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CHAPTER 1

Introduction

The ultra-fast optical manipulation of the magnetic order has become a topic of great interest in mod-
ern magnetism. The feasibility of controlling the magnetization with light paves the way to potential
applications ranging from high density magnetic data storage [1], spintronics [2], to quantum infor-
mation processing [3], [4]. The frontier of the ultra-fast control of the magnetization precession is
represented by experimental studies that involve ultra-short laser pulses (fs), that is the time domain
of opto-magnetism. In these experiments, the high-intensity optical pulse generates a transient DC
field in the material which twists the magnetization, and a second probe pulse allows for studying the
induced magnetic changes.

This thesis describes a novel method for the full-optical control of the magnetization precession in
a ferrimagnet, based on the utilization of a mode-locked laser system with repetition rates in the
≈GigaHertz range. This tecnique allows for sustaining the magnetization precession in the steady-
state regime, condition that has not been realized in previous opto-magnetic experiments. The mag-
netic system responds to the optical laser excitation with a radiation field which is used to systemat-
ically investigate the phenomenon. The analysis is conducted in Yittrium-Iron garnet (YIG) samples
by means of ferromagnetic resonance (FMR) techniques. Measurement are conducted in two dif-
ferent configurations, i.e. with the samples in free field couple to a single loop antenna (free field
measurements) and in a cavity-QED framework, which is realized by enclosing the magnetic sample
in a microwave resonator. In both cases the magnetization precession is optically driven by tuning the
repetition rate of the picosecond laser pulses to the Larmor frequency of the magnetic sample. This
condition is achieved through a previous characterization of the system in the frequency domain by
means of microwave network analysis. As compared to the free field scheme, detection of the radiated
field in the cavity during the laser action allows to estimate the radiated field amplitude by measuring
the power absorbed by the sample.
In the cavity we accomplish a strong coupling regime between the magnetostatic modes of the YIG
sample and the cavity mode. This regime is the so-called hybridization that can be described with a
simple classical model of a pair of coupled harmonic oscillators.
In order to avoid thermal effects, investigation of the photoinduced magnetization precession is con-
ducted using 1550nm-wavelength laser pulses, in the transparency window of the YIG samples. The
phenomenon is explained as originating from the non-linear inverse Faraday effect (IFE) where by
laser light can modify the magnetization of the material. In the model that has been developed it
is possible to simplify the thoretical description of the photoinduced magnetization vector, and the
model is tested by investigating the intensity dependence of the emitted microwave field amplitude.

1
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Most importantly, the signal dependence from the incident light polarization gives relevant signatures
of the IFE.



CHAPTER 2

Ultrafast control of the magnetization

This thesis describes a novel method for the full-optical control of the magnetization precession in a
ferrimagnet, based on the utilization of a multi-GHz laser system. Such a scheme allows for sustain-
ing the magnetization precession in the steady-state regime, condition that has not been realized in
previous opto-magnetic experiments. The phenomenon arises from opto-magnetic non-linear effects,
and we investigate it in Yittrium-Iron garnet (YIG) samples by means of ferromagnetic resonance
(FMR) techniques. In order to better control the involved physical observables, measurements are
also conducted in a cavity-QED framework, which is realized by enclosing the magnetic sample in a
microwave resonator. In this condition FMR magnetostatic modes of the YIG sample couple to the
cavity mode and we optically drive the hybridized system that can be described with a simple classical
model of a pair of coupled harmonic oscillators.

2.1 Review of magnetization dynamics
The macroscopic quantity we are interested in is the magnetization M of a magnetic material. This
vector is the classical manifestation of the microscopic magnetic properties of the unpaired electrons
in the material. Electrons behave indeed like magnetic dipoles [5], each carrying an angular momen-
tum of electron spin S and possessing a magnetic dipole moment µµµ , given by

µµµ =−geqe

2me
S =−γeS (2.1)

where ge , qe , me and γe are respectively the spin g-factor, the modulus of the charge, the mass, and the
gyromagnetic ratio of the electron. The vectorial sum over each of the quantum-mechanical momenta
of spin in the material gives the classical magnetization vector, normalized over the total volume V of
the material

M =
µ

V

N

∑
i=1

Ĵi . (2.2)

This allows for a classical discussion of the problem in terms of one macroscopic spin, as first intro-
duced by Bloch [6].
The energy of a magnetic dipole µµµ in a given applied field H0 is E =−µµµ ·H0, and defines the minimal
energy equilibrium position for the magnetic moment parallel to the field direction. At equilibrium,
the magnetic moments of the electrons are thus aligned opposite to the field direction, due to the
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negative sign of the electronic charge. If the magnetic moment is tilted of an angle θ with H0 by a
small external force, one of the consequences of having a magnetic moment µµµ proportional to the
intrinsic angular momentum J, is that the electronic magnet will precede. The moment µµµ will indeed
undergo a torque τττ equal to

τττ = µµµ×H0 (2.3)

which will try to bring it back to the equilibrium direction, causing the angular momentum vector J to
precede about a cone. The angular velocity can be expressed as ω0 =

dφ

dt u, being u the unitary vector
along the istantaneous rotation axis. Since the rate of change of the angular momentum is equal to the
exerted torque dJ

dt , using eq. (2.1) and eq. (2.3) one obtains the equations of motion of a single dipole{
dS
dt =−γeS×H0 = γeH0×S
dµµµ

dt =−γeµµµ×H0 = γeH0×µµµ
(2.4)

Figure 2.1: Spinning electron.

With reference to fig. 2.1, the angular velocity ω0 can be written as

dφ

dt
=

dS
dt

1
S sin(θ)

⇒ dS
dt

= ω0 ,×J (2.5)

where θ is the angle between S and ω0 . Then, eq. (2.4) and eq. (2.5) give

ω0 = γeH0 ≡ ωL , (2.6)

which is the natural precession frequency of a magnetic dipole in a constant magnetic field, also
known as Larmor frequency. It is noteworthy that the precession frequency of the magnetization in a
constant magnetic field is determined by the field strength, as in eq. (2.6). Since the magnetization of
a medium with magnetically aligned spins is M = Nµµµ where N is the number of unbalanced spins per
unit volume, the second eq. of the system (2.4) becomes the equation of motion for the magnetization

dM
dt

=−γeM×H0 . (2.7)
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2.1.1 Damping and resonance
The electronic magnetic moments in a medium spiral in due to damping phenomena until the mag-
netization reaches the equilibrium position along the static magnetic field direction. Damping can
be considered as caused by the emitted magnetic dipole radiation, or by the material spin-spin and
spin-lattice relaxation mechanisms. There are various phenomenological approaches to descibe the
dynamics of the magnetization in presence of damping and small magnetizations. Here we present
two possible forms, the Bloch-Bloembergen (B-B) [7], and Landau-Lifshitz-Gilbert (L-L-G) equa-
tions. The B-B equations for a magnetic material in a constant magnetic field H0 in the z direction,
are given by [8]

dMx,y

dt
= γe(M×H)x,y−

Mx,y

τ2
−

Mx,yMz

M0τr
(2.8)

dMz

dt
= γe(M×H)z−

M0−Mz

τ1
−

M2
x +M2

y

M0τr
, (2.9)

where the transverse components Hx,y are related to the dMx,y/dt by geometrical factors, τ1,2 are the
longitudinal (spin-lattice) and transverse (spin-spin) relaxation times, M0 is the static magnetization
directed along the z-axis, and τr is the radiation damping time.
The L-L form is given by

dM
dt

= γe(M×H0)− kr
(H0 ·M)M

M2 −H0 . (2.10)

In the second term of the equation, kr is the phenomenological damping parameter, which is inversely
proportional to the radiation damping time [10]. It can be expressed as

kr = αMγe , (2.11)

where α is a dimensionless constant. Considering that M ·M = M2 and applying the vector identity
a× (b× c) = b(a · c)− c(a ·b), eq. (2.10) becomes

dM
dt

= γe(M×H0)−
λ

M2 [M× (M×H)] . (2.12)

The damping term in eq. (2.12) is clearly expressed as a vectorial contribution perpendicular to M,
and thus affects only the precessional angle, leaving the magnitude M constant (see fig. 2.2).

Figure 2.2: Magnetic damping.

Therefore, the damping factor in the magnetization precession can be controlled by the application of
an oscillating field hrf in the plane perpendicular to the constant field H0. If the frequency of hrf is
equal to the natural precessing frequency fL =ωL/2π of the system, the radiofrequency field can drive
the magnetic resonance, the damping term can then be overcome and the precessional angle grows in
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amplitude. In this resonant regime, the energy of the hrf field is absorbed by the spinning electrons,
causing the electron spin to flip between the two Zeeman sublevels. The quantity of energy absorbed
depends on the field strength and is limited to a maximum, defined by the point when further increase
in θ is prevented by damping. If the frequency of hrf is not exactly equal to w0, but differs from it
by a small detuning value, frequency beats will appear in the precessional dynamics (fig. 2.6). If the
detuning is too large, no compensation of the damping factor occurs, and the dynamics is described
by an exponential decay.

Figure 2.3: Left, precession of the magnetization vector when an oscillating field at frequency f = fL is
applied. Right, frequency beats in the magnetization dynamics when f 6= fL .

2.1.2 Line broadening

One of the advantages of using ferromagnets for magnetic resonance experiments is the very narrow
linewidth, compared to the case of paramagnetic materials.
The most important cause of line broadening in a rigid lattice of magnetic dipoles is usually the
magnetic dipolar interaction, which has a dominant role in paramagnetic media (or impurities), but is
suppressed by the strong exchange coupling between electrons in ferromagnets [11]. Due to exchange
coupling, the linewidth decreases, giving rise to an effect known as exchange narrowing. The effect
can be explained in analogy with another phenomenon, the motional narrowing, which regards line
drop for nuclei in rapid relative movement. In this case, diffusion resembles a random walk as atoms
jump from one crystal site to the other.
Because of this rapid motion, the local field seen by a given spin fluctates rapidly in time, with a
characteristic period τ . One can show that the resulting linewidth is ∆ω = (∆ω)2

0τ , where (∆ω)0 =
γe∆B is the broadening in the rigid lattice, with ∆B the magnetic field seen by neighbour magnetic
dipoles. The shorter is τ , the narrower is the resonance line. Motional narrowing is closely related
to exchange narrowing, since the exchange frequency can be interpreted as a hopping frequency 1/τ .
Given an exchange interaction J among nearest neighbour electron spins, the exchange frequency is
ωex = J/h̄, and the width of the resulting exchange-narrowed line is

(∆ω)ex = (∆ω)2
0/ωex . (2.13)

2.1.3 Radiated microwave field

During the precession of the magnetization, due to the considered damping effects, energy is dissi-
pated into spin-spin interaction, phonons generation (spin-lattice interaction), and magnetic dipole
radiation, with the latter being the most efficient channel of energy conversion. The spinning elec-
trons emit a dipole field that oscillates at the system precessional frequency and decays exponentially
with time if the damping is not compensated by means of an external field at frequency f = fL.
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Damping effects can be suppressed by enclosing the sample in a microwave resonator, in the well-
known cavity-QED regime. While in free field the system relaxation time depends on the Larmor
frequency as τ−1

r ∝ ω3
L [7], in a cavity it is possible to accomplish a regime in which it is only

determined by the material properties. In particular, if the cavity mode frequency fc coincides with
the system Larmor frequency fL, hybridization takes place, i.e. the system is described through two
eigenfrequencies ω± , as described in detail in sec. 2.4. In this case, the relaxation time is given by

τ̄ = (
1
τc

+
1
τ2
)−1 , (2.14)

where τc is the characteristic dacay time of the cavity. The advantage of performing FMR measure-
ments in cavity is therefore a damping factor which no more depends on the frequency, and is strongly
reduced in the presence of materials characterized by long τ2 (for example in YIG τ2 can be as high
as ≈ 1 µs).

The dipole radiation emitted in the cavity or in the free field is employed in this thesis as observable
of the magnetization precession, to be studied both in the time and frequency domain.

2.2 Optical excitation of magnetization
As discussed in the previous section, the magnetization precession is sustained in a steady-state
regime by the application of an oscillating microwave field supplied by an external generator. In
the new method described in this thesis the microwave driving field is optically produced. A multi-
GHz infrared laser delivers a train of pulses in the time domain whose spectrum is composed by
several harmonics at n fR , with fR the repetition frequency of the pulses (≈GHz). Any harmonic of
the frequency comb, provided it is tuned to the Larmor frequency, can drive the magnetization through
the non-linear opto-magnetic process, described in detail in this work (sec. 2.3).

2.2.1 Individual femtosecond pulses
The conventional way to optically induce a magnetization precession is by means of a pump ultrafast
laser pulse, which produces variations of the material properties [12]. In this case the optical signal
generates a transient DC field in the material. The laser light frequency is in the near ultraviolet,
visible or near infrared spectrum, hence oscillates at frequencies of the order of 1÷ 100THz, while
the typical ferromagnetic or ferrimagnetic resonance belongs to the microwave range (order of 0.1÷
100GHz). Therefore, the time duration of the laser pulse is the only significative time parameter and
defines the time range of the interaction. To induce the electron-spin precession, the pulse duration
must be shorter than the period of the Larmor motion, and ultrafast laser pulses are indeed the perfect
tool to achieve these time ranges, going even below the femtosecond duration and thus being able to
investigate also faster phenomena. Furthermore, the high intensity fields carried by the ultrafast laser
pulses exceed the internal fields of an atom ≈ 1011 V/m and can thus give access to the underlying
interactions.

