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Abstract

Polar codes, introduced by Arikan in 2009, are the first class of codes to provably

achieve capacity of binary symmetric memoryless channels with low complexity. How-

ever, despite the remarkable properties of polar codes, their finite-length performance

with successive cancellation decoding has been found to be not as good as other families

of codes, such as LDPC and turbo codes, greatly limiting their practical impact. Much

effort has been devoted to the improvement of their finite-length performance in terms

of packet error rate on a single transmission.

This work, however, adopts a different perspective. We use feedback schemes to reduce

the packet error rate, allowing in exchange for a moderate delay on the decoding. Three

schemes based on successive cancellation are proposed and compared. For the most

promising ones, mathematical models for the delay are developed, and their accuracy is

verified. We first focus in the BEC, but extensions to the BAWGNC are provided. We

then derive some simple bounds on the delay.
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Sommario

I codici polari, introdotti da Arikan ne 2009, sono la prima classe di codici che in modo

dimostrabile raggiungono la capacità di canali binari simmetrici senza memoria. Ad

ogni modo, nonstante le notevoli proprietà dei codici polari, le loro prestazioni in regime

di lunghezza di blocco finita con decodifica a cancellazioni sequenziali si sono verifi-

cate essere non all’altezza di altre famiglie di codici, quali gli LDPC e i turbo codici.

Molti sforzi sono stati dedicati al miglioramento delle prestazioni in regime di lughezza

di blocco finita per quanto concerne il tasso di errori di pacchetto.

Il presente lavoro, tuttavia, adotta una prospettiva differente. Schemi a feedback ven-

gono usati per ridurre il tasso di errore di pacchetto, accettando per contro un ritardo

moderato nella decodifica. Tre schemi basati sulla cancellazione sequenziale sono pro-

posti e comparati. Per i più promettenti, dei modelli matematici per il ritardo sono

sviluppati, e la loro accuratezza è verificata. Ci focalizzaremo dapprima sul canale bina-

rio a cancellazione, ma estensioni al canale binario a rumore gaussiano bianco additivo

saranno fornite. Deriveremo poi qualche semplice limite sul ritardo.
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Chapter 1

Introduction

Data transmission has become a vital foundation of our society. The amount of data

transmitted in the world per second is barely estimable, and it is experiencing an expo-

nential growth.

Therefore the capability to transmit fast and reliably has become more and more signif-

icant. Channel coding addresses the topic of reliable data transmission. Its purpose is to

maximize both the rate at which information is transmitted and its reliability. From its

origins, with the seminal paper A Mathematical Theory of Communication by Claude E.

Shannon [1], to present days, channel coding has provided a fundamental contribution

into allowing fast data transmission.

The discovery of polar codes by Arikan in 2008 [2] represented a major breakthrough in

coding theory. They are the first class of codes that provably achieve capacity for mem-

oryless symmetric channels with low encoding and decoding complexity. Furthermore,

their explicit construction and recursive structure make them especially suitable for fast

and efficient hardware implementations [3], [4] and [5].

However, despite the great interest they have aroused, their practical impact and appli-

cations still remain quite negligible.

The main reason is that, in spite of the promising asymptotic properties of polar codes,

at finite-length regimes they still perform poorly in comparison to LDPC codes and

turbo code, which also benefit of an additional decade of research and development.

The aim of this Thesis is to provide a way to overcome these weak points. However,

1



1. INTRODUCTION

unlike many proposed solutions whose aim is to mainly improve the packet error rate

for short and moderate block lengths on a single transmission, the novelty of this work

consists in the usage of feedback schemes. We therefore accept the presence of a delay

in information reception, but in exchange we greatly reduce the packet error probabil-

ity.

In confirmation of our choice to use the feedback, its employment has been recently

considered as a way to obtain capacity-achieving polar codes that are able adapt the rate

to a channel that is not fully known [6] [7].

The Thesis is organized as follows:

• Chapter 2 provides a quick introduction to channel coding and an essential overview

of polar codes.

• Chapter 3 deals with the three proposed feedback schemes. They are presented

in an increasing order of complexity and performance.

• Chapter 4 presents the performance of the schemes applied to the binary erasure

channel. Performance measurements are obtained by simulation of the schemes.

• Chapter 5 provides mathematical models for the proposed schemes. These mod-

els are built using the theory of Markov chains. It will also present an analysis of

the accuracy of the models, by comparing them to the simulated results.

• Chapter 6 is an application of the most sophisticated scheme to list decoding of

polar codes. This will allow to evaluate the performance improvement that can be

provided by the use of list decoding.

• Chapter 7 is devoted to the application of the last scheme to the binary additive

white Gaussian noise channel, and its mathematical model.

• Chapter 8 is devoted to the derivation of some simple bounds and asymptotic

behaviors of metrics of interest.

• Chapter 9 draws some conclusions on the work presented in the Thesis, and

suggests some possible future work along its lines.

2



1.1 Notation

We use upper case letters U , X and Y to denote random variables associated respec-

tively to the information, encoded and received symbols. We use lower case letters u, x

and y to denote their realizations.

We use the notation U j
i to denote a row vector of length N whose components are

U j
i = [Ui, Ui+1, ..., Uj] if i ≤ j, or the null vector if j > i, and similarly for Xj

i , Y j
i , uji ,

xji and yji .

We also use notations UN−1
0,e and UN−1

0,o , for N even, to denote the two subvectors of

length N
2 given by the elements of vector UN−1

0 with even and odd indices respectively.

UN−1
0,e = [U0, U2, ..., UN−2]

UN−1
0,o = [U1, U3, ..., UN−1]

(1.1)

1.2 Preliminary Definitions

Matrix F on GF(2) is defined as

F ,
1 0

1 1

 (1.2)

The Kronecker product between a matrix A = (aij), m-by-n, and a matrix B = (bij),

r-by-s, is defined as

A⊗B ,


a11B . . . a1nB

... . . . ...

am1B . . . amnB

 (1.3)

which is a mr-by-ns matrix.

We denote by F⊗n the 2n-by-2n matrix defined recursively as F⊗n = F ⊗ F⊗(n−1) and

F⊗1 = F .

Definition 1.1 The bit-reversal operation over n bits is defined as the operation that

associates to a positive integer 0 ≤ i ≤ 2n − 1 the positive integer 0 ≤ j ≤ 2n − 1
obtained by reversing the binary representation of i over n bits. More formally, bit-

reversal is obtained as follows:

3



1. INTRODUCTION

Algorithm 1 Bit-reversal

1: i = [b0, b1, ..., bn−2, bn−1]2, bk ∈ {0, 1} ∀k = 0, ..., n− 1
2: [b0, b1, ..., bn−2, bn−1]2 → [bn−1, bn−2, ..., b1, b0]2
3: j = [bn−1, bn−2, ..., b1, b0]2

Example 1.1 We want to bit reverse i = 3 over n = 4 bits. We apply the algorithm:

Algorithm 2 Bit-reversal of i = 3 over n = 4 bits

1: i = [0, 0, 1, 1]2
2: [0, 0, 1, 1]2 → [1, 1, 0, 0]2
3: 12 = [1, 1, 0, 0]2

Therefore the bit-reversed of 3 over 4 bits is 12.

We will denote by Bn the permutation matrix that performs on row vectors the bit-

reversal permutation of indices [0, ..., n − 1]. Clearly, B2 = I2 (identity matrix), and

Bn = Bn
−1.

4



Chapter 2

Channel coding and Polar Codes

2.1 Introduction to Channel Coding

U X

Y

u x y

encoding
channel errors

Figure 2.1: symbol encoding and transmission.

Our purpose is to transmit an information symbol (or word) u ∈ U through a channel.

Channel coding [8] is a technique that consists in replacing the information word u ∈ U

with a codeword x ∈ X , which will be the word that will be transmitted through

the channel. The channel introduces some errors, and therefore the receiver receives a

5



2. CHANNEL CODING AND POLAR CODES

word y ∈ Y , as depicted in Fig. 2.1. Decoding then consists in taking the received

word y and associating it with a codeword x̂ ∈ X ⊂ Y1 which is close (according

to some metric) to y. Then, from codeword x̂ the information message û is retrieved.

The association received word-codeword can be thought as a partition of all possible

received words Y into regions, each one associated with only one codeword, that is

Y =
⋃

xi∈X

Rxi (2.1)

and

Rxi ∩Rxj = ∅ ∀i 6= j (2.2)

Since we assume the encoding-decoding map u ↔ x to be bijective, we must have

|U | = |X |.
Words u, x and y can be represented as vectors whose entries are defined on alphabets

U, X and Y respectively, therefore we can write U = UK , X ⊂ XN and Y = YN ,

where K and N are the lengths of the vectors

In this Thesis only binary transmission will be considered, therefore from now on we

will always assume that alphabets U and X are binary, that is, U = X = {0, 1}, which

implies U = {0, 1}K and X ⊂ {0, 1}N , and also |U | = |X | = 2K

If a channel takes binary input, then it is said to be a binary channel.

Channel coding works because the encoding operation introduces some redundancy.

This is obtained by taking N > K, and therefore the space of all possible words has

higher dimension than the space of information words. This means that decision regions

will have dimensionN , whereas information words will have dimensionK. Therefore a

projection is performed. As a consequence, many vectors y of dimension N will be as-

sociated to a single information word. This is the operation that allows error robustness,

and accounts for the forward error correction (FEC) capability of channel coding, that

is the possibility of correcting channel errors directly from the received word, without

need for retransmission.

We stress the fact that the key requirement for FEC capability is not |Y | > |U |, but the

fact than word y (and therefore x) is longer than word u.

1X ⊂ Y or, more generally, X is isomorphic to some subset X ′ of Y

6



We define the rate of the code as

R , K

N
(2.3)

The communication scenario we considered so far is then depicted in Fig. 2.2, where for

the sake of clarity and simplicity we merged into a single block decoder the operations

of decision y→ x̂ and inverse map x̂→ û.

encoder P/S W S/P decoder
u x xi yi y û

Figure 2.2: communication scenario.

The block error probability is defined as

Pe , P[û 6= u] (2.4)

and it is one of the most important metrics that are used to evaluate the performance of

a code.

In information theory words u and x are modeled as random vectors characterized by

some probability mass distributions pY(·) and pX(·). Clearly, since there is a bijection

between u and x, their laws can be derived one from the other. Channel W : X → Y is

characterized by transitions probabilities pY|X(·|·) or fY|X(·|·), depending on whether

the channel has discrete or continuous output. The notation W (·|·) will also be used

to denote the transition probabilities. Channels are always assumed to be memoryless,

which implies pY|X(b|a) = ∏n
i=1 pY |X(bi|ai). In this case, we also write WN to denote

the channelWN : XN → YN obtained byN uses ofW : W (yN1 |xN1 ) = ∏n
i=1 W (yi|xi).

Definition 2.1 The entropy H(X) of random variable X is defined as

H(X) ,
∑
a∈X

pX(a) log2
1

pX(a) (2.5)

if X is discrete, or as

H(X) ,
∫
a∈X

fX(a) log2
1

fX(a)da (2.6)

if it is continuous.
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2. CHANNEL CODING AND POLAR CODES

Definition 2.2 The conditional entropy H(X|Y ) of random variable X given random

variable Y is defined as

H(X|Y ) ,
∑
b∈Y

pY (b)H(X|Y = b)

=
∑
b∈Y

pY (b)
∑
a∈X

pX|Y (a|b) log2
1

pX|Y (a|b)

(2.7)

where probability mass distributions change to probability density functions and sums

to integrals according to whether alphabets are discrete or continuous.

Definition 2.3 Then, mutual information between random variables and Y is defined as

I(X;Y ) , H(X)−H(X|Y )

= H(Y )−H(Y |X)

= I(Y ;X)

(2.8)

Definition 2.4 If xn1 = [x1, ..., xn] and yn1 = [y1, ..., yn] are the codeword and the re-

ceived word respectively at the input and output of memoryless channel W character-

ized by transition probabilities pY|X(yn1 |xn1 ) = ∏n
i=1 pY |X(yi|xi), then the capacity of

channel W is defined as

C , max
pX(x)

I(X;Y ) [bit/channel use] (2.9)

Capacity gives a measure on the maximum information we can transmit reliably trough

a channel in the sense specified by Shannon’s channel coding theorem:

Theorem 2.1 Consider a transmission of information rate R, as defined in eq.2.3, bits

per channel use over a channel W of capacity C, as defined in eq. 2.9, bits per channel

use. Then,

1. if R < C and packet length N is sufficiently large, it is possible to build an

encoder-decoder procedure that makes Pe as small as desired, i.e. that ensures

reliable communications;

8



2. on the converse, if R > C no encoder-decoder procedure can ensure reliable

communications.

Definition 2.5 For a binary discrete memoryless channel (B-DMC), that is a channel

that is memoryless and which has X = X = {0, 1}, it is also customary to define the

symmetric capacity

I(W ) ,
∑
y∈Y

∑
x∈X

1
2W (y|x) log2

W (y|x)
1
2W (y|0) + 1

2W (y|1) (2.10)

which is the mutual information of W by taking independent inputs with uniform dis-

tribution.

Definition 2.6 A B-DMC W is said to be symmetric if there exists a permutation π

operating on Y such that:

1. π=π−1

2. W (π(y)|1) = W (y|0) ∀y ∈ Y

Proposition 2.1 For a symmetric B-DMC the symmetric capacity is equal to its capac-

ity, that is, I(W ) = C

In this work only symmetric channels will be considered, therefore we will mainly use

symmetric capacity I(W ).

For binary memoryless channels capacities are 0 ≤ C, I(W ) ≤ 1.

2.2 Overview of Polar Codes

Polar codes [2] [9] are a novel coding technique invented by Arikan in 2009. It is the

first encoding-decoding scheme that provably achieves capacity with low complexity,

9



2. CHANNEL CODING AND POLAR CODES

namely, Θ(N logN), with block length N ).

2.2.1 Code Construction

The encoding procedure is recursive, and starts by taking two copies of the same B-

DMC channel W : X → Y . The two copies are polarized by combining them in the

way depicted in Fig. 2.3. Ui denotes the uncoded bits, Xi the coded bits and Yi the

+ W

W

U0

U1

X0

X1

Y0

Y1

Figure 2.3: base case.

symbols received by the receiver.

