El , by contrast,
we want to localize at points P ∈ Uk ⊂ En ×El . A simple technical lemma
relates these two types of localization, as follows.

Lemma 3.8. Let R be a k[y]-algebra, let

π : SpecR→ Spec k[y]

be the projection on the y. If I, J ⊂ R are ideals such that IP = JP locally
for all P ∈ U (localized as R-modules), then IQ = JQ for all Q ∈ Û (localized
as k[y]-modules).

Proof. It is enough to notice that

(IQ)PQ
= IP

then by ipothesis we have
IP = JP

so we find
(IQ)PQ

= IP = JP = (JQ)PQ

and since it is true for all P ∈ U we proved the lemma.
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Now let us talk about the local geometry of Z(n, l) on U1.

Lemma 3.9. For f1 ̸= f2 we have:

(Wf1 ∩ U1) ∪ (Wf2 ∩ U1) = ∅

This means that for each P ∈ Z(n, l)∩U1 there exists a unique Wf containing
P so Z(n, l) coincides locally with Wf :

I(Z(n, l))P = (If )P .

Proof. U1 is the set of points such that each y coordinate is different and
since P ∈ Wf1 ∩Wf2 iff yi = yj for all i, j such that f1(i) = f2(j) then we
have that if f1 ̸= f2 there is no intersection.

Now let us state a result about the lattice of ideals in R(n, l) defined with
the sum and teh intersections as operations.

Lemma 3.10. Let L be the sublattice of the lattice of ideals in R generated
by ideals of all subspaces of the form:

V (xj | j ∈ T ) ∩Wf . (3.1)

Then for every I ∈ L, V (I) ∩ U1 is reuced i.e. IP =
√
IP for all P ∈ U1.

Proof. Take a point P in U1, then P ∈Wg for some function g : [l] → [n].
Thanks to the previous observations we see that Wg do not intersect any
other Wf around P so locally Wg

∼= En and O(Wg) ∼= O(En) = k[x,y].
Now let us consider the ideal generated by:⋃

f,T

V (xj | j ∈ T ) ∩Wf

and when we intersect it with U1 all the Wf became disjointed so:

⊔
f

(⋃
T

V (xj | j ∈ T ) ∩Wf ∩ U1

)

this implies that around P the ideal will looks like the ideal generated by:⋃
T

V (xj | j ∈ T ) ∩Wg ∩ U1

that is just k[x,y] modulo square-free monomials in the variables x that is
reduced.

Corollary 3.11. If i belongs to the lattice generated by the ideals I(m, r, k)
in R(n, l) then V (I) ∩ U1 is reduced.
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What happen in U2? The situation is the following:
Let Z2 ⊂ Z(n, l) be the union of those graphs Wf for which f(i) = f(j) = c
for a pair i, j ∈ [l]. So we have: 

ai = xc

aj = xc

bi = yc

bj = yc

so we can use these equations to eliminate the coordinates i, j and the result
will be that Z is isomorphic to a polygraph Z(n, l − 2) ⊂ En × El−2.
Notice that here a notation problem arises because the indices of [l − 2] are
not 1, . . . , l− 2, so to fix it we will denote the set of indices as N and L with
|N | = n and |L| = l.

Lemma 3.12. Let P a point in U2\U1 and let {p, q} the unique pair of in-
dices such that P ∈ V (yp − yq) (we are in U2 so at most one pair of indices
can coincide).
Let ∼ the equivalence relation on functions f : [l] → [n] defined by f ∼ g if
and only if {f(i), g(i)} = {p, q} for all i ∈ [l].
Then:

1. We have P ∈ Wf only for f in a unique ∼-equivalence class F , so
Z(n, l) coincides locally at P with

Z =
⋃
f∈F

Wf .

2. Let f be a member of F , let N = {p, q} and let L = f−1(N) (note
that L depends only on F ). The projection of Z on the coordinates
x,y,aL,bL is an isomorphism

Z ∼= E[n]\N × Z(N,L)

where Z(N,L) is the polygraph in indices N and L.

