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Abstract

The suggestion of profitable new keywords and the estimation of the optimal initial bid for
each of them, are two crucial problems that every bidding strategy has to address in order to
maxime profits in Sponsored Search Auctions (SSA).

In this thesis, both problems are solved from the perspective of an economic agent not con-
sidered in the research developed so far: the broker. It is an intermediary between search engine
and advertisers, purchasing ad slots from the former and selling them to the latters.

The optimal initial bid is cast as a regression problem, where regressors are the keyword itself
(encoded in a numerical vector) and a set of features known a-priori, provided by the search
engine. The dependent variable is the actual bid observed. The complex highly non-linear
relationship is learnt by aFullyConnectedNeuralNetwork. Theobservationsused for training
and testing are those belonging to keywords with a positive average profit, in order to ensure
that the relation learnt leads to positive profitability.

The new keywords suggestion problem is solved defining a general web scraping method,
designed to work on almost every webpage returned from a query, followed by keywords ex-
tractors algorithms to retrieve relevant terms. A filter is created to clean the extracted keywords,
improving the quality of suggestions.

The proposed neural network reaches a prediction error in the test set of just 0.16$, while
performanceof thenewkeywords suggestion tool is assessedbyhumanevaluators, usingbroadly
adoptedmetrics in the field (Relatedness,Non-obviosness andF-score). Thebest keywords extrac-
tor model reaches an F-score higher than 0.6 for every scrap level and number of suggestions
requiered.

The synergy between the new keywords suggestion tool, able to provide related but non-
obvious (and so cheap) keywords, and the optimal initial bid tool, able to estimate a reliable
starting bid, should increase the overall broker’s profit.
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1
Introduction

1.1 Presentation Of The Problem

The problem presented hereafter arises in a real world business project, developed byACTOR,
on the behalf of a Media Technology and Digital Advertising company, which acts as a broker
in Sponsored Search Auction (SSA). In detail, the problem consists of two business related sub-
problems:

1. the recommendation of profitable new keywords,

2. the estimation of the optimal initial bid for each of them.

In order to better understand the problem, it is useful to introduce the framework of SSA
and the concept of bidding strategies.

The bidding strategy (BS) arises in the context of SSA, which is a virtual auction where ad-
vertisers try to get a position on the search engine results page (SERP) presenting a bid for each
relevant keyword. Every time a query is submitted, an instantaneous auction is done among
all bids associated with keywords matching the query. In this way, a position to each adver-
tisement (ad) is assigned. The ranking of an ad is determined by a combination of its bid and
quality score, which is meant to capture the ad’s relevance to the keyword. The value of the
bid is crucial: if the bid is too low, it appears in a low rank position with a low probability to be
clicked; if the bid is too high, the profit is reduced and could even turn into a loss. The quality
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score (QS) is also important: given the same bid, the ad with higher quality wins. The auction
mechanism isGeneralize Second Price (GSP): the advertiser j, who gets position i, pays the bid
presented by advertiser who ranked one position below (i+1) divided byQSj . The payment is
Pay Per Click (PPC): only if the sponsored link is clicked, the advertiser pays the search engine
for sending the user to its webpage. The BS is said to be optimal for a reference economic agent
(e.g. advertiser) if it maximizes his cumulated future profits.

The broker bidding strategy (BBS) is the extension of the above framework inserting an in-
termediate economic agent (broker) between the search engine and the advertisers. The broker
bids on various keywords to get its sponsored links placed in a good position in SERP. When
a customer clicks on the broker’s link (click-in), he lands on a webpage where several outgoing
links belonging to different advertisers are listed. The outgoing links’ positions are determined
through an auction, where the seller is the broker. He pays the Cost per Click (CPC), to the
search engine, for each click-in and gets a Revenue per Click (RPC), from the advertisers, for
each click-out. The profitability is not simply determined by settingRPC>CPC, but depends
on the ratio click-out/click-in, that is, the number of click-out for one click-in. Note that the
CPC can only be estimated by excess (it is upper-bounded by the broker’s bid) while the RPC
cannot be estimated at all (it depends on the advertisers’ bids which are unknown before the
eventual click-out). The BBS is said to be optimal for the broker if it maximizes his cumulated
future profits. In this work, the reference economic agent is the broker.

It is important to notice that the problem presented at the beginning of the current section
is part of the BBS problem. In fact, to maximize his profits, the broker has to find first of
all the most profitable keywords. Second, he has to determine the optimal bidding for each
of them for every time period in the forecast horizon. Regarding this last point, the goal of
this work is limited to estimating only the optimal initial bid. The reason is that exists an
optimizing tool, the CPC-optimizer, developed by ACTOR in the business project perimeter,
able to dynamically adjust an existing bid, but not able to propose an optimal initial bid. Hence,
it is necessary to create a tool complementary to the CPC-optimizer.

1.2 Literature Review

An in-depth review about SSA, their mechanisms, role in business, evolution and technology
which supports them, can be found in [1].

A broad scientific literature exists, which tries to find an optimal BS tackling the problem
in different research fields: optimization, game theory, machine learning and a combination of
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them.
In a paper of 2004 [2], Kitts and Leblanc present a trading agent for PPC auctions who

uses an explicit profit objective function. The agent employs reinforcement learning to create
a look-ahead plan of its desired bids, allocating resources among auctions and through periods
subject to budgets and positions constraints in order to maximize the overall profits.

In [3], Edelman et al. investigate theGSP and compare it withVickrey-Clarke-Groves (VCG)
auctionmechanism. If a search engine offered only one advertisement per result page, GSP and
VCGwould be equivalent. With multiple positions available, GSP auction is no longer equiv-
alent to the VCG one and does not have truth-telling behavior as an equilibrium in dominant
strategies. In other words, it is not in the best interest of the participating advertisers to bid
their true valuation of a click and so are forced to elaborate a bidding strategy.

Cary et al. [4] show a greedy bidding strategy that a software might use in a repeated single
keyword auction in order tomaximize its utility, assuming to know the other competitors’ bids
in the next round. Given a target advertising slot s at price ps, and the one position above slot
s− 1with price ps−1, the GSP mechanism allows a range of bid values that result in the same
outcome (any bid between ps and ps−1). If all the advertisers choose their next bid b to be
indifferent between successfully winning the targeted slot s at price ps, or winning a slightly
more desirable slot at price b, there exists an equilibrium where the payments to the search
engine are identical to those of the VCGmechanism.

In [5], a single keyword bidding strategy is optimized over multiple periods with a fresh
budgetB allocated at the beginning of each period to reflect the manner in which advertisers
actually specify their budgets in real SSA. Specifically, the problem is formulated as a Markov
DecisionProcess (MDP) defined asM = (S, [As]s∈S, µ, r)whereS is a set of states andAs are
the set of actions available to the agent in each state s. For a ∈ As, µ(a, s, s′) is the probability
of transitioning from state s to state s′when taking actiona in state s. r(a, s, s′) is the expected
reward received after taking action a in state s and transitioning to state s′.

Powell et al. in [6] formulate the learning of the optimal bidding policy for SSA as a stochas-
tic optimization problem in a single ad campaign. The agent tries to learn the bidding pol-
icy which maximizes the cumulative profits under different learning policies from a dataset of
hourly frequency data.

Zhang et al. [7] set a more realistic scenario where the advertiser can create a number of cam-
paigns and set a budget for each of them. In a campaign, he can further create several ad-groups
with bid keywords and bid prices. The problem is formulated as a constrained optimization,
which takes the campaign budgets and the keyword bid prices as variables and finds their opti-
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mal values by maximizing the advertiser revenue, with the constraint of the account-level bud-
get.
Some works tackle the BS from the search engine’s perspective. In [8], a neural network is

used to predict bidders’ behavior using a set of features that are observable by the bidder. Based
on the bidder behavior model, a Markov Decision Process (MDP) is defined and solved with
reinforcement learning techniques.

A different line of research focuses on the choice of the set of keywords. Some techniques
broadly adopted are presented in the next paragraphs.