2.2.2 Multi-GigaHertz picosecond pulses
The alternative mechanism which will be used in this thesis to accomplish a coherent excitation of the
magnetization precession consists in supplying trains of pulses repeated at the Larmor frequency of
the system. The laser tecnique which suits the purpose is called modelocking, and allows for ultrashort
pulses of high peak intensities to be generated at high repetition rates [25], [26].
The schematic set-up (fig. 2.5(a)) consists in a laser resonator with a gain and a loss element, which
allows through an output coupler to partially transmit a small fraction of the intra-cavity energy. By
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Figure 2.4: Passive mode-locking in a laser resonator.

establishing a fixed phase relationship between all of the longitudinal modes of the oscillator, laser
light is collected in short pulses (fig. 2.5(a)), with a period given by TR = 2L/vg, where L is the laser
cavity length and vg is the group velocity associated to the peak of the pulse intensity.

R 

R 

R 

n 

Time domain 

Frequency domain 

R 

Δϕce 2Δϕce 

a 

b 

Figure 2.5: Modelocked laser pulses. (a) train of laser pulses in the time domain; the dashed line is the
envelope function superimposed over the carrier wave, in bold line in the figure. The separation between the
envelope peaks is the laser repetition rate; the carrier-envelope phase φce evolves during propagation due to
dispertion, causing a phase increment ∆φce for each pulse. (b) optical frequency comb; the Fourier transform
of the envelope is superimposed over the optical frequencies νn.

The generated pulse train has a frequency spectrum that consists of a series of sharp, regularly spaced
lines and is known as microwave frequency comb (fig. 2.5(b)). The connection between frequency and
time domain can be understood with a simple model of the pulse, by decomposing it in the envolope
function A(t), which is superimposed on a continuous carrier wave of frequency wc. The electric field
of the pulse can therefore be expressed as E(t) = A(t)eiwct . If only a single pulse is considered, its
spectrum will be the Fourier transform of its envelope function, centered at the optical frequency wc
of the carrier, and its frequency width being inversely proportional to the time width of the envelope.
For a train of identical, equally separated pulses instead, Fourier series expansion yields a comb of
regularly spaced frequencies with the spacing being inversely proportional to the repetition rate of
the laser TR. The comb spectrum occurs because there are certain discrete frequencies at which the
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interference is constructive, and these optical frequencies can be written as

νn = n fR + f0 (2.15)

In the equation n is a small number, fR is the pulse repetition frequency, and f0 is the comb offset. f0
is caused by the phase shift φce between the peak of the envelope and the closest peak of the carrier,
which evolves with propagation due to dispersion in the medium. Its evolution results in a rigid shift
of the frequencies at which the pulses add constructively. In particular, f0 ∝ fR∆φce , where ∆φce is
the increment of the carrier-envelope phase for each pulse.

2.3 Opto-magnetic non-linear phenomena
The physical mechanisms at the base of the optical control of the magnetization are nonlinear opto-
magnetic processes which arise from the interaction of high intensity laser light with magnetically
ordered materials.
The magnetization couples to the electromagnetic field of the laser light via the dielectric and suscep-
tibility tensors, with higher order terms made important by the extremely high intensities. The effects
of a pump laser pulse on a magnetic medium can be classified in the following classes [12]:

Thermal effects

[13], [14], [15], [16] The energy is pumped into the medium through absorption of photons. It is well
known that the magnetization of a ferromagnetic or ferrimagnetic material decreases when heated.
At temperatures above the Curie point the magnetic order is lost, and more generally, Curies’s law
describes the dependence to temperature of the magnetization as M = C B

T , where B is the magnetic
field and C is the material specific Curie constant. Absorption of intense laser radiation can cause a
temperature increase and thus lead to partial or total demagnetization. The underlying processes re-
sponsible of the phenomenon can be studied by conceptually separating the material into an electron,
spin and lattice system, with respective temperatures Te , Ts , Tl .

Figure 2.6: Conceptual illustration of interactions between electrons, spins and lattice, consequent to laser
excitation. The Ti, i = e, s, l , are the temperature of the sub-systems.

In this model the change in magnetization corresponds to that of spin temperature M = M(Ts). The
interaction between the electric field of the laser pulse and the material mainly occurs via electronic
excitations, since the optical transition mostly preserve the spin state. Subsequent interactions be-
tween the electron, spin and lattice systems lead to a rise of Tl and Ts until thermal equilibrium. The
typical electron-lattice interaction is of the order of 1ps, while the lattice-spin interaction in dielectrics
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is of the order of few nanoseconds. The electron-spin interaction can be very short, down to 50fs for
ferromagnets, but in dielectric material is absent, due to the localized nature of their electronic states.
The lifetime of such thermal effects depends on external parameters, as thermal conductivity or ge-
ometry of the sample.

Nonthermal photomagnetic effects

They involve the apsorption of pump photons, via electronic states that have direct influence on mag-
netic parameters as the magneto-crystalline anysotropy [17]. The process is istantaneous, growing
with the time rise of the pulse. The magnetic parameters involved cause the motion of the magnetic
moments according to the usual precessional behavior. The lifetime of this effect is the lifetime of the
corresponding electronic states.

Nonthermal optomagnetic effects

They do not involve the absorption of pump photons, and are based on an optically coherent stimu-
lated Raman scattering mechanism. In this case the spin-orbit coupling is responsible of the change
in the magnetization and determines the time range of the process (≈ 20fs for a typical 50meV spin-
orbit coupling) [17].

In practice, thermal effects can never be totally avoided and must be taken into consideration to some
extent.
The magnetization dynamics was previously described by eq. (2.7) as function of the applied static
field H0. Nevertheless, spins in a medium are not only affected by the external field, but also by
internal contributions, like magnetocrystalline anysotropy, shape anysotropy, magnetic dipole inter-
actions... [12]. These additional factors induce an effective magnetic field

Heff = H0 +Hani +Hdem + ... , (2.16)

where Hani (anisotropy field) and Hdem (demagnetization field) are material dependent. Consequently,
the precession of magnetic moments occurs around Heff. Therefore, the optical excitation of a mag-
netic material induces changes in the material-dependent field which affect the total Heff, resulting in
an optically-induced magnetization dynamics. Equation (2.7) becomes

dM
dt

= γe(M×Heff)−λ
(Heff ·M)M

M2 −Heff . (2.17)

Non-Linear polarization

In general, nonlinear optical effects are analyzed by considering the response of the dielectric material
at the atomic level to the electromagnetic fields of an intense light beam. The propagation of a wave
through a material produces changes in the spatial and temporal distribution of electrical charges as
the electrons and atoms react to the electromagnetic fields of the wave. This perturbation creates
electric dipoles whose macroscopic manifestation is the polarization. For small field strengths this
polarization is proportional to the electric field. For stronger optical fields, higher orders terms become
non-negligible and should be taken into account.
In a given material, the induced polarization per unit volume P can be derived from the expansion in
terms proportional to one or more powers of electric field E and magnetic fielfd H (magnetic multipole
effects). The polarization density can be expressed as P(r, t) = R[Pωe−iωt ] , with the components of
Pω given by

Pi
ω = ε0[χi jE

j
ω +χi jkE j

ωHk
ω +χi jklE

j
ωHk

ωH l
ω + ...] , (2.18)
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where ε0 is the dielectric constant in the vacuum, and χ is the magneto-optical susceptibility multi-
rank tensor. In particular, the multipole magnetic terms are negligible compared to the high intensity
electric fields. Therefore, considering the expansion at the O(H2) order, it is possible to derive two
important opto-magnetic effects introduced by the second term of the right-hand side of eq. 2.18,
namely the Faraday effect and the inverse Faraday effect (IFE). For crystals invariant under time
reversal, through permutation simmetries considerations of the χ operator, one obtains the following
expressions for the magnetic dipole polarizations [18]:

Pi(ω2 +ω1) = χi jkE j(ω2)Hk(ω1) (2.19)
Pi(ω2−ω1) = χ

∗
jikE j(ω2)H∗k (ω1) . (2.20)

The consequent expression for the magnetization yields:

Mk(ω1) = χ
∗
i jk [ Ei(ω2 +ω1)E∗j (ω2) + Ei(ω2)E∗j (ω2−ω1) ] . (2.21)

In the limit ω1 −→ 0, eqs. (2.19) describe the Farday Effect

P(ω2) = i |χ1,2,3|E(ω2)× [H0 +H0
∗ ] , (2.22)

where one can show that χ1,2,3 are the only non-zero elements of the operator χ for an isotropic
material, invariant under time reversal, and where the subcript stands for no equal indices. Being
eq. 2.22 linear in the electric as well in the magnetic field, it introduces a birefringence for circularly
polarized light, causing the polarization ellipses of the propagating light to gyrate around the direction
of the static magnetic field H0 [19]. This effect is also known as Faraday effect, and demonstrates that
a magnetically ordered medium can indeed affect photons and change the polarization of light.

Inverse Faraday effect

For the symmetry properties of the electromagnetic field, also photons can affect the magnetization.
In fact, in zero applied magnetic field, and with circularly polarized optical field propagating in the k
direction, eq. (2.21) shows that there is a k-component of magnetization at zero frequency

Mk(0) =±2 |χ1,2,3| [E(ω2)×E∗(ω2)] =±2 |χ1,2,3| |E|2 . (2.23)

This is the inverse Faraday effect, and shows that circularly polarized light in a magnetic medium acts
as an effective magnetic field which involves the generation of a magnetic excitation, as demonstrated
by several theoretical approaches [18], [20], [21], and confirmed in different experimental conditions
[12], [22] after the pioneering work of Bell and Bloom on alkali metal vapors [9].
Thus, in a thermodynamical approach, the effect of light on spins in a magnetically ordered material
can be described by the L-L-G equation (2.10) or by the B-B form (2.8), where the alternate magnetic
field is generated by light via the IFE. In our experimental framework, the frequency ω2 is the elec-
tromagnetic frequency of the laser light (of the order of 100THz), while ω1 −→ 0 is the laser pulses
repetition frequency fR (eq. 2.15).

Circular and linear polarization in the IFE

The generation of the quasi-static axial magnetic field involved in the IFE, has mainly been associ-
ated with circularly polarized radiation propagating through an unmagnetized plasma (zero applied
magnetic field), as described above. Nonetheless, the IFE can also occur with linearly polarized
radiation.
Owing to the strong anisotropy of the magnetic susceptibility of YIG, the non-zero terms of the
third-rank tensor χ do not simplify to χ1,2,3 as in 2.22. Consequently, the allowed solutions of eq.
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(2.23) are not limited to circularly polarized light beams, and include also linearly polarized pulses.
Furthermore, the magnetization vector M is not expected to be parallel to the wave vector k as is the
case for IF in isotropic medium and circularly polarized light.

2.4 Dynamics of coupled oscillators
In this thesis, the optically driven precession of the magnetization dynamics is demonstrated both in
free field and in a cavity. In this section we describe in detail the hybridization that takes place in the
latter through a model of two simple coupled harmonic oscillators (CHOs) whose dynamics is studied
in terms of energy exchange and losses [41].

2.4.1 CHOs Model
Coupled dissipative systems display two regimes of behaviour known as weak coupling and strong
coupling, a distinction that is necessary to determine whether the coupled constituents of the system
merely perturb each other, or their mutual influence is so strong that their individuality is lost.
In the model we have used, the forced oscillators are allowed to exchange energy via a coupling
spring, with stiffness constant K, and each of them loses energy to their surroundings via friction
terms γi, as illustrated in fig. 2.7. Each oscillator is identified by:

• the uncoupled eigenfrequency ω j =
√

k j/m j,

• the coupling rate Ω =
√

K/m,

• the stiffness constant k j of the spring with fixed extremity,

• the oscillator mass m j (m is the effective mass).

Figure 2.7: Pair of coupled harmonic oscillators; m1, m2 are the respective masses, k1, k2 the stiffness constants
of the springs at the extremities, γ1, γ2 the loss rates, x1, x2 the displacements from equilibrium, and K the
stiffness constant of the coupling string.

There are various contexts where the distinction between weak and strong coupling can be respec-
tively identified, which lead to the following definitions:

L the dynamics is governed by exponential decay or energy exchange cycles;

L the spectrum of the driven system displays a single resonance or two split peaks;

L the eigenfrequencies of the CHOs cross or anti-cross, as the frequency difference between the
oscillators transits through zero.
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In general the two widespread criteria [42, 43, 44, 45] to distinguish between weak and strong cou-
pling are:

K Strong coupling occurs when the energy exchange rate exceeds all the loss rates, or alterna-
tively, when the frequency splitting (∝ coupling strength) is larger than the sum of the linewidths
(∝ loss rates). In fact, when the driving force excites both the eigenmodes of the coupled sys-
tem, two split peaks arise in the spectrum. In practice, this criterion relies on whether the two
split peaks are visible in the spectrum (strong coupling) or not (weak coupling).

K Strong coupling occurs when the energy exchange rates exceed the difference of the loss rates,
rather than their individual values or sum. This second criterion is less used and less suited
to representation than the first, in fact it implies that two identical oscillators with arbitrarily
high losses are strongly coupled for any non-zero energy exchange rate. However, if the energy
exchange rate is much less than the loss rates, the strongly coupled system does not exhibit
energy exchange cycles or split peaks in the spectrum.

