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Abstract - English 
 
 
 
 
 
The recent development of quantum technologies requires the urgent design, preparation and 

characterization of materials with engineerable quantum-coherent behaviours. Quantum dots 

(QDs), which are semiconductor nanocrystals with exceptional optical and photophysical 

properties, are particularly promising candidates for this application. 

However, the increasing complexity of the materials and their functionalities requires the 

development of equally complex techniques to probe their response. In view of this need, 

ultrafast bidimensional spectroscopy (2DES) emerged as a powerful and versatile technique in 

the investigation of materials to be employed in recently proposed quantum technology 

applications. In particular, the recently developed action-based approach (A-2DES) promises 

to be particularly suitable for unravelling the intricacies of quantum phenomena in real devices, 

especially in the context of emerging quantum technologies. However, only a few works on 

this approach are currently available in the literature. The experimental layout of the technique 

is not yet optimized, and the effective meaning of the collected signal is the object of debate in 

the community. 

In this thesis, we applied A-2DES to the study of a QD-based optoelectronic device to 

demonstrate the capability of this technique to probe the ultrafast behaviour of real devices. 
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Abstract - Italiano 
 
 
 
 
 
Il recente sviluppo delle tecnologie quantistiche richiede urgentemente la progettazione, 

preparazione e caratterizzazione di materiali con comportamenti quantistici manipolabili. I 

quantum dots (QDs), ovvero nanocristalli semiconduttori con eccezionali proprietà ottiche e 

fotofisiche, sono dei candidati particolarmente promettenti per questa applicazione. Tuttavia, 

l'aumentare della complessità dei materiali e delle loro funzionalità richiede lo sviluppo di 

tecniche altrettanto complesse per poterli caratterizzare. In virtù di questa esigenza, la 

spettroscopia elettronica bidimensionale (2DES) si è dimostrata una tecnica potente e versatile 

per quanto riguarda l’indagine di materiali destinati alle applicazioni delle tecnologie 

quantistiche recentemente proposte. In particolare, l'approccio “action-based” (A-2DES) 

recentemente sviluppato, sembra essere particolarmente adatto per svelare le complessità dei 

fenomeni quantistici nei dispositivi reali. Tuttavia, attualmente, in letteratura sono disponibili 

solo pochi lavori che trattano questo approccio. La configurazione sperimentale della tecnica 

non è ancora ottimizzata e il significato effettivo del segnale raccolto è oggetto di dibattito nella 

comunità scientifica. 

In questa tesi, abbiamo applicato l'A-2DES allo studio di un dispositivo optoelettronico basato 

su QDs per dimostrare la capacità di questa tecnica di poter esplorare il comportamento 

ultraveloce di dispositivi reali. 
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Introduction 
 
 
 
 
 
Spectroscopy, a milestone in the study of matter and its interactions with light, represents one 

of the most powerful tools to investigate the fundamental properties of different natural and 

artificial materials. As the boundaries of scientific research extend further towards increasingly 

complex systems, the development of advanced techniques capable of studying and 

characterizing their features becomes paramount. 

 

In the context of optical spectroscopy, two-dimensional electronic spectroscopy (2DES) stands 

as a pivotal technique with immense significance in unravelling the complexities of molecular 

and electronic interactions. Its unique capability to explore ultrafast processes on femtosecond 

timescales offers an insightful perspective into the intricate relations between chromophores 

within congested molecular systems [1-3].  

By capturing electronic coherences and correlations in both time and frequency domains, 2DES 

unveils a comprehensive picture of molecular dynamics, offering unprecedented insights into 

phenomena that can significantly affect many fields, from chemistry and physics to materials 

science [4]. 

 

In recent times, a newly implemented and very promising approach, named action-based 2DES 

(A-2DES), has emerged. By probing coherent dynamics induced through the interaction with 

four collinear ultrashort laser pulses, this method relies on measuring an incoherent signal 

proportional to the excited-state population, such as fluorescence or photocurrent. This 

capability enables the exploration of the dynamics of systems under in operando conditions 

and, therefore, is particularly suitable to characterize quantum devices. [4,5] 

Therefore, action-based 2DES promises to open up a new dimension in our capacity to not only 

observe quantum processes but also harness their potential for transformative applications in 

the field of quantum technologies. This real-time feedback mechanism allows for the precise 

characterization of quantum states and facilitates the exploration of quantum coherences and 

entanglement. 
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In the pursuit of quantum-based technologies such as quantum computing, communication and 

sensing, understanding and controlling quantum states is crucial. Action-based approaches of 

2DES enable the probing of quantum materials and devices with unprecedented accuracy, 

offering critical insights into the behavior of quantum states under varying conditions. 

 

Despite the growing interest in A-2DES, a notable research gap exists in fully harnessing its 

potential for quantum-based technologies.  

This thesis has the objective of providing a contribution to fill this gap. Specifically, we 

performed photocurrent-detected 2DES experiments on a QDs-based optoelectronic device. 

The aim was not only to contribute to the characterization and understanding of quantum 

phenomena in this specific device but also to optimize the practical implementation of this 

innovative approach and find new technical solutions to optimize its development.  

 

The following chapters will delve into:  

- The theoretical formalisms necessary to the understanding of the technique (Chapter 

1). 

- A comparison between the conventional coherence-based approach vs. the action-based 

approach for 2DES experiments (Chapter 2). 

- A brief introduction to the electronic and optical properties of semiconductor quantum 

dots (QDs), the systems object of this thesis (Chapter 3). 

- A description of the experimental methods employed to perform the experiments 

(Chapter 4). 

- A discussion of the preliminary results achieved by applying the photocurrent-detected 

2DES technique to a QDs-based optoelectronic device (Chapter 5). 
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Chapter 1 

Theoretical Background to Nonlinear 

Spectroscopies 
 

 

 

 

 

Before venturing into the field of nonlinear optical spectroscopy, it is necessary to revise a few 

fundamental concepts and formalisms at its basis. In this chapter, a brief overview of such 

topics as originally formalized by Mukamel [6] is presented, starting from the macroscopic 

description of the light-matter interaction in terms of the macroscopic polarization 𝑷, up to the 

microscopic approach in terms of the time-dependent perturbation theory and of the response 

function formalism. 

 

 

1.1 Light-matter Interaction 
 

 

All kinds of spectroscopies, being of the magnetic or the optical type, revolve around the same 

basic concept: they all study matter through its interaction with light (i.e. electromagnetic) 

fields. 

Like in all problems of this nature, it is necessary to derive the Hamiltonian for such interaction, 

which in the most general case would be of the form [7]: 

 

 𝐻 = 𝐻𝑀 + 𝐻𝐿 + 𝐻𝐿𝑀 

 

(1.1) 

This Hamiltonian is defined as the sum of three terms, accounting for matter, light, and their 

interaction, respectively. A pure quantum mechanical treatment, in which both light and matter 

are treated quantum mechanically, would be highly demanding since it would require 

simultaneously solving the coupled equation of motion for both light and matter variables. In 

order to avoid such complex calculations, we can make use of the well-known semiclassical 
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approximation, which allows us to drastically simplify the problem. According to this 

approximation, only matter is treated from the quantum mechanical point of view, whereas 

light is treated classically as a wave. Therefore, light is considered as a perturbation that acts 

on the system, inducing a charge redistribution in the medium, but that is not affected by matter. 

In this case, the Hamiltonian term relative to light can be discarded and the resulting 

Hamiltonian of the system will assume this form: 

 𝐻 ≈ 𝐻𝑀 + 𝐻𝐿𝑀. (1.2) 

From a physical point of view, when considering a charge redistribution induced by a field in 

a medium, it is appropriate to describe this phenomenon in terms of the polarization field 𝑷. 

This macroscopic quantity accounts for the response of the medium when exposed to an electric 

field and quantifies the charge redistribution induced within the medium. Polarization is a 

fundamental quantity in optical spectroscopies because the signal is proportional to it. 

Within the semiclassical approximation, the dynamics of the system is calculated by solving 

the coupled equations for the electric field 𝑬(𝒓) and for the polarization 𝑷(𝒓). The expression 

for the polarization results from the Maxwell-Liouville equations [6]: 

 
∇  × ∇ × 𝑬(𝒓, 𝑡) +

1

𝑐2

𝜕2

𝜕𝑡2
𝑬(𝒓, 𝑡) =  −

4𝜋

𝑐2

𝜕2𝑷(𝒓, 𝑡)

𝜕𝑡2
 

 

(1.3) 

For a weak electric field, the polarization depends linearly on the strength of the electric field. 

However, in dealing with ultrafast pulses and intense electric fields, nonlinear effects become 

non-negligible and therefore the polarization has to be described more in general as a power 

expansion of the electric field: 

 

 𝑷 =  휀0[𝜒(1) ∙  𝑬 + 𝜒(2): 𝑬 ∙ 𝑬 + 𝜒(3) ⋮  𝑬 ∙ 𝑬 ∙ 𝑬 + ⋯ ] 

 

(1.4) 
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where: 

- 휀0 is the permittivity of vacuum, 

- 𝜒(𝑛) is the nth order susceptibility, a tensorial quantity. For n=1, the linear term is 

retrieved, 

- 𝑬 is the electric field. 

At this point, we can separate P into its linear and nonlinear contributions, i.e.: 

 𝑷(𝒓, 𝑡) ≡ 𝑷(1)(𝒓, 𝑡) +  𝑷𝑁𝐿(𝒓, 𝑡), 

 

(1.5) 

where: 

- 𝑷(1) is linear in 𝑬, 

- 𝑷𝑁𝐿 accounts for all nonlinear contributions. 

In the following Sections (1.4, 1.5) we will show how the macroscopic polarization in nonlinear 

spectroscopies is related to the response function S(3) but before we need to dive deeper into 

the formalisms of quantum mechanics. 

 

1.2 Time Evolution of the Wave Function 
 
 
A quantum system is described in terms of its wave function |𝜓(𝑡)⟩ , whose time evolution can 

be calculated by solving the time-dependent Schrödinger equation: 

 

 𝜕|𝜓(𝑡)⟩

𝜕𝑡
=  − 

𝑖

ℏ
𝐻|𝜓(𝑡)⟩, 

 

(1.6) 

 

where:  

-  𝐻 represents the Hamiltonian of the system, 

- ℏ is the reduced Planck’s constant. 
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The most common approach to solve this equation in the context of spectroscopical methods 

is by far the time-dependent perturbation theory through the introduction of the time evolution 

operator 𝑈, defined as:  

 

 |𝜓(𝑡)⟩ ≡ 𝑈(𝑡, 𝑡0)|𝜓(𝑡0)⟩, 

 

(1.7) 

 

which acts as a propagator on the wavefunction to the right, by propagating the system from 

the starting time t0 to the observation time t. 

For a time-independent Hamiltonian, we easily obtain the following expression for the time 

evolution operator:  

 

 
𝑈(𝑡, 𝑡0) = 𝑒−

𝑖
ℏ

𝐻∙(𝑡−𝑡0)
. 

 

(1.8) 

 

 

1.2.1 Properties of the Time Evolution Operator 

 
In this section we will introduce some fundamental properties of the time evolution operator, 

in order to better understand its action on the wavefunction [7]. 

We start this description by stating that the propagator cannot depend on the state of the system. 

This condition is, in fact, necessary to retain the normalization of the system. 

If 

 𝜓(𝑡0)⟩ = 𝑎1|𝜑1(𝑡0)⟩ + 𝑎2|𝜑2(𝑡0)⟩, 

 

(1.9) 

 

Then: 

 |𝜓(𝑡)⟩ = 𝑈(𝑡0, 𝑡)|𝜓(𝑡0)⟩ 

 

(1.10) 

 

 |𝜓(𝑡)⟩ = 𝑈(𝑡0, 𝑡)𝑎1|𝜑1(𝑡0)⟩ +𝑈(𝑡0, 𝑡)𝑎2|𝜑2(𝑡0)⟩ (1.11) 

 

 |𝜓(𝑡)⟩ = 𝑎1(𝑡)|𝜑1(𝑡0)⟩ +𝑎2(𝑡)|𝜑2(𝑡0)⟩. (1.12) 
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Equation 1.12 is valid due to the application of the principles of linearity and superposition in 

quantum mechanical systems. 

 

We will now define four important properties of this time evolution operator 𝑈, which will be 

useful in later calculations: 

 

1. Unity: this property must be satisfied to conserve the probability density 

𝑃 =  ⟨𝜓(𝑡)|𝜓(𝑡)⟩ = ⟨𝜓(𝑡0)|𝑈†𝑈|𝜓(𝑡0)⟩ 

2. Time continuity:  

𝑈(𝑡, 𝑡) = 1 

3. Composition property: 

𝑈(𝑡2, 𝑡0) = 𝑈(𝑡2, 𝑡1)𝑈(𝑡1, 𝑡0) 

4. Time-reversal property: 

𝑈(𝑡, 𝑡0)𝑈(𝑡0, 𝑡) = 1 

∴ 𝑈−1(𝑡, 𝑡0) = 𝑈(𝑡0, 𝑡). 

 

 

1.2.2 Propagation of the Wavefunction in the Interaction Picture 

 

In order to study the dynamics of the system over time, we must solve the time-dependent 

Schrödinger equation, but it is worth noting that substituting Equation1.7 into the time-

dependent wavefunction is equivalent to solving the equation of motion for the time evolution 

operator. In fact: 

 

 𝑑

𝑑𝑡
|𝜓(𝑡)⟩ = −

𝑖

ℏ
𝐻|𝜓(𝑡)⟩ 

 

(1.13) 

 

 𝑑

𝑑𝑡
𝑈(𝑡, 𝑡0)|𝜓(𝑡0)⟩ = −

𝑖

ℏ
𝐻 ∙ 𝑈(𝑡, 𝑡0)|𝜓(𝑡0)⟩ 

 

(1.14) 

 

 𝑑

𝑑𝑡
𝑈(𝑡, 𝑡0) = −

𝑖

ℏ
𝐻 ∙ 𝑈(𝑡, 𝑡0). 

(1.15) 
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To evaluate the behaviour of the time evolution operator over time, it is convenient to move 

from the Schrödinger picture1 to the so-called “Interaction picture” or “Dirac representation”. 

In the interaction picture both the state vectors and the operators bring the time dependence 

[6]. 

This representation is particularly convenient when the total Hamiltonian of the system can be 

factorized into two different contributions: 

 

 𝐻(𝑡) = 𝐻0(𝑡) + 𝐻′(𝑡) 

 

(1.16) 

 

where 𝐻0(𝑡)is generally well known and defined (i.e. analytical solutions are available), and 

the second one 𝐻′(𝑡) accounts for a weak time dependency that will be treated perturbatively. 

We shall now introduce the time evolution operator with respect to 𝐻0, 𝑈0, which satisfies the 

equation [7]: 

 

 𝜕

𝜕𝑡
𝑈0(𝑡, 𝑡0) = −

𝑖

ℏ
𝐻0(𝑡)𝑈0(𝑡, 𝑡0) 

 

(1.17) 

 

whose solution is: 

 

 𝑈0(𝑡, 𝑡0) =

= 𝑒𝑥𝑝+ [−
𝑖

ℏ
∫ 𝑑𝜏

𝑡

𝑡0

𝐻0(𝜏)]

≡ 1 + ∑ (
−𝑖

ℏ
)

𝑛

∫ 𝑑𝜏𝑛

𝑡

𝑡0

∫ 𝑑𝜏𝑛 … ∫ 𝑑𝜏1𝐻(𝜏𝑛)𝐻(𝜏𝑛−1) … 𝐻(𝜏1)
𝑡

𝑡0

𝜏

𝑡0

∞

𝑛=1

 

 

(1.18) 

 

with exp+ being a positive time-ordered exponential [7]. 

 
1 In the frame of the Schrödinger picture, the time dependence is fully contained in the state vectors, while 

the operators are time independent.  
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This expression is achieved by performing an iterative substitution of U into itself and gives 

information about the evolution of a quantum system over a given time interval. The time 

ordering of this exponential is: 

 

𝑡0 → 𝜏1 → 𝜏2 → 𝜏3 … 𝜏𝑛 → 𝑡. 

 

We define the wavefunction in the interaction picture |𝜓𝐼(𝑡)⟩ as follows: 

 

 |𝜓𝑠(𝑡)⟩ ≡ 𝑈0(𝑡, 𝑡0)|𝜓𝐼(𝑡)⟩, (1.19) 

 

 

Where |𝜓𝑠(𝑡)⟩ is the wavefunction defined in the Schrödinger picture.  