Many high ranked websites include relevant keywords in their meta-tags. Ameta-tag spider,
likeWordtracker [9], queries search engine for seed keywords and extractsmeta-tagwords from
these highly ranked webpages.

Another approach to extract related words is to use the Metacrawler Search Network’s re-
lated keyword lists. Search engines maintain a list of few related keywords used for query ex-
pansion. To gathermore words, current tools re-spider the first list of resulting keywords. This
gives popular keywords closely related to the base keyword, but the number of relevant key-
words generated is still low.

Proximity-based tools issue queries to a search engine to get highly ranked webpages for the
seed keyword and expand the seed with words found in its proximity. For example for the
seed keyword “hawaii vacations”, this tool will find keywords like: “hawaii family vacations”,
“discount hawaii vacations”, etc. Though this tool finds a large number of keywords, it cannot
find relevant keywords not containing the exact seed query words.

Google Ads [10] relies on query log mining for keyword generation. It presents frequent
queries that contain the entire search term. Similarly, Overture’s Keyword Selection Tool lists
frequent queries of recent past containing the seed terms. Both these techniques suffer from
twomain drawbacks. The first one is proximity-based searches, i.e. failure to generate relevant
keywords not containing search terms. To generate additional keywords, Google Ads mines
advertiser logs. The second one is that suggestions are limited to those words that occur fre-
quently in advertiser search logs. Such frequent words have a good chance of being among
expensive keywords, as they are already popular in the advertising community.

Moreover, all above techniques fail to take semantic relationships into account. Uncom-
mon relevant terms, not containing the input query term, are often ignored. In [11], Joshi and
Motwani develop a new technique called TermsNet, which represents each term and its con-
text with a document containing text-snippets from top 50 search-hits for that term. Then,
it determines relevance between terms and captures their semantic relationships as a directed
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graph. Neighbors of a term in such a graph are used to generate the common as well as the
non-obvious keywords related to a term. For evaluating results, the authors use the metrics
Relatedness andNon obviousness and compute an approximation of theRecall. The three mea-
sures are also combined, two at a time, in an F-score. Relatedness andNon obviousness are binary
variable, taking values {0, 1}. The former is evaluated by humans, while the latter is evaluated
automatically, defining a hard rule to assess originality: if the suggestion does not contain the
query keyword, part of it, or its variants sharing a common stem, than it is non-obvious.

Rusmevichientong and Williamson [12] proposed an algorithm that adaptively identifies
the set of keywords to bid on based on historical performance (profit-to-cost ratio) in order to
maximize total expected profits, given a fixed daily budget and unknown click-through prob-
abilities. The latter can only be estimated by selecting the keyword and observing the actual
click- through. This process can result in significant costs, yet may offer an opportunity to
discover potentially profitable keywords. Given the daily budget constraint, it is necessary to
balance the tradeoff between selecting keywords that seem to yield high average profits based
on past performance, and selecting previously unused keywords in order to learn about their
click-through probabilities. This is usually cast in the machine learning literature as balancing
“exploitation” and “exploration”.

In [13], the authors start from the observation that the search volume of queries exhibits a
long-tailed distribution, meaning that a large number of terms with low search volume cumu-
latively make up a significant share of the total traffic. Hence, it could be possible to match
the search volume of a popular (and so very expensive) keyword using many unpopular and
cheap keywords, at a fraction of the cost. The authors propose a method that can be used by
an advertiser to generate relevant keywords given his website. An extended dictionary of key-
words is constructed by first crawling the webpages in this website and then expanding the set
with search results from a search engine. In order to find relevant terms for a query term, the
semantic similarity between terms in this dictionary is established. The similarity graph thus
generated is traversed by a watershed algorithm that explores the neighborhood and generates
novel suggestions for a seed keyword.

Chen et al. [14] propose a novel keywords’ suggestion method that fully exploits the se-
mantic knowledge among “concept hierarchy” (a hierarchically organized concept set) over-
coming the existing models based on some statistical information (for example, the keyword
co-occurrence). Given a keyword, it is first matchedwith some relevant concepts. Then the rel-
evant concepts are used with their hierarchy to fertilize the meanings of the keywords. Finally,
new keywords are suggested according to the concept information.
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In [15], the criterion for choosing the set of keywordsK is topick the ones that searchersmay
use in their queries when looking for their products. Since it is impossible for the advertisers
to identify all possible variations of keywords, they often rely on broad matching provided
by search engines. The problem is that the same keyword could be associated, as a result of
the broad match, with query q and query q′, which have different values vq and vq′ for the
advertiser.

In [16], Thomaidou and Vazirgiannis follow a similar method as in [13], extracting relevant
terms consisting of two or three words from the advertiser’s landing page and expanding the
suggestions using search results snippets. The HTML content of each landing page is parsed,
stopwords are removed, and the most significant tokens are extracted and ranked on the basis
of the occurrences of each token in each type of HTML tag, which have different weights ac-
cording to their importance. Single tokens are combined to form pairs and triplets of words,
whose weighted co-occurrence score is greater than a fixed threshold. Moreover, an additional
measure aside Relatedness andNon obviousness is suggested: Specificity. It quantifies how orig-
inal are the suggested keywords with respect to the query one. The authors define a graded
scale of 5 different levels for each metric and rely exclusively on human evaluators to score the
results.

At the time of writing, the BBS problem is not addressed explicitly in the literature. Anyway
the broker plays two roles simultaneously:

1. the advertiser (he purchases ad slots from the search engine),

2. the auctioneer (he sells ad slots to the advertisers).

Hence many results obtained in the BS can be extended to the BBS framework.
In the literature presented so far, the problem of the optimal initial bid for new keywords is

embedded in the broader BS problem, which is solved relying on assumptions that often do
not hold in the real world.

For example, in [2], the agent knows the prices that each competitor is going to pay for each
position on every future auction for every keyword of intestest. In [4], the strategy is limited to
work for a repeated auction on a single keyword and the agent is the only player who updates
his bid for the next round, while the othersmerely repeat their previous bid. In [6], the optimal
bidding policy is defined for a single ad campaign, while in the real world, advertisers manage
multiple campaigns with multiple budgets simultaneously.

Instead, in the current thesis, the optimal initial bid for new keywords problem is tackled as
a stand-alone one, following a pragmatic approach based on available data rather than looking
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for a new model able to provide a theorethically sound solution, but pratically infeasible in a
real world business framework. The same logic is followed also for the new keywords suggestion
problem, where existing literature has developed both theorethical models and empirical tools.
Our interest focuses on the second ones, which are used as a source of inspiration to define a
new keywords extraction procedure.

1.3 Thesis Content

The objective of this work consists in optimizing the bidding strategy of a digital advertising
broker in SSA. In detail, the contribution of the thesis is based on the development of two
models, able to, respectively:

1. estimate the optimal initial bid for new keywords;

2. suggest profitable new keywords.

Both tools are designed to work in synergy with the CPC-Optimizer, already developed in the
project perimeter by ACTOR.

The thesis is organized as follows. Part I addresses the optimal initial bid estimation prob-
lem. The collection and exploration of the available data, the explanation of the bids’ time-
series behavior, the preprocessing steps necessary to build the training dataset, are presented in
Chapter 2.

In Chapter 3, the optimal initial bid is cast as a regression problem. First, some baseline
models (multiple linear regression, Ridge, Lasso) are used and their prediction error is analyzed.
Second, a Fully Connected Neural Network is trained to solve the same task. An empirical ap-
proximation of the training error lower bound is provided and the overall training procedure
followed to fine tune the hyperparameters and check the soundness of different features, care-
fully explained. The higher network’s complexity is justified by a significant drop in the pre-
diction error, which is 0.15$. The results are counter-checked against the negative test set: the
set of observations with negative profitability belonging to the same keywords used in the test
set. The low error (0.17$) highlighted the need to change the level of granularity at which the
profitability is assessed: from observation level to keyword level.