CHO dynamics

The equations of motions for two damped CHOs ( j = 1,2), expressed in terms of the displacement x j
from equilibrium, and in absence of a driving force, are

ẍ1 + γ1ẋ1 +ω
2
1 x1−Ω

2x2 = 0 ,

ẍ2 + γ2ẋ2 +ω
2
2 x2−Ω

2x1 = 0.
(2.24)

Let us consider two identical oscillators, thus m1 = m2 = m , ω1 = ω2 = ω0, k1 = k2 = k , γ1 = γ2 = γ ,
and the particular case of underdamped oscillators (γ/2 < ω0), which is useful to distinguish between
weak and strong coupling. The two second order differential eqs. (2.24) can be reduced to four first
order differential equations using the following representation

q1 = x1 ,

q2 = ẋ1 ,

q3 = x2 ,

q4 = ẋ2 .

(2.25)

The vector q defined above evolves in time following the matrix of differential equations:
q̇1
q̇2
q̇3
q̇4

=


0 1 0 0
−ω2

1 −γ1 Ω2 0
0 0 0 1

Ω2 0 −ω2
2 −γ2




q1
q2
q3
q4

 . (2.26)

The total energy of the oscillators can therefore be expressed as E1 = T1 +V1 =
mq2

2
2 +

kq2
1

2 and E2 =

T2 +V2 =
mq2

4
2 +

kq2
3

2 , where q is the solution of the Cauchy problem of the previous linear system 1.
A meaningful observable of the system is the dissipated power, which is indeed the physical quantity
we have measured for the analysis of our system. It can be calculated by introducing in eq. (2.24) the
action of a driven harmonic force of frequency ωd , on the first oscillator only, as first case. Repre-
senting the displacement variable as x j(t) = x0

j(0)e
−iωdt and the force as Fe−iωdt , the dynamics of the

driven dissipative CHOs is described by the following matrix[
ω2

0 −ω2
d − iγ1ωd −Ω2

−Ω2 ω2
0 −ω2−d iγ2ωd

][
x1
x2

]
=

[
Fe−iωdt

0

]
(2.27)

1Representing the linear system with the equality q̇ = Aq, if λ j and v j are the eigenvalues and respective eigenvectors
of A, then the linear independent solutions of the linear system are φ j(t) = eλ jtv j. Being Φ(t) the matrix built from φ j(t)
as columns, the solution of the Cauchy problem is y(t) = etAy0, where etA = Φ(t)Φ(0)−1 and y0 is the initial condition.
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The power dissipated by the jth oscillator at the driven frequency ωd , is Pj = ω2
d γ j|x j(ωd)|2, where

x j(t) are the components of the vector below[
x1
x2

]
=

1
|A|

[
ω2

0 −ω2
d − iγ2ωd Ω2

Ω2 ω2
0 −ω2

d − iγ1ωd

][
Fe−iωt

0

]
, (2.28)

and where, formalizing eq. (2.27) as Ax = F , |A|= (w2
0−w2

d− iwdγ1)(w2
0−w2

d− iwdγ2)−Ω4.
The total energy T1,2+V1,2 and total power Ptot are plotted respectively on the top and on the bottom of
fig. 2.8. The total energy is function of the dimensionless time ω0t/γ (where ω0 is the eigenfrequency
of the uncoupled oscillators and γ their loss rate), while the total power is function of the driven
frequency ωd normalized to the eigenfrequency of the uncoupled oscillators, and both functions are
normalized to the unity (in the upper spectra the normalization factor is chosen as to bring Max(T1)
to the unity). The four cases refer to four different values of the ratio R = Ω2/ω0γ .
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Figure 2.8: Energy cycles and dissipated power of a pair of CHOs, for four values of the ratio R = Ω2/w0γ . a,
b, c, d, time evolution of total normalized energy (kinetic plus potential), where γ and w0 are the loss rates and
eigenfrequencies of the uncoupled oscillators. The purple line is the energy stored in the driven oscillator, the
red line is the energy in the second oscillator, the grey dashed line is the dynamics for the case Ω = 0 (R = 0),
corresponding to an exponential decay e−2γt of the energy stored in the driven oscillator. e, f, g, h, dissipated
power of both the oscillators when only one oscillator is driven by a harmonic force oscillating at frequency
wd .

The values of the constant parameters are reported in the following table

ω0 [Hz] γ [Hz] F [m/s2] x0
1 [m] ẋ0

1 [m/s] x0
2 [m] ẋ0

2 [m/s]
1 0.001 0.1

√
2 0 0 0

Table 2.1: System parameters of the CHOs.

where x0
1 , ẋ0

1 , x0
2 and ẋ0

2 are the initial conditions of the oscillators. With reference to fig. 2.8, energy
cycles and dissipated power will be described below for the different cases.
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Energy cycles

When R < 1, loss dominates over energy exchange and the system is weakly coupled. An example
is shown in fig. 2.8(a), where the energy stored in the driven oscillator (purple line) is dissipated
before it can be transferred to the second oscillator (red line). The extreme case Ω = 0 is qualitatively
similar, displaying an exponential decay e−γt of the energy in the driven oscillator (grey dashed line).
Therefore, the weak coupling simply exerts a perturbative effect on the exponential energy decay of
the excited CHO.
The system enters the other regime when R > 1. Fig. 2.8(b) shows the case R = 1, where a single
cycle of energy exchange is barely induced. The exchange becomes more efficient with the growing
of R (fig. 2.8(c)), until multiple cycles can be observed (fig. 2.8(d)). The observation of cycles
illustrates that the CHOs transfer energy between them faster than they each dissipate energy, and this
effect is therefore associated with the strong coupling regime.

Dissipated power

According to the definition presented at the beginning of the chapter and based on energy cycles,
the transition between weak and strong coupling is represented by the splitting of a single resonance
frequency into two resonances. This effect is the well-known Rabi splitting. On the bottom of fig.
2.8, the spectra show an increasing splitting as the coupling strength becomes stronger, while the two
peaks are centered on the eigenfrequency of the identical oscillators independently on the coupling.
From the experimental point of view a critical parameter is the oscillator mode linewidth, which must
be sufficiently narrow to observe the coupling.

Another signifactive feature of strong coupling is the avoided resonance crossing (ARC), which refers
to the approach and subsequent repulsion of two resonances in the frequency domain, as the uncoupled
eigenfrequency detuning δ = ω1−ω2 is varied. The phenomenon is illustrated in fig. 2.9 where the
dissipated power is calculated as a function of the adimensional variables ω/ω0 and δ/γ .

Figure 2.9: Dissipated power of a pair of CHOs when one oscillator is driven by a harmonic force. The
dissipated power is normalized to the resonance value and is function of the adimensional quantities ω/ω0
and δ/γ , where the variable ω is the frequency of the driving force, ω0 = ω1, δ = ω1−ω2 is the uncoupled
eigenfrequency detuning and γ is the loss rates of the oscillators. a, b, c, d, the spectra are displayed for four
values of the ratio R = Ω2/ω0γ .

The system parameters are the same of table 2.1, and ω0 = ω1 for convenience, while the variable w is
the the harmonic force frequency. The colour maps in figure 2.9 are displayed for different values of
the parameter R = Ω2/ω0γ . The two anticrossing resonances at δ = 0 constitute the ARC, and their
frequency splitting at δ = 0 is known as Rabi splitting. In the weak coupling regime the ARC is barely
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visible (fig. 2.9(a)) while in the strong coupling regime it clearly appears (fig. 2.9(d)). In the weak
coupling regime a frequency detuning of one linewidth (γ) is sufficient to destroy the coupling, hence
the driven oscillator behaves independently. Viceversa, in the strong coupling regime the influence of
the second oscillator endures the detuning.



CHAPTER 3

Properties of YIG Samples

The magnetic properties of ferromagnetic materials have been vastly studied due to their application
in microwave technologies, mainly as filters or resonators [27]. There are a variety of single-crystal
materials that have possible use as ferromagnetic resonators, as for example Yittrium-Iron garnet
(YIG), Gallium-substituted YIG, Lithium ferrite or Barium ferrite. Among all, the YIG material
has proved to be the most useful due to its unique properties for FMR. It has the narrowest known
linewidth of ferromagnetic resonance lowest spin-wave damping, and high unpaired electron density.
In general, among the several parameters that characterize ferromagnetic (and ferrimagnetic) res-
onators, the most important are [27]:

• The saturation magnetization Ms

• The resonance linewidth ∆ f , or the Q factor, defined as f/∆ f

• The anisotropy field constant Kl/Ms

• The Curie temperature Tc.

In general, the peculiar features of ferromagnetic (and ferrimagnetic) resonance include the following
facts[11]:

F The shape of the specimen plays an important role since it influences the intensity of the de-
magnetizing internal field [29], with consequences on the effective internal fiels, on the magne-
tization and on its precessional frequency.

F The suceptibility components are very large, in fact the magnetization of a ferromagnet in a
given static field is considerably larger than in paramagnets in the same field.

F The strong exchange coupling between electrons tends to reduce the contribution of dipolar
interactions to the resonance line width, so that it can result very sharp under proper conditions.

The saturation magnetization Ms is a function of the number of unpaired electron spins in the material
per unit volume, and refers to the maximum value that the magnetization can reach in an external
applied magnetic field.
The resonance line width ∆ f is the full width half maximum of the corresponding peak in the emis-
sion frequency spectrum of the polarized material. The line width depends on various experimental
parameters, as the material itself, the shape and the surface of the sample. An important condition

17
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for the line width to be narrow, then for the Q factor to be high, is a uniform internal magnetic field,
and the optimal shape for this situation is a spheroidal or ellipsoidal with highly polished surface (see
subsec. 3.0.5).
The first-order anisotropy field constant Kl/Ms depends on the intrinsic lattice structure of the crystal
material, which makes it easier to magnetize along some preferential crystal axes. Consequently, the
FMR frequency is influenced by the orientation of the crystal axes with the applied static field H0 (see
subsec. 3.0.6). The second-order anisotropy field constant can instead be neglected since it is much
smaller than the first-order one.
The Curie temperature Tc is the value at which the saturation magnetization drops to zero.
Some typical reference values of the previous parameters for YIG are reported below

4π Ms [103 A/m] 4π Kl/Ms [103 A/m] 4π ∆H [103 A/m] Tc [K]
1750 −43 0.22 559

Table 3.1: FMR parameters for YIG.

The first three parameters in the table were measured at room temperature [27]. The parameter ∆H
is a different definition for resonance line width, being the field width of the resonance peak as the
signal frequency is held constant and the applied static field is varied. The resonance line width can
vary significantly from sample to sample depending on the purity of the crystal structure, while Ms ,
Kl/Ms and Tc are physical constants for a given material, but Ms and Kl/Ms do vary considerably
with temperature. The variation of the anysotropy constant, as of the magnetization saturation Ms, is
significant when the temperature change is of the order of 100K [31]. In this thesis the experimental
set-up is kept at room temperature with no relevant changes, therefore the dependence on temperature
will be neglected.

3.0.1 Structural Properties
Garnets belong to a class of dielectric, magnetic minerals with a characteristic crystal structure but
with a great diversity in chemical composition. The name is derived from ’granum’, meaning grain. In
the 1950s, synthetically made garnets with ferrimagnetic ordering were found to exhibit a wide range
of magnetic phenomena, causing them to be studied intensively over the past decades [33], [34].
They have served as ideal model systems for both experimental and theoretical studies of magnetic
phenomena. Their magnetic properties derive from the structure of the particular ions in the crystal.
The chemical composition of YIG is {Y3}[Fe2](Fe3)O12 and its crystal structure is cubic. In the
chemical formula the different brackets are used to indicate the three different coordinations of the
cations with respect to oxygen in the crystal. The large yttrium Y3+ ions are located in the dodeca-
hedral positions (denoted ) where they are surrounded by eight O2− ions at the corners of a dodec-
ahedron. The Fe3+ ions with smaller ionic radii are located in octahedral sites (denoted [ ]) with six
nearest oxygen ions as neighbors forming an octahedron. Trivalent iron ions are also found in tetra-
hedral sites (denoted ( )), surrounded by four oxygen ions which occupy the corners of a stretched
cube. In a unit cell there are 24 of the large dodecahedral sites, 16 of the octahedral sites, and 24 of
the smallest sites with tetrahedral point group symmetry.
A unit cell of YIG contains 8 formula units and has a lattice constant of 12.376. It is a rather loose
structure with a volume of 236.9A3 per formula unit.

3.0.2 Magnetic Properties
The fundamental magnetic properties of YIG derive from the magnetic ions, principally Fe3+, and
their relationship to the surrounding oxygen ions.
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Figure 3.1: (a) The garnet structure, adapted from [35]. Arrangement of the [a], {c} and (d)-sites at the centers
of octahedra, dodecahedra and tetrahedra, respectively. The cube represents one octant of the unit cell. ((b))
Spatial connection of oxygen polyhedra in YIG, adapted from [36]. The large open circles represent oxygen
anions and the small circles represent cations.

Figure 3.2: Illustration of the antiferromagnetic superexchange coupling of the magnetic moments of Fe3+

ions on tetrahedral (d) and octahedral (a) sites mediated by O2− .

