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Abstract

The present work gives a short introduction to the theories that define a helicopter main

rotor aerodynamics and performance. The coupling between a software that evaluates

the forces on the rotor plane thanks to the blade element theory and a code that,

by means of the vortex theory, simulates the inflow field in that region is explained.

Three main test cases were simulated in many different conditions in order to explore

the capabilities and the practical limits of the method. Starting from 2 blade test cases,

parameters and common setting were investigated.

It has been found that the software presents some issues mainly regarding the integrity

of the discretization and a correction has been proposed. This has been discovered by

comparing the results obtained with the vortex method against experimental flight test

data and CFD simulations.

However, the code increases the accuracy of the induced velocity field of the main rotor

compared with a basic momentum theory by analyzing non uniform effects, finite blade

effects and blade vortex interactions. This consequently produces an improvement of

the performance prediction.
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Notation

The symbols used in this work are alphabetically listed below:

a blade section two-dimensional lift-curve slope

A Rotor disk area

akh Induced velocity correction factor for hover

akf Induced velocity correction factor for forward flight

AoA Angle of attack

B Tip loss factor

BEMT Blade Element Momentum Theory

BV I Blade Vortex Interaction

c Blade chord

CFD Computational Fluid Dynamics

CPU Central Processing Unit

cd, cl, cm Drag, Lift and Momentum coefficient

CP Power coefficient

CPc Climb power loss

CPi Induced power loss

CPo Profile power loss

CPp Parasite power loss

CT Thrust coefficient

D Drag

DLR Deutsches Zentrum für Luft- und Raumfahrt

FM Figure of merit

Fx, Fy, Fz Forces along x,y,z axis

Ib Moment of inertia of the blade

k Induced power correction factor

l Length of a vortex segment

L Lift

Mx,My,Mz Momentums along x,y,z axis

ṁ Mass flux through the rotor disk

N Number of blades

NA, Nψ FT-Freewake radial and azimuthal number of points

NACA National Advisory Committee for Aeronautics

P Rotor shaft power

Q Rotor torque

pi Pressure in a defined position

r Blade radial coordinate
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r0 Root radius

R Rotor radius

RF Relaxation factor

RoC Rate of climb

T Rotor thrust

Vx, Vy, Vz Helicopter velocity with respect to the air

V∞ Velocity of the helicopter in the fuselage reference system

VC Climb velocity

vi Induced velocity

vh Induced velocity in hover

V CR Vortex Core Radius

α Angle of attack

β Blade flap angle

Γ Bound vorticity

Γs Shed vorticity

Γt Trailing vortivity

κ Distorsion factor of the induced velocity

η Power available efficiency factor

ζ Blade lag angle

θ Blade pitch angle

θ0 Collective pitch angle

θc Lateral cyclic pitch angle

θs Longitudinal cyclic pitch angle

θ75 Pitch angle of the blade at 75% of the radius

λ Rotor inflow ration

µ Rotor advance ratio

ρ Density of the air

σ Solidity of the blades

φ Section inflow angle

ω induced velocity in the far wake

Ω Rotational speed of the rotor
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1 Introduction

This thesis work aims to analyze the performance of a helicopter in a large variety

of flight conditions by means of a free-wake method in order to achieve medium-high

accuracy results. The wake has a strong influence on the aerodynamics and the loads

of the helicopter rotor, therefore an accurate prediction of its shape and its relative

induced velocity field is desired.

Due to its relatively low computational time and the big variety of possible situations

that occur in a rotating wing configuration, a large number of free-wake codes have

been implemented in many different sectors regarding helicopters and wind turbine

studies in the past years. The FT-Freewake code written by DLR aims to increase the

accuracy of the inflow field used by AIRBUS Helicopters internal code Gensim in order

to remove the empirical based models inside the codes that would not be reproducible

for a different helicopter.

This paper presents results for three different rotors, which have been analyzed in

steady state conditions, and aims to make the reader understand the strengths and the

weaknesses of the theories implemented in both codes.

The free-wake code does not predict with 100% of accuracy all the phisical quantities

describing the helicopter and its performance but aims to find a trade off between the

high accuracy and computational time required by CFD and the low computational

time and accuracy achieved with the classic momentum theory.
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2 Theoretical background

In order to understand properly this work it is necessary to achieve a certain level of

knowledge of all the different theories that have been used. In the first part of this

chapter a brief theoretical background concerning the helicopters has been written.

The helicopter is a special type of aircraft which employes rotating wings to provide

the necessary lift force that makes the whole body fly; the main parts that compose a

helicopter are: the main rotor, the tail rotor the fuselage and the landing gear. The

main component studied by this thesis is the main rotor and the wake that it generates.

The rotor blades rotate around a vertical axis describing a horizontal disk above the

fuselage. The lift is generated by the relative motion between every blade and the air.

The rotating speed of the rotor is independent from the speed of the entire helicopter

and, because of that, this machine does not require a translational motion to fly.

The helicopter therefore has the capability of vertical flight, forward flight, hover and

even backward flight. The main rotor provides also the propulsive force that permits

to move forward, which is generated by tilting the lift force in the forward direction.

Since the main rotor has such an important role in the helicopters dynamics it is clear

that its efficiency must be as high as possible, which corresponds to maximizing the

ratio between the thrust produced by the rotor and the required power. The key to

achieve a low power loading is a low disk loading that means a low ratio between the

rotor thrust and the total disk area. This aspect is clearly explained in [1]: conserva-

tion of momentum requires the lift to be obtained by accelerating air downwards, since

corresponding to the lift is an equal and opposite reaction of the rotating wings against

the air. This is the induced power loss, a property of both fixed and rotating wings

that constitutes the absolute minimum of power required for equilibrium flight. For

the rotary wing in hover, the induced power loading is found to be proportional to the

square root of the rotor disk loading. Hence the efficiency of rotor thrust generation

increases as the disk loading decreases.

The Helicopters are therefore characterized by a large rotor radius; the configuration

most widely used is a main disk that rotates around a vertical axis above the fuselage

and a smaller tail rotor that rotates at high rotational speed around an axis horizontal

and perpendicular to the tail axis that has the task to produce a force that nullifies

the torque induced by the main rotor on the fuselage.

However there are different configurations that use two couter-rotating main rotors

placed in different positions. In this thesis, only the conventional helicopter configu-

ration has been studied. However, since the wake principles are clearly the same, the

method could be applied to general configurations.

3



(a) Conventional configuration (b) Tandem configuration

(c) Coaxial configuration (d) Synchropter configuration

(e) Side by side configuration

Figure 1: Different helicopter configuration[1]
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2.1 The main rotor

This chapter shows the features of the main rotor of a helicopter, summarizing the

nomenclature and the parameters used throughout the document.

The rotor consists of an hub with two or more blades connected to it. The blades

must be at the same angular distance and all the blades must have the same shape in

order to have a balanced disk loading. The hub has an uniform rotation transmitted

through a shaft torque that is connected with the engine by a gearbox. The value of the

rotational speed Ω is chosen in order to produce enough lift to sustain the helicopter

and allow the blades to work with an high efficiency, this value depends mainly on the

radius of the rotor.

The shape of the blade has a great importance on the aerodynamics of the helicopter;

there are many different currents of thought, however, the rotors studied within this

thesis have a rettangular blade planform and, in the case of the H135, a parabolic blade

tip.

In order to describe the position of a blade relative to the rotor plane, the following

reference system is introduced. It is a polar system centered in the center of the hub

with a distance indication r and an azimuth ψ. The maximum value of r is the radius

of the rotor R and ψ = 0 corresponds to the downstream direction over the tail boom.

Figure 2: Reference system of the rotor[1]

As shown in Fig.2 the rotation direction will be counter clockwise for analysed rotors,

this means that if the helicopter is in a forward flight motion the tangential velocity in

the right half of the rotor has an opposite direction compared with the stream velocity.

Because of that the right side of the rotor can be called advancing side and the left

side is called retreating side.[1][2]

5



Other parameters that define a rotor and that will be widely used throughout this

thesis are:

• A = πR2 = total area of the disk

• c = blade chord f (r)

• N = number of blades

• σ = Nc/πR = rotor solidity

• Ib =
∫ R

0
mr2 = moment of inertia of the blade around the rotation axis

The rotor solidity is defined as the ratio between the blades area and the total area of

the disk.

Now that the main parameters of the rotor have been defined it is important to intro-

duce the motion of the single blade and its parameters: the blade is connected at the

root by hinges that allow a 3 degrees of freedom motion.

Figure 3: Blade motion[1]

θ is the blade pitch angle which is a rotation around the blade axis, it is considered

positive for a nose-up rotation of the blade. ζ is called the lag angle and allows a

motion of the blade inside the plane of the disk. It is considered positive if the lag is

clockwise. β is the flapping angle that transforms the disk of the rotor in a cone, it is

considered positive if the tip is higher than the hub.

Care must be taken not not to confuse θ with α which is the angle of attack of the

blade in a defined section and depends on the pitch of the blade and its vertical and

tangential velocity as it will be explained in chapter 2.3. This description of the blade

motion applies to rigid blades where elastic deformations are not accounted for.

Now that the basic geometry of the main rotor is clear, it is important to introduce

how these angles change during an entire revolution since the blade displacement is

6



periodic around the azimuth angle in a steady state motion. To properly understand

the blade motion behaviour, the periodic displacements can be decomposed by means

of a Fourier analysis around ψ.:

θ = θ0 + θ1ccos(ψ) + θ1ssin(ψ) + θ2ccos(2ψ) + θ2ssin(2ψ) (2.1.1)

β = β0 + β1ccos(ψ) + β1ssin(ψ) + β2ccos(2ψ) + β2ssin(2ψ) (2.1.2)

ζ = ζ0 + ζ1ccos(ψ) + ζ1ssin(ψ) + ζ2ccos(2ψ) + ζ2ssin(2ψ) (2.1.3)

In the first equation that shows the motion of the pitch angle of the blade against the

azimuth, three very important parameters for the entire helicopters control appear. θ0

is the collective angle, which does not depend on the azimuth and it is a constant on

the entire revolution. This angle is the main factor that controls the vertical lift of the

helicopter. To provide the tilt of the lift force in lateral and longitudinal direction the

cyclic angles must be involved. These two angles, called θ1c and θ1s, are a sinusoidal

and a cosinusoidal function of the azimuth angle and their task is to permit forward

flight and a large number of different maneuvers.

For a fixed untwisted wing the lift is constant along the radial dimension due to the

fact that the relative velocity between the wing and the air is the same in every section

of the blade. This is obviously not true for a helicopter, even if considering the blade

untwisted the tangential speed at the leading edge will depend on the radius and the

angular velocity as: Vtan = Ωr. If the helicopter is in forward flight condition the

stream velocity must be considered and the tangential velocity at any point of the disk

becomes:

Vtan = Ωr + V∞sin(ψ) (2.1.4)

For a helicopter in hover condition the tangential velocity increases linearly with the

radius of the rotor and reaches its maximum at the blade tip where r = R, for forward

flight condition the maximum value is reached at the tip of the blade positioned at an

azimuth of 90 degrees; the distribution is still linear but the null is not centered in the

rotation axis of the blades. The Fig.4 explains this concept by showing the trend of

the incident velocity for a rotor in hover and a rotor in forward flight.

In the image that explains the forward flight trend there is an area of reverse flow,

this region occurs where the stream velocity multiplied by sin(ψ) is higher than the

tangential speed of the blade, this means that air encounters the blade at the trailing

edge and does not produce any lift. It is interesting to note that the wing of a heli-

copter stalls at high flight speeds instead of low speeds of the fixed wing. A problem

that occurs in forward flight on the advancing wing is the relatively high Mach number

7



(a) Hovering flight (b) Forward flight

Figure 4: Distribution of incident velocity on the leading edge of the rotor blade[1]

at the blade tip that in the worst case can cause a shock wave that might produce a

separation of the flow or at least an increase of the drag force.

2.2 Momentum theory

The first theory analyzed in this thesis is the momentum theory which (coupled with

the blade element theory) is used in Gensim.

The first situation that will be analyzed is the hover case, which is the simplest to

evaluate since there is no interaction between the wake and the stream velocity. This

theorical approach named Rankine-Freud momentum theory allows the reader just to

have a first prediction of the thrust or the power of the rotor. To have a more accurate

prediction, a method that analyzes the wake or that solves the Navier-Stokes equation

is required.

As usually happens for the study of a phenomenon in aerodynamics the three laws of

conservation will be used. For this approach the following boundary conditions will be

assumed:

• Flow through the rotor is one dimensional and uniform

• The fluid is ideal

• The flow is steady-state

This means that the flow properties in a defined point do not depend on the time, that

the viscous losses are neglected and the only losses that occurs are the induced losses,
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and that the properties across any plane parallel to the rotor plane are equal.[2]

In order to analyze the rotor performance a control volume of area S sorrounding the

rotor and its wake is assumed.

Figure 5: Control volume for hover[2]

The mass conservation law can be written as:∫∫
S

ρ~V · d~S = 0 (2.2.1)

where d~S is the unit normal area vector which points outside the control volume, ρ the

density of the fluid and V the local speed. This equation means that the mass entering

the control volume is equal to the mass exiting it.

The second statement used is the momentum conservation law:

~F =

∫∫
S

pd~S +

∫∫
S

(ρ~V d~S) · ~V (2.2.2)

The assumption is a uniform pressure P jump over the rotor disk and that the dis-

tribution of the velocity does not change across any horizontal section of the control

volume.

The force acting on the fluid is supplied by the rotor, and thanks to the third Newton

law, the fluid applies an equal force but in the opposite direction on the rotor which is

the thrust T .

The third law is the energy conservation law which is a scalar equation that states that

the work made by the rotor on the fluid is manifested as an increase of the kinetic
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energy:

W =

∫∫
S

1

2
(ρ~V · d~S)|~V |2 (2.2.3)

Equations (2.2.1), (2.2.2), (2.2.3) have been already simplified by the boundary condi-

tions called out before.[1][2][4]

2.2.1 Momentum theory for hover

According to the theory described by Leishman [2] that follows the procedures at-

tributed to Rankine and Froude and generalized by Glauert, the three equation written

in the previous section will now be applied for a hover rotor.

The section 0 in Fig. 5 denotes a plane far upstream the rotor, the section 1 is placed

just above and section 2 is placed just below the rotor disk plane, which has an area

called A. The last section considered is the section∞ which denotes a section very far

below the disk.

Lets consider an induced velocity vi which is the velocity of the mass of air at the rotor

disk. This velocity will increase during the descend and at the far wake is denoted by

ω. Using the mass conservation law it is possible to say that the mass flow rate ṁ is

equal to:

ṁ =

∫∫
∞
ρ~V · d~S =

∫∫
2

ρ~V · d~S (2.2.4)

and thanks to the 1-D flow assumption and integrating the mass flow is:

ṁ = ρA∞ω = ρA2vi = ρAvi (2.2.5)

It is possible to find the thrust produced by the rotor thanks to the momentum law :

T =

∫∫
∞

(ρ~V d~S) · ~V −
∫∫

0

(ρ~V d~S) · ~V (2.2.6)

in hover condition the velocity far above the rotor is equal to zero so the second integral

in the previous equation is zero and the formula can be reduced to:

T =

∫∫
∞

(ρ~V d~S) · ~V = ṁω (2.2.7)

The energy conservation principle helps finding the power consumed by the rotor which

is equal to:

P = T vi =

∫∫
∞

1

2
(ρ~V · d~S)~V 2 −

∫∫
0

1

2
(ρ~V · d~S)~V 2 (2.2.8)
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as in equation (2.2.7) the second integral is equal to zero and the formula becomes:

P = T vi =

∫∫
∞

1

2
(ρ~V · d~S)~V 2 =

1

2
ṁω2 (2.2.9)

Coupling eq. (2.2.8) with (2.2.7) it is possible to find the relationship between vi and

ω as:

vi =
1

2
ω (2.2.10)

This means that using the law of mass conservation, the section at the rotor disk is

two times bigger than the section at which the wake is fully developed.