In Chapter 4, an alternative dataset is built, selecting all observations belonging to keywords
with positive average profit. The same training procedure and error analisys is repeated, leading
to a similar prediction error (0.16$). The prediction error in the negative test set is now almost
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doubled (0.30$), confirming the network’s capacity to predict bids, for negative keywords, sig-
nificantly different from the observed ones. Since the training error lower bound makes not
possible to improve the model in terms of performance, the model is improved in terms of
complexity. A new encoding technique, GloVe, reduces drastically the number of features pre-
serving similar prediciton error (0.17$).

Concluding remarks for Part I are reported in Chapter 5.
Part II tackles the Profitable New keywords’ suggestion problem. In Chapter 6, the impor-

tance to develop a procedure able to suggest new keywords related to the query, non-obvious,
with a good quantity and variety and, as far as possible, language independent, is explained,
highlighting its positive impact on the broker’s profits. In a nutshell, the procedure is based
on two steps: web scraping and keywords extraction. Given the query, the former retrives the
raw tex scraping the top URLs’ webpages resulting from a Google search, using different sets
of HTML tags. Based on which set is used, the depth to which the webpage is scraped varies,
defining three different scrap levels (super-light, light and full). Then, Keywords extraction re-
ceives as input the cleaned text and identifies the keywords. An overview of the main types of
keywords extractors models available in the literature is presented, highlighting pros and cons
of each of them and motivating the chosen ones: RAKE and YAKE!. Before concluding the
chapter, aBERTFilter is developed in order to increase the relevance of the keywords extracted
by both models. It works by encoding the query keyword and each suggestion using “BERT-
Large Uncased” model and then computing the cosine similarity between the query and each
of the suggestions. This tool moves suggested keywords, very similar to the seed, on top po-
sitions, which could be positive (avoid non relevent suggestions) but even negative (increase
obviousness of suggestions). This shows the need to develop a methodology to evaluate sys-
tematically the keywords extracted for all the possible combinations of scrap levels, models and
number of keywords returned.

This is done in Chapter 7, where an overview of the available metrics is presented, high-
lighting pros and cons of each of them and selecting the most suitable ones for the problem at
hand: Relatedness@K,Non obviousness@K and F-score@K. Then the selected metrics are used
to evaluate the performances of all possible combinations of scrap levels, models and number
of suggested keywords. Results are presented graphically and in tabular format, highlighting
themost important observations and defining the bestmodel for each scrap level. It turned out
that a singlewinningmodel does not exist, but it also emerged thatYAKE!+BERT is themodel
with the most robust performance across different scrap levels and number of suggestions.

Final observations for Part II are reported in Chapter 8.
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Part I

Optimal Initial Bid for New Keywords
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2
Dataset Design

The chapter introduces and explores the data available in order to estimate the optimal initial
bid for new keywords. It defines what is a good observation (ground truth) according to busi-
ness criteria, encodes the keywords usingBERTmodel and reorganizes the data in a newdataset
useful for training the model in the next chapter.
In detail, it is composed by four sections:

• Data Collection: the available data are listed and described.

• Data Exploration: relevant statistics are computed and empirical evidence is used
to understand the data’s behavior.

• Preprocessing Steps: the ground truth is defined and the data are filtered; the key-
words are encoded.

• Dataset Construction: the final dataset is assembled.

2.1 Data Collection

The data available in the broker’s IT system are heterogeneous in terms of time frequency
(hourly, daily) and granularity (campaign, adgroup, keyword level). The choice about which
data to use is not free but based on the broker’s actual behavior and on the problem at hand:
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• bids are updated with daily frequency;

• in order to build amodel able to estimate the optimal initial bid at the keyword level, the
finer granularity is required.

The features relevant for the analysis are listed inTable 2.1. They are clustered by data source,
identified by name and, where needed, the corresponding formula and comment are provided.
Features known ex ante (so also for a new keyword) are marked with an asterisk (*). These
features are of primary importance since are the only ones which can be used to estimate the
current bid for a new keyword. Instead, all other features are known ex post, after historical
statistics have been collected. Anyway they are useful for discriminating positive versus negative
current bid and so in order to identify the groud truth.
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MIMIR is a service part of the broker’s IT systemwhich records, stores and provides a series
of information (list of active keywords, list of proprietary web pages, the adgroup/campaign
associated to each keyword, suggested bid, level of competition, etc.), provided by GOOGLE
for any keyword. Hence, these data are always known ex ante.
In the market of digital advertisement, a profit-cost ratio≥ −0.2 is considered accept-

able: what matters is the overall profit of the adgroup to which the keyword belongs to; more-
over even if a keyword has a mild negative profitability but generates good traffic volumes, it
is awarded by Google with a good Quality Score, so it could get a higher position in the fu-
ture SERP at a moderate cost. Quantify the traffic volume classifiable as “good” it’s practically
unfeasible. It depends on the keyword itself, the timeframe, the level of competition, etc. In
practice a simple rule of thumb is used: every profit-cost ratio≥ −0.2 is considered “pos-
itive”. Anyway, even not considering the profit-cost ratio ≥ −0.2 a positive result, the
CPC-Optimizer (Appendix A) is able to move effectively the profit-cost ratio above 0 if
the latter is mildly negative (≥ −0.2).
A value of clicks in equal to zero for all the observations means that the sponsored link

associated with the keyword has never been clicked. Hence clicks out, revenue, cost and
profit are all zero. Such keyword has never run, so it cannot be judged as positive or negative.
In this case the profit-cost ratio is also reported as zero in the IT system, even ifmathemat-
ically is an undefined quantity. In other cases it could be actually zero. In order to distinguish
the two cases, it’s sufficient to check the value of clicks in feature.

For the above considerations, two conditions are required to select properly the timeseries:

1. profit-cost ratio≥ −0.2;

2. clicks in> 0.

The analysis in Section 2.2 and 2.3 is based on the data with source GOOGLE and filtered
in the following way: only timeseries of current bid with at least one observation satisfying
both conditions are taken. This is equivalent to discard all timeseries that have never run and
so have no performance to judge. The data fromMIMIR are added in Section 2.4.

2.2 Data Exploration

The dataset used in this section and next one (Section 2.3) refers to a subset of new keywords
used to test the CPC-Optimizer’s effectiveness in adjusting the current bid. It spans a period
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of approximately five weeks (4th February-15th March) and around 10 thousand keywords.
For clarity, we refer to it as new keyword dataset. These data are useful for the following
reasons:

1. data are available since the inception. This is not true for older keywords, since data are
not conserved for the full history but only for the last few months;

2. the CPC-Optimizer is active and used to adjust automatically the bid for each keyword
with a daily frequency.

The importance of both points will be clear in the following sections.
The current strategy, adopted in order to find the optimal bid for a new keyword, is called

bottom-up: it consists in setting a very low bid (e.g. 1
32

of the suggested bid) and then, if
no clicks-in are recorded, increasing the bid by 10% until at least one click-in happens. This
strategy is motivated by the following reasons:

1. the bid suggested by the search engine is not reliable;

2. there is no tool currently available able to estimate a good bid for a new keyword;

3. setting high bids generates unsustainable losses, since usually thousands new keywords
are launched together.

Clearly, this strategy is not efficient, since many days of adjustments could be required to
reach a bid sufficiently high to generate some traffic and additional days could be required to
find a profitable bid value, if any. These considerationsmotivate the need to build amodel able
to suggest an enough good starting bid for a new keyword.

The bottom-up strategy should be visible in the timeseries of bids which should be composed
by two phases:

• a 1° phase characterized by a stable positive trend (essentially a straight line with slope
0.1);

• a 2° phase where the bid is progressively adjusted and converges toward its optimal value.

Adjustments inbothphases are automatically implemented through theCPC-Optimizer. Note
that the 1° phase is non-stationary, due to the presence of a trend; the 2° phase is, or should be-
come quickly, covariance stationary. The evidence of this behavior has to be checked against
the data, since reality could be more complex and substantially different. For example, some
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initial bids could be still too high, generating losses; the bid optimal value could not exist in
practice, since it could change continuously and abruptly due to external factors (e.g. traffic
volume, period of the year, etc), leading to a non-stationary 2° phase.