When introducing Equation 1.19 into the Schrödinger equation:  

 
−

𝑖

ℏ
𝐻|𝜓(𝑡)⟩ =

𝑑

𝑑𝑡
|𝜓(𝑡)⟩  

 

(1.20) 

 

 
−

𝑖

ℏ
𝐻(𝑡) ∙ 𝑈0(𝑡, 𝑡0)|𝜓𝐼(𝑡)⟩ =

𝑑

𝑑𝑡
(𝑈0(𝑡, 𝑡0)|𝜓𝐼(𝑡)⟩) 

 

(1.21) 

 

 
= (

𝑑

𝑑𝑡
(𝑈0(𝑡, 𝑡0)) ∙ |𝜓𝐼(𝑡)⟩ + 𝑈0(𝑡, 𝑡0) (

𝑑

𝑑𝑡
|𝜓𝐼(𝑡)⟩) 

 

(1.22) 

 

 
= −

𝑖

ℏ
𝐻0 ∙ 𝑈0(𝑡, 𝑡0) ∙ |𝜓𝐼(𝑡)⟩ + 𝑈0(𝑡, 𝑡0) ∙ (

𝑑

𝑑𝑡
|𝜓𝐼(𝑡)⟩) 

 

(1.23) 

 

Now, since 𝐻′(𝑡) = 𝐻(𝑡) − 𝐻0, 

 
−

𝑖

ℏ
𝐻′(𝑡) ∙ 𝑈0(𝑡, 𝑡0)|𝜓𝐼(𝑡)⟩ = 𝑈0(𝑡, 𝑡0) ∙ (

𝑑

𝑑𝑡
|𝜓𝐼(𝑡)⟩) 

 

(1.24) 

 

 



 11 

Or 

 
−

𝑖

ℏ
𝑈0

†(𝑡, 𝑡0)𝐻′(𝑡) ∙ 𝑈0(𝑡, 𝑡0)|𝜓𝐼(𝑡)⟩ =
𝑑

𝑑𝑡
|𝜓𝐼(𝑡)⟩ 

(1.25) 

 

 
⟹

𝑑

𝑑𝑡
|𝜓𝐼(𝑡)⟩ = −

𝑖

ℏ
𝐻𝐼

′(𝑡)|𝜓𝐼(𝑡)⟩ 

 

(1.26) 

Where the weak perturbation 𝐻𝐼
′(𝑡) in the interaction picture is: 

 

 𝐻𝐼
′(𝑡) = 𝑈0

†(𝑡, 𝑡0)𝐻′(𝑡)𝑈0(𝑡, 𝑡0) 

 

(1.27) 

or 

 
𝐻𝐼

′(𝑡) = 𝑒
𝑖
ℏ

𝐻0∙(𝑡−𝑡0)𝐻′(𝑡)𝑒−
𝑖
ℏ

𝐻0∙(𝑡−𝑡0). 

 

(1.28) 

 

Equation 1.26 is formally equivalent to Equation 1.13 and can be solved by performing an 

iterative substitution: 

 

 |𝜓𝐼(𝑡)⟩ = |𝜓𝐼(𝑡0)⟩

+  ∑ (−
𝑖

ℏ
)

𝑛

∫ 𝑑𝜏𝑛

𝑡

𝑡0

∫ 𝑑𝜏𝑛−1 … ∫ 𝑑𝜏1𝐻𝐼
′(𝜏𝑛)𝐻𝐼

′(𝜏𝑛−1) … 𝐻𝐼
′(𝜏1)|𝜓𝐼(𝑡0)⟩

𝜏2

𝑡0

𝜏𝑛

𝑡0

∞

𝑛=1

 

 

 

 

(1.29) 

It is important to observe that this is an expansion in powers of the weak perturbation 𝐻′(𝑡), 

and not of the full time-dependent Hamiltonian. 

The physical intuition behind this expression is the following (Figure 1.1): the system is in an 

equilibrium condition until time 𝜏1 (i.e. 𝑈(𝜏1, 𝑡0)). At time 𝜏1 it interacts with the perturbation 

𝐻′(𝜏1). After this interaction, it will again freely propagate until time 𝜏2, when it interacts with 

the perturbation 𝐻′(𝜏2), and so on. This interpretation can be visualized by means of a single-

sided Feynman diagram, which graphically represents the perturbative expansion of the 

wavefunction (see Section 1.5.2 for a more explicit explanation of Feynman diagrams). 
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1.3 Density operator 
 
 
We will now introduce the density operator and its matrix representation, another fundamental 

tool that is particularly useful in the description of quantum systems, especially when the time-

dependency and the presence of mixed states2 must be taken into account. From the physical 

point of view, the density operator is analogous to the wavefunction, but supplies significant 

practical advantages, as shown below.  

The density matrix is defined as the outer product of the wavefunction with its complex 

conjugate [7]: 

 

 𝜌(𝑡) ≡ |𝜓(𝑡)⟩⟨𝜓(𝑡)| 

 

(1.30) 

 

The mathematical advantage in performing calculations with the use of the density operator is 

evident when the expectation values of operators must be evaluated. In fact, if we expand the 

wavefunction of a system into its basis set we obtain:  

 

 |𝜓(𝑡)⟩ = ∑ 𝑐𝑛(𝑡)|𝑛⟩𝑛 , 

 

(1.31) 

 

 
2 Mixed states are statistical mixtures which cannot be described in terms of a single wavefunction. Therefore, the 

information about the quantum system can be gained only by performing statistical averages. 

Figure 1.1: Diagrammatic representation of the perturbative expansion of the wavefunction. 

The vertical arrow represents the time evolution of the system, whereas the dotted arrows 

depict the interaction with the perturbation 𝐻′ at times 𝜏𝑛. 
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where 𝑐𝑛 are the complex expansion coefficients.  

We now recall that the expectation value of an operator is defined as: 

 

 〈𝐴(𝑡)〉 = ∑ 𝑐𝑛(𝑡)𝑐𝑚
∗ (𝑡)⟨𝑚|𝐴|𝑛⟩.

𝑛,𝑚

 

 

(1.32) 

And from the previous definition of the density operator (Equation 1.30), one obtains:  

 𝜌(𝑡) = ∑ 𝑐𝑛(𝑡)𝑐𝑚
∗ (𝑡)

𝑛,𝑚

|𝑛⟩⟨𝑚| 

 

(1.33) 

 

 ≡ ∑ 𝜌𝑛𝑚(𝑡)

𝑛,𝑚

|𝑛⟩⟨𝑚| 

 

(1.34) 

Where 𝜌𝑛𝑚(𝑡) are the elements of the density matrix, defined by the time-evolving expansion 

coefficients. 

Equation 1.32 now becomes:  

 〈𝐴(𝑡)〉 =  ∑ 𝐴𝑚𝑛𝜌𝑛𝑚(𝑡)

𝑛,𝑚

 

 

(1.35) 

 

 = 𝑇𝑟[𝐴𝜌(𝑡)] 

 

(1.36) 

Where 𝑇𝑟[… ] refers to tracing (i.e. summing) over the diagonal elements of the matrix. 

This reduces the evaluation of the expectation value of an operator to tracing over a product of 

matrices, instead of performing an integration. 

 

 

1.3.1 Properties of the density operator 

 

In this section some important properties and definitions of the density operator are presented, 

which will be useful for the following calculations. 

From the definition above, it follows that:  

1. The density operator is Hermitian, since 𝜌𝑛𝑚 = 𝜌𝑚𝑛
∗  
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2. Probability must be normalized, which implies that 𝑇𝑟(𝜌) = 1 

3. The degree of pureness of a quantum state can be evaluated from the calculation of the 

trace of the density operator. In fact: 

𝑇𝑟(𝜌2) = {
= 1 𝑓𝑜𝑟 𝑎 𝑝𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒

< 1 𝑓𝑜𝑟 𝑎 𝑚𝑖𝑥𝑒𝑑 𝑠𝑡𝑎𝑡𝑒
 

 

Since in this work terms “populations” and “coherences” will be recurrent, it is necessary to 

explain what this nomenclature stands for.  

The elements of the density matrix can be divided into two categories: 

- The diagonal elements (𝑛 = 𝑚), also known as “populations”, which give the 

probability of occupying a quantum state: 

𝜌𝑛𝑛 = 𝑐𝑛𝑐𝑛
∗ = 𝑝𝑛 ≥ 0, 

- The off-diagonal elements (𝑛 ≠ 𝑚), also known as “coherences”, since they account 

for the coherent oscillatory behaviour of a coherent superposition of states of the 

system. Coherences are complex quantities and bring a time-dependent phase factor: 

𝜌𝑛𝑚 = 𝑐𝑛(𝑡)𝑐𝑚
∗ (𝑡) = 𝑐𝑛𝑐𝑚

∗ 𝑒−𝑖𝜔𝑚𝑛𝑡. 

We previously mentioned the importance of the density matrix when dealing with mixed states. 

In fact, if the probability 𝑝𝑘of occupying a quantum state |𝜓𝑘⟩ is defined, the expression for 

𝜌(𝑡) becomes: 

 

 𝜌(𝑡) ≡ ∑ 𝑝𝑘|𝜓𝑘(𝑡)⟩⟨𝜓𝑘(𝑡)|

𝑘

 
(1.37) 

 

 

And the evaluation of the expectation value for the generic operator A: 

 〈𝐴(𝑡)〉 = ∑ 𝑝𝑘⟨𝜓𝑘(𝑡)|𝐴|𝜓𝑘(𝑡)⟩

𝑘

 

 

(1.38) 

 

 〈𝐴(𝑡)〉 = 𝑇𝑟[𝐴𝜌(𝑡)]. (1.39) 

 

 

This is the expression obtained in Equation 1.36 for a pure state. 
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1.3.2 Time evolution of the density operator 

 

We will start the description of the time evolution of the density operator by deriving its 

equation of motion. For the sake of simplicity, we will only consider the case of a pure state, 

but the treatment can be easily generalized also for a mixed state. 

 

 𝜕𝜌

𝜕𝑡
=  (

𝜕

𝜕𝑡
|𝜓(𝑡)⟩) ⟨𝜓(𝑡)| + |𝜓(𝑡)⟩ (

𝜕

𝜕𝑡
|𝜓(𝑡)⟩) 

 

(1.40) 

 

Using the Schrödinger equation and its Hermitian conjugate, we get: 

 

 𝜕𝜌

𝜕𝑡
= −

𝑖

ℏ
𝐻|𝜓⟩⟨𝜓| +

𝑖

ℏ
|𝜓⟩⟨𝜓|𝐻 

 

(1.41) 

 

 
= −

𝑖

ℏ
(𝐻𝜌 − 𝜌𝐻) 

 

(1.42) 

Or  

 𝜕𝜌

𝜕𝑡
= −

𝑖

ℏ
[𝐻, 𝜌], 

 

(1.43) 

 

Known as the Liouville-Von Neumann equation, whose solution is the following: 

 

 𝜌(𝑡) = 𝑈(𝑡, 𝑡0)𝜌(𝑡0)𝑈†(𝑡, 𝑡0). 

 

(1.44) 

 

If we define the density matrix in the interaction picture as 

 

 𝜌(𝑡) ≡ |𝜓(𝑡)⟩⟨𝜓(𝑡)| = 𝑈0(𝑡, 𝑡0) ∙ |𝜓𝐼(𝑡)⟩⟨𝜓𝐼(𝑡)| ∙ 𝑈0
†(𝑡, 𝑡0) 

 

(1.45) 
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Equation 1.44 still holds, and we get an equivalent expression for the Liouville-Von Neumann 

equation in the interaction picture, whose power expansion is: 

 

 𝜌𝐼(𝑡) =

= 𝜌𝐼(𝑡0)

+  ∑ (−
𝑖

ℏ
)

𝑛

∫ 𝑑𝜏𝑛 ∫ 𝑑𝜏𝑛−1

𝜏𝑛

𝑡0

… ∫ 𝑑𝜏1

𝜏2

𝑡0

𝑡

𝑡0

∞

𝑛=1

[𝐻𝐼
′(𝜏𝑛), [𝐻𝐼

′(𝜏𝑛−1), … [𝐻𝐼
′(𝜏1), 𝜌𝐼(𝑡0)] … ]] 

 

 

 

 

(1.46) 

In this expression each iterative substitution reflects an interaction between light and matter, 

meaning that an nth order expansion term will be proportional to the observed polarization in 

an nth order nonlinear spectroscopy [7]. 

In fact, if we specify the perturbation as  

 𝐻′(𝑡) = −𝐸(𝑡) ∙ 𝜇, 

 

(1.47) 

The nth order density matrix is given by [6]: 

 

 
𝜌𝑛(𝑡) = (−

𝑖

ℏ
)

𝑛

∫ 𝑑𝜏𝑛 ∫ 𝑑𝜏𝑛−1 … ∫ 𝑑𝜏1𝐸(𝜏𝑛)𝐸(𝜏𝑛−1) ∙. . .
𝜏2

−∞

𝜏𝑛

−∞

𝑡

−∞

∙ 𝐸(𝜏1) ∙ 𝑈0(𝑡, 𝑡0)

∙ [𝜇𝐼(𝜏𝑛), [𝜇𝐼(𝜏𝑛−1), … [𝜇𝐼(𝜏1), 𝜌(−∞)] … ]] ∙ 𝑈0
†(𝑡, 𝑡0) 

 

 

 

 

(1.48) 

 

Where the dipole operator in the interaction picture is defined as: 

 

 𝜇𝐼(𝑡) = 𝑈0
†(𝑡, 𝑡0)𝜇𝑈0(𝑡, 𝑡0) 

 

(1.49) 

 

 

1.4 Response Function Formalism 
 

 

In the previous sections we already stressed the importance of optical polarization for the 

interpretation of any spectroscopic measurement. We will now introduce a general formalism, 

known as Response Function Theory, to describe the observable of a spectroscopic experiment. 
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In particular, we will focus on how the system is driven out of the thermal equilibrium by the 

presence of a weak (i.e. perturbative) external stimulus. 

Since the stochastic nature of the sample must be considered, we will define the macroscopic 

polarization in terms of the density operator, which naturally accounts for the presence of 

statistical ensembles. In this case, the macroscopic polarization can be defined as: 

 

 𝑷(𝑡) = 𝑇𝑟[𝝁𝝆(𝑡)] ≡ 〈𝝁𝝆(𝑡)〉, 

 

(1.50) 

 

Where 〈… 〉 indicates the expectation value. 

Analogously, discarding the vectorial nature of these quantities, we obtain the nth order 

polarization: 

 

 𝑃(𝑛)(𝑡) = 〈𝜇𝜌(𝑛)(𝑡)〉. 

 

(1.51) 

 

By substituting Equation 1.48 into Equation 1.51 we get:  

 

 
𝑃(𝑛)(𝑡) = (−

𝑖

ℏ
)

𝑛

∫ 𝑑𝑡𝑛 ∫ 𝑑𝑡𝑛−1 … ∫ 𝑑𝑡1𝐸(𝑡 − 𝑡𝑛)𝐸(𝑡 − 𝑡𝑛 − 𝑡𝑛−1) ∙ …
∞

0

∞

0

∞

0

∙ 𝐸(𝑡 − 𝑡𝑛 − 𝑡𝑛−1 − ⋯ − 𝑡1)

∙ 〈𝜇(𝑡𝑛 + 𝑡𝑛−1 + ⋯ 𝑡1)[𝜇(𝑡𝑛−1 + ⋯ + 𝑡1), … [𝜇(0), 𝜌(−∞)] … ]〉 

 

 

 

 

(1.52) 

 

Where the new set of time variables is (Figure 1.2):  

𝜏1 = 0 

𝑡1 = 𝜏2 − 𝜏1 

𝑡2 = 𝜏3 − 𝜏2 

⋮ 

𝑡𝑛 = 𝑡 − 𝜏𝑛 

With 𝜏1 = 0, arbitrarily chosen. 
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The expression can be further simplified into:  

 

 
𝑃(𝑛)(𝑡) = ∫ 𝑑𝑡𝑛

∞

0

∫ 𝑑𝑡𝑛−1 … ∫ 𝑑𝑡1

∞

0

𝐸(𝑡 − 𝑡𝑛)𝐸(𝑡 − 𝑡𝑛 − 𝑡𝑛−1) ∙ …
∞

0

∙ 𝐸(𝑡 − 𝑡𝑛 − ⋯ − 𝑡1) ∙ 𝑆(𝑡𝑛 , 𝑡𝑛−1, … , 𝑡1), 

 

 

 

(1.53) 

 

Where we have finally defined the response function S (defined only for positive time delays 

𝑡𝑛 ), as: 

 

 
𝑆(𝑛)(𝑡𝑛, … 𝑡1) = (−

𝑖

ℏ
)

𝑛

〈𝜇(𝑡𝑛 + ⋯ 𝑡1)[𝜇(𝑡𝑛−1 + ⋯

+ 𝑡1), … [𝜇(0), 𝜌(−∞)] … ]〉 

 

 

(1.54) 

 

1.5 Third Order Response Function and Diagrammatic Techniques 
 

 

The third order term of the response function is of particular interest for nonlinear 

spectroscopies as it is the lowest order allowing for the investigation of excited states 

properties. 