This construction corresponds to matrix operation

X1
0 = U1

0B2F = U1
0F (2.11)

We remark that 2.11 is a linear transformation.

The result of this operation is a new channel W2 : X 2 → Y2, defined by

W2(y0, y1|u0, u1) = W (y0|u0 ⊕ u1)W (y1|u1) (2.12)

Since the transformation of 2.11 is invertible, we have

I(U0, U1;Y0, Y1) = I(X0, X1;Y0, Y1) (2.13)

Furthermore, if U0 and U1 are taken independent and uniformly distributed in {0, 1},
X0 and X1 will also be uniformly distributed and independent. Therefore, by taking

uniform and independent inputs at both sides, we have

I(W2) = I(U0, U1;Y0, Y1) = I(X0, X1;Y0, Y1) = 2I(W ) (2.14)

10



where the last equality follows from the independence of X0 and X1.

From the chain rule and the independence of U0 and U1, we obtain

I(U0, U1;Y0, Y1) = I(U0;Y0, Y1) + I(U1;Y0, Y1, U0) (2.15)

From this decomposition two channels naturally arise, defined as follows:

• W−: X → Y2, U0 7−→ (Y0, Y1), U1 is unknown and treated as noise

• W+: X → Y2 ×X , U1 7−→ (Y0, Y1, U0), U0 is supposed to be known

with

I(W−) = I(U0;Y0, Y1)

I(W+) = I(U1;Y0, Y1, U0)
(2.16)

Channels W+ and W− are called synthetic or virtual channels.

Consistently with the indexing of Fig. 2.3, we adopt the following index convention:

1. indices are from 0 to 2n − 1, with N = 2n

2. index transformation i→ 2i is associated polarization in the − direction

3. index transformation i→ 2i+ 1 is associated to polarization in the + direction

4. successive cancellation starts from index 0 (first bit) and ends at index N − 1 (last

bit)

The channel are characterized by transition probabilities

W−(y0, y1|u0) = W
(0)
2 (y0, y1|u0)

=
∑
u1∈X

1
2W (y0|u0 ⊕ u1)W (y1|u1) = 1

2
∑
u1∈X

W2(y1
0|u1

0)

W+(y0, y1, u0|u1) = W
(1)
2 (y0, y1, u0|u1)

= 1
2W (y0|u0 ⊕ u1)W (y1|u1) = 1

2W2(y1
0|u1

0)

(2.17)

11



2. CHANNEL CODING AND POLAR CODES

Here it can already be intuitively understood where the polarization comes from: it is

clear that channel W− will be worse than W since, in order to know U0, one needs to

know both X0 and X1 (or equivalently U1), whereas in W the knowledge of X0 only

allowed to know U0. U1 is related to Y1 via the uncertainty introduced by channel W ,

and therefore in W− an additional source of uncertainty is introduced with respect to

W . On the other hand, W+ is intuitively better than W . In fact, since by construction

U0 is already known, U1 can be reconstructed if we know X0 or X1, whereas in W the

knowledge of X1 was mandatory to know U1. Therefore in W+ an additional source of

information is introduced with respect to W .

With the index notation previously introduced, it results that bad channels are mostly

located in the first bits.

A more formal justification of polarization is given by eq. 2.18.

I(U1;Y0, Y1, U0) = H(U1)−H(U1|Y0, Y1, U0) ≥ H(U1)−H(U1|Y1) = I(W ) (2.18)

Therefore, using eq. 2.18 and eq. 2.15 the following theorem is obtained:

Theorem 2.2 Let W be a D-BMC and W+ and W− as in eq. 2.16. Then

I(W−) ≤ I(W ) ≤ I(W+) (2.19)

and
I(W−) + I(W+)

2 = I(W ) (2.20)

with I(W−) = I(W ) = I(W+) if and only if I(W ) = 0 or I(W ) = 1

At first glance, the hypothesis of knowing U0 in synthetic channel W+ may seem a bit

artificial and arbitrary, especially, beyond the mere definitions, from a more practical

point of view. In fact, since the purpose of this scheme is to decode a block of bits, for

sure U0 and U1 are not known, and, as we said, channel W− is the worst. Hence, there

will be some error probability on the decoding of U0. Therefore, how can we assume U0

to be known forW+? The reason is that, as we will see later, at the limit forN →∞ U0

will be correctly decoded with probability 1 or 1
2 (which is the same as guessing). If it

12



is 1
2 , then we simply do not put any information in it (that is, the sender and the receiver

agree beforehand on what the value of U0 will be). If it is 1 then for sure we will know

it without errors. Therefore we see that in both cases it is correct to assume that once

we are about to decode U1, U0 is correctly known.

The previous scheme is the founding block, and works for a packet of 2 bits. The

following step, for packets of 4 bits, is shown in Fig. 2.4:

W4

b

b

b

W

W Y2

Y1
V1 X1

V2 X2

W2

b

b

b

W

W Y4

Y3
V3 X3

V4 X4

W2R4

b

b

b

b

b

b

U1

U2

U3

U4

Figure 1.3: The second step of polar transform

(the channel from U1 to Y1, Y2, Y3, Y4) and W
´` (from U2 to Y1, Y2, Y3, Y4, U1). Similarly,

we have applied the same transform on good channels (W`s) and obtained W`´ (from
U3 to Y1, Y2, Y3, Y4, U1, U2) and W

`` (from U4 to Y1, Y2, Y3, Y4, U1, U2, U3).
In general, the nth step of channel combining, corresponding to N “ 2n uses of the

original B-DMC W is shown in Figure 1.4. RN is the reverse shuffle permutation, with
the input output relationship as follows:

Vi “ S2i

Vi`N{2 “ S2i`1, i “ 0, 1, ¨ ¨ ¨ , N{2 ´ 1

It is easy to verify that the mapping U ÞÑ V is linear and hence by induction the
overall mapping from U to the input of raw vector channel WN : XN ÝÑ YN is linear.
For the time being, we just denote this transform byGN and the input output relationship
by x “ GNu. Later, we will derive explicit formula for GN .

We defined the n level channel combining by a linear transform on the vector of
channel input and derived the super channel WN : XN ÝÑ YN as

WN py|uq “ WN py|GNuq . (1.18)

Extending the single step procedure, we can forge N “ 2n binary-input channels
W

piq
N : X ÝÑ YN ˆ X i, i “ 0, 1, ¨ ¨ ¨ , N ´ 1 out of the super channel WN as follows:

W
piq
N

`
y,ui´1

0 |ui
˘
,

ÿ

uN´1
i`1 PXN´i

1

2N´iWN py|uq . (1.19)

8

Figure 2.4: code construction for n=2.

The extension to packets of N bits is done recursively, using the scheme in Fig. 2.5,

which exemplifies the recursion (WN/2,WN/2)→ WN . In Fig. 2.5 matrix RN performs

the reshuffle operation by splitting vector SN−1
0 into two vectors V N/2−1

0 = SN−1
0,e and

V N−1
N/2 = SN−1

0,o .

The encoding relation can be written as xN−1
0 = uN−1

0 GN , where matrix GN can be

decomposed as the product GN = BNF
⊗n for N = 2n.
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2. CHANNEL CODING AND POLAR CODES

WN

WN{2

b

b

b

b

WN{2

b

b

b

b

Y0

Y1

...

YN
2

´2

YN
2

´1

YN
2

YN
2

`1

...

YN´2

YN´1

b

b

b

b

b

b

b

b

b

b

...

b

b

b

b

...

b

b

V0

V1

VN
2

´2

VN
2

´1

VN
2

VN
2

`1

VN´2

VN´1

b

b

b

b

b

b

b

b

RN

b

...

b

b

...

b

U0

U1

...

UN
2

´2

UN
2

´1

UN
2

UN
2

`1

...

UN´2

UN´1

S0

S1

SN
2

´2

SN
2

´1

SN
2

SN
2

`1

SN´2

SN´1

Figure 1.4: n steps of channel combining corresponding to N “ 2n uses of W

9

Figure 2.5: recursive code construction.

Hence, we have

xN−1
0 = uN−1

0 BNF
⊗n (2.21)
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The relationship between channels WN and WN is a generalization of eq. 2.12:

WN(yN−1
0 |uN−1

0 ) = WN(yN−1
0 |xN−1

0 ) = WN(yN−1
0 |uN−1

0 GN) (2.22)

An important remark is necessary: from equation 2.21 one can see that the encoding re-

lation can be thought as performed on a vector ũN−1
0 = uN−1

0 BN , which is a bit-reversal

of some other vector uN−1
0 . Therefore, it is clear that since it is the application of a

permutation, bit-reversal is irrelevant from the point of view of performance evaluation,

and hence it can be neglected. This is also true for simulations where, since the code is

linear, in order to save computations the all-0s codeword is considered, and the encod-

ing operations are skipped.

If we just apply matrix F⊗n, what we obtain, for n = 3, is shown in Fig. 2.6.

+ + + W

+ + W

+ + W

+ W

+ + W

+ W

+ W

W

U0 X0 Y0

U1 X1 Y1

U2 X2 Y2

U3 X3 Y3

U4 X4 Y4

U5 X5 Y5

U6 X6 Y6

U7 X7 Y7

Figure 2.6: N=8.

Polarized synthetic channels W (i)
N : X → YN × X i−1 for 0 ≤ i ≤ N − 1 are obtained

from WN as

W
(i)
N (yN−1

0 , ui−1
0 |ui) ,

∑
uN−1
i+1 ∈XN−i

1
2N−1WN(yN−1

0 |uN−1
0 ) (2.23)

One can also compute W (2i)
N and W (2i+1)

N by generalizing eqs. 2.17 to W (i)
N/2, which cor-

respond to the − and + operations. This makes clearer the recursive nature of channel
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2. CHANNEL CODING AND POLAR CODES

polarization. The result is eqs. 2.24.

W
(2i)
N (yN−1

0 , u2i−1
0 |u2i)

=1
2
∑
u2i+1

W
(i)
N/2(yN/2

0 , u2i−1
0,o |u2i+1)W (i)

N/2(yN−1
N/2 , u

2i−1
0,e ⊕ u2i−1

0,o |u2i ⊕ u2i+1)

W
(2i+1)
N (yN−1

0 , u2i
0 |u2i+1)

=1
2W

(i)
N/2(yN/2−1

0 , u2i−1
0,o |u2i+1)W (i)

N/2(yN−1
N/2 , u

2i−1
0,e ⊕ u2i−1

0,o |u2i ⊕ u2i+1)

(2.24)

for i = 0, ..., N/2− 1.

The properties of symmetric capacity apply to the generic recursive step, namely

I(W (2i)
N ) ≤ I(W (i)

N/2) ≤ I(W (2i+1)
N )

I(W (2i)
N ) + I(W (2i+1)

N ) = 2I(W (i)
N/2)

(2.25)

Therefore also conservation of total information applies:

N−1∑
i=0

I(W (i)
N ) = NI(W ) (2.26)

The fundamental property of polar codes is the following.

Theorem 2.3 For any B-DMC W , channels {W (i)
N }i=0,...,N−1 polarize in the sense that,

∀δ ∈]0, 1[ fixed,

lim
N→∞

|Gδ|
N

= I(W )

lim
N→∞

|Bδ|
N

= 1− I(W )
(2.27)

where

Gδ , {W (i)
N |I(W (i)

N ) > 1− δ} is the set of “good” channels

Bδ , {W (i)
N |I(W (i)

N ) < δ} is the set of “bad” channels
(2.28)

Clearly, I(W ) = 0 denotes a useless (pure noise) channel, and and I(W ) = 1 means

that the channel is perfect (no errors are introduced by the channel).
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2.2.2 Encoding

A crucial quantity for our analysis will be the so-called Bhattacharyya parameter of

channel W , which will be denoted by Z(W ).

Definition 2.7 The Bhattacharyya parameter of channel W is defined as

Z(W ) ,
∑
y∈Y

√
W (y|0)W (y|1) (2.29)

It is 0 ≤ Z(W ) ≤ 1. The reason of its importance is that Z(W (i)
N ) gives an upper bound

on the bit error probability with SC (i.e., given that all previous bits are known) at bit i

and on the ML decision error probability for uncoded bits.

In the particular case of a BEC it gives exactly the probability of error with SC.

Therefore, the Bhattacharyya parameter is used as a measure of the reliability of the

channel. In particular, Z(W ) = 1 ⇔ I(W ) = 0, that is the channel is useless (pure

noise), and Z(W ) = 0 ⇔ I(W ) = 1, i.e., the channel is perfect (no errors are intro-

duced by the channel).

Furthermore, the Bhattacharyya parameter behaves, under polarization transformations

(i.e., operations + and −), in a similar way as the symmetric capacity. In particular,

Z(W+) = Z(W )2 (2.30a)

Z(W−) ≤ 2Z(W )− Z(W )2 (2.30b)

Z(W+) ≤ Z(W ) ≤ Z(W−) (2.30c)

and in general

Z(W (2i+1)
N ) = Z(W (i)

N/2)2 (2.31a)

Z(W (2i)
N ) ≤ 2Z(W (i)

N/2)− Z(W (i)
N/2)2 (2.31b)

N−1∑
i=0

Z(W (i)
N ) ≤ NZ(W ) (2.31c)

In the sense of eq.2.31c we can say that polarization improves reliability.

Then, the encoding procedure is as follows: given a block size N = 2n for some n
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2. CHANNEL CODING AND POLAR CODES

and a rate R, the RN (clearly this quantity must be made integer, e.g., by rounding it to

nearest integer, or by taking the floor or the ceiling) channels with lowest Bhattacharyya

parameter are selected. These are the channels that will carry information, whereas the

others will be frozen, i.e., no information bit is sent through them (for the sake of clarity,

it can be assumed that frozen bits will be set to 0).

Theorem 2.3 implies that for N → ∞, I(W )N channels will be perfect and (1 −
I(W ))N will be useless, therefore the code achieves capacity.

2.2.3 BEC

For the binary erasure channel some interesting simplifications occur.

