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Abstract

This work explores the active galactic nucleus (AGN) disk scenario for hierarchical black hole
(BH) mergers.

In AGNs, a central super-massive BH (SMBH) is surrounded by an extremely dense gaseous
accretion disk. The stellar-sized BHs orbiting the SMBH are thus subject to strong gas torques
and experience damping: their orbital eccentricity and inclination with respect to the disk
plane are suppressed. Some of the stellar BHs eventually end up orbiting inside the disk, and
suffer Type I migration, similar to what happens to planets in protoplanetary disks.
The disk may develop migration traps, where migration stalls and BHs accumulate. This
enhances interactions among BHs, with consequent efficient binary formation and, thanks to
gas hardening, rapid merger. Because of the deep gravitational potential of the SMBH, the
merger remnants are usually retained in the system and they can often go through multiple
episodes of pair-up and merger.
Hence, AGNs are promising environments for the formation of BHs in the upper mass gap with
MBH ∈ [50, 130]M⊙ and intermediate-mass black holes (IMBHs) with MBH ∈ [102, 105]M⊙.

In this Thesis work, we have developed a semi-analytical code which allows to easily explore
BBH production in such environments, without the need of extensive N-body hydrodynamical
simulations. Our model includes a formalism for BBH formation in migration traps and BBH
evolution, as well as prescriptions for BH spin orientations.

The physical parameters of the system, such as the mass of the SMBH and the density and
thickness of the disk, strongly influence BH dynamics. Thanks to the computational efficiency
of our code, we are able to explore the properties of BBH mergers in a variety of disk models.
We find that, in disks with medium to high gas density or with low thickness, there is a large
production of remnant BHs with masses up to a few ×103M⊙. On the other hand, disks that
are thick and diluted are not able to prompt efficient migration, thus they produce no BBH
mergers.

Finally, we qualitatively compare our simulation outputs with gravitational-wave data from
the LIGO–Virgo–KAGRA collaboration and we deduce that high-mass BBH merger detec-
tions could have been produced in AGN disks.
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Chapter 1

Introduction

Recent observations of gravitational waves have provided invaluable information on the
population of black holes in the Universe.

In this Chapter we will briefly introduce the nature of black holes, discuss gravitational
waves emission and detection, and outline the formation scenarios for binary black holes.

1.1 Black Holes

A black hole (BH) is an incredibly compact object such that all of its mass MBH is
contained inside its event horizon. For a non-spinning BH, the radius of the event horizon is
defined as the Schwarzshild radius RS = 2GMBH/c

2, where G is the gravity constant, c the
speed of light and MBH is the mass of the BH. At the event horizon, the gravity is so strong
that nothing, not even photons, can escape from it.

As a comparison, a star like the Sun has a mass M⊙ ≃ 2× 1030 kg, a radius R⊙ ≃ 7× 108m
and a density of roughly ρ⊙ ≃ 1400 kg/m3. If it were a BH, the same mass would be
concentrated in a much smaller sphere of radius 2GM⊙/c

2 ≃ 3 km and density of roughly
2× 1019 kg/m3.

Few people know that the idea of the existence of BHs was first postulated in 1783 by Rev.
John Michell [64]. He argued that a sufficiently compact star may have a surface escape
velocity larger than the speed of light and would thus be invisible. He called these objects
‘dark stars’. This idea had very little traction on his contemporaries and was forgotten until
his writings re-surfaced in the 1970s [14].
A proper mathematical treatment of BHs had to await 1916, when Albert Einstein
formulated the theory of General Relativity and, shortly after, Karl Schwarzschild found a
spherically symmetric solution of Einstein’s equations in the vacuum. He demonstrated the
existence of a characteristic event horizon, the Schwarzschild radius RS , within which no
communication is possible with external observers. Later, Roy Kerr generalized this solution
to spinning black holes in 1963 and finally John Wheeler coined the term ‘black hole’ in
1968. [25]

Nowadays, we have astronomical evidence for the existence of tens of BHs in the local
Universe, and we classify them based on their mass:

1



CHAPTER 1. INTRODUCTION

1. Stellar BHs with masses MBH < 100M⊙,

2. Intermediate BHs with masses 100M⊙ ≤ MBH < 105M⊙,

3. Supermassive BHs with masses MBH ≥ 105M⊙.

Stellar BHs can form directly from the collapse of massive stars (with initial mass
M∗ ≳ 20M⊙). The theory of stellar evolution predicts a gap in BH masses between ∼ 60M⊙

and 120M⊙, which is referred to as the upper mass gap or pair-instability mass gap. The
reason for this gap is that very massive stars (with helium core masses between 64M⊙ and
133M⊙ [37]) experience an instability in their core due to the creation of electron-positron
pairs out of two photons. This leads to a runaway collapse which is predicted to produce a
very powerful explosion, called pair-instability supernova, that disrupts the entire star and
leaves no compact remnant.
The lower limit of the mass gap has large uncertainty due to our poor understanding of the
physics of massive stars and, in particular, of the 12C (α, γ) 16O reaction rate [18, 23].

1.2 Gravitational Waves

According to the theory of General Relativity, mass is the source of space-time curvature. A
massive object in an accelerated motion produces ripples in spacetime, called gravitational
waves (GWs), which propagate away at the speed of light [35].
In this section we will discuss the emission of gravitational waves by binary systems, their
detection and some astrophysical implications.

1.2.1 Emission from compact objects binaries

We consider a binary system made of two compact objects, such as neutron stars or black
holes, of masses m1 and m2 and we consider them as point-like masses. Assuming circular
orbits, their dynamics is equivalent to that of a body of mass µ = m1m2/ (m1 +m2) on a
circular orbit of radius R and orbital frequency ω2

s = G (m1 +m2) /R
3.

It is useful to define the chirp mass Mc as

Mc =
(m1m2)

3/5

(m1 +m2)
1/5

(1.1)

It can be shown [52] that the GW strain1 at lowest order (quadrupole) generated from such
a binary, for the two polarizations + and ×, is

h+ (t) =
4

r

(

GMc

c2

)5/3
(ωs

c

)2/3 1 + cos2 θ

2
cos (2ωstret + 2ϕ) (1.2)

h× (t) =
4

r

(

GMc

c2

)5/3
(ωs

c

)2/3
cos θ sin (2ωstret + 2ϕ) (1.3)

1The strain is h = δL/L, where L is the distance between two reference points in space and δL is the
induced displacement between them. [3]
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CHAPTER 1. INTRODUCTION

where r is the distance from the observer, tret = t− r/c is the retarded time, and θ and ϕ
are the zenith and azimuth angle at which the observer is viewing the source. We notice
that the GW frequency is equal to twice the orbital frequency of the source: ωgw = 2ωs.

GWs carry energy away from the source. The total radiated power is approximately [52]

Pgw =
32

5

c5

G

(

GMcωgw

2c3

)10/3

(1.4)

We assume that the point masses have no internal structure, so the only possible source of
energy is the orbital energy of the binary Eorbit. Even in a realistic system of two extended
objects, corrections due to their internal structure are of order (v/c)10 and can safely be
neglected for non-relativistic motion [52].
The orbital energy and its time evolution are

Eorbit = −Gm1m2

2R
,

dEorbit

dt
= −Pgw (1.5)

So, if Eorbit decreases to compensate for the loss of energy to GWs, R must decrease as well.
If R decreases, ωs increases and, in turn, the GW strain h+,× increases. This leads to a
runaway process where the binary keeps shrinking in time and the amplitude of GWs keeps
increasing until, eventually, the binary reaches coalescence.

As the binary loses energy and shrinks, the strain frequency fgw and amplitude A increase.
Defining the time to coalescence as τ = tcoales − t , their evolution is [52]

fgw ≡ ωgw

2π
=

1

π

(

5

256

1

τ

)3/8(GMc

c3

)−5/8

(1.6)

A ≡ 4

r

(

GMc

c2

)5/3(πfgw
c

)2/3

=
1

r

(

GMc

c2

)5/4( 5

c τ

)1/4

(1.7)

Both quantities increase continuously as τ → 0 and diverge at τ = 0. This type of signal is
referred to as ‘chirping waveform’ or simply ‘chirp’.
Substituting numerical values in eq. 1.6, we can write

fgw ≃ 134Hz

(

1.21M⊙

Mc

)5/8(1 s

τ

)3/8

(1.8)

The evolution of R, using the definition of ωs, the relation ωgw = 2ωs and eq. 1.6, is

Ṙ

R
= −2

3

ḟgw
fgw

= − 1

4τ
=⇒ R (τ) = R0

(

τ

τ0

)1/4

(1.9)

where R0 = R (τ0) and, consistently with the definition of τ , R (τ = 0) = 0.

In truth, the expressions for the GW strain in eq.s 1.2 and 1.3 and for the radiated power in
eq. 1.4 are only valid in the approximation of quasi-circular orbits (ω̇s ≪ ω2

s). When a
binary shrinks, it eventually reaches a condition where this approximation is no longer valid.
In particular there is a minimum value of the radial distance beyond which stable circular
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orbits are no longer allowed. This is called the innermost stable circular orbit (ISCO) and,
for non rotating BHs and m1 ≫ m2, it is equal to

RISCO =
6G (m1 +m2)

c2
(1.10)

Therefore, for R ≳ RISCO, the binary goes through a succession of quasi-circular orbits with
progressively decreasing radius. The frequency and amplitude of the emitted GWs follow
eq.s 1.6 and 1.7. Then, when the orbital separation approaches RISCO, there is a plunge
phase where the radius decreases quickly and a correct estimate of the evolution of fgw and
A requires numerical relativity.

The maximum frequency in the quasi-circular orbit approximation is reached when the two
objects are separated by a distance RISCO and it is equal to [52]

fmax = 2 (fs)ISCO =
(ωs

π

)

ISCO
=

1

π6
√
6

c3

G (m1 +m2)
≃ 4.4 kHz

(

M⊙

m1 +m2

)

(1.11)

In Figure 1.1 we show the overall shape of the waveform of a GW signal, constructed using
numerical relativity. There are three well-defined phases: inspiral, merger and ringdown.
During the inspiral the binary has a large separation, so the approximation of quasi-circular
orbit is valid and the evolution of the signal is given by eq.s 1.6 and 1.7. As the two objects
get closer to each other, they eventually come into contact, lose their individual identities
and merge to form a final black hole. Both the frequency and amplitude of the signal are
maximum at merger.2 The remnant object is somewhat distorted and, as it settles into its
fundamental state, it emits GWs with almost constant frequency and rapidly-decreasing
amplitude. This is the ringdown phase.

1.2.2 Detection: the LIGO–Virgo–KAGRA Collaboration

Recent observations of gravitational waves have provided invaluable information on the
population of BHs in the Universe. This has been possible thanks to the construction of four
GW detectors: two LIGO detectors in the USA, the Virgo detector in Italy and the KAGRA
detector in Japan. They are advanced modified Michelson interferometers with arms of
length of 3 to 4 km. They are sensitive in the frequency range from ∼ 10Hz up to a few kHz,
as visible in Figure 1.2. We will refer to the LIGO–Virgo–KAGRA Collaboration as LVK.

The LVK interferometers are incredibly sensitive to spatial distortions: typical strains from
astrophysical sources are on the order of δL/L = 10−21 or less [3]. Thus, with arms with
length of the order of a few kilometers, the interferometers must be sensitive to
displacements δL of less than ∼ 10−18m. This is an incredibly small displacement: for
comparative purposes, note that the radius of a proton is ∼ 8.4× 10−16m [51]. This high
sensitivity is achieved by using Fabry-Perot resonant cavities, so that the optical length of
the arms is of a few hundred kilometers.

We have seen in the previous section how the frequency of the GW waveform fgw increases,
reaches a maximum frequency fmax at merger and remains approximately constant during
the ringdown.

2Although the frequency keeps increasing after the binary reaches the ISCO separation, in the following we
will assume that fmerger ≃ fmax as defined in eq. 1.11.
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Figure 1.1: Upper panel: Estimated theoretical strain amplitude, given by numerical relativ-
ity, for the event GW150914. Lower panel: estimate of separation and relative velocity of the
binary members for the event GW150914. Credits to [48].

Figure 1.2: The sensitivity of the LIGO–Virgo network for the O3 observing run as charac-
terized by the amplitude spectral density (i.e., the strain per unit square root of frequency).
The narrow spectral features are due to mechanical resonances (such as vibrational modes
of the suspension fibers), calibration lines and 50Hz and 60Hz electric power harmonics. At
high frequency, photon shot noise is the main limit to the sensitivity. At low frequency, there
are many sources of noise such as seismic and thermal noise, radiation pressure on mirrors,
variation in the atmospheric pressure and scattered light [13]. Figure from [49].
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Both the behavior of fgw as a function of time (eq. 1.8) and of the maximum frequency fmax

at the end of the inspiral (eq. 1.11) depend on combinations of the two masses m1 and m2.
In particular, binaries with larger total masses reach lower maximum frequencies and, since
they also have larger chirp masses, their signal are visible for a shorter time interval in the
interferometers. This does not generally mean that the inspiral of these binaries is short: it
can last for a long time, but it emits at frequencies at which the LVK detectors are not
sensitive.
For example, the signal of a binary with masses m1 = m2 = 1.4M⊙ enters the detector’s
bandwidth (fgw ≥ 10Hz) at τ = 17min prior to coalescence and reaches a maximum
frequency fmax = 1.6 kHz. If we increase the masses up to m1 = m2 = 10M⊙, the signal is
visible for only τ = 38 s and the maximum frequency is fmax = 440Hz, which is well within
the detector’s bandwidth. For an even more massive binary with m1 = m2 = 100M⊙, the
signal is visible for only τ = 8 s and it reaches a maximum frequency of fmax = 22Hz, which
is in the higher-noise region of the bandwidth (see Figure 1.2).
Since it is not possible to identify signals that are too short or that have a low signal-to-noise
ratio, the LVK interferometers are not sensitive to mergers of high-mass compact binaries.

The most used technique to identify astrophysical GW signals is that of ‘matched filtering’,
which uses a bank of strain templates computed using numerical relativity and searches for
similar patterns in the data [49]. The ability to recover the signal of a merger event depends
strongly on whether the bank used contains a template with the right parameters.
For example, for a given chirp mass, the banks contain a larger number of templates with
mass ratio q = m1/m2 ∼ 1 rather than with low q [2, 49]. Therefore the LVK events
identified with matched filtering are biased towards higher q.

The templates are well characterized by combinations of the binary component parameters
such as the chirp mass Mc (eq. 1.1), the mass ratio q = m2/m1 and two combinations of the
BH spins called the effective spin χeff and the precession spin χp. These quantities
determine the phase evolution during inspiral [47]. Also, the amplitude of the strain is
inversely proportional to the distance as in eq. 1.7.

The expression for the effective spin is

χeff =
m1χ⃗1 +m2χ⃗2

m1 +m2
· L⃗

|L⃗|
(1.12)

where L⃗ is the orbital angular momentum and χ⃗i (i = {1, 2}) are the dimensionless spins,
defined as χ⃗i = cS⃗i/Gm2

i where S⃗i is the spin angular momentum. For BHs, χi can
theoretically range from 0 (non-spinning) to 1 (maximally-spinning).

The expression for the precession spin is

χp = max

{

χ1,⊥,
q (4q + 3)

4 + 3q
χ2,⊥

}

(1.13)

where χi,⊥ is the component of spin perpendicular to the direction of the orbital angular

momentum L⃗ (i = {1, 2}).
Hence χeff is a measure of the BH spin components along the orbital angular momentum
vector, while χp measures the spin components in the orbital plane. The precession spin
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owes its name to the fact that the presence of spin components perpendicular to the orbital
angular momentum vector causes a precession of the binary orbital plane.

From the beginning of observations in September 2015 up until the end of the third
observation run (O3b) in March 2020, the LVK collaboration has detected 76 transient
signals associated with the inspiral and merger of compact binaries with false alarm rate
≤ 1 yr−1 [50]. Of these, 13 merger events have at least one of the progenitors with mass
overlapping with the pair-instability mass gap at 90% credible interval. We list the main
properties of the upper-mass-gap binaries in table 1.1.

Name pastro m1/M⊙ m2/M⊙ mrem/M⊙ χeff

GW170729 0.98 50.2+16.2
−10.2 34.0+9.1

−10.1 79.5+14.7
−10.2 0.37+0.21

−0.25

GW190413 134308 0.99 47.5+13.5
−10.7 31.8+11.7

−10.8 78.0+16.1
−11.5 −0.33+0.25

−0.29

GW190519 153544 > 0.99 66.0+10.7
−12.0 40.5+11.0

−11.1 100.0+13.0
−12.9 0.31+0.20

−0.22

GW190521 030229 > 0.99 95.3+28.7
−18.9 69.0+22.7

−23.1 147.4+40.0
−16.0 0.03+0.32

−0.39

GW190602 175927 > 0.99 69.1+15.7
−13.0 47.8+14.3

−17.4 110.5+17.9
−13.9 0.07+0.25

−0.24

GW190620 030421 0.99 57.1+16.0
−12.7 35.5+12.2

−12.3 88.0+17.2
−12.4 0.33+0.22

−0.25

GW190701 203306 0.99 53.9+11.8
−8.0 40.8+8.7

−12.0 90.2+11.2
−8.9 −0.07+0.23

−0.29

GW190929 012149 0.87 80.8+33.0
−33.2 24.1+19.3

−10.6 90.3+22.3
−14.6 0.01+0.34

−0.33

GW191109 010717 > 0.99 65+11
−11 47+15

−13 107+18
−15 −0.29+0.42

−0.31

GW191127 050227 0.49 53+47
−20 24+17

−14 76+39
−21 0.18+0.34

−0.36

GW191230 180458 0.95 49.4+14.0
−9.6 37+11

−12 82+17
−11 −0.05+0.26

−0.31

GW200216 220804 0.77 51+22
−13 30+14

−16 78+19
−13 0.10+0.34

−0.36

Table 1.1: Selected events from the gravitational wave transient catalog of the LVK collabo-
ration, updated to March 2020. We show events with low FAR (≤ 1 yr−1) and high primary
masses (≳ 50M⊙). The GW transients are named after the date and time (UTC) of observa-
tion with the format GWYYMMDD hhmmss. pastro is the probability of astrophysical origin
for the event, m1 and m2 are the masses of the binary components, mrem is the mass of the
remnant and χeff is the effective spin. Table from [50].

1.2.3 Astrophysical Implications

With the detection of GWs, it is now easier than it has ever been to identify BHs and study
their properties.
The results of the LVK detection runs have not been short of surprises. In particular, the
identification of BHs in the pair-instability mass gap (Table 1.1) challenges the models of
stellar evolution. There are two possible explanations for the existence of such BHs: either
the traditional models of pair-instability supernovae are wrong and it is actually possible to
form BHs in the [∼ 60, 120]M⊙ mass range from direct stellar collapse [18], or the formation
of these BHs requires dynamical formation channels.
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In this work, we will explore one of the possible dynamical formation channels for the
formation of BHs with masses in the pair-instability mass gap and above.

Also, in a few of the LVK observations, the remnant is an IMBH (highlighted in bold font in
Table 1.1). In particular, the most massive and widely-studied IMBH is that produced by
the merger event GW190521 (e.g. [1]).
These GW observations provided the first direct detections of IMBHs. Before 2019, several
IMBH candidates had been identified as X-ray sources or sources of optical emission lines, as
well as via kinematical measurements in massive star clusters, but none of these
observations seemed compelling [7]. Ensuring the existence of IMBHs and understanding
their formation is of primary importance for astrophysics because they are a link between
stellar-mass black holes and SMBHs, so the detection of merger events leading to their
formation is an important milestone.