The oxygen ions influence the electronic configuration of the enclosed iron ions and mediate a su-
perexchange interaction between the iron on octahedral (a) and tetrahe- dral (d) sites. The magnetic
moments of Fe3+ ions in dfferent crystallographic sites are antiferromagnetically coupled (fig. 3.2).

3.0.3 Optical and Magneto-Optical Properties

YIG has a band gap of about 2.9eV and is highly transparent (α << 0.03cm−1) to light in the
infrared wavelength region [1.5÷5 ]µm [32], [33] (fig. ). At longer wavelengths absorption is caused
by lattice vibrations, while at shorter wavelengths electronic transitions within the Fe3+ ion (crystal
field transitions) and charge transfer transitions are responsible for the optical absorption.

In figure fig: absorption (b), the 1.550 µm-wavelength and the 1.064 µm-wavelength adopted in this
thesis, correspond to ≈ 0.8eV and ≈ 1.2eV respectively. YIG and rare earth iron garnets exhibit
strong magneto-optical Faraday and Kerr effects. The microscopic origin of these large effects are
not fully understood, but they are believed to originate from the high-energy charge transfer optical
transitions, with the effect extending down through the visible and the near infrared spectral regions
[33]. In YIG, the contribution of the octahedral iron sublattice to the Faraday rotation is larger than
that of the tetrahedral iron sublattice.
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a	  

b	  

Figure 3.3: Optical absorption of YIG, in the frequency (a) and energy b domain.

3.0.4 Coupling Properties of the Magnetic Modes
YIG is considered the ideal material for ferromagnet-based hybrid systems [47], [48], [49], [4]. Al-
though the coupling strength g0 of an individual spin to the electromagnetic mode of a microwave
resonator is small (typically 10Hz for a superconducting resonator), the coupling of N spins is en-
hanced by the factor of

√
N. In general, ferromagnetic materials display the following advantages for

the enhancement of coupling to electromagnetic modes [52]

w Their high spin density, such that for the same number of N spins the material volume can be
considerably reduced compared to paramagnetic materials. The typical spin density in param-
agnetic materials is of the order of (1015÷ 1018 cm−3), while in ferromagnet it is at least four
orders greater in magnitude, or alternatively of the order of one spin per atom. Consequently,
the coupling strength of exchange coupled systems is expected to be at least two orders of
magnitude larger as compared to noninteracting spins. In ferromagnets, because of the strong
exchange interaction in between, spins are perfectly ordered in the ground state, and the ex-
citations are collective waves of small-angle spin precession. In a sample with finite dimen-
sions, dipolar interaction dominates the long-wavelength limit, and the boundary condition at
the surface defines rigid discrete modes called magnetostatic modes. In particular, the spatially
uniform mode is called Kittel mode.

w Below the magnetic ordering temperature (Curie temperature) the system essentially is fully
polarized, while uncoupled spin ensembles in paramagnetic centers undergo thermal polariza-
tion.

w Relaxation mechanisms are such that it is possible to simultaneously have high spin density
and low damping. On the contrary, in diluted paramagnetic systems spin-spin interaction can
cause dephasing and decoherence, thus higher spin densities allow stronger coupling with the
elctromagnetic field but spin-spin interactions drastically shorten the coherence time.

In particular, YIG has very narrow linewidth, high quality fabrication possibilities, very low damping
rate, and extremely high spin density (∼ 1022 cm−3). The contribution of magnetic dipole interactions
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to the linewidth of spin excitations, which are dominant in paramagnetic impurities, is in this case
suppressed by the strong exchange coupling between ferromagnetic electrons. Consequently the spin-
spin interactions in YIG give rise to coherent modes which strongly couple with microwave photons.

3.0.5 Shape Effects and Uniform Modes
Compared to the Larmor frequency of a magnetic dipole in a constant magnetic field (eq. (2.6)),
the resonant frequency of a ferrimagnet may differ from that expression because of topology and
anysotropy factors.
Considering a specimen in the form of an ellipsoid with principal axis ax = ay, az parallel to the
cartesian coordinates, and calling Nx, Ny, Nz the demagnetizing factors [30], the components of the
internal magnetic field Bi can be expressed as follows [11]:

Bi
x = H0,x−NxMx ; Bi

y = H0,y−NxMy ; Bi
z = H0,z−NxMz . (3.1)

Substituting Bi in the equation (2.7) of motion for free spins, for an applied static field H0ẑ one
obtains:

dMx

dt
= γe(MyBi

z−MzBi
y) = γe[H0 +(Ny−Nz)Mz]My ;

dMy

dt
= γe(MzBi

x−MxBi
z) =−γe[H0 +(Nx−Nz)Mz]Mx ] ;

dMz

dt
= γe[MxMy(Nx−Ny)] .

(3.2)

where to first order one can consider dMz
dt = 0, thus Mz = M. The non banal solutions of eq. (3.2),

considering a time dependence e−iωt , give the magnetic resonance frequency in an applied field H0:

ω
2
0 = γ

2[H0− (Ny−Nz)µ0M][H0 +(Nx−Nz)µ0M] (3.3)

where µ0M was substituted to M (with consequent redefinition of Nx,y,z), according to SI. The fre-
quency ω0 is known as frequency of the uniform mode, and refers to a uniform resonant dynamics
where all the magnetic moments precess in phase with the same amplitude. Uniform modes can be
pictured as uniform volume excitations, in distinction to magnons, for example, which are resonances
arising from a difference in the anysotropy fields seen by the electron spins on the surface. For a
spherical specimen, the demagnetizing factors are Nx = Ny = Nz =

1
3 and eq. (3.3) returns eq. (2.7):

w0 = γH0 (3.4)

Considering other limiting cases of the elipsoid, the effect of shape on the resonant frequency becomes
evident. For an infinitely thin rod parallel to H0ẑ the demagnetizing factors are Nx = Ny =

1
2 and

Nz = 0; for an infinitely thin disk lying in the zy plane one gets Nx = 1 and Ny = Nz = 0; for the same
disk in the xy plane Nx = Ny = 0 and Nz = 1.
The shape of the specimen mainly employed in this work is a spherical YIG, being the most practical
both for the uniformity factor and precision of fabrication.

3.0.6 Crystalline Anysotropy
The YIG material has a cubic crystal structure and therefore its three principal crystal axes are the
[100] , [110] and [111] (fig. 3.4). For each cubic cell, there are three [100] , six [110] and four [111]
axes, and their relative orientation with the applied external field H0 influences the resonant ferrimag-
netic frequency. For a YIG material, the [111] are known as easy axes, while the [100] are hard axes.
In fact, the expressions for the resonant frequency for a sphere of cubic crystal material, with the axis
[111] or [100] respectively parallel to H0, yield [27]:
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w0 = γ(H0−
4
3

Kl

Ms
)

w0 = γ(H0 +2
Kl

Ms
) .

(3.5)

Figure 3.4: Principal axes of a cubic crystal structure.

Since the anisotropy field constant Kl
Ms

is negative for the YIG, resonance is achieved for a lower field
strength if the easy axis is parallel to the field, and the difference in resonant frequency for the two
cases is about 400MHz.
In particular, in this thesis the working condition is with the [110] axis perpendicular to H0. In this
case, the relation of the biasing field to the resonance frequency becomes

H0 =
w0

γ
− (2−35/8sin2(θ))

Kl

Ms
, (3.6)

where θ is the angle between H0 and [100]. This means that while rotating the sphere around the
[110] axis, the [100] or the [111] axis will be parallel to the field at different times, and consequently
also the field strength required for reaching the resonance point will vary.

3.0.7 Dielectric Tensor of Anisotropic Magnetic Media
One of the fundamental magnetic quantities to be analyzed for a deeper understanding of opto-
magnetic effects in anisotropic media (sec 2.2.1) is the electric permittivity tensor ε , which can be
described as a measure of how an electric field affects a dielectric medium. The propagation of a
magnetic field in the magnetic material can cause a change in ε with a resulting anysotropy of the
three-dimensional tensor and complex off-diagonal elements, depending on the frequency ω of inci-
dent light. As a consequence, left- and right-rotating polarization travel at different speeds and several
opto-magnetic effects emerge from the interaction of the radiation with the material. Magneto-optics
can be described, from a macroscopic point of view, in terms of the effective magnetic tensor by
setting the permeability µ = 1 [28].
The definition of the dielectric tensor ε for an electric field of frequency w is

Di(w) =
3

∑
j=1

εi j(w)E j(w) , i = 1, 2, 3 (3.7)

where D is the displacement field, representing how the electric field influences the organization of
electric charges inside the medium. Concerning with sinusoidally oscillating fields D ,E ∝ eiωt , the
tensor ε is therefore a complex quantity

εi j = ε
′
i j + iε ′′i j . (3.8)
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If the absorption losses of the medium can be neglected, ε is a Hermitian matrix

εi j = ε
∗
ji . (3.9)

Furthermore, while in non-polarized medium εi j is symmetrical, in a magnetically saturated medium
with magnetization M, the generalized principle of symmetry for kinetic coefficients leads to the
equivalence

εi j(M) = ε ji(−M) . (3.10)

Following from eqs. (3.8), (3.9) and (3.10), one obtains

ε
′
i j(M) = ε

′
ji(M) = ε

′
i j(−M)

ε
′′
i j(M) =−ε

′′
ji(M) =−ε

′′
i j(−M) ,

(3.11)

therefore ε ′ is symmetrical and even function of M, while ε ′′ is antisymmetrical and odd function of
M. The imaginary part ε ′′ can thus be represented in terms of a vector G using the antysymmetric
Levi-Civita tensor, which will be symboled by ei jk to avoid confusion with the permittivity

ε
′′
i j = ei jkGk . (3.12)

Odd permutations of ei jk lead to the definitions

−ε
′′
zy = ε

′′
yz = Gx

−ε
′′
xz = ε

′′
zx = Gy

−ε
′′
xy = ε

′′
yx = Gz ,

(3.13)

and the displacement field can be expressed as

Di = (ε ′i j + iε ′′i j)E j = (ε ′i j + iei jkGkE j

⇒ D = ε
′E+ i(E×G) .

(3.14)

Therefore, the displacement field D becomes function of the real symmetric matrix ε and of the vector
G, which is a real pseudovector called gyration vector. The direction of G is called the gyration axis
of the material, and the material which satisfies the relations (3.14) is said to be gyrotropic. To first
order G is proportional to the applied magnetic field

G = ε0χ
(m)H . (3.15)

In the previous equation, χ(m) is the magneto-optical suceptibility tensor which appear in eq. (2.21).
Eq. (2.21) is the fundamental expression for the description of the phenomenon under investigation in
this work, and describes the non-linear responce of the magnetization to an oscillating electric field.
In particular, the second-order dependence to the electric field in eq. (2.21) is determined by χ(m).
The permittivity can be expanded into power series of M since opto-magnetic effects are considerably
small, and the gyration vector becomes

Gk =
3

∑
µ=1

fkµαµ +O(α3) (3.16)

ε
′
i j = (ε0)i j +

3

∑
k,l=1

gi jklαkαl +O(α4) (3.17)

gi jkl = g jikl = gi jlk = g jilk (3.18)
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where αx , αy and αz , are the direction cosines of M, i. e. the cosines of the angles between M and the
coordinate axes, and fkµ and gi jkl contain all the symmetry properties of the crystal, and are functions
of the optical frequency w. The simplest case to analyze is when G is parallel to a principal axis, for
example considering M along a [001] direction in a cubic crystal. One obtains, in cubic coordinate
system, by keeping only the linear term αz and using symmetry properties,

ε =

 ε0 i f αz 0
−i f αz ε0 0

0 0 ε0 +gα2
z

=

 ε1 iGz 0
−iGz ε1 0

0 0 ε2

 . (3.19)

It is evident that Gz is an eigenvector of ε with eigenvalue ε2, while the other eigenvalues are identical.
The off-diagonal terms give rise to the Faraday effect. In fact, the solutions for a wave propagating
in the z direction, are elliptically polarized waves with phase velocities 1/

√
µ(ε1±Gz), where µ is

the magnetic permeability. The result is obtained from the expression v = 1/
√

µε , by finding the
eigenvalues of ε in the xy plane of the optical fields. The difference in phase velocities causes the
Faraday effect.
In the case of magnetostatic spin-wave scattering with M parallel to z, one should consider also the
linear terms αx and αy which may arise from higher order terms in eq. (3.18, 3). For a cubic crystal
like YIG and using the cubic coordinate system, the 81 = 34 components of gi jkl can be reduced to
21 independent variables and one obtains

fkµ = f δkµ ,

g =


g11 g12 g12 0 0 0
g12 g11 g12 0 0 0
g12 g12 g11 0 0 0
0 0 0 g44 0 0
0 0 0 0 g44 0
0 0 0 0 0 g44


. (3.20)

In the expression above, δkµ is the Kronecker delta function, and g is written in matrix form harnessing
the Voigt notation 1 [39], [40]. In a cubic crystal the higher order terms which contain a first order
term (as α2

z αx) do not exist. From eqs. (3.12), (3.18), the variation of the dielectric tensor can be
written as 

δε ′xx
δε ′yy
δε ′zz
δε ′yz
δε ′zx
δε ′xy

=


g11 g12 g12 0 0 0
g12 g11 g12 0 0 0
g12 g12 g11 0 0 0
0 0 0 g44 0 0
0 0 0 0 g44 0
0 0 0 0 0 g44

=


α2

x
α2

y
α2

z
αyαz
αzαx
αxαy

 (3.21)



δε ′′xx
δε ′′yy
δε ′′zz
δε ′′yz
δε ′′zx
δε ′′xy

=


0 0 0
0 0 0
0 0 0
f 0 0
0 f 0
0 0 f

=

αx
αy
αz

 (3.22)

where δε ′i j = δε ′ji and δε ′′i j =−δε ′′ji, from eq. (3.11). As previously mentioned about eq. (3.19), f is
related to the Faraday effect.