Firs of all, inequality in eq. 2.30b becomes an equality, which allows to recursively and

exactly compute all Bhattacharyya parameters of the virtual channels. Moreover, if W

is a BEC(ε),

Z(W ) = ε (2.32)

and therefore

I(W ) = 1− ε = 1− Z(W ) (2.33)

W+ and W− will also be BECs with parameters

Z(W+) = ε+ = Z(W )2 = ε2

Z(W−) = ε− = 2Z(W )− Z(W )2 = 2ε− ε2
(2.34)

We also remark that equality in eq. 2.30b implies

Z(W+) + Z(W−) = 2Z(W ) (2.35)

This extends to any recursion step:

Z(W (2i)
N ) = 2Z(W (i)

N/2)− Z(W (i)
N/2)2 (2.36a)

Z(W (2i+1)
N ) = Z(W (i)

N/2)2 (2.36b)
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which implies
N−1∑
i=0

Z(W (i)
N ) = NZ(W ) = Nε (2.37)

The fact that for the BEC Z(W ) and I(W ) can be determined exactly one from the

other, and that these quantities can be exactly determined for all virtual channels, is the

reason why the BEC is often taken as a model to study polar codes.

In Fig.2.7 the fraction of channels that have symmetric capacity I(W (i)
N ) ∈ [δ, 1 − δ]

(middle channels) or I(W (i)
N ) > 1− δ (good channels) is shown. The bad channels are

clearly the remaining ones. The polarization is clearly visible, and, in addition, we get

that the speed of polarization is exponentially fast, which is proven in [2].

In Fig. 2.8 the values of I(W (i)
N ) for i = 0, ..., 2n − 1 at various n are depicted. The

polarization process is clearly visible.
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Figure 2.7: fraction of good and middle channels for δ = 10−3.
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Figure 2.8: distribution of I(W (i)
N ) for various n.

An important remark can be made: it is not the absolute number of middle channels that

decreases. In fact, it increases sublinearly in N since the fraction must tend to 0, but

still increases to∞.
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2.2.4 Decoding

The decoding scheme that allows to achieve capacity with low complexity, namely

Θ(N logN), is successive cancellation (SC). It consists in successively decoding all

bits of the packets starting from the first to the last one, and using for the decoding of a

bit also the results obtained by decoding all the previous ones. The decoding procedure

is based on the LRs (likelihood ratio) of the channels associated to the received bits.

Definition 2.8 The LR of the i-th synthetic channel W (i)
n is defined as

L̃
(i)
N (yN−1

0 , ûi−1
0 ) , W (i)

n (yN−1
0 , ûi−1

0 |ui = 0)
W

(i)
n (yN−1

0 , ûi−1
0 |ui = 1)

(2.38)

Definition 2.9 The LLR (log-likelihood ratio) of the i-th synthetic channel W (i)
n is de-

fined as

L(i)
n , ln

(
L̃

(i)
N (yN−1

0 , ûi−1
0 )

)
(2.39)

where n = log2N , i is the index of the considered channel, and ûi−1
0 are the bits previ-

ously decoded in SC.

Then, the decision on bit i is

ûi =



ui if ui is frozen

0 if L(i)
n > 0

1 if L(i)
n < 0

ber(1
2) if L(i)

n = 0

(2.40)

Successive cancellation is given in Algorithm 3. Note that these LRs are associated

to the synthetic channels, and therefore their computation, is not straightforward. We

focus now on an algorithm that allows to compute these quantities with complexity

O(N logN). The key ideas is that the LRs can be computed recursively.

In fact, we have that

L̃
(2i)
N (yN−1

0 , ûi0) =
1 + L̃

(i)
N/2(yN/2−1

0 , û2i−1
0,e ⊕ û2i−1

0,o )L̃(i)
N/2(yN−1

N/2 , û
2i−1
0,o )

L̃
(i)
N/2(yN/2−1

0 , û2i−1
0,e ⊕ û2i−1

0,o ) + L̃
(i)
N/2(yN−1

N/2 , û
2i−1
0,o )

(2.41a)
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2. CHANNEL CODING AND POLAR CODES

Algorithm 3 SC decoding

1: for all i ∈ {0, ..., N − 1} do
2: compute L(i)

n

3: if i is frozen then
4: ûi ← ui

5: else
6: if L(i)

n > 0 then
7: ûi ← 0
8: else if L(i)

n < 0 then
9: ûi ← 1

10: else
11: ûi = ber(1

2)
return ûN−1

0

L̃
(2i+1)
N (yN−1

0 , ûi0) = L̃
(i)
N/2(yN/2−1

0 , û2i−1
0,e ⊕ û2i−1

0,o )1−2û2iL̃
(i)
N/2(yN−1

N/2 , û
2i−1
0,o ) (2.41b)

A more algorithmic approach, which does not require bit reshuffle and uses LLRs, is

given (see [2] and [3] ) by the following equations:

L(2i)
s = f−(L(2i−[i mod 2s−1])

s−1 , L
(2s−1+2i−[i mod 2s−1])
s−1 ) (2.42a)

L(2i+1)
s = f+(L(2i−[i mod 2s−1])

s−1 , L
(2s−1+2i−[i mod 2s−1])
s−1 , u(2i)

s ) (2.42b)

for s = n, n− 1, ..., 1, and 0 ≤ i ≤ 2n−1 − 1 and

L
(i)
0 , ln W (yi|0)

W (yi|1) (2.43)

0 ≤ i ≤ 2n − 1 are the channel LLRs, i.e., the ones we can directly compute using the

observation of the received symbols and the definition of the original channel W .

Functions f− and f+ are defined as follows:

f−(x, y) , ln e
x+y + 1
ex + ey

(2.44)

f+(x, y, u) , (−1)ux+ y (2.45)

and starting from u(i)
n , ûi, we compute quantities

u
(2i−[i mod 2s−1])
s−1 , u(2i)

s ⊕ u(2i+1)
s (2.46)
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u
(2s−1+2i−[i mod 2s−1])
s−1 , u(2i+1)

s (2.47)

In Fig. 2.9, taken from [10], a graphical representation of the recursions is shown.
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Figure 2.9: The butterfly computational structure of the SC decoder for n = 3; blue

and orange arrows show f− and f+ updates respectively.

We remark that in the particular case of a BEC, since L(i)
n ∈ {0,±∞} ∀i = 0, ..., 2n−1,

the SC can fail for the first time at bit i (i.e., we can have a decoding error in i given that

all previous bits have been correctly decoded) if and only if L(i)
n = 0. This means that

if L(i)
n 6= 0 ∀i = 0, ..., 2n − 1 for sure there will not be any decoding error.

This is clearly not true in general, since we may have some bits for which L(i)
n > 0 finite

but ûi = 1, which implies a decoding error.

We note that in Algorithm 3 first we compute L(i)
n and then we evaluate if bit i is frozen

or not. Therefore, it may seem that, in case bit i is frozen, L(i)
n is computed and then

thrown away, wasting the computational effort employed to determine L(i)
n . However, it

turns out (and it is also pretty intuitive) that, given the set of frozen bits, the computa-

tional effort necessary to determine those information bits for which the computation of

L(i)
n could be avoided is the same (or even bigger) as the effort used to compute directly

all L(i)
n and throw away those corresponding to information bits.

23



2. CHANNEL CODING AND POLAR CODES

2.2.5 Performance

A packet is erroneous if at least one of the bits is erroneously decoded. Therefore the

packet error event E is included in the union of events Ei, which is the event correspond-

ing to a decoding error at bit i. Hence,

E ⊂
⋃
i∈A
Ei (2.48)

whereA is the set of nonfrozen bits (and consequentlyAc is the set of frozen bits), since

a decoding error can only happen at a nonfrozen bit.

The Bhattacharyya parameter gives an upper bound on the decoding error probability at

bit i, i.e.,

P(Ei) ≤ Z(W (i)
N ) (2.49)

Using the union bound, we obtain

Pe = P(E) ≤ P(
⋃
i∈A
Ei) ≤

∑
i∈A
P(Ei) ≤

∑
i∈A

Z(W (i)
N ) (2.50)

Clearly, if a decoding error for a bit occurs, then the whole packet is erroneous. There-

fore,

Ei ⊂ E (2.51)

which implies

P(Ei) ≤ P(E) (2.52)

and

max
i∈A

P(Ei) ≤ P(E) (2.53)

For the BEC,

P(Ei) = Z(W (i)
N ) (2.54)

if we pessimistically consider than a decoding error happens when an erasure happens

at information bit i. In practice, as stated in 8.7, in case of erasure, one can “flip a coin”.

However, the considerations are analogous. Then, using eq. 2.53 we have

max
i∈A

Z(W (i)
N ) = max

i∈A
P(Ei) ≤ P(E) (2.55)
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and therefore

max
i∈A

Z(W (i)
N ) ≤ Pe ≤

∑
i∈A

Z(W (i)
N ) (2.56)

However, a (looser) lower bound is available in general for any B-DMC:

max
i∈A

1
2

(
1−

√
1− Z(W (i)

N )2
)
≤ Pe (2.57)

and therefore for any B-DMC we have

max
i∈A

1
2

(
1−

√
1− Z(W (i)

N )2
)
≤ Pe ≤

∑
i∈A

Z(W (i)
N ) (2.58)

From this inequalities it can be derived the following theorem.

Theorem 2.4 Consider a symmetric B-DMC W and a fixed rate R < I(W ). Then

Pe(N,R,A,uAc) = o(2−Nβ) (2.59)

for any β < 1
2 , where set A contains the best channels for rate R, and frozen bits uAc

are arbitrarily fixed.

Therefore the error probability scales roughly as 2−
√
N .

A more refined result has been derived in [11]:

Pe = 2−2
n
2 +
√
nQ−1( R

I(W ))+o(
√
n)

(2.60)

where n = log2 N and

Q(t) , 1√
2π

∫ +∞

t
e−

z2
2 dz (2.61)

These results are valid for a fixed rate R < I(W ), that is, in what is called the error

exponent regime.

It is also interesting to see what happens if the error probability Pe is fixed and the rate

varies. This is called the scaling exponent regime, and we have the following theorem

[11] [12].
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2. CHANNEL CODING AND POLAR CODES

Theorem 2.5 Let W be a D-BMC. If we require

∑
i∈A

Z(W (i)
N ) ≤ Pe (2.62)

for a fixed Pe > 0, then

N = Θ
(

1
(I(W )−R)µ

)
(2.63)

for any rate R < I(w), and where 3.579 ≤ µ ≤ 4.714 for any symmetric B-DMC, and

in particular µ = 3.6325 for the BEC. µ is called scaling exponent of the code.

Definition 2.10 In general we say that a scaling law holds for the error probability

Pe(N,R,W ) of a capacity-achieving code if there exists a function, called mother

curve, and a constant µ > 0, called scaling exponent, such that

lim
N→∞ : N1/µ(I(W )−R)=z

Pe(N,R,W ) = f(z) (2.64)

In Fig. 2.10 we show the results of simulations of the error probability for a BAWGNC

of rate R = 1
2 for various block lengths. Since the channel is Gaussian, its estimation is

necessary (see section 7.1.2). In order to evaluate the error probability of the code itself,

and minimize the error due to channel estimation,the channel is estimated at each SNR

Γ = ρEb
N0

= Eb
N0

= 1
σ2
w

. To evaluate the performance, we compute the capacity of the

channel using eq. A.3, and we obtain Table 2.1. We see that the results are quite poor,

since, in order to achieve Pe = 10−7 for n = 12, we must have Eb
N0
≈ 3.25 ⇒ I(W ) =

0.7397. Therefore our rate is still far from the channel capacity. It is also confirmed by

comparison with bounds given in [13].

Other performance measurements can be found in [2] and [9]. This is the main drawback

of polar codes: in spite of being provably capacity-achieving with low complexity, the

finite-length performance with SC decoding are quite poor. For n ∼ 15 they are still

outperformed by LDPC and turbo codes. In order to really become competitive in terms

of error probability, one must increase n to values of n ∼ 20 or n ∼ 30. But at such

high values of n (which per se are impractical for many applications, such as mobile

transmissions, since they imply packet sizes of the order of the Mbits) the encoding and
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Figure 2.10: channel estimated at each SNR.

decoding processes are very time-consuming.

From these considerations, the necessity of additional techniques to improve the finite-

length performance of polar codes emerges.
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2. CHANNEL CODING AND POLAR CODES

Table 2.1: capacities for BAWGNC.

Eb
N0

[dB] σ2
w I(W ) [bit/ch. use]

0.00 1.0000 0.4860

0.25 0.9441 0.5048

0.50 0.8913 0.5239

0.75 0.8414 0.5432

1.00 0.7943 0.5628

1.25 0.7499 0.5825

1.50 0.7079 0.6023

1.75 0.6683 0.6222

2.00 0.6310 0.6422

2.25 0.5957 0.6620

2.50 0.5623 0.6817

2.75 0.5309 0.7013

3.00 0.5012 0.7206

3.25 0.4732 0.7397

3.50 0.4467 0.7584

3.75 0.4217 0.7766

4.00 0.3981 0.7943

4.25 0.3758 0.8115

4.50 0.3548 0.8281

4.75 0.3350 0.8440

5.00 0.3162 0.8592

5.25 0.2985 0.8736

28



Chapter 3

Feedback Schemes

3.1 Introduction

In this work we will consider mainly the BEC with erasure probability ε = 1
2 . The

code and the rate R (i.e., the number and indices of the frozen channels) are fixed for

the whole transmission, and the packet length N = 2n is also fixed. The number of

information bits, denoted by K, is given by some integer approximation of RN .

In order to simplify the system we also consider the case of full feedback, that is, the

sender knows exactly what the receiver received. In appendix B some considerations

will be made on the non-full feedback case. The reason of the choice of the binary

erasure channel is that it allows some simplifications. First of all, the Bhattacharyya

parameters can be computed exactly, and therefore we are able to eliminate the errors

introduced by the channel estimation. Moreover, for the BEC successive cancellation

is simpler, since the LLRs take value in {±∞, 0}, and therefore the receiver knows for

sure the first bit at which the SC decoder fails, which is in general not the case.

Note that the term error in this context indicates an error on the information bits, not on

the received symbols. Therefore it is a synonym of genie help and genie aid (see section

3.2.1).
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3. FEEDBACK SCHEMES

3.2 Schemes

3.2.1 General Setting

We introduce now the different schemes we developed in order to improve the finite-

length performance of polar codes. These schemes are presented in an increasing level

of complexity and efficiency (in the sense of how many bits are retransmitted for a given

error pattern in order to decode a certain packet). Clearly, if a packet has no errors, then

it is immediately decoded, and no retransmission scheme is needed.