In order to check the behavior of thousands of timeseries it’s needed some form of automa-
tion. The ruptures Python package is a useful tool in this sense. It provides a series of algo-
rithms, with different searchmethods and cost functions, able to scan a timeseries and find the
change points (CP), if any. If the timeseries exhibit actually two phases (1° phase non-stationary
and 2° phase stationary), then it’s reasonable to expect one and only one CP detected for each
timeseries (or at least in the greatmajority of timeseries). Note that even if the number ofCPs is
equal to 1, this does not imply that the 1° phase is non-stationary and the 2° phase is stationary,
but just that the timeseries shows two distinct phases. Hence, the existence of a single CP is a
necessary but not sufficient condition to claim the existence of a non-stationary phase followed
by a stationary one. So, if a number of CPs equal to 0 or greater than 1 is found, than it is a
clear proof against the idea that exist two distinct phases. If the number of CPs is equal to 1,
a graphical inspection it’s needed to verify if it’s reasonable or not to claim that the 1° part is
non-stationary while the 2° part is stationary.

More in detail, ruptures is designed to detect the CPs, which are points where the time-
series changes its behavior, which means mainly: changes trend, changes variance and jumps.
The basic idea is to segment the timeseries in a number of non overlapping timeframes in order
to minimize a suitable cost function. The problem, which in literature is called Change Point
Detection, has two settings:

1. number of CPs is unknown;

2. number of CPs is known

and each of the problems can be solved with exact or approximate methods. In this work, the
goal is to verify if it’s true that timeseries show two different phases and so just one CP. Hence,
the number of CPs is unknown and the goal is to find if it is actually equal to one. It’s pos-
sible to choose among different algorithms, but the chosen ones are based on window-sliding
(Window) and binary segmentation (Binseg) for their simplicity. Both follow a sequential de-
tection approach, meaning that they return a single CP estimate t̂(k) at the k-th iteration and
the sequential algorithm is run until an appropriate stopping criterion is met [17].
Both the algorithms have the following characteristics:

1. problem formulation: the timeseries y = y1, . . . , yT is assumed to be piecewise station-
ary, meaning that some characteristics of the process change abruptly at some unknown
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instants t∗1 < t∗2 < · · · < t∗K . CPs detection consists in estimating the indexes t∗k. In
our setting, the numbers of CPs is unknown.

2. criterion function: CPs are chosen in order to find the best segmentation T (the set of
CPs) able to minimize the criterion function V (T , y), which is defined as the sum of
costs of all the segments that define the segmentation:

V (T , y) =
K∑
k=0

c(yt∗k...t∗k+1
)

where c(·) is a cost function which measures goodness-of-fit of the model to each seg-
ment of the timeseries. The cost function c(·) is ameasure of “homogeneity”. Its choice
encodes the type of changes that can be detected. Intuitively, c(ya...b) is expected to
be low if the sub-signal ya...b is “homogeneous” (meaning that it does not contain any
change point), and large if the sub-signal ya...b is “heterogeneous” (meaning that it con-
tains one ormore change points). The cost function we are going to use is the quadratic
error loss (cL2) :

cL2(ya...b) =
b∑

t=a+1

∥yt − ȳa...b∥22

where ȳa...b is the empirical mean of the sub-signal ya...b.

3. objective function:
F
(
y, T , pen(T )

)
= V (T ) + pen(T )

The problem consists in minimizing the objective function with respect to the segmen-
tation T :

min
T

V (T ) + pen(T )

4. penalty: when thenumber ofCPs is unknown, a constraint is added in the formof a com-
plexity penalty, which is an appropriate measure of the complexity of a segmentation
T and is indicated as pen(T ). Its role is to balance the goodness-of-fit term V (T , y),
otherwise it would be possible to minimize the objective function F

(
y, T , pen(T )

)
just increasing the number of change points. The choice of the complexity penalty is
related to the amplitude of the changes to detect: with a too “small” penalty (compared
to the goodness-of-fit), many CPs are detected, even those that are the result of noise.
Conversely, with a too high penalty (compared to the goodness-of-fit), only the most
significant changes (if any) are detected. Beyond the general formulation, the penalty
used in this work is defined as:

penBIC,L2(β) = β · σ2 · log T
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where σ is the standard deviation, T is the number of samples and β is a scale parameter.
Note that the penalty is not a function of T , but a constant. It will be used as a lower
bound to decide if theCP t∗k proposed at thek-th iteration leads to a drop in the criterion
function (also called gainGt∗k

) big enough to justify the addition of t∗k to the set of CPs
T . Hence the gain is computed as:

Gt∗k
= V (T , y)− V (T ∪ t∗k, y)

and the CP is added to T if and only if Gt∗k
> penBIC,L2(β). It’s important to try

different values of β in order to find the penalty that empirically works enough well
given the available data.

Now the two algorithms chosen are briefly presented in order to show the idea behind them.

2.2.1 Window-Sliding

It consists in computing the discrepancy between two adjacent windows that slide along the
signal y. For a given cost function c(·), the discrepancy between two sub-signals is given by:

d(ya...t, yt...b) = c(ya...b)− c(ya...t)− c(yt...b) for (1 ≤ a < t < b ≤ T )

If theya...b is homogeneous, the cost function computedover twoconsecutivewindows c(ya...b)
would be very similar to the sum of the cost functions of each window c(ya...t) + c(yt...b).
If the ya...b is not homogeneous, the cost function computed over two consecutive windows
c(ya...b) would be significantly greater than the sum of the cost functions of each window
c(ya...t) + c(yt...b). A graphical representation is depicted in Figure 2.1. TheWindow-Sliding
algorithm is presented in Algorithm 1. Note that it is important to choose the window size
value which works empirically well on available data. The PKSearch(Z) is not illustrated for
brevity, but it does the following:

1. sorts the score listZ in ascending order;

2. extracts the last element inZ (we call itZmax) and compute the gain of the correspond-
ing CP t̂Zmax :

Gt̂Zmax
= V (T , y)− V (T ∪ t̂Zmax , y);

3. stops ifGt̂Zmax
≤ penBIC,L2(β).

Note that, if the number of CPs is known a priori to beN (not our case), the stopping criterion
is simply |L| = N .
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Figure 2.1: Window‐Sliding.

Algorithm 1:Window-Sliding
Input: signal {yt}Tt=1, cost function c(·), half-window widthw, peak search

procedure PKSearch.
InitializeZ ←− [0, 0, . . . ] a T -long array filled with 0 // Score list

for t = w, . . . , T − w do
p←− (t− w) . . . t
q ←− t . . . (t+ w)
r ←− (t− w) . . . (t+ w)
Z[t]←− c(yr)− [c(yp) + c(yq)]

end
Z[t]←− PKSearch(Z) // Peak Search Procedure

Output: set L of estimated breakpoint indexes.
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(a) Example n° 1 (b) Example n° 2

(c) Example n° 3 (d) Example n° 4

Figure 2.2: Examples of CPs detection using Window‐Sliding.

Results

Figure 2.2 shows some timeseries and the corresponding CPs, detected usingWindow-Sliding
algorithm. The goal is to illustrate the actual behavior of the timeseries in order to check if it is
in line with the expected one described in Section 2.2. In all the plots, the initial current bid
is set according to the bottom-up strategy and a positive trend is observed. What happens later
it’s not a simple convergence toward some long term optimal bid value. In Subfigure 2.2a, two
phases are identified. In the first one, the current bid is increased until the upper bound is
reached; in the second one, a strong negative trend brings the bid well below its initial value.
In Subfigure 2.2b, no CPs are detected and so a unique phase is identified. In Subfigure 2.2c
and 2.2d, similar considerations of Subfigure 2.2a are valid.
The values of hyperparameters width and β have been selected using a heuristic approach:
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for each value, the plot of timeseries with the corresponding CPs have been visually inspected
in order to gauge the reliability of the proposed segmentation. This manual method is a com-
pulsory choice given the absence of a metric usable to quantify the quality of the algorithm’s
output. Decreasing the parameterβ, leads to an increase in the n°CPs, but not all theseCPs are
properly selected. In the dataset available the n° CP detected are 0 or 1with frequency≈ 37%
and≈ 63%, respectively. Hence, in 63% of timeseries exist actually two phases, but many time-
series do not show a 2° phase stationary characterized by a long run optimal bid value.