1One identifies a symmetric pair i j of 3d indices with a multi-index I that has the range from 1 to 6:
11→ 1, 22→ 2, 33→ 3, 23→ 4, 31→ 5, 12→ 6



25

In our case, the [110] direction of the sample is orthogonal to the magnetic field H0 , which defines
the equilibrium position of M. Consequently, the problem is projected to a minor dimension, and the
observed magnetization precession is described as a second-order process conveniently described by
a third–rank tensor gi jk .





CHAPTER 4

Characterization of the Hybridized System

In this chapter we characterize the hybridized system in the cavity-QED framework by means of
microwave network analysis, in order to set the optimal experimental conditions for the investigation
of the photoinduced opto-magnetic phenomenon. The characterization is performed in the frequency
domain through measurements of the S-coefficients, which describe the behaviour of the system in
terms of reflection and transmission of microwave signals. The transmission analysis allows to study
the hybridezed modes and to examine the influence of the sample properties on the coupling regime,
and the reflection coefficient allows to set the least perturbative detection condition at which the
radiated power can be measured during the opto-magnetic excitation.

4.1 Experimental Setup
The experimental apparatus for the study of the hybridized system is pictorially shown in figure 4.1(a).

Figure 4.1: (a) Experimental set up. (b) Microwave magnetic field lines of the cavity TE102 mode.

We have analyzed the coupling regimes that take place in a microwave cavity with a 2mm YIG
sphere and of a 1.8mm-diameter, 2.7mm-length YIG cylinder. The sphere is glued to an alumina
(aluminum–oxide) rod that identifies the crystal axis [110] , while the cylinder is sustained by a support
of the same material as illustrated in fig. 4.2.

27
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Figure 4.2: (a) Position of the spherical sample (Ferrisphere Inc) in the cavity TE102 mode. (b) Cylindrical
sample (Deltronic) in the TE102 field lines.

The samples are set in the central point of a copper 3D rectangular microwave cavity with dimensions
98× 42.5× 12.6mm3, as shown in fig. 4.1. A static magnetic field H0 is applied by means of
an electromagnet in the y-direction orthogonal to the TE102 cavity mode. The spherical sample is
therefore magnetized along its easy axis. The value H0 can be varied by changing the electromagnet
current. Figure 4.3 shows the typical values of magnetic field used in the measurements reported in
this work.
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Figure 4.3: Linear dependence of H0 to current supply.

Figure 4.1(b) shows the magnetic field profile of the TE102 mode, set by the boundary conditions
ax = 98mm and az = 42.5mm:

Bx =
Ax

fcaz
cos
(

πz
az

)
sin
(

2πx
ax

)
(4.1)

Bz =
Az

fcax
sin
(

πz
az

)
cos
(

2πx
ax

)
(4.2)

where c is the light velocity, Ax,z are normalization constants and fc = c/2
√

(1/az)2 +(2/ax)2 ≈
4.67GHz is the T E102 mode frequency. The cavity has been designed in such a way that the frequency
of its T E102 mode is within the stability range of the laser oscillator (4.6÷4.7GHz), in order to allow
the tuning of the laser repetition rate to the resonance frequency of the hybridized system.
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The cavity is equipped with an adjustable position antenna and a fixed one, that allow the characteri-
zation of the TE102 mode, of the hybridized modes, and detection of the radiated field in the cavity.

4.2 Characterization in the frequency domain
A two-port network is realized when the two antennae are connected to the ports P1 and P2 of a S-
parameter Network Analyzer (mod. Agilent 8720ES). We then analyze our system with the scattering
matrix or S-matrix formalism [54].

4.2.1 S-parameters
Scattering parameters or S-parameters are the elements of a scattering matrix or S-matrix that de-
scribes the electrical behavior of linear electrical networks when undergoing various steady state
stimuli by electrical signals. For a two-port network, the ports being numbered i = 1, 2, the associ-
ated S-parameter definition is in terms of incident and reflected power, namely ai and bi (fig. 4.4).
For each port the reflected power may be defined in terms of the S-parameter matrix and the incident
power waves by the equation (

b1
b2

)
=

(
S11 S12
S11 S12

)(
a1
a2

)
(4.3)

However if, according to the definition of S-parameters, port 2 is terminated in a load identical to
the system impedance Z then, by the maximum power transfer theorem, b2 will be totally absorbed
making a2 equal to zero. Therefore, defining a1 and a2 as the incident voltage waves and b1 and b2 as
the reflected waves, one obtains S11 = b1/a1 and S12 = b1/a2 , and in general Smn = Snm . Hence, the
two-port S-parameters have the following generic descriptions:

w S11 is the input port voltage reflection coefficient

w S12 is the forward voltage gain

w S21 is the reverse voltage gain

w S22 is the output port voltage reflection coefficient.

Figure 4.4: Two-port network diagram.

The S-parameters are functions of the system impedence and of the system frequency.

4.2.2 S11-coefficient
In the measurements realized in this thesis, as explained in sec. 2.1.3, the cavity framework allows to
measure the power radiated during the opto-magnetic excitation. This is not the case in the free field
measurements, where the coupling between the antenna and the YIG sample emission is unknown. In
order to do so it is necessary to set the apparatus in critical coupling condition, which corresponds to
the minimum of the reflection coefficient at one cavity port. In this case the radiated power is twice
the power dissipated on the transmission line, adapted tp 50Ω at resonance and in critical coupling
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Figure 4.5: Measurements of the S11-parameter for different coupling strength of the input coupler, corre-
sponding to different z-positions of the antenna. The y-axis units are ’milliunits’, which refer to the ratio of the
reflected to the incident power.

[54]. Figure 4.5 shows measurments of S11 of the mobile cavity antenna for different couplings to the
cavity mode.
The orange data represent the optimal working condition, where the S11 coefficient reaches the mini-
mum value (underlined by the dashed line in figure).

4.2.3 S12-coefficient
The S12 coefficient allows to study the cavity modes (frequency and linewidth) and to systematically
investigate the hybridized modes for different values of the applied external field. Figure 4.6(a) dis-
plays a map of the S12 coefficient as function of H0 (Bext in figure). The measurement is performed
with a spherical YIG sample.
The colour map is a collection of 400 spectra of S12 registered for different values of H0. One can
clearly distinguish an avoided resonance crossing (ARC) at the center of the figure, which is the sig-
nature of a regime of strong coupling, as reminded by fig. 4.6(b) reported in sec. 2.4.1. As the Larmor
frequency fL = γeH0/2π is tuned to the cavity mode fc, the hybridized mode frequency f− e f+ reach
a minimum separation. This is the previously discussed ARC, when fL coincides with fc .

Figure 4.7 (a) displays the S12 coefficient registered at H0 = 0 (red data), which coincides with the
empty cavity spectrum, and the S12 at the ARC point (H0 ≈ 171mT). Figures 4.7 (b), (c) remind the
theoretical behaviour of strongly coupled oscillators in terms of energy cycles and total dissipated
power, as derived in sec. 2.4.1.
When the material is not magnetized, the experimental data have been fitted with a Lorentian function
in the form:

S12,cav( f ) = A
1

2π

Γ

( f − fc)+
(

Γ

2

)2 , (4.4)

where A is a normalization parameter, Γ and fc are respectively the FWHM and mean value of the
Lorentian function. The fit function for the hybrid system is the real part of the transmission function
of the standard input-output formalism [53, 55, 47, 48, 49, 4],
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Figure 4.6: (a) Map of S12 coefficient as functions of H0 (Bext in figure). The measurment is performed with a
spherical YIG sample. (b) Reminder of the theoretical simulation for the total normalized dissipated power of
two strongly coupled harmonic oscillators, as reported in sec. 2.4.1.

Figure 4.7: (a) S12 spectra of the cavity (red data) and the hybrid system YIG-cavity (blue data) in the frequency
domain, for a spherical YIG sample. The cavity resonance is fitted with a Lorentian distribution, while the
hybrid resonance is fitted with eq. 4.5. (b) Reminder of the simulation of energy cycles of a pair of strongly
coupled harmonic oscillators, as reported in sec. 2.4.1. (c) Reminder of the simulation of the total normalized
dissipated power of strongly coupled harmonic oscillators, as reported in sec. 2.4.1.

R(S12,hybr(ω)) = R

 √
k1k2

i(ω−ωc)− k1+k2+kint
2 + |gm|2

i(ω−ωFMR)−γm/2

 , (4.5)

where ωFMR and γm are the frequency and linewidth of the FMR mode, ωc and kc/2π = (k1 + k2 +
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kint)/2π are the frequency and total linewidth of the cavity and gm is the coupling strength of the FMR
mode to the cavity mode. The fit parameters of eqs. 4.4, 4.5 are

Q0 Γ [MHz] fc [GHz]
955±2 4.923±0.010 4.701±0.001

Table 4.1: Fit parameters of S12,cav, related to the red data in fig. 4.7(a).

fFMR [GHz] fc [GHz] γm [MHz] gm/π [MHz] kc/2π [MHz]
4.692±0.003 4.704±0.002 13.7±0.2 56.1±0.4 6.1±0.1

Table 4.2: Fit parameters of S12,hybr, related to the red data in fig. 4.7(a).

As first remark, the values for fc are compatible within 2σ , therefore eq. 4.5 provides an indirect
measurement of the cavity resonance. The frequency separation between the hybridized modes f− =
4.6694GHz and f+ = 4.7265GHz gives the coupling strength gm/π (compatible within 3σ ).
The coupling strength gm allows to estimate a fundamental quantity of our physical system, i.e. the
total number of electron spin Ns involved in the magnetic precession. In fact, gm is equal to g0

√
Ns

[50], [51], where g0 =
γe
2π

√
µ0h fc/Vc is the coupling strength of a single spin to the cavity mode, with

Vc the cavity volume, γe the gyromagnetic ratio of the electron, µ0 the permeability of vacuum and h
the Planck constant. From the fit parameters in table 4.2 we find Ns = (5.4±0.1)×1019 .
The decay time for the hybridized modes, can be calculated as τ̄ ≡ τ± = (2/τc + 2/τ2)

−1 , where
τc = 2/kc and τ2 are the loaded cavity decay time and the spin–spin relaxation time, respectively. One
obtains τ̄ ≈ 60ns, compatibly with the expected value given by the manufacturer.

4.2.4 Influence of Sample Properties on Coupling
In the considered hybridized system, the cavity mode profile is fixed as determined by the designed
geometry. The coupling regime of the hybridized system is thus mainly influenced by the sample
properties and its orientation in the cavity [4].
In fig. 4.6 (a), the YIG sample was carefully oriented in such a way that only the uniform magnetiza-
tion mode coupled to the selected cavity mode. As explained in sec. 3.0.5, second order magnetostatic
modes can also be excited, as shown in fig. 4.6 (a) where one can distinguish a second much smaller
anti-crossing at ≈ 169mT.

Second Order Magnetostatic Modes

In second order magnetostatic modes the phases of the electron spin precessions might be different in
different parts of the sphere, causing more than one resonant frequency for a given value of H0 [37],
which stand out in the transmission spectrum as ’notches’. Such modes can arise due to various mech-
anisms. In fact, provided that one has properly oriented the crystal in the cavity, and that the static
magnetic field H0 and microwave field amplitude are uniform in the sample volume, nevertheless
spurious frequencies may come from the interaction with close metallic surfaces, for an image charge
effect. In fact, it can be shown [38] that the coupling to higher order magnetostatic modes depends on
the quantity D/λ , where D and λ are the diameter of the spherical sample and the wavelength cor-
responding to the frequency in question. Being the coupling weaker for smaller D, an advantageous
condition to avoid spourious resonant modes is working with small specimens (1÷2mm is a proper
dimension for ≈GHz microwave resonators).
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Figure 4.8: Transmission microwave spectrum of a YIG film. Higher order magnetic modes are visible in form
of notches.

A typical transmission spectrum with notches due to higher order magnetic modes is shown in fig.
4.8 [56] for a YIG film.
Figure 4.9 displays the arise of a notch in a transmission measurement for the YIG-cavity system.
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Figure 4.9: S12 spectrum of the hybridized system in the frequency domain, with the spherical YIG sample. A
second order mode of magnetization arises as a notch.