A common way of seeing this system is to think of genie-aided SC decoding. We con-

sider a BEC. Each time the receiver is unable to decode a bit (since it is a BEC, this is

known a priori), it invokes the help of a genie, which provides a genie help (or genie

aid), consisting in the correct bit that should be put at the position where the SC de-

coder got stuck. Hence, the SC decoder is able to correctly proceed, until it halts again

because it is unable to decode. It will then invoke the next genie help, and so on until

the end of the packet, that will therefore be entirely decoded.

Algorithm 4 shows the genie-aided SC decoder, where gi is the genie aid for bit i and is

found by the receiver in the following packet.

From a practical point of view, what happens is that the sender, which knows exactly

what the receiver receives, tries to decode the received packet. Each time the SC de-

coder fails, the sender, which obviously knows the correct bits (since it is the packet it

just sent), uses the corresponding correct bit to allow the SC decoder to go on in the

decoding process, and records it, until the end of the packet. Note that it is thanks to the

full-feedback that we are able to put all the genie helps regarding packet i into packet

i + 1. In fact, if only the received packet is available, by using SC decoder we are

able to know only the position of the first genie aid, since nothing can be said about the

subsequent bits. This is precisely why we speak of successive cancellation: in order to

decode a bit, we must have already decoded all the previous ones, and if we are unable

to decode a bit, we cannot decode the successive ones. We could certainly guess, but

since SC uses the already decoded bits to decode the new ones, the result is that decod-

ing errors propagate. This means that if an error occurs at some bit, the decoding error

probability for the subsequent bits will significantly increase. At the following error, it
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Algorithm 4 Genie-aided SC decoding

1: for all i ∈ {0, ..., N − 1} do
2: compute L(i)

n

3: if i is frozen then
4: ûi ← ui

5: else
6: if L(i)

n > 0 then
7: ûi ← 0
8: else if L(i)

n < 0 then
9: ûi ← 1

10: else
11: ûi ← gi = ui

return ûN−1
0

will increase again, in a sort of “cascade effect”. Moreover, the bit most likely to be

wrong are at the beginning. Therefore decoding by guessing is not a practically viable

option.

In general, all genie aids used for the decoding of packet i will be put by the sender

(which knows what the receiver received because of the full feedback hypothesis) at the

beginning of packet i + 1, in the same order as they were invoked in packet i (i.e., the

first genie help used to decode packet i will be the first retransmitted bit of packet i+1).

Then, genie aids for packet i+ 1 will be put at the beginning of packet i+ 2, and so on.

The reason why we choose to put them at the beginning is to take advantage of the suc-

cessive cancellation decoding, which allows to use the information we decode until the

first error occurs, without having to wait for the whole packet to be decoded. However,

on the other hand, it is also true that in general the first bits are the ones with highest

probability to be incorrectly decoded.

When the receiver decodes a bit that corresponds to a genie help, we say that that genie

help (or error) has been resolved. Then, the receiver resolves the j-th genie help of

packet i, with j = 0, ...,M − 1 and M ≤ K total number of genie helps, using the j-th

unfrozen bit of packet i+ 1.

All the proposed schemes decode the received packets by preserving the arrival order,
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3. FEEDBACK SCHEMES

that is, if packet s arrives before packet t, then it will also be completely decoded before

packet t, or at most at the same time.

3.2.2 Metrics of Interest

These schemes, for the BEC, manage to get packet error probability Pe = 0. On the

other hand we allow for some average delay D (which in the limit may even be ∞),

that is measured as the number of additional packets that must be received in order

to successfully decode a given packet (that is, if a packet is received and successfully

decoded at reception, it has delay D = 0). We also allow for rate reduction because

of the retransmitted bits, which do not carry any useful information. This naturally

introduces the notion of effective rate Reff . The aim is to develop a scheme that does

not make D excessively big or Reff excessively small (for the application of interest).

These are therefore the two main design parameters, and the metrics we are interested

to study. If we denote by K the number of informative bits, then the average effective

rate is

Reff = K −M
N

= R− M

N
(3.1)

where M is the average number of retransmitted bit (which is equal to the average num-

ber of genie helps) per packet, and R = K
N

is the “true” nominal rate.

We remark that, strictly speaking, in the computation of the effective rate one should

also consider the fact that, for a nonzero average delay, there will always be some un-

coded packets still pending in the decoding queue once the transmission has finished.

A way to solve this problem is to pad the transmission by adding empty packets (e.g.,

packets of all 0’s) after the last useful packet (packet that carries information) until the

decoding queue is emptied and all useful packets have been decoded. Clearly, this sys-

tem causes an overall rate reduction. In fact, the new effective rate becomes

R′eff = q(K −M)
(q + cD)N (3.2)

where q is the number of packets carrying information bits and cD is the number of

padding packets, which is linear in the delay, according to some constant c > 0 which

accounts for the delay variance. The numerator is the same since the number of infor-
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mation bits does not change. By taking the inverse, we get

1
R′eff

= 1
Reff

+ cDN

q(K −M) (3.3)

where the last term accounts for the rate reduction due to padding. However, we see that

for for q → ∞, cDN
q(K−M) → 0 and hence R′eff ⇒ Reff . Therefore, we will assume that

our transmission will consist of a number of information packets big enough to make

this rate reduction negligible.

Measurability of the Delay

We define ei the random vector associated to the number and position of errors in packet

i (e.g., a vector of 0’s and 1’s according to the position of the errors in the packet), and

we consider the random process {ej}j≥i. Clearly, this process depends only on the

channel, which is supposed memoryless and always identical, and therefore ei are i.i.d.

random vectors. Moreover it is clear that the delay Di associated to packet i depends

solely on this error process from packet i on. Hence, we can write

Di = f(ei, ei+1, ...) (3.4)

and

Di+1 = f(ei+1, ei+2, ...) (3.5)

for some function f . This clearly shows that Di and Di+1 are not independent, but since

ei are i.i.d., this implies that Di and Di+1 are identically distributed, and in particular

they have same mean and variance. Then, under the assumption that Cov(Di, Dj)→ 0
as |j − i| → ∞ (which is reasonable since intuitively the delays associated to packets

distant in time are less dependent), the weak law of large numbers holds (see [14]),

which justifies the correctness of the empirical mean.

For what it concerns the delay associated to information bits, we consider that bits are

decoded only when the whole packet is decoded. Then, since each information bit is

associated to one and only one packet, we empirically evaluate the quantity∑
imiDi∑
imi

(3.6)
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3. FEEDBACK SCHEMES

where mi is the number of information bits associated to packet i (in this case we con-

sider that a packet is decoded as a whole, and therefore the delay of a bit is the delay

of the packet to which it belongs). But if we expand each term miDi = Di + ...+Di︸ ︷︷ ︸
mi times

we still get a sequence that satisfies the previous hypothesis, and therefore we still get

convergence in probability to the same average E[D].
If instead we consider that decoding and information retrieval can be performed bit-

wise, then E[D] represents an upper bound to the average delay before decoding each

bit, since it is the maximum delay associated to bits of the same packet. Mathematically,

if we call h(m) the function that associates to bit m its delay before decoding, then we

are partitioning all information bits into intervals (corresponding to packets) and we are

considering function g(m) , max{h(k) : k ∈ Im}, where Im is the interval (packet) to

which bit m belongs. g(m) is the delay associated to decoding of packet m and there-

fore, as stated before, the average of g is E[D], and clearly by definition g ≥ h. Hence,

the average of h is smaller or equal than E[D].

Measurability of the Effective Rate

Reff is determined by the genie distribution of each packet, which is in turn determined

by the erasure pattern on the received bits. The erasure patterns, that is, the joint proba-

bility of erasures at different bits, for different packets are independent (since the chan-

nel is memoryless), and identically distributed. Therefore the number of genie helps in

different packets are i.i.d. random variables with finite mean and variance, and the laws

of large numbers straightforwardly applies.

3.2.3 Scheme I

The first and simplest scheme consists in putting into a buffer (decoding queue) all

packets that have at least one error, and decode all of them as soon as we receive a

packet without errors, i.e., a packet that we are able to fully decode at reception. In fact,

in such a case, the genie resolution propagates from a packet to the previous one, and so

on, and all packets are decoded completely.
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3.2.4 Scheme II

A more complex system consists in successfully decoding packet i if all the bits of

packet i+ 1 that correspond to retransmitted bits of packet i are successfully decoded.

Otherwise, we put packet i in a buffer, and wait until for a packet j > i + 1 the first

error occurs after the retransmitted bits. In this case, we are able to completely decode

packet j − 1, but this allows to decode packet j − 2 and so on until packet i.

For the algorithm, we need a variable, previous genie helps, that keeps track of

how many bits of the current packet are bits retransmitted, corresponding to the genie

helps of the previous packet.

Algorithm 5 scheme II
1: for all current packet i do
2: t← number of bits successfully decoded

3: if no genie helps needed to decode packet i then
4: decode packet i and all packets in the buffer

5: empty buffer and compute metrics for decoded packets

6: else if previous genie helps≤ t then
7: decode all packets in the buffer

8: compute metrics

9: put packet i in the buffer

10: else
11: previous genie helps ← total number of genie helps necessary to

completely decode packet i

12: put packet i in the buffer

3.2.5 Scheme III

By carefully considering the previous feedback scheme, we see that there is an ineffi-

ciency. In fact, in order to decode packet i, we wait until we are able to completely

decode a packet, but this is not necessary, since in order to decode packet i we only
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need to decode, in packet j, only those bits that are linked to errors in packet i. As an

example, consider the case in which there are, let us say, 10 genie helps in packet i.

Then, in packet i+ 1 the first 10 bits will be retrasmitted bits referring to packet i. Now,

let us suppose that in packet i+ 1 2 errors (genie helps) occur: one involving one of the

10 retransmitted bits and the other not involving these bits. Then, in packet i+2 we will

have the first 2 bits that are retrasmitted bits of packet i + 1. With the previous system,

we decode packet i and i + 1, at the same time, if and only if possible errors on packet

i+ 2 involve only bits from the third one on. Otherwise, we are obliged to wait at least

for the reception of packet i+ 3. But suppose the second bit is erroneous, while the first

one is not, that is, we are able to decode only the first bit. This first bit, however, allows

to correct the first error of packet i + 1, which was the only error involving the 10 bits

of packet i+ 1 referring to packet i. Hence, by using the first bit of packet i+ 2 we are

able to successfully decode the first 10 bits of packet i + 1, which makes possible the

successful decoding of packet i, without waiting for packet i + 3. This is the rationale

behind this last feedback scheme.

In Algorithm 6 we use a stack S to store data for each packet, namely its progressive

number (to compute the delay) d, the position where the SC decoder got stuck (position

of the missing genie help) p and a counter which counts the number of genie helps used

for that packet g.

Algorithm 6 is as seen by the receiver. It is inefficient, but has the advantage of being

clear and intuitive.

For the simulations, a much more efficient and faster algorithm is employed, which

takes advantage of the full feedback (therefore for each packet we immediately know

the positions of all genie aids). The idea is to keep track of how many genie helps at any

instant still remain to be resolved in each packet before completely decoding it. This

metric is updated at each new packet received for all packets still in the buffer. For this

purpose we can use an array bits needed(i), which gives how many genie helps

at each instant still need to be resolved to completely decode packet i, built using infor-

mation returned by the SC decoder.
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Algorithm 6 scheme III Receiver
1: i = 0
2: while 1 do
3: j = 0
4: g = 0
5: d = i

6: while j ≤ 2n − 1 do
7: try decode bit j of packet i

8: if decoding is successful then
9: DECODE(ûj ,i)

10: j ← j + 1
11: else
12: put packet i into stack S : p← j, g ← g + 1
13: j ← 2n + 1

14: if j = 2n then
15: store g and delay = i− d

16: i← i+ 1

Optimality of Scheme III

One can think of some simple cases where schemes I and II fail (that is, they yield

an infinite delay), whereas scheme III succeeds. Consider the following example: all

packets need exactly two genie helps at the second and third information bits, that is,

for each packet we are able to immediately decode only one bit. Schemes I and II

never decode any packet, whereas scheme III successfully decode all of them with delay

D = 2.

In general, scheme III satisfies the following property.

Proposition 3.1 Let us assume that an infinite number of packets is transmitted. Then,

necessary condition for a packet i to never be decoded is that from some packet j ≥ i

on, all packets have no bits successfully decoded, i.e., the first genie help is needed at

the first information bit.
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Algorithm 7 DECODE procedure for Algorithm 6
1: procedure DECODE(û,t)

2: if S = ∅ then return
3: else
4: take top packet from S : this is current packet

5: l← g

6: use û to resolve bit ûl
7: decode(ûl)

8: l← l + 1
9: while l ≤ 2n do

10: try decode bit l of current packet

11: if decoding is successful then
12: decode(ûl)

13: l← l + 1
14: else
15: put current packet into stack S : p← l, g ← g + 1
16: l← 2n + 1
17: if j = 2n then
18: store metrics g and delay = i− d

Proof 3.1 Let us suppose that we are able to decode at least one bit for some packet

j ≥ i. Then, referring to Algorithm 8, in line 7 we have t ≥ 1. Therefore, either packet

j−1 is completely decoded, or t genie helps are resolved. Each genie help corresponds

to one bit still not decoded, therefore resolving t genie helps in packet j − 1 means that

at least t ≥ 1 additional bits are successfully decoded in packet j − 1, and therefore

in line 15 bits needed(j) strictly decreases. Moreover, in line 16 we have t ≥ 1.

We can repeat the reasoning until we arrive to packet i, for which too we have that

bits needed(i) strictly decreases.

