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Abstrat
In questo lavoro di tesi é stato sviluppato uno stak protoollare basato su IPv6per il sistema operativo TinyOS nell'ambito delle reti di sensori wireless. Lostak protoollare utilizza ome layer di adattamento tra il livello data-link,he segue lo standard IEEE 802.15.4, e il livello di rete, he segue appunto lostandard IPv6, il nuovo standard 6lowPAN. L'arhitettura generale dello stakpermette di ambiare gli standard usati mantenendo inalterata la struttura deiomponenti e delle interfae osí da rendere il odie riutilizzabile sia per altrisopi he per altri sistemi operativi. Lo sviluppo di un omponente he gestisein maniera autonoma un bloo di memoria RAM, ha permesso di astrarre ul-teriormente la gestione dei pahetti IP rendendola indipendente dal partiolarestandard implementato.Nello stak protoollare sviluppato sono state implementate le proedure diompressione e deompressione dell'header IPv6 spei�ate nel draft h-15 ele proedure di frammentazione e deframmentazione dei pahetti IPv6 spiegatenell'RFC 4944. L'autore.



IV



Contents
Abstrat III1 Sensor networks and IPv6 11.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Sensor Networks and Internet of Things . . . . . . . . . . 11.1.2 Hardware Platform and TinyOS . . . . . . . . . . . . . . 31.1.3 802.15.4 standard . . . . . . . . . . . . . . . . . . . . . . . 61.2 Internet Protool version 6 . . . . . . . . . . . . . . . . . . . . . . 92 Related work 192.1 6lowPAN by Matú² Harvan . . . . . . . . . . . . . . . . . . . . . 192.2 blip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.3 Contiki and µIPv6 . . . . . . . . . . . . . . . . . . . . . . . . . . 222.4 TinyNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 Implementation 253.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.2 Design priniples . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.3 Arhiteture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.4 Memory module . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.5 sixlowpan module . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.5.1 Compression and deompression proesses . . . . . . . . . 40



VI CONTENTS3.5.2 Fragmentation and defragmentation proesses . . . . . . . 423.6 IPv6 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.7 UDP module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 Testing and results 474.1 Testing proedures . . . . . . . . . . . . . . . . . . . . . . . . . . 474.2 Send setion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484.3 Reeive setion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534.4 Blip ompatibility . . . . . . . . . . . . . . . . . . . . . . . . . . 564.5 Memory oupation and CPU time analysis . . . . . . . . . . . . 585 Conlusion 615.1 Further improvements . . . . . . . . . . . . . . . . . . . . . . . . 615.2 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Bibliography 68List of Figures 71



Chapter 1
Sensor networks and IPv6
Abstrat:In this haptera brief introdution is given about wireless sensor networks andrelated internet standards, (IPv6, 6lowPAN, adaptation layer).1.1 Wireless Sensor Networks1.1.1 Sensor Networks and Internet of ThingsA sensor network is a network where a set of small devies, plaed inside theinterested environment, keeps under observation some kind of environmentalonditions (temperature, light, humidity, position, ...) and ommuniates theseinformations to a sink node that ollets and store them.An heavy engineering work have permitted to design of a new generation ofdevies whih are able to onsume a relative small amount of energy, but alsoprovide a moderate proessing power. These small devies, so alled "sensornodes" or "motes", are usually equipped with sensors to detet and to measuresome environmental onditions, and with a radio module to be able to ommu-niate with eah other or with the sink node.Typial deployments of these networks are monitoring and ontrolling environ-



2 Sensor networks and IPv6ment in speial situations like wildlife nature (to prevent forests' �re for exam-ple), earthquake site, road tra� analysis or in sensitive buildings like bridgesor dams.The network topology is ad-ho or mesh; nodes an at like server, lient orrouter, they request data to other nodes, answer to a request from another node,or route informations between two nodes that are too far to have a diret om-muniation.Due to the nature of possible appliations, that doesn't permit to easily reahnodes during their operations, these devies have to run for long time on batterypower, hene they have to save energy as more as they an. Therefore the har-ateristis of the nodes are: frequent and long periods on sleep-mode, small radiotransmit power (small radio range), relatively slow working lok frequeny.The most important and ruial aspet is the network protools: a node anlive just few days with radio hip always on; hene a reliable and energy-savingommuniation protool is neessary to permit to leave swithed o� the radiohip as more as we an.Internet of ThingsInternet of Things refers to a new onept on how to think about all the physialobjets. If we suppose that it is possible to provide an internet onnetion toevery eletroni objet, we obtain a network made by objets that ommuniateeah other without the human presene. With Internet of Things every objetmake itself reognizable by the rest of the world, ommuniate its identity, itsassignment and its apabilities; in the same way every objet an ask to otherthings who and where they are, what they an do, and determines if they areuseful to perform its work better or if they an extend its apabilities.It is a ommuniation revolution, every eletroni objet will interoperate withall other eletroni objets in the world. Things will start to work for us andmake our lives easier: an alarm lok that rings ealier in the morning if it knows



1.1 Wireless Sensor Networks 3that it will be road tra�, a fridge that writes the shopping list for us or anhouse that loses its windows when it starts raining and so on.An important appliation that is based on the onept of Internet of Things isthe Smart Grid. It onerns the eletri distribution network that till nowadayshas been being typially unidiretional: a power plant produes and providesenergy to fatories and private houses. But, with new renewable soure energies,everyone an produe and give energy to the ommunity. In this new on�gura-tion every single devie that onsumes or produes energy should be onnetedto the eletri provider network, and it would be possible to ontrol and mon-itor the energy onsumption and prodution to e�iently apitalize renewableenergy.As the miroeletronis researh goes on, devies like nodes an be smaller andsmaller and with more omputing power even keeping a low power onsumption,so it is possible to put in every eletroni item a small node useful to interoperatewith the objet and ommuniate with its neighbor or maybe with every devieonneted to internet. Therefore we an move the wireless sensor network algo-rithms, protools and features to the Internet of Things onept. The issue is todesign an e�ient and reliable network stak for nodes, to make nodes ready toget in the huge world of internet and internet protools.1.1.2 Hardware Platform and TinyOSSine energy onsumption determines sensor node lifetime, nodes tend to havea very limited omputational and ommuniation resoures. Instead of modern32-bit or 64-bit CPU with gigabytes of RAM and terabytes of storage memory,they have 8-bit to 16-bit CPU, with few kilobytes of RAM and few tens of kilo-bytes for program memory. CPUs have 1 to 10 megahertz of lok frequeny, andtheir radio module an send data to a maximum ratio of few hundreds of kilobitper seond. As a result, algorithms, protools and even their implementationsneed to be vey e�ient in terms of resoure omputation (CPU, ROM, RAM,



4 Sensor networks and IPv6energy, bandwidth).The hardware platform hosen for this projet is the TelosB mote. It was orig-inally developed at UC Berkeley and now are produed by the Crossbow Teh-nology ompany and by Moteiv Corporation, now alled Sentilla Corporation.TelosB motes feature a Texas Instruments MSP430 MCU, a 16-bit RISC MCUloked at 8 MHz. The platform o�ers 10 kB of RAM, 48kB of program mem-ory and 16 kB of EEPROM to permanently storage essential datas. It draws1.8 mA in ative mode and just 5.1 µA in sleep mode. Its radio hip, a TexasInstruments CC2420, is a low-power RF transeiver ompatible with the IEEE802.15.4 standard, and it an send up to 250 kbps at 2.4 GHz arrier frequeny.It provides a 128-byte TX/RX bu�er and it draws 18.8 mA to reeive and 17.4mA to send. So it is easy to note that in terms of power, the radio dominatesthe system.
TinyOSTinyOS is a lightweight event-driven operating system spei�ally designed forlow-power wireless sensor nodes. The projet started as a ollaboration betweenthe University of California, Berkeley in o-operation with Intel Researh andCrossbow Tehnology, and has sine grown to be an international onsortium,the TinyOS Alliane.TinyOS di�ers from most other operating system in that its design fouses onultra low-power operation. It is designed for small, low-power miroontrollersmotes; furthermore it has very aggressive systems and mehanisms for savingpower by automatially bringing MCU in low-power mode every time it is pos-sible.TinyOS has a very small footprint, the OS ore requires only 400 bytes of pro-gram and RAM memory; there is no dynami memory alloation no memorymanagement and no virtual memory, all memory is alloated statially at om-



1.1 Wireless Sensor Networks 5pile time. The system provides a set of reusable omponents whih an beombined together. Components implement hardware abstrations of sensors toaess to them on an high level interfae, a sheduler to handle tasks, hardwareinterrupts, timers, aess to �ash memory and radio hip.In TinyOS bloking operations are avoided, I/O alls or long-lateny operationsare usually split-phase: rather than blok until ompletion, a funtion returnsimmediately and then the aller gets a all bak when the funtion or I/O driverompletes its operations. It also provides tasks whih are funtions that areexeuted when every other funtion all have been terminated. Sine only onetask an be exeuted at one there is no warry about data raes.TinyOS uses nesC, a dialet of the C programming language. It doesn't ounton dynami memory alloation or linking. This allows the programmers to an-alyze their programs in terms of memory oupation at ompile time resultingin an e�ient ode optimization. NesC ompiler works like a pre-ompiler thattakes nesC soure ode and produes a C ode. This C ode, then, has to beompiled by a C ompiler. The struture of a nesC program is relatively simple:there are interfaes that set out what a omponents an do by delaring a setof ommands and events, ommands an be alled and events must be handledby every omponent that delares to use that interfae. Components realize oneor more interfae maybe by using other interfaes. Components are of two
Component Interface

Command Event

uses

provides

Figure 1.1: nesC program arhiteture



6 Sensor networks and IPv6types: on�gurations and modules. A module implements interfaes. A on-�guration onnets modules together via their interfaes by providing a wiringspei�ation.1.1.3 802.15.4 standardIEEE 802.15.4 standard spei�es physial and media aess ontrol layers for low-rate and low-power wireless personal area network. Suh networks are typiallylimited to an area of about ten meters width with no infrastruture and limitedpower availability devies.It presents a set of network topologies whih indiates two types of devies:full-funtion devies (FFD) and redued-funion devies (RFD). RFDs would besimple atuators or sensors like swithes or temperature sensors with no largeamount of data to send, hene RFDs an be very simple devies. On the otherhand, FFDs are smarter than RFDs and an work like Personal Area Network(PAN) oordinator . Therefore FFDs an talk to other FFDs and to RFDs,RFDs an just talk to one FFDs at a time.In every network ell a PAN oordinator must be present. The smallest networkell is omposed by an FFDs ating like PAN oordinator and an RFD onnetedto the PAN oordinator. This PAN must have a PAN identi�er whih shall beunique within the radio range. Every PAN an be on�gured like a star network,where every devie must omuniate only with the oordinator; like a luster-tree network where PAN oordinator uses other FFDs to extend its range and toreah farest devies, RFDs an only parteipate like leave nodes; or like a purepeer-to-peer network, a mesh network, where every FFD an talk to eah other,using its neighbor to extend the range, here again RFDs an only talk with thenearest FFD.Every devie shall have unique 64-bit extended IEEE address, set by themanufaturer, that an be used to diretly ommuniate within the PAN. But, adevie an use a 16-bit short address that shall be unique just within the PAN.