 

 

1.5.1 Third order response function in 2DES 

 
In ultrafast bidimensional optical spectroscopies the experimentally measured signal is 

proportional to the third order polarization: 

 

Figure 1.2: Time ordering of the nth-order polarization. The time variables tn denote 

time intervals, whereas the time variables 𝜏𝑛 denote absolute time points. 
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 𝐸𝑠𝑖𝑔𝑛𝑎𝑙 ∝ 𝑖𝑃(3)(𝑡), 

 

(1.55) 

 

which can be expressed in terms of the electric field and of the third order response function S3 

as: 

 

 

 
𝑃(3)(𝑡) = ∫ 𝑑𝑡3

∞

0

∫ 𝑑𝑡2

∞

0

∫ 𝑑𝑡1𝐸(𝑡 − 𝑡3)𝐸(𝑡 − 𝑡3 − 𝑡2)𝐸(𝑡 − 𝑡3 − 𝑡2

∞

0

− 𝑡1)𝑆3(𝑡3, 𝑡2, 𝑡1) 

 

(1.56) 

 

 

𝑆(3)(𝑡3, 𝑡2, 𝑡1) = (−
𝑖

ℏ
)

3

∑[𝑅𝛼(

4

𝛼=1

𝑡3, 𝑡2, 𝑡1) − 𝑅𝛼
∗ (𝑡3, 𝑡2, 𝑡1)] 

 

 

(1.57) 

 

Where the terms 𝑅𝛼 and 𝑅𝛼
∗  are called Liouville pathways. The third order response function 

𝑆(3)(𝑡3, 𝑡2, 𝑡1) contains 23=8 different pathways, which are expressed as traces of the product 

of matrices: 

 

 𝑅1(𝑡3, 𝑡2, 𝑡1) = 𝑇𝑟[𝜇 ̂𝐼(𝑡1 + 𝑡2 + 𝑡3)𝜇 ̂𝐼(𝑡1 + 𝑡2)𝜇 ̂𝐼(𝑡1)𝜇 ̂(0)𝜌̂𝑒𝑞] 

𝑅1
∗

 

(𝑡3, 𝑡2, 𝑡1) = 𝑇𝑟[𝜇 ̂𝐼(𝑡1 + 𝑡2 + 𝑡3)𝜌̂𝑒𝑞𝜇 ̂(0)𝜇 ̂𝐼(𝑡1)𝜇 ̂𝐼(𝑡1 + 𝑡2)] 

𝑅2(𝑡3, 𝑡2, 𝑡1) = 𝑇𝑟[𝜇 ̂𝐼(𝑡1 + 𝑡2 + 𝑡3)𝜇 ̂𝐼(𝑡1)𝜌̂𝑒𝑞𝜇 ̂(0)𝜇 ̂𝐼(𝑡1 + 𝑡2)] 

𝑅2
∗(𝑡3, 𝑡2, 𝑡1) = 𝑇𝑟[𝜇 ̂𝐼(𝑡1 + 𝑡2 + 𝑡3)𝜇 ̂𝐼(𝑡1 + 𝑡2)𝜇 ̂(0)𝜌̂ 𝑒𝑞𝜇 ̂𝐼(𝑡1)] 

𝑅3(𝑡3, 𝑡2, 𝑡1) = 𝑇𝑟[𝜇 ̂𝐼(𝑡1 + 𝑡2 + 𝑡3)𝜇 ̂𝐼(𝑡1 + 𝑡2)𝜌̂𝑒𝑞𝜇 ̂(0)𝜇 ̂𝐼(𝑡1)] 

𝑅3
∗(𝑡3, 𝑡2, 𝑡1) = 𝑇𝑟[𝜇 ̂𝐼(𝑡1 + 𝑡2 + 𝑡3)𝜇 ̂𝐼(𝑡1)𝜇 ̂(0)𝜌̂𝑒𝑞𝜇 ̂𝐼(𝑡1 + 𝑡2)] 

𝑅4(𝑡3, 𝑡2, 𝑡1) = 𝑇𝑟[𝜇 ̂𝐼(𝑡1 + 𝑡2 + 𝑡3)𝜇 ̂(0)𝜌̂𝑒𝑞𝜇 ̂𝐼(𝑡1)𝜇 ̂𝐼(𝑡1 + 𝑡2)] 

𝑅4
∗(𝑡3, 𝑡2, 𝑡1) = 𝑇𝑟[𝜇 ̂𝐼(𝑡1 + 𝑡2 + 𝑡3)𝜇 ̂𝐼(𝑡1 + 𝑡2)𝜇 ̂𝐼(𝑡1)𝜌̂𝑒𝑞𝜇 ̂(0)] 

 

 

 

(1.58) 
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Each Liouville pathway accounts for a different light-matter interaction sequence and can be 

more easily visualized by double-sided Feynman diagrams, as we will see in the following 

section. 

It is of fundamental importance to note that spectroscopic techniques that employ coherently 

emitted electric fields are defined as “coherence-based” spectroscopies, since they measure an 

electric field that is originated from a coherence.  

 

 

1.5.2 Diagrammatic Techniques 

  

Equations 1.55-1.58 can be employed to formally describe nonlinear effects in the system of 

interest. However, they have a complex mathematical form, mainly resulting from the 

development of nested commutators like in Equation 1.54, which often challenges an easy 

interpretation of the molecular origin of the nonlinear signal [7]. In order to simplify the 

interpretation of the molecular response, we can make use of diagrammatic techniques, which 

give a visual and immediate representation of the interaction between light and the system 

under study, evaluated over time. Many kinds of diagrams have been proposed but here the 

most known double-sided Feynman diagrams will be considered (Figure 1.4). 

 

 

 

 

 

 

Feynman diagrams can be drawn by following a few fundamental rules:  

Figure 1.4: Example of a double-sided Feynman diagram for a multilevel 

system. Picture adapted from ref [7]. 
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1. The two double vertical lines represent the time evolution of the ket (on the left) and 

bra (on the right) side of the density operator. 

2. The time evolution is upward. 

3. Each light-matter interaction is represented by an arrow intersecting the diagram. 

Arrows pointing towards the diagram accounts for the absorption of light; arrows 

pointing away from the diagram represent instead an emission. 

4. Before the first interaction with the field, the system is at the equilibrium in its ground 

state, whereas after the last interaction the system is left in a population, either ground 

or excited. 

 

Given these few rules, we can now report the four Feynman diagrams necessary to describe 

the third order response function for a two-level system. It must be noted that the diagrams for 

the complex conjugate 𝑅𝛼
∗  are generally not displayed, since they are just the specular opposite 

of those for 𝑅𝛼. 

 

 

 

 

 

 

 

 

 

Figure 1.5: Feynman diagrams representing the 3rd order nonlinear response function for a two-level 

system. R1 and R3 represent the ground state bleaching process, whereas R2 and R4 represent the 

stimulated emission. In a typical nonlinear spectroscopic experiment, the different contributions to the 

signal can be spatially separated according to specific combinations of the wavevectors k.  

Picture adapted from [6]. 
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Among all the possible combinations, the most important contributions to the signal in a 2DES 

experiment are given by the rephasing (R) and non-rephasing (NR) signals, emitted along 

specific spatial directions:  

  

 𝒌𝑆
𝑅 =  −𝒌1 + 𝒌2 + 𝒌3 (1.59) 

 

 𝒌𝑆
𝑁𝑅 =  +𝒌1 − 𝒌2 + 𝒌3 (1.60) 

 

• The 𝑅2and 𝑅3 terms evolve in conjugate coherences during 𝑡1  and 𝑡3, causing the phase 

acquired in 𝑡1 to be reversed in 𝑡3, resulting in the generation of an echo signal 

(rephasing).  

• The 𝑅4 and 𝑅1 terms evolve in the same coherence state during 𝑡1  and 𝑡3, leading to a 

continuous acquisition of phase during both intervals (non-rephasing).  

 

In Figure 1.5 we can distinguish between two different contributions to the signal:  

- Diagrams 𝑅2and 𝑅4 correspond to the stimulated emission (SE) process, where the first 

two pulses act differently on the bra and the ket, respectively, leading to an excited state 

population. 

- Diagrams 𝑅1 and 𝑅3 instead refer to the bleaching of the ground state (GSB), a common 

phenomenon in time-resolved spectroscopies that accounts for the fact that the first two 

excitation pulses deplete the population of the ground state. 

- If a second excited state is present, a third possible contribution that goes under the 

name of excited state absorption (ESA) could also contribute to the final signal. This 

contribution accounts for a pump-induced increased absorbance into the second excited 

state. 

 

 

1.5.3 Fourth Order Population  

 

Typically, when we talk about 2DES, we refer to the well-known “coherence-based” approach 

(Chapter 2, Section 2.1), which measures a coherent signal emitted left in a coherence after the 

interaction with the third pulse, as illustrated in Figure 1.5. However, alternative 

implementations of this technique that measure an incoherent signal have been developed [4-
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9], as we will largely discuss in the following, since this variation is the focus of this 

dissertation. This approach, known as the “action-based” or “population-based” approach, is 

profoundly different from the previous one, since it no longer measures a coherent electric field 

but an incoherent fourth order signal, that originate from the final diagonal elements 𝜌𝑘𝑘
4  (i.e. 

excited state populations) of the density matrix. These populations are generated after four 

perturbations - and not three like in the case of the coherence-based approach. This fourth 

interaction is needed in order to convert the third order polarization into an excited state 

population, from which an incoherent signal of different nature (fluorescence, photocurrent or 

photoelectrons) is emitted [8-10]. Therefore, the signal is now proportional to a fourth order 

signal yield 𝑌4(𝑡), which, in analogy with Equation. 1.56, can be expressed as the convolution 

of four different fields with the fourth order response function 𝑄4(𝑡4, 𝑡3, 𝑡2, 𝑡1) [10]: 

 

 

 
𝑌4(𝑡) = ∫ 𝑑𝑡4

∞

0

∫ 𝑑𝑡3

∞

0

∫ 𝑑𝑡2

∞

0

∫ 𝑑𝑡1𝐸(𝑡 − 𝑡4)𝐸(𝑡 − 𝑡4 − 𝑡3)𝐸(𝑡 − 𝑡4 − 𝑡3

∞

0

− 𝑡2)𝐸(𝑡 −  𝑡4 − 𝑡3 − 𝑡2 − 𝑡1)𝑄4(𝑡4, 𝑡3, 𝑡2, 𝑡1) 

 

(1.61) 

With 

 

𝑄4(𝑡4, 𝑡3, 𝑡2, 𝑡1) = (
𝑖

ℏ
)

4

∑[𝑅𝛼(𝑡4,

8

𝛼=1

𝑡3, 𝑡2, 𝑡1) − 𝑅𝛼
∗ (𝑡4, 𝑡3, 𝑡2, 𝑡1)] 

(1.62) 

 

This response function 𝑄4(𝑡4, 𝑡3, 𝑡2, 𝑡1) (Equation 1.62) is very similar to the the third order 

one, meaning that the fourth order signal emitted from incoherent populations still contains 

information about the coherent evolution of the quantum system, i.e. the system “remembers” 

the excitation path that led to the final population. 

The fourth order response function contains 24=16 terms, which represent all the possible 

different Liouville pathways that contribute to the signal, which will not be reported here for 

brevity reasons. A more detailed treatment can be found in ref. [10]. 

The product of electric fields obtained from Equation 1.61 contains 84=4096 terms, which 

amounts to 4096×16=65536 different contributions if we also consider the complex 

conjugates. Given these premises, it is obvious that the number of terms is too large to deal 

with. Therefore, we must make some assumptions and approximations, in order to significantly 

reduce the number of terms that need to be taken into account. The first approximation we 
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make is to impose a strict time ordering of the four laser pulses (𝑡1 < 𝑡2 < 𝑡3 < 𝑡4), whereas 

the second one consists in applying the rotating wave approximation (RWA) [6,11,12]. Let’s 

consider the definition of the electric field in the exponential notation: 

 

𝑬(𝒓, 𝑡) =  ∑[𝐸+(𝒓, 𝑡𝑖) + 𝐸−(𝒓, 𝑡𝑖)]

4

𝑖=1

 

 

(1.63) 

With 𝑬+(𝒓, 𝑡𝑖) = 𝐴(𝑡 − 𝑡𝑖)𝑒−𝑖[𝜔(𝑡−𝑡𝑖)−𝒌𝒊∙𝒓−𝜑𝑖] and 𝑬−(𝒓, 𝑡𝑖) the complex conjugate.  

Since the action-based approach employs a fully collinear set up (meaning that the four laser 

pulses are sent along the same spatial direction and have the same wavevector 𝒌𝑖) we can 

neglect the wavevectors in the expression of the measured signal. We make use of the RWA 

to neglect one of the two components of each electric field (Equation 1.63), due to the fact that 

they contain opposite frequencies [6]. The remaining contributions differ depending on the way 

the laser pulses interact with the density matrix, as shown in Figure 1.6. These interactions can 

either occur from the left or right side of the Feynman diagram, contributing with a positive 

phase (resulting from 𝑬+(𝒓, 𝑡𝑖)) or a negative one (resulting from 𝑬−(𝒓, 𝑡𝑖)). The phase of the 

overall signal after the four interactions is given by the following expression [10]: 

 𝜑𝑠 = 𝛼𝜑1 + 𝛽𝜑2 + 𝛾𝜑3 + 𝛿𝜑4 (1.64) 

Where the coefficients 𝛼, 𝛽, 𝛾, 𝛿 ⊂ ℤ represent the number and type of interaction of each of 

the four pulses with the density matrix. 

 

 

Figure 1.6: Sign convention for the phase interactions with the density matrix. An arrow pointing to the left 

contributes with a negative phase −𝜑𝑖 , whereas an arrow pointing to the right gives a positive contribution 

+𝜑𝑖 . Picture adapted from [10]. 
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If we express the time-averaged fourth order signal  

 
�̅�(4) = ∫ 𝑑𝑡𝑌(4)(𝑡)

+∞

−∞

 
(1.65) 

as a function of the relative time delays between the laser pulses, 𝑡1 = 𝜏2 − 𝜏1, 𝑡2 = 𝜏3 − 𝜏2, 

𝑡3 = 𝜏4 − 𝜏3, and their phases 𝜑1, 𝜑2, 𝜑3, 𝜑4, Equation 1.61 can be expressed as follows:  

 �̅�(4)(𝑡1, 𝑡2, 𝑡3, 𝜑1, 𝜑2, 𝜑3, 𝜑4)

= ∑ �̃�(4)(𝑡1, 𝑡2, 𝑡3, 𝛼, 𝛽, 𝛾, 𝛿)𝑒𝑖(𝛼𝜑1+𝛽𝜑2+𝛾𝜑3+𝛿𝜑4)

𝛼,𝛽,𝛾,𝛿

 

(1.66) 

Where: �̃�(4)(𝑡1, 𝑡2, 𝑡3, 𝛼, 𝛽, 𝛾, 𝛿)𝑒𝑖(𝛼𝜑1+𝛽𝜑2+𝛾𝜑3+𝛿𝜑4) are the terms that sum over the fourth 

order response functions that survive the time ordering approximation and the RWA.  

It is worth noting that each contribution to the signal with a specific total phase 𝜑𝑠 contains all 

the Liouville pathways 𝑄𝑘with that phase dependency. 

 

1.5.4 Rephasing and Non-Rephasing Contributions in Population-based Approach 

 

The most interesting contributions to the signal in an ultrafast multidimensional optical 

experiment are without any doubt the rephasing and non-rephasing contributions, that we 

already mentioned for the coherence-based approach. Therefore, let’s examine each 

contribution. 

 

• Rephasing Contribution or Photon Echo (Figure 1.7): the rephasing signal has a total 

phase 𝜑𝑠 = −𝜑1 + 𝜑2 + 𝜑3 − 𝜑4 , and out of all the Liouville pathways that contains 

this contribution, only those that end in an excited state population are relevant and 

displayed in the Feynman diagrams. In analogy with the coherence-based approach, we 

can distinguish between the ground state bleaching (GSB), stimulated emission (SE) 

and excited state absorption (ESA). In the rephasing signal the density matrix is in a 

coherence during 𝑡1 and 𝑡3, and it oscillates with an opposite frequency during these 

two time intervals.  
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• Non-rephasing contribution (Figure 1.8): in the non-rephasing contribution the density 

matrix is still in a coherence during 𝑡1 and 𝑡3but it oscillates with a frequency of the 

same sign. 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Double-sided Feynman diagrams of Liouville pathways fulfilling the rephasing phase 

condition. Picture adapted from [10]. 

Figure 1.8: Double-sided Feynman diagrams of Liouville pathways fulfilling the non-rephasing 

phase condition. Picture adapted from [10]. 
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Chapter 2 

Coherent Two-Dimensional Electronic 

Spectroscopy 
 

 

 

 

 

In Chapter 1, the mathematical formalisms that are necessary to understand and interpret the 

signals obtained in a 2DES experiment were presented. Once the theoretical background is 

acquired, it is now time to formally describe the technique in its whole complexity. Chapter 2 

is therefore dedicated to an exhaustive treatment of the technique and will particularly focus 

on stressing the difference between the conventional coherence-based approach and the one 

employed in this dissertation, which goes under the name of “action-based approach”.  