Now, by contradiction, since the number of transmitted packets is infinite, and there

exists no packet j ≥ i such that the condition of the theorem holds, there is an infinite

number of packets for which at least one bit is successfully decoded. Hence, we can
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Algorithm 8 scheme III simulation
1: for all current packet i do
2: if packet i completely decoded then
3: empty buffer and compute metrics for decoded packets

4: else
5: put packet i at the end of the buffer

6: bits needed(i)← genie invocations necessary to completely decode

packet i

7: t← bits successfully decoded in packet i

8: for all packets j in the buffer, starting from i-1 to the oldest one do
9: if t ≥ bits needed(j) then

10: all packets of index ≤ j are successfully decoded

11: compute metrics for those in the buffer

12: remove them from the buffer

13: else if t > 0 then
14: t genie helps are resolved in packet j

15: bits needed(j)← bits needed(j)−t . this allows to

continue with SC decoder in packet j and decode more bits

16: t← number of additional bits decoded in packet j

17: else
18: do nothing (t = 0)

repeat the first part of the proof an infinite number of times, and therefore at some

point it will necessarily be bits needed(i)= 0, which implies packet i successfully

decoded.

However, the condition of proposition 3.1 implies that from packet j on nothing is de-

coded and therefore it is clear that there exists no feedback scheme able to retrieve some

information from such a scenario.

This is precisely the sense in which we can say that scheme III is optimal.

Because of this optimality, our analysis will be mainly focused on scheme III. How-

ever it is also important to remark that optimality comes at the cost of a much greater
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3. FEEDBACK SCHEMES

algorithmic complexity of scheme III with respect to schemes I and II.

3.3 Implementation

The simulations have been carried out using programs in C and C++. In particular C

has been used in order to derive the maximum optimization and simulation speed, since

many simulations require a significant computational effort.

Since the code is linear, performance and metrics do not change if we transmit all-0s

packet (i.e., ui = 0 ∀i) instead of randomly generated bits. Clearly the all-0s informa-

tion packets is encoded in the all-0s codeword, and therefore there is no necessity to

simulate also the encoding operations, but just the SC decoding under transmission of

the all-0s codeword.

The metrics of our interest have been estimated via a suitable number of Monte Carlo

trials, of the order of≈ 106 packets. For computational reasons a limit on the maximum

delay has been set (its value varies according to the simulation scenario). This results

in an underestimation of some delays (since those trials that would have resulted in a

delay bigger that the threshold have not been considered in the empirical mean). This

also implies an outage probability of the delay, that gives an empirical indication of the

probability of a packet being decoded with a delay bigger than the threshold. Therefore,

the expected delay must be evaluated by carefully considering also the outage probabil-

ity, since the bigger this probability is, the more significant the bias for underestimation

is.

The theoretical analysis has been carried out mainly using Matlab.
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Chapter 4

Performance Analysis of Feedback
Schemes

4.1 Introduction

A very quick calculation allows to conclude that scheme I is clearly outperformed by

schemes II and III, since it only decodes when no genie helps are needed, which is prac-

tically impossible for rates that approach the channel capacity. Therefore the meaningful

comparison is certainly between these two latter schemes.

4.2 Delay

Figures 4.1, 4.2 and 4.3 show the delay comparison between schemes II and III for

various packet lengths. As expected, scheme III yields a significant performance im-

provement over scheme II. Moreover, the performance increases as N increases, thanks

to polarization, since for, the same nominal rate we obtain a lower delay, which confirms

the effectiveness of polarization also for the delay.
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Figure 4.1: performance comparison of schemes II and III for N = 128.
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Figure 4.2: performance comparison of schemes II and III for N = 512.
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Figure 4.3: performance comparison of schemes II and III for N = 2048.

4.2.1 Impact of Polarization on the Delay

We grouped together data for scheme III in Fig.4.4 to underline the effect of polariza-

tion: lower N allows to get finite delay also for R > C (even R = 0.7). This is due to

the fact that for low N polarization is still “weak”, that is, there are few very bad and

very good channels. This means that we can take as nonfrozen a number of channels

bigger than the one dictated by capacity (C = 1 − ε = 0.5), and still get acceptable

channels.

On the other hand, for N big, polarization is stronger, and therefore as soon as the rate

is bigger than capacity, very bad channels (i.e., Z(i) ≈ 1) are unfrozen, which increases

the delay. Moreover, because of the structure of polarization, bad channels are mainly

concentrated at the beginning (i.e., they have low indices), where the SC starts decod-

ing. This means that if we unfreeze a very bad channel, it is likely that it will be in
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one of the first positions, and therefore the number of bits successfully decoded for each

packet upon reception is very small, which greatly increases the delay.
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Figure 4.4: polarization for scheme III.

4.2.2 Outage Probability

As already remarked, it is meaningful to take into consideration the outage probability,

that is the probability that a packet has a delay bigger than some fixed threshold. This is

what is shown in Fig. 4.5.

As expected, for a given rate the outage probability of delay is lower for scheme III

with respect to scheme II.
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Figure 4.5: outage probability of delay for schemes II and III, threshold at 2000.

4.3 Effective Rate

In Fig. 4.6 the effective rate is shown. It is clearly the same for schemes I, II and III

since it depends on the bit retransmission policy, which is the same for the two schemes

(which differ only in how these bits are used). As expected, the effective rate tends

to the channel capacity C = 0.5 if the nominal rate increases. For example, at rate

R = 1 we transmit on all the channels (no frozen bits), which means that on average

half of the bits will need a genie help, and therefore half of the bits of each packet will

be retransmitted bits. However, this is not a way to achieve capacity, since the price

we have to pay for Reff = C is a delay D → ∞. Again, we see the advantage of

polarization, as the effective rate for a fixed nominal rate increases as N increases.
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Figure 4.6: effective rate for various N .

4.3.1 Design Parameters

It is interesting for design purposes to evaluate the relationship between the delay and

effective rate. The question is the following: we fix a packet sizeN . Then, given a max-

imum delay, what is the highest effective rate it can be obtained? The result is shown in

Figures 4.8 and 4.7.
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Figure 4.7: maximum Reff for a given delay for scheme II.
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Figure 4.8: maximum Reff for a given delay for scheme III.
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Again, scheme III performs better than scheme II as is reaches higher effective rates at

lower delays.

Perhaps surprisingly, it appears that polarization does not provide great advantage in

this scenario. However this is easily understood if we consider that, as remarked before,

a lower polarization allows, for a given delay (see for example Fig. 4.4 ), to reach a

higher nominal rate, which in turns allows to have a higher effective rate (Fig. 4.6).

Nevertheless, in Fig. 4.8 we see that if we want to achieve an effective rate very close to

capacity, then by increasing N we are able to do so with a maximum delay smaller with

respect to the case with N small. This is not shown in 4.7, due to the delay threshold we

have set in the simulation, but if we allowed for a potentially infinite delay, we would

see the same behavior.
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Chapter 5

Theoretical Modeling of Feedback
Schemes

5.1 Introduction

We now focus on the theoretical modeling of feedback schemes. Since there is an

increase in efficiency of the schemes, the analysis will be developed more thoroughly for

scheme III. In fact, from a practical point of view, only the last one should be considered.

For the models, we assume that errors in the synthetic channels are independent, which,

experimentally, gives a pretty tight upper bound on the delay (see Fig. 5.6).

We use shorthand notations

Z(i) , Z(W (i)
N )

Z(i) , 1− Z(i)
(5.1)

5.2 Distribution of the Number of Genie Helps

A question that naturally arises is what is the distribution of the number of genie helps

in a packet and if it can be modeled in some way. Let us denote by Xi the indicator

random variable

Xi =


1 if a genie help is needed at bit i

0 otherwise
(5.2)

49
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for i = 0, ..., N − 1.

We remind that

{Xi = 1} ≡ {error at bit i}
⋂i−1⋂

j=0
{bit j correctly decoded}

 (5.3)

since we are dealing with SC cancellation, and therefore we try to decode bit i if and

only if all previously bits have been already decoded. Moreover, since we are dealing

with genie-aided SC, all previous bits have been correctly decoded.

Therefore, for the BEC,

P[Xi = 1] = Z(i) = E[Xi] (5.4)

Clearly, eq. 5.4 holds for nonfrozen bits, whereas for the frozen bits we can assume that

Xi = 0 w.p. 1 since for sure a genie help will not be needed to decode a frozen bit.

The number of genie aids in a packet is given by S = ∑N−1
i=0 Xi, and therefore

E[S] =
∑
i∈A

Z(i) (5.5)

where A is the set of nonfrozen indices.

For what it concerns the second order statistics, we have that

Var(S) =
∑
i,j∈A

Cov(Xi, Xj) =
K−1∑
i∈A

Var(Xi) + 2
∑
i,j∈A
i<j

Cov(Xi, Xj) (5.6)

Now, for a frozen bit Var(Xi) = 0, whereas for a nonfrozen bit

V ar(Xi) = E[X2
i ]− (E[Xi])2 = Z(i) − (Z(i))2 (5.7)

To compute the correlation matrix, it is more suitable to denote the channels (and the

bits) using the polarization sequence.

Let s, t ∈ {+,−}m and

C(s,t)
m , Cov(X̃(s)

m , X̃(t)
m ) (5.8)

where X̃(s)
m means that we are referring to the bit corresponding to sequence s ∈

{+,−}m in the block of size 2m. Therefore our aim is to compute this quantity for

Xi = X̃(s(i))
n , where s(i) is the polarization sequence corresponding to index i (inciden-

tally, we remark that the main advantage of using the polarization sequences instead of
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the indices is that sequences are independent on the indexing and ordering of the chan-

nels).

Then correlation matrix is computed using a single step recursion [15]:

C(s−,t−)
n = 2(1− Z(s)

n−1)(1− Z(t)
n−1)C(s,t)

n−1 + C
(s,t)
n−1

2
(5.9a)

C(s−,t+)
n = 2(1− Z(s)

n−1)Z(t)
n−1C

(s,t)
n−1 − C

(s,t)
n−1

2
(5.9b)

C(s+,t−)
n = 2Z(s)

n−1(1− Z(t)
n−1)C(s,t)

n−1 − C
(s,t)
n−1

2
(5.9c)

C(s+,t+)
n = 2Z(s)

n−1Z
(t)
n−1C

(s,t)
n−1 + C

(s,t)
n−1

2
(5.9d)

with C0 = ε(1− ε).

If we index the bits from 0 to 2n − 1 and we assign to the polarization in the − di-

rection the index transformation i → 2i and to the one in the + direction the index

transformation i→ 2i+ 1, we obtain

C(2i,2j)
n = 2(1− Z(i)

n−1)(1− Z(j)
n−1)C(i,j)

n−1 + C
(i,j)
n−1

2
(5.10a)

C(2i,2j+1)
n = 2(1− Z(i)

n−1)Z(j)
n−1C

(i,j)
n−1 − C

(i,j)
n−1

2
(5.10b)

C(2i+1,2j)
n = 2Z(i)

n−1(1− Z(j)
n−1)C(i,j)

n−1 − C
(i,j)
n−1

2
(5.10c)

C(2i+1,2j+1)
n = 2Z(i)

n−1Z
(j)
n−1C

(i,j)
n−1 + C

(i,j)
n−1

2
(5.10d)

A first approximation can be obtained by using a normal distribution, with mean and

variance as above. We can also evaluate the impact of the covariance. However, we can

already guess that for low rates, that yield a low number of genie helps, the Gaussian

distribution will not fit, since it can also take negative values, whereas the number of

genie helps can only be positive. The simplest distribution that takes positive integer

values is the Poisson distribution. One can also consider a binomial distribution, or,

even better, a Poisson-binomial distribution, described by eq. 5.14.

In Fig. 5.1 we show the experimental distribution and its approximations for a rate

R = 0.4. These figures refer to simulation with n = 12 and 104 Monte Carlo trials.
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Figure 5.1: genie helps distribution for R = 0.40 and n = 12.

We see that the best approximation is given by the Poisson and Poisson-binomial distri-

butions, as expected since they take only positive integer values.

In Figures 5.2 and 5.3 we see that the Poisson and Poisson-binomial approximations

progressively worsen, while the normal approximation becomes more accurate. This is

not unexpected, since with the Gaussian distribution we are able to adjust both the mean

and the variance, whereas in the other two mean and variance depend one from the other,

since there is only one parameter. Incidentally, we also observe that taking into account

the correlation is crucial: the approximation given by the normal distribution assuming

the random variables uncorrelated is far worse.
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Figure 5.2: genie helps distribution for R = 0.46 and n = 12.

5.3 Models

From now on, in order to simplify the notation, it is more convenient to neglect frozen

channels, and therefore index i will refer to nonfronzen channels only. Hence, for ex-

ample, Z(i) is the Bhattacharyya parameter of the i-th non-frozen channel. The number

of nonfrozen channels is denoted by K, which is some integer approximation of RN .
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Figure 5.3: genie helps distribution for R = 0.52 and n = 12.

5.3.1 Scheme I

In this very simple scheme, the delay to transmit a packet is easily modeled via a ge-

ometric random variable whose parameter is the probability 1 − Pe of a packet to be

correctly decoded without genie helps. Then, the delay is given by

D = Pe
1− Pe

(5.11)

since we consider a delay 0 for a packet that is decoded immediately at reception (i.e.,

we consider delay as the number of additional packets we need to send in order to

decode the packet of interest).
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5.3.2 Scheme II

We already stated that for the BEC, Z(i) gives the probability of needing a genie help

at (nonfrozen) bit i. Errors in SC, and therefore genie helps, are not independent. In

fact, intuitively, having a genie help at bit i means that channel W (i)
N is not very good,

and by construction it is more likely that another non-optimal channel will be in the

nearby. However, in order to keep our models reasonably simple, we will consider them

as independent.

Therefore, the events of having genie helps at given bits will be considered as indepen-

dent Bernoulli random variable of parametersZ(i) (this means that they are independent,

but not identically distributed).

We consider a packet p, and denote by Xp
0 the number of genie helps of packet p. We

also assume Xp
0 = i > 0, otherwise we straightforwardly have zero delay.

Then, Xp
m, ∀m > 0 is the number of errors in packet p + m in case at least one genie

help is needed in one of its retransmitted bits, otherwise, if packet p + m has no errors

involving one of the restransmitted bits, we have Xp
m = 0.

Xp
m is a random variable ∀m ≥ 0, and p ≥ 0 fixed, and {Xp

n}n≥0 is a Markov chain

∀p ≥ 0 fixed, since the knowledge of the current state is clearly sufficient to stochasti-

cally describe all future states.