The LVK observations do not rule out the existence of binaries in which one of the members
is an IMBH: currently, LVK observations pose an upper limit of 0.056Gpc−3yr−1 for the
detection of the merger of equal-mass binary systems with total mass 200M⊙ [2]. The
construction of larger terrestrial interferometers such as the Einstein telescope and of
space-based interferometers such as LISA will allow for the detection of higher-mass black
hole binaries [3].

1.3 Formation scenarios for binary black holes

Binary black holes (BBH) can form in one of two ways: they can either be original binaries
or dynamically assembled binaries.

An original BBH comes from the evolution of a binary of two massive stars, where the stars
undergo core collapse and create BH remnants with the condition that the binary is not
disrupted by the supernova explosions. Instead, a dynamically assembled BBH forms via
encounters of BHs in dense stellar environments, such as stellar clusters.
In a dense stellar environment, a BH experiences a large number of close-by interactions
with other objects, leading to a number of dynamical processes.

First of all, a BBH can form by direct encounters of three single bodies. Indeed, during the
chaotic and resonant evolution of a triple system there can be very close passages between
pairs of objects. A close interaction between two objects has two main effects: the system
loses energy through gravitational waves production, and tidal interactions become
important [75]. Both of these processes can favor the formation of binaries.

Also, a formed binary will have frequent interactions with single bodies. These interactions
can have many outcomes depending on the masses and energies of the objects at play:

i) The binary can be widened or destroyed (also said ‘ionized’) by the three-body
interaction. The three objects can therefore leave the interaction as single objects.

ii) The binary can become even more bound (we say that it is ‘hardened’) by transferring
some of its energy to the third body.

iii) One of the members of the binary can be replaced by the intruder. For example, if a
binary composed of a BH and a low-mass star undergoes an encounter with a single
BH, this can lead to the formation of a BBH [90].
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Repeated interactions of a strongly-bound binary with tertiary objects causes multiple
occurrences of process (ii), until the binary becomes so tight that its evolution is governed
by gravitational waves emission and it is led to merger.

If the environment is dense enough, the merger product can again go through binary
formation, hardening and coalescence. This can lead to a chain of events where we
dynamically form more and more massive BBHs which produce more and more massive
remnants. This process is called hierarchical merging.

The densest stellar environments in the universe are star clusters. There are different kinds
of clusters which are classified based on their mass and age.
Globular clusters (GC) are the oldest clusters, with typical ages of 12Gyr and typical
masses of 104 − 106M⊙. They are quite compact and they typically found in galactic haloes.
Young clusters (YSC) have formed recently (they have ages of about 100Myr) and they are
gravitationally loose. They have typical masses of 102 − 105M⊙. Open clusters (OSC) are
similar to YSC but they are smaller and older: they have typical masses of 101 − 104M⊙ and
typical ages of a few Gyr. Nuclear clusters (NSC) are found at the center of most galaxies.
They have typical masses 104 − 108M⊙ and typical ages of a few Gyr. As we will discuss in
subsection 2.2.1, they can sometimes coexist with a SMBH.

In this work we will focus on a particular class of NSCs: those that coexist with a SMBH
which is in a phase of mass accretion, which is called active galactic nucleus (AGN).

1.4 Aim and Structure of this work

The aim of this work is to study the possibility for the dynamical formation of BBH in active
galactic nuclei (AGN). In particular, we want to analyze the properties of the population of
compact remnants and study their dependency on the physical features of the AGN.

In chapter 1, we introduce the physical process of BBH inspirals, explain why they produce
GWs and describe their detections.

In chapter 2 we define the physical processes at play. We start with a historical introduction
on AGN observations and we proceed by explaining the physical properties of AGN
components: a SMBH, a gaseous accretion disk and a NSC. Then we describe the
interaction of NSC objects with the gaseous accretion disk and how this can lead to the
dynamical formation and merger of BBHs.

In chapter 3 we describe our numerical semi-analytical model for BHs evolution in AGNs.

In chapter 4 we show the results of our simulations and discuss the properties of the
remnant population.

In chapter 5 we outline our conclusions and discuss some possibilities for future research.
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Chapter 2

Dynamical formation of BBHs in AGN
Disks

2.1 The zoology of Active Galactic Nuclei

An active galactic nucleus (AGN) is observationally identified as a source in the sky with
very bright emission. AGNs cannot be stellar sources because of the peculiar properties of
their emission spectra. Normal stars emit black body radiation in a relatively narrow
wavelength range (between the near-IR and the near-UV) and their spectra display
absorption lines due to the colder outer layers in their atmosphere. Instead, AGNs are
powerful emitters of non-thermal radiation covering the entire electromagnetic spectrum
from the radio to the γ rays. Also, AGN spectra often have strong emission lines.

AGNs display large variability in their observational properties and in the past they were
often categorized as different objects. In this section, we will explain their historic
nomenclature and the currently accepted unification scheme that allows us to explain how
the same phenomenon can produce different-looking sources.

Seyfert galaxies This class of objects is named after their discoverer Carl Seyfert who
noticed that some spiral galaxies had unusually bright nuclei [78]. The spectra of these
nuclei show non-thermal continuum emission and contain strong emission lines of high
excitation from atoms such as hydrogen, carbon, oxygen, neon and magnesium.
Their are subdivided into two categories based on the width of their emission lines: those
displaying broad lines are named Seyfert 1 galaxies, while those that only have narrow lines
are called Seyfert 2.
Seyfert 1 galaxies usually have hydrogen emission lines with broadness compatible with gas
speeds of 1000− 5000 km/s, but they often have some much narrower lines coming from
forbidden transitions1, such as [OIII], with width compatible with velocities of a few
100 km/s. Therefore, these two types of emission lines are probably produced in different
regions.

1Permitted transitions are those allowed by the electric-dipole selection rules, while forbidden transitions
are those with zero dipole component but non-zero high-order components. A forbidden transition can happen
with much lower probability than a permitted one.
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The width of all lines of Seyfert 2 galaxies is compatible with velocities of a few 100 km/s, so
both permitted and forbidden lines emanate from the same region. [65]

Whether a region can emit a forbidden line with a significant strength depends mostly on its
density. In order to explain this, let us consider an atom with two energetic levels 1 and 2
with E1 < E2. The equation of balance is [65]

nen1P12 = nen2P21 + n2A21

where n1 and n2 are the population densities of states 1 and 2, ne is the electron density,
A21 the Einstein coefficient of spontaneous emission, P12 the probability for the ion to
undergo a transition from state 1 to state 2 in a unit time due to collisions with electrons,
and P21 the corresponding probability from state 2 to state 1. For forbidden lines, A21 ≃ 0
(= 0 in the dipole approximation).
The emission is mainly produced via spontaneous emission after collisional excitation, so the
line luminosity is

L ≃ hν12n2A21 = hν12
ne n1 P12

1 + ne P21/A21
= h ν12

{

ne n1 P12 if A21 ≫ ne P21

n1 (P12/P21)A21 if A21 ≪ neP21,

where h is the Planck constant and ν12 is the frequency of a photon absorbed (emitted) by
excitation (de-excitation).
We see that in low-density regions (ne ≪ A21/P21) the line luminosity L is independent of
A21, so both permitted and forbidden lines can be produced with significant strengths. The
opposite is true in high-density regions, where atoms are often subject to de-excitation due
to collisions with electrons. Since forbidden lines have a low transition probability, an atom
must be in the excited state for a long time before it has a chance to make the transition
and this is not possible in a high-density region.

Hence, we can conclude that Seyfert 1 galaxies seem to have high-density regions (no
forbidden lines) moving at high speed as well as low-density regions moving at low speed,
while Seyfert 2 galaxies only seem to have low-density regions moving at low speed. Of
course, this does not rule out the possibility that Seyfert 2 galaxies have high-density
regions: all we know it that these regions, if they exist, are blocked from our view.

Radio galaxies Some galaxies have strong emission at radio wavelengths. They were first
detected by radio surveys of the sky and, by comparison with optical surveys, almost all of
them have been unambiguously identified as elliptical galaxies.

High resolution radio observations of these galaxies usually reveal that the radio emission
comes from two lobe structures that extend up to 102 − 103 kpc from the central nucleus,
where the rest of the galaxy is [65].
Often there are some jet-like structures that stretch from the compact core towards the
lobes, suggesting that these jets are responsible for transporting energy from the core out
into the radio lobes. The jets are rarely symmetric: often only one of them is observed and,
in sources with two jets, one is usually significantly brighter than the other.
Radio emission from jets and lobes of radio galaxies seems to originate from the synchrotron
process.
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Figure 2.1: Multi-wavelength image of the Cygnus A galaxy. X-ray (in blue) data is from the
Chandra Observatory, radio data (in red) is from the Very Large Telescope and optical data
(yellow hues) is from the Hubble Space Telescope.

One of the first radio galaxies to be discovered was Cygnus A. In Figure 2.1 there is a
multi-wavelength picture of the galaxy, where the radio emission is represented in red and
the two-lobe structure is clearly visible.

Seyfert and radio galaxies seem to be drastically different objects. Their morphology is
different, as Seyfert galaxies are usually spirals while radio galaxies are usually ellipticals,
they emit at different wavelengths and from different spatial regions: most of the emission of
Seyfert galaxies comes from the core while most of the radio emission in radio galaxies
comes from spatially-extended lobes.
Actually, we will see later that the engine powering up Seyfert galaxies is the same that
powers up radio galaxies. The main difference is that radio galaxies display jets that
transport energy out of the nucleus of the galaxy. They are presumably made of plasma
flowing out at very high speed and they are eventually stopped by collisions with the
intergalactic medium, forming wide lobes.

Quasars Quasars (“quasi-stellar radio sources”) are very luminous optical sources. They
are typically unresolved and their spectra display broad emission lines.
The term quasar is nowadays used interchangeably with the term QSO (“quasi-stellar
object”) but they have a historical difference: the term “quasar” used to be utilized for
sources that emit both in the optical and in the radio, while the term “QSO” was reserved
for sources with bright optical emission but invisible in the radio. Because of the similarities
in their optical spectra, people have started referring to QSOs as “radio-quiet quasars” and
vice versa referring to quasars as “radio-loud QSOs”, so the two terms have become
synonyms.

Quasars spectra are very similar to those of Seyfert 1 galaxies, the only difference between
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these two classes of objects is their luminosity: quasars can be as luminous as 100 ordinary
galaxies and they often out-shine their host galaxy [15].
The similarity in spectra suggests that Seyfert galaxies and quasars may be similar kinds of
galaxies, where the Seyfert galaxies are the milder form and the quasars are the more
extreme and rarer form. Because of their high luminosity, quasars are detected at very large
distances where Seyfert galaxies would not be observable.

Observations of quasars with high spectral resolution have identified the presence of fast
moving radio-emitting blobs. They sometimes seem to have superluminal motion (i.e. their
apparent linear velocity is larger than the light speed c).
This apparently unnatural motion can be explained as the motion of relativistic blobs at a
very small angle with the respect to the line of sight [15]. Referring to Figure 2.2, let us
consider a source of radiation moving from point A to point B at velocity v in a time δt.
The signal emitted at A reached the observer at O at a distance D in a time tAO = D/c,
while the signal emitted at B, assuming that the angle θ is very small, reaches him at a time
tBO ≃ δt+ (D − vδt cos θ) /c. Therefore, the apparent velocity of the source perpendicular
to the line of sight is

v⊥ =
v sin θδt

tBO − tAO
≃ v sin θ

1− v
c cos θ

If θ ≪ 1 and v ≲ c, the apparent velocity v⊥ can be greater than c.

Identifying the morphology of the host galaxy of a quasar is challenging as its nucleus
typically overshines the whole galaxy. Nevertheless, the Hubble Space Telescope has
observed several hosts of low-redshift quasars. These galaxies seem to have a large diversity
in morphology: some are elliptical, some are spiral and some seem to be disturbed or
interacting systems [65].

Blazars OVV (“optically violently variables”), also called blazars, are a subclass of
quasars. As the name suggests, they are characterized by strong and rapid optical
variability, as their optical flux can vary by a significant fraction in less than one day. They
are also characterized by a relatively strong polarization of their light, especially in the
optical, typically at the level of a few percent (compared to ≲ 1% for regular quasars) [65].

Figure 2.2: A sketch illustrating how superluminal motion arises. Credits to [15].

In Table 2.1 we list a rough estimate of the number densities of the objects we are dealing
with. We see that quasars are the rarest of these objects.

The unification scheme It is nowadays believed that all the sources listed above are
generated by the same kind of object: a super-massive black hole (SMBH) that is accreting
mass via an accretion disk.
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Type of object Number density
[

Mpc−3
]

Field galaxy 10−1

Seyfert galaxies 10−4

Radio galaxies 10−6

Radio-quiet quasars 10−7

Radio-loud quasars 10−9

Table 2.1: Local number densities of different type of galaxies [65].

We now recognize many similarities between different kinds of active galaxies, which were
thought to have nothing in common when they were first discovered.
For example, we know that Seyfert 1 galaxies and quasars are similar, the only difference
being that quasars have much more powerful central engines presumably due to a more
massive SMBH. Also radio galaxies and radio-loud quasars seem to be the same kind of
objects seen at different angles: in quasars the jets are moving directly towards the observer,
while in radio galaxies their are moving at an angle and we can see their full extension.
The two types of Seyferts are merely the same objects seen from different angles: we can see
broad spectral lines (Seyfert 1) if our line of sight is located roughly perpendicular to the
accretion disk, so that we can see the central regions where material is moving very fast,
whereas we only see narrow lines coming from low-density, slow-moving regions (Seyfert 2)
when we are at an angle such that the dusty torus obscures the central part.

The only physical difference seems to be the morphology of the host galaxy. A central
engine in a spiral galaxy produces a Seyfert or a radio-quiet quasar depending on whether
the central engine is weak or strong, while a central engine in an elliptical galaxy is seen as a
radio-loud quasar if the viewing angle is close to the radio jet and is seen as a radio galaxy if
the viewing angle is larger [15, 65].

Figure 2.3: Unification scheme for AGNs. Figure credit to Fermi Gamma-ray Space Telescope.
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2.2 The AGN Environment

An AGN is an environment where a SMBH is surrounded by a gaseous accretion disk.
Sometimes, AGNs also host a nuclear star cluster (NSC). We only consider SMBHs which
are compatible with the co-existence with NSCs.
The population of compact objects in the inner part of a NSC interact with the disk’s gas
due to viscosity effects. We focus in particular on the black hole (BH) component of the
NSC population: our goal is to study the pair-up and subsequent merger of binary BHs
(BBH) governed by the interaction with gas.

2.2.1 Super Massive Black Holes

SMBHs are, as the name suggests, BHs with very large mass MSMBH ≳ 105M⊙, which are
expected to be found at the center of massive galaxies.

By definition, SMBHs are not visible because they do not emit light. So, historically, there
have been large efforts to confirm their existence and constrain their properties. We will
now briefly list of some of the evidence for their existence.

a) Quasars The first astronomical evidence of the existence of SMBHs, starting from the
1960s, was the detection of quasars (“quasi-stellar radio sources”) [25].

As anticipated in section 2.1, quasars are objects with incredibly luminous emission up to
several 1014 times the luminosity of the Sun, which outshine the total emission of their host
galaxy. They show large changes in luminosity on timescales as short as 1 hour, suggesting
that their size is smaller2 than one light-hour (equivalent to a few 10−5pc) [65].
Such a bright emission from such a compact area is most likely explained by accretion of
matter onto massive BHs.

Indeed, an infalling particle onto a BH can in principle convert between 6% and 42% of its
rest-mass energy into radiation, where the lower-limit of 6% is for a non-rotating BH and
the upper-limit of 42% is for a maximally-rotating BH [35]. This is much more efficient than
the energy conversion that happens in main sequence stars from the nuclear burning of
hydrogen into helium, where only about 1% of the hydrogen rest-mass energy is converted
into radiation.

Quasars have many other features which make it hard to believe that they could be stellar
sources, such as their broad emission lines in the X- and γ-rays and highly collimated radio
jets.

b) Kinematics In the early 1990s, when the angular resolution of telescopes was finally
good enough thanks to adaptive optics, people started observing the motion of stars in the
nucleus of the Milky Way.
Sagittarius A* (SgrA*) was already well known as a compact radio source, so these
observations were devoted to measuring its mass via the determination of orbits around it.
By the early 2000s, research groups had already identified the orbits of about 10 stars,

2If the integrated luminosity of an object changes over a timescale ∆t, the size of the emitting region must
be smaller than ∼ c∆t.
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Figure 2.4: Orbit of the star S2/S02 around SgrA*. On the left: astrometric positions. On
the right: Measurements of right ascension, declination and line-of-sight velocity. The data
(blue and black dots) comes from multiple surveys taken between 1992 and 2019. The gray
lines trace the best-fitting general-relativity orbit around a center of mass marked by the black
cross at (0, 0) coordinates on the left-hand panel. The red data points mark the positions of
the infrared emission from SgrA*. The infrared light from SgrA* is scattered, so a variation
in the apparent position of the infrared emission is not indicative of a variation in the position
of the source. Figure from [26].

whereas now more that 40 orbits are known in the central light-month (∼ 3× 10−2 pc) of the
galaxy [26].
Each star is observed both with proper motion studies (which determine its motion on the
right ascension/declination plane) and Doppler spectroscopy (which determines its velocity
in the orthogonal direction), so to establish the three-dimensional structure of its orbit.
Most notably, the star S2 (or S02) was observed since 1992 and its motion is well determined.
It is on a highly eccentric orbit (e = 0.88), with a peri-distance of about 6× 10−4 pc and an
orbital period of 16 years [26]. We show the data and the best-fit orbit in Figure 2.4.

The measured orbits show that the gravitational potential is that of a point mass with mass
greater than 105M⊙, whose position is that of the radio source SgrA* (within a 4× 10−5 pc
uncertainty) [25]. The size of the radio emission of SgrA* measured at a wavelength of
3.5mm is about 1AU (∼ 5× 10−6 pc) [80].

Such large mass in an object of such a compact size can most reasonably be explained with
a massive BH. Nevertheless, the scientific community has not always been unanimous in this
interpretation: other options were clusters of smaller objects (neutron stars, stellar BHs
and/or brown dwarfs), as well as more exotic objects such balls of heavy fermions held up
by degeneracy pressure or boson stars, which are hypothetical stars made of bosons [65].
With the most recent data on the proper motion limit of SgrA* [31, 34], the hypothesis of
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Figure 2.5: Images of M87* (on the left) and SgrA* (on the right) produced by the EHT
collaboration.

the dark remnant cluster is rejected beyond any reasonable doubt.

c) Imaging Direct imaging of SMBHs is considered to be a direct proof of the nature of
these objects. Imaging a BH is a very compelling task and requires the combination of
observations from a worldwide network of radio telescopes.
It was only achieved twice to date: in 2019 for the SMBH M87* at the center of the
homonymous galaxy [22] and in 2022 for SgrA* at the center of the Milky Way [17].

We show the images of both M87* and SgrA* in Figure 2.5. They show a bright ring of
emission which surrounds a dark inner region called the shadow of the BH. The luminous
ring is due to the escape of photons from near the event horizon via an unstable circular
orbit. Due to gravitational lensing, the radius of the shadow appears to a far-away observer
about 2.5 times larger than the Schwarzschild radius of the BH.