 

 

2.1 Coherence-detected 2DES 
 

 

2DES is said to be a third order technique because the measured signal is proportional to the 

third order polarization (Equation 1.56). We already derived the analytical expressions for the 

experimental signal in terms of the third order response function 𝑆3(𝑡3, 𝑡2, 𝑡1), (see Equations 

1.57-1.58). However, it is necessary to note that evaluating and interpreting this signal in the 

time domain is quite challenging. Therefore, due to the correlation of time and frequency via 

Fourier transform, we can easily obtain an expression for the third order response function in 

the frequency domain, where the signal can be evaluated more easily: 

 

 

𝑆3(𝜔3, 𝑡2, 𝜔1) = ∬ 𝑑𝑡1𝑑𝑡3𝑆(3)(

∞

0

𝑡3, 𝑡2, 𝑡1)𝑒+𝑖𝜔3𝑡3𝑒±𝑖𝜔1𝑡1 

(2.1) 

 

where ± stands for the rephasing and non-rephasing diagrams (Figure 1.5). 
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To understand how this signal is acquired, we must focus on how a 2DES experiment is 

performed. Given its wider popularity, we will now consider the case of the coherence-based 

approach, remanding to Section 2.2 of this chapter for the action-based variation. 

The 2DES belongs to the class of four-wave mixing processes (FWM) that is performed by 

exciting the sample with a train of three non-collinear ultrashort laser pulses arranged in a 

BOXCARS geometry (Figure 2.1). The fourth wave is the signal generated after the interaction 

with the three exciting beams. Each incoming beam has its own spatial direction, characterized 

by a specific wavevector k, and thus the different contributions to the signal (e.g. rephasing 

and non-rephasing contributions) can be selected by carefully choosing the geometry of 

incoming and detected beams, as well as the temporal ordering of the involved pulses (Chapter 

1, Section 1.5.2) [13]. In addition to the sequence of the three exciting laser pulses, an 

additional beam is added, which acts as a local oscillator (LO) only for detection purposes 

(heterodyne detection). 

 

 

 

 

Let’s study the excitation scheme for a two-level system (|𝑔⟩ and |𝑒⟩). The first pulse at time 

𝜏1 (Figure 2.1a) brings the system into a coherent state, which evolves during the coherence 

time 𝑡1. The second pulse at 𝜏2  creates a population or a coherence (depending on the specific 

pathway), which relaxes over the population time 𝑡2. Finally, the last pulse, arriving at time 𝜏3, 

Figure 2.1: Experimental configuration for a coherence-detected 2DES experiment. (a) A train of three 

ultrashort laser pulses are sent non-collinearly to the sample in a BOXCARS geometry, where the three pulses 

are arranged on the three vertexes of a square. The signal emitted from the sample is detected in a direction 

which corresponds to the fourth vertex of the square, different from the exciting pulses’ direction, ensuring a 

background free technique. (b)The final result of a 2DES measurements is a 3D matrix of data. Picture 

adapted from [4]. 
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probes the system by creating again a coherence, from which a detectable electric field (the 

signal) is emitted at time 𝑡. The signal is recorded as a function of the time delays between the 

pulses that are systematically scanned throughout the experiment (Figure 2.1b). It is important 

to stress once again that specific excitation pathways, including the most important rephasing 

and non-rephasing processes, can be experimentally selected according to the exciting beams’ 

geometry and temporal ordering. 

The experimental signal is given as a stack of two-dimensional frequency-frequency 

correlation maps, each evaluated at a specific 𝑡2 time (Figure 2.1b). The first dimension (i.e. 

the x axis) is obtained by scanning the time 𝑡1, which is then Fourier-transformed into 𝜔1, 

named ‘excitation’ frequency. This axis depends on the first excited coherence and provides 

information on the energy associated with the states involved in the initially excited transition.  

The second dimension (i.e. the y axis), obtained by Fourier-transforming 𝑡3 into the emission 

frequency 𝜔3, contains information about the second optical coherence, the one reached after 

the third pulse before the signal emission.  

In light of this, it is clear that the position of the peaks, i.e., their (x,y) coordinates in a 2D map, 

depends on the interaction pathways between states and their dynamics [4]. For example, 

signals along the diagonals (𝜔1 = 𝜔3) provide information on the excitonic structure of the 

system and correspond to the excitation spectrum. If a 2D map with only diagonal peaks is 

obtained, the system under investigation includes only non-interacting states. On the other 

hand, if a 2D map shows out-of-diagonal signals or “cross-peaks” (𝜔1 ≠ 𝜔3), this means that 

couplings between different excited states are established, like for example the coupling 

promoting energy transfer among two levels (Figure 2.2). 

Not only the position but also the intensity and the shape of the peaks bring important 

information about the energy and the dynamics of the system. 

The intensity of the peaks, like in many other spectroscopies, is proportional to the strength of 

the transition dipole moment, i.e. to the population change involved in such transition. The 

shape of the peaks accounts instead for the interactions of the system with the environment. In 

a typical 2DES experiment, as the time 𝑡2 evolves, it is possible to observe a broadening and 

rounding of the peaks compared to the previous correlation maps. This phenomenon is known 

as “spectral diffusion” and accounts for the configurational changes in the local environment 

(Figure 2.3).  
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Figure. 2.3: Pictorial representation of the signal evolution along t2 for a multi-level 

system. At early population times (a) the peaks appear elongated along the diagonal, 

whereas as 𝑡2 evolves (b), a broadening effect is recorded, due to the loss of 

correlation. Stokes shift could also take place due to the reorganization of the 

electronic clouds and solvent. Picture adapted from [4]. 

Figure 2.2: The position of the peaks in 2D maps is strictly connected to the electronic structure of the sample. 

(a) Example of a non-interacting multi-level system, which displays peaks only along the diagonal. (b,c) Cross 

peaks appear in the case of coupling between excited states. In panel (b) the state c is coupled with states a 

and b via energy transfer, and cross-peaks appear at 𝑡2 > 0. In panel (c) cross peaks already appear at 𝑡2 = 0 

at symmetric coordinates, signaling the presence of excitonic coupling like in an excitonic molecular dimer. 

(d) 2DES could also be useful in order to detect the presence of dark states, indirectly detected from their 

negative ESA signals (Chapter 1, Section 1.5.2). Picture adapted from [4].  
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2.1.1 Signal Evolution Along the Population Time 

 

One last important aspect of the signal obtained from the 2DES technique is the evolution as a 

function of the population time 𝑡2. In Chapter 1, Section 1.5.2, we showed that the signal is a 

sum of different contributions that can be visualized in terms of double-sided Feynman 

diagrams. These contributions can be grouped in two classes according to their different 

evolution during the time 𝑡2 (Figure 2.4). The first group comprehends non-oscillating 

pathways, meaning that the signal evolves according to an exponential decay. These non-

oscillating pathways are generated when the system reaches a pure state (or population) after 

the first two interactions. On the contrary, the second group consists of oscillating contributions 

that are generated whenever the system is left in a coherent superposition of states after the 

first two interactions with the light source. This beating contribution to the signal is described 

by a damped exponential function, whose oscillation frequency is proportional to the energy 

gap between the states involved in the superposition [4]. 

 

 

 

 

 

 

 

 

Figure 2.4: a) Non-oscillating and b) oscillating contributions to the 2DES signal. Right panels 

illustrate the evolution of the signal according to the population time. 𝜏𝑝 and 𝜏𝑐 are the time constants 

associated to the population and coherence decays. Picture adapted from [4]. 
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2.2 Action-based Approach 
 
 
In the previous section, we described the typical fully non-collinear configuration that is 

employed in coherence-based 2DES experiments. This approach is defined as ‘coherence-

based’ because the final detected signal is a coherent electric field emitted by the sample in a 

well-defined spatial direction dictated by the phase-matching conditions. 

However, in the last decade [5], different implementations have been developed. In particular, 

this dissertation focuses on the so-called “action-based” or “population-based” approach, 

which relies on a fully collinear set-up. In fact, in such kind of experiments, a sequence of four 

laser pulses is sent collinearly to the sample and induces the generation of an excited state 

population that relaxes back to the ground state emitting an incoherent signal (Figure 2.5).  

 

 

 

 

 

 

 

 

Figure 2.5: Pictorial schemes of experimental set-ups for a) coherence-based vs. b) population-

based approaches. a) As already seen above, in coherence-based approaches three laser pulses 

excite the sample and a fourth pulse (LO) is employed for heterodyne detection. The different 

contributions to the coherent signal can be distinguished according to their different spatial 

direction. b) Population-based approaches make use of collinear set-ups, where four laser pulses 

characterized by specific phases and time intervals are sent to the sample, which emits an 

incoherent signal. In this case, phase modulation or cycling schemes are employed for the selection 

of the signal. 
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The addition of a fourth pulse is needed in order to leave the quantum system in a population 

state, from which an incoherent signal is emitted. However, the coherent information is not lost 

but is encoded in the exciting sequence [14]. This final state population can be probed 

according to different detection methods that are sensitive to photocurrent, fluorescence or 

photoions, depending on the nature of the sample. [5,10,15-17] 

Action-based experiments have several advantages compared to coherence-based ones. First 

of all, they require a much simpler optical setup, as we will explain in more details in Chapter 

4. Secondly, the signal emitted is a real property of the sample (e.g. fluorescence or 

photocurrent) and is not given by the interference of several electric fields. Properties such as 

fluorescence and photocurrent can be easily measured on the go while performing the 

experiment, thus enabling direct assessment of the sample under study. Lastly, it is important 

to mention that this approach offers an improved spatial resolution compared to the case of 

coherence-based approaches, especially applicable in the case of inhomogeneous solid-state 

samples, such as optoelectronic or quantum devices [4]. 

Because all the exciting beams are collinear, different contributions to the signal can no longer 

be disentangled with an appropriate detection geometry based on phase-matching 

considerations. Therefore, they must be unraveled according to methods that rely on the phase 

control, such as the phase modulation and the phase cycling techniques, that can be performed 

by an acousto-optic dispersive programmable filter (AOPDF) (Chapter 4, Section 4.4). Even 

though in the action-based approach the spatial information is lost, the different contributions 

to the signal can indeed be selected according to their phase dependence, in what is called a 

“phase-sensitive detection”: 

 𝜑𝑠 = 𝛼𝜑1 + 𝛽𝜑2 + 𝛾𝜑3 + 𝛿𝜑4 

 

(2.1) 

Where: 

-  𝜑𝑠 is total the phase of the signal, given as a linear combination of the phases of the 

four collinear pulses, 

- 𝛼, 𝛽, 𝛾, 𝛿 are coefficients that parametrize the different contributions to the signal. 

 

 

 

 



 34 

2.2.1 Phase Modulation Techniques 

The phase modulation technique is one of the two possible methods used in action-based 

approaches to disentangle the different contributions to the experimental signal. This method 

was pioneered by Marcus [18] and was implemented also in our setup [9], as described in 

Chapter 4. 

In phase modulation techniques, the phase of each incoming beam is modulated at a frequency 

𝑓𝑖. In this way, the final signal will include contributions modulated at different frequencies 

corresponding to linear combinations of the 𝑓𝑖 [17-20]. 

In practice, the experiment is repeated by measuring the signal generated with different exciting 

pulse sequences (also labeled as ‘pulses trains’). In each train, the four collinear pulses differ 

in their time delays and phases. The m-th train, made of four collinear laser pulses is written as 

[20]:  

 

 

𝐸𝑚(𝑡) = ∑ 𝐸𝑖
𝑚(𝑡)

4

𝑖=1

= 𝐸1
𝑚(𝑡) + 𝐸2

𝑚(𝑡) + 𝐸3
𝑚(𝑡) + 𝐸4

𝑚(𝑡) 

 

(2.2) 

Each pulse is described in terms of a Gaussian envelope and an oscillating function:  

 
𝐸𝑖

𝑚(𝑡) = 𝐸𝑖
0𝑒𝑥𝑝 {−

(𝑡 − 𝜏𝑖)
2

2𝜎𝑖
2 } × cos [𝜔𝑖(𝑡 − 𝜏𝑖) + 𝜑𝑖

𝑚] 

 

(2.3) 

Where:  

- 𝐸𝑖
0 is the electric field amplitude, 

- 𝜎𝑖 is the duration of the pulse, 

- 𝜔𝑖 is the carrier frequency, 

- 𝜑𝑖
𝑚 is the phase of the pulse in the m-th train.  

 

The first pulse of each sequence is centered at 𝜏1, while the following pulses are delayed by 

specific time delays: 𝑡1 = 𝜏2 − 𝜏1, 𝑡2 = 𝜏3 − 𝜏2, and 𝑡3 = 𝜏4 − 𝜏3.  
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As anticipated before, the phase  𝜑𝑖
𝑚 of each pulse is modulated at a frequency 𝑓𝑖.  

The recorded signal is then Fourier Transformed along 𝑡. Each individual peak appearing in 

the resulting spectrum is characterized by a unique modulation frequency, denoted as 𝑓𝑠, which 

is a linear combination of the modulation frequencies 𝑓𝑖. 

In fact, every peak observed in the phase-modulation spectrum corresponds to a signal 

generated through a series of excitation pathways brought about by distinct interactions with 

the laser pulses and corresponds to a specific frequency. For example, the contributions of the 

rephasing and non-rephasing will be modulated at the following frequencies:  

 

𝑓𝑠,𝑟𝑒𝑝ℎ𝑎𝑠𝑖𝑛𝑔 = −𝑓1 + 𝑓2 + 𝑓3 − 𝑓4 

𝑓𝑠,𝑛𝑜𝑛−𝑟𝑒𝑝ℎ𝑎𝑠𝑖𝑛𝑔 = +𝑓1 − 𝑓2 + 𝑓3 − 𝑓4 

 

Even though this procedure may seem complex and time-consuming, it has the essential 

advantage of simultaneously collecting all the different contributions to the signal, including 

the well-known rephasing and non-rephasing, but also higher terms. 

The choice of the phase modulation frequencies 𝑓𝑖  is, therefore, a key parameter in order to 

select the desired components contributing to the signal. The phase-modulation scheme 

employed in this work will be described in Chapter 4, Section 4.4.  

In conclusion, the phase-modulation technique is a powerful tool in the context of action-based 

2DES, since it offers a dynamic approach to manipulate and control the temporal and spectral 

characteristics of laser pulses. By introducing controlled variations in the phase relationships 

between pulses, phase modulation is useful for extracting rich information about the incoherent 

signal. The adaptability of phase modulation schemes allows for tailored and flexible 

experiments, in order to address specific aspects of interest in the sample under study.  

 

 

2.2.2 Phase Cycling Techniques 

The second approach that could be used to extract the desired signal component involves the 

utilization of phase cycling [14]. In this method, a pulse shaper is employed to generate a 

sequence of four laser pulses with fixed phases, allowing for the exploration of various phase 

combinations while capturing the signal for each configuration.  

In phase cycling schemes, controlled rotations are applied independently to the phases of the 

excitation pulses. Spectra are obtained for various phase combinations, and subsequently 
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merged to eliminate signals unaffected by the phase of all three excitation pulses, as predicted 

by the response function theory. Like phase modulation, also this technique allows us to discard 

the spatial separation of pulses in favor of phase separation and significantly simplifies the 

optical set-up. However, since this signal-selection scheme was not employed in this work, we 

will not further describe it. For additional information about the phase cycling, we remand to 

ref. [14]. 
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Chapter 3 

Quantum Dots 
 

 

 

 

 

Quantum Dots (QDs) are semiconductor nanocrystals that have gained large popularity over 

the last few decades because of their unique size-dependent optical and opto-electronic 

properties. Their applications span many fields, from everyday uses, such as QLEDs-based 

television and smartphone screens, to more sophisticated applications, such as photovoltaics, 

lasing and bio-imaging [21-24].  

The primary characteristic of these nanocrystals is, in fact, associated with their size: since 

their diameter is small compared to the average length scale of electron-hole pairs, known as 

the Bohr radius 𝑎𝑒𝑥, the electron and the hole wavefunctions undergo a three-dimensional 

quantum confinement, which experimentally results in the discretization of the electronic 

energy levels, as observed in their absorption spectrum [25].  Because of their dimensions, they 

are often seen as a connection between the macroscopic world of bulk materials and the 

microscopic realm of molecular systems.  

QDs of several materials are available. The most common ones are typically based on Cd and 

chalcogenides, such as CdSe, CdS, CdTe; Pb-based alternatives with chalcogenides, like PbS, 

and PbSe are also widespread. However, health hazards related to acute toxicity of Cd and Pb 

are orienting the synthetic research towards less toxic and more environmentally friendly 

compounds, such as InAs, InP, ZnSe, GaAs [26]. 

 

Despite the just mentioned health-dangers ascribed to these elements, we still decided to 

employ a CdSe-based opto-electronic device and to characterize it by the means of action-

based 2DES. This choice might seem to be in contrast with what said above, however, the 

unique optical and electronic properties of CdSe-based QDs and the fact that they are very well 

characterized in terms of photophysical properties make them a valuable option for our 

purposes, thus prioritizing their experimental advantages rather than their toxicity-related 

hazards.  
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3.1 Quantum Dots and Excitons 
 

 

In order to better understand the unique properties of QDs, it is important to familiarize with 

the electronic structure of semiconductor materials and the concept of exciton. In a typical bulk 

semiconductor material, electronic states are so close to each other in energy that these 

electronic levels are no longer treated as discrete levels but rather like bands. According to the 

band theory, in semiconductor crystals it is possible to distinguish between a valence band, 

populated at 0 K, and a conduction band, which is not populated at 0 K [27]. These two bands 

are separated by an energy gap, referred to as “bandgap”, which is characteristic of the 

semiconductor material. Upon absorption of thermal energy or photons, some electrons can 

gain a sufficient amount of energy to transition from the conduction to the valence band. This 

promotion leads to the formation of an exciton (Figure 3.1). Indeed, the electron located in the 

conduction band, which is negatively charged, is electrostatically bound to the hole, i.e. the 

vacancy bringing a formal positive charge in the valence band, generated by the loss of that 

electron. 