Proof. 1. Clearly it is impossible to have P ∈
⋂

f∈F Wf and P ∈
⋂

f∈GWf

for G ̸= F .

2. On the coordinates in [n]\L each function in F coincide, so the co-
ordinate ring of Z is generated by the remaining variables named
x,y,aL,bL, so the projection on these coordinates is an isomorphism
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of Z into it is image which is E[n]\N × Z(N,L) :
In fact as earlier we have a set of equations:{

ai = xf(i)

bi = yf(i)

for all i ∈ [n]\L that allow us to project the space without losing
informations.

Now we can prove a very important result, morally it says that the in-
formations that we can extract by localizing a module M over Q ∈ ∩U2 are
enough to gather informations about M .

Lemma 3.13. Let M be a torsion free k[y]-module and B a subset of M .
Suppose that for every Q ∈ Û2, MQ is a free k[y]Q-module with basis B.
Then M is a free k[y]-module.

Proof. The goal is to prove that for all x ∈M we have:

x =
∑
α

pαbα (3.2)

with pα ∈ k[y] and bα ∈ B.
We know it is true for each image of x in MQ where pα ∈ k[y]Q.
Now notice that k[y]Q is a subring of k[y]0 = k(y), this means that we can
see each image embedded into k(y) thus the coefficients pα do not depend
on Q.
Now since the complement of Û2 has codimension 2 every rational function
regular on Û2 is regular everywhere. This is true because of the following
result: ⋂

ht(p)=1

Ap = A

for each ring A. Now let p be a prime of height 1 and Û2 = ∪f∈ID(f),
from ht(I) ≥ 2 we deduce that there exists f ∈ I with f /∈ p, which means
Af ⊂ Ap. Take a

b regular on U, so in particular regular on D(f) ⊂ U . We
deduce a

b ∈ O(D(f)) = Af ⊂ Ap. Since p was arbitrary of height 1, we have
shown

a

b
∈

⋂
ht(p)=1

Ap = A.

This proves that pα belong to k[y] and since 3.2 holds on a dense set of a
torsion free module, it holds everywhere.

Corollary 3.14. Let I, J be free submodules of a torsion free k[y]-module
M such that IQ = JQ for all Q ∈ Û2. Then I = J.
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Proof. I, J have locally the same basis so, thanks to the previous lemma
they have globally the same basis so they are equal.

Lemma 3.15. Let B be a basis of a free k[y]-module M . Let J be a M
submodule and B1 = B ∩ J spans k(y)⊗ J . Then J = k[y]B1.

Proof. Consider x ∈ J written as

x =
∑
α

pαbα

with pα ∈ k[y] and bα ∈ B.
There exists also a unique representation for x in terms of B as basis of
M ⊗ k(y) so pα = 0 for bα /∈ B1 so we have x ∈ k[y]B1.

3.1 Hilbert series

To keep studing the properties of our modules we need Hilbert series which
intuitively are a way to encode information about the dimensions of the
graded components of an algebra or module. It helps to understand how the
dimensions of these components grow as the degree increases. The coeffi-
cients of the Hilbert series reveal the structure of the algebra or module at
each degree. Let us notice a few fact of our set up:

• The coordinate ring O(En×El) = k[x,y,a,b] is doubly graded by the
degree of x,a variables and the degree of y,b variables.

• The ideals defining Z(n, l) are intersections of ideals If which are
clearly doubly homogeneous thus

R(n, l) = k[x,y,a,b]/I(Z(n, l))

is doubly graded.

• By construction Z(n, l) is finite over En so its ring of coordinates
R(n, l) is a finitely generated k[x,y]-module. This means that if we
take the graded ring by the x degree

R(n, l) =
⊕
d

R(n, l)d

each R(n, l)d is a finitely generated k[y]-module graded by the y degree.