By measuring the size of the BH shadow, we can infer that both M87* and SgrA* are Kerr
SMBHs with masses

MM87 ≃ 6.5× 109M⊙ MSgrA ≃ 4.0× 106M⊙

In this work, we are not interested in all SMBHs, but only in those that coexist with NSCs
at the center of galaxies.

Coexistence with a NSC Whether or not a galaxy can contain an SMBH seems to
depend on its mass: large spheroidal stellar systems, such as elliptical galaxies, invariably
host a 106 − 109M⊙ SMBH, whereas dwarf elliptical galaxies are predominantly dominated
by a 105 − 107M⊙ NSC [33]. One may suppose that galactic evolution can lead to either one
or the other scenario, but they are not mutually exclusive. There have been multiple
observations of galaxies where an SMBH and an NSC coexist. For example, the Milky Way
hosts both an NSC of mass ∼ 3× 107M⊙ [33] and the SMBH SgrA* of mass ∼ 4× 106M⊙.
It is interesting to know that the Milky Way’s NSC was known since the 1960s, while SgrA*
was only discovered in the 1970s [68]. Indeed, identifying the presence of an NSC is

17



CHAPTER 2. DYNAMICAL FORMATION OF BBHS IN AGN DISKS

relatively easy because they are luminous sources (see subsection 2.2.3), while spotting an
SMBH is much more demanding. Measuring the radiation from accretion of matter onto an
SMBH or discerning the kinematics of stars around it are compelling tasks, becoming more
and more challenging as the distance increases or the mass of the SMBH decreases.

There is evidence [33] that both SMBHs and NSCs can frequently inhabit galactic
spheroids3 with stellar masses ranging from 108M⊙ to 1011M⊙. Smaller galaxies typically
host NSCs, while larger galaxies typically host SMBHs only.

The relation between the mass of the SMBH and that of a coexisting NSC is [33]

log

[

MSMBH

MSMBH +MNSC

]

=
2

3
log

[

MSMBH

5× 107M⊙

]

for MSMBH ≤ 5× 107M⊙ (2.1)

It is not clear whether the lack of SMBHs in low-mass hosts is an intrinsic property of
galaxies or whether it is due to observational limits on low-mass BHs. Therefore, coexistence
in low-mass galaxies cannot be ruled out.
Actually, a BH of about 5× 104M⊙ was recently identified at the center of the dwarf galaxy
RGG 118 [4]. This is technically an IMBH, and its presence is a hint that central massive
BHs could be a common feature of lower-mass galaxies as well.

The dearth of NSCs in galaxies with mass greater than 1010M⊙, instead, is observationally
certain. There are a few possible explanations.
One explanation could be that all standard galaxies start out with NSCs with mass
proportional to their spheroidal mass. Then, above some critical mass, dynamical processes
become so efficient that they transform a larger and larger fraction of the NSC stars into
massive seed central BHs, until there is no NSC star left. It has been shown [83] that this
process is possible via runaway tidal capture and tidal disruption events.
Another explanation is that, when the host galaxy is more massive than a few 1010M⊙, the
accretion of gas onto the central SMBH is so fast that star formation in the NSC might not
happen at all [68].

Although the formation and evolution of SMBHs and NSCs must be inevitably linked, they
do not show the same scaling relations with their host galaxy. For example, the MNSC − σ
relation is much shallower than the MSMBH − σ one [63, 76]:

MNSC ∝ σ 2.11(± 0.31) , MSMBH ∝ σ 4.73(± 0.36) (2.2)

where σ is the three-dimensional velocity dispersion of stars in the host spheroid.
Therefore SMBHs and NSCs do not form a single family of central massive objects.

2.2.2 Active Galactic Nuclei Disks

As seen in section 2.1, there is large observational evidence for the existence of AGNs.
Nowadays, we also have high-resolution images of some active galaxies that confirm that
accretion onto SMBHs happens through accretion disks.

3By host galactic spheroids (later called simply host galaxies for shortness) we mean either an elliptical
galaxy or the bulge of spiral and lenticular galaxies.
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For example, observations of the nucleus of NGC 4258 [66] show a thin, slightly warped disk
of radius 0.25 pc (viewed almost edge on) in Keplerian rotation around an unresolved mass
of 4× 107M⊙. The disk is clearly visible because it shows water maser emission, probably
due to the amplification of a radio-continuum source that shines in the nucleus. It appears
to be remarkably thin, with an aspect ratio4 of roughly 10−3 at the location of maser
emission. Nevertheless, determining its whole aspect ratio profile or its density profile is
unattainable with the current data.

Observations of AGN disks can poorly constrain their physical properties, so we must turn
to hydrodynamical models. Unfortunately there can be multiple orders of magnitude
variation in density, aspect ratio and lifetimes allowed within common models due to the
complexity of modeling magneto-hydrodynamics, turbulence, radiative transport, and
plasma physics [57].
In this section, we will illustrate the model we use for the structure of accretion disks.
Because of the large uncertainty, we keep the model flexible to allow for significant
variations in density, aspect ratio and lifetime.

We assume the AGN disk to be well described by a Shakura-Sunyaev disk (SSD) model [79].
An SSD is geometrically thin,5 and optically thick, with steady-state accretion onto the
central SMBH. Gas turbulence is supposed to be the cause of disk’s viscosity; therefore, we
can write the the viscosity parameter ν as

ν = α csH, (2.3)

where α ∈ [0, 1] is the viscosity coefficient, cs is the sound speed and H is the disk height.
Indeed, in a turbulent medium ν = vturb lturb, where vturb is the velocity of turbolent cells
with respect to the average (Keplerian) gas motion and lturb is the size of the largest
turbulent cell. By assuming vturb ≃ cs and lturb ≃ H we find the result of eq. 2.3.

The disk is assumed to be in local thermal equilibrium and to be radiatively efficient, so that
it can readily radiate away its viscous heat. Therefore, the disk can stay geometrically thin.

The viscosity coefficient α is a free model parameter. We assume it to be constant over the
whole extension of the disk and to have a constant value independently of the other physical
properties of the disk. The assumed value is α = 0.3 [44].

The problem with SSDs is that they are viscously, thermally, and convectively unstable to
perturbations, meaning that they can easily fragment into smaller sub-clouds [45]. Regions
of the disk that are stable against fragmentation respect the Toomre’s stability criterion
which, for Keplerian motion, is:

Q =
csΩ

πGΣg
≳ 1, (2.4)

where Ω = (GMSMBH/R
3)1/2 is the Keplerian angular velocity and Σg is the surface density

of the gas.

Hence, a realistic modeling of an accretion disk requires a few extra assumptions. A possible
solution is the model by Sirko & Goodman (hereafter, SG) [81].

4The aspect ratio is the ratio between the half-height H of the disk at a certain location and the radial
coordinate R.

5A geometrically thin disk is such that its aspect ratio h = H/R is always h ≪ 1
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Figure 2.6: Surface density Σg, aspect ratio h and sound speed cs profiles of the SG model
for a 108M⊙ SMBH (blue dashed) and relative broken power-law best fits (orange solid). The
profiles for a 107M⊙ and a 106M⊙ SMBH are shown in green (dash-dot) and red (dotted).

The SG model fixes the problem of fragmentation by assuming that there is star formation
in the outskirts of the disk. Energetic feedback from the newly-formed stars increases the
velocity dispersion and sound speed of the gas, maintaining Q close to unity, supporting the
disk against global gravitational instability and inhibiting further star formation [7]. As a
consequence, the density in the inner part of the disk stays continuous and that region is
stable against fragmentation. The model neglects any effects due to magnetic fields and
general relativity.
A side consequence of this model is that NSCs can form directly from the outskirts of AGN
disks. This can be a possible explanation of the coexistence between SMBHs and NSCs (see
subsection 2.2.1).

There are other models for stable accretion disks such as the model by Thompson, Quataert
& Murray (hereafter, TQM) [86], who extrapolate a star-forming galaxy disk inward to the
SMBH and ensure stability by assuming that the external accretion rate is high enough so
that the gas fraction of the disk remains constant, allowing rapid inflow onto the SMBH to
continue. This is not an SSD because the source of viscosity are global gravitational
instabilities rather than the motion of turbulent cells.
The TQM model produces density and aspect ratio profiles with large discontinuities. Since
these discontinuities are placed at radial positions that are important for our subsequent
work (see a discussion on migration traps in subsection 3.1.2), they could potentially cause
numerical problems. Also, models for the interaction between NSC objects and gas
(discussed in sections 2.3 to 2.7) are only reliable for disks with a continuous density and
would not be accurate for TQM disks.
Therefore, we prefer the SG model over the TQM one.

We show the surface density, aspect ratio and sound speed profiles of the SG model for a
SMBH mass of 108M⊙ in Figure 2.6 (blue dashed lines).
We fit the profiles with a broken power law shown in the same figure (orange lines). The
best fit power laws are:
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Σg (R) = 7.94× 105 g/cm2
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The SG profiles have only been published for a central SMBH with mass 108M⊙. We expect
these quantities to have the following power-law dependencies on MSMBH [5]:

Σg ∝ (MSMBH)
4/5 , h ∝ (MSMBH)

−3/20 , cs ∝ (MSMBH)
3/2 (2.8)

We use the SG model for multiple SMBH masses by re-scaling the expressions in eqs. 2.5,
2.6 and 2.7 as determined by the relations of eq. 2.8. We report the full expressions in
eqs. 3.11, 3.12 and 3.13.

The lifetime of AGN disks is subject to large uncertainty. Data from quasars observations
can poorly constrain the lifetime: different estimates span several order of magnitudes in the
range of 10−2 − 103Myr [43]. Also, it is not clear whether accretion onto SMBHs happens
continuously over a certain time span, or episodically through many cycles of efficient
accretion.

One of the most commonly-used probes for quasar lifetimes is the proximity effect: quasars
emit a large amount of radiation that effectively ionizes the inter-galactic medium (IGM).
The regions around quasars where the ionization level of the IGM is enhanced by quasars
radiation, called proximity zones, are observationally identified as regions that emit forests
of emission lines. The spatial extent of proximity zones is correlated to the quasar’s on-time,
i.e. the time during which a quasar has been shining.
The on-time of a quasar is different than its lifetime. Let us suppose that the quasar turns
on at a time t1. If we make an observation at a time tobs, then the on-time is tobs − t1. The
quasar will eventually keep shining for some time after the observation and it will turn off at
some time t2. The lifetime is obviously t2 − t1 and is generally larger than the on-time.

Therefore, the extent of the proximity zone can only provide direct information on the
on-time but not on the lifetime. In order to obtain knowledge about the lifetime we need
more complex models.
We use the results from a Bayesian study [43] that performs statistical comparison between
the sizes of observed proximity zones and the outcome of the radiative transfer simulations
to obtain information about the quasars lifetimes.
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They find that the mean quasar lifetime is 1.7Myr and the 68% credibility interval goes
from 0.6Myr up to 5Myr.

In our model, we will consider two possible values of lifetimes. In some of our simulations we
will assume a lifetime of 1Myr, consistently with the mean quasar lifetime found from [43].
We also consider the option that quasars may be longer-lived and assume a lifetime of
10Myr in other simulations. In all simulations, we always consider a single accretion episode.

To allow for the wide variety of parameters suitable for AGN disks and explore their relation
to the dynamical assembly of BH binaries, we will examine eight possible scenarios. Given a
SMBH mass, we will consider:

- Three possible values of the surface density at the migration trap. We will call the
relative models high, medium and low density disk and we will indicate them with a
‘D’ , a lowercase ‘d’ and an italic lowercase ‘d ’ respectively.

- Two possible values of the lifetime. We will call the relative models long-lived and
short-lived disk and we will indicate them with an ‘L’ or an ‘s’ respectively.

- Two possible values of the aspect ratio at the migration trap. We will call the relative
models thin and thick6 disk) and we will indicate thick with a capital ‘T’ and thin
with a lowercase ‘t’.

Every disk type will be indicated by an acronym. For example, the high-density, long-lived
and thin disk will be referred to as ‘DLt’ whereas the medium-density, short-lived and thick
disk as ‘dsT’.
See section 4.1 for more details on the chosen parameters.

We assume no evolution for the AGN disk: in our model its physical properties remain
unaltered for its whole lifetime.

2.2.3 Nuclear Star Clusters

NSCs are dense and massive clusters that, as their name suggests, are found in the innermost
region of most galaxies. They are quite an ubiquitous feature of galaxies: their hosts can
exhibit different morphology and a wide range of masses between 108M⊙ and 1010M⊙ [68].
Observationally, they are easy to identify because they over-shine any other stellar cluster
and because of their unique location at the dynamical center of the host galaxy. However,
studying their properties can be hard due to patchy dust extinction which affects galactic
nuclei.
Even though there are hundreds of studies of NSCs, their formation mechanism is not
certain yet. The two main theories are that they formed from the inspiral of star clusters
into the center of the galaxy or from in-situ star formation triggered by high gas densities in
the galactic nucleus [68].

The parameter governing the size of a NSC is the effective radius (or half-light radius) reff ,
defined as the radius within which half the cluster light is contained. The typical size of a
NSC is reff ≃ 3.3 pc, comparable to the size of most globular clusters.

6This nomenclature is just for comparison, as both disk models will be geometrically thin.
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NSC masses, on the other hand, are much higher than globular clusters’. The typical mass
of a NSC is around 106 − 107M⊙ and can be as high as 109M⊙, while the typical mass of a
Milky Way globular cluster is around 105 − 106M⊙.
Hence, NSCs are the densest known stellar environments, which can reach surface densities
of 106M⊙/pc

2 or more. [68]

We defer a detailed discussion of mass relations to subsection 3.1.3. In particular, the
relation between the NSC and the host galaxy mass is in eq. 3.14, while the relation
between the NSC mass and its radial dimension is in 3.15.

The shape of a NSC is that of a spheroidal with typical ellipticity lower than 0.2. However,
NSC with high mass can sometimes have a very flattened shape with ellipticity up to 0.6
[68]. In the following work, we will neglect the existence of such elongated NSCs and we will
assume them to be spherical.

We assume the NSC to have an age such that its stellar population is composed of
light-mass stars (M ≲ 2M⊙) that are still in the main sequence phase, burning hydrogen in
their cores, and by the remnants of higher-mass stars. The radial distribution of these
objects will not be uniform. Because of dynamical mass segregation [62], heavier objects will
sink rapidly towards the core.
We trust that the mass fraction of BHs in the central region of a mass-segregated NSC is [5]

fBH ≃ 0.04 (2.9)

We do not consider stellar evolution in our setting: the small and mid-sized stars
(M ∼ 1M⊙) have a typical main sequence phase of 10Gyr, which is much longer than a
typical AGN episode which lasts, at most, a few tens of Myr. So the time span of the
simulation can be considered as an instant during the lifetime of these stars. More massive
stars have shorter lifetimes, but we consider them to be already extinct and to have already
formed their final remnants.
For the same reason, we neglect star formation during AGN episodes.

Finally, we neglect the existence of original binaries in the NSC, assuming all components of
the cluster to be single objects.

2.3 Gas Capture

When NSC objects orbit around the central SMBH, their orbits can cross the disk and will
gather some of the disk gas, causing them to be subject to strong gas drag. This can have
the effect of damping both the inclination i and the eccentricity e of their orbit:

e → 0 , i → 0

Therefore, after a sufficient number of laps, these objects will have circular orbits embedded
in the disk [59]. This process is called gas capture or orbital damping.

The gas accretion and subsequent gas drag are significant only for prograde orbiters (i.e.
objects which orbit in the same direction as the disk). We neglect any variation in the orbits
of retrograde orbiters.
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If gas drag is sufficiently strong, the eccentricity variation is given by [9, 19]

de

dt
=

{

−κe for e ≤ 2h

−κe−2 for e > 2h
(2.10)

where the average is over one orbit and h is the disk’s aspect ratio.
Similarly, for the inclination [19]: (i is in radians)

di

dt
=

{

−κi for i ≤ h

−κi−2 for i > h
(2.11)

Eccentricity and inclination damping is therefore faster for objects with an initially small e
and i (exponential decay) while for larger e and i it has initially a power-law behavior
followed by an exponential decay when e ≤ 2h or i ≤ h. Overall, it happens over a typical
timescale 1/κ for all initial eccentricities and inclinations.

We define the timescale as tdamp = (κ)−1. For an object of mass m on an initial orbit of
semi major axis A around a SMBH of mass MSMBH it is [38, 59]

tdamp =
M2

SMBH h4

mΣg A2Ω
(2.12)

where h is the aspect ratio of the disk, Σg is the surface density of the gas and Ω is the
Keplerian angular velocity around the SMBH.
The damping timescale tdamp is inversely proportional to the mass of the object m, so more
massive objects are damped more efficiently.

In this model we neglect the change in mass due to gas accretion. Therefore, during the
orbital evolution, m is a constant quantity.
We also neglect any change in the disk structure due to the presence of embedded objects.

Notation We will often use coordinates such as semi-major axes and radii. We use capital
letters A and R to refer to orbits around the central SMBH while we use lower-case letters a
and r for orbits inside a binary system.

2.4 Migration

Once a BH (or a star) is embedded in the disk, it exchanges angular momentum with the
surrounding gas and is subject to gas torques. Torques can be both positive or negative,
leading to outward or inwards migration, respectively.

Similarly to what happens to planet seeds in protoplanetary disks, migration can happen in
two different ways called Type I and Type II.

Type I Small to medium-mass objects are subject to Type I migration, meaning that they
change their radial position in the disk without significantly perturbing the density
distribution of the disk itself.
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For an object of mass m orbiting on a circumference at radius R this happens on a timescale
[6, 59]

tmigr ≃
M2

SMBH h2

mΣg R2Ω
. (2.13)

Differently from eq. 2.12, here we are considering a radius R rather than a semi major axis
A because gas capture happens necessarily before migration,7 so the orbits have already
been circularized when migration sets-in.

Similarly to the damping time (eq. 2.12), the migration time is also proportional to the
inverse of the mass, so more massive objects migrate faster.

In our disk model (see subsection 2.2.2), torques are positive in the inner region of the disk
(where the slope of the surface density is positive) and they are negative in the outer region
(where the slope of the surface density is negative) [7]. See Figure 2.6 as a reference.
Therefore, Type I migration is directed outwards in the inner disk and inwards in the outer
disk. At the location where the torques change sign, called a migration trap, migration will
stall leading to a large accumulation of objects.
Hence, after a timescale tmigr (eq. 2.13), the migrating object will be in the migration trap.

As stars migrate towards regions of the disk with higher stellar density, they increase their
probability of encounters with other objects and the nature of these encounters can hinder
their migration. The fate of a star is different based on the object it interacts with.
For example, it can have a collision with another star and create a more massive one, which
has a shorter lifetime and can explode as a supernova (SN). The remnant of an SN explosion
receives a strong kick at birth [27] which can push it out of the AGN disk. Alternatively, if
it comes close to a compact object, such as a BH, the star can be stripped of its outer layers,
losing a significant fraction of its mass, or it can even be swallowed by the BH if it crosses
its innermost stable circular orbit (ISCO) radius. If the star survives the encounter, its
migration would not be hampered but it would be slowed down due to a decrease in mass.
Finally, if a star interacts with a hard binary it can increase its kinetic energy according to
the Heggie’s law [36] (see eq. 3.30 for more details), receiving what is called a recoil kick.
Therefore, it can be scattered to a different location of the disk.
Because of their higher mass and because their migration is less impeded than what happens
to stars, we only consider the migration of BHs in the disk.