 

 

 

 

 

These excitons are characterized in terms of the spatial distance between the electron and the 

hole, which is called the excitonic Bohr radius:  

 

 𝑎𝑒𝑥 =
4𝜋 ℏ2

𝜇𝑒2 = 휀
𝑚𝑒

𝜇
𝑎0, (3.1) 

 

Figure 3.1: On the left, the formation of an exciton is depicted. On the right, a comparison 

between the excitonic Bohr radius vs. the QD diameter is sketched. Picture adapted from [28].  
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Where:  

- 휀 is the dielectric constant of the material,  

- ℏ is the reduced Planck’s constant,  

- 𝜇 is the reduced mass of the excitonic pair: 𝜇 =  
𝑚𝑒𝑚ℎ

𝑚𝑒+𝑚ℎ
, 

- 𝑚𝑒 is the rest mass of the electron, 

- 𝑎0 is the Bohr’s radius of the hydrogen atom: 𝑎0 =
4𝜋 0ℏ2

𝑚𝑒𝑒2 = 0.0529 nm.  

 

Two different kinds of excitons can be distinguished according to the value of the dielectric 

constant 휀: the Wannier-Mott and Frenkel excitons [29,30]. 

The Wannier-Mott exciton is typical of semiconductor materials characterized by a large value 

of the dielectric constant. In fact, if 휀 is large, the Coulombic interaction between the electron 

and hole pair will be weakened because of the screening effect, thus increasing the value of the 

excitonic Bohr radius. High values of the Bohr radius are indicative of the possible 

delocalization of the exciton inside the crystalline lattice. On the contrary, in Frenkel excitons, 

which are typical of materials characterized by a small value of the dielectric constant, the 

Coulombic interaction is not significantly affected by any screening effect. As a result, Frenkel 

excitons typically have small Bohr radii and tend to remain confined within the crystalline site 

where they were generated.  

 

By substituting the values of the masses of the electron and the hole into Equation 3.1, we can 

easily obtain the Bohr radii for these particles, 𝑎𝑒 , 𝑎𝑛𝑑 𝑎ℎ, for the electron and the hole, 

respectively. Therefore, by comparing these values with the radius 𝑎 of a nanocrystal, it is 

possible to identify three different regimes for the particle’s confinement [31,32]:  

 

1. 𝑎𝑒 , 𝑎ℎ < 𝑎 < 𝑎𝑒𝑥:  the weak confinement regime suits the case of larger nanocrystals, 

where only the centre of mass of the electron is spatially confined.  

2. 𝑎ℎ < 𝑎 < 𝑎𝑒 , 𝑎𝑒𝑥:  in smaller nanocrystals 𝑎 is typically intermediate between 𝑎ℎ and 

𝑎𝑒, meaning that in this intermediate confinement regime only the electron is strongly 

confined, whereas the hole is not.  

3. 𝑎 < 𝑎𝑒𝑥, 𝑎𝑒 , 𝑎ℎ:  for even smaller nanocrystals, both the electron and the hole are 

strongly confined. This is the case of the strong confinement regime.  
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In this thesis, CdSe QDs with an average diameter of 3.7 nm were studied. The excitons formed 

within this diameter range lay in the strong confinement regime since the excitonic Bohr radius 

is approximately 5.4 nm, significantly larger than the diameter of the single QD [33-35]. In 

these conditions, quantum confinement effects arise, and thus the electronic structure of these 

nanomaterials is no longer characterized by a continuum of levels but by discrete levels [28]. 

The effect of quantum confinement becomes more relevant as the size of the QD decreases 

[23]. 

 

 

3.2 Electronic Structure of QDs 
 

 

Since the electronic structure of QDs is characterized by the presence of discrete energy levels 

due to quantum confinement effects, an ad hoc description of these unique materials is needed. 

A simple and intuitive approach that is particularly appropriate to describe the electronic 

structure of QDs is the particle-in-a-sphere (PIS) model, which is a good approximation when 

no defects nor surface irregularities are present on the surface of the dot.  

We will start our description from the band theory applied to the case of bulk CdSe, and then 

we will scale down to the case of CdSe QDs.  

In the case of the bulk material, Cd and Se atoms are arranged in a three-dimensional crystalline 

lattice, and the individual states describing these particles can be obtained by solving the time-

independent Schrödinger equation3 [36,37]: 

 

 
(

−ℏ2∇2

2𝑚
+ 𝑈(𝒓)) 𝜓(𝒓) = 𝐸𝜓(𝒓) 

(3.2) 

 

Where:  

- ∇2 is the Laplace operator, defined as: ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
, 

- 𝑚 is the mass of the single particle, 

- 𝑈(𝒓) is the periodic potential. 

 

 
3 Please note that in Equation 3.1 the Hamiltonian has been split into a kinetic term and a periodic potential.  
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In condensed state physics, the solution to Equation 3.2 can be written as a plane wave 

modulated by a function 𝑢(𝒓) with the same periodicity as the crystal lattice, according to 

Bloch’s theorem [27]: 

 

 𝜓(𝒓) = 𝑢(𝒓)𝜑(𝒓) = 𝑢(𝒓)𝑒𝑖𝒌∙𝒓 (3.3) 

 

Where the function 𝜑(𝒓) is known as the envelope function.  

The energy associated with these wavefunctions can be represented in a band diagram, in which 

the energy is reported as a function of 𝒌, the reciprocal-lattice vector. According to the effective 

mass approximation (EMA), each one of these bands is described by a parabolic function and 

the effective mass incorporates the periodic potential perceived by the particle within the 

crystalline lattice. In our case, since CdSe is a direct gap semiconductor, both the maximum of 

the valence band and the minimum of the conduction band are located at 𝒌 = 0 [36]. 

Within the EMA, it is possible to solve Equation 3.2 in order to obtain an expression for the 

energy associated to the individual states [32]: 

 
𝐸𝑘

𝑒 =
ℏ2𝒌2

2𝑚𝑒𝑓𝑓
𝑒 + 𝐸𝑔𝑎𝑝 

(3.4) 

 

 
𝐸𝑘

ℎ = −
ℏ2𝒌2

2𝑚𝑒𝑓𝑓
ℎ  

(3.5) 

Where:  

- 𝒌 is the wavevector of the particle, defined as 𝒌 =
𝜋

𝒂
𝑛, where 𝑛 is a set of integers that 

define the direction of the wavevector: 𝑛 = (𝑛1, 𝑛2, 𝑛3), where (𝑛1, 𝑛2, 𝑛3) are the 

Miller indexes, 

- 𝑚𝑒𝑓𝑓
ℎ  and 𝑚𝑒𝑓𝑓

𝑒  are the effective masses for the hole and electron, respectively,  

-  𝐸𝑔𝑎𝑝 is the energy gap between the valence and conduction band.  

These solutions are suitable for the general case of a bulk semiconductor material, and we will 

now take into consideration the case of the nanocrystal.  
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We will start our treatment by first assuming that the diameter of the nanocrystal is much larger 

than the lattice constant of the material. If this assumption is valid, we can make use of the 

envelope function approximation (EFA), according to which the wavefunction of the particle 

can be expressed as a linear combination of Bloch functions [36]:  

 𝜓(𝒓) = ∑ 𝐶𝑛𝑘𝑢𝑛𝑘(𝒓)𝑒𝑖𝒌∙𝒓

𝑘

 
(3.6) 

Where 𝐶𝑛𝑘 are the expansion coefficients satisfying the spherical boundary conditions for the 

nanocrystal.  

In the case of a weak dependence on 𝒌, the function 𝑢𝑛0(𝒓), that is the Bloch function relative 

to 𝒌 = 0, can be rewritten, within the tight binding model or LCAO approximation, as: 

 𝑢𝑛0(𝒓) ≅ ∑ 𝐶𝑛𝑗𝜑𝑛(𝒓 − 𝒓𝑗)

𝑗

 
(3.7) 

Thus, Equation 3.6 becomes:  

 𝜓(𝒓) = 𝑢𝑛0(𝒓) ∑ 𝐶𝑛𝑘𝑒𝑖𝒌∙𝒓 = 𝑢𝑛0(𝒓)𝑓𝑠𝑝(𝒓)𝑘   (3.8) 

Where:  

- 𝜑𝑛 are the atomic wavefunctions,  

- 𝑓𝑠𝑝 is the envelope function for the single particle. 

To provide an exhaustive treatment of this problem, this latter function 𝑓𝑠𝑝 must now be 

determined. To this aim, it is possible to exploit the particle in a sphere model (PIS), which 

provides a quantum description of a particle inside a spherical potential well of radius 𝒂. Within 

this model, the potential energy 𝑉(𝒓) is defined as: 

 𝑉(𝒓) = {
0, 0 ≤ 𝒓 < 𝒂

∞, 𝒓 > 𝒂
 

(3.9) 

In the case of  0 ≤ 𝒓 < 𝒂, the particle is free to move within a confined region of space. The 

associated wavefunctions are obtained by solving the time-independent Schrödinger equation 

and assume the following expression [36,37]:  
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Φ𝑛,𝑙,𝑚(𝒓, 𝜗, 𝜙) = 𝐶

𝑗𝑙(𝑘𝑛,𝑙, 𝒓)𝑌𝑙
𝑚(𝜗, 𝜙)

𝒓
 

(3.10) 

 Where:  

- C is a normalization constant, 

- 𝑌𝑙
𝑚(𝜗, 𝜙) is the spherical harmonic, 

- 𝑗𝑙(𝑘𝑛,𝑙, 𝒓) is the l-th order spherical Bessel function4, with 𝑘𝑛,𝑙 =
𝛼𝑛,𝑙

𝑎
 (𝛼𝑛,𝑙 is the n-th 

zero of 𝑗𝑙). 

- 𝑛, 𝑙, 𝑚 are the quantum numbers.  

The expression of the energy associated with these particles is given by:  

 
𝐸𝑛,𝑙 =

ℏ2𝛼𝑛,𝑙
2

2𝑚0𝑎2
=

ℏ2𝑘𝑛,𝑙
2

2𝑚0
 

(3.11) 

Where 𝑚0 is the mass of the particle.  

In the case of spherical nanocrystals, the envelope functions 𝑓𝑠𝑝(𝒓) are obtained by solving 

Equation 3.10 for the particle in a sphere. In this view, electron and hole levels can be described 

in terms of an atomic-like orbital confined inside the nanocrystal, whose energies are 

determined by the simple substitution of their effective masses 𝑚𝑒𝑓𝑓
ℎ  and 𝑚𝑒𝑓𝑓

𝑒  into Equation 

3.11. 

In the last step of this treatment, we will finally take into account the Coulombic attraction 

between the hole and the electron, i.e., the excitonic interaction. In the strong confinement 

regime, the hole and the electron can be treated separately, and the Coulombic interaction can 

be described as a first-order correction to the energy, according to the fact that the dependence 

of the confinement energy of the carriers is greater than the electrostatic potential [36]. The 

former, in fact, scales with 1 𝑎2⁄ , whereas the latter with 1 𝑎⁄ . We can finally write the 

excitonic states for a nanocrystal as:  

 
4 Bessel functions are canonical solutions of the Bessel’s differential equation and are typically invoked when 

solving problems in which cylindrical or spherical coordinates are involved.  
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 Ψ𝑒𝑥(𝒓𝑒, 𝒓ℎ) = Ψ𝑒(𝒓𝑒)Ψℎ(𝒓ℎ) = 𝑢𝑐𝑓𝑒(𝒓𝑒)𝑢𝑣𝑓ℎ(𝒓ℎ)

= 𝐶 [𝑢𝑐

𝑗𝐿𝑒
(𝑘𝑛𝑒,𝐿𝑒

𝒓𝑒)𝑌𝐿𝑒

𝑚𝑒

𝒓𝑒
] [𝑢𝑣

𝑗𝐿ℎ
(𝑘𝑛ℎ,𝐿ℎ

𝒓ℎ)𝑌𝐿ℎ

𝑚ℎ

𝒓ℎ
] 

(3.12) 

With energies [30]:  

 
𝐸𝑒𝑥(𝑛ℎ𝐿ℎ𝑛𝑒𝐿𝑒) = 𝐸𝑔 +

𝜋ℏ2

2𝜇𝑎2
− 1.8

𝑒2

휀𝑎
 

(3.13) 

Where:  

- 𝑛, 𝐿 are the principal and azimuthal quantum numbers for the hole and the electron,  

- 𝜇 is the reduced mass for the excitonic pair.  

From Equation 3.13, according to the dependence of the expression on 𝑎, it is easy to deduce 

that the energy gap of the nanocrystal will always increase when decreasing its diameter. 

Consequently, as the size decreases, the absorption spectrum will be shifted towards shorter 

wavelengths, i.e., it will be “blue-shifted”, due to the quantum confinement of the wavefunction 

(Figure 3.2).  

 

 

 

Figure 3.2: The influence of size on the energy gap value. As the dot becomes smaller and its 

diameter decreases, the energy gap between the valence and conduction band will rise. This 

aspect is of fundamental importance in synthetic approaches: in fact, by carefully controlling 

the dimensions of the dots it is possible to precisely control the band gap of the semiconductor 

nanocrystals. Picture adapted from [38].   
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When studying the discretization of energy states resulting from spatial confinement, a useful 

parameter is the density of states (DOS), that accounts for the number of electrons having 

energies between 𝐸 and 𝐸 + ∆𝐸. The density of states 𝜌(𝐸) is a function of the dimensionality 

(Figure 3.3) [37,39]: 

 𝜌(𝐸) ∝ 𝐸(𝑑−2) 2⁄  𝑑 = 1,2,3. (3.14) 

 

 

 

 

 

Let’s now examine in detail the electronic band structure for a bulk zincblende CdSe 

semiconductor (Figure 3.4) obtained thanks to a 𝑘 ∙ 𝑝 perturbation method5 [27,40]. 

 
5 𝑘 ∙ 𝑝 perturbation method relies on the description of the energy states of the hole using the Luttinger 

Hamiltonian [41] and the energy states of the electron using the Kane Hamiltonian [42,43].   

Figure 3.3: Density of states (DOS) as a function of energy, from bulk materials to 3D confined 

nanocrystals.  
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The conduction band arises from the empty 5s orbitals of Cd, it is 2-fold degenerate and can 

be described by a single band near 𝒌 = 0. On the contrary, the valence band derives from the 

Se 4p orbitals and is represented in terms of three different bands, the heavy-hole (HH), the 

light-hole (LH) and the split-off (SO) bands, as depicted in Figure 3.4. These three bands result 

from linear combinations of Se 4p atomic orbitals, initially showing sixfold degeneracy at 𝑘 =

0. Upon introducing strong spin-orbit coupling (SOC) (which has a theoretical value of 0.42 

eV for the case of CdSe semiconductor [44,45]), these valence bands are split into two sub-

bands (𝑝3 2⁄  and 𝑝1 2⁄ ). Each valence band is labeled by its total angular momentum 𝐽 = 𝑙 + 𝑠, 

where 𝑙 is the orbital angular momentum, and 𝑠 is the spin momentum. In addition, when 

moving away from 𝒌 = 0, the 𝑝3 2⁄  band further splits into LH and HH sub-bands. When 

dealing with QDs, the hole states within the valance are mixed with each other, resulting in a 

mixing effect that must be taken into consideration. This mixing effect is responsible for the 

fact that 𝐿ℎ and 𝐽 are not preserved, whereas the total angular momentum of the hole and the 

parity are maintained, giving rise to the S-D mixing. Therefore, QD hole states can be denoted 

as 𝑛ℎ𝐿𝐹, where the letter 𝐹 refers to the total angular momentum. Differently from the valence 

band, the conduction band remains unaffected and is labeled as 𝑛𝑒𝐿𝑒 . According to this 

notation, the first excited state is named as |1𝑆3 2⁄ 1𝑆𝑒 ⟩ or simply |1𝑆⟩. The second excited state 

Figure 3.4: Qualitative band structure of bulk zincblende CdSe. 
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is referred to as |2𝑆3 2⁄ 1𝑆𝑒 ⟩ or |2𝑆⟩, and the same notation holds for the following excited 

states (Figure 3.5). 

 

 

 

Figure 3.6 depicts the allowed transitions as identified by Norris and Bawendi through a careful 

comparison between theoretical predictions and photoluminescence data [25]. According to 

their work, the mixing effect is not enough to explain the photoluminescent properties of these 

nanocrystals and, therefore, also the band-edge fine structure of the exciton must be considered. 