In order to derive a model for the delay, we specify the Markov chain as in Fig. 5.4. We

denoted by ψi−1
0 (j) the probability of having j total errors in a packet, of which at least

one involving one of the i retransmitted bits, and ψi−1
0 (0) is the probability of having no

errors in the first i bits.

In order to derive an expression for ψi−1
0 (j), let us denote by ϕis(k) the probability of

having exactly k (independent) errors in channels s, ..., i for a given packet.

ϕis(k) can be computed as follows:

ϕis(k) =
∑

(es,...,ei)∑i

j=s ej=k

i∏
j=s
|ej − (1−Z(j))| = Z(s)ϕis+1(k) + (1−Z(s))ϕis+1(k− 1) (5.12)
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with ej ∈ {0, 1} and boundary conditions:
ϕki (k − i+ 1) = ∏k

j=i Z
(j) ∀0 ≤ i ≤ k

ϕki (0) = ∏k
j=i(1− Z(j)) ∀0 ≤ i ≤ k

ϕki (l) = 0 for l > k − i+ 1, ∀0 ≤ i ≤ k

(5.13)

since independent errors assumption implies that bit i is correctly decoded with proba-

bility 1− Z(i).

This implies that the number of errors X in bits s, ..., j is distributed as a Poisson bi-

nomial distribution, with parameters Z(s), ..., Z(j) which can be efficiently computed as

[16]:

P(X = k) = 1
j − s+ 2

j−s+1∑
l=0

C−lk
j−s+1∏
m=1

(1 + (C l − 1)Z(m)) (5.14)

with

C = exp
(

2iπ
j − s+ 2

)
(5.15)

and i =
√
−1.

Then,

ψi−1
0 (j) =


∑i
m=1 ϕ

i−1
0 (m)ϕK−1

i (j −m) if j ≥ i∑j
m=1 ϕ

i−1
0 (m)ϕK−1

i (j −m) if j < i
(5.16)

that is,

ψi−1
0 (j) =

min(i,j)∑
m=1

ϕi−1
0 (m)ϕK−1

i (j −m) (5.17)

and

ψi−1
0 (0) = ϕi−1

0 (0) (5.18)

Then, the probability transition matrix of the Markov chain is simply given by Pi,j =
ψi−1

0 (j) 0 < i ≤ K, j ≥ 0, and P0,0 = 1.

We define the random variable Dp representing the delay before decoding associated to

packet p as follows:

Dp , min{n ≥ 0 : Xn = 0} (5.19)

where state 0 is absorbing (i.e. Dp is the absorption time associated to Markov chain

{Xp
n}n≥0). In order to compute that, we fix an initial state Xp

0 = k, which represents
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Figure 5.4: Markov chain for scheme II.
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the number of errors in packet p upon reception. By solving the Markov chain we get

E[Dp|Xp
0 = k] ∀0 ≤ k ≤ K. In fact by denoting νk = E[Dp|Xp

0 = k] by first step

analysis we have [17]

ν =


ν1

ν2

...

νK

 = 1 + P̃ · ν (5.20)

with ν0 = 0 by definition, 1 the K-dimensional column vector of all 1’s and P̃ is the

transition matrix P without the first column and row (i.e., the ones corresponding to

absorbing state 0). This yields:

ν = 1 · (I − P̃ )−1 (5.21)

Then, E[Dp] = E[E[Dp|X i
0 = k]] = ∑K

k=0E[Dp|X i
0 = k]p(k) where p(k) is the

pdf of the number of errors in the packet (in the non-frozen channels). As proven in

subsection 3.2.2, we have E[D] = E[Dp]. We finally remark that the inversion of I − P̃
is O(K3) = O(N3) since R is constant, that is, it is an operation computationally

expensive.

5.3.3 Scheme III

Given a packet, in order to decode it we only need to know, for each of the following

packets, how many errors happen in the region of intersection of retransmitted bits. We

call this region decoding region for packet 0 at packet n, and we denote its size by Rn
0 .

By design it is always at the beginning of each packet and it contains the bits of the

first packet that are still missing. Without loss of generality (since the system is time-

invariant and therefore the underlying Markov chain in homogeneous, and metrics do

not change as stated in subsection 3.2.2) we denote by 0 the packet of which we want

to know the delay before decoding, and by X0 the number of errors that occur in this

packet. Hence, if in packet 0 i errors occur, we have R1
0 = i since the first i bits of

packet 1 will contain the retransmission of the i erroneous bits of packet 0. For packet

2, R2
0 will be the number of errors of packet 1 that occur in its first i bits, and so on.
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Figure 5.5: Markov chain for scheme III.
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5. THEORETICAL MODELING OF FEEDBACK SCHEMES

Then, Xn = Rn
0 , n ≥ 1, will denote the number of bits, which are at the beginning, that

must be decoded in packet n in order to be able to completely decode packet 0. This

implies that Xn is also equal to the number of errors in packet 0 that still have to be

corrected. Note that since Rn
0 represents an intersection between errors and a number

of bits, it is a non-increasing function in n. The Markov chain we obtain is shown in

Fig.5.5, with i the number of errors in packet 0 and ϕi0(j) is the probability of having

exactly j (independent) errors in channels 0,...,i for a given packet.

In fact, if at some point the decoding region has size Rn
0 and j ≤ Rn

0 errors occur in the

first Rn
0 bits of packet n, then for the following packet we will have Rn+1

0 = j. Packet

0 is decoded as soon as Rm
0 = 0 for some m. For the delay, the same considerations of

the previous section hold.

For the Markov chain we obtain that Pi,j = ϕi−1
0 (j), which is the probability of having

j errors in the decoding region of packet n given that its size is i.

Again, the solution of the Markov chain gives E[Di|X i
0 = k], average delay for a given

number of initial errors (initial state of the chain). Then, E[D] = E[E[D|X i
0 = k]] =∑K

k=0E[D|X i
0 = k]p(k) where p(k) is the pdf of the number of errors in the packet (in

the non-frozen channels). If we assume the errors to be independent, then they have

a Poisson-binomial distribution, and we can take advantage of the quantities already

computed:

E[D⊥⊥] =
K−1∑
k=0

E[D|X i
0 = k]ϕK−1

0 (k) (5.22)

Accuracy of the Theoretical Model for Scheme III

In Figures 5.6 and 5.7, as a preliminary to the analysis of our theoretical model, we eval-

uate the impact of our crucial assumption of considering the genie helps as independent,

while in reality they are correlated as we verified in section 5.2. The simulation with in-

dependent genie helps is simply obtained by realizations of Bernoulli random variables

of parameters the Bhattacharyya parameters of the corresponding bits.

We see that the approximation is very good: the two curves are very close to each other.

Therefore this assumption is experimentally validated.

Fig. 5.8 shows the approximation given by solving the Markov chain. In order to eval-

uate the accuracy of the Markov model only (whose solution gives the expected delay

60



0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.560

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Nominal rate

A
ve

ra
ge

de
la

y
be

fo
re

de
co

di
ng

a
pa

ck
et

N=4096 experimental
N=4096 experimental, independent errors

Figure 5.6: comparison between correlated and independent genie helps.

for a given initial number i of errors), we derived the expected delay using as the distri-

bution of the initial errors an experimental one, instead of applying one of the models

of section 5.2.

We see that the Markov model results to be very accurate.

In order to estimate the impact of the initial distribution (true correlated or approxi-

mated independent), we refer to Fig. 5.9. We see that the approximation is very good,

despite the fact that, as we saw is section 5.2, the Poisson-binomial distribution is not

per se a very good approximation of the true genie distribution. Evidently, the Markov

chain has a mitigating effect on the initial distribution, that is, the expected delay varies

slowly when varying the number of initial errors.

However, the computation of the probability transition matrix is very demanding (even
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Figure 5.7: comparison between correlated independent genie helps for scheme III and

various N .

though it gives, unlike a simulation, exact results), but for scheme III, unlike scheme II,

the matrix is lower triangular, and therefore its inversion has complexity O(N2) instead

of the usual O(N3).

We remark that, in both correlated and independent case, we can compute ϕ2n−1
0 (k) (in

case of rate R = 1) as

ϕ2n−1
0 (k) =

min{k,2n−1}∑
l=max{0,k−2n−1}

ϕ2n−1−1
0 (l)ϕ2n−1−1

0 (k − l) (5.23)
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Figure 5.8: comparison between MC and simulated scheme with N = 4096.

The idea is to combine the genie aid coming from each of the two sub-blocks of size

2n−1 (which are independent) of the construction of the polar code.

By induction, and using the Vandermonde convolution, we have that for a BEC(ε)

ϕ2n−1
0 (k) =

(
2n
k

)
εk(1− ε)2n−k (5.24)

that is, the number of errors on the whole packet with rate R = 1 is distributed as

a binomial random variable of parameter ε, which is also the average of all the 2n

Bhattacharyya parameters. This suggests us that a possible approximation of the number

of errors in a given section, for any rate, may be a binomial with parameter the average
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Figure 5.9: impact of the usage of independent or experimental genie distributions with

N = 4096.

of the Bhattacharyya parameters in the given section, i.e.

ϕi−1
0 (k) =

(
i

k

)
Ẑk(1− Ẑ)i−k (5.25)

with

Ẑ = 1
i

i−1∑
j=0

Z(j) (5.26)

which experimentally gives a pretty accurate approximation of the delay (see 8.1).

5.4 Effective Rate

The estimation of the effective rate is straightforward and exact. In fact, by applying eq.

5.5 to eq. 3.1 with M = E[S] we get

Reff = R−
∑K−1
j=0 Z(j)

N
(5.27)
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Chapter 6

List Decoding

6.1 Introduction

List decoding [18] [19] [20] is a technique introduced to improve the finite-length per-

formance of polar codes. It is mainly applied to BEC, but it can also be extended to

other types of channels. The key idea is to exploit the information given by frozen bits

to reduce the number of genie aids in successive cancellation.

List decoding is basically and extension of successive cancellation that consists in split-

ting the decision process (thus creating a sort of tree, or list of decision patterns) each

time we are unable to decide based on the LLR (i.e., whenever we have at bit i L(i)
n = 0

for the BEC). Now, it may happen that while going on along a given decision pattern,

at some point we decode for a frozen bit, and the decision we would take based on the

LLR is in conflict with the value of the frozen bit, that is known. In that case, since it is

impossible to have a conflict with a frozen bit, that branch is surely wrong and can be

deleted.

Therefore, the use of list decoding instead of SC reduces the total number of genie helps.

A trade-off between this reduction and decoding complexity emerges: by increasing the

list size we reduce the number of genie helps, but on the other hand we increase the

decoding complexity by a factor equal to the size of the list.

If the size of the list is finite, then when reaching it, we call for genie help. In this case it

is clearly better to call it at the position of the first split (that is, the root of the decision
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6. LIST DECODING

tree), in order to free the biggest number of lists (all which had as guess the opposite of

the genie help).

Our simulations clearly use the first system associated to scheme III, which is the one

with the best performance. Moreover, additional genie helps are used to resolve (if

needed) the decision tree that remains when all bits have been decoded.

We finally state an important property of list decoding, without proving it: the space of

all decision sequences (that is, the set of vectors we had if we followed all the paths of

the decision tree, from root to leaves) is a vector subspace ofGF(2)N (or more precisely,

an affine space given by a vector space translated by the true codeword. However, since

we consider the all-0’s codeword, it is effectively a vector space).

This has the remarkable consequence that the bits at which the splitting happen are the

same for all the lists, or in other words if a branch splits at bit i, then all branches split

at bit i. This implies that the decision tree is a complete tree whose nodes have all the

same height (therefore it is sensible to choose as the list size L a power of 2).

6.2 Experimental Results

In Fig.6.1 we show the delay performance of scheme III, whereas in Fig. 6.2 we give a

detail of the region of interest. We see that the performance improvement is appreciable

for L = 32, but it quickly becomes completely negligible as we increase L. Moreover, it

gets smaller as we increase N . Therefore we conclude that for high N the performance

improvement does not justify the additional decoding complexity required.

The other metric of interest, Reff , shows the same behavior, as we see in Fig.6.3, where

for clarity we omitted the legend (which is the same of Fig. 6.1).
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Figure 6.1: delay with list decoding for scheme III.
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Chapter 7

Gaussian Channel

7.1 Introduction

We now apply scheme III for a Gaussian channel. We keep the hypothesis of full feed-

back. However now, unlike the BEC case, the receiver has no knowledge of whether it

is making a mistake or not, since L(i)
n now can take all real values. In fact, while in the

BEC case we knew exactly at which bits the errors would have occurred, that is those

with L(i)
n = 0, and therefore we could invoke the strictly necessary number of genie

helps to ensure Pe = 0, now the LLR L(i)
n gives only a probability for a bit to be 0 or 1.

Still, using the LLR we have a clue about the bits at which the SC decoder is most likely

to commit an error. In fact the LLR gives not only the decision criterion of eq. 8.7, but

also the confidence in taking that decision. The bigger the absolute value of the LLR,

the greater is the confidence in taking the decision.

Therefore a reasonable thing to do is to consider that receiver and sender agree on a

threshold, and if a LLR is below that threshold in absolute value, then the receiver asks

for a genie help for that bit. The reason behind this system is that in such a case there

is too little confidence to make a valid choice for that bit. The scheme then becomes

Algorithm 9.

This system has two important consequences. Firstly, now we also have an outage prob-

ability of decoding failure (or residual error probability) even in case of genie-helped

decoding, that is, the probability that a bit is incorrectly decoded even if the correspond-
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Algorithm 9 Genie-aided SC decoding for the Gaussian channel

1: for all i ∈ {0, ..., N − 1} do
2: compute L(i)

n

3: if i is frozen then
4: ûi ← ui

5: else
6: if L(i)

n > τ then
7: ûi ← 0
8: else if L(i)

n < −τ then
9: ûi ← 1

10: else
11: ûi ← gi = ui

return ûN−1
0

ing LLR is above the threshold.

Secondly, a trade-off between the outage probability of failure and the effective rate

emerges. In fact, the residual error probability probability decreases as we increase the

threshold, but on the other hand by increasing the threshold we also increase the number

of genie aids, and therefore we reduce the effective rate since more bits are retransmit-

ted.