Type II Larger objects, on the other hand, can open gaps in the disk. This happens
because the motion of a massive object exerts an intense tidal perturbation on the disk,
which effectively pushes material away from the orbit’s trail [12]. This is called Type II
migration.
An object of mass m can open a gap in the disk if [58]

q >

√

α

0.09
h5 (2.14)

where q = m/MSMBH is the mass ratio with respect to the central SMBH, α is the viscosity
parameter and h = h (R) is the aspect ratio of the disk at radius R.

7Migration can only set-in when i = 0 and the orbit is embedded in the disk. Because of gas drag, i → 0
and e → 0 on similar timescales. See section 2.3.
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Taking as fiducial values α = 0.3 and h = 0.02, the minimum mass to open a gap in the disk
is m ≃ 10−4MSMBH.

If an object opens a gap in the disk, assuming that no gas is able to cross the gap, its
migration follows the viscous evolution of the disk’s gas. In the inner disk the gas is accreting
onto the SMBH, so the object would follow the inward motion of the gas. In the outer disk,
instead, the disk can be expanding and Type II migration would be directed outwards. The
timescale for Type II migration is the timescale for the viscous evolution of the disk [59].

tmigr, II = tvisc =
1

αh2Ω
(2.15)

However, pressure forces in the disk push to close the gap. So, even if an object is massive
enough to open a gap, the latter can stay open against pressure forces only if [12, 58]

q ≳ α (40h)2 (2.16)

For the same fiducial values (α = 0.3 and h = 0.02), this conditions entails m ≳ 0.2MSMBH.
An object with such a great mass would generally be a SMBH itself. We will verify a
posteriori that with our model we never produce such massive BHs via hierarchical merging,
so Type II migration is not possible.

2.5 Pair-up of Binary Black Holes

Depending on the physical characteristics of the AGN (such as viscosity, gas density, aspect
ratio and SMBH mass), gas capture and migration can happen on short timescales.
When these processes are efficient, they can lead to a large abundance of BHs in the narrow
region of the migration trap. Not only is there a large BH density but also all BHs in the
migration traps are on similar orbits (prograde and quasi-Keplerian), so their relative
velocities of encounter are small.
Under these conditions, it is easy for two BHs to become gravitationally bound in a binary.
Therefore, efficient damping and migration lead to efficient binary pair-up.

In this work, we assume that the pair-up of a primary and a secondary BH is immediate as
soon as the primary reaches the migration trap. We show in Appendix A that the densities
that can be reached in the migration trap are high enough to allow for this approximation.

The pairing timescale of a BBH is therefore

tpair = tdamp + tmigr + tin (2.17)

where tdamp is the damping timescale (eq. 2.12), tmigr is the migration one (eq. 2.13) and tin
is the formation time of the primary BH since the time of formation of the AGN disk. We
are neglecting stellar evolution, so for first-generation BHs tin = 0.
For BHs of a later generation N , the formation timescale obviously keeps track of the
evolution of the previous generations n as

t
(N)
in =

N−1
∑

n=1

(

t
(n)
damp + t

(n)
migr

)

(2.18)
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The pair-up process can perturb the orbit around the SMBH, but if damping is efficient the
orbit circularizes quickly. We always assume the binary to be bound on a circular orbit in
the migration trap.

The motion of the BBH around the SMBH is quasi-Keplerian [85].
We assume that the disk’s particles have a Keplerian velocity (in its computation we only
account for the mass of the SMBH and of the inner NSC objects, while we neglect the mass
of the disk)

vKepl (R) =

√

G (MSMBH +MNSC(R) )

R
(2.19)

Objects (both BHs and BBHs) have a velocity deviation δvBH with respect to the local disk
which is distributed as a Gaussian with zero mean and standard deviation [85].

β = 0.2
vKepl (R)√

3
(2.20)

Therefore, objects in an orbit at radius R have a velocity

v (R) = vKepl (R) + δvBH (R) (2.21)

For BBHs in the migration trap, this quantity must obviously be evaluated at the migration
trap radius Rtrap.

2.6 Evolution of a BBH in the AGN disk

When two BHs pair-up in the migration trap, they form a BBH which is embedded in the
disk. During its internal orbit, the binary exchanges angular momentum with the gas and is
efficiently hardened.

The semi major axis a and eccentricity e of a binary of masses m1 and m2 evolve due to gas
hardening according to the following equations [39]:

ȧgas = −24παc2sΣg(1 + e)2a

µΩb
(2.22)

ėgas =
12παc2sΣg

µΩb

(1− e2)1/2(1 + e)2

e

[

1− (1− e2)1/2
]

, (2.23)

where µ = m1m2/(m1 +m2) is the reduced mass and Ωb =
√

G(m1 +m2)/a3 is the
Keplerian orbital frequency.
The previous equations are valid in the assumption that gravitational torques from the
binary clear a cavity in the surrounding gas distribution, which remains circular and is
surrounded by a circumbinary disk.

The binary also hardens due to the effect of gravitational-wave (GW) emission, which will
govern the evolution at small semi major axes. The evolution of the semi-major axis a and
eccentricity e due to GW hardening as [70]

ȧGW = −64

5

G3m1m2(m1 +m2)

c5a3(1− e2)7/2

(

1 +
73

24
e2 +

37

96
e4
)

(2.24)

ėGW = −304

15

G3m1m2(m1 +m2)e

c5a4(1− e2)5/2

(

1 +
121

304
e2
)

(2.25)
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(a) (b)

Figure 2.7: (a) Orbital decay rate ȧ displayed as a function of the orbital separation a for
different initial eccentricities (e = 0.01−0.8). Reproduction of a plot from [39]. (b) Evolution
of the semimajor axis as a function of the delay time. For both of these plots we used the
same fiducial values as [39]: α = 0.1, MSMBH = 107M⊙, h = 0.01, m1 = m2 = 25M⊙.

The interaction with other objects also contributes to the hardening of hard binaries
according to the Heggie’s law [36] (see eq. 3.30 for more details). Here we completely
neglect the hardening effect due to three-body interactions because they occur on a
timescale larger than gas hardening.

The overall evolution of the binary is described by:

ȧ = ȧgas + ȧGW , ė = ėgas + ėGW (2.26)

The results from the integration of these equations are shown in Figure 2.7. We observe two
distinct trends corresponding to the disc-driven regime at large separations and the
GW-driven regime at small separations, respectively. The transition between the two
regimes happens when the ȧ is minimum in modulus. The rate of the orbital decay in the
gas-hardening regime decreases with decreasing separation because the BBH exchanges
angular momentum with the gas less efficiently, while the orbital decay rate in the
GW-driven regime increases with decreasing separation. Therefore, once GW emission
dominates over gas hardening, the BBH is rapidly led to merger.

The semimajor axis continuously decreases until coalescence. The elapsed time from the
pair-up is called delay time and is referred to as tdel. Thus, the merging time is computed as

tmerg = tpair + tdel (2.27)

2.6.1 Potential electromagnetic signatures of BBH mergers in AGNs

AGNs are the only known environments where stellar mass BHs are driven to merger in the
presence of substantial gas densities. This can theoretically produce luminous
electro-magnetic (EM) radiation.
The inspiral and merger of a BBH in a gaseous medium will produce shocks that propagate
in the surrounding gas, heating the gas and giving rise to EM emission, and additionally a
BBH may potentially accrete matter at super-Eddington rates, which can produce fast and
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bright EM transients [61]. Also, accretion onto intermediate-mass BHs (IMBHs) produces
broad-band EM radiation of a nature similar to what happens in quasars due to accretion
onto SMBHs.

If the binary or the IMBH is buried within the accretion disk, emission can be reprocessed
as it passes through the optically thick disk. This implies that high-energy radiation can be
converted into optical or infrared radiation, and that the emission can be spread-out in time.
On the other hand, if the disk is thin enough8, the binary is able to clear a cavity in the disk
during its inspiral, so its emission will leave the AGN without needing to pass through the
disk and will reach the observer directly. This high-energy emission should be detectable in
the X-rays by the Chandra observatory and in the γ-rays by the Fermi Space Telescope [5].

Detecting this EM radiation would be useful because it would allow us to identify BBHs
(and also other kinds of binaries such as BH - neutron stars and binary neutron stars) before
they merge and it would provide valuable information on the binary population in AGNs.
Most AGNs are too luminous to be able to identify short electromagnetic transients, so
observational campaigns focus on low-luminosity AGNs.
To date, no correlation has been observed between short high-energy bursts in the local
universe and AGNs [61].

2.7 Spin signature

Embedded objects can weakly perturb the surface-density profile of the AGN gaseous disk,
resulting in gas torques which tend to align both the BH spin vectors χ⃗ and the binaries’
orbital angular momentum vectors L⃗ with the angular momentum J⃗ of the disk itself. The
efficiency of this effect depends on the density and age of the disk [10].
On the other hand, three-body encounters of BBHs with other objects tend to misalign χ⃗1,2

relative to L⃗ [84]. The competing effects of the gaseous disk and dynamical encounters on
BBHs determine the distribution of BBH spin orientations.

We describe the distribution of BH spins in AGNs by using a phenomenological model [87]
which is able to capture the salient features predicted from theoretical models.
We need to consider the interplay of three different phenomena:

i) The effect of gaseous torques on BH spins χ⃗:

BHs are expected to have randomly oriented spins at formation [56, 85]. As their orbits
become embedded in the disk and they start migrating, they accrete a certain amount
of mass ∆m from the gaseous disk, resulting in a torque that tends to align their spin
with the disk’s angular momentum J⃗ . The magnitude of the torque depends on ∆m.

If the disk is dense and long-lived, fully embedded BHs accrete a mass ∆m ≥ 0.01mi,
where mi is the initial mass of the BH. Therefore, the torque from gas accretion
efficiently reorients the BH spin vector χ⃗ to align with the angular momentum vector J⃗
of the AGN disk.

Otherwise, if the disk is dilute, ∆m ≪ 0.01mi and the BH spins are only torqued in
alignment with J⃗ on long timescales τ ≳ 5Gyr. Similarly, even if AGN disks are dense,
but typically short-lived (τ ≲ 1Myr), this effect is weaker.

8The disk needs to have height H smaller than the Hill radius (eq. 3.29): H < rHill [39]
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ii) The effect of gaseous torques on BBH orbital angular momentum L⃗:

When BBHs are embedded in the gaseous disk, they are subject to gaseous torques due
to the exchange of angular momentum. This not only has the effect of efficiently
hardening the binary, as we have seen in section 2.6, but it also damps the binary’s
eccentricity and drives L⃗ into alignment with J⃗ . This is especially effective for
long-lived AGNs (τ ≳ 5Gyr).

iii) The effect of dynamical encounters on BBH orbital angular momentum L⃗:

Encounters of BBHs with compact objects in the disk or in the spherical NSC
component can randomize the orbital angular momentum of the BBH [84]. The
efficiency of this process is inversely related with the efficiency of gas capture, which in
turn increases for higher gas density and longer disk lifetime.

In Table 2.2, we display a short overview of the alignment of χ⃗1,2 and L⃗ for different
properties of the disk. We consider the short-lived (τ ≲ 5Gyr) vs long-lived (τ ≳ 5Gyr)
cases as well as the high-density (ρg ≳ 10−11g/cm3) versus low-density (ρg ≲ 10−11g/cm3)
cases.
In this work we are often concerned with the surface gas density Σg, but the spin alignment
is influenced by the volumetric gas density ρg = Σg/2H, where H is the disk’s height. In
order to avoid any confusion, we will use the terms ‘dense’ and ‘dilute’ to refer respectively
to the high ρg or low ρg scenarios, and we will state high, medium or low Σg explicitly.

Long-lived Short-lived

L⃗ ∥ J⃗ L⃗ ∥ J⃗

Dense χ⃗1 ∥ L⃗ χ⃗1 ∥ L⃗

χ⃗2 ∥ χ⃗1 χ⃗2 isotropic

L⃗ isotropic L⃗ isotropic

Dilute χ⃗1 ∥ J⃗ χ⃗1 isotropic

χ⃗2 ∥ χ⃗1 χ⃗2 isotropic

Table 2.2: Alignment of spin and angular momentum for different physical characteristics of
the AGN disk. In the table, J⃗ , L⃗, χ⃗1 and χ⃗2 are the AGN disk angular momentum, the BBH
orbital angular momentum and the spins of the first and second BH.

2.8 Multiple BH generations: hierarchical mergers

We introduce here the concept of BH generation.
A BH which is the direct result of stellar evolution is called a first-generation (1g) BH.
When two first-generation BHs form a binary and coalesce, the remnant is called a
second-generation (2g) BH. In general, an Nth-generation (Ng) BH is the result of the
repeated merger of N 1g BHs. For instance, an Ng BH can either be the result of an Mg-1g
merger (where M + 1 = N) or of an Mg-Lg merger (where M + L = N, L > 1).
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At birth, merger remnants receive a relativistic kick vkick [53] which pushes the merger out
of the migration trap and possibly out of the inner core of the NSC.
Since the gravitational potential well of the SMBH is very deep and the magnitude of the
kick velocity is usually much smaller than the magnitude of the Keplerian velocity, the
probability of ejection from the system is small. We will see this in more detail in chapter 4.
Therefore, merger remnants’ orbits are usually slightly perturbed: they typically find
themselves out of the migration trap but not too far from it so that they can still interact
with the disk. From there, they migrate again into the trap and they eventually find a new
companion there. This gives rise to hierarchical mergers.

A single BH can only go through a finite number of hierarchical mergers before it comes
across one of the following scenarios:

i) The disk has evaporated, therefore damping, migration and any effect due to gas
torques stop.

ii) The relativistic kick received at merger is so strong that the remnant is ejected from the
AGN.

iii) The number of BHs in the NSC is finite, therefore the maximum mass that can be
accreted is limited and the BH may not find any companions to pair-up with.

iv) The BH is so massive that it opens a gap in the disk and can only move from its radial
location due to Type II migration.

The scenario (i) is straightforward to evaluate by checking if, at generation g, it holds:

t(g)merg ≤ τ (2.28)

where τ is the disk lifetime and tmerg is computed as in eq. 2.27.

Assessing the scenario (ii) requires to compute the final velocity after kick and compare it
with the escape velocity:

∥v⃗fin∥ = ∥v⃗in + v⃗kick∥ ≤ ∥v⃗esc∥ (2.29)

vesc (R) =

√

2G (MSMBH +MNSC(R) )

R
(2.30)

We only consider the gravitational potential of the SMBH and of the inner NSC, neglecting
the mass of the gaseous disk.

Scenario (iii) is taken into account ensuring that the BH does not accrete more mass than
what is available in the inner NSC in form of other BHs:

Macc ≤ Mmax
BH (2.31)

The mass accreted by the BH is the sum of its initial mass m1 and of the masses of all the

secondaries m
(g)
2 it pairs-up and merges with:

Macc = m1 +
∑

g

m
(g)
2 (2.32)
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The index g represents the generation number.

The calculation of Mmax
BH is deferred to the following chapter (see eq.s 3.16 to 3.18).

The constraint on the accretion mass in eq. 2.31 works well as an upper bound for
hierarchical mergers since reaching this condition means that just one seed BH was able to
accrete all the mass available in the form of BHs in the migration trap.

Scenario (iv) is evaluated by checking whether both of the conditions in eqs. 2.14 and 2.16
are respected. For typical values of viscosity and aspect ratio, these conditions entail

m ≳ 10−1MSMBH

When an object does Type II migration, it is bound to its radial location in the disk and
can only move with the disk on its viscous timescale. See section 2.4 for more details.

First-generation BHs are never massive enough to satisfy the required conditions, hence only
merger remnants have the potential of opening gaps in the disk. A merger remnant is the
result of the coalescence of a BBH in the migration trap, but it receives a kick at birth
which pushes it out of the trap. So, if a Nth-generation BH is able to open a gap, it surely
does it out of the migration trap.
This has two consequences. The first is that the Type II migrator will never reach the
migration trap. The second is that the gap it creates will prevent some Type I migrators
from reaching the trap: it will intercept inward-moving migrators if it is located at a radius
greater that the trap’s, or it will intercept outward-moving migrators if the opposite is true.
These intercepted BHs can potentially pair-up and merge with the Type II migrator,
although their merger would not be assisted by gas hardening.

There is another element to consider to fully characterize the outcome of Type II migration:
it can only happen for very high BH masses. Even if such a massive remnant could be
generated in the AGN disk, it would surely be the result of a high-generation merger. This
would surely happen in the later stages of the disk’s lifetime. At that point, we can safely
assume that most of the BHs have already migrated in the migration trap. Therefore, we
can neglect any further pair-up event on the Type II migrator.

This is why we consider the onset of Type II migration to be one of the processes that can
halt hierarchical mergers.

Even if Type II migrators cannot be subject to any further merger event, the presence of
gaps has noteworthy consequences on disk density profile. In the instance of Type II
migration, we bluntly neglect any changes in the disk’s density.
Luckily, in our model the production of BHs that can do Type II migration turns out to be
an impossible event (see chapter 4), so neglecting the change in the disk’s density has no
catastrophic consequences.

2.9 Other physical processes

There are some other physical processes, besides those described from section 2.3 to
section 2.8, that can become relevant in an AGN environment.
Here we briefly list some of these processes which we neglect in our model.
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First of all, in our model we assume that the pair-up (and eventually the merger) of a BBH
can only happen in the migration trap. Of course this is not entirely realistic because we
expect to have some hard original binaries in the NSC which can merger before reaching the
migration trap and, furthermore, two BHs could lie close enough to each other to pair-up
even before reaching the migration trap.
Locations in the disk outside of the migration trap are called ‘the bulk’. In [60] they find
that, although more than 50% of mergers happen in the bulk, hierarchical merger is only
efficient in the migration trap. Hence, as an editorial choice, we neglect the possibility of
pair-up in the bulk since we are interested in the formation of IMBHs via hierarchical
mergers.

Also, we are neglecting three-body interactions and their effects on BH scattering and BBH
hardening. This is due to the dearth of models for these interactions: in the literature there
are some works (e.g. [16, 24] used in Appendix A) which assume an isotropic distribution of
velocities and are appropriate for spherical star clusters. In a Keplerian disk geometry, the
distribution of velocities is much different and these models are not appropriate [57].

Moreover, we neglect dynamical interactions with the SMBH and gravitational
perturbations caused by the presence of IMBHs. For example, in [20] they show that the
presence of IMBHs in the disk of mass may enhance the ionization of BBHs, therefore
decreasing the merger rate.

Finally, we are entirely neglecting the evolution of the disk. The efficiency of all processes
described in sections 2.3–2.8 strongly depends on the disk’s density and aspect ratio. If
these quantities evolve over time, all dynamical processes will be affected as well.
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Chapter 3

Methods: Semi-analytical model

We have seen that the interaction with the gaseous disk can drive the dynamical encounter
of black hole binaries and potentially lead to the formation of IMBHs.
In this Chapter we describe the semi-analytical model used in order to produce a statistical
sample of BBHs formed in AGN disks, with the goal of exploring all the possible outcomes.

We expanded the semi-analytic code fastcluster [54, 55], which already included
prescriptions for hierarchical mergers in globular, young and nuclear star clusters. We
incorporated a parallel model for AGNs.