 

Figure 3.5: Representation of the first four excited pair states of CdSe QDs, in the electron-hole (left) 

and excitonic (right) views.  
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The splitting of the |1S⟩ state, which exhibits an 8-fold degeneracy, arises because of the 

presence of two different interactions:  

- The presence of strong exchange interactions between electrons and holes,  

- The presence of anisotropies associated with the crystal field.  

In the presence of the quantum confinement effect, the overlap between the electron and hole 

wavefunctions is enhanced, thus making the electron-hole exchange splitting non-negligible, 

differently from the case of bulk materials. Consequently, the electron and hole states forming 

the band edge exciton must be treated as a combined exchange-correlated exciton.  

This exciton is characterized by a total angular momentum, 𝑁, with possible values of 1 or 2, 

depending on the linear combination of the angular momenta of individual carriers. It follows 

that the energy associated with these split states can be calculated as eigenvalues of the 

exchange Hamiltonian. 

The upper state, characterized by 𝑁 = 1, is 3-fold degenerate, whereas the lower one, 

characterized by 𝑁 = 2, is 5-fold degenerate. However, this degeneracy can be partially 

Figure 3.6: Exciton fine structure at the band edge involves the splitting of the 8-fold |1S⟩ 

exciton due to electron-hole exchange. This results in two states with total angular momentum 

N: one with N equal to 1 (for the 3-fold degenerate) and the other with N equal to 2 (for the 

5-fold degenerate). The bright state is associated with the upper level, while the dark state 

gives rise to the exciton band in photoluminescence spectra, upon phonon-assisted activation. 

Crystal field effects are the second reason why degeneracy is partially removed, leading to 

the separation of states labeled U (upper) and L (lower) depending on the magnitude of 𝑁𝑚. 

This picture is adapted from [36] and it is not in scale. 

The energy difference between the absorption and emission spectra's band edge peaks is 

called the non-resonant (global) Stokes shift, whereas the resonant Stokes shift refers to the 

energy gap between the lowest-energy absorbing state and the emitting state [46]. 
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removed if shape asymmetries (i.e. anisotropies) are present (Figure 3.6). The energy gap 

between 𝑁𝑚 = ±2𝐿 and 𝑁𝑚 = 0𝐿  corresponds to the resonant Stokes shift, which can assume 

a value in the range 1-10 meV, depending on the dimensions of the QD. However, this 

contribution to the global Stoke shift is typically smaller than the one deriving from the energy 

gap between 𝑁𝑚 = ±1𝑈 and 𝑁𝑚 = 0𝑈, which ranges from 20 up to 80 meV. 

 

 

3.3 QDs Dimers 

In light of the electronic properties described before, QDs have also been defined as ‘artificial 

atoms’ [47-49]. This definition inspired the formation of QDs meso-structures like dimers, 

trimers etc. [50].  Whenever the distance between two different quantum dots (QDs) is 

sufficiently small, they can interact via the Coulomb potential, giving rise to the formation of 

stable QD dimers. Within these dimers, each one of the four bands of excitons associated with 

one dot (Dot A in Figure 3.7) couples with the bands of excitons of the other dot (Dot B in 

Figure 3.7) through an inter-particle Coulomb coupling. The coupling between two different 

dots leads to the formation of new eigenexciton states that are delocalized over the two dots 

forming the dimer (Figure 3.7). 

 

 

 

 

 

Figure 3.7: Fine electronic structure of a dimer of QDs with a mean diameter D<3.2 

nm. Picture adapted from [36]. 
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Therefore, out of one exciton band localized within each QD, two exciton bands emerge in the 

dimer, labeled as "low energy" (L) and "high energy" (H), which are separated by an amount 

of energy that is approximately twice the strength of the inter-dot Coulomb coupling [44]. 

In summary, each QDs dimer exhibits eight eigenexciton bands, as illustrated in Figure 3.7. In 

light of this, the dimer displays a distinctive fine structure composed of 48 different states. 

According to this different electronic structure, one can expect that the dimer will display linear 

and nonlinear optical spectra different from the monomer. 

The formation of delocalized hybrid states in dimers imparts to the nanosystems peculiar 

electronic and optical properties and novel functionalities relevant to numerous applications, 

including quantum technologies [4]. 

Previous work by our group allowed characterize with great detail the electronic properties of 

QDs in their monomeric and dimeric forms, both in solutions and in solid-state films 

[44,45,51]. In these works, coherence-based 2DES measurements were employed to 

characterize the ultrafast dynamics of QDs dimer samples, revealing exciting quantum coherent 

behavior dominating the early steps of the relaxation dynamics. These findings also lead to the 

proposal of a first example of a quantum technology application based on the 2DES data 

collected on QDs samples [52]. 

 

3.4 Sample Preparation 

Although detecting quantum coherent behavior in QD dimers is interesting from a fundamental 

knowledge standpoint, it is reasonable to question whether these properties can be effectively 

utilized in a real device. In other words, does quantum coherence truly impact the final 

functionality of a QD-based device? To address this question, we chose to shift from a 

coherence-based approach to an action-based approach in this thesis. This allowed us to 

directly characterize the ultrafast (possibly coherent) dynamics of a functioning device. We 

specifically focused on photocurrent-detected properties in view of a wealth of experimental 

data available on the static photocurrent characteristics of QD materials dating back to the 90s 

[25].  

However, the use of a photocurrent-detected scheme poses the first relevant challenge faced in 

this work: the design of the sample, which must be conductive. 
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The sample that was investigated in this thesis was created through a collaborative effort. Dr. 

Marinella Striccoli (CNR-IPCF, Bari) synthesized the QDs and deposited them, while the 

group of Prof. Jan Mol (Queen Mary University of London) was responsible for the device 

preparation, wiring, and encapsulation. 

The main component of the device is a thin layer of colloidal CdSe QDs deposited over 

interdigitated gold plates, which are electronically connected to electric pins in order to 

measure the current. The gold electrodes are deposited on a quartz substrate. The design of the 

electrodes is such that gold electrodes have an inter-electrode distance of 300 nm. Each 

substrate contains 40 pairs of electrodes, each pair of electrodes corresponds to one device. 

Figure 3.8 shows a picture of the interdigitated gold electrode substrate before QDs deposition 

and reports a schematic representation of the interdigitated electrodes and how they are 

connected to the signal-reading apparatus. 

 

 

 

Figure 3.8: a) Substrate with interdigitated gold electrodes before QDs coating. 

The red rectangle pinpoints a single working device. Each sample contains 40 

devices, divided into four columns. In addition, a pictorial representation of the 

gold interdigitated electrodes is shown. b) Connection between the gold 

electrodes and the signal-reading apparatus, composed of a transimpedance 

amplifier and a National Instrument board. 
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Figure 3.9 illustrates a real photo of the chip in scale 1:1 and a zoom on the wirings.  

The synthesis of the QDs was performed following a procedure reported in the literature 

[53,54]. The synthesis procedure led to obtain CdSe QDs stabilized by octadecylamine ligands 

and dispersed in hexane. The mean diameter of the QDs and the size dispersion of the sample 

were verified by TEM (Figure 3.10). Overall, the QDs have a mean diameter of about 3.7 nm 

with a size dispersion of about 8%. 

 

 

Figure 3.9: On the left is reported a photo of the chip in scale 1:1, whereas on the right a zoom on the wirings.  

Figure 3.10: Size distribution of the QDs film obtained with TEM 

microscopy. The size dispersion amounts to 8%. 
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In order to promote inter-dot interactions and promote the formation of strongly coupled meso-

structures (mainly dimers), covalent links between dots have been promoted using 1,3-

propanedithiol (pDT), having a nominal length of 0.55 nm, following an approach already 

reported in the literature for dimer formation [45]. 

Briefly, a stock solution of pDT in ethanol with a suitable concentration was prepared. Then a 

cleaned interdigitated gold substrate (like the one shown in Figure 3.8) was immersed for 10 

min in this solution to form a self-assembled monolayer of pDT on the gold to favor the ensuing 

adsorption of the QDs. 20uL of QD solution were then spinned onto this functionalized 

substrate at 1000 rpm for 30 s. Subsequently, the sample was immersed again in the pDT 

solution for the ligand exchange. These last two steps (QDs spinning and immersion in pDT 

solution) were repeated iteratively for 10 times, so to obtain a final QDs film with an optical 

density suitable for the 2DES experiments. 

The resulting interdigitated gold substrate covered by a thin film of interacting QDs was then 

wired for electrical measurements and encapsulated. To prevent oxidation, all these procedures 

(from QDs deposition to encapsulation) were carried out under a dry nitrogen environment. 

The correct functioning of the final device was verified with I-V measurements. Typically, not 

all the 80 devices on each substrate were photoactive. Photocurrent-detected 2DES 

experiments were thus possible only on a limited number of devices. 
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Chapter 4 

Experimental Set-up and Data 

Analysis 
 

 

In this Chapter we will present a brief description of the experimental optical set-up we 

employed in this work. As already pointed out in Chapter 2, one of the main advantages of 

action-based 2DES experiments is the much simpler optical set up, which is a consequence of 

employing a fully collinear excitation scheme instead of a fully non-collinear one, like in the 

case of coherence-based 2DES. Figure 4.1 depicts the optical set-up employed in this work. A 

description of each of its components can be found in the following sections. 

 

 
 

 

 

 

 

 

 

4.1 Laser Source 
 
 
The beam source is a Coherent® Libra Ti:Sapphire amplified system, which includes three main 

components: 

Figure. 4.1: Optical set-up employed in fully collinear 2DES experiments. Abbreviations: (SM) 

spherical mirrors, (P) prism compressor, (BS) beam splitter. 
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1. An integrated Ti:Sapphire laser (Vitesse) generates a series of pulses with a repetition 

rate of 80 MHz. Each pulse has a bandwidth of approximately 12 nm, a duration of 100 

fs, and an energy of 3.5 nJ. The output of this laser represents the seed. 

2. A Nd:YAG laser at 527 nm (Evolution) emits nanosecond pulses and it is employed in 

order to amplify the seed beam. 

3. A regenerative optical amplifier (Regen Cavity) in which a second Ti:Sapphire rod, 

maintained in a condition of population inversion by the Evolution beam, is employed 

to amplify the seed pulses of the Vitesse up to 105 times. In a regenerative amplification, 

the seed beam is first stretched in time by a grating stretcher to preserve the Ti:Sapphire 

crystal. The amplified seed coming out is then compressed again by a grating 

compressor, restoring the initial pulse duration.  

The Libra output consists of a train of pulses with a repetition rate of 3 kHz, where each pulse 

has a bandwidth of about 12 nm centred at 800 nm, with a duration of 100 fs and an energy of 

0.8 mJ.  

 

 

4.2 Non-collinear Optical Parametric Amplifier (NOPA) 
 

 

A Light Conversion® Topas White, functioning as a non-collinear optical parametric amplifier 

(NOPA), is employed to tune the 800 nm wavelength of the laser into a broad spectrum, ranging 

from 540 to 780 nm.   

Prior to entering the TOPAS White, the pump beam (output from the Libra) passes through a 

beam stabilizer device (Newport® Guide Star II), consisting of two piezoelectric mirrors and 

two cameras. This device compensates for any spatial deviations in Libra's output over time, 

ensuring the stability of the optimal alignment throughout the experiment.  

In the TOPAS, the incoming light is divided into two beams, with 1% focused on a sapphire 

plate that generates supercontinuous white light through nonlinear processes. The white light 

is then collimated using spherical mirrors and directed into a pulse shaper, in order to modify 

the chirp and to regulate the final amplified beam's bandwidth. The remaining 99% of the input 

beam passes through a beta-barium-borate (BBO) crystal, resulting in the generation of a 

second harmonic beam at 400 nm. This beam is further split into two portions, with 5% serving 

as the preamplification beam and the remaining 95% as the primary amplification beam. 
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The white light and the 400 nm amplification pulses interact within a second BBO crystal. The 

amplification of specific spectral components of the white light (i.e., the selection of the 

wavelength of the output beam) is achieved by rotating the crystal and adjusting the incident 

angle between the three interacting pulses to maximize the output beam intensity (according to 

specific phase matching relationships). In order to achieve this, the precise overlap of the three 

pulses in both spatial and temporal domains is mandatory. The resulting pulse output has a 

duration of approximately 10 fs and an energy ranging from 1 to 30 μJ. 

The laser spectrum is then assessed using an Avantes® fiberoptic spectrometer. 

 

 

4.3 Pulse Compressing and Shaping Methods 
 

 

In ultrafast spectroscopy, the control over the phase and the amplitude of ultrafast laser pulses 

is of fundamental importance. In fact, the output of the TOPAS is a broadband pulse that can 

experience a phenomenon known as “temporal chirp”. When a pulse is chirped, it means that 

the different components of this pulse, i.e. the different colours, travel with different velocities, 

thus affecting the pulse duration and, in turn, the shape of the optical responses [55-57]. 

Since this is a crucial aspect in multidimensional spectroscopies, this section will provide some 

insightful information about how the phase affects the shapes of ultrashort pulses. 

 

Let’s consider the case of a linearly polarized electric field, propagating in time, that can be 

described as follows [58]:  

 𝐸(𝑡) = 𝐴(𝑡)cos (Φ(𝑡)) (4.1) 

 

Where: 

- 𝐴(𝑡) is the envelope function,  

- Φ(𝑡) is the total phase, expressed as Φ(𝑡) = 𝜔0𝑡 + 𝜑(𝑡). 

 

This total phase Φ(𝑡) is a function of the central frequency 𝜔0 and of the time-dependent phase, 

which is, in turn, expressed by the following Taylor’s series in the time domain:  

 
𝜑(𝑡) = ∑

𝜑𝑛

𝑛!
𝑡𝑛 = 𝜑0 + 𝜑1

𝑡

1!
+ 𝜑2

𝑡2

2!
+ 𝜑3

𝑡3

3!
+ ⋯

∞

𝑛=0

 
(4.2) 
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Where 𝜑𝑛 are the phase coefficients, defined as:  

 
𝜑𝑛 =

𝜕𝑛𝜑(𝑡)

𝜕𝑡𝑛
 

(4.3) 

 

According to this series, if the phase terms with 𝑛 ≥ 2 are nonzero, the pulse experiences a 

temporal broadening. When this happens, the bandwidth limit 𝜏𝐺Δ𝜔 (which describes the 

relationship between the shortest possible Gaussian pulse duration 𝜏𝐺  and the spectral full 

width at half maximum (FWHM) Δ𝜔 [10]), is exceeded. 

An analogous expression for the phase in the frequency domain can be obtained as a Taylor 

expansion around the carrier frequency of the pulse: 

 
𝜑(𝜔) = ∑

𝜑𝑚(𝜔0)

𝑚!
(Δ𝜔)𝑚

∞

𝑚=0

= 𝜑0 +
1

1!
𝜑1(Δ𝜔) +

1

2!
𝜑2(Δ𝜔)2 +

1

3!
𝜑3(Δ𝜔)3 + ⋯ 

(4.4) 

 

Where:  

- The coefficients are defined as: 𝜑𝑚 =
𝜕𝑚𝜑(𝜔)

𝜕𝜔𝑚
, 

- ∆𝜔 = 𝜔 − 𝜔0. 

The first and second terms of this expansion do not affect the shape of the pulse, whereas the 

third term, i.e. the second order phase term 
1

2!
𝜑2(Δ𝜔)2, called “group delay dispersion” or 

GDD, introduces a frequency-dependent delay of the different components of the pulse. 

Therefore, GDD is responsible for a chirp that stretches the pulse in the time domain, meaning 

that the different components of the pulse, i.e. the different colours, travel with different 

velocities.  

Since this temporal chirp deeply affects the shape of the pulse and therefore the outcome of the 

experiment, it must be corrected. To this aim, in our setup we made use of a pulse-shaper and 

a prism compressor.  

 

4.3.1 Pulse Shaper Compression  

 

The first compression stage of the laser pulses was performed by employing an acousto-optic 

programmable dispersive filter (AOPDF, Fastlite Dazzler). As we already mentioned, this 
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instrument is employed as a pulse shaper, and we will now present a brief description of its 

operating mechanism. 

An AOPDF is a kind of acousto-optic modulator (AOM) that relies on the interaction between 

a polychromatic acoustic wave and polychromatic optical wave in a birefringent crystal with 

acousto-optic properties, such as a paratellurite crystal TeO2 [59]. If the correct phase-matching 

conditions are met: 

 
{

𝒌𝑑𝑖𝑓𝑓(𝜔𝑜𝑝𝑡,𝑑𝑖𝑓𝑓) = 𝒌𝑖𝑛(𝜔𝑜𝑝𝑡,𝑖𝑛) + 𝒌𝑎𝑐(𝜔𝑎𝑐)

𝜔𝑜𝑝𝑡,𝑑𝑖𝑓𝑓 = 𝜔𝑜𝑝𝑡,𝑖𝑛 + 𝜔𝑎𝑐
 

(4.5) 

 

the interaction between the acoustic and the optical waves generates a new optical beam, the 

diffracted beam, which is characterized by a diffraction angle of 1° with respect to the input 

optical axis. This acousto-optic effect results in a change of the refractive index of the material. 