7.1.1 Density Evolution

Given that there is no failure, the scheme and the model are exactly the same of the BEC

case, where the only difference is that instead of Z(i) we have the probability that the

log-likelihood ratio for the bit of index i falls inside the threshold.

For a BAWGNC(σw) (see appendix A.2) the log-likelihood ratio of received bit i is

(using the notation introduced in eq. 2.43 and mapping 0↔ 1 and 1↔ −1):

L
(i)
0 = 2

σ2
w

yi (7.1)
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7. GAUSSIAN CHANNEL

Therefore, since Yi is a random variable (of which yi is a realization), L(i)
0 is also a

random variable and has a certain distribution.

This distribution is called the L-density of L(i)
0 , and is computed as the density of the

LLR given the transmitted bit or symbol (usually it is assumed that bit 0 is transmitted).

For example, in the case of a BEC, we have

L
(i)
0 =


0 w.p. ε

+∞ w.p. (1− ε)
(7.2)

For the BAWGNC(σw), if we assume symbol +1 was transmitted, then

yi = 1 + wi (7.3)

which implies

L
(i)
0 = 2

σ2
w

+ 2
σ2
w

wi (7.4)

and since wi ∼ N (0, σ2
w) we have

L
(i)
0 ∼ N

(
2
σ2
w

,
4
σ2
w

)
(7.5)

that is

f
L

(i)
0

(l) =
√
σ2
w

8π e
−(y− 2

σ2
w

)σ
2
w
8 (7.6)

Therefore, now we must know the distribution probability of the LLRs for every syn-

thetic channels (i.e., the L-density).

The L-densities of the synthetic channels are given by the usual convolution ~ of the

L-densities for the + combination and by the convolution in the G-domain � for the −
combination, as stated in [21]. We see in Fig. 7.1 that, as expected, L-densities polarize:

good and bad channels’s densities become deltas centered in 0 (bad channels) and +∞
(good channels, with all-0s transmitted codeword). Obviously, for numerical reasons,

the +∞ has been approximated with a large value, such that the probability of wrong

decoding for such a value of LLR is practically 0. For our purposes, 15 is a suitable

value to represent +∞.

Then, to carry out the theoretical analysis, we can apply the model of section 5.3.3 with

Z(i) =
∫ τ

−τ
f
L

(i)
n

(u)du (7.7)
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Figure 7.1: L-density polarization for n = 10.

where τ is the LLR threshold within which the decoder asks for the genie help.

However an important modification is needed, which derives from the fact that we have

a residual failure probability: we need to introduce another absorbing state, correspond-

ing to decoding error. Then the model we obtain is shown if Fig. 7.2. Intuitively,

ϕi−1
0 (0) is the probability that for all bits in 0, ..., i − 1 the LLR realization falls be-

yond the threshold, but on the “right” side (that is, the side corresponding to the right

decision). Conversely, Φ(i), given by 7.8, is the probability that at least in one bit of

0, ..., i − 1 the LLR realization is on the “wrong” side, which results in the decoder

making a “confident” wrong decision.

Φ(i) = 1−
i∑

k=0
ϕi−1

0 (k) (7.8)
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Figure 7.2: theoretical model for scheme III over BAWGNC.
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7.1.2 Channel Estimation

Another important difference of the BAWGNC with respect to the BEC is that now the

parameters of the synthetic channels, namely the Bhattacharyya parameters, cannot be

computed exactly, but they have to be estimated.

For this purpose we use the following result:

Z(W (i)
n ) = E


√√√√W

(i)
n (yN−1

0 , ui−1
0 |ui ⊕ 1)

W
(i)
n (yN−1

0 , ui−1
0 |ui)

 (7.9)

If we take into account the fact that we transmit the all-0s codeword, and compare the

term inside the square root in eq. 7.9 with eq. 2.38, we see that they are the same

except for the subsitution û → u. Hence, in 7.9 we use the likelihood ratios given that

all previous bits are correct. This is easily obtained by setting all bits as frozen and by

applying Algorithm 3, since, as stated in it, first we compute L(i)
n and then we evaluate

if the bit i is frozen or not.

Then, the estimation of the expectation is carried out via Monte Carlo simulation of M

packets (with M big enough to provide the desired accuracy on the estimation) of the

SC decoder with all bits frozen, and then

Z(W (i)
n ) ≈ Ẑ(W (i)

n ) = 1
M

M∑
j=1

e−
L

(i)
n,j
2 (7.10)

where we used the LLRs instead of the LRs and L(i)
n,j is the LLR of the i-th bit of the j-th

packet with all bits forzen.

Then, the frozen bits in the encoder are chosen according to the rate and the values of

Ẑ(W (i)
n ).

Clearly, since we have an estimation instead of exact values, we get an additional source

of errors. This is due to the fact that, as a result of the estimation, we may not take

all and only the best channels, but we may have a frozen channel that is better than

an unfrozen one. This is even more important if we use the estimation of a channel

for another channel (e.g., we estimate the Bhattacharyya parameters, and therefore the

frozen channels, for a BAWGNC(σw) and we keep the same for a BAWGNC(σ′w) with

σw 6= σ′w).

In fact, in general, if we consider a family of channels indexed by a parameter (e.g.,
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7. GAUSSIAN CHANNEL

{BAWGNC(σw), σw ∈ R+ } or {BEC(ε), ε ∈ [0, 1] }), then the order (according to the

Bhattacharyya parameters) of the channels is not stable with respect to the parameter of

the channel. For example if we take two channels BAWGNC(σw) and BAWGNC(σ′w),

then

Z(W (i)
n (σw)) < Z(W (j)

n (σw)) ; Z(W (i)
n (σ′w)) < Z(W (j)

n (σ′w)) (7.11)

Therefore, in order to get the best performance, the estimation procedure should be

repeated for every channel (i.e., for every value of the parameter of the channel).

However, in practice, what is usually done is to consider an interval of values of the

parameter, take a value representative of that interval, estimate the channel only for

that value and keep the estimation for all the values of the interval. This is because,

empirically, it is verified that the order of the Bhattacharyya parameters does not change

abruptly for small variations of the parameter, and therefore, if the interval is small

enough, the error we commit on the channel choice is not big (i.e., we do not take very

bad channels instead of very good ones).

Fig.7.3 shows the impact of channel estimation on Pe.
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Figure 7.3: impact of channel estimation with N = 1024.
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7.1.3 Experimental Results

We estimate the channel using M = 107. We fix the noise variance σ2
w = 1 so that we

do not have to estimate the channel multiple times, and we vary the nominal rateR. Fig.

7.4 shows the simulated results. A first remark that can be made is that the behavior of

the delay seems qualitatively the same for all the thresholds. We can suppose that the

“staircase” behavior is due to the effect of thresholds: genie invocations are grouped

according to the thresholds, rather than being selected individually.
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Figure 7.4: delay given by simulation of scheme III with N = 1024.

For computational reasons we do not solve the Markov chain for all rates, but we focus

on the region around R = 0.5, where an abrupt increase of the delay occurs.

The comparison between the Markov model and the simulations for the BAWGN chan-

nel is shown in Fig. 7.5. Again, the two curves have exactly the same qualitatively

behavior. From a quantitative point of view, the simulation has an underestimation bias.

This is probably due to the limit imposed on the maximum delay. In fact Fig.7.6 shows
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Figure 7.5: comparison of simulation and Markov model for scheme III with N =
1024.

the outage probability for the delay, and we see that it increases as the threshold in-

creases, which explains why the bias increases with the threshold. The fact that there is

a bias for τ = 6.0 while Pout = 0 is probably due to the number of Monte Carlo trials,

which is not very high for this kind of simulation.

Finally, Fig. 7.7 shows the outage probability (i.e., the probability of wrong decoding)

for various thresholds.

We do not have experimental measures for this quantity, since in our implementation, in

order to evaluate the delay given that no decoding errors occur, we simply discard pack-

ets that present a decoding error, and the system acts as if they never existed. However,

if we assume that the model is accurate enough and we compare it to Fig. 2.10 (using
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Table 2.1 to keep the same gap to capacity) we have an error probability about two or-

ders of magnitude smaller than the system without feedback schemes. This confirms

the validity of the scheme in improving the finite-length performance of polar codes.
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Figure 7.6: simulated outage probability for delay with N = 1024, threshold at 500.
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Figure 7.7: outage probability for decoding error given by MC with N = 1024.
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Chapter 8

Bounds and Asymptotic Results

8.1 Bounds for the Delay

We want now to derive some simple bounds for scheme III applied to the BEC. This

bounds will be asymptotic and pretty rough, but the will allow to avoid solving the exact

Markov chain. For every state, we consider the expected value of associated transition

probabilities, i.e.

Ei =
i∑

j=0
jPi,j ∀i > 0 (8.1)

Intuitively, the expected arrival state starting from state i is the average number of errors

in bits 0, ..., i − 1, which is given by
∑i−1
j=0 Z

(j). Therefore, in order to simplify the

analysis of the mean absorption time, we simplify the Markov chain. Since the average

number of errors in bits 0, ..., i− 1, for every state i, is a crucial quantity, we would like

to keep it fixed, but on the other hand we allow differences in the variance, i.e.,

V ari =
i∑

j=0
j2Pi,j − E2

i ∀i > 0 (8.2)

Therefore, we consider another chain, with same average:

Ei =
i∑

j=0
jPi,j =

i∑
j=0

jP ′i,j = E′i ∀i > 0 (8.3)

but different variance:

V ari =
i∑

j=0
j2Pi,j − E2

i 6=
i∑

j=0
j2P ′i,j − E′

2
i = V ar′i ∀i > 0 (8.4)
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Experimentally, we verify (as we see in Fig. 8.1 and in detail in Fig. 8.2 with various

models) that the delay increases as the variance decreases. Therefore, an upper bound

can be found by considering the simplest Markov chain with the lowest variance.
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Figure 8.1: delay for various Markov models, N = 4096.

The models we considered in Figures 8.1 and 8.2 are:

1. the usual Poisson-binomial model presented in section 5.3.3

2. the binomial approximation of the Poisson-binomial, as in eq. 5.25, which is (see

[22]) the distribution with maximum variance among all the Poisson-binomial

distributions of fixed expected value

3. a Bernoulli approximation that maximizes the variance, that is the model of Fig.

8.3, and it is clearly the distribution with maximum variance among all possible

distributions
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Figure 8.2: delay for various Markov models, detail, N = 4096.

i ... l ... 1 0
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j=0 Z
(j)

i
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j=0 Z

(j)

l

1−
∑l−1

j=0 Z
(j)

l

Z(0)

1− Z(0)

1

Figure 8.3: Bernoulli model with maximum variance.
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4. a Bernoulli approximation that minimizes the variance, that is the model of Fig.

8.4, and it is the distribution that minimizes the variance by keeping exactly the

same expected value. For this chain we have to determine arrival state l and

i ... l + 1 l ... 0

p

1− p
1

Figure 8.4: Bernoulli model with minimum variance.

probability p associated to transition i→ l + 1. We have

i−1∑
j=0

Z(j) = p(l + 1) + (1− p)l = p+ l (8.5)

since 0 ≤ p ≤ 1 the natural choice is to take l as the integer and fractional parts

of
∑i−1
j=0 Z

(j) respectively. Therefore we have

l = b
i−1∑
j=0

Z(j)c

p =
i−1∑
j=0

Z(j) − b
i−1∑
j=0

Z(j)c
(8.6)

All the bounds we develop are for a given initial state i, that is an initial number of errors.

Clearly, to derive the expected delay, we simply average them over the distribution of

the number genie aids.

8.1.1 Upper Bounds

In order to derive upper bounds, we consider two regimes: a moderate errors regime,

in which we have
∑i−1
j=0 Z

(j) ≥ 1, for i initial state, and a rare errors regime, in which∑i−1
j=0 Z

(j) < 1.

In the first case we will follow the reasoning of section 8.1 and build a simple chain
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8. BOUNDS AND ASYMPTOTIC RESULTS

that minimizes the variance. In the second case we will consider a simplification of the

general Markov chain.

Moderate Errors Regime

We consider the chain, depicted in Fig. 8.5, that with probability 1 goes form state i to

state
∑i−1
j=0 Z

(j). If we want a discrete model, we can get the ceiling, i.e., we go from

state i to state d∑i−1
j=0 Z

(j)e = l and then from state l to state d∑l−1
j=0 Z

(j)e = h and

so on until we arrive to state 1. The recursion is depicted in Fig. 8.6. Note that these

considerations assume that we start from a state i such that
∑i−1
j=0 Z

(j) ≥ 1 (i.e., a regime

with a moderate number of errors).

i d∑i−1
j=0 Z

(j)e = l d∑l−1
j=0 Z

(j)e = h ... 1 01 1 1 1

Z(0)

Z(0) 1

Figure 8.5: Markov model with minimum variance.

We now remove, for the sake of simplicity, the ceiling functions and we also consider

a continuous interpolation of the partial sums. Therefore what we get is a process that

goes from i to
∑i−1
j=0 Z

(j) = x ∈ R+, and then again to
∑x−1
j=0 Z

(j) = y ∈ R+ and so on.