3.1 Setup of system parameters

3.1.1 Super-massive black hole (SMBH)

SMBH mass In order to determine the mass of the SMBH, we use the catalog of active
SMBHs of IllustrisTNG. This is a cosmological magnetohydrodynamical simulation of
galaxy formation in a cubic box of size (LTNG)

3.
There are multiple versions of IllustrisTNG which have a different simulation volume and a
different resolution. We consider the ones with the smallest and the biggest simulation
volume respectively: TNG50 [67, 72] and TNG300 [71, 82].

The TNG50 has LTNG ≃ 50Mpc and a resolution of about (24 kpc)3. Instead, the TNG300
has a larger simulation volume with LTNG ≃ 300Mpc but a coarser resolution of about
(121 kpc)3. They produce a different population of SMBHs that correlate differently with
the host galaxy mass.

In the IllustrisTNG public data every SMBH is marked out by a flag describing whether it is
accreting mass via an AGN disk or not. We focus on the sub-population of SMBHs that are
active at the considered time, i.e. the AGNs.
Also, in this work we limit ourselves to the data at redshift z = 0.

(TNG50) The active SMBH population of TNG50 is well described by a skewed Gaussian
(eq. 3.1, where erf is the error function) with best fit parameters x0 = 6.23M⊙, α = 3.79
and ω = 0.94 (see Figure 3.1a).

f(x) =
1√
2πω

exp−(x−x0)2/2ω2

[

1 + erf

(

α
x− x0√

2ω

)]

(3.1)
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We sample x from the distribution of eq. 3.1 using rejection sampling. The resulting mass of
the SMBH is MSMBH = 10x.

(a)
(b)

Figure 3.1: (a) Catalog of active SMBH masses from Illustris TNG50 (blue histogram) and
best-fit skewed gaussian (red plot). (b) Relation between the mass of the SMBH and the
mass of the host galaxy in the catalog of active SMBH of Illustris TNG50. The residuals are
log

(

M true
∗ /M⊙

)

− log
(

Mfit
∗ /M⊙

)

, i.e. the difference between the real value and the best-fit
value.

(TNG300) The active SMBH population of TNG300 is roughly described by a power law (eq.
3.2) with best-fit parameters A = 0.1, x0 = 6.05 and n = −1.3 (see Figure 3.2a).

g(x) = A (x− x0)
n (3.2)

The resulting SMBH population is strongly restricted to log (MSMBH/M⊙) ≲ 7.
We sample x from the distribution of eq. 3.2 using inverse random sampling. With this
sampling procedure, we ignore the low-density bump at log (MSMBH/M⊙) ∼ 8 visible in
Figure 3.2a. The mass of the SMBH is MSMBH = 10x.

Gravitational radius It is useful to define the gravitational radius Rg as

Rg =
GMSMBH

c2
(3.3)

We stress that, contrary to what is often done in the literature, we define it as half of a
Schwarzschild radius rather than as a whole Schwarzschild radius.

Host galaxy mass In general, the SMBH mass MSMBH correlates with the mass of the
host galaxy M∗. Once we know MSMBH, we can determine M∗.

(TNG50) The Illustris TNG50 data show a strong correlation between the mass of the
SMBH and the mass of the host galaxy, as shown in Figure 3.1b where the data are in blue
and a power-law best fit in orange.
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(a) (b)

Figure 3.2: (a) Catalog of active SMBH masses from Illustris TNG300 (blue histogram) and
best-fit power law (red plot). (b) Relation between the mass of the SMBH and the mass
of the host galaxy in the catalog of active SMBH of Illustris TNG300. The residuals are
log

(

M true
∗ /M⊙

)

− log
(

Mfit
∗ /M⊙

)

, i.e. the difference between the real value and the best-fit
value.

The best-fit equation (shown in Figure 3.3a) is

log (M∗/M⊙) = 0.798 log (MSMBH/M⊙)− 0.499 (3.4)

After selecting the SMBH mass, we sample log (M∗/M⊙) from a gaussian distribution with
mean centered on the corresponding value determined by the relation 3.4 and width
σ = 0.25, so that most of the data falls under the ±2σ dispersion.

(TNG300) In the Illustris TNG300 simulation the SMBH mass correlates weakly with the
host galaxy mass. As seen in Figure 3.2b, in the range of interest for the SMBH mass
(log (MSMBH/M⊙) ≲ 7) the host galaxy mass seems uncorrelated with the SMBH mass,
except for a low-density blob at log (M∗/M⊙) ≳ 9 which we ignore.
We sample the host galaxy mass uniformly in the range populated in Figure 3.2b.

log (M∗/M⊙) ∼ U (7.5 , 9.0) (3.5)

Coexistence with a NSC We are only interested in SMBHs which can coexist with a
NSC. According to [33], this is only possible for galaxy masses such that

log (M∗/M⊙) ≲ 10.5 (3.6)

Galaxies with masses higher than this threshold cannot host a NSC.

(TNG50) Using eq. 3.4, this translates to an upper limit on the SMBH mass. We only
consider active SMBH with masses such that

log (MSMBH/M⊙) ≲ 7.88 (3.7)

(TNG300) Sampling the host galaxy mass as in eq. 3.5, the consition of eq. 3.6 is
automatically respected.
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3.1.2 AGN disk

Radial extension of the disk The disk is assumed to have radial extension between the
ISCO radius for a non-rotating BH, which we call Rmin in this context, and an outer radius
Rmax beyond which the disk’s self-gravity becomes important [32, 88]. For R > Rmax the
disk becomes fragmented and experiences star formation, so the viscous interaction with the
BHs has a different behavior than described in section 2.3 and section 2.4 and we neglect it.

Rmin = 6Rg =
6GMSMBH

c2
(3.8)

Rmax = 0.1 pc

(

MSMBH

106M⊙

)1/2

(3.9)

Migration trap As anticipated in section 2.4, disks can have migration traps. These are
locations where torques change sign from positive (leading to outward migration) to
negative (leading to inward migration), so that migration will stall and BHs will pile up.

The position of migration traps in the disk can be determined by computing the sign of
torques, as done in [7]. They find that migration traps are found at locations where the slope
of the gas surface density profile changes sign from positive to negative, i.e. at local maxima.
In this work, they consider both the SG [81] and the TQM [86] disk models (see
subsection 2.2.2 for more details).
They find that in a SG disk there two local maxima in the gas surface density and therefore
two migration traps: there is an inner trap at 49Rg and an outer one at 662Rg. For a TQM
disk there is only one trap at 490Rg, where the slope of density profile goes from positive to
negative.
At the migration trap radius of the TQM model, there is a discontinuity of almost two
orders of magnitudes in the surface density profile. Since the BBHs of our model pair-up
and merge in the migration trap, we often need to use the surface density at the migration
trap in our code. Therefore, using the TQM density profile can be numerically dangerous
because the density is undefined at the migration trap.

For this reason, we choose to use a SG disk model. We notice from Figure 2.6 (original
model is the blue line) that the inner migration trap coincides with a local maximum in the
density profile, while the outer migration trap corresponds to a global maximum.
For simplicity, we ignore the local overdensity in the disk at 49Rg and we only assume the
existence of the outer migration trap. We define the trap radius as

Rtrap = 662Rg = 662
GMSMBH

c2
(3.10)

Physical parameters of the disk We assume a viscosity parameter α = 0.3 and an
accretion rate onto the SMBH of 0.1 ṀEdd. The physical parameters of the disk are
functions of the mass of the SMBH and the distance R from the SMBH. The expression for
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the gas surface density Σg, the disk aspect ratio h and the sound speed cs are the following:

Σg (R,MSMBH) = 7.94× 105 g/cm2

(

MSMBH

108M⊙

)4/5



















(

R

103Rg

)0.8

R ≤ 103Rg

(

R

103Rg

)−1.49

R > 103Rg

(3.11)

h (R,MSMBH) = 7.59× 10−3

(

MSMBH

108M⊙

)−3/20
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R

103Rg

)−0.6

R ≤ 103Rg
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R

103Rg

)0.5

R > 103Rg

(3.12)

cs (R,MSMBH) = 5.37× 106 km/s

(

MSMBH

108M⊙

)3/2











(

R

103Rg

)−1.1

R ≤ 103Rg

1 R > 103Rg

(3.13)

The radial dependence is a simplified version of the Sirko-Goodman model [81] (eq.s
2.5–2.7), which is re-scaled to allow for different MSMBH (eq. 2.8).

3.1.3 Nuclear star cluster (NSC)

NSC mass Once we know the galaxy mass, we need to determine the mass of its NSC.
We have already ensured that we are only considering galaxies that can host a NSC in
subsection 3.1.1.

According to a large review on NSC [68] (see Fig. 12 of the reference), considering only
early-type galaxies, we see that the galaxy mass and NSC mass are related according to:

log (MNSC/M⊙) = 0.485 log (M∗/M⊙) + 2.16 (3.14)

This relation is shown in Figure 3.3a.
To account for the spread in the data, we sample log (MNSC/M⊙) from a gaussian
distribution with mean centered on the corresponding value determined by relation 3.14 and
width σ = 0.4, so that most of the data falls under the ±2σ dispersion.

With this sampling method, we generate a NSC mass that is consistent with the
prescription for the coexistence with a SMBH discussed in subsection 2.2.1.
We verify this consistency in Figure 3.3b: the green line is the prescription for coexistence of
eq. 2.1 and the red line is the relation we obtain with our procedure. It is clear from the
figure that, although the two relations are compatible with each other, with our prescription
we slightly under-estimate the NSC mass.

NSC effective radius According to a review of the current NSC knowledge [68], the
effective radius of a NSC mildly correlates to its mass. In Figure 3.4 we show the data
points in pink and a power-law best fit in blue.
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(a) (b)

Figure 3.3: (a) The SMBH and the NSC mass as functions of the host galaxy mass. This
does not account for statistical fluctuations. (b) Relation between the SMBH mass and the
NSC mass: the red line is the relation followed by our sample obtained with the procedure
outlined in sections 3.1.1–3.1.3 for Illustris TNG50, the green dashed line is the relation they
should follow for coexistence (eq. 2.1).

The best-fit relation between the mass on the NSC and the effective radius is

log (rh/pc) = 0.228 log (MNSC/M⊙)− 0.797 (3.15)

To account for the spread in the data, we sample log (rh/pc) from a Gaussian distribution
with mean centered on the corresponding value determined by relation 3.15 and width
σ = 0.2, so that most of the data falls under the ±2σ dispersion.

Figure 3.4: Relation between the effective radius (or half-light radius) of a NSC and its mass.
Data from [68] is in pink and the best-fit power-law relation is in blue.

Number of BHs in the NSC The spatial distribution of the stars is approximated with
a Plummer model, which is a simple model for a spherical distribution of mass [73]. The
Plummer mass density profile is

ρ (R) =
3M0

4πa3PL

(

1 +
R2

a2PL

)−
5
2

(3.16)
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The mass enclosed within a radius R is given by

M(R) = M0
R3

(

R2 + a2PL
)3/2

(3.17)

where R is the distance from the SMBH, M0 is the total mass of the NSC and aPL = rh/1.3
is the scale parameter for the Plummer model. The parameters M0 and rh are given by eq.s
3.14 and 3.15.

The mass fraction of BHs in the AGN disk is sampled from a Gaussian with mean 0.04 [5]
and standard deviation 0.01 (arbitrary): fBH ∼ N (0.04 , 0.01 )

The number of BH in the AGN and their cumulative mass are given by the following
equations:

NBH =
fBH ftrap

2

M(Rmax)

⟨m⟩ , Mmax
BH = NBH ⟨mBH⟩ (3.18)

Where M(R) is defined in eq. 3.17, the mean black hole mass ⟨mBH⟩ is computed from data
obtained from population synthesis simulations, the distance Rmax is defined in eq. 3.9, the
factor 1/2 is to account for prograde orbiters only (statistically half of the total BH
population in the NSC), and the mean stellar mass ⟨m⟩ is computed using the Kroupa
initial mass function [46].
The parameter ftrap is the fraction between the number of BHs that are able to reach the
migration trap on a timescale shorter than the disk’s lifetime and the total number of BHs
that interact with the disk: this study focuses on BBH pair-ups in the migration trap,
therefore we are not interested in any BHs that live outside of that location. For an
operational definition of ftrap, see section 3.3.

Velocity dispersion The velocity dispersion of stars scales with the SMBH mass roughly
as [63]

σ = 200 km/s

(

MSMBH

108M⊙

)1/5

(3.19)

The value of the exponent is appropriate for unbarred galaxies, whereas it should be raised
to 1/6 when including barred galaxies in the sample [76]. We choose to neglect barred
galaxies because the motion of stars is far from isotropic and their spatial distribution is far
from spherical, so the Plummer distribution of eq. 3.16 is not a valid approximation.

3.2 Setup of initial black hole population

Once we have determined the parameters characterizing the system, we want to simulate the
evolution of BHs in it. In order to have statistical significance we sample the masses, spins
and initial positions of N BHs and follow their evolution in the system individually.

Mass We randomly draw the 1st-generation masses m1 from a catalog of masses obtained
with the population synthesis code mobse [27, 28, 29, 30]. See Figure 3.5.
We assume metallicity Z = 0.02, i.e. approximately solar, matching the typical metallicity
at the center of massive galaxies in the local Universe.
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Figure 3.5: Initial mass function for the first generation of BHs.

Spin magnitude We draw the dimensionless spin magnitude χ1 from a Maxwellian
distribution with one-dimensional root-mean square σχ = 0.1, truncated at χ = 1. We
choose σχ = 0.1 because it is quite reminiscent of the spins inferred from the third GW
transient catalog (GWTC-3, [50]).

Spin tilt The way we set the spin tilt depends on the density and lifetime of the disk, as
discussed in section 2.7.
We only care about the alignment of χ⃗1,2 with L⃗ (e.g. in the dilute and long-lived case it is

not relevant that χ⃗1 ∥ J⃗), so the whole model is just characterized by two parameters: σ1
and σ2.

χ⃗1 = χ1





sin θ1 cosϕ1

sin θ1 sinϕ1

cos θ1



 χ⃗2 = χ2





sin θ2 cosϕ2

sin θ2 sinϕ2

cos θ2



 (3.20)

We sample the cosine of the angle θ1 between χ⃗1 and L⃗ from a truncated Gaussian centered
in 1 with standard deviation σ1 [87]

cos θ1 ∼ Nt (1 , σ1 ) (3.21)

where we set σ1 = 0.1 or σ1 = 10 based on the physical characteristics of the disk.

Setting σ1 = 0.1 means that the spin of the primary is aligned with the orbital angular
momentum of the binary, namely χ⃗1 ∥ L⃗. As explained in section 2.7 (see Table 2.2), this
happens if the disk is dense.
Instead, setting σ1 = 10 is equivalent to sampling cos θ1 from a uniform distribution in the
interval [0 , 1] and coincides with the isotropic case. The direction χ⃗1 is isotropic only if the
disk is dilute and short-lived. If the disk is dilute and long-lived, χ⃗1 is aligned with the disk’s
angular momentum J⃗ but the BBH orbital angular momentum L⃗ is isotropic (see again
Table 2.2). Therefore, χ⃗1 and L⃗ will not be aligned and we can set σ1 = 10 also in this case.

We sample the cosine of the angle θ2 between χ⃗2 and L⃗ from a truncated Gaussian centered
in cos θ1 with standard deviation σ2

cos θ2 ∼ Nt (cos θ1 , σ2 ) (3.22)
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where we set σ2 = 0.1 or σ2 = 10 based on the physical characteristics of the disk.

Setting σ2 = 0.1 means that the spin of the secondary is aligned with that of the primary,
namely χ⃗2 ∥ χ⃗1. As seen in section 2.7, this happens is the disk is long-lived. Setting
σ2 = 10 is equivalent to sampling cos θ2 from a uniform distribution in the interval [0 , 1] and
coincides with the isotropic case. This happens if the disk is short-lived (see Table 2.2).

Summarizing, we set σi = 0.1 in case of strong alignment or σi = 10 in the isotropic case
(i.e. we sample from an uniform distribution). In Table 3.1 we illustrate the choice of σ1,2 in
different scenarios.
For the azimuthal direction, cosϕ1,2 are drawn from uniform distributions.

Long-lived Short-lived

Dense
σ1 = 0.1 σ1 = 0.1

σ2 = 0.1 σ2 = 10

Dilute
σ1 = 10 σ1 = 10

σ2 = 0.1 σ2 = 10

Table 3.1: Standard deviations of the gaussian distributions from which cos θ1,2 are sampled,
as in eq.s 3.21 and 3.22.

The model for the spin tilts θ1,2 has a direct effect on the effective spin of the resulting
population. Using the definition of the effective spin in eq. 1.12 and χ⃗i · L̂ = χi cos θi , we
can write the effective spin as

χeff =
m1χ1 cos θ1 +m2χ2 cos θ2

m1 +m2
(3.23)

We show the effective spin distribution in the four scenarios in Figure 3.6.
We remind that setting σ1 = 0.1 implies that θ1 ∼ 0, while setting σ2 = 0.1 implies that
θ2 ∼ θ1. It is easy to see from eq. 3.23 that σ1 = 0.1 is a necessary condition for the effective
spin distribution to have a peak at |χeff | ≠ 0.
The effective spin distribution has a peak on |χeff | ≠ 0 if and only if the disk’s volumetric
density is high.

Initial positions We randomly draw an initial radial position for each BH. The radial
extension of the accretion disk is very small compared to the typical dimension of a NSC, so
we consider the numerical density of objects at radii < Rmax to be uniform in radius.

R ∼ U (Rmin , Rmax ) (3.24)

This is the radius R used in eq. 2.13. We also use it as the semi major axis A of eq. 2.12,
implicitly assuming orbits with negligible eccentricity. This is acceptable because
tdamp ≪ tmigr, so circularization is very fast.

3.3 First generation

After setting up the characteristics of the first generation of BHs, we follow their evolution
in the disk.
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Figure 3.6: Effective spin distributions resulting from the alignment of the spins of the primary
and secondary BHs χ⃗1,2 with the orbital angular momentum of the binary L⃗.

Pair-up Prograde BHs that cross the disk during their evolution will change their orbit
due to the effects of damping and migration described respectively in section 2.3 and
section 2.4.
Using eq. 2.12 and 2.13, we evaluate the damping and migration timescale for each BH. So
after a time

t
(1)
pair = t

(1)
damp + t

(1)
migr (3.25)

we consider each BH to be in a circular orbit in the migration trap at a radius given by eq.
3.10. We assume that the BHs already formed before the formation of the AGN disk, so we
neglect their formation time.
Of course, respecting the constraint in eq. 2.28, if the pairing time is too long, the system is
removed from the simulation and is not evolved.

We compute the fraction ftrap of BHs that reach the migration trap by counting the number

of first-generation BHs for which t
(1)
pair < T , where T is the disk’s lifetime, and dividing it by

N (i.e. the total number of first-generation BHs in the simulation). This parameter is used
for the computation of the maximum mass that can be accreted by a single BH, as in eq.
3.18.

Since the density of BHs in the migration trap is high, we assume that the pair-up with a
secondary BH is instantaneous upon entrance in the migration trap. See Appendix A for
more details.