1.1 Wireless Sensor Networks 7

Figure 1.2: 802.15.4 possible network topologiesTherefore a new devie that wants to join to a spei�ed PAN needs �rst to waitfor its PAN oordinator whih allows the use of a new 16-bit address.In 802.15.4 standard there are two operation modes: a beaon-enabled mode andnon-beaon mode. In beaon-enabled mode, the PAN oordinator periodiallysends two beaons to the broadast address; these two beaons edge a superframestruture.As it is shown in Figure 1.3, the superframe ontains three time setions. The
Figure 1.3: 802.15.4 superframe struture in beaon-enabled modeCAP setion (Contention Aess Period) is divided in sixteen time slots. The�rst time slot is reserved for PAN oordinator beaon trasmission, the other



8 Sensor networks and IPv6�fteen slots are ontended with other devies of the PAN, in a slotted CSMA-CA (Carrier Sense Multiple Aess, Collision Avoidane) mehanism. The CFPsetion (Contention Free Period) is an optional setion and it is needed whenthere are low-lateny appliations running on devies that need a bandwidthguarantee (GTS means guaranteed time slot). The last setion is an inativesetion, in this interval of time PAN oordinator usually goes on sleep-mode,and other devies should go too.There is di�erene between data transfers from a devie to a oordinator andvieversa. When a devie needs to send data to the oordinator it uses slottedCSMA-CA during CAP, instead when PAN oordinator has a message for adevie, it indiates in the beaon that data are pending for the devie. Thendevie requests it within CAP, the oordinator replies with data within CAPtoo, both using CSMA-CA. Hene when a devie doesn't have data for theoordinator it an't goes on sleep-mode for a while, but it must periodiallywake up and listen to beaon to look if there is any message for it.On non-beaon mode there isn't any superframe struture and an unslottedCSMA-CA mehanism is used. Beaons are still needed for assoiation proesses.Data transfer from oordinator to devie still ours with noti�ation-request-reply proedure. If there is no message for the nodes, the oordinator sends abeaon-data frame with zero-length payload.The max frame length is 128 bytes, that means a payload of about 110 bytes.802.15.4 frames are assoiated with a 16-bit CRC to detet errors. Every framemay be aknowledged with the optional use of aknowledgements. We remarkthat aknowledgements are sent diretly without using CSMA-CA, both in beaonand non-beaon mode.There are also two optional types of seurity servies that an be hosen. In ACL(aess ontrol list) mode, devies maintain a list of devies from whih they arewilling to reeive frames. In seure mode, devies use ryptography servies inaddition to ACL.



1.2 Internet Protool version 6 91.2 Internet Protool version 6IPv6 protool is supposed to be the next generation internet addressing standard.It is designed to sueed IPv4. It is quite di�erent from IPv4. The most impor-tant di�erene is the addressing spae: from the IPv4 32-bit address, (4 × 10
9possible addresses), IPv6 goes to a 128-bit address, that is 3.4 × 10

38 possibleaddresses, 6 × 10
23 addresses per square meter on the earth. Obviously thishange implies that the header length doubles from 20 to 40 byte. Beyond this,IPv6 simpli�es some IPv4 problems and limitations like the onept of NetworkAddress Translation (NAT) that beomes obsolete, the DHCP protool that,in the 6 version (DHCPv6), beomes more powerful and e�ient. Furthermorethere are some routing proess sempli�ations.It is impossible to fully desribe all hanges in IPv6 so, for the sope of this the-sis, only the details inherent to 6LOWPAN implementation will be disussed.An IPv6 paket an arry 1280 bytes of payload and the header format is shownin �gure 1.4.Version, payload length, next header, hop limit, soure and destination address

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Destination Address

Source Address

64

32

0 3 11 15 23 31

192

Figure 1.4: Default IPv6 header�elds are the same as in IPv4 header, and their meanings an be simply inferable;tra� lass and �ow label �elds are still on experimental phase, but they will be



10 Sensor networks and IPv6Address type Binary pre�xUnspei�ed 00...0 (128 bits)Loopbak 00...1 (128 bits)Multiast 11111111Link-loal uniast 1111111010Global uniast everything elseTable 1.1: IPv6 address type identi�ationused for QoS and priority queue management. On the ontrary some IPv4 �eldshad been eliminated: heksum is useless, in fat both upper and lower protoolshave their error detetion mehanisms. Identi�ation and fragment o�set �eldswere elided, this doesn't mean that IPv6 doesn't have fragmentation, but thatIPv6 fragmentation is like an option that needs optional header. NextHeader�eld inludes optional headers like soure routing, hop-by-hop routing and oth-ers, they all have a �xed length with a known pattern, so the length an bealulated, and the payload beginning an be well inferred.Beause of this huge address spae extension that IPv6 introdues, address as-signement an be rethought in another way.First of all, in IPv6 addresses are assigned to interfaes, and they an be of threetypes, uniast, multiast or anyast: uniast address indiates one and only onespei� interfae; multiast address spei�es a set of interfaes, a message sent toa multiast address must be delivered to all interfaes of the set; anyast addressindiates a set too, but when a message is sent to an anyast address, it an bedelivered just to only one interfae of the set.The type of an IPv6 address is identi�ed by its high-order bits as it is shown intable 1.1. Last bits of an IPv6 address represent the interfae ID or, for multiastaddresses, the group ID. Interfae IDs are set up by the devie onstrutor andare permanently stored in the devie's memory.



1.2 Internet Protool version 6 11In �gure 1.5 some typial IPv6 address strutures are shown; �gure 1.5b shows
global routing prefix subnet ID interface ID

n bits m bits 128 − n − m bits(a) Global uniast address
1111111010 interface ID

10 bits 54 bits 64 bits

00...00(b) Link-loal uniast address
1111111010 interface ID

10 bits 54 bits 64 bits

subnet ID() Site-loal address
11111111 flags scope group ID

8 bits 4 bits 4 bits 112 bits(d) Multiast addressFigure 1.5: IPv6 address typesthe link-loal address template; when a devie starts up it forms the link-loaladdress without the help of any DHCP server; then using that address as soureaddress it an ontat the nearest DHCP server, using UDP, to ask for the globalpre�x of its subnet to form a global uniast address, and starts to ommuniatewith the whole internet network. The only di�erene between a link-loal ad-dress and global address is that routers don't forward link-loal pakets. Henesubnet masks or NAT servies beomes useless.The IPv6 headers typially is 40 byte long, while IPv6 standard delaresthat the maximum payload length for a single IPv6 paket an be 1280 bytes,the result is a very e�ient division between payload and overhead. But data-link standards typially don't provide messages payload with those dimensions,hene it is often needed to design an adaptation layer to �t IPv6 pakets insidedata-link messages.



12 Sensor networks and IPv6Sine in most network topologies, hosts have no energy problems, data-link pro-tools don't have to save energy or keep under ontrol energy usage, and henethese adaptation layers are quite simple, they just have to provide a way to breakinto piees IPv6 pakets to let these fragments �t in data-link messages.In wireless sensor networks, other than paket dimension problems, there arealso energy problems to solve, so a more ompliated adaptation layer is needed.Moreover another aspet should be noted: in wireless sensor networks, messagesarry small amount of data, only on�guration informations or small values liketemperature or lightness, that an easily �t in a single data-link message, but ifhosts use IPv6 protool they have 40 more bytes to arry in every message, anda notieable ine�ieny appears, espeially for what onerns the energy usedby radio hip.6lowPAN working group within the IETF is onerned with the spei�ationfor transmitting IPv6 pakets over low energy and lossy networks. The groupis working on two di�erent douments: header-ompression draft and neighbor-disovery draft. Both drafts have arrived at their �fteenth version. The �rstdoument desribes how to make IPv6 pratial on 802.15.4 networks, meh-anisms for header ompression and for paket fragmentation, and provisionsfor paket delivery in 802.15.4-based mesh networks. The seond draws somehanges to IPv6 neighbor disovery proess that doesn't suit in low-power, lossyand transitive networks.In this work, the seond draft wasn't been onsidered, so it will not be om-mented anymore.
A �rst raw version of 6lowPAN standard doument is RFC 4944 ([1℄), inwhih fragmentation, header ompression and mesh dispathing are desribed.
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1     0 hops leftV F

40 2 3 8

originator address, final destination addressFigure 1.6: Mesh header formatMesh headerMesh header has been thought for mesh networks where routing operations ismade at data-link level. In that on�guration every forwarder host hanges thesoure and destination data-link address �elds with respetively its data-linkaddress and the next-hop data-link address. The interesting thing is that everyrouting operations is made at data-link level, so in order to keep the true soureand �nal destination data-link addresses it is neessary to write them somewhere.Figure 1.6 shows the mesh header format. First two bits ompose the patternto reognize that mesh header is present, V and F �ags indiates respetively ifthe originator or the �nal destination data-link addresses is written in a 16-bitformat or in an IEEE extended 64-bit format. Addresses would follows these�ags. With these address informations every forwarder an know who is theoriginator, who is the �nal destination and then alulates who is the next hopfor that paket to reah the destination host.
Fragmentation proessThe fragmentation mehanism uses a fragmentation header that must be presentin every fragment of the paket, and some rules on how to break the paketpayload and to write the right data in the headers. On �gure 1.7 fragmentationheaders formats are shown. The �rst fragment relative to other ones has adi�erent initial pattern value. This di�erene saves the 1-byte �eld datagramo�set, in fat sine the �rst fragment is reognizable by the pattern, it doesn'tneed to arry the o�set, that is 0. Rules to break the IPv6 paket in two
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datagram size datagram tag1 1 0 0 0