Sample Geometry

We have also investigated the influence of the sample shape on the coupling regime of the hybrid
system. We had three different available YIG samples, two spheres of the same dimensions, one
intact and one slightly laser-damaged, and a cylinder. Figure 4.10 displays the S12 spectrum for the
three different cases.
Figure 4.10 (a) shows the S12 spectra for the spherical YIG samples, in which the blue data refer to the
intact sphere and the black data stand for the damaged sphere. Even though the damage was limited
to a very small portion of the sphere surface, a factor 2 linewidth increase is observed, as reported in
table 4.3 through the fit parameters of eq. 4.5.
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Figure 4.10: (a) S12 spectrum of the hybridized system in the frequency domain, with the spherical YIG
sample. The blue data represents the transmission signal for an intact sphere, while the black data represents
the transmission signal for a damaged sphere. In particular, the blue data are normalized to the black data, to
make the comparison of linewidths clearer. The data are fitted with eq. 4.5. The damaged sample exhibit larger
linewidths. (b) S12 spectrum of the hybridized system in the frequency domain, for cylindrical YIG sample.
The experimental data are linked by a graphic line, for clarity.

fFMR [GHz] fc [GHz] gm/2π [MHz] γm [MHz] kc/2π [MHz]
Intact 4.694±0.001 4.699±0.001 57.1±0.2 1.5±0.1 7.77±0.02

Damaged 4.694±0.001 4.700±0.002 57.2±0.4 3.0±0.2 12.76±0.03

Table 4.3: Fit parameters for Phybr in fig. 4.10(a).

Figure 4.10 (b) shows the S12 spectrum for the cylindrical YIG sample. The linewidths are in this case
comparable with the frequency difference between the hybridized modes (≈ 60MHz), and therefore
the coupling regime is weak, as explained in sec. 2.4.1. The remarkable linewidth increase is caused
both by the cylinder orientation in the cavity and by its geometrical structure. Its orientation in the
resonator is determined by the necessity of aligning the laser beam propagation axis with the sample
longitudinal axis so to avoid lens effects, in the optical scheme for the photoinduced excitation. The
cylinder longitudinal axis also coincides with its easy magnetization axis, since it was fabricated for
being a Faraday rotator, but in our set up the electromagnet structure is such that the only possible
direction of H0 is orthogonal to it, i.e. along y, as shown in fig. 4.1 (a). Therefore, with this orientation
of the sample, the geometrical conditions for inducing uniform magnetostatic modes in a cylinder (see
sec. 3.0.5) are not respected, i.e. the static magnetic field H0 is not parallel to the easy magnetization
axis of the sample, nor to its longitudinal axis x, and also the TE102 mode lines are orthogonal to x,
with consequent shape effects which produce non-uniformities of the magnetic fields and the arise of
second order magnetic modes.
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Photoinduced magnetization precession

The systematic study of the phenomenon in this thesis has been possible only thanks to a special laser
system that was previously developed [57, 59, 58, 60]. In such a laser, pulses are delivered not only
at high peak power to access the non-linear regime in materials, but also at high repetition rates, i.e.
at several GHz, at the Larmor precession frequency in ferrimagnets.

5.1 The laser system

The laser system used to optically drive the magnetization is pictorially shown in figure 5.1 (a), (b),
and in the picture in fig. 5.13 (c). It is a high-energy solid-state laser in a master-oscillator power-
amplifier (MOPA) configuration, seeded by a 5GHz repetition-rate, mode-locked oscillator. The
output pulses are delivered in bunches of ≈ 2000 pulses (macro-pulse), and their energy can be as
high as ≈ 100 µJ at the 1064nm-wavelength.
As we want to work in the YIG transparency window (1.5÷ 5 µm, see fig. 5.2) to avoid thermal
effects, we make use of optical non-linear elements to convert the 1064nm-wavelength output to
different wavelengths. Second harmonic generation (SHG) is used to pump an optical parametric
oscillator (OPO) and generate ≈ 800nm (signal) and ≈ 1550nm (idler) beams. In the present mea-
surements we use both the 1064nm and the 1550nm-wavelength outputs at maximum pulse energy
of few µJ.
The laser design is described in detail in refs. [57, 59, 58, 60], and the relevant characteristics are
summarized in the caption of fig. 5.1.
Figure 5.4 shows the laser oscillator comb spectrum with its fundamental harmonic at fR ≈ 5GHz,
and its successive harmonics ni× fR , i=1, 2, 3. The spectrum was registered at a 20GHz sampling
oscilloscope with an ultrafast photodiode set after the amplification stage (PD1 in fig. 5.1 (a)). In the
new method that we use to optically drive the magnetization, we tune the fR to the Larmor precession
frequency of the ferrimagnet, but in principle each harmonic of the spectrum can be used to drive the
optical excitation, as explained in sec. 2.2.2.
The microwave field emitted during the magnetization precession is detected by an antenna critically
coupled to the cavity TE102 mode, and observed after amplification at a 6GHz sampling oscilloscope.
Figure 5.5 shows the gain curve (blue) of the amplifier, with the red curve being a zoom in the
linear amplification range, which gives a 39dB-gain, compatible with the values specified by the
manifacturer.

35



Chapter 5. Photoinduced magnetization precession 36

M17

M15

M16

Nd:YAG rod 1

M18 T3 SA

OPO
cavity

M19

beam from
diode amplifiers

Nd:YAG rod 2

BBO PD2

PD1

to cryostat

(SHG)&

To&resonant&
cavity&

M17

M15

M16

Nd:YAG rod 1

M18 T3 SA

OPO
cavity

M19

beam from
diode amplifiers

Nd:YAG rod 2

BBO PD2

PD1

to cryostat
BOOST&AMPLIFIER&

max 450 ns
variable envelope

macropulse
M-OSC

1064 nm
fr = 4.6 GHz

Diode pumped
Nd:YVO4

preamplifier

Flash Lamp 
pumped 
Nd:YAG 
amplifier
G = 33 dB

G = 60 dB

SHGSYNC 
OPO

to cryostat

eff = 50-60% eff = 30-40% 

AOM
deflector

M17

M15

M16

Nd:YAG rod 1

M18 T3 SA

OPO
cavity

M19

beam from
diode amplifiers

Nd:YAG rod 2

BBO PD2

PD1

to cryostat

M17

M15

M16

Nd:YAG rod 1

M18 T3 SA

OPO
cavity

M19

beam from
diode amplifiers

Nd:YAG rod 2

BBO PD2

PD1

to cryostat

AOM&

deflector&max 450 ns
variable envelope

macropulse
M-OSC

1064 nm
fr = 4.6 GHz

Diode pumped
Nd:YVO4

preamplifier

Flash Lamp 
pumped 
Nd:YAG 
amplifier
G = 33 dB

G = 60 dB

SHGSYNC 
OPO

to cryostat

eff = 50-60% eff = 30-40% 

AOM
deflector

Diode&&

Pumped&
Nd:YVO4&

PreHAMPLI&

a b 

Figure 5.1: Conceptual setup of the laser system. (a) [60] The master oscillator (M-OSC) is a V-folded diode-
pumped cavity with Nd:YVO4 active medium, which provides a cw-train at 1064nm at fR ≈ 5GHz repetition
rate. An acousto-optic modulator (AOM) selects a train of picosecond pulses (macro-pulse), repeated at fT =
1Hz, whose number and exact envelope profile can be controlled to compensate for amplification distortions
by acting on the radio-frequency signal driving the acousto-optic device. A diode-based pre-amplification
stage and a lamp-pumped amplification stage allow to achieve up to ≈ 100 µJ 12ps-duration pulses. (b) [61]
The 1064nm macro-pulse is frequency–doubled (SH) to pump an optical parametric oscillator (OPO). The
809nm OPO output is monitored at a laser camera (LC) through a 1000nm–cutoff dichroic mirror DM, while
the 1550nm OPO output is directed on the YIG sphere through several optical filters (CFG, F, M). The laser
repetition rate, macropulse uniformity and energy are monitored at an InGaAs ultrafast photodiode (UPD), a
coaxial waveguide device WM [?], and bolometer B respectively. HS is an harmonic separator (HR at λ =
532nm, HT at 1064nm). The microwave field emitted during the magnetization precession is detected by an
antenna critically coupled to the cavity TE102 mode, and observed at a 6GHz sampling oscilloscope, via a
39dB–gain amplification stage.

a	  

b	  

Figure 5.2: Optical absorption of YIG, in the frequency (a) and energy (b) domain.

5.1.1 Optical non-linear stage

In order to obtain good generation efficiency and beam profile quality of the 1550nm OPO output,
the second-harmonic generation (SHG) and OPO cavity were carefully adjusted before every mea-
surement.
SHG is a second order nonlinear process of frequency mixing with the initial waves (pump and signal)
having a common frequency, i.e. fp = fs = f = c/1064nm, and the idler wave having fi = 2 f =
c/532nm, with c light velocity. OPO generation is also a second order nonlinear process, which
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Figure 5.3: Picture of the laser optical table.

Figure 5.4: Laser oscillator comb spectrum, with its fundamental harmonic at fR ≈ 5GHz, and its successive
harmonics ni× fR , i=1, 2, 3. The spectrum was registered at a 20GHz sampling oscilloscope with an ultrafast
photodiode set after the amplification stage (PD1 in fig. 5.1 (a)).

drives the conversion of the incident beam frequency into two different output frequencies, i.e. 1/λp =
1/λs +1/λi , where in our case λp = 532nm, λs ≈ 808nm and λi ≈ 1550nm.
Laser beam alignment, polarization control, regulation of beam dimensions, and adjustement of the
SH non-linear crystal position allowed to obtain ≈ 40% efficiency of 532nm-wavelength conversion.
The SHG output beam was then used to synchronously pump an optical parametric oscillator (OPO)
plane-plane cavity, designed to obtain a singly-resonant oscillator operating around 800nm. After
beam alignement, and adjustement of the cavity mirrors and non-linear crystal orientation, in our
experiment we managed to obtain the 1550nm output with ≈ 10% generation efficiency with a pump
energy of 20mJ. To enhance the quality in the output beam profiles fine regulation of the OPO cavity
mirrors was performed, through maximization of the 809nm output power at the bolometer (B in fig.
5.1 (b)), and by observing the 809nm output spacial profile through fluorescence of a white paper
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Figure 5.5: Amplification curve (blue data), and detail of the linear amplification range (red curve).

screen set at more than 2m distance of the oscillator.

5.1.2 Beam profiles
The measurement of the beam dimensions was performed by means of a Coherent laser camera for the
1064nm-wavelength beam, and by means of the knife-edge tecnique for the near infra-red 1550nm
OPO output. In figure 5.6 the colour map and gaussian profiles of the 1064nm-wavelength beam (a)
and knife-edge measurements of the 1550nm-wavelength beam (b) are shown, with the beam waists
reported in tables. The knife-edge fit function is reminded below:

f (x) = A · erfc
(

x− x0

wx

)
, (5.1)

with A normalization constant, wx beam waist, and x0 the mean value of the intensity gaussian distri-
bution along the x-direction.
While the 1064nm-wavelength beam ehibits circular profile (fig. 5.6(a)), the 1550nm-wavelength
beam is elliptical, as reported in the table in fig. 5.6(b), and with the longer axis in the OPO phase-
matching plane [?]. The turquoise fit functions refer indeed to different axes of the beam section
(the black data are measured along the x-axis, the red data along the y-axis) measured in the same
experimental conditions. Beside phase-matching effects, the OPO output profile is also very sensitive
to the alignement of the oscillator components. As an example, the light-blue fit function shows an
x-axis knife-edge measured at different experimental conditions, which exhibits indeed a different
waist.

5.2 Detection in the free field scheme
The scheme that was initially designed for the observation of the optically driven spin precession
is very simple, and it involves a single loop-antenna coupled to the YIG sample that undergoes the
action of multi-GHz laser pulses in free field. This has been experimentally implemented as shown in
fig. 5.7 (a). A crossed loops scheme, displayed in fig. 5.7 (b) allows for measurements of the FMR
linewidth through the S-coefficients, as shown in the experimental data of fig. 5.8 (a), (b). Note that
the loops are set at 90° to each other in order to have S12 ≈ 0 when the YIG sphere is not present.
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Figure 5.6: (a) Beam colour map of 1064nm-wavelength beam measured with a Thorlabs laser cam. Beam
waists are shown in figure. (b) Knife-edge measurements of 1550nm-wavelength beam. The black data refer
to knife-edge profiles along the y-axis (parallel to optical table), while the red data refer to a knife-edge profile
along the z-axis (orthogonal to optical table). The measurments along the x-axis were repeated for different
values of the macro-pulse energy. Beam waists are shown in figure.

Figure 5.7: Pictures of the free field scheme. (b) Detail of the single loop scheme. (c) Detail of the crossed
loops scheme.

5.2.1 S-coefficients

Similarly to the procedure described for the cavity-QED framework in chap. 4, the magnetic be-
haviour of the YIG sample in free field is characterized by means of S11 and S12 coefficients, shown
in figure 5.8. The minimum of the reflection coefficient in fig. 5.8 (a) corresponds to the Larmor
frequency fL . By regulating the value of the magnetic static field H0 , the FMR frequency fL is set
within the stability range of the laser oscillator ≈ [4.6÷ 4.7 ]GHz. Then the laser repetition rate fR
is tuned to fL and the apparatus described in subsec. 5.1 is used to investigate the opto–magnetic
phenomenon.
Incidentally, by varying H0 and recording the corresponding Larmor frequency through S11, a mea-
surement of the gyromagnetic ratio of the electron γe,exp is obtained, as shown in fig.5.9. The an-
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a 
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fL 

Figure 5.8: Two-ports network analysis performed with the two crossed loop-antennae scheme. (a) S11 coeffi-
cient in linear scale. (b) S12 coefficient in linear scale. A Lorentian function fit it shown, with the fit parameters
reported in the table.
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Figure 5.9: Linear dependence of the Larmor frequency from the static magnetic field.

gular coefficient of the linear fit corresponds γe ,exp, which is compatible with the nominal value
γe = 28.0GHz/T. Remarkably, the linear offset is not compatible with the origin, which might be
an evidence of the presence of internal fields in the material which add up to H0.