It is very important to understand the relationship between the induced velocity and

the thrust or the power of the rotor; this can be done just by mathematically combine

the previous formulas and solving them for the needed variable:

T = ṁω = 2ṁvi = 2ρAv2
i (2.2.11)

Recalculating this equation to find the vi as a function of the thrust it is clear that the

induced velocity at the rotor disk is:

vi =

√
T

A

1

2ρ
(2.2.12)

This helps to define a new ratio which is the disk loading T/A.

To complete the analysis the ideal power to hover can be defined as:

P = T vi =
T

3
2

√
2ρA

= 2ρAv3
i (2.2.13)

In order to decrease the required power the last term of the previous equation suggests

to increase the rotor disk area as much as possible in order to reduce the vi which

affects by cubic function the power.

Corresponding to an increment of the speed there is also a variation of the pressure in

the horizontal sections of the wake. This phenomenon can be analyzed by means of the

Bernoulli principle: there is a real jump of pressure between the area just above and

the section just below the rotor made by the additional work added by the blades. The

Bernoulli equation, which represents the energy conservation law for an incompressible

flow is used between the point 1 and 2 of the control volume in order to find the

variation of pressure:

p0 = p∞ = p1 +
1

2
ρv2

i (2.2.14)

11



p2 +
1

2
ρv2

i = p∞ +
1

2
ρω2 (2.2.15)

Assuming that the pressure jump is uniform along the disk, it must result that:

∆p = p2 − p1 =
T

A
(2.2.16)

coupling together (2.2.14), (2.2.15) and (2.2.16) it is possible to find:

T

A
= p2 − p1 =

1

2
ρω2 (2.2.17)

According to these equations, the relationship between the static pressure p∞ and the

pressure just above and just below the rotor disk are:

p1 = p∞ −
1

2
ρv2

i = p∞ −
1

2
ρ
ω2

4
= p∞ −

1

4

T

A
(2.2.18)

p2 = p0 +
1

2
ρω2 − 1

2
ρ
ω2

4
= p0 +

3

4

T

A
(2.2.19)

2.2.2 Momentum theory for vertical climb flight

In this chapter, an important flight situation will be analyzed. Vertical climb occurs

when, for example, the helicopter needs to take off. In this situation, the rotor must

provide the thrust to lift up the helicopter over a wide range of gross weights. This

case will be analyzed with the three conservation laws (2.2.1), (2.2.2) and (2.2.3) as

well. In the following, the symbol vh indicated the induced velocity in hover in order

to reduce the length formulations and compare the vi for the two cases. The same

boundary conditions will be used.

The main difference with the hover case is the presence of a stream velocity along the

vertical axis called rate of climb, VC or (RoC according to the most common aero-

nautical gergon). The total velocity at the rotor plane is the sum between the rate of

climb and the induced velocity. The velocity where the wake is fully developed will be

Vc + ω.

As for the hover case, a control volume must be defined: Thanks to the mass conser-

vation law it is possible to write:

ṁ =

∫∫
∞
ρ~V · d~S =

∫∫
2

ρ~V · d~S (2.2.20)

integrating Eq. (2.2.20) the result is:

ṁ = ρA∞(Vc + ω) = ρA(Vc + vi) (2.2.21)
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Figure 6: Control volume for climb ascent[1]

This means that the mass flow is increased by Vc compared with the hover case. The

thrust has been found with the conservation momentum law as:

T =

∫∫
∞
ρ(~V · d~S)~V −

∫∫
0

ρ(~V · d~S)~V (2.2.22)

In this case, the second integral can not be considered zero because of the presence of

the rate of climb so the thrust will be:

T = ṁ(Vc + ω)− ṁVc = ṁω (2.2.23)

and the work made by the rotor is:

T (Vc + vi) =

∫∫
∞

1

2
ρ(~V · d~S)~V 2 −

∫∫
0

1

2
ρ(~V · d~S)~V 2 (2.2.24)

that after double integration becomes:

T (Vc + vi) =
1

2
ṁ(Vc + ω)2 − 1

2
ṁV 2

c =
1

2
ṁω(2Vc + ω) (2.2.25)

Coupling (2.2.24) and (2.2.25) it results that ω = 2vi which is exactly the same result

that occurs for the hover case. The relationship between the thrust and the induced
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velocity becomes:

T = ṁω = ρA(Vc + vi)ω = 2ρA(Vc + vi)vi (2.2.26)

dividing both terms for 2ρA and v2
h the equation becomes a quadratic equation on vi/vh

as: (
vi
vh

)2

+
Vc
vh

(
vi
vh

)
− 1 = 0 (2.2.27)

which has the two solutions:

vi
vh

= −
(
Vc
2vh

)
±

√(
Vc
2vh

)2

+ 1 (2.2.28)

but the ratio between vi and vh must be positive otherwise the flow model would be

violated so the only possible solution is the positive one:

vi
vh

= −
(
Vc
2vh

)
+

√(
Vc
2vh

)2

+ 1 (2.2.29)

This solution shows that as the rate of climb of the helicopter increases its induced

velocity decreases. However this equation has a lower limit for Vc that is exactly the

hover condition because below that case there could be two different flow direction,

which of course can not be possible. So this theory must be considered correct just for

positive values of Vc and not for descent.[2]

2.2.3 Momentum theory for axial descent flight

This is the case where the slipstream is above the rotor disk. In this flight condition

−2vh > Vc. If the rate of climb is between −2vh and 0 the velocity at any plane

through the rotor slipstream can be either upward or downward and a more complex

flow pattern is required. Fig.7 shows the new control volume. A boundary condition

must be added to the previous ones which stay unchanged: |Vc| > 2vh. The direction

for positive velocity is still downward.

The procedure that will be applied is the same used in hover and climb flight, so, the

first parameter to be calculated is the mass flow rate:

ṁ =

∫∫
∞
ρ~V · d~S −

∫∫
2

ρ~V · d~S (2.2.30)

after integration (2.2.30) becomes:

ṁ = ρA∞(Vc + ω) = ρA(Vc + vi) (2.2.31)
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Figure 7: Control volume for descent[1]

Now the thrust force is:

T = −

(∫∫
∞
ρ(~V · d~S)~V −

∫∫
0

ρ(~V · d~S)~V

)
(2.2.32)

The first minus in (2.2.32) is caused by the direction of the flow relative to the axis

reference. In this case the thrust becomes:

T = −ṁ(Vc + ω) + ṁVc = −ṁω (2.2.33)

Eq. (2.2.33) shows a negative thrust but clearly that is not true because of the negative

sign of the flow mass rate. The last parameter that has to be found is the power

required:

T (vi + Vc) =

∫∫
0

1

2
ρ(~V · d~S)~V 2 −

∫∫
∞

1

2
ρ(~V · d~S)~V 2 (2.2.34)

and after integration the result is:

T (vi + Vc) =
1

2
ṁV 2

c −
1

2
ṁ(Vc + ω)2 = −1

2
ṁω(2Vc + ω) (2.2.35)

The rotor power is negative which means that the rotor is extracting power from the

airstream. The rotor in this situation, called windmill state, is decreasing the speed of

the air.

It is now important to find a correlation between the VC and the induced velocity as
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it has been made for the ascending case. Using the thrust formulation as:

T = −ṁω = −ρA(Vc + vi)ω = −2ρA(Vc + vi)vi (2.2.36)

and dividing by 2ρA and v2
h: (

vi
vh

)2

+
Vc
vh

(
vi
vh

)
+ 1 = 0 (2.2.37)

The equation is very similar to the climbing case, the only solution valid is that one

that does not violate the flow model which is:

vi
vh

= −
(
Vc
2vh

)
−

√(
Vc
2vh

)2

− 1 (2.2.38)

Remembering that this equation is valid only for Vc/vh ≤ 2.

To conclude this chapter it is necessary to analyze what happens in the region between

the pure ascent case and the high rate of descent case. This region is defined by

−2 ≤ Vc/vh ≤ 0. The momentum theory is useless in this zone because it is impossible

to set a control volume since the flow can take different directions.

The only possibility to solve the problem and find a curve that connects the equation

for the ascent case and the fast descent case is to fit an interpolation between empirical

values. A lot of different studies have been made, but in this thesis only a quartic

function valid for the full range will be proposed:

vi
vh

= κ+ κ1

(
Vc
vi

)
+ κ2

(
Vc
vi

)2

+ κ3

(
Vc
vi

)3

+ κ4

(
Vc
vi

)4

(2.2.39)

where κ is the measured induced power factor in hover, κ1 = −1.125, κ2 = −1.372,

κ3 = −1.718 and κ4 = −0.655. The following graph summarizes the trend of the in-

duced velocity ratio versus the climb velocity ratio for both ascent and descent cases.

2.2.4 Momentum theory for forward flight

The last flight case that will be analyzed with the momentum theory is the forward

flight; in this situation the rotor tilts by an angle to produce the propulsive force that

pushes forward the helicopter. The flow model is non axisymmetric and there will be

some assumptions in order to represent better the flow field.

V∞ is the stream velocity of the helicopter; the purpose of this paragraph is to find a
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Figure 8: Induced velocity ratio vs climbing ratio[1]

law, which, if used for hover will achieve the same results seen before.

It is necessary to introduce a new velocity U which is the resultant velocity at the rotor

disk:

U =
√

(V∞cosα)2 + (V∞sinα + vi)2 (2.2.40)

where α is the angle between the rotor disk and V∞. This theorical model has been

studied by Glauert and it is well summarized in the following image:

Figure 9: Glauert flow model for forward flight[3]
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According to the momentum theory the mass flow rate will now be:

ṁ = ρAU (2.2.41)

Thanks to the momentum conservation law and the conservation of energy it is easy

to find the thrust and the power as:

T = ṁ(ω + V∞sinα)− ṁV∞sinα = ṁω (2.2.42)

P = T (vi + V∞sinα) =
1

2
ṁ(2V∞ωsinα + ω2) (2.2.43)

Coupling together (2.2.42) and (2.2.43) it is possible to find the relationship between

ω and vi which as usual is: ω = 2vi To compare the induced velocity in a forward flight

case with the hover case three parameters will be introduced:

• The advance ratio µ = V∞cosα/(ΩR)

• The inflow ratio λ = (V∞sinα + vi)/(ΩR)

• Thrust coefficient CT = T
1
2
ρA(ΩR)2

From the hover case it is clear that λh =
√
CT/2. After a few algebraic substitutions

the inflow ratio that rules the relationship between the two induced velocities is defined

as:

λ = µtanα +
CT

2
√
µ2 + λ2

(2.2.44)

The following graph shows the induced inflow ratio λi/λh against the forward speed

ratio for different values of α.

Figure 10: induced inflow ratio vs forward speed ratio[1]

18



Now that every flight situation has been analyzed, and before introducing another the-

ory that describes with an higher accuracy the flow field, it is important to understand

which are the limits of the momentum theory and where it requires some corrections

that could be both theorical or empirical.[1]

2.2.5 Non-ideal effects on rotor performance

In this chapter some non ideal effects on the rotor thrust will be discuss with accuracy

since the main purpose of this thesis is to avoid the empirical corrections that must be

applied to the momentum theory and, in the next chapter, to the blade element theory

to obtain proper results.

The first non ideal effect that will be analyzed is the losses on local thrust distribution

due to a tip loss effect. For an infinite long ideal blade it is already clear that the thrust

increases with the radius, but, when the blade comes to an end a strong tip vortex is

produced. The air goes from the pressure side to the suction side of the blade reducing

the lift. This phenomenon reduces the total lifting area of the rotor.

Figure 11: Tip losses[2]

For preliminary analysis a coefficient smaller than one is multiplied for the rotor disk

area. In the AIRBUS Helicopters internal code Gensim to consider tip effects are taken

into account by iterrupting the lift forces integration at a certain distance from the tip

(tipically 97% of radius). Obviously the drag is not affected by this effect.

A correlated phenomenon is the cut off effect at the root of the blade: the wing does

not start at r = 0 and this reduced the working area of the rotor.

If the value of the radius where the wing profile starts is r0 and the tip loss coefficient

is B, then the ratio between the area of the rotor and the area that produces thrust is:

Ae
A

= B2 − r2
0 (2.2.45)
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There are a lot of empirical theories to find the best value of B which depends on the

number of the blades and their the geometry and the thrust coefficient. Fig.12 shows

the trend of B as a function of the thrust coefficient for different numbers of blades

with the same geometry.

Figure 12: tip loss factor[3]

To compare the required power that comes from the ideal momentum theory and the

real result measured in a flight test a new coefficient will be introduced. The power

coefficient CP defined as:

CP =
P

ρA(ΩR)3
=
C

3
2
T√
2

(2.2.46)

The last term of the formulation is the relationship between the power coefficient and

the thrust coefficient, both are ideal coefficients that come from the momentum theory.

From flight tests it is clear that the last formulation underestimates the induced power

coefficient, so it is necessary to multiply the result for a scalar number κ which is the

induced power correction factor:

CP =
κC

3
2
T√
2

(2.2.47)

This coefficient considers all the non ideal but physical phenomena that affects the

theory such as: tip losses, wake swirl, non-ideal wake contraction, finite number of

blades and non uniform inflow which is the main problem that the free wake method

aims to solve. The swirl effect reduces the net change of the fluid momentum and

affects the power coefficient for a 1% variation.[4]

To find the profile power, which is the power that a blade requires to move in a viscous

fluid, the drag coefficient is required.
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Figure 13: Non ideal effects on momentum theory[3]

2.3 The blade element theory

In this section the blade element theory, which is widely used in helicopter performance

calculation and permits the design of the main rotor, will be summarized. This method

calculates the forces on the blade and the rotor disk by analyzing the motion of the

wing through the air. It applies the lifting line theory of Prandtl to a rotating wing;

the wing is divided in sections along the radius and it is assumed that each section

acts like a 2-D airfoil to produce the forces. The effects of the angle of the wake and

the rest of the rotor must be considered in a variation of the angle of attack at the

analyzing section.

Obviously an estimation of the induced velocity at the rotor disk is required. This can

be done with several methods like momentum theory or vortex theory but in the case of

Gensim (if not coupled with other codes) there is an improved momentum theory based

inflow model calculating the induced velocity at any position of the disk is employed.

This model will be replaced with the inflow calculated by means of the free-wake and

the differences between the two flow fields will be discuss in the next chapters.