0 4 6 31(a) Fragmentation header for �rst fragment
datagram size datagram tag1 1 1 0 0

0 4 6 32

datagram offset

40(b) Fragmentation header for subsequent fragmentsFigure 1.7: fragmentation headersor more fragments are ompliated and have been disussed for long time on6lowPAN IETF mailing list. First of all, datagram size �eld must indiate thesize of the unompressed unfragmented IPv6 paket. Then the datagram o�setstates, by multiple of 8 bytes, the position where to plae the fragment payloadwithin the unompressed unfragmented IPv6 paket. So the IPv6 paket mustbe broken in parts that are multiple-of-8-byte long, exept the last fragmentthat will ontain the remaining bytes. In priniple these rules seem to be simple,but in pratie there are some problems. In fat the header ompressor has toremind the size of the new ompressed header and, at the same time, the old sizeof the unompressed header just beause when the fragmentation module startsbreaking the IPv6 paket, it has to take the original size of the IPv6 paketinto aount to alulate the right size of fragments, even if it will write theompressed version of the IPv6 header.Anyway this mehanism permits to defragmentation module to instantly alloatea bu�er to save and restore the unfragmented IPv6 paket, as it reeives the �rstfragment (hronologially �rst) of the paket, and, if we are sure that only the�rst (�rst by position) fragment will ontain ompressed headers, it will be ableto opy the 802.15.4 frame payload of last (last by position) fragments withinthe bu�er just by wathing at the datagram o�set of the frame.Last, there is a tag �eld that is a random 16-bit �eld, that must be equal forevery fragment of a paket. It is needed to distinguish fragments of di�erent



1.2 Internet Protool version 6 15pakets.IPv6 header ompressionThere are several rules to ompress an IPv6 header. A �rst series of rules wereexplained in RFC4944, but after few months a new doument has started to bewritten, more detailed, with more e�ient rules and mehanisms. Suh rules areexplained on the 6lowPAN draft HC-15 ([2℄).The ompressed IPv6 header is signaled by the presene of the LOWPAN-IPHCDispath. After a distintive pattern, there are a series of �ags indiating howthe original IPv6 header has been ompressed and whih header �elds are arriedin-line and immediately follow the dispath. Figure 1.8 shows the Dispath.2 bits TF �eld refers to Tra� Class and Flow Label �elds. 4 ombinations
0    1    1 TF NH HLIM CID SAC SAM M DAM

0 3 5 8 9 10 12 13 14 16

DACFigure 1.8: LOWPAN IPHC Dispathare possible so 4 ompression sizes an be used, eah ombination indiates howmany bytes have been ompressed and how many bytes are kept from the origi-nal IPv6 �elds. It is possible to arry �elds all in-line (4 bytes) or to arry onlyone of them, the other is impliitly stated 0, or if they are both 0 it is possibleto elide them at all.1 bit NH �eld states if the next Header �eld uses the LOWPAN-NHC ompres-sion mehanism or if the IPv6 next header �eld is arried in-line. Next HeaderCompression is a partiular teniques that permits to arry some informationabout transport layer protool or about IPv6 extension headers within the 1byte next header �eld.2 bits HLIM �eld ompresses the hop limit �eld; there are some standard hoplimit values often used for normal paket transmissions. These three values (1,64, 255) an be rapresented by a 2 bits value, the fourth ombination states that



16 Sensor networks and IPv6the hop limit �eld is arried in-line after the Dispath.1 bit CID, SAC and DAC �elds deal with the ontext ompression mehanism.It involves a periodially information exhanges by routers to hosts. Doument[2℄ desribes how to use these ontext informations, while doument [3℄ explainhow these information should be reated and ommuniated aross the network.In pratie "ontext informations" means that hosts should have informations,stored in their memory, about state of the network and other hosts sorroundingthem. With these informations shared by every host, it is possible to elide partof, or maybe the whole, internet address of another host. Writing a small ode(4 bit) that is used like an index, an host an retrieve in its ahe, informationsabout a neighbor host. This work doesn't deal with this kind of ompression.2 bits SAM and DAM �elds states respetively how many bytes of soure anddestination addresses are written in-line. Possible hoies are 128, 64, 16 bits or0 bit. With a stateless ompression, that means no ontext information avail-able, an address an be ompressed if and only if it has a link-loal pre�x, so�rst 64 bits an be elided; if the last 64 bits present a partiular pattern, it ispossible to ompress them till 16 or even to 0 bits, that means that the wholeaddress an be alulated by some default known patterns and by address �eldsof the data-link header.A speial note has to be made about multiast addresses; �rst of all only des-tination address an be a multiast address, so the 1 bit M �eld refers only todestination address and spei�es if it is or not a multiast address. If it isn't,destination address ompression works like for soure address one; if it is, thereis another set of patterns to ompress it, so if destination multiast addresspresents one of those patterns it an be ompressed to 48, 32 or 16 bits.Using these ompression rules a 40 byte IPv6 header an be ompressed to only3 bytes.Beause of low-power and lossy network behaviours, as transport protoolUDP is often used. In fat UDP doesn't need handshaking operations or a-



1.2 Internet Protool version 6 17knowledegement mehanisms, so a lot of energy an be saved. The UDP headeris muh smaller than TCP header, for example, but in [2℄ a mehanism to om-press UDP header too is shown.As it is explained, if the 1 bit NH value states that LOWPAN-NHC ompression
1    1    1    1    1    0 C P

0 5 6 7Figure 1.9: LOWPAN NHC headeris used, in the next header �eld it is possible to arry some information aboutUDP header. Figure 1.9 shows the 1 byte next header �eld with UDP protoolinformations. First �ve bits �eld is a pattern to reognize that informations areabout UDP header, C bit states if heksum �eld is present, while 2 bits P �eldindiates how soure and destination port number �elds has been ompressed.LOWPAN-NHC ompression ounts on a set of UDP port numbers that an befully ompressed: if soure and destination ports are both in the range that goesfrom 0xF0B0 to 0xF0BF , they an be ompressed in a 1 byte �eld. If eithersoure or destination port is in the range that goes from Ox0F000 to 0xF0FFit an be ompressed in a 1 byte �eld, the other port number is arried in-line.With this ompression mehanism an UDP header an be redued from a sizeof 8 bytes to 1 byte.Last thing to say is about length �eld of IPv6 and UDP headers: those valuesan be well inferred either from lower layer or fragmentation header.
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Chapter 2
Related work
Abstrat:In this hapter the most important works on 6lowPAN implementation for low-power development platforms are presented. Sine it is hard to �nd informationabout ommerial version of 6lowPAN implementations, for this thesis only aa-demi works were been studied.2.1 6lowPAN by Matú² HarvanMatú² Harvan has implemented the very �rst aademi version of 6lowPAN forTinyOS. He shared his work in 2007, and it is based only on RFC4944 [1℄ sine6lowPAN h drafts ([2℄) ([3℄) were not been started to be written yet. So thefeatures of LOWPAN_IPHC ompression teniques are not implemented.Anyway this implementation is able to manage mesh and fragmentation header,broadast header (that is an header for link-level broadast messages) and LOW-PAN_HC1 ompression mehanism desribed in [1℄.Even if this projet still remain a good starting point to study how to build agood implementation of a 6lowPAN module for TinyOS, it has a lot of limita-tions and gaps. It an't manage two defragmentation proesses at same time,so only one fragmented paket at a time an be reeived. It is impossible to use



20 Related workanother transport protool sine there is no interfae to diretly aess to anyIP module or something like that, only UDP datagrams an be sent. Last thingis about the struture of the implementation: when Harvan omposed 6lowPANstrutures and headers he didn't use paked struture that permit to e�ientlystore 1-bit �ags, but he de�ned all these strutures as traditional struture andthen to pik �ags he �ltered these variables with masks. With paked struturesthe aess to �ags beomes easier and more diret, and maybe, sine a lot of bit-wise operation to extrat 1-bit values beomes useless, some program memoryan be saved.2.2 blipBlip (Berkely Low-power IP stak) is an implementation in tinyOS of a numberof IP-based protools, that is been being arried on by Berkeley WEBS (wirelessembedded systems) group.Blip �rst release was on 2008, and now a 2.0 version is available. This last ver-sion is based on draft h-06, so most of the relevant updates from RFC 4944has been made. WEBS group is working on a new version that will respet last6lowPAN standard rules, but as written in their website, they are still waitingfor a �nal and approved doument, even for neighbor-disovery standard too.Blip is a very big and well-strutured projet that supports various interfaes,header �les and modules. In fat it doesn't deal only with IPv6 header om-pression but also with transport layer protools (UDP and TCP), with neighbordisovery proedures and with routing protools (next version will have RPL asrouting protool). WEBS group within the �rst version also have provided aBaseStation appliation with a on�guration sript to install an IPv6 networkinterfae on a Linux-based PC to start developing a real IPv6-based sensor net-work. So Blip is surely a ready-to-go implementation of 6lowPAN for TinyOS.In this thesis only header ompression is dealt with, so all other BLIP parts will



2.2 blip 21be ignored.The most onsiderable thing is how RAM memory is managed while dealingwith pakets and header ompression operations. As said before, in TinyOSRAM memory alloation is stati, so variables and bu�ers are alloated duringompilation stage; hene if a big bu�er is rarely needed and for the most of theoperating time it would be useless, i.e. that amount of RAM memory would stayunused. When dealing with pakets of di�erent sizes, this limit is ampli�ated;in fat even if the most of pakets would be few bytes long, it is neessary toalloate an amount of memory to let the biggest possible paket �t in. In blipthis problem is solved with a set of funtions that manages a huge bu�er, alledheap, between modules; alling mallo and free funtions every blip modulesan ask for some memory and then release it. With this original innovation, itis possible to deal with more than one paket at a time while using less memorythan the biggest possible paket size.Blip also provides more than one transport protool interfae, so it is possibleto hoose between UDP and TCP, but if both of this protools are not suitable,it is possible to diretly link appliations to IPv6 interfae, to all send and rv(reeive) ommands, and hene to implement an proprietary transport protool.On the ontrary blip is very heavy both in terms of program and RAM memory:a small appliation like UDPEho that just answers to request made to port 7,ompiled with blip, weighs about 25 kilobytes in program memory and 5 kilo-bytes in RAM memory; so in a platform like telosB it remains only 23 kilobytesin program memory and only 5 kilobytes in RAM memory. Generally an appli-ation needs not only a transport appliation but also an appliation protoollike soap or oap; so less than 23 kilobytes may be not enough for an appliationprotool and the appliation too.