First we need a version of the Nakayama’s lemma for graded modules, then
we will define the Hilbert series precisely.
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Lemma 3.16. Let M be a finitely generated graded k[y]-module and B a set
of homogeneus elements of M that spans M/yM as a k-vector space, then
B generates M .
Moreover if

|B| = dimk(y)(k(y)⊗M)

then M is a free k[y]-module with basis B.

First let me clarify that with the notation M/yM I indicate

M/⊕d>0 k[y]M.

I will give an idea of the proof:

Proof. If we consider the map

π :M →M/yM

so it is clear that By generates M .
This means that we can write each element of M as

m =
∑
j

cjbj +
∑
i

di(biy)

but since B spans M/yM we know that

m+ yM =
∑
k

ak(bk + yM)

thus

m+ yM =
∑
j

cj(bj + yM) +
∑
i

di(biy + yM) =
∑
k

ak(bk + yM)

that implies bi = 0 and
m =

∑
j

cjbj .

Definition 3.17. Let R = ⊕d≥0Rd be a graded ring over k and M =
⊕d≥0Md a graded ring. We define the Hilbert series of M as:

HM (t) =
∑
d≥0

dimk(Md)t
d.

Now for some modules it is easy to determine its Hilbert series, thanks
to the following lemma.
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Lemma 3.18. [10] Let R the coordinate ring of⋃
C

V (xj | j ∈ T ) ∩Wf

where C is a collection of pairs (T ; f).
Then R is a torsion free k[y]-module and the dimension of the x-degree
homogeneus component is equal to the numbers of pairs e ∈ Nn, f such
that ∑

i∈[n]

ei = d

and there is some (T, f) ∈ C such that ej = 0 for all j ∈ T.

First we denote with WT,f the subspace V (xj | j ∈ T ) ∩Wf , with IT,f
the its ideal If + (xj | j ∈ T ) and with RT,f its coordinate ring.
By definition we have R = k[x,y,a,b]/I where I is the intersection of IT,f
for each pair in C.
Notice that the y coordinates are independent on eachWT,f so the coordinate
rings RT,f are free and torsion-free k[y]-modules.
Clearly R is isomorphic to a subring of

⊕
C RT,f so R is a free and torsion-

free k[y]-module.
Now we define Cf to be the set of pairs (T, f) ∈ C for a given f and Rf as
you expect. We have an injective homomorphism

R ↪→
⊕
f

Rf ,

by Lemma 3.12 the unions Zf =
⋃

f WCf
have disjoint restrictions to U1

so the above morphism localize to an insomorphism at each point of Û1.
(Remember that if R = C/

∏
j Ij , Rj = C/Ij and Z(Ij) ∩ Z(Ii) = ∅ then

R = ⊕Rj .)
Now the projection of Wf into En is an isomorphism so Zf projects isomor-
phically on Spec k[y]× V where V = ∪Cf

(xj | j ∈ T ) ⊆ Spec k[x].
The coordinate ring of V , say k[x]/J is the face of a simplicial complex, in
fact J is the ideal of polynomials vanishing on V :

J =
∏
T

∑
j∈T

xj


that is spanned by xe where for each e exists a T such that for each j ∈
T, ej = 0.
The ring Rf is turn is a free k[y]-module with the same basis and since
k(y)⊗R ∼=

⊕
f k(y)⊗Rf the result follows.
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Corollary 3.19. The Hilbert series of k(y) ⊗ R(n, l) as a k(y)-algebra x-
graded is ∑

d

dimk(y)(k(y)⊗R(n, l)d)t
d =

nl

(1− t)n
.

Proof. For each d the number of e = (e1, . . . , en) fulfilling the requirements
of lemma 3.18 is

(
n+d−1

d

)
, moreover there are nl possible functions so we find:

∑
d

dimk(y)(k(y)⊗R(n, l)d)t
d =

∑
d

tdnl
(
n+ d− 1

d

)
= nl(1− t)−n

Corollary 3.20. Let B a set of doubly homogeneus polynomials whose image
in R(n, l) span R(n, l)/y as k-vector space. Denoting the x-degree of p ∈ B
by d(p) if the degree enumerator of B satisfies:

∑
p∈B

td(p) =
nl

(1− t)n
(3.3)

then R(n, l) is a free k[y]-module with basis B.