To be efficient, the lifting line theory assumes that the blade has a high aspect ratio

which is usually true for low disk loading. Before introducing the model it is important

to itemize the assumptions and the boundary conditions characterizing this theory and

permitting an analytical solution:

• Low disk loading

• Neglect stall

• Neglect compressibility effects
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The stall effect ad the compressibility effects can be taken into account by including a

non-linear behaviour of the lift and drag coefficient along the angle of attack.

It is now important to determine the angles and the velocities in every section of the

wing: θ is the pitch angle measured from the plane of rotation and the zero lift line,

in components the blade sees a normal and a tangential velocity called respectively uP

and uT . These two components define the inflow angle as:

φ = tan−1uP
uT

(2.3.1)

and of course the magnitude of the resultant velocity is:

U =
√
u2
T + u2

P (2.3.2)

The aerodynamic angle of attack at the blade is: α = θ − φ. It is now possible to

calculate the lift and the drag that this single section of the blade produces and their

components on the vertical and horizontal axis:

L =
1

2
ρU2ccl (2.3.3)

D =
1

2
ρU2ccd (2.3.4)

Fz = Lcosφ−Dsinφ (2.3.5)

Fx = Lsinφ+Dcosφ (2.3.6)

Fig.14 shows the wing section, the angles, the velocities and the forces acting on the

blade element:

Figure 14: Blade section aerodynamics[2]

It is now possible to calculate the thrust, the torque and the power. Integration over
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azimuth and radius provides the global results for the rotor.

dT = NFzdr (2.3.7)

dQ = NFxrdr (2.3.8)

dP = NFxωrdr (2.3.9)

where N is the number of blades. For a rotor blade it is acceptable to make the sim-

plification of small angles so that U = uT and φ = uP
uT

. Thanks to the stall assumption

and the compressibility effects neglected, the lift coefficient is linearly correlated with

the angle of attack as cl = aα where a is the slope of the blade. Normalizing and un-

dimensionalizing the quantities, the contribution that every section has on the thrust

and the power in terms of coefficients in hover case is:

dCT =
σa

2
(θr2 − λr)dr (2.3.10)

dCP =
[σa

2
(θrλ− λ2) +

σcd
2
r2
]
rdr (2.3.11)

where λ is the inflow ratio and σ the solidity. Integrating the thrust coefficient along

all the radius of the blade with the assumption of constant chord, linear twist and

uniform inflow the total thrust coefficient of the blade is:

CT =
σa

2

(θ75

3
− λ

2

)
(2.3.12)

where θ75 is the pitch of the blade at 75% of the radius.

It is clear now, that the blade element theory gives the thrust and power coefficient as

a function of the pitch angle and the inflow ratio, this means that the induced velocity

is required to evaluate the thrust knowing just θ. For a vertical climb or a hover case

the momentum theory provides an induced velocity of:

λ =
V

2ωR
+

√( V

2ωR

)2

+
CT
2

(2.3.13)

Analyzing the power coefficient that can be written as:

CP =

∫
λdCT +

∫ 1

0

σcd
2
r3dr (2.3.14)

it is possible to establish the difference between an induced power loss, which is the

first term and results from the in-plane component of the lift, and a second term rep-

resenting the profile power loss due to the drag of the wing in that section.
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Combining the momentum theory with the blade element theory it is possible to de-

fine a non uniform inflow distribution on the radius of the blade. This can be done

assuming that the distribution of the induced velocity on the radius depends just on

the distribution of the thrust. Solving the following equation permits to find λ:

λ2 +
(σa

8
− λc

)
λ− σa

8
θr = 0 (2.3.15)

for hover case where λc = 0 the induced velocity as a function of the radius of the

blade is:

λ =
σa

16

[√
1 +

32

σa
θr − 1

]
(2.3.16)

which is a basic non uniform inflow distribution that can be improved by analyzing

more in the detail the wake.

The previous equations are valid only for hover or vertical climb conditions, however,

in forward flight the velocity of the helicopter must be considered with the components

that the blade sees. The following equations of UT , UP and UR, which is the radial

velocity, can be used in every situation by setting the correct velocity of the helicopter:

UT = r + µsinψ (2.3.17)

UR = µcosψ (2.3.18)

UP = λ+ rβ̇ + βµcosψ (2.3.19)

The Fig.15 helps to understand all the terms of the previous equations.[1][2][3][4] The

Figure 15: Blade section aerodynamics in forward flight[1]

results of the blade element theory or the blade element momentum theory if coupled

with the momentum theory depend on the inflow velocity and its distribution at the

rotor disk, therefore this theory suffers the accuracy of the employed induced velocity
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field.

2.4 The vortex theory

In this chapter the vortex theory is discussed. This method permits to determine a

more accurate induced velocity field by analyzing the wake of the rotor. The wake has

a big impact on the induced velocity field since in a rotating wing the blade encounters

its own wake and the wake from the previous blades many times.

The lift of the blade is connected to a bound circulation through the Kutta Joukowsky

theorem:

Γb =
1

2
V clc (2.4.1)

The vorticity is trailed into the wake from a three dimensional wing. To find the value

and the direction of the induced velocity the vortex method applies the Biot-Savart

law, the Kelvin’s theorem and the Helmholtz law. Fig.16 shows the distribution of the

bound vorticity along the blade and the trailed vorticity. In this case the bound vortex

line is placed at c/4 and the evaluating points at 3c/4

Figure 16: Blade representation in the vortex theory[6]

Biot-Savart law

The most important law in a vortex method is the Biot-Savart law, which permits the

computation of the velocity induced by a vortex filament in an evaluation point P at

r distance from the filament. If the filament has a circulation Γ, then:

d~v =
Γ

4π

d~l × ~r
|r3|

(2.4.2)
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To obtain the velocity at the point P induced by all the vortex lines an integration

along its length is required. A non linear vortex (like the one following the shape of a

wake) can be discretized in several straight segments and the velocity becomes:

Vi =
Γ

4πh
(cosθ1 − cosθ2)ei (2.4.3)

where h is the normal distance from point to filament and θ1, θ2 the angles between the

filament line and the line that merges the beginning and the end point of the segment.

Fig.17 helps the understanding of the formulation.

Figure 17: Induced velocity due to a vortex filament[1]

The Biot-Savart formulation has a singularity in r = 0, the induced velocity of a vortex

line in a point that stands on the line is infinite. To solve the problem a vortex core

radius must be implemented in order to achieve physical values of induced velocity.

The vortex core radius (VCR) consists in a limitation on the velocity if the distance

between the point and the vortex line is smaller than the VCR. Depending on the

formulation of the code there are several different theories: [6][11]

• Rankine vortex model

The vortex line is modelled as a solid body rotation so that:

vθ =
Γ

2πrc
r (2.4.4)

if the distance is smaller than the vortex core radius

• Oseen-Lamb model

Thanks to a simplification of the Navier-Stokes equation the velocity becomes:

vθ =

(
Γ

2πrcr

)(
1− e−αr−2

)
(2.4.5)

with α = 1.25643
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• Vastitas

vθ =

(
Γ

2πrc

)
r

(1 + r2n)
1
n

(2.4.6)

Fig.18 shows the trend of the induced velocity a function of the distance to the vortex

with different models of vortex core radius.

It is very difficult to find a correct value of the vortex core radius, however, depending

on the method used in the code usually the range goes from the 30% to 80% of the

chord.

Figure 18: Velocity induced by a vortex line with different vortex core radius models[6]

Wake geometry and lattice method

Now that the induced velocity and the VCR limitation have been explained, the follow-

ing step is to determine the shape of the wake in order to place the vortex line correctly.

As mentioned before, the bound vorticity must be trailed in the helicopter wake from

the blade tips and the trailing edge. From Fig. 16 it is easy to understand that if a

constant loading along the radius is assumed then the vorticity would be trailed just

at the root and at the tip of the blade. The trailed tip vortex has the shape of a helix

due to the combination of the axial velocity (in hover it is just the induced velocity)

and the rotational motion of the blade. Clearly the assumption of constant lift on the

blade can not be always accurate; assuming a more general case, the trailing vorticity

will move from the trailing edge of the blade at every position of the radius depending

on its discretization. The wake then consists in helical vortex sheets behind each blade.
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All these vortices quickly converge in a bigger vortex near the tip. Summarizing: there

is a bound vorticity due to the lift, a trailing vorticity due to the radial variation of lift

distribution and a shed vorticity due to the azimuthal changes in the bound vorticity.

The presence of a shed vorticity means that the trailing vorticity varies along its fil-

ament; this effect occurs mainly in forward flight. It is possible to define the trailing

and the shed vorticity as:

γt =
∂Γ

∂r

∣∣∣∣
ψ−φ

(2.4.7)

γs = − 1

UT

∂Γ

∂ψ

∣∣∣∣
ψ−φ

(2.4.8)

where φ is the wake age. Fig.19 shows the trailing and the shed vorticity in a rotor

wake.

Figure 19: Trailed and shed vorticity in rotor wake[1]

Near the tip there is a drop on the bound circulation due to the tip losses; the high

negative gradient of the circulation produces a strong negative trailed vortex near the

tip that induces a strong downwash.

This method produces a non uniform inflow distribution, which highly increases the

accuracy of the results provided by the blade element theory. This phenomenon occurs

because the strong tip vortices of the previous blade encounter the following blade

varying the induced velocity, especially in hover case where the helicopter wake is

not carried away by the free stream velocity. In forward flight there is an important

azimuthal variation of the induced velocity that produces a large harmonic content on

the loading.[1][13]

The most commonly used wake model is the lattice model that consists in a high

number of small straight vortex elements that can easily describe the variation of

bound vorticity along radius and azimuth. The model must be used in order to avoid

the integration problem on a non-straight line of the trailed vorticity. Usually the

evaluation point is placed in the middle of two vortices or respecting the area rule
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(every ring has the same area of the previous one), of course, a adequate model for the

vortex core radius is required. The discretized trailing and shed vorticity become:

γt = Γ(ψ − φ, rj+1)− Γ(ψ − φ, rj) (2.4.9)

γs = −Γ(ψ + ∆ψ − φ, rj) + Γ(ψ − φ, rj) (2.4.10)

Figure 20: Example of the lattice model[1]

The geometry of the wake depends on the velocity of the helicopter, the rotational

speed and the induced velocity which is by itself function of the geometry of the wake.

An iteration between the Biot-Savart law and the position of the points of the lattice

model is required in a non uniform inflow calculation. This make the vortex theory

more expensive than the previous theories and the prescribed helix form is just a coarse

simplification of this method. Usually to simplify the modeling only the position of

the strong tip vortices is calculated with a high level of accuracy. Considering a non

rotating tip-path-plane orientation axis system with x,y,z the position of the wake

element, φ the age of the wake and ψ the dimensionless azimuth and β0 the coning

angle, considering just the mean convention velocities that have components λ and µ

in the tip path plane, the current position of the wake element is:

x = rcos(ψ − φ) + µφ (2.4.11)

y = rsin(ψ − φ) (2.4.12)

z = rβ0 − λφ (2.4.13)
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For N blades the azimuth angle of the mth blade is

ψm = ψ +m∆ψ (2.4.14)

with m = 1 to N and ∆ψ = 2π/N so that the vertical position becomes:

z = rβ0 +

∫ φ

0

λdφ (2.4.15)

Figure 21: Geometry of the wake[1]

A free wake model analysing the geometry of the wake due to the induced velocity at

every iteration is required for high accuracy inflow fields, especially when the speed of

the helicopter is not high enough to create a sufficient distance between the wake of the

first blade and the second one. The tip vortex encountering the incoming blade induces

a large aerodynamic load on that blade. If the vortex is below the blade it induces a

downwash that goes to zero just when the blade is perfectly above the vortex. The

bound vorticity has the same effect. The spanwise gradient on the bound circulation

indicates that there is a trailed vorticity in the wake behind the blade induced by the

tip vortex of the preceding blade[1]. Fig.22 shows the difference between the vortex

geometry with a free-wake model with a fixed model that do not permit the variation of

the structure of the wake due to an induced velocity modification. It is clearly visible

that the rigid method is accurate only in the near field but after one rotation the

difference between the freewake, perfectly matching the experiment data, and the rigid

structure wake becomes relevant for a high accuracy simulation. This can be easily

seen in the side view where the importance of having a free wake method is clear. A
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(a) Vortex geometry top view (b) Vortex geometry side view

Figure 22: Vortex geometry comparison between freewake, rigid wake and experimental
data[1]

non negligible effect for a code that uses the free wake method and for the performance

of the helicopter is the BVI (Blade vortex interaction). This occurs when the blade

encounters a vortex line and the vorticity of the blade changes the natural shape of the

vortex line. This phenomenon happens mainly for the tip and root vortex lines of the

previous blade especially if the rotor has 4 or more blades and a low descending speed.

There are 3 different types of BVI depending on the direction between the blade and

the vortex line[7][12]:

• Parallel BVI: occurs when vortex line and the blade axis are parallel. They have

a strong effect on the noise of the rotor

• Perpendicular BVI: occurs when vortex line and the blade axis are perpendicular

and in parallel planes

• Oblique BVI: the angle between the blade and the vortex line is different from

the previous two.

At the start of the BVI the vortex is located in an upstream position and moves towards

the airfoil leading edge as shown if Fig.23.

The FT-Freewake code uses specific models for the roll up, the BVI and the growth of

the vortex core radius that helps the stability of the code and permits the aging of the

wake, these models will be discuss in chapter 3 where both Gensim and FT-Freewake

will be introduced with more accuracy since these two codes do not use just general

theory but they are also based on empirical data.
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Figure 23: Blade vortex interaction: parallel and perpendicular[12]

2.5 Helicopter performance

In this chapter a review of the total performance of a helicopter will be done, analyzing

the power required in different flight situations. A large use of the adimensionalized

coefficients is binding in order to make the data more comparable. An accurate study

of the performance of the helicopter is important to understand the behavior of the

machine in all the different conditions, finding the best solution, and optimizing the

mission planning. Before introducing the required power in different flight conditions,

the available power is discussed. This is the power that the engines can provide counting

the different losses and efficiency. The maximum power that an engine produces is not

constant, since there are some variables as the altitude and the temperature that can

significantly reduce the available power. All the inboard systems like the generator or

the oil pump and every accessory required for the navigation reduce the power that

the helicopter can use for the flight and this must be taken into account. The tail rotor

uses an amount of power that increases as the speed decreases. The most common

method is to find the total power required by multiplying for a coefficient the main

rotor power:

Preq =
1

η
Protor (2.5.1)

with η that depends on the flight conditions and varies from helicopter to helicopter.

Usually it goes from 0.80 in hover to 0.85 in forward flight. The coefficient must also

consider the losses due to the transmission efficiency which is usually around 0.97.

As it has been done for the momentum theory the first flight case analyzed will be the

hover or vertical flight where in the power coefficient (and in the total power) there

32



can be analyzed three different terms:

CP = CPi + CPo + CPc (2.5.2)

CPi is the induced power coefficient, CPo is the profile power coefficient and CPc is the

climb power coefficient. The first one is connected with the energy dissipated by the

rotor wake by imparting a momentum to the air, the second one is connected to the

viscous drag dissipation of energy of the blades and the third one is connected with

the power that the helicopter needs to climb and it is a function of the power required

in hover.