Secondary mass We need to determine the properties of the newly-formed BBH, let us
start with the secondary mass.
We allow for Ng-Mg mergers, but we always assume M ≤ N . So a first generation primary
BH (N = 1) will necessarily pair up with a first generation secondary (M = 1).
We defer the discussion of the model for Ng-Mg pairing to section 3.4. Here we describe the
model for 1g-1g mergers, which is of course a subcase of the more general model.
For the first generation, the secondary mass m2 is randomly drawn with probability
distribution [69]

p (m2|m1) ∝ (m1 +m2)
4 (3.26)

between mmin
2 = 3M⊙ and mmax

2 = m1.
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The previous equation comes from a model that includes mass segregation and other effects
happening in star clusters, producing a bias towards higher m2.

Secondary spin magnitude The secondary spin modulus is set in the same way as for
the primary, as described in section 3.2.

Secondary spin tilt The secondary spin tilt is set by sampling the cosine of the angle θ2
as in eq. 3.22. The value of the standard deviation σ2 depends on the physical
characteristics of the disk as in table 3.1.

BBH semi-major axis We assign the initial semi major axis a of the binary sampling
from a distribution (following [85])

p (a) ∝ a9/2 for a ∈ [amin, amax] (3.27)

amin = 1R⊙ , amax = rHill (3.28)

The dependency a9/2 comes from a calculation of the formation rate of binaries in dense
environments [8], the lower limit amin is arbitrary while the upper limit amax is chosen to
ensure that binaries can form only when the two bodies undergo a strong encounter.
The upper limit amax = rHill requires an encounter between the primary and the secondary
with impact parameter less than the BBH Hill radius, which is computed accounting for the
fact that in our model the BBH forms in the migration trap

rHill = Rtrap

(

m1 +m2

3MSMBH

)1/3

(3.29)

This is necessary because, if you have two objects at distances greater than rHill, the gravity
of the SMBH dominates and prevents the formation of the BBH.

BBH eccentricity We set the initial eccentricity e following a thermal distribution
p(e) ∝ 2e for e between 0 and 1.

This law was initially obtained by [40] for a thermalized population of binaries, i.e. a
population for which the distribution of energies follows a Boltzmann distribution. It is a
standard procedure for N-body and semi-analytical codes to use this eccentricity
distribution as an initial condition [55, 85]

Soft binaries According to the Heggie’s law [36] a binary can survive in a star cluster
only if it is hard, i.e. if its binding energy Eb is larger than the average kinetic energy of a
field star ⟨Ek⟩.

Eb =
Gm1m2

2a
≥ ⟨Ek⟩ =

1

2
⟨m⟩σ2 (3.30)

where a is the semi-major axis of the binary, ⟨m⟩ is the average mass of a star in the NSC
and σ is the three-dimensional velocity dispersion.
This is because the interaction between a binary and a field star has a different effect based
on their relative energy. If the binary is soft (i.e. Eb < ⟨Ek⟩) the binary will gain energy and
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become softer (Eb → 0), whereas if the binary is hard (i.e. Eb > ⟨Ek⟩), the binary will lose
some of its energy and become harder (|Eb| increases).
Therefore, in a dense environment where the interaction between binaries and single stars is
frequent, soft binaries will expand and eventually be ionized (a → ∞) whereas hard binaries
will shrink (a → 0).

Obviously, when a binary hardens its extra energy is transferred to the field star which
increases its kinetic energy. For the conservation of momentum, both the binary and the
star will receive a kick. Since typically m1 +m2 > ⟨m⟩, the star has a higher kick velocity
than the binary.

Hence, out of all the BBHs, we dynamically evolve only those for which eq. 3.30 is respected.
If a BBH does not satisfy this condition, we do not consider it any further. Otherwise, we
evolve it by gas hardening and by GW emission, as described below.

BBH hardening The binary is now in the migration trap, so we set R = Rtrap and
update the quantities in eq. 3.11-3.13 accordingly.
We perform the integration of the hardening eq. 2.26 using the Euler method and an
adaptive time-step. The time-step adaptation works such that we reduce (or increase) the
time-step ∆t by a factor of 10 (or 2) whenever the percentage change of a between two
time-steps is > 1% (or ≤ 0.1%).
We refer to the integration time (i.e. the delay time between pair-up and, eventually,
merger) as tdel.
If the time from the beginning of the interaction with the disk (i.e. tpair + tdel) is larger than
the lifetime of the disk, that means that the disk has evaporated before the binary could
merge. The BBH keeps hardening due to gravitational-wave emission only. From this
moment onward, we integrate eq.s 2.24 and 2.25.

We consider the merging to happen when the binary members cross the ISCO radius of a
non-spinning black hole with mass equal to the total mass of the binary system

a ≤ rISCO = 6
G (m1 +m2)

c2
(3.31)

with a tolerance of 0.1 rISCO. This happens at a time tmerg = tpair + tdel.

Merger remnant When a binary merges, we model the mass and spin of the merger
remnant using fitting formulas from numerical relativity, as described by [41].

Relativistic kick At birth, merger remnants receive a relativistic kick vkick because of the
transfer of linear momentum caused by asymmetries in GW emission. We use the model in
eq. (14.202) of [53] for the magnitude of the kick.
We draw a random kick direction by randomly sampling two angles (spherical coordinates) θ
and ϕ from the distributions f(ϕ) and f(θ).

f(ϕ) =
π

2
f(θ) =

sin(θ)

2
(3.32)
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The relativistic kick vkick pushes the merger remnant out of the migration trap. We compute
the new velocity as

vfin =





vKepl(Rtrap) + cosϕ sin θ vkick
sinϕ sin θ vkick

cos θ vkick



 (3.33)

where vKepl (Rtrap) is the Keplerian velocity in the migration trap computed as in eq. 2.19.
We assume Keplerian motion with negligible eccentricity after the kick.
The position of the remnant is updated to

Rfin =
G (MSMBH +MNSC(r) )

v2fin
(3.34)

Also, the quantities in eq. 3.11-3.13 are update accordingly.

As a safety check, we ensure that the new radial position Rfin is lower than the maximum
radius of the disk Rmax (eq. 3.9), meaning that the remnant can experience damping and be
embedded in the disk. Otherwise, we discard the remnant and do not consider it for future
generations.

3.4 Nth generations

Merger products are generally retained by the deep potential well, allowing for hierarchical
BBH mergers.
After each merger events, we check that the requirements (i)-(iv) listed in section 2.8 are
met. We briefly remind them here.

i) The merging time must be smaller than the disk lifetime, as in eq. 2.28. If this
requirement is not met, it means that the disk has evaporated and there can no longer
be neither damping nor migration into the migration trap.

ii) The velocity of the merger remnant vfin (eq. 3.33) must be smaller than the escape
velocity, as in eq. 2.29. This ensures that the remnant is retained in the inner NSC and
can keep interacting with the disk.

iii) The mass accreted by the BH over its lifetime must be lower than the total mass
available in the inner NSC, as in eq. 2.31. Otherwise, the remnant can’t find any
companion to pair-up with.

iv) The mass of the merger remnant must be too small to open a gap in the disk. If it does
(eq.s 2.14 and 2.16), it is a Type II migrator and it can no longer pair-up with other
BHs in the migration trap.

If any of the conditions above is not met, we discard the merger remnant and don’t consider
it for future generations.

We follow the evolution of Nth-generation BHs with a procedure similar to the one outlined
for first-generation BHs in section 3.2 and section 3.3. We report here any difference from
the steps outlined in the previous sections.
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Primary mass and spin In hierarchical merging, the remnant of an (N-1)th-generation
merger acts as the primary BH for the Nth-generation. So the primary mass and spin are
simply set as the remnant mass and spin of the previous generation, computed according to
[41].

Primary initial position Similarly, the primary initial position is set as the position of
the merger remnant of the previous generation, set in eq. 3.34. This value is used to
compute the pairing time in eq. 2.17, where for the Nth generation

t
(N)
in = t(N−1)

merg (3.35)

Secondary mass The way we set the secondary mass for later generations is quite
different than what it’s been done for the first generation.
In our model, we allow for Ng-Mg mergers, but we always assume M ≤ N. So, first of all, we
need to establish the generation M of the secondary.

Following [89], we assume that the probability that a given merger generation M is chosen
for the companion is proportional to the number of 1g BHs required to synthesize it:

p (M) ∝ 2−(M−1) (3.36)

We sample M from the probability distribution in eq. 3.36 using inverse random sampling.

Once we know the generation of the secondary, we can determine its mass.
First of all, we generate a 1g seed determining its mass and spin as in section 3.2. Then we
let it go through a certain number of ng-1g mergers1 until it creates an Mg remnant.
At each step, the primary will be the remnant of a previous merger event on the seed and as
usual its mass m1 and spin will be computed according to [41]. The secondary mass instead
will be sampled from

p(m2|m1) ∝ (m1 +mmax
2 )4 (3.37)

between mmin
2 = 3M⊙ and mmax

2 .
Here mmax

2 is determined based on the value of m1. In particular, we care about whether m1

is larger that the maximum mass mmax
1 of a 1g BH in the input sample coming from the

population synthesis code mobse [28, 27, 29, 30].

if m1 ≤ mmax
1 ⇒ mmax

2 = m1 (3.38)

else ⇒ mmax
2 = mmax

1 (3.39)

This is a modification of eq. 3.26.
With this choice, if the primary has mass compatible with a 1g BH (m1 ≤ mmax

1 ) we sample
the secondary as seen previously in eq. 3.26 (model from [69]).
Otherwise, if the primary is a higher-generation BH (m1 > mmax

1 ), we keep the same
analytical form as in eq. 3.26 but we force the secondary to have mass compatible with a 1g
BH (m2 ≤ mmax

1 ).

This calculation is quite fast because we only compute the remnant mass and spin at each
step, neglecting the merger times.

1We choose to consider only ng-1g mergers rather than ng-mg for simplicity.
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Remnant generation As per the definition of generation number stated in section 2.8,
the generation of the remnant is

N ′ = N +M (3.40)

since N ′ stellar BHs were required for its assembly.

We keep iterating the procedure of section 3.4 until all BHs have failed to meet at least one
of the requirements (i)-(iii) above.
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Results

In this Chapter we describe the results of our set of simulations.
We discuss the timescale of the evolution of the BH population, the mass and spin of the
remnants, and the number of generations of hierarchical merging that BHs are able to
achieve.

4.1 Description of runs

Each of our simulations is characterized by four properties:

1. The disk’s lifetime

We consider a disk to be either short-lived, with a lifetime of 5Myr, or long-lived, with
a lifetime of 10Myr. We label them with the letter ‘s’ or ‘L’ respectively.

2. The disk’s density

We have seen in subsection 2.2.2 and subsection 3.1.2 that the surface density of the
disk varies as

Σg (R,MSMBH) = Σ0

(

MSMBH

108M⊙

)4/5



















(

R

103Rg

)0.8

R ≤ 103Rg

(

R

103Rg

)−1.49

R > 103Rg

(4.1)

We consider three scenarios: medium surface density with Σ0 = 7.91× 105 g/cm2, high
surface density with Σ0 = 7.91× 106 g/cm2 (we multiply by a factor 10), and low
surface density with Σ0 = 7.91× 104 g/cm2 (we divide by a factor 10).

We label high density models with a capital letter ‘D’, medium density with a
lowercase ‘d’ and low density with an italic lowercase ‘d ’.

3. The disk’s thickness
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Similarly, the aspect ratio varies as

h (R,MSMBH) = h0

(

MSMBH

108M⊙

)−3/20



















(

R

103Rg

)−0.6

R ≤ 103Rg

(

R

103Rg

)0.5

R > 103Rg

(4.2)

We consider the thick scenario with h0 = 7.59× 10−3 and the thin scenario with
h0 = 7.59× 10−4 (we divide by a factor 10).

We label thick disks with a capital ‘T’ and thin disks with an lowercase ‘t’.

4. The SMBH population

In the runs labeled by ‘50’ we extract the SMBH mass by the TNG50 population
(Figure 3.1a), whereas in those labeled by ‘300’ we extract it by the TNG300
population (Figure 3.2a).

Each run will be referred to with an acronym. For example, the high-density, long-lived and
thick disk for the TNG50 population of SMBHs is called DLT 50, while the low-density,
short-lived and thin one for the TNG300 population is dst 300.
See Table 4.1 for a summary of the details of each run.

We note that, with these definitions, the SG model described in subsection 2.2.2 is thick and
medium-density. These terms are to be considered as comparative, since all disk models
considered in this work are geometrically thin and have a relatively large gas density.

In each run, we set up the SMBH mass and corresponding AGN environment parameters as
described in section 3.1. Then we fix the properties of 104 BHs as outlined in section 3.2.
Each of these BHs evolves independently in a separate system. We repeat the procedure
four times with four different SMBH masses, so the outputs are the combined results from
four AGNs with different properties. The properties of each NSC are in Table 4.3 at the end
of this Chapter.
Considering multiple SMBH masses as well as multiple initial BH masses and positions
increases the statistical significance of each run.

4.2 Timescale analysis

We remind here that the most relevant physical timescales in our model are the damping
and migration timescales (eq.s 2.12 and 2.13) after which a prograde BH reaches the
migration trap, as well as the delay timescale tdel between BBH pair-up and merger (i.e. the
integration time of ȧgas in eq. 2.26).
For convenience, we write here the expressions for the damping and migration timescales:1

tdamp ≃ M2
SMBH h4

mΣg R2Ω
tmigr =

M2
SMBH h2

mΣg R2Ω

1Here we write tdamp in terms of the radius R rather than the semimajor axis A because, as stated in
section 3.2, they are equivalent in our model.
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Run Model name Illustris version Surface density Lifetime Thickness

1 DLt 50 TNG50 High Long Thin

2 DLT 50 TNG50 High Long Thick

3 Dst 50 TNG50 High Short Thin

4 DsT 50 TNG50 High Short Thick

5 dLt 50 TNG50 Medium Long Thin

6 dLT 50 TNG50 Medium Long Thick

7 dst 50 TNG50 Medium Short Thin

8 dsT 50 TNG50 Medium Short Thick

9 dLt 50 TNG50 Low Long Thin

10 dLT 50 TNG50 Low Long Thick

11 dst 50 TNG50 Low Short Thin

12 dsT 50 TNG50 Low Short Thick

13 DLt 300 TNG300 High Long Thin

14 DLT 300 TNG300 High Long Thick

15 Dst 300 TNG300 High Short Thin

16 DsT 300 TNG300 High Short Thick

17 dLt 300 TNG300 Medium Long Thin

18 dLT 300 TNG300 Medium Long Thick

19 dst 300 TNG300 Medium Short Thin

20 dsT 300 TNG300 Medium Short Thick

21 dLt 300 TNG300 Low Long Thin

22 dLT 300 TNG300 Low Long Thick

23 dst 300 TNG300 Low Short Thin

24 dsT 300 TNG300 Low Short Thick

Table 4.1: Description of runs. The horizontal line separates the TNG50 and the TNG300
runs.

As we have discussed in section 2.6, gravitational wave emission only becomes relevant once
the semi-major axis is small, and it quickly drives the binary to merge. Therefore, the delay
timescale is mostly governed by gas hardening and it can be roughly approximated as

tdel ≃
a

ȧgas
= − µΩb

24π α c2s Σg (1 + e)2
(4.3)

In Figure 4.1 we show the timescales for the first generation of TNG50 runs. The timescale
ranges for TNG300 runs are analogous, so they are not shown. We see that there is a large
variability both in tdamp and in tmigr, which is representative of the large variability in the
SMBH mass (randomly sampled from either eq. 3.1 or eq. 3.2) and the initial position R
(randomly sampled between Rmin and Rmax, eq.s 3.8 and 3.9).
In each run, only a fraction of first generation BHs has both damping and migration
timescales shorter than the disk’s lifetime. We call this fraction ftrap and we show its value
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Figure 4.1: Damping, migration and delay timescales for the first generation of all runs.
As indicated in the legend, circles are for low density, crosses are for medium densities and
triangles for high densities; small sizes are for thin disks and large sizes for thick disks; blue
is for short-lived disks and orange for long-lived disks. Gray color marks that the timescale
is longer that the disk’s lifetime.

for all runs in Table 4.2. BHs that do not respect this condition are shown in gray in
Figure 4.1.
In particular, ftrap is zero for runs models dsT, dLT and dsT for both TNG50 and TNG300.
Therefore, these types of disks are not able to produce any BBH pair-up.
For models DsT, dLT and dst, ftrap is small but not null. In the following section we will see
that these types of disks are able to form some BBH mergers, but they do not produce many
hierarchical mergers generations.

DLt DLT Dst DsT dLt dLT dst dsT dLt dLT dst dsT

TNG50 0.49 0.17 0.34 6e-3 0.33 4e-3 0.17 0.0 0.17 0.0 6e-3 0.0

TNG300 0.48 0.14 0.32 3e-3 0.31 4e-3 0.16 0.0 0.15 0.0 3e-3 0.0

Table 4.2: Fraction ftrap of BHs that reach the trap within the disk’s lifetime for each of the
runs in Table 4.1.

In Figure 4.2 we show the average timescale for first generation BHs as a function of the
SMBH mass. From the explicit expression of tdamp and tmigr we would expect both
timescales to increase with the square of MSMBH. Instead from the figure we notice that, for
a given disk density and thickness, all timescales decrease as a function of MSMBH.

This trend is easy to explain if we consider the non-explicit dependencies on MSMBH: the
surface density, aspect ratio and sound speed of the disk depend on MSMBH as in eq. 2.8,
while the maximum radial extension of the disk scales with the square root of MSMBH as in
eq. 3.9. Using R ∼ Rmax as a rough approximation, the expected trends are

tdamp ∝ M
−2/5
SMBH , tmigr ∝ M

−1/10
SMBH , tdel ∝ M

−19/5
SMBH (4.4)

By a fit of the data for DLt 50 and Dst 50 models (shown in Figure 4.4a), we see that the
damping and migration timescales decrease even more steeply than expected, while the
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Figure 4.2: Average damping, migration and delay timescales for the first generation of all
runs. The legend is analogous to that of Figure 4.1. DLt (Dst) is marked as orange (blue)
small triangles, DLT (DsT) as orange (blue) large triangles, dLt (dst) as orange (blue) small
crosses, dLT (dsT) as orange (blue) large crosses, dLt (dst) as orange (blue) small dots, dLT
(dsT) as orange (blue) large dots.

delay timescale decrease less steeply than expected:

tdamp ∝ M−0.7
SMBH , tmigr ∝ M−0.2

SMBH , tdel ∝ M−1.2
SMBH (4.5)

In particular, the behavior of tdamp and tmigr is irrespective of the disk’s lifetime, while tdel is
shorter for short-lived models that for their long-lived counterpart.
For the dense and thick case, the delay timescale decreases for longer lifetimes

From Figure 4.2 we clearly see that, when increasing the thickness by a factor of 10,
damping timescales increase by 4 orders of magnitudes and migration timescales increase by
2 orders of magnitude, as expected from the explicit expressions. We would not expect any
change in the delay timescale when changing the thickness, but instead it seems to decrease
by up to 2 orders of magnitudes (it is roughly 2 for the dLt versus dLT case). This is merely
an effect of the fact than many BHs in the thick models never reach the migration trap and
eqs. 2.26 are not integrated for them: the lower the fraction of BHs that reach the migration
trap for a given run, the more we are biased towards higher primary masses (an higher m

gives lower tdamp and tmigr) and therefore lower delay times (an higher Ωb ∝ (m1 +m2)
1/2

gives lower tdel).

Similarly, the damping and migration timescales decrease by 1 order of magnitude when
increasing the surface density by a factor of 10, as expected from the explicit expressions.
The delay timescale is expected to decrease by a factor of 10, but this effect is polluted by
the selection effects of BHs reaching (or not) the migration trap.