5.2.2 Photoinduced magnetization precession

In this section we demonstrate that the photinduced magnetization precession is a FMR phenomenon,
and that the linewidth we measure under optical excitation coincides with the linewidth measured
through the S12 coefficient. This purpose is accomplished in two ways:

w at fixed H0, by varying the laser repetition frequency fR and registering the maximum amplitude
of the microwave emitted signal in the cavity (at stationary condition in the time domain);

w at fixed fR, by varying H0 and registering the corresponding maxima amplitudes of the signal.
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Microwave radiated signal

When the laser pulses repetition frequency fR is tuned to the Larmor frequency fL , and the macro-
pulse impinges on the YIG sample surface, the emitted microwave radiation signal is registered at the
oscilloscope, and it is displayed in fig. 5.10 (a). In figure 5.10 (a) the 500ns-duration laser macro-
pulse envelope (blue data) is also shown.
Figure 5.10(b) shows the envelope of the microwave signal at fR ≈ 4.661GHz. The signal does not
istantaneously reach the maximum amplitude, but its growth is described by a characteristic time τ

given by the exponential fit f (t) = a(1− e−
t−t0

τ ) , with a normalization constant, in the time range
from t0 = 0 to 500ns. Similarly, the signal decay is fitted to f (t) = be−

t−t0
τ . At resonance (fig. 5.10

(c)), the characteristic times coincide (≈ 70ns), as expected when a cavity is excited by a pulsed mi-
crowave generator (see appendix A). When the laser repetition frequency is detuned from the Larmor

Figure 5.10: (a) Emitted signal (black data) and laser macro-pulse envelope (blue data), when fR is close to
the Larmor frequency. The laser envelope is registered at an ultrafast photodiode, as explained in sec. 5.1. (b)
Envelope of the microwave signal detected with the loop coupled to the YIG sphere, at resonance. (c) Pictorial
representation of the optically driven magnetization precession at fR = fL .

frequency of δ f = fR− fL , the microwave signal is considerably different from the one shown in fig.
5.10 (a), (b).
Figure 5.11 (a) shows the signal obtained at δ f = 10.3MHz. Due to detuning, the excitation process
suffers of dissipation with a consequent decrease in the growth time and a maximum profile ampli-
tude reduced to ≈ 1/3 compared to fig. 5.10 (b). The beats amplitude decays exponentially until
equilibrium is reached after a transient time of ≈ 300ns, when the magnetization is forced to precede
at the laser repetition frequency. Fitting the signal with a sinusoidal function with exponential decay,
one obtains the beat frequency, that is compared in table 5.1 with the nominal frequency difference
between the laser repetition rate and the measured Larmor frequency.
In general, the fit parameters are qualitatively comparable with the expected value δ f = fR− fL , but
half of the values are not compatible within the errors. The analysis does not consider in fact system-
atic errors such as electromagnet hysteresis effects, not perfect compensation of the laser macro-pulse
envelope, slight perturbations of the sample position...
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fR [GHz] δ f [MHz] fbeat [MHz]
4.6465 15.3 14.3±0.4
4.6485 13.3 13.0±0.3
4.6515 10.3 9.3±0.3
4.6539 7.9 7.1±0.2
4.6673 5.5 6.0±0.6
4.6693 7.5 7.8±0.3
4.6742 12.4 13.3±0.6

Table 5.1: Fit parameters (fig. 5.11(a)).

a 

b 

Figure 5.11: (a) Envelope of the emitted microwave signal at δ f = 10.3MHz and fR = 4.6515GHz. The beat
is fitted to a sinusoidal function of frequency δ f with exponential decay. (b) Pictorial representation of the
magnetization precession at δ f 6= 0, after the driving force is ’switched off’.

FMR resonance

Figure 5.12 displays the FMR curves measured according to the previously mentioned dual meth-
ods, with VRF(H0) maximum amplitude of the microwave signal at fixed H0 ( fL = 4.6618GHz),
and VRF( fR) maximum amplitude of the microwave signal at fixed repetition rate of the laser pulses
fR = 4.6609GHz.
The resulting FMR resonance curves are fitted to Lorentian functions, and the fit parameters are
reported in table 5.2.

function f0 [GHz] FWHM [MHz]
VRF(H0) 4.6595±0.0001 7.8±0.4
VRF( fR) 4.6601±0.0002 7.3±0.6

Table 5.2: Fit parameters (fig. 5.12).

The FWHMs are compatible within the errors, while the mean values are slightly different. This is
due to the systematic errors also previously mentioned, in fact the VRF( fR) data obtained by changing
H0 suffer from hysteresis effects which are not present in the other data.
The FMHFs measured with the dual method are compatible within the errors. They are instead not
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Figure 5.12: Amplitudes of the emitted microwave signal at stationary regime of excitation, as functions of
the detuned frequency. The voltage values are measured as root mean square (rms) within the plateau region
(at steady-state) of the emission profile, with the associated rms error. The blue data are measured at fixed H0
and by varying fR , the coral data at fixed fR and varying H0 . The vertical lines n the figure mark the fR values
associated to the signals shown in fig. 5.11 (a) (red line) and in fig. 5.10 (b).

compatible with the value obtained by analysis of the S12 coefficient in fig. 5.8 (b), due to the finite
duration of the optical excitation. In fact, harmonics of the macro-pulse, that last 500ns, have 2MHz
linewidth. We do not expect the mean values to be compatible as the hysteresis was not considered.
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5.3 Detection in the cavity scheme

When the YIG samples are enclosed inside the microwave cavity, as described in chapter [?], the cav-
ity resonance splits in two lines and we tune the laser repetition frequency fR to the smaller frequency
hybridized mode f− . Laser light is allowed to enter the cavity through two small (3,mm-diameter)
apertures on the smallest area opposite cavity walls, as shown in fig. 5.13, and detection is accom-
plished by means of a transmission line (see fig. 5.13 (a)) connected to the critically coupled loop.

Figure 5.13: (a) The microwave cavity between the poles of the electromagnet. (a) Detail of the cavity,
apertures and YIG sphere sample.

5.3.1 Microwave signal coherence

In order to verify whether the microwave signal generated in the cavity is in phase with the laser
pulses, the device WM shown in fig. 5.1 (b) is used. Its working principle is described in ref. ??).
Figure 5.14 displays both the microwave signal detected in the cavity (blue data) and the laser macro-
pulse monitor output (coral data) at resonance. It is worth noticing that the duration of the laser
excitation is greater than the characteristic time of the system τ̄ ≈ 60ns, therefore we succeed to drive
the magnetization precession in a steady-state regime. The characteristic time τ obtained by fitting
the rise τgr and decay τgr of the signal and the steady-state voltage VHy,st are reported in table 5.3.
They are optimally compatible as expected at resonance, and they are moreover compatible with the
expression of the relaxation time τ̄ ≡ τ± = (2/τc + 2/τ2)

−1 derived through the S12 analysis of sec.
4.2.3.

τgr [ns] τdec [ns] VHy,st [mV]
57±2 59±1 70.4±0.1

Table 5.3: Fit parameters (fig. 5.14).
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Figure 5.14: (a) Microwave signal generated in the cavity (blue data) and laser macro-pulse monitor (coral
data), at resonance ( fR = f− = 4.6729GHz). b Juxtaposition of the signals in a nanosecond time range, with
sinusoidal fittings to the experimental data.

The juxtaposition of the microwave signal detected in the cavity and of the laser macro-pulse monitor
signal in fig. 5.14 (b) demonstrates that we manage to drive the magnetization precession in phase
with the laser pulses.
We note that if the laser repetition rate is not tuned to the hybridized mode frequency f− , the signal
maximum value is smaller than VHy,st measured at resonance. Moreover beats are observed as in the
free field configuration. The greater is the detuning δ f = fR− f− the more dissipative is the system
dynamics, as shown in the microwave signal envelopes of figure 5.15 (a) and pictorially illustrated in
fig. 5.15 (b).

Figure 5.15: (a) Microwave signal envelopes for different values of detuning δ f = fR− f−. The beats are
fitted to sinusoidal functions with exponential decay. (b) Pictorial illustration of the beating effects arising in
the magnetization dynamics when δ f 6= 0.
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As also observed in the free field configuration, beats in the signal profiles have exponential decay,
which indicates that after a transient time the magnetic system response is suppressed and it is forced
to precede at fR 6= f− , with the maximum signal amplitude strongly reduced by dissipation. By
using sinusoidal functions with exponential dacay, we compare the nominal frequency difference δ f
between the laser repetition frequency and the measured Larmor frequency (through S coefficients),
with the experimental fit parameter for the beating frequency, as reported in table 5.4.

fR [GHz] δ f [MHz] fbeat [MHz]
4.6607 2.5 2.2±0.1
4.6595 3.7 3.5±0.2
4.6590 4.2 4.3±0.2
4.6578 5.4 5.3±0.2

Table 5.4: Fit parameters (fig. 5.15).

5.3.2 FMR resonance
We investigate the resonant behaviour of the phenomenon around the hybridized mode frequency f−
by varying the laser repetition rate fR and measuring the correspondent maximum amplitude of the
microwave radiated signal, as shown in figure 5.16. The maximum amplitude is in this case reported
in the plot as maximum of the discrete Fourier transform (DFT) of the data, in order to perform
deconvolution of the microwave signal measured in the cavity from the optical signal , by division
of their DFTs (convolution theorem). In the figure, the deconvoluted (blue) data are compared to the
measured convoluted data (red).
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Figure 5.16: Amplitude of the discrete Fourier transform (DFT) of the microwave radiated signal (red data),
at fixed f− = 4.664GHz and by varying the laser repetition rate fR. The blue data are deconvoluted from the
optical signal (convolution theorem).

We indeed demonstrate an optically induced FMR phenomenon also for the hybridized system, and
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we fit the data to Lorentzian curves whose FWHMs are reported in table 5.5. The linewidths are
≈ 1/3 of the values reported in table 5.2 for the free field.

FWHMconv [MHz] FWHMdeconv [MHz]
2.4±0.1 2.1±0.1

Table 5.5: Fit parameters (fig. 5.16.)

5.3.3 Hybridized modes
A further analysis tool is obtained by Fourier transform (DFT) of the signal registered in the time
domain at the oscilloscope. In fig. 5.17 (a) we show the DFT of the microwave signal corresponding
to the hybridized system with spherical YIG sample under 2.4MW/cm2 pulses intensity.

Figure 5.17: (a) DFTs of the microwave radiated signal of the hybridized system with spherical YIG, up-
shifted of 40dB (blue data), and of the laser macro-pulse monitor (coral data). The laser intensity was set
to 2.4MW/cm2 and the measured beam waists in the horizontal and vertical direction were dx = 1.4mm and
dy = 1.2mm. The data are fitted to a double Lorentian curve (black). (b) Reminder of fig. 5.14 (a).

It is noteworthy that the spectral component f+ of the hybridized system is also excited, but with a
much smaller strength, even if the laser repetition frequency fR is tuned to f− . This suggests that the
coupling regime between the hybridized modes opens a channel of energy exchange from the excited
to the non-excited eigenfrequency of the system. The experimental data are fitted to a double Loren-
tian function (black line), and the fit parameters are reported in table 5.6, together with the relaxation
times of fig. 5.17 (b). From the experimental parameters we can derive a frequency separation of

f− [GHz] f+ [GHz] FWHM− [MHz] FWHM− [MHz] τgr τdec
4.6714±0.0002 4.726±0.001 15.1±0.7 16±3 57±2 59±1

Table 5.6: Fit parameters (fig. 5.17).

the hybridized modes ∆ f = f+− f− = (55±1)MHz, which is compatible with the coupling strength
gm/π = 57MHz measured through the S12 microwave analysis in sec. 4.2.3. These results shows that
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each laser macro-pulse acts as an effective microwave field on the ensemble of strongly correlated
spins, and therefore that we manage to optically excite the uniform FMR magnetostatic mode of the
system.

Figure 5.18 displays the same analysis performed on the cylindrical YIG sample.

Figure 5.18: (a) DFTs of the microwave radiated signal of the hybridized system with cylindrical YIG, up-
shifted of 40dB (blue data), and of the laser macro-pulse monitor (coral data). The blue data are fitted to a
triple Lorentian curve. (b) Microwave radiated signal (blue data) and laser macro-pulse monitor (coral data) in
the time domain. The microwave signal profile is highlighted with darker colour and exponential fits are shown
for the signal growth and decay.

In this case, the blue data in figure 5.18 (a) exhibit an only barely excited f+ hybridized mode, with
the additional presence of a second-order magnetostatic mode which distorts the spectrum, which is
qualitatively described by a triple Lorentian fit function (black line). The fit parameters are reported
in table 5.7, together with the relaxation times of fig. 5.18 (b):

f− [GHz] f+ [GHz] FWHM− [MHz] FWHM− [MHz] τgr τdec
4.6677±0.0003 4.731±0.003 8.8±0.8 18±8 13±1 19±1

fsec [GHz] FWHMsec [MHz]
4.681±0.002 50±3

Table 5.7: Fit parameters (fig. 5.17).

where fsec and FWHMsec refer to the second order magnetostatic mode. The growth and decay time
are in this case not compatible because of experimental systematic errors, as not perfect compensation
of the laser macro-pulse envelope, or δ f 6= 0.