CPi =

∫ B

rR

λidCT (2.5.3)

CPo =

∫ B

rR

σcd
2
r3dr (2.5.4)

CPc = λcCT (2.5.5)

A parameter that is usually analyzed as a function of CT and CP is the θ75 thanks to

the momentum theory combined with the blade element theory:

θ75 =
6CT
σa

+
3

2
λ (2.5.6)

A new parameter that express the rotor hover efficiency is the figure of merit that will

have a large use in this thesis and it is defined as:

FM =
T
√

T
2ρA

P
=

C
3/2
T√
2

CP
(2.5.7)

In hover condition some typical numbers of the profile power are around 30% and 70%

for the induced loss power.

One way to understand the power required for climbing is to use the induced velocity

evaluated in hover and a ∆P to calculate the climb velocity permitted by the difference

between the power required in hover and the available power:

V =
∆P

vh

2vh + ∆P/T

vh + ∆P/T
(2.5.8)

if V <
√
T/2ρA the formulation becomes:

V = 2
∆P

T
(2.5.9)
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Figure 24: Thrust coefficient vs figure of merit[4]

In forward flight the power required to move the helicopter through the air must be

added to the power coefficient equation and it is called parasite power:

CP = CPi + CPo + CPc + CPp (2.5.10)

except for the induced power that has the previous formulation, the other terms are:

CPo = CQo + µCHo (2.5.11)

CPp =
DV

ρA(ΩR)3
(2.5.12)

CPc =
VcW

ρA(ΩR)3
(2.5.13)

At high speed the stall and the compressibility effects that were neglected in the blade

element theory are significant, so the results with this theory could underestimate the

real result. The determination of the drag will not be discussed in this thesis but for a

low accuracy calculation a method that uses an equivalent frontal area instead of the

complex shape of the helicopter can be used. Fig.25 shows the trend of the power in

level flight for different speeds. Analyzing with more details the graph it is easy to

understand that for every helicopter there is an optimal speed of flight that permits

to use as less power as possible, this means for example, that if the helicopter needs

to increase its altitude quickly the best speed to do it is where the total power of the

graph is at its minimum. This considering an available power constant with the speed.

Obviously that point is also the point of best endurance. For hover or low flight speed

the presence of the ground can also reduce the required power.

From Fig.25 the speed at which the rate of change of power with velocity is minimum
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Figure 25: Power required in level flight[4]

can be identified (best range and best descend angle). This can be easily done by

drawing the tangent of the curve passing from the origin of the axis. Both of this

points are a function of the induced velocity in hover defined thanks to the momentum

theory.

Figure 26: Best endurance and max range speed[3]

Clearly the maximum level flight speed that the helicopter can reach is in the right

side of the graph where the curve surpasses the available power value. It can also

happen that the maximum speed is not determinated by a engine power but also by

aerodynamic effects as the stall of the retreating blade or compressibility effects on the

advancing side.

The gross mass of the helicopter affects the power required by the exponential function

(2.2.47), this power also depends on the altitude and the temperature. By increasing

35



the altitude the helicopter will need more power to fly with constant weight. The

Fig.27 shows the take of weight against the required power; it is also possible to note

that if the pressure altitude or the density altitude increases the power increases.

Figure 27: Required power vs take off weight for different altitudes[3]

The available power is not constant, it decreases as the altitude increases, therefore a

helicopter that can hover at the sea level might not be able to hover at a higher alti-

tude due to the increase of the required power but also due to the decrease of available

power. By defining the excess power as the difference between the required power and

the available power, the hover ceiling is defined as the point at which the excess power

becomes equal to zero.

Figure 28: Excess power for different altitudes[3]

The vertical speed of a helicopter is called vertical rate of climb and it also affects the

required power linearly. Usually it is measured in ft per minute and for a helicopter in

hover condition it is:
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Figure 29: Rate of climb versus required power[3]

The point with the maximum rate of climb for a helicopter does not occur in hover;

it occurs when the available power is at its maximum. Considering a constant excess

power the trend of the rate of climb follows exactly the excess power. This means that

the rate of climb decreases from a maximum point to a lower point condition, the trend

is mirrored for an increase of speed. Fig.30 explains this phenomenon.

Figure 30: Rate of climb versus level velocity[2]

Clearly an increase of the altitude shifts down the rate of climb especially for low values

of true airspeed.

Now that the main parameters that affect the helicopter performance have been sum-

marized, the ground effect phenomenon must be explained in order to understand the

reasons that reduce the required power of the helicopter if the flow is not far above an

object. Fig.25 showed how a reduction of the power occurs in hover condition or low

forward flight speed. Because the flow must be streamlined to the ground, the rotor

slipstream tends to rapidly expands and it approaches the surface; this modifies the

slipstream velocity and also the induced velocity so that for a given power the rotor

produces a higher thrust. This phenomenon is still not well explained but the test data
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suggest a dependence also on the rotor loading. The following image shows the shape

of the wake in ground effect and out of ground effect.

Figure 31: Ground effect[1]

The decrease of the power is visible for a distance to the ground equal to the diameter

of the rotor. There is also a reduction of the profile power due to the induced velocity

reduction.

A simple estimation of the ground effect is made by considering the power constant:

T

T∞
=

1

1− (R/4z)2

1+(µ/λi)2

(2.5.14)

where z is the altitude from the ground.

A more accurate model considers also the loading of the disk even if the effect is minor.

The formulation becomes:
T

T∞
=

1

1− σclλi
4CT

(R/4z)2

1+(µ/λi)2

(2.5.15)

Which gives accurate result for z/R > 0.5.

Fig.32 shows the ratio between the thrust achieved in ground condition and out of

ground effect[1][2][4].

Figure 32: Thrust ratio for ground effect[3]
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3 Gensim, FT-Freewake and their coupling

To analyze the performance of the helicopter with an accurate induced velocity field,

in this thesis a blade element method code called Gensim, coupled with a free wake

vortex method code called FT-Freewake, was used. Before introducing the coupling it

is important to summarize the features of both of them including the possible input

parameters, the effects that they can analyze and the effects that are neglected.

3.1 Gensim

Gensim is an Airbus internal simulation tool, used in flight mechanics, loads calculation

and performance. The physical modelling of steady and unsteady performance is based

on blade element theory. It performs a 6 DOF helicopter trim. Due to its limited

complexity it can be used to evaluate a very different and large amount of data and

it provides accurate result for special applications as malfunctioning of one engine,

jettisoning, weapon separation and variation of the initial shape of the helicopter by

adding accessories for example.

It is possible to simulate all flight conditions. Every part of the helicopter is analyzed

separately and than put together in the overall helicopter equations. The code uses

the Newton-Rapson iteration method to converge.

The blade is divided in 15 segments and for every segment the code evaluates its

aerodynamics and airfoil characteristics and integrates along the radius to find the

total values. Airfoils table provide the lift coefficient, the drag coefficient and the

momentum coefficient for different Mach numbers and angles of attack.

For the geometric modeling of the blade the following inputs are needed:

• Chord-taper

• Twist

• Aerodynamic center

• Blade tip geometry

All these parameters must be defined as a function of the blade span.

The blade equation of motion is defined as:

Mmass +Maero +Mspring +Mdamp = 0 (3.1.1)
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The forces and the moments are evaluated for every axis and transformed in the rotor

hub frame system. With the same approach the tail rotor is evaluated; in this thesis

case the Fenestron model is used.

The fuselage is evaluated as a rigid body, the mass forces and their momentums are

calculated from the acceleration vector thanks to the Newton formulation that gives

the inertia force and the mass moments. The aerodynamic loads that include also the

download must be added to perform the equilibrium condition.[14][15][16]

The final formulation for the entire helicopter becomes:

P = Pmr + Pfu + Ptr + Ptp + Peb = 0 (3.1.2)

M = Mmr +Mfu +Mtr +Mtp +Meb = 0 (3.1.3)

With mr main rotor, tr tail rotor, tp tail planes, fu fuselage and eb external bodies.

The trim condition aims to find all the position angles, forces, momentums and powers

of the helicopter in a specified flight condition.

After setting all the parameters that regard the geometry of every part of the helicopter,

the power limitations due to engines or transmission, the angular velocity function,

the tolerance of the calculation, the special conditions as ground effect or one engine

inoperative, the code requires the flight condition with the following inputs:

• Gross weight

• Vx

• Vz

• Altitude

• Temperature

The Vy is also required but it is not considered as a main parameter for normal per-

formance analysis. The temperature can be defined as an absolute temperature or a

variation from the ISA conditions. The code also permits to evaluate the boundary

performance condition by calculating a 7 DOF system adding the power to the previous

equations in order to understand the performance limits of the helicopter.

Analyzing with more accuracy the Gensim inflow model highlights the importance of

coupling the blade element theory with the free wake. Gensim applies two types of

corrections on the simple uniform induced velocity evaluated by the momentum theory

as:

vi =

√
T

2ρA
(3.1.4)
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The first correction regards the average value of the induced velocity that, compared

with flight data, results too low. It uses two correction factors that aim to increase

the inflow. The first one affects the result in both hover and forward flight conditions

and depends mainly on the density of the air. This parameter is almost constant and

it increases the induced velocity of about 10%. The second parameter acts in forward

flight and is a function of the speed of the helicopter. The following formulation explains

(a) Hover correction factor (b) Forward flight correction factor

Figure 33: Correction factors of the induced velocity

the use of akf and akh:

Vio =
1√

V 2
xy

akf2
+ (Vz−Vio)2

akh4

(3.1.5)

These two parameters are empirically determined and show how especially in fast

forward flight a uniform inflow model underestimates the average induced velocity of

a helicopter.

The second correction acts only in forward flight since the inflow model in hover is

completely uniform. In forward flight Gensim uses an induced velocity distribution

which is small at the leading edge of the disk and higher at its trailing edge. The local

induced velocity for a helicopter in forward flight varies along azimuth and radius as:

vl = vi

(
1 + κ

r

R
cosψ

)
(3.1.6)

where κ is a distortion factor that can be considered as one, just in fast forward flight.

The formulation leads to Fig.34 induced velocity distribution considering a κ equal to

one and vi equal to 10 m/s.

Gensim evaluates the distortion factor thanks to a more accurate and complex inflow

model: Pitt and Peters. In this formulation only the static part will be analyzed but
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Figure 34: Gensim induced velocity in forward flight

the model permits also a more complex and dynamic evaluation. In a steady pitching

or rolling motion the rotor applies a first harmonic aerodynamic motion. Pitt and

Peters assumes that also the inflow has a first harmonic distribution. Starting from

the formulation:

v = v0 + x(vccosψ + vssinψ) (3.1.7)

Curtis demonstrated that the inflow components vc and vs are correlated by a gain

matrix to the aerodynamic pitching and rolling moment coefficients as:[
vs

vc

]
=

[
−K
v0

0

0 −K
v0

][
cl

cm

]
(3.1.8)

whereK depends on the wake model used. Note that in this formulation the momentum

theory is used just to find v0. The problem of this theory is the extension of the gain

matrix to forward flight. Peters extended the gain matrix using the unsteady actuator

theory and wrote a function between the induced velocity and the thrust coefficient as:v0

vs

vc

 =
[
L
]cTcl

cm

 (3.1.9)
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where the gain matrix L is defined as:

L =


1

2vT
0 15π

64vm
tanχ

2

0 − 4
vm(1+cosχ)

0
15π

64vT
tanχ

2
0 − 4cosχ

vm(1+cosχ)

 (3.1.10)

in which vT =
√
µ2 + λ2, χ is the wake skew angle defined as tan−1µ/λ and vm is a

mass flow parameter:

vm =
µ2 + λ(λ+ v0)

vT
(3.1.11)

This method permits to find the distortion factor that varies the radial and azimuthal

inflow model, however the difference between this models and the real inflow distribu-

tion is still not neglectable, this aspect will be highlight in chapter 6 that shows the

results coming from the free wake method[13][14][17][18].

3.2 FT-Freewake

FT-Freewake is a Fortran based code written by DLR that aims to find the induced

velocity field of a rotor. It uses the vortex theory with a complete freewake method to

find the shape of the wake.

The code is divided in two main sections that iterate each other, the first one finds the

shape of the wake and the position of every vortex segment, the second one evaluates

the induced velocities along the 3 axis at any number of radial and azimuth position.

The wake geometry iteration can be done at a reasonable time interval with the chosen

wake mesh discretization.

For discretizing the wake, the code uses the principle of the multi-wake structures.

This method permits to find the total number of vortices along the azimuth as:

NA = NψNT (3.2.1)

where Nψ is the azimuthal number of vortices of one wake and NT is the number of

turns of each blade wake. This permits to find out the total number of nodes of the

entire wake as:

N = (NA + 1)NRNB (3.2.2)

with NR the radial number of wake nodes on one blade and NB the number of the

blades. Returning to the lattice model, explained in chapter 2.4, the number of trailed

vortices and shed vortices are:

Nt = NANRNB (3.2.3)
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Ns = NA(NR − 1)NB (3.2.4)

The induced velocity of all vortex segments must be computed Nt(Nt +Ns) times and

the influence of one vortex must be evaluated for each time step. This means that the

total number of vortices evaluations goes up to:

Ntot,ω = 2NfN
3
ψN

2
RN

2
TN

2
B (3.2.5)

with Nf the total number of single vortices evaluations.

Figure 35: Principle of the grid structure and grid-grid interaction[11]

The second step uses the Biot-Savart law to evaluate the induced velocity in all the

grid points. Remembering that this type of codes aim to reduce the computational

time compared with CFD, a small discretization should not be used, however a coarse

discretization might not produce an automatic tip vortex roll up. The coded uses a roll

up model that after an azimuthal distance concentrates all the vortices in the radial

position of the real tip vortex, this position is in the center of vorticity defined as:

rt =

∫ r2
r1

dΓ(r)
dr

rdr

Γ2 − Γ1

(3.2.6)

The bounds of vorticity summing up into a vortex are evaluated where dΓ/dr = 0 and

at the blade tip where Γ = 0

In general the velocity field induced by a vortex is measured by the energy of the

vortex. Considering l0 the initial length of the segment and Γ0 its initial vorticity,

if the vortex is stretched multiple times and the vorticity remains constant it will

affect a larger portion of wake. To solve this problem the code instead of keeping

constant the circulation to preserve the energy conservation law uses the product Γl

so that a stretched vortex has less circulation. This can be studied by analyzing the

Biot-Savart law for a non infinite segment length vortex and it is important for two
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main situations: when trailed vortices from different radial stations converge in the tip

vortex and second within the wake development in time where the vortex are free to

be stretched and shortened.

The vortex core radius is an important parameter that permits to solve the problem of

the singularities when the vortex is in the same position of the evaluating point. The

VCR is also modified by the age of the wake: to reduce the vortex global induction the

vortex growth must be applied with the ageing. Thanks to test data, DLR introduced

a formulation for the vorticity:

Γ =
2π

1.2763
∆Vmaxrc (3.2.7)

where ∆Vmax is the maximum peak to peak velocity difference. Comparing the bound

circulation strength at different azimuth it is possible to find a time decay function, if

Γ(0) is the circulation at the beginning of the wake:

Γ(ψV ) = Γ(0)e−0.44ψv
2π (3.2.8)

To permit a better set up, the code treats the vortex core radius as an input variable.