In Figure 4.3 we show the average timescales for all generations. When performing the
average, we include only the BHs for which the pairing timescale tpair = tdamp + tmigr is
lower than the disk’s lifetime: tpair < τ .
Any deviation for the dependency on MSMBH from what noted in Figure 4.2 is due to
selection effects. We also notice that there is no substantial difference between the TNG50
and the TNG300 runs.
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Figure 4.3: Damping, migration and delay timescales averaged over all generation for BHs
that reach the migration trap within the disk’s lifetime. The legend is analogous to that of
Figure 4.2. The top row is for TNG50 models and the bottom row for TNG300.

(a) (b)

Figure 4.4: (a) Damping, migration and delay timescales for the first generation of models
DLt 50, and Dst 50. Each timescale to SMBH mass relation is fitted with a power-law func-
tion; the best fit laws are shown as lines. (b) Merging time histogram for all simulations.
The color is representative of the disk’s lifetime: blue identifies models with lifetime of 1Myr,
while orange identifies those with lifetime of 10Myr.

54



CHAPTER 4. RESULTS

In Figure 4.4b we show a histogram of the merging timescale for the population of BHs that
can experience a pair-up in the migration trap (i.e. that respect the condition tpair < τ).
Most mergers happen within the disk’s lifetime but, even after the evaporation of the disk,
BBHs can keep hardening due to GW emission only (eq.s 2.24 and 2.25) so that some of the
mergers happen tens of millions of years after the end of the AGN phase.

In conclusion, for the BHs that are able to reach the migration trap and form BBHs, the
typical damping timescale is of the order of 10−7 − 10−3Myr, the typical migration
timescale is of the order of 10−2 − 101Myr and the typical damping timescale is of the order
of 10−4 − 10−1Myr. Overall, the evolution is governed by the migration timescale.

4.3 Mass function

As pointed out in the previous section, dsT, dLT and dsT models do not give rise to any
merger events in the migration trap, so we will not include them in our discussion.

BHs in disks with high ftrap produce many hierarchical mergers events, while those in disks
with ftrap ≲ 10−2 can only produce few (if any) hierarchical merger generations before the
condition on the maximum accretable mass (eq. 2.31) is met.
We are mostly interested on high-generation hierarchical mergers for the production of
remnant BHs with masses in the upper gap and above, so we will only discuss the results
from models with high ftrap (referring to Table 4.2, these are the DLt, DLT, Dst, dLt, dst
and dLt models). Instead, the results for DsT, dLT and dst disk models (i.e. those with low
ftrap) are shown in Appendix B.
Also, using data from Illustris TNG50 or TNG300 does not significantly affect the results.
Therefore we only show plots for TNG50 runs in this section, while the analogous plots for
TNG300 runs are in Appendix B.

In models where the fraction of BHs that reach the trap is ftrap ≳ 10−2, the dynamical
evolution of the BH population gives rise to a large number of hierarchical mergers. As
shown in Figure 4.5a, they are able to produce BH remnants with masses that span several
orders of magnitude (roughly from tens of solar masses up to a few thousands of solar
masses) via merger events that happen throughout the whole disk lifetime: the onset of the
merger events happens sooner in models where the damping and migration timescales are
shorter (such as DLt) and, in all cases, the production of BH remnants only stops when the
disk evaporates. Remnants with formation timescales longer than the disk’s lifetime,
particularly numerous for dst and dLt, come from BBHs that formed before the evaporation
of the disk (tpair ≤ τ) and kept hardening in the absence of gas due to GW emission
(tmerg > τ).

We show the remnant mass distributions and binary chirp mass distributions for the
high-ftrap models in Figure 4.12a and 4.12b, respectively.

An important parameter for the characterization of a BBH is the ratio between the primary
and secondary masses, called the mass ratio q.
The mass ratio of our simulated events is compatible with that of mass-gap BBHs observed
by the LVK collaboration (listed in Table 1.1) in all models shown in Figure 4.5b, although
in the DLT model they all fall in a lower-probability area.
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(a)

(b)

Figure 4.5: (a) Remnant mass and merging timescale for all merger events of each disk type.
The shade of the points is representative of their hierarchical merger generation: remnants
with higher mass are produced via merger events of higher generation. (b) In blue: Density
distribution of primary and secondary masses for all merger events of each disk type. In black:
LVK merger events with primary in the upper mass gap and low FAR (in Table 1.1)

Therefore the observed merger events may have been produced in AGNs with the following
properties: either medium to high density and thin aspect ratio (with either short or long
lifetime), or low density, thin aspect ratio and long lifetime.
Geometrical thinness (h0 ≲ 10−3) seems to be a necessary condition to reproduce the LVK
merger events in Table 1.1. This is evident when comparing the DLt and DLT models:
although they are both able to produce some hierarchical mergers, the fraction ftrap of BHs
that are able to reach the migration trap is too low in the thick scenario, so that the
maximum mass condition of eq. 2.31 is typically met for remnants with lower masses.
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Figure 4.6: Mass and formation timescale for the final remnant population of each disk type.
The shade of the points is representative of their hierarchical merger generation.

Simulated models, although they can predict merger events with similar parameters to those
observed by the LVK instruments, also predict many other merger events with higher
masses or lower mass ratio than what the observations suggest.
As discussed in subsection 1.2.2, events with higher total mass mtot = m1 +m2 are difficult
to see in the LVK interferometers because the maximum frequency fmax of the GW signal,
emitted at the end of the inspiral phase, is too low. Also, because of the non-completeness of
template banks used for matched filtering, the LVK catalog is biased towards high mass
ratio q = m2/m1.
Hence, it is not clear whether high-mtot and low-q events are an artificial product of the
simulations or whether they actually happen in AGNs, because these merger events are
currently difficult to detect due to observational limits or template banks incompleteness. In
one of the future developments of this thesis work, we will transform our models into mock
observations, by evaluating their detection efficiency (as in e.g. [11, 54]). This will allow us
to compare apples with apples and obtain more meaningful information.

In Figure 4.6, we show the final remnant masses and formation timescales for the high ftrap
models. By final remnants we mean the remnant of the last hierarchical merger generation
of each seed BH, in other words the final remnants are those that are left around the SMBH
after the evaporation of the disk.
Analyzing the final remnants is not useful to understand which LVK events are produced in
AGNs, but it can help us understand how the inner NSC population changes after an
accretion event onto the SMBH. This is relevant for two main reasons:

i) If a single SMBH can go through multiple AGN flare-ups, the final remnant population
of one AGN event is the starting population of the next.

ii) When BHs orbit around a SMBH, they lose energy via GW emission (as in eq. 1.5)
until, eventually, they merge with the SMBH. These binaries emit low GW frequencies
(e.g. the maximum GW frequency for a 106M⊙ SMBH and a 102M⊙ IMBH, according
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(a)

(b)

Figure 4.7: (a) Final remnants mass function for each disk type. The color indicates the cause
of hierarchical mergers’ cessation, as indicated in the legend. (b) Final remnant mass function
for each NSC. The NSCs are indicated in the legend by a label between 1 and 4.

to eq. 1.11, is of a few 10−3Hz), which will be observable with space-based detectors
such as LISA [3].

The final remnant mass profiles are shown in Figure 4.7a, where we also indicate which of
the reasons listed in section 2.8 caused hierarchical mergers to end.
Interestingly, there is no evidence of Type II migration nor of ejection from the cluster. We
will discuss this in detail in section 4.5.

Each mass function is the superposition a smooth distribution (orange in Figure 4.7a) and
some quite strong peaks (blue). The smooth distribution is formed by BHs that could not
proceed in hierarchical mergers because pairing or merger timescales were too long with
respect to the disk’s lifetime (eq. 2.28), while the sharp peaks are all formed by BHs that
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Figure 4.8: Average remnant masses for each run, shown as a function of the BH number (left-
hand panel) and of the SMBH mass (right-hand panel). We only display models that produce
significant hierarchical mergers for both TNG50 and TNG300. Runs that only produce a few
merger generations display no correlation with neither of these quantities.

cleaned up the migration trap of all other BHs that migrated inside it (eq. 2.31). Indeed,
although the condition on the maximum accretable mass is a requirement on the progenitor
masses throughout the history of accretion onto the seed BH, it effectively constraints the
final remnant mass in a narrow interval thus creating narrow peaks in the final mass
functions.

The position of the mass peaks is sensitive on the maximum accretable mass Mmax
BH .

Referring to eqs. 3.17 and 3.18, there are a few relevant parameters: the BH fraction fBH,
the NSC mass M0 and the NSC effective radius rh which collectively define the NSC
properties, as well as the parameter ftrap which characterizes the dynamics of the BH
population. Indeed, as shown in Figure 4.7b, the location of the peak is a unique feature of
each NSC.

We compute the average remnant mass for each NSC and plot it in Figure 4.8 against the
number of BHs in the migration trap and against the SMBH mass. We notice strong
correlation with NBH and mild correlation with the SMBH mass.
The strong correlation with NBH is predictable from the observations above: the maximum
accretable mass condition is crucial for the determination of the remnant mass distribution
since the remnants can have masses up to Mmax

BH or slightly above. The correlation with the
SMBH mass, instead, is mostly due to the shorter average timescales, as discussed in the
previous section and seen in Figure 4.2.

As visible from the figures in Appendix B, the simulations performed assuming a TNG300
SMBH mass distribution behave qualitatively in the same way. The main difference is that,
since the SMBH distribution is biased towards lower MSMBH, they tend to produce lower
remnant masses.
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Figure 4.9: Spin distributions for models that produce significant hierarchical mergers.

4.4 Spin function

Gravitational waves’ detection is sensitive to the effective spin, which is a particular
combination of the primary and secondary spin as in eqs. 1.12 and 3.23, which physically
conveys the BH spin components along the orbital angular momentum vector.

The spin alignment mechanism in AGN disks (see section 2.7) is sensitive to the volumetric
gas density, which can be computed from the surface density Σg and the half-height of the
disk H as

ρg =
Σg

2H
(4.6)

For the choice of the surface density Σg and aspect ratio h = H/R in our models (see
section 4.1), the average2 volumetric density values are reported in the following table:

Thin Thick

High density ρg ≃ 10−9 g/cm3 ρg ≃ 10−10 g/cm3

Medium density ρg ≃ 10−10 g/cm3 ρg ≃ 10−11 g/cm3

Low density ρg ≃ 10−11 g/cm3 ρg ≃ 10−12 g/cm3

For the purposes of spin alignment, a disk is considered to have a low volumetric density
when ρg ≲ 10−11g/cm3 [87]. Hence, lower Σg does not automatically imply low ρg.
Indeed, the medium-density model is considered dense in the thin case and dilute in the
thick one.

2Averaged over the radial component.
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Figure 4.10: In blue: Density distribution of primary mass and effective spin for all merger
event of each disk type. In black: LVK merger events with primary in the upper mass gap
and low FAR (in Table 1.1).

We remind here that, in this work, the terminology ‘dense’ or ‘dilute’ refers respectively to
models with high or low ρg. Instead, we use the terms ‘high-’, ‘medium-’ or ‘low- density’ to
indicate models with different values of Σg.

We show the effective spin distribution for the merger remnants of the models producing
hierarchical mergers in Figure 4.9. The DLt, DLT and dLt models are dense and long-lived,
so they produce an effective spin distribution that in strongly peaked on |χeff | ∼ 0.2 ; the
Dst and dst are dense and short-lived, so their effective spin distribution still has a peak at
|χeff | ∼ 0.2 but it is somewhat more skewed towards |χeff | = 0 . The only disk model that
produces high-mass binaries with average effective spin χeff = 0 is the dLt, which is dilute
and long-lived.

The only disk archetype which does not produce hierarchical mergers is the short-lived and
dilute one (since the dsT, dst and dsT models only produce remnants up to the second
hierarchical merger generation as in Figure B.4).

In conclusion, there is no univocal prediction for the spin distribution of high-mass BBHs in
AGNs: depending on the disk’s physical properties, the effective spin can have a peak on
|χeff | = 0.2 or it can be peaked on |χeff | = 0.

As shown in Figure 4.10, the effective spins of upper-mass gap BBH mergers detected by
LVK are compatible with the effective spin distributions produced by the simulated mergers.
Nonetheless, it is not possible to draw definitive conclusions by this qualitative analysis
because of the large errorbars on the detected effective spins.

4.5 Causes of hierarchical merger cessation

As we have explained in section 2.8 and section 3.4, hierarchical mergers stop for one of
these four conditions:
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i) Timescales: the pairing of merging timescale is longer than the disk’s lifetime, so by the
time the final remnant is formed the disk does not exist anymore (eq. 2.28).

ii) Ejection: the remnant velocity is larger than the escape velocity (eq. 2.29).

iii) Mass: the sum of the seed and secondary masses throughout the whole merger history is
larger than the maximum mass which can be accreted in the migration trap (eq. 2.31).

iv) Type II migration: the remnant creates a gap in the disk, so it does not migrate in the
migration trap (eq.s 2.14 and 2.16).

As seen in Figure 4.7a, the only two conditions that are relevant in the evolution of the BH
population are (i) and (iii), i.e. the requirements on timescales and mass.

There is no merger remnant massive enough to open a gap in the disk in any of our
simulations. Therefore, for the physical properties we assumed, Type II migration is not
feasible. Although, if we were to consider disk models with lower viscosity or lower
thickness, this result could change.
The impossibility of Type II migration is also a direct consequence of the way we imposed
the condition on the maximum accretable mass (eq.s 2.31 and 3.18): if we were to relax this
condition, for instance considering NSCs of larger masses or lower effective radii or assuming
a larger BH fraction, we would allow for the formation of merger remnants of higher mass
which might be able to undertake Type II migration.

Similarly, there are no ejections: the relativistic kick velocity is much smaller than the
Keplerian velocity, so the kick only slightly perturbs the original orbit. For example,
considering a SMBH with mass 107M⊙ in a NSC with mass 107M⊙ and effective radius 2 pc,
the Keplerian velocity of an object in the migration trap is roughly vK ≃ 104 km/s. Instead,
the kick velocity received by the merger remnant of an equal-mass BBH with
m1 = m2 = 50M⊙ is roughly 100 km/s.
The gravitational potential well of the SMBH is so deep that no remnant BH is able to
escape from it.

Checking for condition (ii) may therefore seem unnecessary, and indeed in many previous
works (e.g. [61]) the possibility of ejection is discarded entirely. Nonetheless, if we were to
change some assumptions it might become relevant.
Changing the assumptions on the SMBH mass would not have significant effects: referring to
eq.s 2.30 and 3.10 and considering that MNSC (Rtrap) ≪ MNSC ∼ MSMBH since Rtrap ≪ rh,
it is easy to see that vesc (Rtrap) is approximately constant for different SMBH masses.
Instead, if we were to relax the assumption that BBH mergers can only happen in the
migration trap, the escape velocity could be lower and condition (ii) might be influential. As
an extreme example, for a merger event at the maximum radius Rmax (eq. 3.9) of a disk
with MSMBH = 107M⊙, the escape velocity would be of merely 500 km/s which is
comparable to the typical kick velocity, so ejections would be possible.

Therefore, when considering only mergers in the migration trap and with our assumptions
on the physical properties of the disk, the only relevant constraints are conditions (i) and
(iii). Both of these conditions have hidden dependencies on the SMBH mass: as seen in
section 4.2, higher MSMBH yield lower pairing timescales and make it slightly harder to meet
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Figure 4.11: Reasons why BHs stop doing hierarchical mergers. Green is rejection for the
maximum-mass condition (eq. 2.31), light blue is rejection for the timescale condition (eq.
2.28). We only show runs that produce significant hierarchical mergers. In all other runs, the
timescale condition of the predominant reason for mergers cessation.

the maximum timescale condition (eq. 2.28); similarly, higher MSMBH correlate with higher
MNSC (Figure 3.3a) which in turn induces a higher maximum mass (eq.s 3.17 and 3.18).

In order to compare the results of different disk models, we perform some runs with the
properties shown in Table 4.1 and a fixed SMBH mass of 107M⊙. The fraction of BHs that
stop hierarchical mergers for conditions (i) and (iii) are illustrated in Figure 4.11.
There are two possible behaviors: either the proportion between reaching the timescale limit
or the mass limit is roughly 20:80 (for models DLt, Dst and dLt), or it is 60:40 (for models
DLT, dst and dLt). This directly correlated with the fraction ftrap of BHs that is
successfully able to complete migration (see Table 4.2): for models for which ftrap ≳ 30%,
the average timescales are short and hierarchical mergers continue until the seed BH cleans
up the whole migration trap (eq. 2.31); instead, in models with lower ftrap, the timescales
are shorter and condition (i) is typically met earlier than condition (iii) in the accretion
history of a seed BH.

The condition on the maximum accretable mass, which was set as an upper limit, is relevant
in all runs where BHs perform a significant number of hierarchical mergers and produces
prominents peaks in the final remnant mass functions. One may wonder whether reaching
this upper limit is realistic, or whether we are missing too much physics.
There are two main ingredients that are missing from our model which might influence this
result: three-body scattering and disk structure evolution.

The most frequent kind of multi-body interaction in dense environment is that between a
binary and a single object [75]. After the interaction, if the binary is hardened to a smaller
semi-major axis, both the binary and the third object receive a recoil kick [36] which is easy
to compute with a simple energy balance calculation. For example, for a reference SMBH of
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mass 107M⊙ (for which, according to eq. 3.19, the velocity dispersion is σ ∼ 120 km/s),
assuming that all three objects have a mass of 10M⊙ and that the semi-major axis of the
binary (initially equal to 1AU) is halved, the binary receives a kick of ∼ 50 km/s while the
single objects receives a kick of ∼ 100 km/s.
The magnitude of this kick is comparable with the relativistic kick received by merger
remnants. As we have discussed previously, kicks of this magnitude can cause ejections when
the interactions happen at large radii (where the escape velocity, in eq. 2.30, is smaller) and
they become more and more negligible as the radius decreases. Hence three body scattering
can be effective at hindering migration but, once the objects reach the migration trap, three
body scattering is completely negligible. So including this effect in the model would cause a
decrease in ftrap and, consequently, a shift in the position of the peaks towards lower masses.

Furthermore, in our model we assumed the structure of the disk to be constant throughout
its whole lifetime. Instead, in a more realistic model it would gradually change. For
example, one would expect that the surface density gradually decreases due to SMBH
feedback [21] and star formation in the outer skirts of the disk.
Decreasing the surface density Σg causes an increase in the damping and migration
timescales (eq.s 2.12 and 2.13) as well as in the gas-hardening timescale (eq. 4.3), which all
scale as 1/Σg. So these processes become slower towards the end of the AGN phase, which
means that we are currently underestimating the fraction of BHs that stop hierarchical
mergers due to the conditions on timescales.
On the other hand, as visible in Figure 4.6, final merger remnants in the maximum-mass
peaks are formed with timescales that can be significantly lower than the disk’s lifetime.
Therefore, although including the disk’s evolution in our model can decrease the fraction of
final merger remnants in these peaks, it should not erase them completely.

In conclusion, the effect of three-body scattering is to decrease the maximum accretable
mass, while disk structure evolution makes it harder (but not impossible) for a seed BH to
accrete the whole mass available.