22 Related work2.3 Contiki and µIPv6Contiki is an open soure operating system for memory-onstrained networkedembedded systems. It is written by Adam Dunkels from the Swedish Instituteof Computer Siene. Contiki is designed for embedded systems with smallamounts of memory. A typial Contiki on�guration is 2 kilobytes of RAM and40 kilobytes of ROM.Like TinyOS, Contiki adopts an event-driven system to manage memory andthreads, but, opposed to tinyOS, it permits to dynamially load and unload pro-grams and servies.One of Contiki's main features is a set of well strutured and lightweight net-work protool staks whih µIPv6 is surely the leading edge. µIPv6 is the world'ssmallest erti�ed IPv6 stak, it an runs on IEEE 802.15.4 and Ethernet, its di-mension is about 11 kylobytes of program memory and 1.8 kylobytes of RAMmemory. Within µIPv6 there is a set of header and funtion �les, so alled SIC-Slowpan, that realizes a 6lowPAN implementation that respets RFC4944 andthe seond version of 6lowPAN header-ompression draft (h-01). As reported,a full-feature IPv6/6lowPAN Contiky OS image weighs 40 kylobytes of programmemory and 10 kylobytes of RAM memory. SICSlowpan is not imlemented likea servie but like a set of funtions, that are alled by MAC when a paket arrivesor by the IP servie when there is a paket to send. Like 6lowpan by HarvanSICSlowpan defragmentation funtion an't proess more than one paket at atime, so while it is reostruting one paket, all fragments that doesn't belongto that paket will be dropped. Mesh header and link level routing are ignoredsine Contiki targets the route-over tenique.2.4 TinyNETTinyNET [4℄ doesn't deal with 6lowPAN, but it is a framework that allows devel-opment and a quik integration of network protools in TinyOS. It is developed



2.4 TinyNET 23at the University of Padova. The development originated from the fat that veryfew appliations are atually built based on reusable omponents, sine the mostwidespread approah is to implement ad ho, monolithi bloks that deliver therequired funtionalities. The original idea is to reate a general struture tosupport the use of di�erent protools without totally hanging the bakbone ofTinyOS network stak. With this idea an arhiteture made of interfaes andon�guration �les has been implemented, it permits to anyone to implement hisown network protool at any level of protool stak, without thinking about onhow to integrate his protool in TinyOS network protool stak.Sine the importane of this thesis is not how 6lowPAN ompression funtionshas been implemented, but how the whole arhiteture has been thought, andsine tinyNET struture design is one of the basi priniples of this projet, anintrodution to this work is in order.



24 Related work



Chapter 3
Implementation
Abstrat:Chapter starts with a general and high-level desription, then goes down ana-lyzing interfaes ommands and events and some spei� and peuliar funtionsthat distinguish this work from other implementations.
3.1 IntrodutionBefore starting to desribe projet objets and arhiteture features, it is nees-sary to make some remarks.In this 6lowPAN implementation work the author has had a relevant role at eahsteps, from the beginning when other tinyOS 6lowPAN implementations mustbe studied and analyzed to �nd laks, through the main steps when the arhi-teture has been designed, and the implementation has been made, even till theend when tests were realized and exeuted.



26 Implementation3.2 Design priniplesThe design stage of this sixlowpan implementation were made in ollaborationwith Eng. Angelo P. Castellani and Eng. Mattia Gheda, who had the lead ofstarting this new projet. They has some spei� ideas and objets about howto realize an e�ient and versatile network stak and how to struture interfaesand omponents of this 6lowpan implementation:� RAM memory entri optimization: reate a memory manager omponentthat would manage RAMmemory for the whole programs and appliationsrunning on a node. Fous on RAM management that ompensates thatTinyOS gap about stati RAM alloation. This module provides two basifuntions to deal with RAM memory from appliations: allo and freefuntions, and some other funtions properly designed for network proto-ols: reallo and hreallo, funtions that extends or redue a bu�errespetively on tail or head. These kind of funtion are very useful whendealing with pakets, headers and footers;Figure 3.1 shows that this new omponent's funtions and features will be
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Figure 3.1: Design of memory omponent arhiteture



3.2 Design priniples 27shared by all omponents of a node maybe by appliation programs too,not only when they have to send a message but also for their own funtions.� modular standard support: inapsulate as muh as possible all protooldependant proedures and funtions to allow future updates or to makefuntions portable to other platforms or other OSs;� lear layer design: split layers as muh as possible and avoid modules thatinlude more than one protool to simplify the design operations and ode.But at the same time keep redued the number of funtion alls that weigha lot on ode dimension. With the right data strutures, funtion alls anbe redued and ode an be made light. Hene if the arhiteture is welldesigned, it is possible to take advantage of modular funtions keepingode light.� level 2 and level 3 routing support: develop both route-over and mesh-under routing mehanisms to postpone the hoie. With route-over, nodesbuild routing tables with IPv6 addresses and routing protool works withIPv6 messages, at data-link level only an IPv6 to data-link address transla-tion is needed sine route-over provides IPv6 address of next-hop hosts. Onthe ontrary with mesh-under, nodes build routing tables with data-linkaddresses and routing protool works with data-link messages, IPv6 mod-ule ommuniates to lower levels the destination's IPv6 addresses ignoringhow routing operations are made.RAM memory manager was designed implemented and tested before this projetstarted, so it will be disussed but not referred to as a omponent designed duringthis thesis work.



28 Implementation3.3 ArhitetureIn �gure 3.2 the overall protool stak arhiteture with raw rapresentations ofdi�erent modules is shown.As it is shown every network protool layer has its own module, so if a right
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Figure 3.2: An outline about system arhitetureset of interfaes and data strutures are written with right set of input param-eters to eah ommands and events, it is possible to implement, for example, adi�erent IPv6 adaptation layer for the same MAC layer without modifying anyother modules. The ISO-OSI protool stak priniple that says that every layeris indipendent from others is kept. This guideline together with the RAM mem-ory omponent that stores and shares data between modules, it make possible toimplement a generi, reusable and, at the same time, light and e�ient struturethat stays indipendent from whih protool standard is hosen.The same reasoning an be made for what onerns routing protools. A rout-ing protool has substantially to answer to few questions that may be asked bynetwork or data-link layers about next hop hosts' addresses to reah a given des-



3.3 Arhiteture 29tination. Routing protools try to �nd these answers with a messages exhangebetween nodes. So a routing protool implementation needs to send and reeivemessages and have to answer to next-hop questions.i n t e r f a  e RouteOver {ommand void getNextHop ( slp_ip6_addr_t* addr , slp_ip6_addr_t*nextHop) ;ommand void forwardAddr ( slp_ip6_addr_t* addr , slp_ip6_addr_t*nextHop) ;} Listing 3.1: Route over routing interfaei n t e r f a  e MeshUnder {ommand ieee154_saddr_t getNextHop ( slp_ip6_addr_t* addr ) ;ommand ieee154_saddr_t forwardAddr ( ieee154_saddr_t addr ) ;} Listing 3.2: Mesh Under routing interfaeHene as it an bee seen in �gure 3.2 and in listings 3.1 and 3.2, routing inter-faes are simple but omplete. IPv6 module will be linked to RouteOver interfaewhile 6lowPAN module will use MeshUnder interfae's ommands.Obviously these two modules will never work at the same time, sine just onerouting module is needed, so if route-over is hosen, mesh-hunder beome anuseless module and vieversa.Both MeshUnder and RouteOver interfaes have two ommands that, apart thename, appear to be equal; the di�erene is that with getNextHop ommand rout-ing module must answer with a valid address, but with forwardAddr ommandrouting module an answer with a null address if it doesn't want that messagesare forwarded.For messages exhange, RouteOver module will be linked to ICMPv6 module,while MeshUnder module will be diretly linked to tinyOS radio drivers.



30 ImplementationWith this on�guration both route-over and mesh-under routing modules be-ome two blak boxes, IPv6 and 6lowPAN modules don't need to know anythingabout them, whih routing protool is used, if route-over or mesh-under is used,what kind of informations are exhanged, it is possible to implement any kindof routing protool without a�eting any other modules.This aspet is key for this thesis. To build a struture that permits to reuse odes,to implement the newest protool version without any other thought about thewhole struture of the system.In �gure 3.2 there are two more modules not been presented yet: NeighborRes-olution module provides ommands to translate an IPv6 address in a data-linkaddress; IPv6Con�g module provides all features inherent to host addresses.Every data-link interfae an have more than one IPv6 address, normally it hasa link-loal and a global uniast address, but also it an be registered to oneor more multiast addresses; hene IPv6Con�g maintains and manages a ahewith all these addresses.3.4 Memory modulei n t e r f a  e Memory {ommand memory_id_t a l l o  (memory_size_t s i z e ) ;ommand void f r e e (memory_id_t id ) ;ommand void * id2p (memory_id_t id , memory_size_t* s i z e ) ;ommand error_t r e a l l o  (memory_id_t id , memory_size_t s i z e ) ;ommand error_t h r e a l l o  (memory_id_t id , memory_size_t s i z e ) ;} Listing 3.3: memory omponent interfaeAs it an be seen in listing 3.3 memory interfae provides ommands to handleRAM memory: memory_size_t and memory_id_t are two uint16_t data types,the �rst one is used to de�ne the memory size in bytes, the seond one is usedto identify an alloated bu�er.