In order to analyze the BVI (blade vortex interaction) the code uses an adaptive grid

remeshing: if a node of the mesh is close to another vortex line then a much finer mesh

is locally introduced. The trailed and the shed vorticity are split in a higher number

of vortices with a prescribed normalized strength distribution in order to approximate

correctly the continuous vorticity sheet on the blade.

Figure 36: Adaptive grid remeshing[11]

Fig.36 shows how the adaptive grid mesh works when the blade passes near or crosses

a vortex line.

To increase the performance of the code and decrease the computational time it is

possible to parallelize the simulation on several CPU’s.

The input coefficients included in FT-Freewake are[11]:
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• Radial discretization

• Azimuthal discretization (must be the same used by Gensim)

• Number of available CPU’s

• Bound vortex core radius

• Trailed vortex core radius

• Wake length: length of a vortex line in revolutions

• Number of revolutions (must be higher than the wake length)

• Convergence method: Adam Bashford (linear multistep method for ordinary dif-

ferential equations) or Euler explicit (basic explicit method)

• Aborting tolerance

• Multiple output parameters

3.3 The coupling between Gensim and FT-Freewake

As already mentioned the coupling between these two codes is made for increasing the

accuracy of the induced velocity that Gensim uses to evaluate the performance of the

helicopter. The coupling is provide by a Python script written by DLR that permits

the iteration cycle between the vortex theory and the blade element theory. Fig.37

shows the steps of the procedure:

Figure 37: Coupling steps

The procedure starts by setting the input data regarding the helicopter flying condi-

tions in Gensim: in the first iteration Gensim uses its own inflow model without any

correction. Thanks to the coupling script Gensim passes to the Freewake the geometry

of the rotor and its discretization. Gensim outputs the lift distribution along the radius
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and the azimuth which permits to calculate the bound vorticity in every point of the

disk thanks to the Kutta condition. With this distribution FT-Freewake is able to

evaluate the wake and the induced velocity field as explained before.

FT-Freewake output is the induced velocity field at the rotor disk which will be used

in the second iteration of Gensim that replaces with the corrected one its own model

and the steps restart until convergence. At the very last iteration since Gensim com-

putational time is small the procedure is terminated with another Gensim cycle.

Some changes have been applied to both codes to permit their coupling: the bound

vortex has been removed in the induced velocity calculation of the freewake otherwise

it would be redundant since the lift is provided by Gensim, obviously its influence on

the shape of the wake is considered in order to analyze properly the BVI. The Gensim

tiploss model has been completely removed since the zero lift at the tip must be pro-

vided by the correct value of the induced velocity. The tiploss model that Gensim uses

evaluates an equivalent radius thanks to a coarse wake model and stops the integration

for the total thrust at that radial position without changing the forces parameters.

The coupling permits the user to decide the number of iterations between Gensim and

FT-Freewake; this number must be chosen trading off the complete convergence of the

results and the computational time. The convergence will be discuss in chapter 6. A

relaxation factor has been implemented in order to reduce the possibilities of diver-

gence that may occur when the Gensim inflow model and the free wake first result are

too far appart.

Another task of the coupling script is to rotate the coordinates from the Gensim to

FT-Freewake axis and vice versa since they have different reference axis. Gensim z-axis

heads downwards, x forward and y heads on the right. FT-Freewake axis reference has

a z-axis pointing upwards, x forward and y on the left.
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4 Main rotor models

In this thesis the model of three main rotors have been created and analyzed. Two of

them are used for the validation of the code, comparing results against experimental

data and CFD analysis. The two validation models consist in the main rotor stand

alone analysis. The experimental data have been collected by NASA in the early 80s

to understand the wake shape and behavior, to have a general prediction of the thrust

and to achieve general knowledge on rotating wings. This models have been analyzed

prescribing the pitch angle in an untrimmed condition.

The third model is the AIRBUS Helicopters main rotor for the H135: the complete

modeling of the entire helicopter have been created and analyzed. The choice of the

validation rotor is made by considering the simplicity of the blade in order to reduce

the modelling error, the high level of accuracy that bench test permits and the large

amount of data available and searchable.

As explained in chapter 3, the freewake is used to correct the inflow model of Gensim.

This model uses the momentum theory and provides an uniform inflow. The first rotor

analyzed is an almost uniform lift distribution over the disk, in order to have a small

error from the coupled blade element theory and momentum theory.

The second model is chosen in order to increase the deviation from the momentum

theory. Since the discrepancy between the uniform inflow assumption and the free

wake formulation increases for untwisted straight blades, the Caradonna-Tung case

has been chosen.

4.1 Carpenter rotor

The rotor analyzed by Paul J. Carpenter [9] is a full scale two blades rotor with a

NACA 0012 wing profile along the radius. The chord is constant between the 15% and

the 98% of the radius with a value of 0.41 m. The distance between the rotation axis

and the tip is 8.17 m. The blade has a linear twist angle of 8 degrees and a solidity of

0.0325. The wing has also a tip cap shown in Fig.38:

The blade has also the possibility to improve the chordwise and spanwise balance with

adjustable tip weights used for high pitch settings.

The distance from the ground is 12.8 m so the ground effect will be analyzed and

compared with result that neglect this increase of the thrust.

Carpenter made several different tests by changing the rotational speed and the blade

pitch angle. The estimated accuracies of the basic quantities measured from Carpenter

are around 200 N for the forces, 0.2 degrees for the angles and 1 rpm for the rotational

speed. The following table summarizes the features of the rotor:
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Figure 38: Tip cap of the Carpenter blade[8]

The results between the FT-Freewake code and the test data available concern mon-

Table 1: Carpenter rotor features

Radius 8.17 [m]
Number of blades 2

Root Radius 1.23 [m]
Chord 0.41 [m]

Ground distance 12.8 [m]
Area 209.7 [m2]

Linear twist 8 [deg]
Tip cap yes

Wing profile NACA 0012
Tip Mach 0.22-0.7

Pitch angle 0-20 [deg]

stly the total thrust and the required torque or power and their coefficients.

Fig.39 shows the trend of the thrust coefficient at different pitch angles, the plots are

made by interpolating bench test results. It is also possible to note the analytic result

calculated with the incompressible theory in the linear lift coefficient against angle of

attack area.

Fig.40 summarizes the thrust vs the torque coefficients:

Especially for high thrust and torque coefficients the lines diverge from the incompress-

ible no-stall theory.

Obviously the rotor is in a perfect hover condition so the Vx and the Vz velocities are

both zero. The test boundary conditions as the temperature or the density of the

air are not specified by Carpenter so the case is analyzed at sea level, ISA. Another

inaccuracy point is the elasticity of the blade which has not been specified[8].
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Figure 39: Thrust coefficient vs pitch angle for Carpenter

Figure 40: Thrust coefficient vs torque coefficient for Carpenter[8]
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4.2 Caradonna-Tung rotor

The rotor consists in two rigid blades with rectangular shape. The wing profile is a

NACA 0012 (symmetric) along all the length of the blade which has zero twist.

The model built and tested in the 1981 has a radius of 1.143m and a chord length

of 0.1905m which results in an aspect ratio of 6. For increasing the accuracy of the

results the rotor was mounted on the top of a tall column containing the drive shaft

inside a particular room that reduced the recirculation. The drive shaft permits a

constant turning speed of 1250 rpm. The rotor has been operated with a large number

of test conditions varying the Mach number at the tip or the collective angle. For this

validation the chosen collective angle is equal to 8 degrees.

The validation has been made not only comparing absolute values as the total thrust or

the thrust coefficient but also local distribuctions. In order to obtain physical results for

the whole flow field the investigation considered the measurment of the lift coefficient

along the radius for whole the rotor disk which confirmed the correct trend of the

thrust. This allows to understand which physical phenomena have been considered in

the code and which ones are neglectable. This can be also done analyzing the entire

shape of the wake which is required to check the correct convergence of the iterations.

Fig.41 shows the geometry of the Caradonna test:

Figure 41: Caradonna-Tung rotor modeling[9]

The characteristics of this model are summarized in table 2. Caradonna was able to

find the lift coefficient distribution along the radius of the rotor. In an untrimmed

simulation in which the pitch angle is an input, the cl trend permits to understand

whether the induced velocity is correct. Since the twist angle is zero the lift distribution

for this rotor increases with the radius due to the rotational velocity, which correspond
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Table 2: Caradonna-Tung rotor features

Radius 1.14 [m]
Number of blades 2

Root Radius 0.19 [m]
Chord 0.19 [m]

Ground distance > 2R [m]
Area 4.08 [m2]

Linear twist 0 [deg]
Blade shape rectangular
Wing profile NACA 0012

Ω 1250 [rpm]
Pitch angle 8 [deg]

to a large error of the uniform inflow of the momentum theory.

Fig.42 highlights the bench test results assuming no variation along the azimuth. This

phenomenon is true just in hover case. The maximum peak of the lift coefficient

occurs at the 90% of the radius and the thrust coefficient is equal to 0.0046. From

T = cTρA(ΩR)2 it is possible to find the total thrust for this rotor which is 515 N.

Figure 42: Caradonna-Tung lift coefficient distribution[9]

Fig42 also highlights how the thrust coefficient distribution is almost not affected by

an increase of the rotational velocity. The variation on the average is negligible and

the only point that does not perfectly fit the others is at 0.7 of the radius.

Although it is not clear from the examination of the test data, the lift coefficient must

decrease until zero at the tip of the blade[9].
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4.3 H135 rotor

In this chapter, the rotor of the H135 is summerized. This is a four blade rotor with a

radius of 5.2m and a constant chord along the span with exception of the blade tip which

is parabolic. The rotor has 3 different airfoils depending on the radial position, the first

airfoil starts at the 30% of the radius. The twist of this rotor has been studied in order

to achieve an almost uniform thrust distribution along the radius in the most common

flight conditions. The helicopter permits to slightly modify the angular velocity of the

rotor depending on the speed and the altitude.

The rotor has not been simulated alone as done for the validation cases; the model for

the entire helicopter has been used in Gensim but just the main rotor has been passed

to the freewake. The model has been evaluated in a trim condition, which means that

the angles were not prescribed but iterated by Gensim in order to converge to the

correct thrust[10].

Table 3: H135 rotor features

Radius 5.2 [m]
Number of blades 4

Root Radius 30% R
Area 84.9 [m2]

Blade shape rectangular with parabolic tip
Ω variable ca 41 [rad/s]

Pitch angle trimed to desired thrust
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5 Implementations

In order to increase the performance of the code, increase the accuracy or simply solve

errors, two main implementations will be summarized in this chapter. Since the FT-

Freewake and its coupling with Gensim are first version codes, some minor errors and

bugs have been found and solved before achieving the results that will be presented.

The first implementation aims to reduce the possibilities of diverging of the simulation;

the divergence might occur when the difference with the momentum theory is large or

when, for numerical reasons, the solution keeps bouncing from a value to another

without a real convergence.

The second implementation is a real correction of the FT-Freewake code by fixing a

missing part in the lattice method of the wake that leads to a missing induced velocity

component.

5.1 Relaxation factor

A solution that various codes utilize to stabilize the convergence of the iterations is

the relaxation factor (RF). This mathematical method aims to reduce the variation

between an iteration and the previous one. In this case the relaxation factor acts

directly on the induced velocity as:

vin = (1−RF )vin +RF (vin−1) (5.1.1)

where n is the iteration number. For a proper use the RF must be a floating point

number between 0 and 1, where 0 means that the new induced velocity is not affected

at all by the previous one and 1 means that the induced velocity does not vary along the

iterations. In this case setting the relaxation factor to one compromises the correction

of the free wake along the iterations since the inflow will always be the one provided by

the first Free-wake iteration. Setting the RF to 0.5 means doing an average between

the two induced velocities.

Fig.43 shows the behaviour of the relaxation factor on the global thrust for the Caradonna

rotor. The implementation affects the local distribution in the same way. The graph

also shows that for this test a relaxation factor equal to zero would mean a not con-

verged solution. A relaxation factor of one is also not correct because it converges to

the wrong value, since the induced velocity is not adapted. Common values for this

parameter are from 0.1 to 0.5. In this graph the trend shows how this implementation

reduces the number of iterations needed; this phenomenon is true just with this type

of convergence in which the third value is always in the middle of the previous two.
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Figure 43: Effect of the relaxation factor

For an asymptotic convergence in which the solution goes always in the same direction

the relaxation factor slows down the computation and more iterations are required.

5.2 Missing vortex lines

An important rule for the lattice method is that the grid must be closed; since the

bound vortex position is placed at c/4 the first trailing vorticity must start in the same

position with a normal direction until the trailing edge. Analyzing the trend of the lift

coefficient it was possible to notice that the free wake code could not evaluate the tip

losses. A too high lift coefficient at the tip means that in that area the induced velocity

is too low: this behaviour is not correct since using this theory at the tip there should

be a strong vortex producing in the closer evaluation point a strong downwash. Fig.44

shows the wrong distribution of the lift coefficient after the first free wake iteration.

The comparison between the lift coefficient produced by the vortex method and the

momentum theory method will be studied with a higher accuracy in chapter 6, however

this graph aims to make the reader aware of the error in the code that produces a non-

zero lift situation at the tip. On this plot the Caradonna case is proposed because

the almost linear increase of the angle of attack, and consequently the lift coefficient,
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highlights better the phenomenon. However, it is possible to notice this error even

in forward flight with a non rectangular blade. The task of this correction is not to

achieve the perfect zero condition at the tip but to change the trend in that direction.

Because of the highly three dimensional behaviour achieving zero lift at the real tip of

the blade is very difficult with a code that uses the blade element theory.

Figure 44: Distribution of the lift coefficient before implementation of the missing
vortex lines

According to DLR it is clear that the missing vortex lines are needed to improve the

results and to permit the removal of the Gensim tip-loss model. It is important to

remember that a missing induced velocity or in general an error in the induced velocity

field in a free wake code affects also the shape of the wake and the iteration inside the

FT-Freewake code itself.

Fig.45 shows the trailed vortex lines that have been implemented, the blue lines were

missing in the original FT-Freewake code.

The implementation consists in summing the induced velocity produced by the missing

lines into the inflow that FT-Freewake outputs back to Gensim, obviously the limitation

of this implementation is that the shape of the wake is not affected by it, so the result

will not be highly accurate. For a better implementation the correction of the FT-

Freewake main code by DLR is required. The correction uses the Biot Savart law

explained in chapter 2.4 to evaluate the velocity induced by a finite length vortex

segment in an evaluation point. To maintain the uniformity with FT-Freewake, the
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Figure 45: Missing vortex lines

points are placed radially in between two consecutive vortex lines using the ”area rule”

in which the disk is divided in rings of equal area in order to get a higher definition at

the tip. The implementation permits to move the point vertically from the c/4 line to

the trailing edge according to the version of FT-Freewake that the user adopts. Every

point is affected not just by the circulation of the two near vortices but the induced

velocity must be evaluated in every point for every vortex.

The strength of a trailing vortex is defined as the difference in bound vorticity along

the radius so the trailed circulation can be defined depending on the radial position as:

Γt1 = Γb1 (5.2.1)

Γtk = Γbk+1
− Γbk (5.2.2)

Γtn = −Γbn (5.2.3)

where 1 is the vortex at the root radius, n is the tip vortex and k are the generic

vortices in the middle of the blade.