Proof. We use the corollary 3.19 and the Nakayama Lemma:

nl

(1− t)n
=
∑
d

dimk(y)(k(y)⊗R(n, l)d)t
d =

∑
d

|Bd|td

=
∑
d

∑
p∈Bd

td

 =
∑
p∈B

td(p). (3.4)

Corollary 3.21. The Hilbert series∑
d

td dimk(y)(k(y)⊗O(Y (m, r, k))d)

of k(y)⊗O(Y (m, r, k)) as a graded k(y) algebra is equal to the enumerator∑
e,f

t|e|

for e ∈ Nn and f such that |[r]§k(e, f)| ≥ m.
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3.2 The case n=2

We start by writing down explicit polynomials that form the common ideal
basis required by theorem 3.5.
To each pair (e, f) with e ∈ N2 and f : [l] → [2] we associate a basis element
p[e, f ] that is homogeneus of x-degree |e|:
for e = (0, 0) we set

p[(0, 0), f ] =
∏

f(j)̸=f(1), j>1

(bj − b1) ·

{
(b1 − y2) if f(1) = 1

1 otherwise.

For e = (0, h) with h > 0, let f−1({1}) = S ∪ T , where S and T are
disjoint and S is the smallest h elements of f−1({1}) (or the whole set if
h ≥ |f−1({1})|).
We set

p[(0.h), f ] = x
h−|S|
2

∏
i∈S

(ai − x1 − x2)
∏
j∈T

(bj − y2).

Now for e = (h, 0) still with h > 0 we set

p[(h, 0), f ] = x1θp[(0, h− 1), θf ],

where θ is the permutation (1, 2) that act on the polynomial ring k[x,y,a,b]
exchanging x1 with x2 and y1 with y2 while fixing a, b.
Finally for e = (h1, h2) let h = min(h1, h2) (still hi are positive) we define

p[e, f ] = (x1x2)
hp[e− (h, h), f ].

Lemma 3.22. For n = 2 the coordinate ring Z(2, l) is a free k[y]-module
with basis the set of elements p[e, f ] defined above. We will denote the base
B.

Proof. The goal is to prove that B spans R(2, l)/(y) as a k-vector space,
in fact since the enumerator of B is 2l(1 − t)−2 thanks to the corollary
3.19 it would conclude the proof. Notice that for each d we have

(
2+d−1

d

)
polynomials and 2l functions, using the computations present in the proof
of corollary 3.19 it is easy to compute the enumerator of B.
Now let B0 = {[p(0, h), f ] | h ≥ 0}, then we have

B = (B0 ∪ x1θB0) · {1, x1x2, (x1x2)2, . . . }.

It suffices to show that B0 ∪ x1θB0 spans S = R(r, l)/((x1x2) + (y)) that is
if and only if B0 spans S/(x1).
Notice that if B0 spans S/(x1) then we already know that x1θB0 spans x1S:
in S x1x2 = 0 we have a well defined surjective homomorphism:

S/(x2) → x1S
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sending p+ (x2) → x1p+ x1x2 = x1p and since θB0 spans S/(x2) thanks to
the morphism we can conclude.
Let us prove that B0 spans S/(x1).
We start noticing that the ideal

∑
i∈[l]

(ai − x1, bi − y1)(ai − x2, bi − y2) +
∑
i,j∈[l]

(det

ai bi 1
aj bj 1
x1 y1 1

)

is contained in I(Z(2, l)), for each i ∈ [l] we have just two possibilities:
f(i) = 1 or f(i) = 2.
Clearly the first sum vanishes on Z(2, l), for the second one notice that if
f(i) = f(j) then the first two rows are equal else either i or j is sent to 1
making one of the first two rows equal to the third one.
Now let us consider the ideal

I = I(Z(2, l)) + (x1) + (y)

and the elements a2i − aix2, aibi, b
2
i and x2bi.