3.4 Memory module 31When an appliation has to send a message it alls allo funtion that returnsa valid ID (if suh amount of memory is not available it returns 0), then theappliation alls id2p funtion to take bak a pointer to memory spae from theID, to use for writing data. After writing it an pass the ID to the transportprotool for sending. UDP omponent has to add its own header to the bu�erhead, so it alls hreallo funtion that adds an amount of bytes taken as inputparameter, if there is no error signals, UDP alls again id2p funtion to beginwriting its header; then it passes the paket to lower layer, and so on.The same proedure is used when a paket is reeived: the lowest layer thathandle the IPv6 paket (sixlowpan) asks for a bu�er, writes the paket andpasses the paket to upper layer, whih takes a pointer to the datagram, startsreading its own header and then resizes the bu�er by alling hreallo funtionwith a negative value of size parameter.So appliations payload, one it is written by the lowest network layer, substan-tially doesn't move any more till it arrives to the appliation program that anstart reading it and maybe delete it by alling free funtion.With this tenique there is no problem about bu�er pointers that hange valuesor beome obsolete, and there is no need to opy a huge amount of bytes to movedata to another bu�er.To implement these features, the memory omponent uses one huge blok ofRAM memory statially initialized and few strutures made of a modi�ed Poolomponent, alled SortedPool. This pool di�ers from a lassi TinyOS pool:sorted pool assigns an ID to every ative element, and it is able to get bak apointer to the element by its ID.In the memory omponent there are two lists made of those modi�ed Pools,one alled FreeList and one alled OList; these two lists represent bloksof bu�er's memory that are respetively free or alloated. At the beginning,OList is empty and FreeList has one element that represents a blok of emptymemory as large as the whole RAM memory assigned to this omponent. When



32 Implementationallo funtion is alled, it heks in the free list if there is an element that repre-sents a blok of empty memory bigger or equal than the requested size. If thereis, it resizes that element and also add a new element in oupied list. Whena bu�er has to be leared, the referred element in the oupied list is removed,and a new element in free list is added, then a hek is made: if there are twoontiguous elements in free list, they are joined in one element.hreallo funtion before doing the same job as allo funtion, heks if thereis an element in free list that represents an amount of free memory that liesbefore alloated bu�er. If there is, it removes the element in the free list andadds that amount of memory to the element that represents the bu�er, if thereisn't, it works like the allo funtion, i.e. it looks for a free memory blok aslarge as the sum of the alloated bu�er and the hreallo input size parameter,then opies data from old bu�er to that just alloated, and frees the old one.reallo funtion works like hreallo funtion on the bu�er tail.3.5 sixlowpan moduleThe most signi�ant omponent that was implemented is alled sixlowpan; itprovides few interfaes and few header �les whih inlude the most signi�antand ruial funtions to implement the 6lowpan layer.In �gure 3.3 header �le's names and what they realize are shown. Files with.h extension de�ne strutures and onstants for headers, while �les with . ex-tension de�ne funtions to handle these strutures. As it is shown, 6lowPANheaders was splitted in two di�erent header �les, one alled RFC4944 where frag-mentation and mesh header are handled and the other HC15 where last 6lowPANheader ompression teniques, desribed in [2℄, are implemented.For better understanding on how these header �les are involved in 6lowPANimplementation, some strutures and funtion prototypes are shown.
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Figure 3.3: An outline about sixlowpan module and header �lestypede f s t r u  t {memory_id_t paket ;slp_ip6_addr_t nextHop ;boo l heksumElide ;slp_mesh_opt_t mesh ;slp_frag_opt_t f r a g ;s lp_ontext_t ontext ;uint16_t byteLe f t ;} slp_paket_entry_t ;Listing 3.4: paket entry data struturetypede f nx_strut {nx_uint8_t pattern : 2 ;nx_uint8_t v : 1 ;nx_uint8_t f : 1 ;nx_uint8_t hopsLeft : 4 ;nx_uint16_t o r i g i n a t o r ;nx_uint16_t f i n a lDe s t ;} slp_mesh_opt_t __attribute__ ( ( paked ) ) ;Listing 3.5: mesh header struturetypede f nx_strut {nx_uint16_t pattern : 5 ;



34 Implementationnx_uint16_t s i z e : 1 1 ;nx_uint16_t tag ;nx_uint8_t o f f s e t ;} slp_frag_opt_t __attribute__ ( ( paked ) ) ;Listing 3.6: fragmentation header strutureListing 3.4 shows the ruial struture, used both by sixlowpan send and reeiveommands, to store fundamental informations to handle IPv6 datagrams withthe minimum number of external funtion alls.memory_id_t and slp_ip6_addr_t, are the memory ID where the paket isstored and IPv6 address of the next hop host; slp_mesh_opt_t and slp_frag_opt_tare respetively mesh and fragmentation headers of the IPv6 paket, stored inproper strutures (shown in listings 3.5 and 3.6) of IPv6 paket; byteLeft vari-able is used by reeive proedure to keep trae of how many bytes remains toomplete the IPv6 paket. heksumElide boolean variable indiates if LOW-PAN_NHC ompression have elided the heksum �eld. Sine to elide hek-sum �eld sixlowpan needs the permission from appliation program, this variableshould state the appliation's order.typede f nx_strut {nx_uint16_t pattern : 3 ;nx_uint16_t t f : 2 ;nx_uint16_t nh : 1 ;nx_uint16_t hlim : 2 ;nx_uint16_t  id : 1 ;nx_uint16_t sa : 1 ;nx_uint16_t sam : 2 ;nx_uint16_t m: 1 ;nx_uint16_t da : 1 ;nx_uint16_t dam : 2 ;} slp_h15_header_t __attribute__ ( ( paked ) ) ;Listing 3.7: LOWPAN_IPHC header dispath struture



3.5 sixlowpan module 35typede f nx_strut {nx_uint8_t pattern : 5 ;nx_uint8_t  : 1 ;nx_uint8_t p : 2 ;} slp_h15_udp_nh_t __attribute__ ( ( paked ) ) ;Listing 3.8: LOWPAN_NHC dispath strutureIn listings 3.7 and 3.8 LOWPAN_IPHC and LOWPAN_NHC header struturesare shown. Field and �ag's names respet those one assigned in the draft dou-ment [2℄.Those strutures are pratially never instantiated, but only pointers of thisstruture types are instantiated, and then asted to a generi bu�er. By thisproedure, the aess to �ags is diret and doesn't need any masks or bitwiseoperations, and at the same time ode is kept simple and more readable.uint8_t f i l l 1 s tMs g ( slp_paket_entry_t* entry , void * messagetPayload, uint8_t messagetPayloadLength , void * paketPayload , uint16_tpaketPayloadLength , void * ompHeader , uint8_t ompSize , uint8_to r i g i n S i z e ) ;uint8_t f i l lOthe rMsg ( slp_paket_entry_t* entry , void *messagetPayload , uint8_t messagetPayloadLength , void *paketPayload , uint16_t paketPayloadLength ) ;uint8_t deompress ( void * messagetPayload , slp_paket_entry_t* entry) ;uint8_t f i l l P a y l o a d ( slp_paket_entry_t* urrentEntry , void *paketPayload , void * messagetPayload , uint8_tmessagetPayloadLength ) ;Listing 3.9: Some of the most important funtion delarations of RFC4944. �leIn listing 3.9 some funtions used to handle mesh and fragmentation headersare shown. fill1stMsg funtion is used to �ll an IEEE 802.15.4 message with�rst IPv6 paket's fragment or even with the whole IPv6 paket if it is small



36 Implementationenough. It reeives pointers and sizes of the data-link message payload and theIPv6 paket, it also reeives pointer and sizes of the IPv6 header before andafter ompression, to rightly �ll data and to alulate the o�set. fillOtherMsgis used to write other IPv6 paket fragments in data-link messages, it doesn'tneed any information about the IPv6 ompressed header sine in subsequentfragments the IPv6 header would not be present and the o�set value is su�ientto alulate whih bytes to send are remaining. fillPayload funtion is used inthe reeive proess to write the IPv6 paket payload within the bu�er.uint8_t HC15Compress ( void * paketPayload , void * bu f f e r , uint8_t *o r i g i nS i z e , boo l useMeshOrNeigh , boo l heksumElide ) ;uint16_t HC15deodeHeader ( slp_paket_entry_t* entry , void *messagetPayload , uint8_t messagetPayloadLength , void *paketPayload , ieee154_saddr_t maSrAddr , ieee154_saddr_tmaDestAddr , uint8_t * o r i g i n S i z e ) ;Listing 3.10: Some of the most important funtion delarations of HC15. �leListing 3.10 shows the two fundamental funtions to ompress and deompressthe IPv6 header. HC15Compress funtion needs a pointer to IPv6 header be-gin and a pointer to a bu�er where to write ompressed header, then it returnssizes of header before and after the ompression proess. The two parametersuseMeshorNeigh and heksumElide are needed to state if it is possible respe-tively to elide the last 2 bytes of IPv6 addresses and the UDP heksum �eld.HC15deodeHeader funtion deompress the IPv6 header by reading it in the�rst fragment of an IPv6 paket and then writing it in a bu�er and, as for om-pression funtion, it has to return both ompressed and deompressed sizes ofIPv6 header. maSrAddr and maDestAddr parameters are needed in the asethat last 2 bytes of IPv6 addresses have been elided.The sixlowpan module mainly implements the 6lowPAN standard.