For the Caradonna case, for which Gensim provides an almost linear lift coefficient

distribution without any reduction at the tip, the bound circulation and the trailed

circulation at the first iteration have the following trends (Fig.46):

58



(a) Bound circulation (b) Trailed circulation

Figure 46: Bound and trailed circulation after for the first free-wake iteration

From the plot in Fig.46 of the trailed vorticity it is clear that the main correction

will affect the area at the tip and at the root of the blade. As previously introduced,

the evaluation point at the tip will be more affected by the correction not only due

to the higher strength of the vortex but also for their distance from it. Due to the

linearity of the lift coefficient provided by the Gensim inflow model, the strength of

the trailed vortices in the middle of the blade is constant along radius.

Fig.47 shows the behaviour of the correction on the induced velocity by plotting the

inflow along the radius before the correction, after the correction and the correction

it-self.

As expected the figure shows that the correction does not affect at the radial positions

of the blade far from the root or the tip. The correction at the root is negligible in the

global integration for the thrust since the local speed is very low. The graph shows

how the behaviour at the tip is completely wrong: for the Caradonna case according

to the blade element theory at the tip the induced velocity must increase up to 18 m/s

which is not a neglectable modification.

Since it is not possible to increase the radial discretization in Gensim, this aspect

decreases the accuracy and does not permit a smoother solution which is more physical.

A very interesting phenomenon that the graph permits to understand is the position

along radius of the lift peak. In the presented case it occurs where the correction line

(black) and the induced velocity without correction line (lilla) cross each other near

by 0.95 of the normalized radius. The strong downwash that happens at the tip of the

blade is mainly due to the high negative strength of the tip vortex and the positive one

of the previous vortex.

The vortex at the tip induces a downwash velocity all over the blade that decreases
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Figure 47: Trend of the induced velocity due to the implementation of the missing
vortex lines

with the distance from it.

Fig.48 analyzes the trend of the lift coefficient to prove that the implementation behaves

correctly.

Figure 48: Distribution of the lift coefficient after the implementation

As expected, at 95 % of the radius the lift coefficient starts decreasing rapidly due to

the tip-losses. The thickness of the line represents the variation along the azimuth of

the lift coefficient which for a hover case is clearly small.
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The distribution of the lift coefficient proves that the implementation works correctly;

in order to allow the user to increase the inflow due to the correction at the tip and

raise the accuracy, a strategy already implemented in Camrad [19] has been adopted:

an input scalar defined as moving parameter permits to shift horizontally the position

of the tip vortex. The moving parameter must be set to 1 if the user wants to leave the

tip vortex at the real tip of the blade instead, if, the moving parameter is set to zero,

the vortex will be in the same position of the last evaluating point, this will produce

a singularity in the Biot Savart law and the induced velocity will explode. Another

solution would be the one used by free-wake, that is the vortex core radius, but for this

implementation where the position of all the vortex lines is fixed except made for the

tip vortex a real vortex core radius is not required.

Another correction to the implementation must be made to obtain a physical result:

after the first iteration the lift distribution will not increase along radius but near the

tip the coefficient will start to rapidly decrease; the bound circulation has a trend

similar to the lift coefficient and after the first iteration is (Fig.49):

Figure 49: Bound circulation after first iteration

This trend produces a really weak vortex at the tip and a strongly negative trailed

vortex in the point before the tip which would lead to a strong upwash. Clearly this

phenomenon is not physical and it would diverge along the iterations. To solve the

problem, an integral average in the bound circulation has been introduced for all the

points after the lift coefficient peak, in order to avoid a zero strength vortex at the

tip and a strong negative vortex before. For the trailed vorticity this leads to have a
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number of vortices with zero strength between the tip and the peak of the lift coefficient.

The trend of the trailed vorticity after these corrections becomes as shown in Fig.50:

Figure 50: Trailed circulation after first iteration

In Fig.50 it is possible to note the number of evaluating points in the descending side

of the lift coefficient.

The correction modifies the induced velocity that Gensim uses along the three axis.

The implementation first calculates the induced velocity on the evaluating points and

then evaluates the components along the axis by taking into account the angle of attack

of the blade in that section, the cone angle of the blades and the not fixed frame of the

blades. The corrected induced velocities along the three axis are:

Vx = V sinα(Vxcosψ − Vysinψ) (5.2.4)

Vy = V sinβ(Vxsinψ + Vycosψ) (5.2.5)

Vz = V cosαcosβ (5.2.6)

where α is the angle of attack, β is the flapping angle and ψ is the azimuth.

As previously mentioned this is only a coarse correction since the shape of the wake is

not affected. The inaccuracy increases in hover condition where the wake stays longer

under the rotor, whereas for forward flight conditions the behavior is less pronauced.

The missing modification of the shape of the wake will lead in more BVI since the tip

vortex will not move down due to a high induced velocity.
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6 Results

In this section the results obtained with the coupling between Gensim and FT-Freewake

for the three different rotors will be presented, summarizing also the input parameters.

The accuracy and the weaknesses of the code will be highlighted and explained in

order to understand properly the operative range of the code, comparing the accuracy

of the BEMT and the vortex theory. The global and the local trend will be compared

against bench and flight test data, highlighting the improvement of the result. The

computational time will also be analyzed in order to understand which parameters

mostly influence it.

6.1 Results for the Carpenter rotor

To maintain the uniformity with the rest of the document the first results presented

are those concerning the Carpenter rotor.

Three main tests have been carried out on this rotor, changing the Mach number and

the pitch angle at the 70% of the radius. The global comparison regards the thrust

coefficient against the pitch and the thrust coefficient against the power coefficient.

In the first part of this chapter one of the three tests will be analyzed with more details

and after that, the global trend will be presented, starting from the input parame-

ters, which have not been modified between one test and the others. The number

Table 4: Carpenter input parameters

Number of iterations 9
Relaxation factor 0.2

Moving point 1.0
VCR 8% of the radius

Wake revolutions 15
Max turns 18

Radial discretization 32
Azimuthal discretization 72

Test 1 Mtip = 0.7 θ70 = 6
Test 2 Mtip = 0.6 θ70 = 13
Test 3 Mtip = 0.3 θ70 = 18

of iterations between Gensim and FT-Freewake and the relaxation factor affect the

convergence of the coupling; these two parameters are larger for the validation tests

in order to understand better the causes of divergence, if occurs. The relatively high

number of wake revolution and Maximum number are used to achieve a long wake

and are required since in a hover case the wake does not move apart from the rotor

but stays under it. A large VCR is needed to analyze properly the wake far from the
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rotor disk, stabilizing the wake shape and the solution. The moving point has not been

chosen in order to obtain zero lift at the tip but just to confirm the trend.

The test chosen is the number 2 and the result for the thrust coefficient is 0.00443.

Fig.51 shows the CT variation along the iterations in order to understand the con-

vergence of the solution and compares the result with the bench data provided by

Carpenter.

Figure 51: Thrust coefficient for Carpenter Test 2

From the graph the stability of the code is clear, just three iterations and, in this case,

the result is already at convergence. The iteration number zero represents the BEMT

result, which, has an accuracy of ca. 9 %. The result obtained with the free wake has

a global error of 0.6% which is totally negligible since it is lower than the accuracy of

the bench test.

The damping factor of the convergence of this solution is very close to 1 since the thrust

coefficient has a negative peak at the first iteration and then it never increases more

than the final iteration except for the iteration number six in which a mathematical

approximation occurs.

Now that the global result has been confirmed, the local distribution of the induced

velocity, the angle of attack and the lift coefficient are analyzed. Fig.52 permits to

understand properly the deviation between the BEMT and the vortex theory which

results higher than expectated. Two different types of graphs will be presented: a 2D

normal graph that shows the trend of the magnitudes along radius for the zero azimuth

due to its simplicity and accuracy, and a 2D polar contour graph that shows the trend
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over azimuth and radius to prove the homogeneity of the results for this hover case.

Unfortunately the tests made by Carpenter do not provide a local distribution of aero-

dynamic forces. Fig.52 shows the main aim of this work which is the study of the local

distribution of the induced velocity.

(a) Carpenter Test 2 induced velocity (b) Carpenter Test 2 induced velocity contour

Figure 52: Carpenter induced velocity test 2 iteration 9

The induced velocity proposed in the graphs belongs to the last iteration; the variation

along the iterations is not presented in this case since the difference is not visible.

The difference between Gensim stand alone and Gensim coupled with the freewake is

clear from the graph on the left side; Gensim calculates a 10 m/s of uniform inflow

that is almost correct in the average value but not in the local distribution. The trend

shows that in the inner part of the blade the freewake induced velocity is higher than

the Gensim one which involves a lower angle of attack in that area. At a normalized

radius of 0.7 it rapidly decreases from 15 m/s to almost zero at 95% of the radius. This

decrese in the inflow produces a strong increase in the angle of attack. From 95%R

to the tip the induced velocity increases with a high gradient due to the missing line

implementation that aims to reduce the lift coefficient at the tip.

The graph on the right side highlights the uniformity along the azimuth, that suffers

small variations caused mainly by the velocity induced by the instable far wake. Us-

ing the Python function that integrates by means of the Cavalieri-Simpson method

and integrating along radius and azimuth the global value for the induced velocity is

9.67m/s.

The strong variation in the gradient of the inflow at 95% of the radius is an inaccuracy

due to the coarse mesh that Gensim allowes along the radius. Due to its homogeneity,

it is difficult to understand the axis direction of the contour plot: the zero azimuth is

the line that from the center of the disk goes to Y equal to zero. For the graph on the

65



left a positive sign means a downwash and vice versa for the graph on the right.

To understand if the correction of the inflow is physical, it is important to analyze the

trend of the vorticity on the rotor disk. The decrease of the induced velocity that oc-

curs at 80% of the radius must be provided by a decrease of the strength of the vortices

in that area. Fig.53 shows the distribution of the vorticity in the upper part of the

wake; to increase the zoom the wake below 150% of the radius has been blanked. The

trailing vorticity has been normalized in this plot; to simplify the understanding of the

graph the upper value of the vorticity in the axis does not represent the real maximum

value in order to permit a better visualization of the distribution in the middle part of

the rotor disk.

Figure 53: Trailing vorticity distribution for Carpenter rotor

As expected the plot shows that around 80% of the radius there is a strong decrease

in the trailing vorticity, this effect is caused by the interaction with the wake of the

other blade. This also permits to highlight the contraction that the wake experiences

especially after the fist half revolution which of course has the main effect on the rotor

disk.

The plot also shows the missing vorticity on the two blades that has been added in

the coupling script in order to connect the lifting line to the rest of the lattice panels.

The thickness of the blue zone explains exactly the contraction of the wake with the

increase of the velocity along the z direction. It is very interesting to note that the

radius of the wake section after the first revolution is subjected by the highest decrease

due to the higher positive gradient in the velocity. The vorticity in the outer part of
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the wake results to be 50 to 100 times higher that the plotted one, resulting in a strong

downwash velocity that moves the entire wake downwards and denies the interaction

between the blade and wake caused by the other blade for a hover case.

Now that the induced velocity distribution is explained, it is important to understand

how the angle of attack reacts to this variation. As done for the induced velocity the

result will be compared with the stand alone Gensim BEMT and analyzed on the rotor

disk.

(a) Carpenter Test 2 angle of attack (b) Carpenter Test 2 angle of attack contour

Figure 54: Carpenter angle of attack test 2 iteration 9

Fig.54 confirms that the induced velocity provided to Gensim by the Free-wake is ap-

plied correctly because when BEMT is applied to a rotor with a fix collective pitch

angle, a higher induced velocity corresponds to a lower angle of attack. Unfortunately

the graph also shows that the reduction in the angle due to the implementation of the

missing vortex lines requires a higher number of discretization points along the radius

to achieve a smoother distribution which is more physical.

The vortex theory produced a distribution of the AoA almost constant between 6.7 and

7.2 degrees until the 80% of the radius with a maximum difference with the BEMT of

2.5 degrees around 50% of the radius. After that a quick increase rises the angle of

attack up to 10.35 degrees at around 95% of the radius that can be considered as the

position where the tiplosses start. The angle of attack does not decrease enough at

the tip of the blade and this will produce a non zero lift situation, since the evaluation

point at the tip is placed at 99.5% of the radius and the gradient is strongly negative

the global result has been considered as correct.

Fig.54 also confirms the uniformity along azimuth typical for a hover case.

Fig.55 show the trend of the lift coefficient to let the reader understand the distribution
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of the thrust along the blade radius.

(a) Carpenter Test 2 lift coefficient (b) Carpenter Test 2 lift coefficient contour

Figure 55: Carpenter lift coefficient test 2 iteration 9

The angle of attack distribution is confirmed along the radius, altough some discrepan-

cies occur near the tip probably due to an inaccuracy of the lift coefficient polars. The

graph shows that the blade is affected by a strong thrust in the outer part since the

lift coefficient must be multiplied by the square of the tangential velocity and by the

chord. The linear decrease of the chord at the tip helps the freewake code to decrease

the thrust producing also a weaker tip vortex.

A significant difference between the BEMT and the vortex theory is visible on the lift

coefficient graph in which the BEMT achieves a globally higher result along the radius

except for the outer part in which of course the tangential velocity is higher and this

explains the low difference between the two methods.

Finally the plot of the entire shape of the wake will be shown and discussed. The

code produces really stable results for the first 4 or 5 revolution then slowly starts

diverging until 9 or 10, and between 10 and the maximum number of revolution set it

is completely unstable (red zone). This instability should not be seen as an error since

this effect occurs even in reality where far downwards the wake of the helicopter loses

its tube shape and ”explodes”. This instability is caused by the loss in accuracy of

the position of the vortices after a few revolutions by the free-wake code. The small

variations along the azimuth presented in Fig.54,52 are probably caused also by the

far unstable vortices; this effect highlights the importance of increasing the number of

revolution that the wake must evaluate in hover in which a freestream velocity that

transports far away the wake does not occur. Obviously an increase of the revolutions

in the wake evaluation strongly affects the computational time.

Another effect that is very well highlighted in Fig.56 is the contraction of the wake
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Figure 56: Wake of the Carpenter rotor

(until the instability); the radius of the wake after the stable revolutions is around 75%

of the rotor radius.

On the rotor disk plane it is very clear how the wake follows its induced velocity: the

blue part that represents a strong downwash moves downwards faster then the green

part in which the induced velocity is lower. This effect explains the general correct

behaviour of the freewake code.

Probably due to a too large vortex core radius it is not possible to see the roll-up effect

that occurs at the tip in which, after the blade, the vortices should move from the in-

ner part to the outer part and create a strong vortex placed near by the tip producing

a roll up in the shape of the wake. The code evaluates this effect but due to a too

large vortex core radius the shape of the wake at the tip does not roll up enough. To

understand better this effect the plot that shows the trend of the tip vortex vorticity is

presented in Fig.57. The strength of the vortex at the tip linearly increses for around

40 deg azimuth, this means that after that azimuthal distance all the trailing vorticity

of the blade is summed up on the tip vortex except made for the one joining the root

vortex which has a smaller vorticity and impact on the induced velocity. The thickness
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Figure 57: Carpenter tip vortex strength

of the two vortices in the graph (one for blade) is equal to the VCR. This graph helps

also to understand the stability of the code: since the shape of the vortex is linear, the

shape of the wake for the number of revolution considered must be stable.