The first is in I because we can multiply ai − x1 times ai − x2 and add (x1),
for the second we can take ai−x1 times bi− y2, for the third one we use the
two components with bi and for the last one we take ai − x2 and bi − x1; so
each of these 4 elements belong to our ideal I for all i. Moreover the elements
aibj − ajbi are in I for i, j, to see it it enough to compute the determinant
of the matrix.
Notice that S/(x1) = k[x,y,a,b]/I that, for what we saw before, is spanned
by monomials in k[x2,a,b] not divisible by a2i , aibj , b

2
i for i ≤ j and x2bi.

Therefore the ideal S/(x1) is spanned by

xk2
∏
i∈S

ai
∏
j∈T

bj

and each of these terms is exactly the leading term of an element of B0 and
the tail of the element is in I, this proves that B0 spans S/(x1).

Corollary 3.23. The non trivial ideals I(m, r, k) are generated as ideals in
R(2, l) as follows:

I(2, 2, 0) = (x,a) (3.5)

I(1, 2, k) = (x1x2) +
∑
i∈[k]

(ai − x1 − x2, bi − b1) (3.6)

I(1, 1, k) = (x1) +
∑
i∈[k]

(ai − x2, bi − y2) (3.7)
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Proof. It is easy to see that the ideals on the right is contained in I(m, r, k),
suppose for example we consider the case (3.5), I(2, 2, 0) is the coordinate
ring of

Y (2, 2, 0) =
⋃
f,T

V (xj |j ∈ T ) ∩Wf

where T is a subset of [2] such that

|T ∩ [2]| ≥ 2.

So T must be [2] so Y (2, 2, 0) = V (x1, x2) ∩Wf thus its coordinate ring is
(x,a).

Now we finally can state our theorem of the case n = 2:

Theorem 3.24. For n = 2, each ideal I(m, r, k) ⊆ R(2, l) is spanned as a
k[y]-module by the set of elements p[e, f ] ∈ B satisfying

|[r]\Sk(e, f)| < m

where Sk(e, f) = {j | ej > 0} ∪ {f([k]).

Proof. We observe that for each m, r, k the ideals I displayed in Corollary
3.23 are generated by polynomials which vanishes on Y (m, r, k) thus I ⊆
I(m, r, k).
To prove the other inclusion we just have to go case by case and perform
some routine computations. The tricky cases are well explained here [10].
To conclude the proof we use Lemma 3.15, thus we need to prove that our
polynomials p[e, f ] span k(y)⊗ I(m, r, k).
Now B is a homogeneus basis of k(y)⊗R(r, l) thus it is enough to show that
the pairs e, f not satisfying the condition of this theorem are enumerated by
the Hilbert series of k(y) ⊗ OY (m, r, k). This is true thanks to Corollary
3.20.

3.3 The induction idea

We managed to build a basis for the case n = 2, now the goal is to lift these
constructions for the general case required by Theorem 3.5.
The induction involve the construction of a basis of R(n, l)/I(1, 1, l) from a
basis of R(n− 1, l), the construction of a basis of R(n, l)/I(1, 1, t− 1) from
a basis of R(n, l)/I(1, 1, t) and finally the construction of a basis of R(n, l)
from a basis of R(n, l)/I(1, 1, 0).

Lemma 3.25. Suppose that R(n − 1, l) has an homogeneus common ideal
basis, then so does R(n, l)/I(1, 1, l).
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Proof. Let B′ ⊆ k[x,y,a,b] a common ideal basis of R(n− 1, l) represented
by a set of homogeneus polynomials without involving the variables xn, yn.
We want to show that B = θB′ is a basis of R(n, l)/I(1, 1, l).
Notice that