3.5 sixlowpan module 37i n t e r f a  e IPv6Adaptation {ommand error_t send (memory_id_t pk , slp_ip6_addr_t* nextHop) ;event void sendDone (memory_id_t pk , error_t e r r o r ) ;event void r e  e i v e (memory_id_t pk ) ;} Listing 3.11: IPV6Adaptation interfaeAs it is shown in listing 3.11 there is not a 6lowPAN interfae, but a more generiinterfae IPv6Adaptation. This solution keeps the system open to future im-provments and development also for other possible adaptation layers. It is aquite simple interfae with minimal ommands and events: memory_id_t is theID of the memory spae where IPv6 datagram is loated and slp_ip6_addr_t*is a pointer to IPv6 address of the nextHop. As already explained, the name nex-tHop doesn't fore IPv6 to provide a true next hop address, in fat if route-overwill be used, next hop will be true next hop and NeighborResolution module willtranslate that address to a data-link address, on the ontrary if mesh-under willbe used nextHop will be the destination address and the true next hop data-linkaddress will be alulated by mesh-under module.Sine the sixlowpan omponent is the �rst omponent in the network proto-
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38 Implementationol stak that has to deal with IPv6 paket and data-link message at the sametime, and it has also to deal with a paket fragmentation proess, some poolsand queue are needed. So the memory omponent beome less useful than it isfor IPv6 or UDP module. In fat here it is just used to write or read the IPv6paket, not to add or remove 6lowPAN headers.Furthermore, sixlowpan module must implement a lot of operations before send-ing an IPv6 paket, so a non monholiti solution has been hosen. In fat, if alloperations would be made in a single step inluded in the send ommand, CPUwould be pre-empted for too muh time. So the operations has been split inthree phases omputed by tasks. The �rst phase is implemented by sixlowpansend ommand and onsists in instantiating a new paket entry and �lling thisentry with the most part of the information that an be alulated in that mo-ment, like mesh header or IPv6 next hop address. Last operation is to enqueuethe entry in the paket entry queue. The seond phase is implemented by a task,alled paketTask, it makes the most important and long time operation, thatis popping �rst element of paket entry queue, extrating the next fragment tosend, if it is the �rst, then ompressing IPv6 header, instantiating a new IEEE802.15.4 message, writing payload and �lling MAC header with the relevant in-formation, and, last, enqueuing the message in the message queue. The thirdand last phase is made by another task, alled sendTask, that has simply to pop
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3.5 sixlowpan module 39�rst element of message queue, all send ommand of Ieee154Message interfaeand wait for sendDone signal to hek if message is sent.As it is shown in �gures 3.4 and 3.5 every task manages its own queue. Theyare posted when an element is enqueued and they don't stop exeuting till thequeue beomes empty. In this way CPU doesn't stay busy in exeuting one sin-gle funtion but it an be requested by other funtions more frequently, makinga lighter and prompt system.The reeive proedure is muh less ompliated, in fat just one task is used.When tinyOS driver signals that a new message is arrived, sixlowpan reeivealls the event handler, enqueue the message in a reeive message queue andthen posts the reeiveTask. The task pops the message, extrats headers, thendeompresses IPv6 header if present. If message is a fragment of an IPv6 paketit heks if fragmentation header tag value is already present in the paket-to-defrag list, then if it is, it writes payload in the right plae in the bu�er, if itis not, it alloates a new bu�er, write the payload and puts a new entry in thelist. When an IPv6 paket is reeived and defragmented, it passes the bu�er IDto the upper module that handles IPv6 header.We remark that it is the reeiveTask that heks if there is a mesh header andif the message has to be forwarded, it asks to MeshUnder module to provide anext hop address, it hanges data-link destination address and then enqueuesmessage in the message-to-send queue.Sixlowpan module also provides an Ieee154MessageSend and Ieee154Reeive in-terfae. Sine maybe it is neessary for some appliations to diretly send andreeive non-IPv6 messages, to reognize these kind of messages it is neessaryto add on payload head one byte with a known pattern that signals that mes-sage is out of IPv6 protool ommuniations. This job is made by sixlowpanmodule, and when a non-IPv6 message has to be sent, sixlowpan moves the mes-sage payload to empty the �rst byte and write the NALP (not a lowpan paket)pattern. The same thing must be done when a message is reeived: sixlowpan



40 Implementation�rstly hek if NALP pattern is present, if it is, it signals a reeived messageon Ieee154Reeive interfae, otherwise it enqueues the message as explainedbefore.3.5.1 Compression and deompression proessesSine it is a proedure explained in draft h-15, ompression and deompressionfuntions is performed in HC15. �le.. . .slp_ip6_header_t * header = NULL;slp_UDP_header_t* UDPheader = NULL;slp_h15_header_t* HC15Dispath = NULL;slp_h15_udp_nh_t * nextHeaderCompress = NULL;. . .header = ( slp_ip6_header_t *) paketPayload ;paketPayload += s i z e o f ( slp_ip6_header_t ) ;. . .HC15Dispath = ( slp_h15_header_t*) bu f f e r ;bu f f e r += s i z e o f ( slp_h15_header_t) ;headerS i z e += s i z e o f ( slp_h15_header_t ) ;. . .Listing 3.12: HC15Compress funtion's ode fragment to show strutures use.As said before, strutures like slp_h15_header_t or slp_h15_udp_nh_t arenever instantiated, only the pointer of those strutures types are used. In listings3.12 this use is shown: pointers are initially instantiated with a NULL value;then the pointers to the bu�ers ( paketPayload and buffer) are asted to bethose struture type pointers.Other ode fragments show how ompression proesses is made, in partiular 3.13refers to the hop limit �eld, while 3.14 shows soure address ompression proess.



3.5 sixlowpan module 41swith ( header−>hopLimit ) {ase 1 :HC15Dispath−>hlim = SLP_HC15_HLIM_1;break ;ase 64 :HC15Dispath−>hlim = SLP_HC15_HLIM_64;break ;ase 255 :HC15Dispath−>hlim = SLP_HC15_HLIM_255 ;break ;d e f au l t :HC15Dispath−>hlim = SLP_HC15_HLIM_INLINE;mempy ( bu f f e r , &(header−>hopLimit ) , s i z e o f ( header−>hopLimit ) ) ;bu f f e r += s i z e o f ( header−>hopLimit ) ;headerS i z e += s i z e o f ( header−>hopLimit ) ;break ;} Listing 3.13: HC15Compress funtion's hop limit ompression proess.temp = &(header−>soure ) ;HC15Dispath−>sa = SLP_HC15_SAC_STATELESS;i f (memmp(temp , &SLP_LINKLOCAL_NET_ADDR, s i z e o f (SLP_LINKLOCAL_NET_ADDR) ) !=0) {HC15Dispath−>sam = SLP_HC15_SAM_128 ;mempy( bu f f e r , &(header−>soure ) , s i z e o f ( header−>soure ) ) ;bu f f e r += s i z e o f ( header−>soure ) ;headerS i z e += s i z e o f ( header−>soure ) ;} e l s e {temp += s i z e o f (SLP_LINKLOCAL_NET_ADDR) ;i f (memmp(temp , &SLP_EUI64_SHORT_ADDR, s i z e o f (SLP_EUI64_SHORT_ADDR) ) !=0) {HC15Dispath−>sam = SLP_HC15_SAM_64;mempy( bu f f e r , temp , s i z e o f ( header−>soure ) − s i z e o f (SLP_LINKLOCAL_NET_ADDR) ) ;



42 Implementationbu f f e r += s i z e o f ( header−>soure ) − s i z e o f (SLP_LINKLOCAL_NET_ADDR) ;headerS i z e += s i z e o f ( header−>soure ) − s i z e o f (SLP_LINKLOCAL_NET_ADDR) ;} e l s e {i f ( useMeshOrNeigh )HC15Dispath−>sam = SLP_HC15_SAM_0;e l s e {HC15Dispath−>sam = SLP_HC15_SAM_16;temp += s i z e o f (SLP_EUI64_SHORT_ADDR) ;set_16t ( bu f f e r , get_16t ( temp) ) ;bu f f e r += s i z e o f ( header−>soure ) − s i z e o f (SLP_LINKLOCAL_NET_ADDR) − s i z e o f (SLP_EUI64_SHORT_ADDR) ;headerS i z e += s i z e o f ( header−>soure ) − s i z e o f (SLP_LINKLOCAL_NET_ADDR) − s i z e o f (SLP_EUI64_SHORT_ADDR) ;}}} Listing 3.14: HC15Compress funtion's soure address ompression proessJust to better understand: set_16t funtion is needed to solve well knownproblems about TinyOS'  ompiler for MSP430 MCU that auses some troubleswhen opying 2 bytes �elds.Deompression funtion works in the same manner, bu�er pointers are astedto be spei�ed struture pointers and then, by simply reading LOWPAN_IPHC�ags, IPv6 header is rebuilt.3.5.2 Fragmentation and defragmentation proessesFragmentation and defragmentation funtions are implemented in RFC4944.�le. The mehanism ounts on more than two funtions sine it involves data-link payload �lling and extrating.



3.5 sixlowpan module 43i f ( paketPayloadLength − o r i g i n S i z e + ompSize <=messagetPayloadLength ) {. . . // IPv6 paket an f i t in a s i n g l e message_t} e l s e {. . . // wr i t ing fragment headeri f ( ompSize < messagetPayloadLength ) {. . . / / f i l l f i r s t fragment with IPv6 ompressed header andf i r s t fragment o f payload} e l s e {// ond i t i on not ons ide r ed}} Listing 3.15: �ll1stMsg funtion's ode fragmentAs explained, fragment header o�set value must be alulated taking are ofunompressed IPv6 header, so fill1stMsg funtion, that deals with �lling data-link message's payload with �rst fragment, reeives both size values of the IPv6header, before and after ompression. This funtion has �rstly to hek if thewhole IPv6 ompressed paket an �t in a single message, if not then startswith fragment operations. In listing 3.15 this heks are shown, in partiularthe �rst if statement is made to hek if 6lowPAN paket an �t in a sin-gle data-link message, this ontrol is made by piking IPv6 paket size valuepaketPayloadLength, subtrating IPv6 header size value originSize (it maytakes are of ompressed UDP header) and then adding 6lowPAN header valueompSize. The seond if statement is made to hek if 6lowPAN header an�t in a single data-link message. This statement must be always true, sine, aswritten, the false ase is not handled.. . . // opy fragmentat ion headermessagetPayloadLength −= s i z e o f ( entry−>f rag ) ;paketPayloadLength −= entry−>f rag . o f f s e t *8 ;i f ( messagetPayloadLength < paketPayloadLength ) {



44 ImplementationmessagetPayloadLength = ( uint8_t ) ( messagetPayloadLength / 8) ;mempy (messagetPayload , paketPayload , messagetPayloadLength *8) ;. . .entry−>f rag . o f f s e t += messagetPayloadLength ;} e l s e {. . . / opy l a s t bytes o f paket payload} Listing 3.16: �llOtherMsg funtion's ode fragmentIn listing 3.16 fillOtherMsg funtion ode is shown: after writing the fragmen-tation header in the 802.15.4 message payload, messagetPayloadLength andpaketPayloadLength values are alulated, �rst one by subtrating the sizeof fragmentation header, seond one by subtrating the o�set value whih isstated as an 8 multiplier. Then if IPv6 paket payload left over is still largerthan 802.15.4 message payload, the available spae in the data-link message isdivided by 8 and rounded to obtain a minimum ommon multiplier of 8, whihwill be the amount of bytes (multiplied by 8) of the IPv6 paket that will bewritten in the message. On the ontrary if IPv6 paket bytes left over are lessthan the data-link message payload, they are diretly written, and sine the IPv6paket is sent at all, no more o�set value has to be alulated.Funtions to defragment an IPv6 paket are so simple that no ode samples areneeded.deompress funtion simply heks if the fragmentation header is present ondata-link message head, then if there is, it opies the header in the entry->fragstruture.fillPayload funtion reeives pointers to the data-link message and to the IPv6paket bu�er, it alulates the o�set by reading its value in the entry->fragstruture and then it opies the right amount of bytes in the bu�er. In the aseof �rst message whih ontains 6lowPAN header, reeiveTask, before allingfillPayload funtion, moves the IPv6 paket bu�er's pointer to the �rst byte