In conclusion, the timeseries with:

• two phases;

• 1° phase non-stationary and 2° phase stationary

are a minority part. Data does not support the idea that timeseries should show a 1° phase
non-stationary followed by a 2° phase stationary.

2.2.2 Binary Segmentation

It is a greedy sequential algorithm where the first CP, t̂(1), is detected as:

t̂(1) = argmin
t0<t<T

c(yt0...t) + c(yt...T )︸ ︷︷ ︸
V (T ={t})

This operation is “greedy”, in the sense that it searches the CP that lowers the most the sum of
costs (so at each iteration one and only one CP is returned). The signal is then split in two at
the position of t̂(1); the same operation is repeated on the resulting sub-signals until a stopping
criterion ismet. A graphical representation is depicted in Figure 2.3. The Binary Segmentation
algorithm is presented in Algorithm 2. Note that:

• if the number of CPs is known a priori to beN (not our case), the stopping criterion is
simply |L| = N ;

• if the number ofCPs is unknown, the stopping criterion isG[̂i] ≤ penBIC,L2(β). In this
case the best CP t̂ found at iteration k is associated with a gainG[̂i] too low to justify a
more complex segmentation.
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Figure 2.3: Binary Segmentation.

Algorithm 2: Binary Segmentation
Input: signal {yt}Tt=1, cost function c(·), stopping criterion.
Initialize L←− {} // Estimated breakpoints

repeat
k ←− |L| // Number of breakpoints

t0 ←− 0 and tk+1 ←− T
if k > 0 then

Denote by ti (i = 1, . . . , k) the elements (in ascending order) of L; ie
L = {t1, . . . , tk}

end
InitializeG a (k + 1)-long array // List of gains
for i = 0, . . . k do

G[i]←− c(yti...ti+1
)− min

ti<t<ti+1

[c(yti...t) + c(yt...ti+1
)]

end
î←− argmax

i
G[i]

t̂←− argmin
t̂i<t<t̂i+1

[c(yt̂i...t) + c(yt...t̂i+1
)]

L←− L ∪ {t̂}
until stopping criterion is met
Output: set L of estimated breakpoint indexes.
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(a) Example n° 1 (b) Example n° 2

(c) Example n° 3 (d) Example n° 4

Figure 2.4: Examples of CPs detection using Binary Segmentation.
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Results

Figure 2.4 shows some timeseries and the corresponding CPs, detected using Binary Segmen-
tation algorithm. The goal is to illustrate the actual behavior of the timeseries in order to
check if it is in line with the expected one described in Section 2.2. In all the plots, the initial
current bid is set according to the bottom-up strategy and a positive trend is observed. What
happens later it’s not a simple convergence toward some long term optimal bid value. In Sub-
figure 2.4a, two phases are identified. In the first one, the current bid is increased until the
upper bound is reached; in the second one, a strong negative trend brings the bid well below
its initial value. Now, in Subfigure 2.4b, a CP is detected. In Subfigure 2.4c and 2.4d, similar
considerations of Subfigure 2.4a are valid.
The values of hyperparameters width and β have been selected using a heuristic approach:

for each value, the plot of timeseries with the corresponding CPs have been visually inspected
in order to gauge the reliability of the proposed segmentation. This manual method is a com-
pulsory choice given the absence of a metric usable to quantify the quality of the algorithm’s
output. Decreasing the parameter β, leads to an increase in the n° CPs, but not all these CPs
are properly selected. In the dataset available the n° CP detected are 0, 1, 2 and 3. In 82% of
cases n° CP is 1. Again, this does not imply that the 1° phase is non-stationary and the 2° phase
is stationary, but just that exist two phases.

In conclusion, the timeseries with:

• two phases;

• 1° phase non-stationary and 2° phase stationary

are a minority part. Data does not support the idea that timeseries should show a 1° phase
non-stationary followed by a 2° phase stationary.

2.2.3 Timeseries’ Behavior

The results in Section 2.2.1 and 2.2.2 have shown that the timeseries of the current bid do
not follow in general the idea of a 1° phase non-stationary and a 2° phase stationary. Figure 2.5
shows some timeseries and the corresponding profit-cost ratio and clicks in (measured
on the left and right vertical axis, respectively). The goal is to use these two metrics in order to
explain the timeseries’ behavior.

The above plots show that the current bid is determined by the profit-cost ratio
value:
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(a) Example n° 1 (b) Example n° 2

(c) Example n° 3 (d) Example n° 4

Figure 2.5: Examples of timeseries behavior based on clicks in and profit-cost ratio.
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• a profit-cost ratio > 0 increases the current bid; the scenario is favorable, so
more risk can be undertaken;

• a profit-cost ratio< 0 decreases the current bid; the scenario is not favorable, so
more protection is needed.

In order to understand better how the CPC-Optimizer adjusts the current bid, consider
Figure 2.5a: the initial current bid does not generate traffic (clicks in is zero) and so it is
increased until some traffic is generated. But when this happens, the profit-cost ratio
is negative, so the bid is reduced. This is not enough, since the profit-cost ratio remains
negative. Hence, the current bid is further reduced (2021-02-11) until profit-cost ratio
increases to zero. Later, it drops again to−1, and the current bid is decreased again, pushing
up the profit-cost ratio and so on so forth.

This example shows an unsuccessful keyword: when the current bid generates high traffic
volume (many clicks in), the profits are negative (and so the profit-cost ratio). The
CPC-Optimizer tries to reduce the losses decreasing the bid, but this kills the traffic, leading to
null profits.

A detailed explanation of the CPC-Optimizer is out of the scope of the current work, but
the interested reader can find it in Appendix A.

2.3 Preprocessing Steps

2.3.1 Ground Truth Filtering

The result of the Section 2.2 has shown that is not in general true that the current bid time-
series can be split in a 1° phase non-stationary and a 2° phase stationary. Hence, the best way
to construct the dataset is without using any CP, but just keeping all observations with:

1. clicksin> 0;

2. profit-cost ratio≥ −0.2.

These are all the observationswith a current bid value able to generate traffic satisfying the
minimum profitability threshold.

The observations remaining after the filtering of the new keyword dataset are just few
thousands. This is not surprising, since the dataset covers only a limited subset of all the key-
words and for fewweeks. If these were the only data available, it would be a compulsory choice
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to rely just on them. But there are many other (older) keywords’ data for the last few months
(January-April) stored. These data are about keywords which are:

• not new;

• handled manually, which means that the bid is not automatically adjusted using CPC-
Optimizer.

Hence, it would have not been possible to carry out the analysis of Section 2.2 with these data.
Anyway they contain many thousands of ground truth observations which can be exploited to
develop a more accurate model. We refer to this dataset as main dataset.

2.3.2 BERT Encoding

Each keyword becomes an input of the model: it is converted in a vector (embedding) using
Bidirectional Encoder Representation fromTransformers (BERT)model [18] and the embed-
ding is added to the set of features.

BERT is the first pre-train, unsupervised, deeply bidirectional language representationmodel.
Pre-trainmeans that BERThas been trained as a general-purpose “language understanding”

model, and not to solve a specific task (e.g. sequence classification, question answering, etc.).
Hence, it can be fine-tuned (training) to solve various NLP tasks.

Unsupervisedmeans that BERT was trained using only a plain text corpus, which is impor-
tant because an enormous amount of plain text data is publicly available on the web in many
languages.

Deeply bidirectionalmeans that BERTbuilds a contextual language representationby jointly
conditioning on both left and right context in all layers. This implies that the representation of
each word is based on the other words in the sentence. This is a breakthrough with respect to
context-free models such as word2vec or Glove, which generate a single “word embedding”
representation for each word in the vocabulary, regardless of the context (“bank” would have
the same representation in “bankdeposit” and “river bank”) and are unidirectional, where every
token can only attend to previous tokens.