NSC Run logMSMBH logMNSC rh Run logMSMBH logMNSC rh
index [M⊙] [M⊙] [pc] [M⊙] [M⊙] [pc]

1

1

7.1 7.0 7.08

13

6.14 6.19 5.8
2 6.41 6.05 10.46 6.25 6.42 10.09
3 6.4 6.35 3.5 6.13 5.26 3.09
4 6.36 6.66 3.81 6.06 6.8 7.87

1

2

6.9 6.32 4.25

14

6.24 7.2 15.07
2 7.78 7.4 5.15 6.09 6.1 3.43
3 6.88 7.1 8.71 6.87 5.73 5.42
4 6.39 6.51 3.04 6.19 5.6 6.56

1

3

7.68 7.18 9.01

15

7.0 6.07 3.01
2 6.59 7.17 6.53 6.92 6.85 2.02
3 6.68 6.49 3.96 6.11 5.47 4.64
4 6.53 6.96 9.92 6.17 6.61 2.84
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1

4

7.59 7.33 3.86

16

6.18 6.31 5.01
2 7.45 7.21 6.36 6.11 5.49 3.99
3 7.34 6.85 4.16 6.13 6.07 8.73
4 7.2 7.1 3.54 6.57 5.85 7.34

1

5

7.79 7.21 10.37

17

6.06 6.92 3.22
2 6.6 6.67 8.17 6.08 6.81 4.72
3 6.26 5.84 6.93 6.11 6.05 4.58
4 6.45 7.02 4.26 6.62 6.43 5.04

1

6

6.99 6.82 4.95

18

6.08 6.65 2.85
2 6.88 6.78 6.88 6.08 7.11 6.52
3 6.54 6.48 3.12 6.2 6.45 1.79
4 6.17 6.04 4.33 7.68 6.46 15.28

1

7

6.54 6.17 2.18

19

6.11 5.63 7.82
2 7.49 7.04 4.16 7.12 7.02 3.68
3 7.01 7.35 14.36 6.77 7.19 12.76
4 7.03 7.24 7.87 7.77 6.67 12.68

1

8

6.81 6.74 5.79

20

6.18 6.15 4.82
2 6.83 6.24 2.31 6.38 5.87 1.97
3 6.56 6.12 3.93 6.33 6.67 6.77
4 6.39 6.58 6.85 6.05 6.15 2.54

1

9

7.34 6.54 2.58

21

6.17 5.99 3.11
2 6.71 7.01 4.23 7.27 5.24 7.38
3 6.92 6.49 7.37 6.19 5.47 3.04
4 6.85 6.33 6.37 6.08 6.06 5.07

1

10

6.42 6.27 14.11

22

6.08 5.52 2.25
2 7.04 6.76 3.24 6.51 6.08 3.65
3 7.47 7.01 10.64 6.09 6.13 1.9
4 7.07 6.21 3.0 6.17 5.7 2.69

1

11

7.33 6.52 3.54

23

6.05 5.73 3.51
2 7.24 7.19 8.72 6.16 7.55 5.38
3 7.02 6.82 2.56 6.06 6.08 5.19
4 7.02 6.8 2.25 6.06 5.55 5.25

1

12

7.48 6.66 3.68

24

7.3 5.48 9.67
2 7.35 6.71 6.41 6.06 6.02 4.76
3 6.81 5.98 3.91 6.09 6.17 3.44
4 7.84 6.58 6.98 6.07 7.32 10.28

Table 4.3: Characterizing parameters for each simulated NSC. For each run, the NSCs are
identified by an index between 1 and 4.
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(a)

(b)

Figure 4.12: (a) Remnant mass distribution for all merger events of each disk type. The color
of the bars indicates in which NSC the merger event happened. The NSC are indicated with
a label between 1 and 4 as illustrated in Table 4.3. (b) Chirp mass function for all merger
events of each disk type.
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Conclusions

Thanks to gravitational wave (GW) observations, we are now more knowledgeable than ever
before in the field of black hole (BH) astrophysics. Nonetheless, some questions still remain
unanswered. In particular, there is no unequivocal interpretation for binary black hole
(BBH) mergers in which one, or both, of the components have mass in the pair-instability
mass gap. The detection of such events has stirred up the scientific community: there have
been substantial efforts to explain their formation either by reviewing the current models of
stellar evolution or by exploring the possibility of dynamical formation of massive BHs via
hierarchical mergers.
This thesis fits in the field of BH dynamical formation. Indeed, we investigated the AGN
scenario for hierarchical BBH mergers. The AGN environment is peculiar because of the
presence of a dense gaseous disk which strongly influences black hole evolution. Therefore,
we focused on viscous effects caused by the interaction with gas.

We built a semi-analytical model, preferring it over more accurate N-body or
hydro-dynamical simulations so that it would allow us to quickly explore the parameter
space. We used a state-of-the-art model for the structure of an AGN disk, which features
the presence of a migration trap. We borrowed models from planetary astrophysics to
predict how efficiently a BH becomes embedded in the disk and migrates into the migration
trap. We implemented a prescription for the pair-up of a BBH in the migration trap and we
modeled its evolution accounting for gas hardening and GW emission. Then we evaluated
whether the remnant from the BBH merger can return to the migration trap and pair-up
again, giving rise to hierarchical mergers.

We performed 104 simulations of the evolution of a seed stellar BH in 96 different AGN
systems of 12 different kinds. We analyzed the effects on the BBH population of the central
SMBH mass, the AGN lifetime, the gas density and disk’s thickness.
We find that larger SMBH masses, larger gas densities, lower thicknesses and longer
lifetimes correlate with the production of BBHs with higher mass.
For 6 of our 12 disk models, the aftermath of dynamical evolution gives rise to a remnant
population with masses up to a few 103M⊙ in less than 10Myr. Hence, AGN disks can be
factories for the efficient production of upper mass-gap BHs and of intermediate-mass BHs.

The 6 disk models that produce high-mass BBHs are: disks with medium to high density
[i.e., Σ0 = Σg

(

R = 103Rg,MSMBH = 108M⊙

)

∼ 106 − 107g/cm2] and low thickness [i.e.,
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h0 = h
(

R = 103Rg,MSMBH = 108M⊙

)

∼ 10−3] with any lifetime, disks with high density
(Σ0 ∼ 107g/cm2), high thickness (h0 ∼ 10−2) and long lifetime (τ = 10Myr), and disks with
low density (Σ0 ∼ 105g/cm2), low thickness (h0 ∼ 10−3) and long lifetime (τ = 10Myr).
The remnant mass functions are qualitatively similar in these 6 scenarios, as they are mostly
influenced by the maximum accretable mass which accounts for the total mass of BHs that
are able to reach the migration trap during the evolution of the system. In turn, the
maximum accretable mass strongly depends on the SMBH mass and the physical
characteristics of the nuclear star cluster such as its mass and effective radius. Indeed, every
single nuclear star cluster has a unique remnant mass function.

Of these 6 disk models, those with medium to high density produce a population of BBHs
with average effective spin |χeff | ∼ 0.2 due to the efficient mechanism of spin alignment. On
the other hand, disks with lower densities produce a population of BBHs with |χeff | ∼ 0.

We added our AGN model to a pre-existing code called fastcluster [54, 55] which already
included prescriptions for BH dynamics in globular, young and nuclear star clusters. Thanks
to this code, we are now able compare catalogs of BBH mergers in different dynamical
channels using the same numerical code and the same underlying initial conditions (e.g., the
same initial BH mass function). This gets rid of any bias that might arise by using different
numerical codes for different environments: any differences are not due to the numerical
approach adopted, but to the intrinsic physical differences among channels.
The enhanced version of fastcluster, which now also includes AGNs among the possible
dynamical environments, will be used in the near future to construct mock samples of GW
for each environment. These samples will account for the LIGO–Virgo–KAGRA
observational biases.
Therefore, by comparing our mock data with the observational data from the detectors, we
will be able to infer the mixing fractions of each environment as in [11, 54]. In other words,
we will be able to infer how many of the currently observed BH mergers are produced in
AGNs.
Not only will this be crucial for the interpretation of the origin of GW transients, but it will
also provide valuable information on the structure of AGN disks, which is currently largely
uncertain. For instance, identifying a large fraction of high-mass BBHs produced in AGNs
would confirm the existence of migration traps in the disk.
As a future perspective, we plan on making this model more realistic by accounting for the
evolution of the disk’s structure in time and for three-body interactions.
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[83] Stone, N. C., Küpper, A. H. W., and Ostriker, J. P. Formation of massive black holes
in galactic nuclei: runaway tidal encounters. Monthly Notices of the Royal Astronomical

Society, 467(4):4180–4199, 03 2017.

74



BIBLIOGRAPHY

[84] Tagawa, H., Haiman, Z., Bartos, I., and Kocsis, B. Spin evolution of stellar-mass black
hole binaries in active galactic nuclei. The Astrophysical Journal, 899(1):26, aug 2020.

[85] Tagawa, H., Haiman, Z., and Kocsis, B. Formation and evolution of compact-object
binaries in AGN disks. The Astrophysical Journal, 898(1):25, jul 2020.

[86] Thompson, T. A., Quataert, E., and Murray, N. Radiation pressure–supported
starburst disks and active galactic nucleus fueling. The Astrophysical Journal,
630(1):167–185, sep 2005.

[87] Vajpeyi, A., Thrane, E., Smith, R., McKernan, B., and Saavik Ford, K. E. Measuring
the properties of active galactic nuclei disks with gravitational waves. The Astrophysical

Journal, 931(2):82, may 2022.

[88] Yang, Y., Bartos, I., Haiman, Z., Kocsis, B., Márka, Z., Stone, N. C., and Márka, S.
AGN disks harden the mass distribution of stellar-mass binary black hole mergers. The
Astrophysical Journal, 876(2):122, may 2019.

[89] Zevin, M. and Holz, D. E. Avoiding a cluster catastrophe: Retention efficiency and the
binary black hole mass spectrum, 2022.

[90] Ziosi, B. M., Mapelli, M., Branchesi, M., and Tormen, G. Dynamics of stellar black
holes in young star clusters with different metallicities – II. Black hole–black hole
binaries. Monthly Notices of the Royal Astronomical Society, 441(4):3703–3717, 06 2014.

75



Appendix A

Instantaneous pair-up in the migra-
tion trap: is it a realistic assump-
tion?

The idea of an instantaneous pair-up (section 3.3) may turn up their noses to most
physicists because, as we know, no process in physics is instantaneous. In this appendix, we
will explain why we believe that this is a reasonable approximation.

As stated in section 2.3 and section 2.4, all prograde objects that cross the disk during their
orbits will migrate and eventually reach migration traps. The timescale for this phenomenon
scales as the inverse of the object’s mass (eq. 2.12 and 2.13). Therefore, if there is a large
number of objects interacting with the disk, after a certain time there will be a large mass
density in the migration trap.

We will verify that the density in the migration trap ρtrap is indeed quite high. So we expect
that, when a BH enters into the migration trap, it will form a binary with dynamical
processes in a negligible time.
We do not know the timescale for dynamical formation in a disk geometry, but we can guess
its order of magnitude by using the timescale for dynamical formation of a binary via
three-body encounters in a spherical geometry.
For an object of mass m1 the three-body binary formation timescale is [24]

t3bb = 125Myr

(

106M⊙/pc
3

ρtrap

)2(

ζ−1 σ1D
30 km/s

)9(20M⊙

m1

)5

(A.1)

where ζ ≤ 1 accounts for deviations from equipartition of the BH subsystem (we assume
perfect equipartition, ζ = 1) and σ1D = σ/

√
3 is the one-dimensional velocity dispersion

(assuming an isotropic distribution of stellar velocities).

The problem is: how do we know that the companion is another BH and that the
newly-born binary is indeed a BBH? Well, we do not.

As seen in subsection 2.2.2, the BH fraction is expected to be only about 4%, so with a
probability of 96% the companion will not be a BH.
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APPENDIX A. INSTANTANEOUS PAIR-UP IN THE MIGRATION TRAP: IS IT A
REALISTIC ASSUMPTION?

Although forming a BBH directly is quite rare, according to [90] BBHs form efficiently in
dense environments because of dynamical exchanges: a BH can replace a lighter star into a
BH-star binary.

Having initially a binary system formed by a BH of mass m1 and an object of mass m∗, the
object is replaced by a BH of mass m2 on a timescale [16]

texch = 3Gyr

(

0.01

fbin

)(

106M⊙/pc
3

ρtrap

)(

σ

50 km/s

)(

12M⊙

m1 +m2 +m∗

)(

1AU

ahard

)

(A.2)

Where fbin is the binary fraction (we assume fbin = 0.1, arbitrarily), σ is the
three-dimensional velocity dispersion (eq. 3.19) and ahard is the minimum semi-major axis of
a hard binary system.

ahard =
G ⟨m⟩
σ2

(A.3)

We take m∗ = ⟨m⟩, where ⟨m⟩ = 1M⊙ is the average mass of an object in the system.

The expression in eq. A.2 is valid in the assumption of an isotropic distribution of stars (i.e.
in globular clusters or young star clusters). This is of course not true in an AGNs where the
stars are distributed in a disk geometry. Therefore, we cannot use this expression in our
model directly but we only employ it to estimate the order of magnitude of the timescale.

With the following derivation, we will show that the exchange timescale texch (eq. A.2) is
typically small and can safely be neglected.

First of all, we want to estimate the density of objects in the migration trap ρtrap and see
how it changes as a function of time. This will be quite a rough estimate because we only
care about the order of magnitude of the exchange timescale.
We generate the mass of 104 objects from a Salpeter1 initial mass function ξ (m) [74]
between 0.08M⊙ and 150M⊙ using inverse random sampling.

ξ (m) dm = ξ0

(

m

M⊙

)−2.35( dm

M⊙

)

(A.4)

Due to stellar evolution, the mass function of the objects interacting with the disk (i.e. the
present-day mass function or PDMF) will be quite different from the IMF.
From stellar evolution models, we know that stars will produce different remnants according
to their initial mass min [15]. We assume stars with masses lower than 2M⊙ to not have
evolved yet.
Since we are only interested in the average behavior of these objects, we take the mass mfin

of each component of the final population to have mass equal to the average mass of its
object type. We make direct use of the IMF for the estimate of MS stars average mass, we
use [42] for an estimate of WD masses, [77] for NS’s and MOBSE data [28, 27, 29, 30] for
BH’s.

1The Salpeter IMF predicts an overdensity of lighter stars compared to more modern IMF prescriptions,
but we use it in this context for simplicity.
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Figure A.1: On the left: Salpeter IMF in blue and toy PDMF in orange. On the right:
Damping and migration timescales for the components of the NSC population.

The relations between initial and final masses are:

min ∈ [ 0.08 , 2 ]M⊙ ⇒ Main Sequence (MS) ⇒ mfin,MS = 0.2M⊙

min ∈ ( 2 , 8 ]M⊙ ⇒ White Dwarf (WD) ⇒ mfin,WD = 0.6M⊙

min ∈ ( 8 , 20 ]M⊙ ⇒ Neutron Star (NS) ⇒ mfin,NS = 1.4M⊙

min ∈ ( 20 , 150 ]M⊙ ⇒ Black Hole (BH) ⇒ mfin,BH = 8.7M⊙

The IMF and toy PDMF are shown in Figure A.1.

Now we want to consider the interaction between the PDMF objects and the AGN gaseous
disk. We take as a fiducial value for the SMBH mass the average from the Illustris TNG50
SMBH population (eq. 3.1).

MSMBH = 106.84M⊙

We assume the disk to be dense, thin and long-lived.
We extract the mass of the host galaxy and of the NSC according to eq.s 3.4 and 3.14
respectively. We establish the effective radius of the NSC according to eq. 3.15. Since we
want to reproduce the average behavior, we neglect any statistical scattering around these
values.

We compute the total mass M (Rmax) of the objects interacting with the disk using eq.s 3.17
and 3.9. We re-scale the number of objects N sample in the toy PDMF sample to N so that
their total mass is comparable with M (Rmax):

Msample =
∑

XX

N sample
XX mfin,XX , NXX = N sample

XX

(

M(Rmax)

Msample

)

(A.5)

where XX = MS, WD, NS, BH.

We set the initial position of these objects as in eq. 3.24 and we compute the damping and
migration timescale using eq.s 2.12 and 2.13. The resulting timescales for the different
components of the NSC population are shown in Figure A.1.

We compute the total mass of objects in the migration trap Mtrap by summing the masses of
objects that have already migrated at a certain time. We convert the mass into density by
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Figure A.2: On the left: Mass density in the migration trap as a function of time. On the
right: Exchange timescale as a function of time.

dividing it by the migration trap volume. We assume the trap to be an annulus with a
square section (equal height and width).

ρtrap =
1

2

Mtrap

2π(htrap)2(Rtrap)3
(A.6)

where the factor 1/2 is to account for prograde rotators only. Rtrap is the migration trap
radius (eq. 3.10) and htrap is the aspect ratio at the migration trap (eq. 3.12).
See Figure A.2 for the evolution of mass and density in the migration trap.
We see that the density in the migration trap during the AGN disk lifetime (time ≤ 10Myr)
is very high: ρtrap ∼ 1019M⊙/pc

3. Hence the pairing time with an object in the migration
trap is expected to be negligible.

This value of the density in the migration trap is not accurate both because the model used
for the PDMF is naive and, most importantly, because we are oversimplifying two- and
three-bodies interactions. As mentioned in section 2.4, the interaction of light-mass objects
(such as stars and white dwarfs) with compact objects (such as neutron stars and black
holes) can potentially strip or destroy the former, hindering their migration, while the
interaction of light-mass objects with hard binaries can easily scatter them out of the
migration trap, effectively decreasing the trap density.
Besides, the assumption that the migration trap has equal height and width is arbitrary:
there’s no reason why the trap could not be have a larger width and therefore a larger
volume than assumed.
We are also neglecting the effects of BBH mergers that can kick the remnants out of the
migration trap.

Nevertheless, knowing the value of the density in the migration trap, we compute the
dynamical binary formation timescale as in eq. A.1.
As shown in Figure A.2, the typical pairing timescale in a spherical geometry is of the order
of 10−13 years, i.e. 10−5 seconds. Therefore we can safely assume that the pairing timescale
in a disk geometry will be negligible as well.

iv



APPENDIX A. INSTANTANEOUS PAIR-UP IN THE MIGRATION TRAP: IS IT A
REALISTIC ASSUMPTION?

We compute the exchange timescale texch as in eq. A.2. As shown in Figure A.2, the typical
exchange timescale is of the order of 10−3 years, i.e. of a few hours, which is very small
compared to the timescales at play (see chapter 4).

Although this is a toy model and this estimation is not reliable, we can reasonably assume
that the pairing and exchange timescales are negligible with respect to the other timescales
at play.

In conclusion, the pair-up timescale after entrance in the migration trap can safely be
neglected in a typical AGN system.
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Appendix B

Additional figures

This appendix contains all the alternative figures that we did not include in the main text
for brevity. In particular, here we report the results for the Illustris TNG300 run.

Figure B.1: Same as Figure 4.8 for low-merger runs.
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Figure B.2: Same as Figure 4.5a for TNG300 and low-merger runs.
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Figure B.3: Same as Figure 4.5b for TNG300 and low-merger runs.
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Figure B.4: Same as Figure 4.6 for TNG300 and low-merger runs.
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Figure B.5: Same as Figure 4.7a for TNG300 and low-merger runs.
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Figure B.6: Same as Figure 4.7b for TNG300 and low-merger runs.
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Figure B.7: Same as Figure 4.12a for TNG300 and low-merger runs.
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Figure B.8: Same as Figure 4.12b for TNG300 and low-merger runs.
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