Now that the test number 2 has been presented, the global results for the other two

cases will be summarized in order to understand whether the code works properly in

different conditions. The first aspect that will be analyzed is the trend of the thrust

coefficient against the pitch angle.Simulation results are compared against the bench

test data.

Figure 58: Carpenter: Thrust coefficient vs pitch angle

As for the test with a tip Mach number of 0.6 the case with 0.3 matches perfectly
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the polar line. For the test case with a higher Mach number the result produces a

lower thrust coefficient compared with the test data. The relative error in that case is

around 7.2%. This case is the most difficult for a free wake code to be analyzed since

the high rotating speed and the low pitch angle creating a low vertical induced velocity

do not allow the wake to move downwards enough. This creates an instability much

closer to the rotor disk plane producing unpredictable effects. Probably increasing the

number of revolutions, the radial discretization and decreasing consciously the vortex

core radius in order to increase the induced velocity would help to obtain a result with

higher accuracy but would also increase drastically the computational time which is

not the purpose of this method.

Fortunately Carpenter evaluated also the power coefficient which permits to cross-check

wether the angle of attack on the rotor disk is correct since it is required with the drag

coefficient to calculate the profile power which is added to the induced power to find the

CP . In an untrimmed situation with a prescribed pitch angle this cross-check should

not be required since a correct thrust coefficient already proves a global correct induced

velocity.

Figure 59: Carpenter: Thrust coefficient vs power coefficient

The general trend is confirmed: in the case with a tip Mach number of 0.3 the result-

ing power coefficient is higher than aspected. This small offset can be caused by an

inaccuracy of the Cd vs angle of attack polars provided in Gensim but is negligible.

All the main results for the three cases are summarized in table 5; only the last itera-

tion is considered because every test reached convergence.
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Table 5: Carpenter test results

Magnitude Test 1 Test 2 Test 3
Omega [rad/s] 29.170 25.00 12.5

Thrust [N] 26090 47104 16270
CT 0.00181 0.0044 0.00608
CT
σ

0.055 0.0135 0.18719
Induced power [kW] 186.0 451.1 91.6

CP 0.0001 0.00031 0.00049
Average vi [m/s] 7.127 9.577 5.628

FM 0.5438 0.4412 0.4475
Computational time [s] 145920 56100 51420

The computational time presented in the table explains which cases are easier to evalu-

ate for the freewake code since all the test cases use the same configuration parameters.

It also confirms that if the wake moves far from the rotor disk quickly then the evalua-

tion is easier and more accurate. The computational time increase can be explained by

the presence of blade vortex interaction that would produce a more fine meshgrid that

of course increases the computational effort. The blade vortex interaction is analyzed

better in forward flight where this phenomenon is more visible.

For the simulations, 10 CPU’s were used, the factor between free-wake and CFD com-

putational time is still above 10, which means that with 100 CPU’s a CFD would

require the same time, considering the same level of parallelization.
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6.2 Results for the Caradonna-Tung rotor

The results for the different tests made for the Caradonna-Tung rotor are presented

in this chapter. As previously mentioned the shape of this rotor makes the simulation

harder for both codes. To understand the stability, the VCR used for these cases is

smaller than the Carpenter one.

Four main tests are proposed: two of them are very similar and the only variation is

the vortex core radius dimension. The other two tests consider an effect that can not

be neglected which is the elastic twist (the pitch angle increases almost linearly, de-

pending on the shape of the blade, along the radius due to the elasticity of the blade).

In the paper that explains the Caradonna-Tung rotor this effect seems to not be taken

in consideration, which for a one meter rotor turning at 1250 rpm could be a source of

inaccuracy.

To understand this effect a case with 0.5 and one with 1 degrees of linear twist have

been added to the normal shape of the blade. Table 6 summarizes the input parameters

for the free-wake and the coupling between the two codes. Comparing with the Car-

Table 6: Caradonna-Tung input parameters

Magnitudes Test 1 Test 2 Test 0.5 deg Test 1 deg
Number of iterations 9 9 9 9

Relaxation factor 0.3 0.5 0.3 0.3
Moving point 0.5 0.5 0.5 0.5

VCR 60%c 30%c 60%c 60%c
Wake revolutions 15 15 15 15

Max turns 18 18 18 18
Radial discretization 32 40 32 32

Azimuthal discretization 72 72 72 72
Θ0 8 8 8 8

Ω [rpm] 1250 1250 1250 1250

penter, the relaxation factor has been increased, however due to the higher difficulty

and the smaller VCR convergence for this case was harder to obtain.

The first case analyzed is the normal rotor with bigger vortex core radius. Fig.60 shows

the trend of the thrust coefficient along the iterations, highlighting the improvement

but also the offset against the target.

The convergence is not very stable except for the two last iterations. The result ob-

tained with the BEMT is very far from the bench test, around 43 % of error, after the

free wake the error decreases to around 14 %. This is clearly a big improvement but

the accuracy in this case can not be considered sufficient.
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Figure 60: Caradonna Test 1: Thrust coefficient along iterations

This discrepancy is probably caused by several different effects:

• The vortex core radius is still too large and this causes a too low induced velocity

• The implementation of the missing vortex lines does not move the second rev-

olution of the wake far enough and this causes a too low vorticity at the rotor

disk

• Inaccuracy of the polars: α vs lift coefficient

• Inaccuracy of the bench test data: elastic twist

• The rectangular untwisted wing requires a higher resolution of the mesh

Due to the erratic convergence along the iterations, the induced velocity plotted in

Fig.61 shows its trend for the first iteration, the third and the last one.

Except for the tip, where there is an offset of around 1 m/s, the third iteration and

the last are very similar. The first iteration has the same trend of the following one

but there is an almost constant offset from the root radius to 70% of R; between 80 %

and 95% of the blade span the inflow of the first iteration is lower compared with the

last one and the third one.

It is interesting to note that at the tip the induced velocity raises up to 18 m/s that

according with the blade element theory will produce a correct lift in that area. This

increment is caused by the moving point which has been set to 0.5.
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The first iteration produces an induced velocity equal to the Gensim constant value,

around 8.5 m/s that is consequently corrected by the following iterations. The mini-

mum value of the induced velocity at convergence is around 6 m/s which produces the

peak of the angle of attack in that area.

Figure 61: Caradonna Test 1: induced velocity comparison

As done for the Carpenter rotor, after the induced velocity the angle of attack is ana-

lyzed in order to understand the correct behaviour even for this case.

The difference in the angle of attack between Gensim and the free-wake is smaller com-

pared with the Carpenter; as expected at the tip the angle of attack is very close to

zero (around one degree) and it confirms the correct behaviour of the implementation.

Since the angle of attack is small and the velocity is relatively high the lift coefficient

should maintain the trend of the angle of attack.

Fig.63 shows the lift coefficient along the radius and its uniformity along the azimuth.

The Caradonna experiment evaluated the lift coefficient in five points so the local mag-

nitude is also comparable.

The distribution is not well represented by the free-wake which is lower in the first

part of the blade and has a strong increase near the tip (before the tiplosses). Due to

the low number of evaluating points used by Caradonna and Tung, it is not possible

to understand if there is an increase of lift coefficient in the bench test as well, and it

is not possible to see a real tip-loss but just a small decrease. However the peak in the

freewake simulation reaches a too high value that causes the offset in the total thrust

coefficient; as previously mentioned this peak can be caused by the second revolution
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Figure 62: Caradonna Test 1: angle of attack comparison

of the wake that, due to the missing vortex lines, does not move downwards enough.

Since the simulation prescribes the pitch angle and does not trim on the thrust, the

effect of this error in the inner part of the blade should be negligible. The uniformity

(a) Caradonna Test 1 lift coefficient (b) Caradonna Test 1 lift coefficient contour

Figure 63: Caradonna lift coefficient test 1 iteration 9

proved by the graph on the right side confirms that the lift coefficient does not change

along azimuth. This phenomenon confirms that the shed vorticity works correctly in

hover case.

The absence of the peak in the bench data might be caused by neglecting the elastic
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twist which will probably decrease the lift coefficient in the inner part but of course the

main behaviour will be noticed near the tip. The last phenomenon that is highlighted

in Fig.63 is the fact that at the root the magnitude of the lift is negative, which is

explained by a high induced velocity.

Before proceeding with the next case, the shape of the entire wake is plotted. Com-

Figure 64: Caradonna Test 1: entire wake

paring with the entire shape of the Carpenter’s wake for Caradonna the contraction of

the wake is less visible. The smaller vortex core radius permits to highlight better the

rollup at the tip vortex but these effects are still too weak.

Generally the wake seems to be stable and the red zone is smaller than the Carpenter

one which is a strange phenomenon considering the smaller VCR. The first instability

is visible after a few revolutions where the panels do not behave linearly but a reduction

of the induced velocity of around 3 or 4 m/s messes up the shape in two points (green

vertical lines in the blue zone).

Before presenting the case with the smaller VCR, the two cases with a linear twist

will be introduced together since they both present a similar modification of the rotor

model which does not come from reported data; it is still interesting to understand

properly the phenomenon of the elastic twist.

Both simulations converge and, as expected, the case with one degree of linear twist

achieves a result closer to the test data with a final CT of 0.00465. This result is very

interesting since it highlights the importance of having the most accurate test data

possible; just one degree of linear twist produces a variation of 13% in the global re-
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sult.

Figure 65: Caradonna elastic twist convergence

The difference between half degree of linear twist and the model without modification

is negligible, this can be caused by all the interpolations that are required in the codes

that reduce the global accuracy. The BEMT result is shown by the iteration number

0 and presents a variation of the thrust coefficient of around 10% every half degree of

twist.

Fig.66 shows the comparison in the local distribution of the lift coefficient and the

angle of attack for the two cases. According to these two results it is clear that the 0.5

(a) Caradonna elastic twist: lift coefficient (b) Caradonna elastic twist: angle of attack

Figure 66: Caradonna elastic twist: AoA and lift coefficient comparison
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degrees of linear twist fits better the test data; near the tip the peak is still to high

and this produces the offset in the global result of the thrust coefficient.

This confirms the correct behaviour of the free wake method in the inner and middle

part of the blade and proves once more the correct effect of the missing lines imple-

mentation.

The last case that will be presented is the normal rotor model with the smaller vortex

core radius. The results presented show how this alteration destabilizes the code and

the shape of the wake. The iteration sequence did not converge so the results presented

correspond to the first iteration. Even with the higher relaxation factor the solution

diverges from the momentum theory to a result close to the test data without decreas-

ing the difference between one iteration and the other.

The thrust coefficient after the first iteration is 0.00486 which is 5% off the result. Even

the local trend improves comparing to the large vortex core radius since the difference

with the test points decreases especially in the inner part of the blade. The amplitude

of the peak is also reduced and this explains the improvement in the global result.

Figure 67: Caradonna small VCR: lift coefficient

Unfortunately the iteration did not converge and this is well explained by the shape

of the wake and the position of the tip vortex which has the higher vorticity. The tip

vortex is stable for the first 3 revolutions and afterwards it totally diverges without

moving far from the rotor disk; due to the peaks that the induced velocity can reach

the vortices are stretched and shortened.

Increasing the discretization points allows to obtain a more stable solution but that
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does not really permit an improvement in the computational time comparing with CFD

that still produces more accurate results.

Counting the stable revolutions it is clear that for a hover case the vortex core radius

must be increased.

Except for the first revolution, in which the vorticity trend is reasonable, the shape

of the wake does not permit to explain the strength of the vortices that seem to be

constant in half revolution and decrease in the other which is clearly not reasonable.

This aspect can also be just a plotting inaccuracy.

Figure 68: Caradonna small VCR: Tip vortex position and strength

As done for the Carpenter rotor, table 7 summarizes the results for all the test de-

scribed. For the small VCR case the results regard the first iteration.

Table 7: Caradonna-Tung test magnitudes

Magnitude Test 1 Small VCR 0.5 deg twist 1 deg twist
Thrust [N] 588.8 541.5 582.2 518.3

CT 0.00529 0.00486 0.00523 0.00465
CT
σ

0.04982 0.04583 0.04927 0.04386
Induced power [kW] 4.5 4.0 4.4 3.7

Average vi [m/s] 7.672 7.358 7.629 7.198
FM 0.6338 0.6555 0.6505 0.6145

Computational time [s] 50580 86940 54000 50400

The computational time reflects the divergence problems and for the small VCR case
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is increased by 40%. The other parameters do not present strange effects.

The results of the Caradonna case confirmed the difficultness of this rotor for both

codes and showed some of their weaknesses, but it also showed a huge improvement of

around 30% comparing with the BEMT.

6.3 Results for the H135 rotor

A large number of flight test were carried out for the AIRBUS H135 varying the input

parameters for different flight conditions in order to find the more stable and accurate

configuration. The main difference with the validation tests is that in this case Gensim

trims on the thrust without prescribing the pitch angles.

The Caradonna case showed that the result depends on the dimension of the vortex core

radius, so 16 different cases were tested with 3 different VCRs. The cases are divided in

four groups, every group has a similar weight and 4 different flight speeds. This permits

to find a general trend of the behaviour varying the velocity for different normalized

weights (normalizing the weight permits to remove the dependence of the temperature,

the altitude and the rotational velocity). The 3 VCRs have been expressed in terms of

percentage of the maximum chord of the blade and are 30%, 50%, 80% of the chord.

The other input parameters of the freewake have been chosen in order to permit the

convergence and to reduce the inaccuracies. Since the lower forward flight speed is

around 35 knots the wake length number used is 5 revolution which permits to consider

effects near the rotor disk and reduces the computational time compared with a hover

case. Table 8 summarizes all the input parameters employed in the freewake code and

in the coupling script: The input parameters required by Gensim to compute the trim

Table 8: H135 input parameters

Magnitudes Amplitude
Number of iterations 7

Relaxation factor 0.2
Moving point 0.3

Wake revolutions 5
Max turns 7

Radial discretization 40
Azimuthal discretization 72

VCR 30%,50%,80% of c

are the gross mass, Vx, Vz, temperature and the altitude. Table 9 highlights all these

data for every test simulated arranging them by normalized weight and forward flight

speed. The outputs will be compared with the flight data and a validated version of

the H135 Gensim model, the inflow factors akh and akf have been adjusted to match
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the flight test results. A negative Vz is a positive rate of climb due to the Gensim

Table 9: Flight test data for H135 in forward flight

T.no W [kg] Vx [kts] Vz [ft/min] T [C] Zp [ft] M.no [kg]
105-197 2650 46.2 -7.1 11 5030 3020
105-205 2630 73.7 1.7 11 4995 2988
105-184 2679 105.2 0.8 11 4987 3037
105-176 2696 133.3 -3.8 11 4988 3040
118-39 2934 46.2 23.0 38 1495 3350
118-43 2920 74.5 -13.6 38 1496 3335
118-36 2945 98.5 3.16 39 1490 3371
118-30 2963 133.3 -18.87 40 1490 3398
246-579 2994 34.3 46.2 23 5392 3481
246-583 2983 82.1 22.2 22 5303 3504
246-585 2977 104.2 -4.2 22 5346 3503
246-589 2964 138.4 -10.6 23 5260 3479
220-516 3004 38.7 18.6 13 10002 3937
220-518 2997 63.3 -18.5 13 10057 3938
220-521 2987 100.4 3.8 13 9993 4062
220-526 2968 117.6 0.3 13 9991 4040

axis orientation. Obviously the normalized weight is not the same for every test case

depending on the flight conditions and the reduction of the fuel mass during the flights.