BERT has these appealing properties thanks to the way in which has been pre-trained. The
pre-training is based on two unsupervised tasks:

1. “masked languagemodel” (MLM). It randomlymasks 15%of the tokens from the input,
and the objective is to predict the original vocabulary id of the masked word based only
on its context. Unlike left-to-right language model pre-training, the MLM objective
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enables the representation to fuse the left and the right context, which allows to pretrain
a deep bidirectional Transformer.

2. “Next sentence prediction”. There are pairs of sentences (A,B), where 50% of the time
B is the actual next sentence that follows A and 50% of the time it is a random sentence
from the corpus.

The goal is to use BERT as a sentence (keyword) encoding service (e.g. mapping one vari-
able-length sentence to one fixed-length numerical vector). A sentence is represented by BERT
using a 4 dimensional tensor:

1. the number of layers (e.g. 24 layers for BERT-Large);

2. the number of batch (1 sentence);

3. the number of tokens (tokens in the sentence);

4. the number of hidden units (i.e. 1024 features for BERT-Large).

Note that each token is represented by multiple layers (e.g. 24), each with multiple features
(e.g. 1024). First it’s needed a way to represent a token using just one vector. A first idea could
be to compute some aggregate statistics, like summing or averaging the layers of a token. Some
hints come from the way in which BERT’s layers capture different information:

• in the first layer there is no contextual information (e.g., the representation of the token
“bank” is the same in “river bank” and “bank account”);

• deeper and deeper layers capture more and more contextual information;

• approaching the final layer, however, layers start picking up information that is specific
to BERT’s pre-training tasks (MLMandNSP), so they could be biased toward the train-
ing target.

This implies the existence of a trade-off between better token representation and better pre-
training score.

A pooling strategy that empirically works well consists in taking, for each token, only one
layer (e.g. pick the 2nd layer as the vector representing the token). So now each token is rep-
resented by one vector and the sentence is represented by the set of these vectors. Then the
sentence can be represented as the average of these vectors. The pooling strategy described
above can be implemented using the bert-as-a-service tool, developed by researcher Han
Xiao, who proposed it [19].
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The encoding has been applied to a sample of real keywords extracted from the data. Several
embedding strategies have been tested using BERT-large and the cosine similarity for each pair
of keywords (A,B) has been computed according to the formula:

similarity = cos(θ) =
A⃗ · B⃗
∥A⃗∥ · ∥B⃗∥

.

Several pre-trained model are available, but only the largest ones have been considered here:

• BERT-Base, with 12 hidden layers and 768 hidden units;

• BERT-Large Uncased, with 24 hidden layers and 1024 hidden units;

• BERT-Large Uncased (Whole Word Masking), with 24 hidden layers and 1024 hidden
units.

In the following, the analysis is based on the embeddings obtained from “BERT-Large Un-
cased (Whole Word Masking)”, since it turned out to provide the best encodings of the key-
words (examples using BERT-Base and BERT-Large Uncased are reported in Appendix B).

“BERT-LargeUncased (WholeWordMasking)” differs from “BERT-LargeUncased” in just
one aspect: the masking. In fact the latter applies the masking at the token level; if a word is
composed by several tokens, some of them could bemasked and others not. The former applies
the masking at the word level, hence the entire word is masked. This approach is more similar
to how humans interpret a sentence, reading one word after the other and then understanding
the overallmeaning. This approach is also highly desiderable for the keywords encoding, where
it’s natural to work at the word level and not at the token level. The presence of a word rather
than another one, can change completely the meaning (e.g. “apple pie”, “apple pc”).

Four examples, using different pooling layers, are reported in tables 2.2, 2.3, 2.4 and 2.5. To
allow comparison, the same target keyword “pediatric nurse” is used and its cosine similarity
with all the other keywords is computed. Then the keywords are ranked in decreasing order
of cosine similarity. If the BERT encoding is effective, the most similar keywords should be
considered similar also by a human reader.
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The main conclusions are:

1. the embedding strategies which use shallow layers (Table 2.2 and 2.3) are the best ones
and lead to very similar results: almost the same keywords are identified with almost the
same ranking order. Considering that Table 2.3 uses one pooling layer (1024 hidden
units) rather than three (3072 hidden units), it is preferable due to its parsimony;

2. the embedding strategieswhichuse deep layers (Table 2.4 and 2.5) lead to a higher cosine
similarity, which theoretically should imply a higher semantic similarity. But actually
this is not the case, since the keywords are not similar to the target “pediatric nurse”;

3. the results in the previous two points are surprisingly, since the first layers in the BERT
model provide a representation which does not takemuch into account the context and
so should be less able to detect semantic similar keywords than deeper layers.

Considering these observations, probably the context learnedbyBERTduring thepre-training
is not helpful, and even harmful. The reason could be that the text corpora used during the
pre-training is quite different from the keywords used in digital advertisement. Hence, using
the last layers (pooling layer=−3,−2,−1), which capture the context, leads to a lower accu-
racy than using the first layers (pooling layer=0, 1, 2). The first layers are not capturing much
context, but at least can cluster together similar keywords.

According to these evidences, the keywords are going to be encoded using:

• pooling layer = 2;

• pooling strategy = REDUCE MEAN.

2.4 Dataset Construction

Themain dataset is used in this section and inChapter 3. It contains the observations filtered
in Subsection 2.3.1 and encoded in Subsection 2.3.2. Now it can be joined with the dataset
fromMIMIR, according to the value of columns:

• date;

• keyword name.
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Finally, all the columns unknown ex ante (so not marked with an asterisk in Table 2.1) are
removed, except forcurrent bid, which plays the role of dependent variable. Also the column
keyword ID is removed, since each keyword is now identified by its encoding. Anyway the
column keyword name is kept, since it will be useful in the next chapter to split the keywords
in train, validation and test set. In this way, the final dataset contains only features known ex
ante and observations classified as positive (Table 2.6).

In this framework, the estimation of the optimal initial bid for new keywords is cast as a re-
gression problem. The limited number of observations and the different relationship between
current bid and suggested bid for each keyword, make not easy to learn the relation be-
tween explanatory variables and dependent variable.

In order to learn such complex relationship, the most appropriate tool seems to be a Neural
Network, which is going to be built in Chapter 3.
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3
Model Design

The chapter addresses the regression problem introduced in Chapter 2 using different models
and analyzing the respective performances.
In detail, it is composed by three sections:

• BaselineModels: the natural starting models to solve a regression problem.

• Neural NetworkModel: the same problem is solved using a Fully Connected Neu-
ral Network, explaining the training procedure and the prediction errors analysis.

• NegativeTest Set: a test set containing only observations with negative profitability
is used to counter check the reliability of results.

The first two sections use the main dataset introduced in Section 2.4.
The feature keyword name is used to group the main dataset by keyword and split it at the
keyword level (instead of the observation level). This ensures that all observations belonging to
a keyword appear in just one of the training, validation and test sets. To allow comparability,
the same splits are used for all models.

3.1 BaselineModels

The regression problem is tackled in thenext three subsectionsusing linearmodels. They assume
a linear relationship between the dependent variable and each of the regressors. For complete-
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ness of exposition, every model is briefly introduced and explained in its major characteristics,
basing on [20].
These models are fast to train due to the existence of closed form solutions (except for Lasso

regression) and easy to fine tune, since have zero or one hyperparameter. Once estimated, their
performances represent a benchmark to evaluate the effectiveness ofmore complexmodels, like
a neural network.

The set of features depicted in Table 2.6 are not all numeric, hence some preprocessing steps
are necessary:

• keyword name is dropped since it is encoded by the features f1, . . . , f1024;

• match type is One-Hot-Encoded.

The resulting dataset is used as input in each of the next models. The variable current bid
plays the role of dependent variable.