In the Dazzler, (Figure 4.2) a transducer triggered by a time-dependent radiofrequency (RF) 

electronic signal, induces the propagation of an acoustic wave. This wave travels with a 

velocity 𝑣 along the z-axis, spatially reproducing the temporal shape of the RF signal [59]. 

 

 

 

 

 

The incoming optical pulse is ordinary polarized. Once it enters the acousto-optic crystal, each 

optical frequency 𝜔 travels a specific distance until it reaches a spatial frequency in the acoustic 

grating that is phase-matched. At this specific position 𝑧(𝜔), a portion of the energy that 

undergoes diffraction results in the generation of an extraordinary polarized component. Upon 

reaching the crystal output, the diffracted pulse comprises all the spectral components that 

experienced diffraction at different positions. 

Figure 4.2: Pictorial representation of the working principle of the Dazzler in 

terms of the group delay control. Picture adapted from [58]. 



 59 

Due to the different group velocities associated with the ordinary and extraordinary 

polarizations, each frequency experiences a different group delay. The group delay 𝜏(𝜔) 

applied to the diffracted pulse, can be expressed as [59]: 

 

 
𝜏(𝜔) =

𝑛𝑔𝑜
(𝜔)

𝑐 ∙ 𝑧(𝜔)
+

𝑛𝑔𝑒
(𝜔)

𝑐 ∙ (𝐿 − 𝑧(𝜔))
 

(4.6) 

 

Where:  

- 𝑛𝑔𝑜
(𝜔) and 𝑛𝑔𝑒

(𝜔) are the ordinary and extraordinary group indexes along the 

propagation direction,  

- 𝐿 is the length of the crystal. 

 

By carefully regulating the position 𝑧(𝜔) where the diffraction takes place, it becomes possible 

to control the group delay of the pulse. The amplitude of the resulting output pulse is controlled 

by the acoustic power at this position.  

 

4.3.2 Prism Compression 

 

Since the paratellurite crystal introduces a positive GDD on the input laser pulse, this delay 

can be compensated by introducing a negative GDD by employing a prism compressor or a 

grating compressor. In the optical set-up employed in this work, the static compression is 

achieved by the action of two optical prisms. The first prism disperses the input beam in all its 

spectral components, whereas the second prism collimates them. 

By adjusting the distance between the prisms and their relative angle, it becomes possible to 

manipulate the optical chirp, by controlling the sign and the amount of introduced dispersion. 

Consequently, this allows the regulation over the time delay and phase shifts among the various 

spectral components. 

 

 

4.4 Phase Modulation 
 

 

In Chapter 2, the importance of the phase-sensitive detection in action-based 2DES approaches 

was pointed out. In this context, in fact, the different contributions to the signal (e.g. the 
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rephasing and non-rephasing contributions) can be separated by employing different phase-

selection schemes, which allows us to extract the different contributions to the signal according 

to their phase rather than their spatial direction. To fulfill this goal, we employed the Dazzler 

not only as a pulse shaper but also as the core instrument for the phase modulation step 

[9,60,61]. In fact, the waveform of the Dazzler is programmed to generate for each incoming 

pulse a sequence of four exciting pulses, separated in time by specific time delays and 

characterized by a specific phase (Figure 4.3).  

 

 

 

 

 

 

The phase modulation scheme we employed in this work was carefully designed keeping in 

mind some restrictions of our experimental 2DES set-up [9]: 

1. The first limit is the fast memory of the Dazzler. In fact, in order to ensure a consistent 

modulation frequency, it is mandatory to employ pulse-by-pulse shaping. While the 

FIFO (first in, first out) memory of the Dazzler facilitates this process, it has restricted 

storage capacity, accommodating only up to 80-90 waveforms. Nevertheless, this 

sequence of waveforms can be endlessly reiterated without interruption. 

2. The second limit is that the four frequencies 𝑓𝑖 that modulate the phases of the exciting 

pulses (and therefore the final signal) must be chosen so to start and finish the 

modulation patterns with the same phase.  

Because of these two restrictions, we chose a pattern of 72 waveforms. We then decided to 

keep constant the phase of the first exciting pulse, while the other three pulses increase their 

phase of 𝜋/6, 𝜋/8, and 𝜋/9 at each laser pulse. They all start with phase 𝜑𝑖 = 0 and at the 

Figure 4.3: Pulse-by-pulse phase modulation scheme. The incoming laser pulses from 

the TOPAS are shaped by the Dazzler into four different pulses separated by specific 

time delays 𝑡1, 𝑡2, 𝑡3 and with specific phases (𝜑1, 𝜑2,  𝜑3, 𝜑4) that are modulated with 

frequencies 𝑓1, 𝑓2, 𝑓3and 𝑓4 (Chapter 2, Section 2.2.1). 
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72nd laser pulse they will have phases equal to 𝜑2 = 2𝜋 − 𝜋/6, 𝜑3 = 2𝜋 − 𝜋/8 and 𝜑4 =

2𝜋 − 𝜋/9, respectively. At the next laser pulse, (i.e., at the 73rd waveform, corresponding to 

the first one of the next sequence), the phase will be 2𝜋 = 0 for each pulse and the following 

sequence will start. We chose to repeat this sequence 42 times in order to complete each pattern 

in approximately one second: 72 × 42 = 3024. Considering this repetition rate, the final 

modulation frequencies 𝑓𝑖 were chosen as: 

 
𝑓1 = 0, 𝑓2 =

3024

72
∙ 6 = 252 𝐻𝑧, 

𝑓3 =
3024

72
∙ 8 = 336 𝐻𝑧, 𝑓4 =

3024

72
∙ 9 = 378 𝐻𝑧. 

 

 

In order to extract the fourth order signal (Chapter 2), we filter out the signal at the desired 

phase combination For the rephasing signal the phase combination is −𝜑1 + 𝜑2 + 𝜑3 − 𝜑4, 

and the rephasing signal, considering the laser repetition rate of 3 𝑘𝐻𝑧, will be modulated at 

the frequency: 𝑓𝑠,𝑟𝑒𝑝ℎ𝑎𝑠𝑖𝑛𝑔 = 3000 − 𝑓1 + 𝑓2 + 𝑓3 − 𝑓4 = 3210 𝐻𝑧. Instead, for the non-

rephasing signal the phase combination is: +𝜑1 − 𝜑2 + 𝜑3 − 𝜑4, and the non-rephasing 

signal, considering the laser repetition rate of 3 𝑘𝐻𝑧, will be modulated at the frequency: 

𝑓𝑠,𝑛𝑜𝑛−𝑟𝑒𝑝ℎ𝑎𝑠𝑖𝑛𝑔 = 3000 + 𝑓1 − 𝑓2 + 𝑓3 − 𝑓4 = 2706 𝐻𝑧. In general, imposing 𝑓1 = 0 could 

represent an issue since both negative and positive contributions could be generated at the same 

frequency. However, since the undesired contribution path is a coherence, it will not contribute 

to the excited-state population and thus its contribution to the read out signal will be zero. The 

selection of divisors such as 6, 8, and 9 was proven to be particularly suitable as it ensures that 

the linear and fourth order components can be found at distinct frequencies. 

 

 

4.5 Signal Detection 
 

 

The detection scheme is composed as follows: a beam splitter is positioned after the prism 

compressor, in order to split the incident beam into two different beams. One beam is focused 

on the sample, which is connected via a BNC cable to a National Instrument ADC (NI Usb-

4432) board (Figure 4.1). The board is connected to a computer that acquires the data. In 

addition, the sample is connected to a transimpedance amplifier, which is a current-to-voltage 
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converter, employed in the setup to amplify the current signal generated by the sample and 

convert it into a voltage. The second beam is, instead, sent to a Silicon photodiode, which is 

employed as a reference in order to eliminate the nonlinear artifact originating from the 

Dazzler, as described in the next section. 

The signal detection process is summarized in Figure 4.4. After a sequence of four delayed and 

phase-modulated pulses reaches the sample, a current/voltage signal is generated and is read 

out by the National Instruments card. This allows the retrieval of the raw signal, measured in 

volts as a function of time. This raw signal in time contains all the different signal contributions 

(linear, nonlinear, rephasing, non-rephasing, etc.), each one modulated at a specific 

combination of the modulation frequencies 𝑓𝑖, as described in Chapter 2, Section 2.2. 

This signal is then Fourier-transformed, to obtain the so-called phase-modulation spectrum, 

where the different signal components appear at different frequencies. For example, following 

what is explained in Section 4.4, one can expect to find the rephasing fourth order signal at a 

frequency of  3210 𝐻𝑧, and the non-rephasing signal at a frequency of 2706 𝐻𝑧. By following 

the evolution of the various components in the phase-modulation spectrum as a function of the 

delay-times (𝑡1, 𝑡2, 𝑡3), a set of temporal data 𝑆(𝑡1, 𝑡2, 𝑡3) is collected and, by taking the Fourier 

transform along suitable axes, the corresponding 2D response is retrieved, where the signal is 

expressed as a function of 𝜔1, 𝑡2, 𝜔3. 
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4.6 Controlling the Acousto-Optic Nonlinearity 
 

 

An important step of this work regarded the calibration of the Dazzler in order to account for 

the intrinsic nonlinearity of the acousto-optic interaction, becoming non-negligible at large 

acoustic powers (𝐴0 > 20%) [10]. This nonlinearity causes the laser output from the Dazzler 

to scale sub-linearly as a function of the applied acoustic power (Figure 4.5) and must be 

corrected in order to properly visualize and interpret the weak signal coming from the sample. 

Figure 4.4: Schematic representation of the working principle of PC-2DES. a) The photo-conductive device, 

after the interaction with a sequence of four phase-modulated laser pulses shaped by the Dazzler, emits an 

incoherent signal (i.e. a photocurrent). This incoherent signal is recorded as a raw signal, expressed as a 

function of time. b) By taking the Fourier transform of this raw signal, the phase-modulation spectrum is 

obtained, which contains the various contributions to the optical response, each one appearing at a well-

defined combination of the phase-modulation frequencies 𝑓𝑖. c) The 2DES maps are rebuilt by extracting the 

components at all time-delays. d) After the data processing and Fourier transform along 𝑡1 and 𝑡3 , the 

rephasing (signal modulated at 3210 𝐻𝑧) and non-rephasing (signal modulated at 2706 𝐻𝑧) maps as a 

function of 𝜔1, 𝑡2, 𝜔3 are obtained and the sum of these gives the absorptive maps. 
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In fact, this nonlinear subscaling gives rise to a characteristic artifact in the 2DES maps, which 

is manifested as a marked diagonal line across the map (Figure 4.5). 

 

 

 

 

 

 

 

 

The presence of this artifact was recognized only recently, and it was soon realized that 

removing its contribution from the real signal is a very challenging task. This has hindered the 

diffusion of action-based 2DES setups based on Dazzler pulse shapers and explains why only 

a limited number of papers on the topic have been published so far. 

The simplest way of avoiding the artifact would be to acquire the sample signal in the linear 

regime, i.e., setting up an acoustic power <1%. In these conditions, however, the majority of 

the systems do not show any signal because the exciting beam intensity is too low to promote 

any nonlinear optical response. Therefore, to measure a meaningful signal from the sample, 

higher acoustic powers are needed, falling necessarily in the nonlinear regime. 

Therefore, in order to account for this nonlinear subscaling of the laser power as a function of 

the acoustic power, we have developed a home-built calibration procedure, inspired to the 

pioneering work of Sebastian Röding [10], which is summarized in Figure 4.6.  

 

 

 

Figure 4.5: Measured laser power (orange dots) as a function of the applied acoustic 

power 𝐴0. It is evident that the linear relation between the acoustic amplitude and the 

shaped optical power only holds for small acoustic amplitudes and becomes nonlinear at 

large shaping efficiencies. Therefore, it must be corrected by performing a calibration 

procedure. 
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The calibration procedure was carried out as follows:  

1. By using a simple Silicon photodiode as a photodetector, the shaped output laser power 

was first measured in the linear range (𝐴0 = 0.2%), yielding to the signal labelled as 

𝑃𝑑_𝑙; 

2. The same measurement was performed in the nonlinear regime (𝐴0 = 30%), thus 

obtaining 𝑃𝑑_𝑛𝑙. 

3. According to these measurements, we obtained the correction factor 𝐶 for each 

individual pulse shape, defined as: 

 
𝐶 =

𝑃𝑑_𝑙

 𝑃𝑑_𝑛𝑙
 

(4.7) 

 

4. The signal of the sample was then measured in the nonlinear regime of the acoustic 

power (𝑆𝑖𝑔𝑑𝑒𝑣𝑖𝑐𝑒), thus obtaining a bidimensional map displayed in the time domain 

that featured an intense diagonal line, i.e. the nonlinear artifact.  

5. The raw signal of the device 𝑆𝑖𝑔𝑑𝑒𝑣𝑖𝑐𝑒 was then corrected by applying the correction 

factor, according to:  

 𝑆𝑖𝑔𝑐𝑜𝑟𝑟 = 𝐶 ∙ 𝑆𝑖𝑔𝑑𝑒𝑣𝑖𝑐𝑒 

 

(4.8) 

Figure 4.6: Dazzler’s artifact correction procedure. In the upper panels the raw 

signal measured as a function of the pulse shape is depicted for the linear (left panel) 

and nonlinear (right panel) regimes. The lower panels represent the time domain 

rephasing contributions, for the reference photodiode PD (left panels) and for the 

sample (right panels).  
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The calibration procedure has proven to be effective as we were able to eliminate the majority 

of the artifact, as shown in Figure 4.6 (bottom panels).  

 

 

4.7 Intensity Autocorrelation of the Ultrashort Laser Pulse 
 

 

The correct interpretation of the results of any ultrafast technique, requires the careful 

characterisation of the exciting pulse duration. To this aim, we employed an intensity 

autocorrelation method, which involves splitting the pulse into two, variably delaying one with 

respect to the other, and overlapping them in a fast-responding second harmonic generation 

nonlinear crystal. In our setup, we employed a BBO crystal, the Dazzler to split the pulse and 

delay the two resulting beams, and an optical fiber photodetector. 

In an autocorrelation experiment, the Dazzler waveform was programmed in order to split the 

incoming pulse into two identical replicas and delay one replica in time with respect to the 

other. Only when the two pulses are temporally overlapping, the conditions to generate the 

second harmonic beam are met. Consequently, the overlapping beams interfere with each other, 

and the intensity of the resulting second harmonic signal depends on the temporal overlap 

between the pulses. 

The second harmonic signal after the BBO crystal is measured by the optical fiber as: 

 

 𝐸𝑠𝑖𝑔
𝑆𝐻𝐺(𝑡, 𝜏) ∝ 𝐸(𝑡)𝐸(𝑡 − 𝜏) (4.9) 

 

Where 𝜏 is the temporal delay between the two beam’s replicas.  

The intensity associated with this field is proportional to the product of the intensities of the 

two input pulses:  

 𝐼𝑠𝑖𝑔
𝑆𝐻𝐺(𝑡, 𝜏) ∝ 𝐼(𝑡)𝐼(𝑡 − 𝜏) (4.10) 

 

Since the detection time of the typical optical detectors is too slow to capture this signal, they 

will measure the second-order autocorrelation 𝐴(2)(𝜏): 

 
𝐴(2)(𝜏) = ∫ 𝐼(𝑡)𝐼(𝑡 − 𝜏)𝑑𝑡

∞

−∞

 
(4.11) 
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Assuming that the pulse has a Gaussian shape, also this autocorrelation curve will have a 

Gaussian shape. The pulse duration can thus be obtained dividing the FWHM of the 

autocorrelation by √2 [62]. 

 

 

4.8 Data Analysis 
 

 

The information obtained from 2DES experiments is examined and interpreted through a 

specific home-made procedure implemented with the MATLAB® R2023b software. 

The output of a 2DES experiment is a three-dimensional matrix of data that is obtained by 

scanning the values of the time delays 𝑡1, 𝑡2, 𝑡3 between the laser pulses. In order to analyze 

this 3D-matrix various techniques can be employed [63-66]. In our research group, we have 

introduced a multi-exponential global fitting model for this purpose, whose detailed description 

can be found in ref. [67]. 

The fitting function, defined as: 

 

𝑓 = ∑ 𝑎𝑛𝑒𝑖𝜑𝑛𝑒
−

𝑡2
𝜏𝑛𝑒−𝑖𝜔𝑛𝑡2

𝑁

𝑛=1

 

(4.12) 

 

is employed to simultaneously fit the signal decay at each coordinate of the 2DES maps. 

This approach is particularly advantageous since it involves fewer operations compared to 

alternative analysis methods, allowing simultaneous access to both oscillating (𝜔𝑛 ≠ 0) and 

non-oscillating (𝜔𝑛 = 0) components. This analysis is performed in a single step without the 

need for any preliminary subtraction procedure. Each component, labeled with the subscript 𝑛,  

is associated with a specific kinetic constant 𝜏𝑛. The fitting process yields two different kinds 

of amplitude maps 𝑎𝑛, referred to as “decay-associated spectra (DAS)” when 𝜔𝑛 = 0, and 

“coherence-associated spectra (CAS)” when 𝜔𝑛 ≠ 0. 