Solving the recursion requires the knowledge of all the partial sum of the Battacharrya

parameters, which is equivalent to know all the parameters. In order to avoid this, we

can consider the function which increases linearly up to the value d∑j∈A Z
(j)e with

derivative maxi∈A Z(i) (i.e., we assume that all the first Battacharrya parameters are

equal to the maximum, up to the sum), and then stays constant. It is not difficult to see

that this function is greater or equal than the partial sums, and therefore the recursion

gives a bigger delay. To the delay provided by the recursion, we must finally add a con-

stant term given by the expected delay of going from state 1 to state 0.
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MD(i)i = 1 for i <

d
∑

j∈A Z
(j)e

M

MD−1
(
d∑j∈A Z

(j)e
)

= 1 for i ≥
d
∑

j∈A Z
(j)e

M

(8.7)

where D − 1 in the second case is due to the fact that before starting with the recursion

there is the first step i→ d∑j∈A Z
(j)e Therefore we obtain

MD(i)i = 1⇒ D(i) = min
(

ln i
lnM−1 ,

ln d∑j∈A Z
(j)e

lnM−1 + 1
)

= ln I

lnM−1 (8.8)

where we put

M , max
i∈A

Z(i) (8.9)

and

I , min
(
i,
d∑j∈A Z

(j)e
M

)
(8.10)
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8. BOUNDS AND ASYMPTOTIC RESULTS

As a first scaling result, we have that ∀i, if a maximum allowed delay Dmax is fixed,

D(i) ≤ Dmax ⇔M ≤ e−
ln I
Dmax (8.11)

which, as proven in [23], requires

N ≥

 ce−
ln I
Dmax

I(W )−R

µ (8.12)

The fact that a real interpolation of the partial sums is considered does not represent

a problem, since a simple reasoning suffices to prove that twice the previous delay is

an upper bound to the delay obtained with the ceiling (i.e., the one to which the above

Markov chain refers). In fact, starting from state i, in 2 steps, by assuming we do not

get stuck on a state (a case we exclude by hypothesis), we go to state h < l ⇒ h ≤
l − 1 = d∑i−1

j=0 Z
(j)e − 1 ≤ ∑i−1

j=0 Z
(j) ⇒ h ≤ ∑i−1

j=0 Z
(j). Now, for the continuous

case, consider the following process: with one step we go to the next state, and with the

following one we stay in that state before proceeding to the next state in the third step

and so on. Therefore, after two steps, we are in state
∑i−1
j=0 Z

(j), which is greater that

the former case. By induction we get the general conclusion.

Rare errors regime

In this section we consider an upper bound for the case where
∑i−1
j=0 Z

(j) < 1 . In this

case, in fact, the analysis provided above does not apply. Here, the simplest and most

reasonable case we can consider is the chain that for every state i goes to state 1 with

probability
∑i−1
j=0 Z

(j) and to state 0 with probability 1−∑i−1
j=0 Z

(j).

In this case we have

D(i) = 1 +
∑i−1
j=0 Z

(j)

1− Z(0) ≤ 1 +
∑
i∈A Z

(i)

1−∑i∈A Z(i) ' 1 + 2−
√
N

1− 2−
√
N

(8.13)

for N big enough.

Moreover, we also have that

∑
i∈A

Z(i) ≤ Dmax − 1
Dmax

< 1⇒ D(i) ≤ Dmax (8.14)
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Figure 8.7: Markov model with maximum variance.

since in this case

D(i) = 1 +
∑i−1
j=0 Z

(j)

1− Z(0) ≤ 1 +
∑
i∈A Z

(i)

1−∑i∈A Z(i) ≤ Dmax (8.15)

and as proven in [23], ∑
i∈I

Z(i) ≤ Dmax − 1
Dmax

(8.16)

requires as a necessary condition

N ≥ α

(I(W )−R)µ (8.17)

8.1.2 Lower Bound

The chain with the higher variance is clearly the one that starting from state i stays in

i with probability
∑i−1

j=0 Z
(j)

i
and goes to 0 with the complementary probability. In this
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8. BOUNDS AND ASYMPTOTIC RESULTS

case we obtain a geometrical random variable, and the expected delay is

D(i) = 1

1−
∑i−1

j=0 Z
(j)

i

≥ 1
1− maxj∈{0...i−1} Z(j)

i

≥ 1
1− Z(0)

i

(8.18)

which is a very optimistic lower bound.

8.2 Asymptotic Behavior of the Effective Rate

In section 3.2.2 we defined the effective rate as

Reff = K −M
N

= R− M

N
(8.19)

with M = E[number of retransmitted bits ] = E[number of genie helps ]. Therefore we

have

Reff = R−
∑K−1
i=0 Z(i)

N
(8.20)

but as an intermediate result of the asymptotic behavior of Pe (eq. 2.59) we have

K−1∑
i=0

Z(i) = o(2−Nβ) (8.21)

for β < 1
2 . Therefore roughly speaking we can say that

∑K−1
i=0 Z(i) scales as 2−

√
N for

N →∞, and hence we have

Reff → R− 2−
√
N

N
for N →∞ (8.22)
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Chapter 9

Conclusions and Future Work

The aim of this Thesis was to improve finite-length performance of polar codes, so that

their usage could be made practically convenient.

To fulfill this goal we provided three schemes that take advantage of feedback to im-

prove the packet error rate. They have been presented in an increasing order of com-

plexity. However, we also verified that this complexity is not useless, since the most

sophisticated scheme is able to achieve better performance than the others. For this

reason the first scheme was discarded for practical purposes, and we concentrated our

efforts on the other two, and mainly on the most complicated and interesting one.

Indeed, after having simulated the schemes, we concluded that in exchange for a moder-

ate delay and a small rate reduction, they were able to provide a transmission with zero

packet error rate.

Successively, stochastic models for the schemes were provided. In particular, we veri-

fied by simulation the accuracy of the model for scheme III, and we found it to be very

good in estimating the expected delay for decoding.

The impact of list decoding was investigated. We concluded that the adoption of list

decoding in place of successive cancellation is worthy only for small size of the list, as

we increase the list size the gain we obtain is less and less significant.

The application of scheme III for the Gaussian channel was also investigated, given its

importance in telecommunications. Scheme III and its theoretical model proved to be

flexible enough to be easily adapted to the Gaussian case with just some minor but still

89



9. CONCLUSIONS AND FUTURE WORK

significant modifications. Again, we evaluated the performance of the scheme and the

accuracy of the model for this case, and we found good results. This is promising for

the practical applications of the scheme.

Finally, we greatly simplified the mathematical models in order to derive some simple

bounds, and we developed an asymptotic analysis for the effective rate. As they are

based themselves on bounds and scaling laws, these results are mainly asymptotic. If

there is the necessity of avoiding the scheme simulation, and still obtain accurate es-

timations, the only viable alternative is the usage of the Markov model. However, as

many scaling laws, they can provide valuable insight on the behavior of the system.

The main drawback of the schemes is clearly the presence of the delay. Therefore, their

applicability is not universal, but it is limited only to those communication scenarios in

which a delay is tolerated. For example, many real time communication scenarios have

to be excluded, as well as the majority of broadcast transmissions. However, there is still

a very large amount of situation that can take great advantage from this system, just as

there is for the use of any ARQ technique. Just to provide some examples, bi-directional

reliable communications, communications using TCP over IP, communications using

FTP, and so on.

9.1 Future Work

The work of this Thesis opens and leaves many possibilities for future work and re-

search.

The development of the schemes in case of non-full feedback is still at a primitive stage,

and only some outlines have been given in appendix B.

It would be also very interesting to be able to find an explicit mathematical relation be-

tween the two most important metrics, namely Reff and D.

More work on the mathematical analysis could be directed into find bounds for the de-

lay that are tighter and more accurate.

The application of the model to other types of channels, such as the binary symmetric

channel, could also be investigated.

An extension to M-ary channels could also be devised.
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Finally, we analyzed the performance improvement provided by list decoding. How-

ever there exist many techniques developed to improve polar codes performance, such

as using them in combination with other types of codes, or adding a CRC and so on.

Evaluating how the scheme behaves when using these techniques in combination with

polar codes would also be worthy.
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Capitolo 9b

Conclusioni e Sviluppi Futuri

Lo scopo della presente Tesi era di migliorare le prestazioni a in regime di lunghezza

di blocco finita dei codici polari, in modo da poter rendere il loro uso conveniente per

impieghi pratici.

Per raggiungere questo scopo, abbiamo ideato tre schemi che traggono profitto dal feed-

back per miglioreare il tasso di errore di pacchetto. Essi sono stati presentati in ordine

crescente di complessità. Comunque, abbiamo anche verificato che questa complessità

non è inutile, dal momento che lo schema più sofisticato è in grado di raggiungere

prestazioni migliori rispetto agli altri. Per questa ragione il primo schema è stato scar-

tato per applicazioni pratiche, ed abbiamo concentrato i nostri sforzi sugli altri due, e

principalmente sul più complicato ed interessante.

Infatti, dopo aver simualto gli schemi, abbiamo concluso che in cambio di un ritardo

moderato e una piccola riduzione del rate, essi sono in grado di fornire una trasmissione

con tasso di errore di pacchetto nullo.

Successivamente, modelli stocastici per gli schemi sono stati presentati. In particolare,

abbiamo verificato attraverso simulazioni l’accuratezza del modello per lo schema III, e

abbiamo verificato che è molto buono nello stimare il ritardo atteso per la decodifica.

Abbiamo investigato anche l’impatto della decodifica a lista. Abbiamo conlcuso che

l’impiego della decodifica a lista al posto delle cancellazioni sequenziali è valida solo

per una taglia della lista piccola, e incrementando la taglia della lista il guadagno che si

ottiene è meno significativo.
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Anche l’applicazione dello schema III per il canale gaussiano è stata oggetto di indagine,

data la sua importanza nelle telecomunicazioni. Lo schema III e il relativo modello

teorico si sono dimostrati sufficientemente flessibili da poter essere adattati al caso gaus-

siano con delle modifiche minori, ancorché significative. Di nuovo, abbiamo valuato

le prestazioni dello schema e l’accuratezza del modello per questo scenario, e abbiamo

trovato dei buoni risultati. Ciò è promettente per quanto riguarda le applicazioni pratiche

dello schema.

In ultimo, abbiamo notevolmente semplificato i modelli matematici al fine di derivare

qualche semplice limite, e abbiamo sviluppato un’analisi asintotica per il rate effettivo.

Essendo essi stessi basati su limiti e leggi di scala, questi risultati sono principalmente

asintotici. Se vi è la necessità di evitare la simulazione dello schema, ed ottenere co-

munque delle estime accurate, l’unica valida alternativa è l’uso del modello markoviano.

Ad ogni modo, come molte leggi di scala, essi possono fornire una buona compresione

del comportamento del sistema.

Il principale inconveniente degli schemi è chiaramente la presenza di ritardo. Perciò la

loro applicabilità non è universale, ma è limitata solamente a quegli scenari di comu-

nicazione in cui un ritardo è tollerabile. Per esempio, molti scenari di comunicazione

in tempo reale devono essere esclusi, come anche molte trasmissioni in broadcast. Co-

munque, vi è ancora una gran quantità di situazioni che possono trarre un notevole

vantaggio da questo sistema, come ve ne è per l’uso di qualunque tecnica ARQ. A mero

titolo di esempio, comunicazioni bidirezionali affidabili, comunicazioni che usano TCP

su IP, comunicazioni che usano FTP e cosı̀ via.

9b.1 Sviluppi Futuri

Il lavoro di questa Tesi apre e lascia molte possibilità per futuri sviluppi e ricerche.

Lo sviluppo di schemi in caso di feedback non completo è ancora ad uno stadio embri-

onle, e solo qualche lineamento è stato dato in appendice B.

Sarebbe anche molto interessante saper trovare una relazione matematica esplicita tra le

due metriche più importanti, ovvero Reff e D.

Ulteriore lavoro sull’analisi matematica potrebbe essere diretto a trovare limiti per il
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9b. CONCLUSIONI E SVILUPPI FUTURI

ritardo più stringenti e accurati.

Pure l’applicazione del modello ad altri tipi di canali, come il canale binario simmet-

rico, potrebbe essere oggetto di indagine. Anche un’estensione a canali M-ari potrebbe

essere ideata.

Infine, abbiamo analizzato il miglioramento delle prestazioni fornito dalla decodifica a

lista. Esistono però molte tecniche sviluppate per migliorare le prestazioni dei codici

polari, come il loro uso in combinazione con altri tipi di codici, o l’aggiunta di CRC

e cosı̀ via. Varrebbe lo sforzo di valutare come questi schemi si comportano quando

vengono usate queste tecniche in combinazione con i codici polari.
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Appendix A

Channels

A.1 Binary Erasure Channel

The binary erasure channel of parameter ε, BEC(ε), is a binary channel which either

correctly delivers the information or completely destroys it. It is a simple channel widely

used in information theory, since it is suitable for theoretical analysis, whereas with

other channels the analysis may result much more complicated.

It is characterized by its erasure probability ε and transition probabilities
p(0|0) = p(1|1) = 1− ε

p(?|0) = p(?|1) = ε
(A.1)

and diagram depicted in Fig. A.1. Its capacity is

C = I(W ) = 1− ε (A.2)

A.2 Binary Additive White Gaussian Noise Channel

The binary additive white Gaussian noise channel of parameter σ, BAWGNC(σw) is a

channel which takes binary input x ∈ {−1,+1} (typically) and adds a white Gaussian
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Figure A.1: diagram of BEC(ε).

noise, modeled as a random variable w ∈ N (0, σ2
w).

The diagram is given in Fig. A.2. The capacity of the BAWGNC(σw) is derived in [24]:

+

wi ∈ N (0, σ2
w)

xi yi

Figure A.2: diagram of BAWGNC(σw)

C(σw) =1 + 1
ln 2

((
2
σ2
w

− 1
)
Q
( 1
σw

)
−
√

2
πσ2

w

e
− 1

2σ2
w +

+
∞∑
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(−1)i
i(i+ 1)e

2i(i+1)
σ2
w Q

(1 + 2i
σw

))
[bit/channel use]

(A.3)
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Appendix B

Considerations for the Case of Partial
Feedback

In this case the system we propose is the following: the receiver transmits to the sender

a feedback containing the indices of the first genie aids that it would need for all the

received packets that still have to be decoded, ordered from the most recent to the oldest

one (in order to take advantage of the backpropagation in the resolution of the genie

helps). It also uses a special character (e.g., −1) to resolve any ambiguity on the attri-

bution of the genie aid to each packet. In particular this happens when there is a packet

that is decoded out of order, i.e., before a previously received packet that is still un-

decoded (an event that now, with the feedback that is not full anymore, may happen).

However these special characters have to be sent only once per packet, since afterwards

the sender keeps track that a given packet has been decoded at the receiver, and then

acts consequently. The sender sends its packet adding at the beginning the genie aids

requested by the receiver, putting first the genie aids regarding the most recently re-

ceived packets (which allows us to exploit a propagation effect in the decoding). In the

worst (decodable) case, that is all received packets have only the first bit decodable and

the following t bits wrong, we verify that the delay to decode each packet is constant

and finite, but it scales exponentially with the number of errors per packet t.

This system requires a feedback of size order of M log(R2n) bits to encode the indices,

where M is the number of pending received packets yet to be decoded at the receiver.
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