It is worth noting that the main goal is prediction and not inference. This is because:

1. for the business profitability it’s of primary importance to have a model able to predict
an enough accurate current bid;

2. all regressors, except f1, . . . , f1024 and match type, take exogenous values determined
by the market and so are out of the broker’s control.

3.1.1 Multiple Linear Regression

The basic model for multiple linear regression is:

ŷ = β0 +

p∑
j=1

xj · βj

where ŷ is the vector of estimates of the true output vector y and xj is the vector containing
values of regressor j for all observations in the dataset.
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The βj ’s are unknown parameters to estimate in order to minimize the residual sum of
squares (RSS):

RSS(β) =
N∑
i=1

(yi − ŷi)
2

=
N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2.

Denoting byX the N × (p + 1) matrix with each row an input vector (with a 1 in the first
position) and each column a regressor, and denoting by y the vector of outputs, the RSS can
be expressed in matrix form:

RSS(β) = (y −Xβ)T (y −Xβ)

Differentiating with respect to β:

∂RSS

∂β
= −2XT (y −Xβ)

∂2RSS

∂β∂βT
= 2XTX.

IfX has full rank columns, as in this case, thenXTX is positive definite. This means that the
RSS is a convex function and the critical point is a minimum. Hence, it’s sufficient to set the
first derivative to zero and solve with respect to β:

XT (y −Xβ) = 0

XTy −XTXβ = 0

XTXβ = XTy

β̂ = (XTX)−1XTy.

Results

In order to evaluate the prediction capacity of the multiple linear regression model, there are
two main metrics:

1. absolute error;
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2. percentage error.

The absolute error is measured in dollar ($) and so it has an easy interpretation, but it’s not
scale free. This means that it quantifies just the error’s size, without any comparison with the
size of the ground truth’s value.

The percentage errormeasures the error’s size as a proportion of the ground truth’s value, so
it’s scale free. But it is not easy to gauge consciously: an error of few cents (e.g. 0.05$) can lead
to a high percentage error if the real value is low (e.g. 0.2$).
From the business perspective, the absolute error is the preferred choice since what matters

is the gap in $ between the prediction and the true value. This is true for two reasons:

1. a smaller gap can be corrected in a relative short amount of time;

2. the losses (or missing profits) associated with a small gap are lower given the same traffic
volume.

So, reconsidering the previous example, if the correct bid is 0.20$ and the predicted bid is
0.15$, the error is 5 cents. The corresponding percentage error is 25%. Assume now that exists
another keyword for which the correct bid is 4$ and the predicted bid is 3$. The absolute error
is1$, so the timeneeded to adjust the bidwill be longer and the losses (ormissing profits)will be
greater. But the percentage error is still 25%. In the first case the percentage error is acceptable,
in the second case it is not. For this reason, in the remaining part of the chapter only theabsolute
error is considered to evaluate results.

Firstly, the capacity of the multiple linear regression output to “follow” the true output is
graphically inspected in Figure 3.1. This allows to verify that the regression is not just returning
a dummy value, like the average, for all the observations.

The average absolute error in test set is equal to 0.26$ with the average current bid equal
to 0.63$. To get a better feeling for the errors’ behavior, the distribution of absolute errors and
the corresponding box-plot are depicted in Figure 3.2.
The box-plot shows that 25% of errors are lower than 10 cents and 50% of errors are lower

than 21 cents. The average absolute error is also shown as a red diamond. 75% of errors are
below 36 cents. There is another approximately 14% of cases where the error is between 36

and 50 cents. Very large errors are limited to the last 10% of data.
Considering the simplicity of the model, results are acceptable.
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Figure 3.1: Ground truth VS Output Regression.

(a) Regression’s Absolute Errors distribution.

(b) Regression’s Absolute Errors box‐plot.

Figure 3.2: Regression’s Absolute Error quantile distribution.
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3.1.2 Ridge Regression

Themodel is the same introduced in Subsection 3.1.1. What changes is the objective function:

β̂ridge = argmin
β

{ N∑
i=1

(yi − ŷi)
2 + λ

p∑
j=1

β2
j

}

= argmin
β

{ N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2
j

}
.

Thechange consists in the introductionof apenaltyhyperparameterλ that controls the amount
of shrinkage: higher values of λ lead to greater shrinkage. In fact, λ can be interpreted as the
weight, or the importance, of the penalty.

Denoting byX theN × (p+ 1)matrix with each row an input vector (with a 1 in the first
position) and each column a regressor, and denoting by y the vector of outputs, the objective
function can be expressed in matrix form:

RSS(β,λ) = (y −Xβ)T (y −Xβ) + λβTβ

Differentiating with respect to β:

∂RSS

∂β
= −2XT (y −Xβ) + 2λβ

∂2RSS

∂β∂βT
= 2XTX+ 2λI

where I is a (p+ 1)× (p+ 1) identity matrix. IfX has full rank columns, as in this case, then
XTX is positive definite and 2λI is also positive definite. Their sum is still positive definite.
This means that the RSS is a convex function and the critical point is a minimum. Hence, it’s
sufficient to set the first derivative to zero and solve with respect to β:

−2XTy + 2XTXβ + 2λβ = 0

XTXβ + λβ = XTy

(XTX+ Iλ)β = XTy

β̂ridge = (XTX+ λI)−1XTy.
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Figure 3.3: Ground truth VS Output Ridge regression

Results

The Ridge Regression model requires the value of the hyperparameter λ. The term hyperpa-
rameter means that it is not determined by the model itself through the training, but it has to
be specified externally. Different values of λ allow to reach different minima for the objective
function. The optimal lambda (λ∗) is the one which leads to the smallest possible value of the
objective function.

In order to find λ∗, a grid search procedure together with a cross validation (CV) is applied.
First, a list of λ values is identified; then, for each of them, the training set is split in five folds
and, in turn, one is used as validation set and the remaining ones as training set. For each λ,
the average value of the objective function through the five splits is computed and used as the
metric to determine λ∗.

The whole procedure is repeated a second time selecting a finer grid of λ values around the
best value found before. The λ∗ is equal to 1750.
The capacity of the ridge regression’s output to “follow” the true output is graphically in-

spected in Figure 3.3. This allows to verify that the regression is not just returning a dummy
value, like the average, for all the observations.

The average absolute error in test set is equal to 0.19$ with the average current bid equal
to 0.63$. This is a significant drop with respect to the 0.26$ achieved using multiple linear
regression.

To get a better feeling for the errors’ behavior, the distribution of absolute errors and the
corresponding box-plot are depicted in Figure 3.4.

The box-plot shows that 25% of errors are lower than 7 cents and 50% of errors are lower
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(a) Ridge’s Absolute Errors distribution.

(b) Ridge’s Absolute Errors box‐plot.

Figure 3.4: Ridge’s Absolute Error quantile distribution.

44



than 15 cents. The average absolute error is also shown as a red diamond. 75% of errors are
below 27 cents. There is another approximately 15% of caseswhere the error is between 27 and
50 cents. Errors above 50 cents are limited to the last 10% of data. Considering the simplicity
of the model, results are already good.

3.1.3 Lasso Regression

The model is the same introduced in Subsection 3.1.1. What changes is again the objective
function:

β̂lasso = argmin
β

{ N∑
i=1

(yi − ŷi)
2 + λ

p∑
j=1

|βj|
}

= argmin
β

{ N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj|
}
.

The change, with respect to the ridge regression, consists in the substitution of the L2 penalty
(
∑p

j=1 β
2
j ) with the L1 penalty (

∑p
j=1 |βj|). Using this constraint there is no closed form ex-

pression for β. Anyway exist algorithms able to compute efficiently β.

Results

The Lasso Regression model requires the value of the hyperparameter λ. In order to find λ∗,
the same grid searchprocedure togetherwith the cross validation (CV) used for ridge regression,
is applied here. First, a list of λ values is identified; then, for each of them, the training set is
split in five folds and, in turn, one is used as validation set and the remaining ones as training
set. For each λ, the average value of the objective function through the five splits is computed
and used as the metric to determine λ∗.
The whole procedure is repeated a second time selecting a finer grid of λ values around the

best value found before. The λ∗ is equal to 0.0019.
The capacity of the lasso regression’s output to “follow” the true output is graphically in-

spected in Figure 3.5. This allows to verify that the regression is not just returning a dummy
value, like the average, for all the observations.