The DAS are associated with non-oscillating exponential components. The real part of a DAS 

provides information about the evolution of the population along 𝑡2, indicating whether the 

signal is rising or decaying in time. Indeed, the DAS maps show positive peaks when the signal 

undergoes exponential decay, whereas they show negative peaks when the signal is increasing. 
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The CAS are analogous to DAS, but they refer to oscillating contributions of the signal, 

described with complex exponential functions. They are useful in order to characterize a 

particular beating mode in terms of its frequency 𝜔𝑛, amplitude 𝑎𝑛 and phase 𝜑𝑛. 
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Chapter 5 

Results and Discussion 
 

 

 

 

 

In this final Chapter, we will present the results of the preliminary experimental 

characterization of the QDs-based device by means of photocurrent detected 2DES.  

 

 

5.1 Absorption Spectroscopy  
 

 

The characterization of the sample by linear absorption spectroscopy is a necessary step to be 

performed before the 2DES measurements. Absorption spectroscopy relates the amount of light 

absorbed by a sample to the wavelength of the incident radiation. Usually, it is exploited to 

evaluate the sample’s concentration or molar extinction coefficients (or cross section) by 

applying the Lambert-Beer law. In our case, the absorption spectra are essential to identify the 

main electronic transitions that are involved in the spectral region addressed by the exciting 

laser pulse in 2DES measurements. The sample devices prepared for the PC-2DES experiments 

(Chapter 3, Section 3.4), are assembled on an opaque support, which do not allow the 

measurements of the absorption spectra in the typical transmissive configuration. Therefore, 

our collaborators prepared replicas of the same devices by depositing QDs (i) on interdigitated 

gold electrodes on a transparent quartz substrate and (ii) on a simple quartz slide without 

electrodes. They measured the absorption spectra of these samples after each QDs layer 

deposition. The obtained spectra are reported in Figure 5.1 
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The absorption spectra on both substrates show very similar features, which confirms that the 

presence of gold electrodes underneath the QD layers does not affect their optical properties.  

In both cases, two main peaks could be identified: a maximum absorption peak located at 

594 nm (= 16835 cm–1), which corresponds to the first excited state, and a weaker peak at 

560 nm (=17850 cm–1), which we attributed to the second excited state. 

 

 

5.2 PC-2DES measurements 
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Figure 5.1: Absorption spectra of transmissive samples prepared by deposition of a different 

number of QDs layers onto interdigitated gold electrodes on a quartz substrate (left panel) 

and onto a quartz substrate without electrodes (right panel). The absorption measurements 

were kindly provided by the group of Marinella Striccoli (CNR-IPCF Bari). 

Figure 5.2: Normalized absorption spectrum of the QDs film 

deposited onto the interdigitated gold electrodes (black line). 

The red area represents the spectral profile of the laser used for 

the PC-2DES measurements.   
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When performing 2DES measurements, the ideal condition would be to excite the sample with 

a very broad laser spectrum, to excite with the same intensity the highest possible number of 

transitions. Unfortunately, this is often not possible due to technical limitations that limit the 

achievable spectral bandwidth of the exciting pulses. Figure 5.2 compares the absorption 

spectrum of our samples with the spectral profile of the pulse used in the PC-2DES experiment. 

The laser covers the lower energy transition and only partially the higher energy transition. It 

was not possible to push the laser spectrum further to the blue to fully cover also the higher 

energy transition because of the intrinsic bandwidth limitations of the NOPA. However, even 

if the experimental conditions were not optimal, we still succeeded in measuring our sample, 

exciting both the main transitions appearing in the absorption spectrum. A similar experimental 

configuration was proved to be successful also in previous coherence-based 2DES experiments 

on similar samples [44,45,51]. 

A first qualitative analysis of the results can be performed by looking at the evolution of the 

signal in the 2DES maps as a function of the population time 𝑡2 . Figures 5.3 and 5.4 represent 

PC-2DES maps at selected values of  𝑡2 in the range 0-50 fs and 100-400 fs, respectively. These 

maps were collected by scanning 𝑡1 and 𝑡3 from 0 to 48 fs in steps of 4 fs, and 𝑡2 from 0 to 400 

fs in steps of 7 fs. 
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Figure 5.3: PC-2DES maps for the rephasing (upper panel), non-

rephasing (central panel) and absorptive contribution (lower panel) 

evaluated at short 𝑡2 times. The intensity of the signal was normalized 

with respect to the map at 0 fs. 
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The maps show two clearly distinguishable peaks on the diagonal, which, due to the size 

distribution of the sample, are elongated along the diagonal direction in the case of the 

rephasing maps, and along the anti-diagonal in the case of the non-rephasing maps. The 

elongation of the diagonal peaks is a well-known phenomenon in 2DES, as we already 

discussed in Chapter 2. This effect is due to inhomogeneous broadening and depends on the 

amplitude of the size distribution of the sample: the greater the size distribution, the more 

elongated the signal peak. Another important feature in the maps is the presence of cross-peaks, 

recorded already at very short population times. In general, in 2DES the presence of cross peaks 

is direct evidence of interaction between different electronic states (Chapter 2, Section 2.1). 

However, in the case of action-based 2DES, the origin of these spectral features is still under 

investigation. Currently, many works regarding this matter have been published, ascribing the 

presence of cross peaks mostly to exciton-exciton annihilation phenomena [16] or to excitonic 

Figure 5.4: PC-2DES maps for the rephasing (upper panel), non-

rephasing (central panel) and absorptive contribution (lower panel) 

evaluated at long 𝑡2 times. The intensity of the signal was normalized 

with respect to the map recorded at 105 fs. 



 74 

delocalization [68]. Several efforts, both from the experimental and theoretical side are 

currently being made in the multidimensional spectroscopy community to reach an agreement 

on the possible interpretation of these signals [69]. We are confident that our data on QDs will 

provide an important contribution to this discussion. 

After this first qualitative description of the main features appearing in the PC-2DES maps, it 

is worth discussing in more detail their possible origin. For simplicity, let’s focus our attention 

on the 2DES map registered at a population time of 203 fs, presented in Figure 5.5a. The panel 

above the map reproduces the linear absorption spectrum of the sample (black curve) 

overlapped with the laser spectral profile (red curve), as it was shown in Figure 5.2.  

 

 
 

 

 

 

 

 

 

 

 

 

As discussed before, two different peaks can be distinguished along the diagonal. The first one 

is located at 16835 cm–1, which agrees with the frequency of the first excited state identified in 

the absorption spectrum. A second maximum is observed at lower energies, close to the 

intensity peak of the exciting laser profile (16250 cm–1). It is well known that the signal 

recorded in a 2D map is the convolution between the optical response of the system and the 

exciting profile [1,3,70]. Therefore, it is reasonable to think that this signal is due to the 

enhancement of “red” states promoted by the convolution with the laser profile.  

Now the question becomes: what is the nature of these red states? 

Figure 5.5: a) 2DES map registered at a population time of 203 fs. b) Size distribution of the 

different QDs, measured by TEM microscopy. c) Theoretical simulation of the |1𝑆⟩ and |2𝑆⟩ 

energy levels in a monomer of QDs as a function of their average diameter. The red area 

represents the energy interval covered by the spectrum of the laser. The energy gap decreases 

with the diameter. The values at diameter of 3.7nm and at the biggest diameter 4.4nm correlates 

exactly with the energy levels shown in our PC-2DES map. 
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The first hypothesis is that these red states are due to the fraction of QDs that in our 

inhomogeneous sample have bigger size and therefore lower energy gap. Figure 5.5b shows 

the size distribution in our QDs sample as determined by TEM analysis. The size distribution 

show that the dots have an average diameter of about 3.7 nm, but a non-negligible fraction of 

dots with diameters up to 4.4 nm are also present. According to theoretical simulations6 (Figure 

5.5c), the lowest energy transition for these bigger dots should fall exactly at the frequency of 

the lower diagonal peak. In this hypothesis, therefore, the peak at 16250 cm–1 should be 

ascribed to a specific fraction of quantum dots, characterized by a diameter of about 4.4 nm, 

whose signal is enhanced because of the peculiar spectral profile of the exciting beam. 

One should also take into account that, as described in Chapter 3, Section 3.4, the sample device 

is prepared by deposition of different layers of QDs interspersed with layers of pDT, a bi-

functional ligand that likely promotes the formation of dimers or higher order aggregates, as 

already demonstrated in our previous works [44,45,51]. As already mentioned in Chapter 3, 

Section 3.3, the dimer formation promotes the generation of new delocalized eigenstates, some 

of which are characterized by red-shifted energy. Therefore, also the promotion of inter-dot 

interactions could contribute to the recorded red signal. 

In addition to this already complicated picture, one should also add the possible presence of 

Stark effects (i.e. the shifting and splitting of spectral transitions due to the presence of an 

external electric field), which can become relevant when a photocurrent is measured [71,72]. 

Another possible hypothesis is that these red states are trap states. It is indeed well-known that 

thiol ligands can modify the dot’s surface creating defects of Se vacancies. These traps are 

usually located within the bandgap giving rise to red shifted features in absorption and emission 

spectra [73]. However, previous ultrafast measurements have demonstrated that trapping times, 

although different for holes and electrons, are typically in the order of tens or hundreds of ps, 

[74] a timescale much longer than the one investigated in our measurements. Therefore, it is 

reasonable to conclude that, although present, trap states should not significantly contribute to 

the recorded PC-2DES response. 

All this discussion confirms that our samples are characterized by very complex electronic 

structures where different phenomena and size inhomogeneity make the PC-2DES 

interpretation very challenging. Theoretical simulations in collaboration with Prof. Francoise 

Remacle (University of Liège) are currently underway to try to untangle such a complex 

problem.  

 
6 Kindly provided by the group of Prof. Francoise Remacle (University of Liège). 
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Meanwhile, an important observation about our data is that, together with diagonal peaks, cross 

peaks are clearly observed as well. In order to investigate the origin of these cross-peaks it is 

necessary to study how they evolve with the population time. In Figure 5.6 we report the time 

evolution at relevant coordinates. The signal extracted at the positions pinpointed by each 

colored circle is shown in the four right panels as a function of the population time. A clear 

decay for all the relevant peaks is observed. A deeper analysis of the decay dynamics is reported 

in the next section, where we describe the results of the analysis performed with the global 

exponential fitting model previously introduced in Chapter 4, Section 4.8.  

 

 

 

 

 

 

 

5.3 Global fitting analysis  
 

 

In Chapter 4, Section 4.8, we observed that the 3D matrix of data can be conveniently analyzed 

by a multi-exponential global fitting model, which makes use of the fitting function defined in 

Equation 4.13 to simultaneously fit the signal decay at each coordinate of the 2DES maps.  

The best fit was achieved by performing a global fit with four exponential decays having time 

constants of: 5 fs, 60 fs, 280 fs and >1ps.  The last component is associated with relaxation 

dynamics that are developed in time scales much longer than the experimental time window 

investigated in our measurements and, therefore, will not be discussed here.  

Figure 5.7 presents the DAS associated with the first three time components; below each DAS, 

we report a plot showing diagonal slices of the signal at relevant values of population times.  

Figure 5.6: Signal decay at relevant peaks coordinates over time. The four panels on the right 

illustrate the decay associated with the four peaks pinpointed by colored circles in the map.  The 

black lines represent the experimental data, while the red curves are the fittings obtained with the 

global multi-exponential model. 
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The first time constant (Figure 5.7a) describes an ultrafast decay (<5 fs) of all the peaks that 

appear in the 2DES maps. This kinetics develops in a timescale comparable with the pulse 

duration. In coherence-based 2DES, kinetic components characterized by time constants 

comparable with the pulse duration are usually discarded as they can be mainly attributed to 

interference and scattering phenomena known as “coherent artifacts” [75,76]. Nonetheless, in 

our case, the measured signal is not a coherent electric field but an incoherent photocurrent, 

which should not be affected by these phenomena. However, it has been demonstrated that 

when all four exciting pulses are overlapped in time on the sample, higher-order phenomena 

are likely to occur [77]. In our case, looking at the diagonal slices in the lower panel of Figure 

5.7a, it is clear that this ultrashort time constant contributes more significantly to the decay of 

the upper diagonal peak than to the lower one. 

The second dynamic process (Figure 5.7b) has a time constant of ~60 fs and shows a DAS map 

with several diagonal and cross peaks with different colors. As explained in Chapter 4, Section 

4.8, a red (positive) peak in the DAS corresponds to a decay, whereas a blue/green (negative) 

peak implies a rise of the overall signal in the 2D maps. In the DAS of Figure 5.7b, there is a 

negative peak with coordinates corresponding to the lower diagonal peak at about 16200 cm-1. 

On the contrary, a strong positive peak is recorded at diagonal coordinates corresponding to 

the upper diagonal peak at about 17000 cm-1. This means that the intensity of the upper (lower) 

diagonal signal is decreasing (increasing) with a time constant of 60 fs. This is clearly visible 

also by inspecting the diagonal slices in the lower panel, where the increase of the signal at 

Figure 5.7: In the upper panel, DAS maps associated to the three different time 

constants found according to the fitting model. In the lower panel, the cross section 

of the diagonal for different evolution times relevant to the time constant found by the 

global fitting. 
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lower frequency values causes an apparent blue shift of the main features. The interpretation 

of the physical process giving rise to this signal evolution is still under investigation. The 

similarity with previous results [78] seems to suggest that this process might be related to a 

localization of the excitation on the red states. According to this interpretation, it can likely be 

hypothesized that the photoexcitation prepares the system in a coherent superposition of states 

delocalized over more than one QD. Then, with a time constant of about 60 fs, this coherent 

superposition localizes on the lowest ‘red’ energy states. Decoherence processes with time 

constants in the order of a few tens of fs were already measured in QDs’ solid-state assemblies 

by coherent-detected 2DES [51]. What is different (and very exciting) here is that these 

decoherence phenomena seem to contribute to the photocurrent signal. In other words, the 

functionality of a real device, measured as a generated photocurrent, is affected by coherent 

phenomena. If proven true, this discovery opens up a new avenue for the possible exploitation 

of quantum coherence in real devices. Additional measurements, also complemented by 

theoretical simulations, will be necessary to definitively prove this hypothesis. 

Finally, the third dynamic process (Figure 5.7 c) has a time constant of 280 fs and corresponds 

to a uniform decay of all the peaks. 

We also tried to verify the presence of beating components. However, the global fitting 

procedure could not identify any main oscillating contributions to the signal. However, it is 

known that this kind of analysis, because of its ‘global’ character, can capture only beating 

components significantly affecting the signal at several coordinates. Additional ‘local’ analyses 

at specific coordinates must be performed to ascertain with better precision the possible 

presence of weak oscillations. 
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Conclusions 
 
 

 

 

 

This thesis is framed within the relatively unexplored landscape of action-based approaches to 

electronic bidimensional spectroscopy. The primary purpose of this study was, in fact, to try to 

contribute to the still limited yet rapidly growing literature on this topic.  

 

In the first part of this work (Chapters 1-3), we built upon the formalisms and the theoretical 

notions at the base of the description of nonlinear optical responses and then proceeded to 

compare the action-based approach with the coherence-based one. The aim was to underline 

the main differences between these two approaches and specifically highlight the advantages 

of the action-based techniques. As starting samples, we choose materials based on 

semiconductor QDs, well-known for their unique optical and electronic properties mainly 

originating from quantum effects. Their ultrafast dynamics were already characterized in our 

group by coherence-based 2DES experiments, which revealed interesting quantum coherence 

phenomena and other processes taking place in ultrafast timescales. These properties also made 

them promising candidates to be studied with the new photocurrent-detected technique. 

Differently from the coherence-based approach, the photocurrent-detected configuration 

requires samples with stringent characteristics (the photoactive units must be assembled on a 

conductive substrate to measure a photocurrent signal reliably). To this aim, an optoelectronic 

device based on CdSe QDs was specifically designed and prepared. 

In the second part of this work (Chapters 4-5), we described the experimental solutions we 

employed in order to perform the experiment, from the configuration of the optical set-up and 

the phase-modulated detection of the signal to the processing and analysis methodologies 

exploited to extract the data. 

As expected, the interpretation of the results in the action-based approach was not obvious and 

posed many challenges, especially given the fact that only a few literature works are available 

on the topic. Despite these difficulties, we managed to fulfill the goal of our initial project by 

demonstrating the potential of this recently proposed technique. In addition, according to a 

careful analysis of the results, we were able to propose a hypothesis on the possible link 
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between the presence of coherent phenomena and how they affect the functionality of a 

quantum-based device. If proven true, this discovery would open up a new avenue for the 

possible exploitation of quantum coherence in real operating devices. 

 

In conclusion, this thesis not only contributes to the expanding field of ultrafast spectroscopy 

by addressing the existing research gap on action-based approaches but also demonstrates the 

potential associated with this innovative technique, paving the way for new perspectives in the 

field of 2DES. In addition, the experimental findings achieved in this work, despite their still 

preliminary nature, could also contribute to the expanding field of quantum nanoscience, 

providing insights for future investigations regarding the design and manipulation of QDs for 

applications in quantum technologies. 
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