3.6 IPv6 module 45after the deompressed IPv6 header, so fillPayload funtion, that reads a 0 inthe o�set �eld, doesn't notie that it is writing not in the real �rst bu�er's byte,whih would a wrong position, but in the �rst byte after the IPv6 deompressedheader.3.6 IPv6 moduleIPv6 omponent is very simple, it doesn't have any tasks, send ommand andreeive event handler do their job at one.Send ommand doesn't provide any extension header features, so it has to add40 bytes of the default IPv6 header to the paket bu�er, then it �lls IPv6 �eldsand alls send ommand of the sixlowpan omponent.Same thing is done by reeive event handler that an't reognize any extensionheaders and it just reads the default IPv6 header, removes IPv6 header by usinghreallo Memory's funtion, and redirets reeive signals to right transportprotools.3.7 UDP moduleAs the IPv6 module, the UDP funtions rely on the memory module to add andremove UDP header from appliation pakets. send and reeive proesses areentirely held in single funtions and they simply handle the lassi UDP header.UDP module is linked to IPv6 module by its IANA next Header number, whihis 17. On the other hand, appliations an be linked to UDP module by thesoure port number, sine UDP doesn't deal with LOWPAN_NHC ompressionmehanism and hene it doesn't know anything about port patterns for ompres-sion, there is no formally restritions when hoosing port numbers. Appliationsand appliation programmers, will deide what port number to use and they willtake are about squeezable port numbers.
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Chapter 4
Testing and results
Abstrat:In this hapter, test results are shown. Sine neither neighbor disovery nor dhplient modules were implemented or developed, test proedures only deal withpoint-to-point ommuniations, IPv6 addresses have been statially assigned tonodes, and routing modules only return default values. For the same reason,even mesh header using was not tested.Hene prinipally these trial programs aim to put this sixlowpan implementationunder stress situations, both in ompression and deompression, fragmentationand defragmentation proedures, to �nd the saturation points of the send andreeive funtions.4.1 Testing proeduresAll test programs work over UDP protool with ports and addresses values setto permit to fully ompress headers. Prinipally three types of test have beenmade: one to test the send funtions, one to test the reeive funtions and thelast to make this implementation ompatible with the most important tinyOS6lowPAN implementation i.e. blip.Throughput performanes aimed by this implementation are all ompared with
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Figure 4.1: Network on�guration during teststhose aimed by tinyOS CC2420 radio drivers, so it will be possible to weigh thissixlowpan implementation on the whole network protool stak of tinyOS.4.2 Send setionSend test programs aim to �nd the maximum bitrate that send funtions ansubstain. Normally to �nd the maximum throughput of a network protool,an appliation send a message and wait for the send-done signal before sendinganother one; the throughput value is alulated by ounting the number of mess-sages sent every seond. But, sine sixlowpan module makes use of few pools,queues and tasks, to real stress the send funtions this kind of proedures wouldnot be enough.So test programs are designed in a way that pools and queues are �lled as muhas possible and hene tasks never stop exeuting themselves: the appliationrequests to the UDP module to the send a paket every spei� time intervalwithout waiting for send-done signals, throughput is alulated by taking noteof the time interval when a lot of error messages are returned by send ommand.Sine some parameters, like pools dimension, must be set at ompile time, tostudy the best on�guration and to �nd the best performane a omplete set ofparameters was used, where all parameters ombinations are inluded.
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Figure 4.2: Throughput in funtion of UDP paket size for di�erentIEEE802.15.4 frame dimensions
To make these tests automati few sripts have been written in bash language,these sripts simply ompile and program node with a spei� set of on�gurationparameters, then by using well known, tinyOS java programs, they interepet failmessages printed on serial port by nodes. If the number of reeived fails is morethan a spei� value they onsider the test as �nished and start another one withdi�erent on�guration parameters ombination. Nodes are programmed with atest program that, as said before, requests to send an UDP paket at a spei�time interval ounted by a timer. Every few minutes test appliation reduesthe time interval and send the new rate time on serial port. In this way afterthe sript ompletes all possible tests, in a log �le all results are available.Apart from pools dimension the IEEE802.15.4 frame size too was hanged duringthe tests. This parameter a�ets very muh performanes, in fat if the data-linkpayload size is redued, more fragments would be needed to send a paket. In�gure 4.2 this kind of in�uene is shown, di�erent olor lines represent di�erent
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Figure 4.3: Throughput in funtion of IEEE802.15.4 frame size for di�erent UDPpaket size
IEEE802.15.4 message sizes. After a transitional range of paket sizes, through-puts ahieve a stable value; for a spei� paket size, di�erent IEEE802.15.4frame sizes hange the number of fragments per paket.Figure 4.3 shows another behavior of this implementation ompared with thatof CC2420 tinyOS drivers. The blak line states the maximum throughput thatan be reahed by tinyOS CC2420 drivers, while other lines indiate throughputvalues for di�erent UDP paket sizes. It is possible to see that the maximumthroughput value reahed by both this implementation and tinyOS drivers arefar from the maximum bitrate value supported by CC2420 radio hip, that is 250kbps. On the ontrary, the redution aused by sixlowpan is small, and hene itdoesn't make throughput performanes so muh worst.In �gure 4.4 another kind of in�uene is shown. In this hart throughputs arealulated for di�erent values of sixlowpan module's pools size while UDP paketsize and data-link frame size stay �xed. Throughput trends is substantially sta-
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Figure 4.4: Throughput in funtion of message_t pool size for di�erent paketentry pool dimensions
ble in the range from 40 to 45 kbps, and maybe the small variation does notdipend on the parameter hange but on radio interferenes and timer auray.If a queue dimension is set to one (or even two), the queue pratially doesn'texist any more, so all advantages that ome from the tasks based system disap-pear. Hene for very small pool dimensions the throughput goes down. On theontrary for bigger pool dimensions, throughput di�erenes are less visible. Thishappens beause of the test appliation arhiteture: sine only one appliationrequests to send a paket at a time, the number of paket entries that an bestored at the same time doesn't matter, in fat just one is needed. For futureappliatons this parameter should be set taking into aount the number of ap-pliations that ould request to send an IPv6 paket.The same behaviours appears if the data-link message queue is too small: thetasks have to stop themselves beause the queue is always full, moreover a toobig queue is useless if the mean number of fragments in whih an IPv6 paket



52 Testing and resultsis split, is less than the queue size. Moreover, sine the most of the time theCPU is waiting for tinyOS radio driver to send phisially messages (as it will beshown next), having a big data-link message pool is useless, in fat after a while,tasks have to stop themselves to wait for the data-link message queue emptying.So even this parameter too, should be set to a suitable value that onsiders themean dimension of IPv6 pakets that are sent and hene the mean number offragments in whih a paket is divided.To better understand the send speedness redution of this implementation, an-
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Figure 4.5: Equivalent throughput for di�erent UDP paket sizes in funtion ofthe number of sender nodes that sends in the same radio hannel, ompared withtinyOS radio driverother series of tests has been made. Their objetive was to saturate the radiohannel. This purpose was reahed by programming more than one nodes withthe same appliation used to test the throughput, set to send messages over thesame radio hannel. In this way, the presene of more than one nodes, balanesthe slowness of tinyOS radio drivers and hene a bigger equivalent throughputan reahed.



4.3 Reeive setion 53Figure 4.5 shows results of hannel saturation tests. The blak line shows equiva-lent throughput reahed by tiniyOS radio driver, while other lines show through-put reahed by UDP protool for di�erent paket sizes. Like in �gures above,this 6lowPAN implementation redues the sending speedness, but follows thetrend made by tinyOS radio driver.4.3 Reeive setionA �rst series of tests was made: while one or more nodes periodially sendpakets, another node, ating as a reeiver, reeives pakets and heks if it losesome pakets by omparing an inner progressive ounter with the one written inmessages, if they are not equal it means that some pakets were lost and a failmessage is signaled. But this kind of tests provides bad results both at data-linkand UDP level: a reeiveing rate of 1 to 5 kbps. Hene this test algorithm wasquikly abandoned.A seond type of reeiver tests was made: one or more node send messages,
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Figure 4.8: Reeive rate paket for di�erent paket entry pool sizeswhile the reeiver ounts how many messages it an reeive every minute. Thisreeiver results, made both on data-link and UDP level, were more enouraging,
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Figure 4.9: Reeive rate for di�erent paket entry timeout interval
and they are shown in �gure 4.6. Sine throughputs for some UDP paketsizes go down as the number of nodes grows, it seems that sixlowpan stakdoesn't work. However this is not ompletely true, UDP pakets are dividedinto more than one data-link messages, and if one of those messages is lost,all other fragments have been dropped after few seonds, and hene they arenot inluded in the number of reeived pakets. In addition, sine one paketentry struture is busy on waiting for the last fragment (that is lost), other UDPpaket fragments may are dropped beause no other paket entry strutures areavailable, so paket entry pool dimension heavily a�ets reeive rate. Moreover,even data-link message queue dimension a�ets the rate: reeiver node is notable to proess reeived messages at the required speed, so if more than onesender node sends a big UDP paket, reeiver node has to enqueue all thosefragments, but, sine the pool dimension ould be smaller, it is pretty sure thatsome fragments would be dropped. Another parameter that a�ets reeive rate isthe RAM memory bu�er size assigned to memory omponent: if memory bu�er



56 Testing and resultsassigned to memory omponent is redued, there is less spae to alloate bu�ersand hene less available spae to reonstrut IPv6 pakets.This kind of in�uene on pools dimension and timeout interval is shown in �gure4.7, 4.8 and 4.9. Some sample tests were made, for di�erent data-link messagepool dimensions, and also for two di�erent paket entry timeout intervals. In�gure 4.8 the a�ets of paket entry pool dimension is shown.Unlike send setion, tuning operations to maximize the reeive rate appear tobe ompliated, apparently all onsistent hypothesis that ould be made aboutpool dimensions seem to be true in reality only for big hanges of parametervalues, but memory availability avoid any kind of tests to proof these rules. Infat an indiret onsequene of this parameter hanges is that if one pool isset to a big value, beause of limited RAM memory availability, it is neessaryto redue other pool dimensions, in partiular, sine RAM memory assigned tomemory omponent draws the biggest part of available RAM memory, it mustbe heavily redued. So when a test to hek if a bigger pool dimension mayause better performaes is made, results ould be heavily a�eted by otherpool dimensions redution. However tests made on reeiver setion were veryhard and maybe do not re�et a typial operating situation where nodes rarelysend big pakets at the same time. So even if harts shows a low raeive rate,this 6lowPAN implementation would not have any reeive problems if used in anormal environment.4.4 Blip ompatibilityAs said before, unfortunately blip projet is stopped to sixth version of the draft[2℄, and further the atual blip version is not ompletely supported: there isn'tany test appliation that works with it, and the appliation that realizes thebasestation is not ready. Anyway an attempt to let this two implementationsommuniate eah other has been made.