5.4 Discussions
In this section we demonstrate the advantage of using our method to optically drive the magnetization
precession in a cavity-QED framework. Moreover, we discuss the legitimacy of attributing the photin-
duced phenomenon to the opto-magnetic inverse Faraday effect, through the study of dependence to
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laser beam intensity and orientation of the polarization.

5.4.1 Formalism in cavity-QED

First of all, by simmetry considerations the expression for the photoinduced non-linear magnetization
derived in sec. 2.3 can be reduced to a semplified form. Provided that in our set up the laser propa-
gation axis k is orthogonal to the [110] crystal direction d, and that the reference system axes x and y
coincide with k and d directions, we find that the photoinduced magnetization lies in the yz plane and
reads

Mz =
∫

dωΘ(ω)|E(ω)|2 cos2θ (5.2)

My =
∫

dωΘ(ω)|E(ω)|2 sin2θ , (5.3)

where in our case ω = fR , Θ(ω) ≡ χ233 = −χ222 = χ332 = χ323 are the non-vanishing terms of χ ,
E(ω) is the Fourier transform of the laser electric field and θ is the polarization angle of the incident
light with respect to the y axis.
A further simplification is accomplished if we consider that in the cavity-QED configuration we drive
the magnetization precession by tuning the laser repetition frequency to one of the hybridized mode
frequencies, i.e. f− . In this scondition, the real and imaginary part of the complex susceptibility
Θ(ω) can be approximated by absorption Θ(ω)′′ and dispertion Θ(ω)′ [63]. In particular, at working
frequency f− we have only absorption and no dispersion, hence the the susceptivity Θ(ω) = Θ0 f−πτ̄

becomes real, with τ̄ being the relaxation time of the hybridized modes. Being Θ a real variable, it
therefore does not affect the magnetization direction.

5.4.2 Absorbed power

The fulfillment of resonant condition and the accomplishment of the steady-state regime with our
tecnique, together with the peculiar dynamics of the hybridized system, allows us to measure a funda-
mental physical parameters, i.e. the total power Pa absorbed by the YIG sample during excitation. In
fact, the measured power in the microwave cavity at resonance, and for a critically coupled inductive
loop, is exactly Pa/2 A. From the measurement of Pa , we can then estimate the real parameter Θ0
from the following expressions that is valid in our experimental conditions

Pa =VsΘ0(2π)2 f 2
−τ̄

Be f f

µ0
, (5.4)

where Be f f represents the laser induced effective magnetic field and Vs the sample volume. One
can show that due to 1/ f dependence of the power spectrum generated by downconversion of the
picosecond frequency comb, the infrared optical field average amplitude BI =

√
µ0I/c = 10mT at

fo = 190T Hz optical frequency, is suppressed to Be f f = 2.5×10−5BI = 0.25 µT at f− ≈ 4.7GHz.
Therfore, with a measured absorbed power Pa = (26.1±0.1)nW, we obtain Θ0 ≈ 108 cm2/MW.

5.4.3 Polarization and intensity dependence

The fundamental properties of the second order non-linear IF Effect (IFE) are described by the ex-
pressions 5.2 of the photoinduced magnetization components
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Mz =
∫

dωΘ0|E(ω)|2 cos2θ , (5.5)

My =
∫

dωΘ0|E(ω)|2 sin2θ , (5.6)

where we have assumed the resonant condition fR = f−. The opto-magnetic phenomenon is indeed
linear-dependent to the electric field intensity, and responds to the field linear polarization with a 2θ

dependence. We can perform a further simplification of the geometric description of the photoinduced
magnetization vector if we realize that the cavity selects the Mz ∝ cos2θ component via its geometric
projection on the TE102 mode (parallel to the z direction as shown in fig. 5.1 (b)), and that the critically
coupled antenna do not distinguish between parallel and antiparallel orientation of Mz. Therefore we
conclude that the detected magnetization signal must be proportional to |cos2θ | .
We then investigate the dependence of the microwave signal amplitude on the laser beam intensity
and polarization, in order to confirm the initial hypothesis of non-thermal origin of the photo-induced
magnetization precession and definitely attribute the observed opto–magnetic phenomenon to the
inverse Faraday effect (IFE) [12].
For the polarization analysis we use Thorlabs polarizator, λ/2 plates for 1550nm-wavelength, and
analyzer.

Figures 5.19 (a), (b) show respectively the microwave signal measured in the cavity for different linear
polarization angles θ , with the spherical YIG sample, and the dependence to the laser micropulse
intensity I . Figure 5.20 shows the microwave signal θ -dependence with the cylindrical YIG sample.

Figure 5.19: (a) Amplitude of the microwave power signal in the cavity as a function of the laser polarization
angle, for the spherical YIG sample. (b) Microwave voltage signal dependence on the laser beam intensity.

In fig. 5.19 (a) the y-values of the data are measured the DFT maximum amplitude of the microwave
radiated signal, and dimensionally corresponds to a microwave power. In fig. 5.20 the y-values of the
data were instead measured in the time domain as voltage quantities, and then converted to powers to
compare them to the previous measurements. The different tecnique justifies the larger errors. Since
we deal with power, according to eq. 5.5 the dependence to θ goes like the square of a sinusoidal
function. We therefore fit the data to ∝ |cos(aθ)|2 , with asph,cyl fit parameters for the sphere and for
the cylinder respectively.
The 4–fold periodicity of the angular plots is perfectly fitted to the theoretical dependence of the
photoinduced magnetization previously discussed, and the fit parameters are in good agreement with
the expected value (2), as reported in table 5.8.



51 5.4. Discussions

Figure 5.20: Amplitude of the microwave power signal in the cavity as a function of the laser polarization
angle, for the cylindrical YIG sample.

asph acyl αlin [mV cm2/MW] V0 [mV]
2.001±0.04 1.97±0.04 28±2 −1±1

Table 5.8: Fit parameters asph (fig. 5.19 (a)), acyl (fig. 5.20) of the sinusoidal fits; angular coefficient αlin and
linear offset V0 of the dependence in fig. 5.20 (b).

Finally, figure 5.19 (b) shows the linearity of the microwave signal amplitude to the laser pump in-
tensity. The signal amplitude is measured in the steady-state regime, and the laser pump intensity is
calculated from the value of the macro-pulse energy measured at the bolometer, as function of laser
beam area macro-pulse time duration. The large x-errors are mainly due to the propagation on the
measurement errors of beam waist and intensity. The linear dependence is in agreement with eq. 5.5
as well, and the linear coefficient αlin is reported in table 5.8.





CHAPTER 6

Conclusions and Perspectives

In this thesis a full-optical, flexible tecnique to manipulate the magnetization vector in YIG based on
a multi-GHz laser system has been demonstrated.
Unlike the various methods reported in the literature, we generate via the inverse Faraday effect a
photoinduced microwave driving field which allows a coherent control of the magnetization in the
steady-state regime. The phenomenon has been investigated both in the simplest scheme of a loop
antenna coupled to the YIG samples, and in the microwave cavity scheme, which allowed an indi-
rect measurement of the radiated field during the optically driven precession. Radiated powers in
the order of several nW have been measured. Moreover, we have described how when the sample
is enclosed in a cavity, the total number of involved spins can be estimated thanks to the remarkable
properties of hybridization ≈ 1019. The ferromagnetic resonance parameters that we derived through
optical excitation are compatible with those measured in the S-formalism. This has confirmed that we
accomplished optical control of the uniform magnetization mode (FMR mode) coupled to the cavity
mode. Our measurements of dependence from laser beam intensity and polarization, confirm the ex-
pected behaviour in the developed model for the IFE-based photoinduced magnetization.

As future perspectives, we intend to further develop the investigation of the phenomenon with 1064nm-
wavelength optical excitation, which belongs to the edge absorption of YIG. At this wavelength, we
have indeed obtained non-trivial dependence from the polarization rotation that can not be explained
by the simplified model used to explain the data at 1550nm-wavelength. A possibility for an ad-
vanced investigation consists in equipping the apparatus for pump-and-probe analysis, in order to
directly measure the induced rotation angle of the incident field polarization.
We also intend to extend the analysis to different materials, as substituted rare-earth iron garnet. YIG
has in fact the great technical advantage to allow insertion of a very wide variety of cations in its garnet
structure, with the possibility to achieve an enormous range of control of its magnetic properties [32].
In particular, substitution of part of the Y3+ on dodecahedral sites by the diamagnetic Bi3+ has been
found to increase the Curie temperature, and has the effect of strongly enhancing the magneto-optical
properties of YIG.
As final remark, it is worth mentioning that commercially available compact ultrafast oscillators with
200pJ-energy output pulses [64] would allow to overcome the technical limits of our laser oscillator
stability and further increase the flexibility of the approach, and may therefore foster applications of
the presented method in the opto–magnetism field.
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APPENDIX A

Equivalent Circuit Resonator for the Driven Cavity

The equivalent circuit that models a cavity with one antenna, driven by an RF generator, is shown in
fig. A.1(b) [54]. Since one antenna of the cavity in our work is undercoupled (very weakly coupled),
its influence can be neglected, and the considered model suits our two-port network. Between the RF
generator and the cavity there is an isolator, which is a circulator connected to a load (fig. A.1(a)).
It ensures that the signals coming from the cavity are terminated in a matched load and protects the
generator from reflections coming from the cavity coupler system. A lossless transmission line with
a characteristic admittance G0 connects the generator to the coupler. The cavity antenna is modeled
with a transformer, allowing to match the transmission line to the cavity with an arbitrary impedence.
Being Vc the voltage at the cavity terminals and Gc the cavity admittance, the total energy stored in
the circuit resonator is

U =CV 2
c (A.1)

and its dissipated power is
Pc = GcV 2

c /2 . (A.2)

Being the cavity quality factor Q0 = ωcU/Pc , one obtains

Q0 =

√
C
L
/2πGc . (A.3)

Considering the cavity behaviour operating at its fundamental frequency ωc = 2π fc after the RF drive
is switched off, the total power being lost will be the sum of the power dissipated in the cavity walls
and the power that leaks out each antenna:

Ptot = Pc +Pe +PT , (A.4)

where Pe is associated to the input coupler and Pt to the transmitted power coupler. Analogous to the
intrinsic quality factor Q0 = ωcU/Pc , one can define the loaded quality factor

QL =
ωcU
Ptot

(A.5)

which characterizes a cavity with couplers. Similarly one defines external quality factors Qe and Qt
associated to each coupler. From eq. A.5 one derives the total dissipated power

dU
dt

=−Ptot =−
ωcU
QL

, (A.6)
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Figure A.1: (a) Schematic of cavity with generator and circulator. (b) Equivalent circuit for a cavity with one
coupler being driven by an RF generator.

and if the losses are quadratic (no field emission or other anomalous losses), the soulution yields

U =U0e
−ωct
QL , (A.7)

where U0 is the stored energy at t = 0. The energy in the cavity thus decays exponentially with a time
constant τL = QL/ωc . One can define the coupling parameters, or coupling strengths of the couplers
to the cavity mode as

βe =
Q0

Qe
=

Pe

Pc
(A.8)

βe =
Q0

Qt
=

Pt

Pc
. (A.9)

Therefore the β ’s tell how strongly the coupler interacts with the cavity. In our apparatus the fixed
transmitted power probe coupling is made very weak (βt << 1) and therefore the system can be
modeled as a driven cavity with one only coupler and βe ≡ β (fig. A.1).
It is interesting to look at the case when the power Pf travelling forward through the transmission line
to the cavity is a constant and the cavity is in steady state, i.e. dU/dt = 0. Then U =U0 , which can
be expressed as

U0 =
4βPf Q0

(1+β )2ωc
, (A.10)

which is maximized when β = 1 and the cavity acts like a perfectly matched load. The reflected
power is then

Pr = (
β −1
β +1

)2Pf . (A.11)

One derives the expression for the coupling strength

β =
1±
√

Pr/Pf

1∓
√

Pr/Pf
. (A.12)

Since β is always nonnegative, the upper sign is used when β > 1 (overcoupled), and the lower sign
for β < 1 (undercoupled).
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When the RF drive Pf is turned off at t = 0, the instantaneous equilibrium value of the stored energy
becomes U0 = 0, and one can derive β through the ratio of the drive RF and the instantaneous emitted
power by

β =
1

2
√

Pf
Pe
−1

. (A.13)

Oppositely, when the RF drive Pf is turned on at t = 0, U rises untill it reaches the equilibrium value
U0.

Figure A.2: Rectangular drive pulses and their effects on the cavity for three different values of coupling.

Considering those two cases, figure A.2 shows the power measurements in the time domain (with an
oscilloscope) for three different input coupling strengths, when the cavity is driven by a rectangular
pulse Pf of a long enough length to drive the cavity to near equilibrium. The stored energy is mea-
sured by measuring the transmitted power Pt via the weakly coupled probe.

In general, for measurements in the frequency domain, the coupling strengths of the couplers together
with the cavity loss cause the resonance to be broadened in frequency. The FWHM of the resonance
is 1/τL , i.e. QL = ω/2∆ω , where ∆ω is half the resonance width.
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