Y (1, 1, l) ∼= Z(N, l)× Spec k[y1]

because if 1 ∈ f [l] then we have |T ∩ ∅| ≥ 1 that’s clearly impossible, so 1
can’t be in the image of f , so basically we are killing a variable.
So x1 must be zero and y1 doesn’t influence the graph, thus we have our
isomorphism.
This implies that R(n, l)/I(1, 1, l) is a free k[y]-module with basis B.
Moreover if we consider the subset Y (m, r, k) ∩ Y (1, 1, l) of Y (1, 1, l), it
corresponds to the subset YN,l(m − 1, r − 1, k) × Spec k[y1] in Z(N, l) ×
Spec k[y1].
This implies √

I(m, r, k) + J/J = IN,l(m− 1, r − 1, k)⊗ k[y1]

that shows that B is a common ideal basis.

Lemma 3.26. Given n > 1, l > 0 and t ∈ [l], suppose that R(n, l − 1) and
R(n, l)/I(1, 1, l) each have a homogeneus ideal common basis, then so does
R(n, l)/I(1, 1, t− 1).

Proof.

Lemma 3.27. Suppose that R(n, l)/I(1, 1, 0) has a homogeneus ideal basis,
then so does R(n, l).

Proof. First we have that Y (1, 1, 0) = V (x1) and I(1, 1, 0) =
√

(x1).
Since x1 doesn’t vanish identically on any Wf , it is not a zero devisor in
R(n, l) so the multiplication by x1 is an isomorphism between R(n, l) and
(x1).
(Notice that

√
(x1) = (x1))

Let B′ a common ideal basis of R(n, l)/I(1, 1, 0) and suppose that in a given
x-degree we can find a free k[y]-module basis Bd of R(n, l)d such that every
I(m, r, k)d is spanned by a subset of Bd.
Then we claim that x1θBd is a basis of I(1, 1, 0)d+1 with subsets spanning
each (I(m, r, k) ∩ I(1, 1, 0))d+1.
In this case we would have a common ideal basis of I(1, 1, 0)d+1 and the
common ideal basis B′ of R(n, l)/I(1, 1, 0) restricted to the degree d + 1,
with these two sets we can build a free k[y]-module basis Bd+1 of R(n, l)d+1

which is a common ideal basis.
In degree zero, we can take B0 = B′′

0 , since R(n, l)0 = (R(n, l)/I(1, 1, 0))0.
Now we have to prove the previous claim.
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If Bd is a basis then so is θBd therefore x1θBd is a basis of I(1, 1, 0)d+1. Now
observe that for any ideal I ⊆ R(n, l) we have I ∩ I(1, 1, 0) = I ∩ (x1) =
x1(I : (x1)) and if I is radical = (I : (x1)), so V (I : (x1)) is the union of
those components of V (I) on which x1 doesn’t vanish identically.
We can apply this to I(m, r, k) for r > 0 finding

I(m, r, k) : (x1) = θI(m, r−1, k) =⇒ I(m, r, k)∩I(1, 1, 0) = x1θI(m, r−1, k).

For r > 0, this shows that if Bd has a subset spanning I(m, r − 1, k)d, then
x1Bd has a subset spanning (I(m, r, k) ∩ I(1, 1, 0))d+1. This suffices, since
I(m, r, k) is trivially equal to 0 or (1) for r = 0.

We are finally ready to prove Theorem 3.5!

Proof. As we anticipated the proof is by induction on n and l.
The base case for l = 0 is given by Lemma 3.6.
For n = 1 we notice that Z(1, l) ∼= Z(1, 0 ∼= E and that the only non trivial
ideal I(m, r, k) is I(1, 1, 0) which has already been addressed by the case
Z(1, 0), thus the case n = 1 is contained in the case l = 0.
Now let us consider the case n > 0 and l > 0 assuming that R(n, l − 1) and
R(n− 1, l) already have a common ideal basis.
By Lemma 3.25 also R(n, l)/I(1, 1, l) does have it and applying repeatedly
Lemma 3.26 discending t from l to 1. Using this technique we find that
R(n, l)/I(1, 1, 0) has a common ideal basis.
Finally thanks to Lemma 3.27 we prove that so does R(n, l).
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