4.4 Blip ompatibility 57UdpEho appliation was modi�ed to suit the newer blip version and also somehanges for what onern IPv6 address assignement has been made. On theother side, in this 6lowPAN implementation some modi�ation are needed todowngrade the addressing ompression mehanism from �fteenth to sixth versionof the draft.Finally a small system has been made: a node running UDP Eho appliationwith blip, answers to another node that sends an ICMPv6 eho request by usingthis 6lowPAN implementation. Ping tests has been running for few years withoutany problems or fails.With this ompatibility result a omparing hart has been drawn, to omparesend throughput of this two 6lowPAN implementations.Sine blip UDP interfae doesn't provide a sendDone signal, test proedure that
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Figure 4.10: A omparison between sixlowpan and blip stak, throughput fordi�erent UDP paket sizeswas used to test blip has been the same used to test send setion of this 6lowPANimplementation: a timer that marks the rate of UDP paket sending.



58 Testing and resultsFigure 4.10 shows that blip an reah good values of throughput just for bigpakets, this means that the rate, number of pakets per seonds substantiallydoesn't hange when pakets grows, and hene blip spends always the same timeto send a paket, no matter how big it is.4.5 Memory oupation and CPU time analysisLow power network means also low memory platforms, so after the analysis ofthe performanes it is neessary to study and analyze the memory usage of thisimplementation. The most heavy module is obviously sixlowpan and its header�les.Sixlowpan module itself oupy 8522 bytes of program memory and 543 bytes
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Figure 4.11: Program memory oupation of sixlowpan moduleof RAM memory. Those amount of RAM memory is prinipally used by queuespools and funtion alls, sine only pointers are istantiated during 6lowPAN pro-edures (ompression, fragmentation ...).



4.5 Memory oupation and CPU time analysis 59Figure 4.11 shows how program memory is shared out among various sixlowpansetions. Compression and deompression funtions oupy the same amount ofmemory, while reeive tasks are heavier than send ones.IPv6 module oupies about one kilobyte of program memory and only few bytesof RAM memory. IPv6 send setion oupies about 70 % of its ROM memoryand 30 % the reeive setion. Anyway those values might be wrong sine IPv6module is not omplete at all.UDP module is even muh smaller, it oupies just three hundreds of byte, prin-ipally used by send funtion.Both IPv6 and UDP module substantially don't use RAM memory, this ad-vantage ome from the using of the memory module that permits to only usepointers and to save struture instantiations.After memory oupation it is possible to see CPU time using of various pro-esses exeution. This hart is obtained by keeping traking of CPU time whenproesses start and when they �nish.Obviously this measure an't be aurate sine the funtion that saves and al-ulates CPU times use itself the CPU and so the measure is a�eted by its.Anyway it an give an idea of how muh tinyOS radio drivers use the CPU time.More than 80 % of the time, CPU is busy on exeuting radio drivers' funtionsand proedures. Sixlowpan module spend a lot of time not in ompression orfragmentation funtions but in funtions alling to take elements by queues orto set data-link header.
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Chapter 5
Conlusion
Abstrat:In this hapter few �nal onsiderations about this projet are made. Pros andons are analyzed. To understand if this work will be useful for future imple-mentations of high-level network appliations or even if this arhiteture ouldbe reused to implement low-level network protools. Missing parts are signaledand �nally some remarks to explain where performanes an be improved maybewith few hanges on algorithms.5.1 Further improvementsA lot of parts are still missing from this implementation and hene this imple-mentation is not ready to start working in a network.Anyway there are some ode parts that ould be hanged to enhane perfor-manes both for memory usage and energy onsumption sides.Memory omponent passed a series of tests that has proved that the omponentas it is, is almost stable. But it oupies quite some RAM memory as a sidee�et. This means that other than the used bu�er there are few strutures thatuse a lot of RAM and program memory to manage bu�ers among appliations.Moreover this memory omponent is quite stable if bu�ers are alloated just to



62 Conlusionsend a message and then they are released, no tests have been made to hekhow this omponent behaves when an amount of memory are onstantly usedand alloated while the rest of RAM are used by many appliations. No defrag-mentation tasks are implemented, so it is possible that after a while some kindof fragmentation problems ould rise.Compression and deompression funtions are written without any kind of provi-sions for stateful ompression so ode dimensions surely will grow as ontext-baseompression would be implemented.Moreover ompression funtion simply reads IPv6 header and starts to om-press. This proedure ould be improved if IPv6 module passes to sixlowpanmodule some informations on whih IPv6 addresses has been used, if it an passa boolean value to let sixlowpan knows if link-loal or global uniast addressesare written in IPv6 header, ompression funtion ould save a lot of omputationtime and program memory spae.Unfortunatelly, the deompression funtion, that already now is bigger than theompression one, an't be improved, in deompression phase, sine sixlowpanmodule doesn't know anything about IPv6 header of a paket, so every possibleompression ombination must be handled.5.2 ConlusionIt's too early to tell if this implementation ould be useful to develop appliationseasier and faster than now, but surely the ideas that stand behind this projetare quite good to hange the network stak struture of tinyOS.Stati alloation of RAM memory is a good thing to develop programs and mod-ule that runs on memory onstrained platforms, but it su�ers when dealing withpakets and more than one network layer.Similarly, developing one huge stand-alone omponent that implements all net-work layers needed for appliations, is useful to save program memory, to make



5.2 Conlusion 63an e�ient module that doesn't waste RAM memory or omputing time, butwhen standards are updated or maybe only some rules are modi�ed it's veryompliated to handle those omplex programs to make the hanges. Heneeven if some program or RAM memory are wasted, it is better to separate stan-dards in di�erent modules to permit in an easier way to hange parts of ode orto implement other standards, even later.
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Conlusion
Abstrat:In questo apitolo vengono fatte alune onsiderazioni �nali su questo progetto.Vengono analizzati i pro e i ontro per apire se questo lavoro potrá essere utileper future implementazioni di apppliazioni di rete ad alto livello, o magarise l'arhitettura potrá essere riutilizzata per implementare protoolli di rete abasso livello. Vengono segnalate le parti mananti e, per �nire, vengono fattealune note per spiegare dove modi�are l'implementazione per aumentare leperformane dello stak.Ulteriori miglioramentiMolte parti sono anora mananti, perió questa implementazione non é prontaper poter funzionare all'interno di una rete.In ogni aso esistono alune parti di programma he potrebbero essere modi�-ate per migliorare le prestazioni sia in termini di memoria usata sia in terminidi energia onsumata.Il omponente memory ha subito numerosi test ed é stato provato he allo statoattuale esso é pressohé stabile. Forse peró vi é un eessivo spreo di memoriaRAM ome e�etto ollaterale, infatti oltre al bu�er alloato, i sono alune strut-ture dati, utili a gestire i bu�er tra le appliazioni, he oupano troppa memoriaRAM e memoria di programma . Inoltre, questo omponente é stabile se i bu�er



66 Conlusionvengono alloati solo per inviare messaggi per poi essere liberati; nessun test éstato fatto per veri�are il omportamento del omponente nella situazione inui un bu�er é alloato permanentemente mentre il resto della memoria viene us-ata dalle appliazioni. Nessuna proedura di deframmentazione, infatti, é stataimplementata, perió é possibile, he dopo un erto di periodo di funzionamento,possa insorgere un problema di deframmentazione della memoria.Le funzioni di ompressione e deompression sono sritte senza nessun tipo dipredisposizione alla ompressione di tipo stateful, quindi on molta probabilitála dimensione del odie aumentare, non appena la ompressione a ontesto verráaggiunta.La funzione di ompressione sempliemente legge l'intestazione IPv6 e omprimeil piú possible seondo le regole; questa proedure potrebbe essere migliorata seil modulo IPv6 passasse al modulo sixlowpan qualhe informazione ira il tipodi indirizzo IPv6 usato. Con un valore booleano, ad esempio, IPv6 potrebbeinformare sixlowpan se gli indirizzi sono in formato link-loal o global, faendoosí risparmiare al modulo sixlowpan tempo e memoria programma.Sfortunatamente, la funzione di deompressione, he giá allo stato attuale o-upa piú he quella di ompressione, non puó essere resa piú leggera: in fase dideompressione, il modulo sixlowpan non onose nulla sul tipo di ompressioneusata, perió deve essere in grado di interpretare qualunque tipo di intestazione6lowPAN.ConlusioneÉ troppo presto per dire se questa implementazione potrá essere utile per svilup-pare appliazioni in maniera piú semplie e veloe rispetto ad adesso, ma di siurole idee he stanno alla base di questo progetto saranno utili alla riformulazionedella struttura dello stak protoollare di tinyOS.L'alloazione statia della memoria RAM �� utile per lo sviluppo di programmi



5.2 Conlusion 67e moduli impiegati su piattaforme on vinoli sulla memoria, ma é deleterioquando si ha a he fare on pahetti e piú di un layer protoollare.In maniera analoga, sviluppare un unio grande omponente he implementatutti i livelli di rete neessari alle appliazioni, é neessario se bisogna risparmi-are memoria, o per realizzare un modulo e�iente he non sprehi memoriaRAM o tempo di alolo; ma quando gli standard vengono aggiornati o magarisoltanto alune direttive vengono modi�ate, diventa molto ompliato maneg-giare questi omponenti per implementare i ambiamenti. Perió, anhe a ostodi spreare un po' di memoria RAM e programma, é meglio separare gli stan-dard in diversi moduli per permettere, di fare pioli ambiamenti, o addirittturaambiare l'intero standard, in maniera piú semplie e faile, anhe se i'ødovesseavvenire in un seondo momento.
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