The results for the power are presented without the numerical description along the y

axis to protect AIRBUS Helicopters internal data. The relative error with the flight

test data is also presented for every case.

(a) Flight Test 105: Pred vs V x (b) Flight Test 105: % error

Figure 69: Flight Test 105
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(a) Flight Test 118: Pred vs V x (b) Flight Test 118: % error

Figure 70: Flight Test 118

(a) Flight Test 246: Pred vs V x (b) Flight Test 246: % error

Figure 71: Flight Test 246

The graph show that not every VCR result is accurate but that it is possible to

find a VCR configuration for every result, except for the highest weight, that outputs

a required power with a maximum of 10 % of relative error respect to the flight test

data.

Analyzing with more accuracy the results it is clear that the high normalized weight is

difficult to evaluate with this code and the reason must be searched in its basic theory.

A high weight helicopter requires high thrust to fly, not modifying the rotational speed

a much higher angle of attack is required. If the polars for the angle of attack is not in

the linear part or in the worst case is in a stall condition that means that a high angle

of attack produces a low lift coefficient.
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(a) Flight Test 246: Pred vs V x (b) Flight Test 246: % error

Figure 72: Flight Test 246

The other case for which it is difficult to find a vortex core radius that produces rea-

sonable results is the test number 246 with lower speed: analyzing the table that

summarizes the flight conditions, it is possible to notice that another parameter might

affect the accuracy of the result. This case has the highest descending velocity of all

the cases with more than 46 ft/min, this aspect, summed with a low velocity, can be

considered as a difficult situation for the freewake code since the wake does not move

far from the rotor plane quickly and the descending speed that must be subtract to

the induced velocity to find the position of the wake at any instant could produce a

significant number of BVI. To increase the accuracy of this case one option might be

to increase the wake length and the number of revolutions analyzed.

For the other cases FT-Freewake produces one or more results inside 10% of accuracy.

To understand how difficult is to predict the performance of a helicopter the previous

graph showed the results compute by Gensim (yellow) that has an inflow model modi-

fied in order to match the flight test data and in many cases outputs a power that does

not fit perfectly.

Interpolating the results presented with the Python function scipy.interpolate.interp1d

that permits to choose the grade of the polynomium, it is possible to find the best

vortex core radius along the helicopter speed for the normalized weight used. If the

user has a normalized weight different from the analyzed ones it will be enough to

linearly interpolate between the charts in Fig.73 for the required speed. The trend for

the Test number 220 has been compute according to the best results but obviously is

not reliable. The other three plots show that the magnitude varies with the weight

but the trend is coarsely confirmed: at low speed a higher VCR is required, it then de-

creases until 50-70 knots to raise up again until 100 knots. After 100 knots it decreases
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(a) Flight Test 105: VCR vs speed (b) Flight Test 118: VCR vs speed

(c) Flight Test 246: VCR vs speed (d) Flight Test 220: VCR vs speed

Figure 73: VCR vs speed

strongly and reaches its minimum at the maximum speed of the helicopter.

The range goes from 0 to 100% of the chord, it is possible to use even higher vortex

core radius but it will produce a smooth wake shape that does not represent the re-

ality. Increasing the number of discretization points allows to reduce the vortex core

radius down to 5 or 10% of the chord but with more than 60 points on the radius the

computational time will explode.

In order to not overload this paper just two of the 48 cases globally presented will

be analyzed more in detail: the test number 118-43 with a VCR of 50% of the chord

and the test case 220-526 with a VCR of 30% of c. The first simulation achieved very

accurate global results, while the second one on the contrary highlights the weaknesses

of the vortex theory.

As done for the validation tests, the convergence of the iterations will be firstly pre-

sented. From Fig.74 it is possible to understand that the convergence is achieved after
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Figure 74: Test 118-43: Convergence

2 iteration (excluding the number 0) and that the difference with the flight data is

totally neglectable. The improvement respect to the BEMT is around 21% and about

8% towards corrected Gensim.

Fig.75 aims to compare the lift coefficient at the rotor disk between stand alone Gensim

and the last iteration: From the graph on the right side the presence of vortices in the

(a) Test 118-43: cl iteration 0 (b) Test 118-43: cl iteration 7

Figure 75: Test 118-43: lift coefficient comparison

rotor plane is clear; in the advancing side it is possible to see the strong interaction

with the tip vortex of the previous blade and the weaker one due of two preceeding

blades. Also on the retreating side the lift coefficient has not a uniform distribution as

in the BEMT but after an azimuth of 270 degrees it strongly reduces its magnitude.

The effect of the reverse flow is not very strong due to the low velocity of the helicopter
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but is well visible on both cases in the retreating side near the root. Even if the trend

is different, it is important to remember that since Gensim trims, the total thrust is the

same. Especially from the chart in the left it is clear that the rotor has been designed in

order to achieve a uniform lift distribution on the disk. Clearly due to the interaction

with the wake and its vortices this is only theoretically possible.

Fig.76 shows the instant induced velocity at the rotor disk and the BVI, this helps the

reader to understand also the lift coefficient distribution.

Figure 76: Test 118-43: BVI

The reduction on the induced velocity due to the blade vortex interaction is perfectly

visible: the blade at an azimuth of 180 degrees is crossed by 3 tip vortices coming from

the previous blades and all of them are normal to it. Different is the situation of the

blade in the retreating side in which the angle is very low and the vortex is almost

tangential.

Another phenomenon clearly visible occurs at an azimuth of 90 degrees in which a

strong vortex leaves the blade from the tip in the flight direction. The same phe-

nomenon happens also in the retreating side but it is weaker due to the lower velocity.

The low VCR in this simulation permits to visualize the tip vortex that it is caused by

the finite length of the blade.

This plot also permits to understand the difficulties of simulating a rotating wing in-

stead of a fixed one: if the blade is not affected by other vortices it is clear that in
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the downstream direction a strong downwash velocity will occur and this effect always

happens for a fixed blade, but due to the rotation and the presence of other blades for

a rotating wing the inflow field is far from being uniform.

Before presenting the entire wake of a helicopter in forward flight, it must be checked

whether the implementation of the missing vortex lines produces different effects de-

pending on the azimuth. Fig.77 shows the magnitude of the total induced velocity

every 90 degrees of azimuth. The implementation works properly since the magnitude

(a) Flight Test 118-43 Vz: ψ = 0 (b) Flight Test 118-43 Vz: ψ = 90

(c) Flight Test 118-43 Vz: ψ = 180 (d) Flight Test 118-43 Vz: ψ = 270

Figure 77: Flight Test 118-43: induced velocity

of the induced velocity varies with the azimuth with a peak on the retreating side of

more than 15 m/s.

These plots are very helpful to find the precise position of the BVI; this effect is clearly

visible for an azimuth of 180 degrees and it shows that, starting from the rotation axis

the first interaction with a vortex according with Fig.76 occurs before the root, the

second one at around 45% of the radius and the last one at 75%.
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To conclude the discussion for this flight test the entire wake is shown if Fig.78.

Figure 78: Test 118-43: entire wake

Far from the rotor it is not possible to distinguish anymore one vortex from the other

due to the destabilization of the wake (in the visualization from the bottom this ef-

fect is still visible); even if the free stream velocity is small, the wake goes far quickly

enough to not contaminate the rotor plane with its instabilities. Due to the helicopter

velocity the wake spreads mainly along the x direction and just for the induced velocity

component along the z axis.

The last forward flight case analyzed is, as previously announced, the test case number

220-526 due to its significant stall effects. The case analyzed varying the vortex core

radius did not converge for any VCR as expected. To achieve reasonable results for

this case the only possible choice is to decrease as much as possible the vortex core

radius in order to increase the induced velocity enough to reduce the local stall areas.

Increasing the number of radial points up to 51, reducing the wake length to obtain a

sustainable computational time (this does not affect the final result since the velocity is

really high) and increasing the relaxation factor to 0.3 permitted a stable convergence.
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The VCR used for this simulation is 5% of the chord. Fig.79 shows the convergence

and it compares the result with corrected Gensim and the flight test data.

Figure 79: Test 220-526: Convergence

The result is characterized by a percentual error of 11% with respect to the flight test

data. The main highlight is the improvement with respect to the BEMT, around 30%,

also the difference with corrected Gensim is acceptable. This proves that setting a more

computationally expensive configuration permits to increase the accuracy of the results

for the difficult cases. Fig.80 show the AoA and the lift coefficient distribution in the

rotor, highlighting the distortion due to vortices and the fact that on the retreating

side there is a large area that stalls.

Comparing with the previous tests, it is clear that since the forward flight speed is

higher there are less interactions with the vortices coming from the previous blades.

Even if the free stream velocity is really high, it is not possible to find a reverse flow

area and this can cause the inaccuracy in the global result.

To conclude, the entire wake is presented in order to let the reader understand how

the vortex core radius affects the tip vortex and its shape.

The tip vortex increases its behaviour with the decrease of the vortex core radius. The

levels of the induced velocity in the axis have been manually limited since in some point

of the far wake the induced velocity raised up to 100 m/s and do not permit a clear

visualization. This simulation also confirmed that the trend of the vortex core radius

is correct, since it strongly decreases at high speed. Using a small vortex core radius

with less discretization points will produce the complete divergence of the simulation.
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(a) Test 220-526: α iteration 10 (b) Test 220-526: cl iteration 10

Figure 80: Test 220-526: lift coefficient and angle of attack

Figure 81: Test 220-526: Entire wake

All the forward flight cases run allowed to understand the behaviour of the code and

find the easier configuration that permits to achieve reasonable results; except for some

”extreme” flight tests that need a more complex setting.

The last case that will be presented is the H135 in hover and table 10 summarizes all

the input parameteres including the flight test data.

The relaxation factor has been increased compared with the other cases to improve the
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Table 10: H135 hover

Magnitude Hover
Weight [kg] 2921.1
Vx [kts] 0

RoC [ft/min] -2.0
Temperature [C] 2

Altitude [ft] 974
Wake length rev 16

Max turns 18
VCR 80% chord

iterations 7
radial discretization 40

RF 0.3
Moving point 0.3

convergence, since this case, a hover case with four blades is very difficult to analyze

with a free wake method. The rotor has been designed in order to obtain a uniform lift

along the radius, this permits to stabilize the simulation by increasing the vortex core

radius to 80% of the chord since the difference with the BEMT should not be high.

The convergence along the iterations, the comparison with the flight data and with

corrected Gensim will be presented in Fig.82.

Figure 82: H135 hover: convergence

The convergence is reached after three iterations, the global result is higher than the

flight test data of around 5%. The explanation has to be searched in a higher induced
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velocity in the inner part of the blade caused by a too low induced velocity in the

outer part due to the interaction with the second rotation of the wake. Also the classic

momentum theory produces a result with an error of around 8%; this is explainable

analyzing the rotor lift distribution and Fig.33 that shows the factor that must be

multiplied to the average induce velocity to obtain the corrected Gensim result.

The global plot of the induced velocity at the rotor disk is shown in Fig.84:

Figure 83: H135 hover: induced velocity at the rotor disk

The plot highlights the effect explained previously and it also shows the non perfect

uniformity along the azimuth. In this case two main reasons must be analyzed: the

first one is caused by the instability of the code in the far wake, that diverging can

modify the inflow; the second one and more important is the fact that the plots do not

show the induced velocity field of an isolated main rotor, the other components of the

helicopter affect the center of mass, the momentums and so the lift distribution.

To conclude the chapter the entire shape of the wake will be presented.

The entire wake is very stable for around 4 revolutions and then it quickly diverges.

Analyzing the trend of the diverged part it is clear that in the left side of the graph the

wake remains higher and closer to the rotor disk respect to the wake on the right side.

The missing vortex lines are visible in this plots because of the upwash at the tip and

the BVI that occurs between the blades and the tip vortex from the previous wing.

The computational time for this simulation is around 30000 seconds per iteration,
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Figure 84: H135 hover: wake

which means more than 210000 seconds using 10 CPU’s. A CFD simulation of the

entire helicopter wake with around 300 CPU’s requires from two to three weeks to

converge.
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7 Conclusions

The aim of this master thesis was to compute the induced velocity field of the main

rotor in many different situations thanks to a free-wake method and evaluate the per-

formance of the entire helicopter by means of Gensim, an AIRBUS Helicopters internal

code that adopts the blade element theory.

Two main rotors from literature (Carpenter and Caradonna-Tung) were simulated to

validate the code analyzing the induced velocity field, the angle of attack, the lift co-

efficient distribution and the entire shape of the wake. The first results showed the

absence of a non negligible portion of the trailing vortices causing a strong reduction

of the induced velocity in the outer region of the blade. To solve the problem these

missing vortex lines have been implemented manually in the coupling between the two

codes. This correction helped to compute the tip losses that were totally neglected by

the previous implementation but does not permit to modify the entire shape of the

wake and its behaviour on the induced velocity at the rotor disk. This correction must

be considered as a preliminary correction and the problem must be solved inside the

free-wake code.

The results for the Carpenter rotor permitted to understand the general behaviour of

the code in hover situations and probably due to its simplicity the accuracy compared

with a bench test data was satisfactory.

The second validation case was selected since straight untwisted blades are difficult to

simulate with classical BEMT under the uniform inflow assumption. The results for

this case showed a significant improvement compared with Gensim stand alone but the

final result confirmed an offset of around 13%.

Finally the entire H135 was simulated in 16 different forward flight conditions com-

paring the result for different vortex core radii with flight test data in order to find

common settings for both the codes. The trend of the vortex core radius against the

speed of the helicopter was plotted for different normalized weights in order to permit

an easier simulation setup in the future. The results that have been presented show

that for almost every flight test it is possible to achieve results within 10% of accuracy.

As previously explained the code struggles in two main situations: hover cases or simi-

lar situations (low speed and descend) in which the wake does not move away from the

rotor disk quickly and high weight and high speed in which stall effects might occur.

The present work presents just the starting point of the coupling between Gensim

and FT-Freewake and showed the advantage in the computational time compared with

CFD analysis. To improve the accuracy of the results and stabilize the simulations

some implementations are required:
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• Implement the missing vortex lines in FT-Freewake;

• Implement a vortex core growth model that increases the vortex core radius with

the ageing of the wake in order to stabilize the wake shape in the far field;

• Increase the radial discretization points in Gensim in order to decrease the inac-

curacy due to interpolation;

• Import the fuselage geometry in the freewake in order to improve the download

prediction and improve the wake shape;

• Implement the possibility to evaluate the ground effect directly in FT-Freewake.

The state of art in the CPU’s technology does not permit to use at the moment CFD

analysis to simulate the entire helicopter in all the possible configurations because of

the too large computational time required. Since a freewake code permits to achieve

medium-high accuracy results around 20 times faster than CFD, the usage of these

types of codes should increase drastically in this sector and should lead to more accurate

steady state analysis and eventually to unsteady simulations.
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