The average absolute error in test set is equal to 0.19$ with the average current bid equal
to 0.63$. This is a significant drop with respect to the 0.26$ achieved using multiple linear
regression and equal to the ridge result.
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Figure 3.5: Ground truth VS Output Lasso regression.

To get a better feeling for the errors’ behavior, the distribution of absolute errors and the
corresponding box-plot are depicted in Figure 3.6.

The box-plot shows that 25% of errors are lower than 7 cents and 50% of errors are lower
than 15 cents. The average absolute error is also shown as a red diamond. 75% of errors are
below 26 cents. There is another approximately 20% of cases where the error is between 26

and 50 cents. Errors above 50 cents are limited to the last 5% of data. The major difference
with respect to the ridge regression’s result is in the right tail: now only 5% of error is above 50
cents. Considering the simplicity of the model, results are already good.

3.2 Neural NetworkModel

The goal is to train a neural network to approximate the unknown function:

f : Rp → R

x→ f(x)

network(x) ≈ y

producing the output f(x) given the input vector x as close as possible to the ground truth y.
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(a) Lasso’s Absolute Errors distribution.

(b) Lasso’s Absolute Errors box‐plot.

Figure 3.6: Lasso’s Absolute Error quantile distribution.
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3.2.1 Training Procedure

Strategy

The training of a neural network requires to fine tune several hyperparameters. The goal is to
find the combination of them which allows to minimize the prediction error.

First, the main dataset is split in:

• full training set;

• test set.

Then, the full training set is further split in:

• training set;

• validation set.

The size of the main dataset is big enough to expect similar results from different splits
in training and validation sets. Hence, in first place, no cross-validation (CV) is used. The
best hyperparameters are found basing on a unique validation set and their goodness checked
against the test set. Finally, in order to be sure that the model selected is robust to different
splits, CV is applied to the full training set. It is split in five folds and, in turn, one is selected
as validation set while the remaining ones are used as training set. The validation error in each
split is computed.

Two cases are possible:

1. validation errors in various splits are very similar. This means that the splits are very
similar (due to the dataset size) and so there is no added value in using CV. So results of
the training without CV are confirmed.

2. Validation errors in various splits are different. This means that the splits are different
and so the results of the training without CV are only valid for a specific split. The
procedure to find the best hyperparameters has to be repeated using CV.

Exist various techniques, usable with or without CV, in order to find the best hyperparam-
eters. The most known are grid search and random search. Such techniques are simple to ap-
ply but computationally very expensive. In fact, for each combination of hyperparameters a
newmodel is trained. Considering the high number of hyperparameters, a blind grid/random
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search is not an efficient strategy to select the best model and it can become rapidly computa-
tionally unfeasible.
A different approach is used here. The best value for each hyperparameter is set sequentially:

first, the optimal values for the most important hyperparameters are found; then, keeping the
latter fixed, the optimal values for the hyperparameters of secondary importance are selected.

Does not exist a rank of importance for every hyperparameter, but it’s possible to identify
a macro-order. First comes the network’s architecture: number of layers and number of units.
If the network’s size is too small, any other hyperparameters can only provide little help in
reducing the error. Then the activation function has to be properly chosen basing on the task
at hand and to avoid issue like gradient saturation. Once the network is able to learn through
epochs, the learning rate can be fine-tuned, or even better, dynamically adjusted to allow a finer
grain learning. If the learning curves showpresence of overfitting, the network’s complexity has
to be shrunk using regularization techniques, like dropout and weight decay.

The sequential procedure allows to explore the space of the possible hyperparameters’ combi-
nation in an efficient way. Trying all of them, like in grid search, is computationally unfeasible;
trying randomly some combinations, like in random search, could result in a model too far
from the best achievable one.

Then, this training strategy is repeated for different loss functions:

• Mean Squared Error (MSE). Errors are squared, which implies that larger mistakes are
penalized more than linearly as error increases. This pushes the network to avoid large
mistakes even at the cost of more frequent small/mediummistakes.

• Mean Absolute Error (MAE). Errors are taken in absolute value, which implies that
larger mistakes are penalized linearly as error increases. This pushes the network to be
more tolerant toward largemistakes thanusingMSE. Since the ground truth ismeasured
in dollars, theMAE has also an intuitive interpretation: it is the average prediction error
measured in dollar.

• Mean Logarithmic Error (MLE). It is computed as:

MLE =
1

N

N∑
y=1

log(|output− target|+ 1)

Errors are first taken in absolute value, to ensure that the logarithm is always defined,
and then 1 is added, to ensure that the minimium value of the argument is 1. In this
way, if the absolute loss is 0, also the logarithmic loss will be 0. If the absolute loss is> 0,
then also the MLE will be> 0, but the MLE will increase less than linearly as the error
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increases. Hence, larger mistakes are penalized less than linearly as error increases. This
pushes the network to be more tolerant toward large mistakes than using MAE and, of
course, MSE.

Finally, the robustness of the best model to different splits is checked. The full training set
is split in 5 folds and, for each of them, the validation loss is computed. If the validation losses
are similar, then the model is robust to different splits.

Training Error Lower Bound

The goal is to determine the minimum achievable training error through an empirical anal-
ysis of the training set. Having an idea, even approximate, about the order of magnitude of
the training error, is a counter check for the soundness of results obtained during the training
procedure. In particular, it ensures that the model found is actually enough complex to reach
the highest possible overfitting in the training set. This is the optimal starting point to apply
regularization techniques, in order to get the lowest validation loss.

The key idea, which leads the analysis, is the following: a neural network, no matter how
complex it is, cannot reduce the training error below a certain threshold if identical inputs
(the terms set of features and observations are also used) are associated to different outputs
(current bid).

In order to check this, the training set is scanned and identical observations are grouped
together. Take one of such groups as an example. If it contains all observations with the same
output, then the proportion of identical outputs is 100% for this group.

If it contains two different outputs, then there is a certain proportion, e.g. 0.9, of observa-
tions associated to an output and another 0.1 of observations associated to a different output.
In this case the highest proportion is considered, and so it’s possible to say that 0.9 of observa-
tions are associated with the same output.

If it contains10different outputs, then there is a certain proportion, e.g. 0.1, of observations
associated to each of the 10 different outputs. In this case, as always, the highest proportion
is considered, and so it’s possible to say that 0.1 of observations are associated with the same
output.

This allows to verify not only the presence of different outputs associated to the same input,
but also to quantify the uncertainty. In fact, having the highest proportion of identical outputs
equal to 0.9, means that the neural network can learn a strong relationship. Having the highest
proportion of identical outputs equal to 0.1, means that the neural network cannot learn any
relationship.
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Figure 3.7: Distribution of proportion of the same observations in the training set.

Repeating this analysis for every group and storing the corresponding proportions in a list,
it’s possible to draw a histogram in order to have an idea of the proportions’ distribution in the
entire training set. For example, in Figure 3.7, approximately 60% of groups have a unique (or
more that 95% of times) output. As another example, 9% of groups have half of observations
associated to the same output while the other half is associated to different output/s.

Moreover, for each group j, the weighted average of outputs (outputj) is computed and its
distance from the output of each observation i in the same group is calculated:

errori = |outputj − outputi|

Storing these values for each observation and for each group, allows to compute the average
error (error) in the training set, which is a reasonable approximation of theminimum achiev-
able training error. It is shown as a red dotted line at 0.068$, together with the entire error
distribution in Figure 3.8.

In fact, if, by assumption, all groups contains a unique output, the error in each group is 0
and so also the average training error is 0. This is the case of a network which is perfectly fitting
the training set just learning it by heart.

If, more realistically, different groups contain different proportions of identical outputs, the
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Figure 3.8: Distribution of bids’ errors in the training set.

error is greater than 0, but anyway it’s not possible to do better. In all the groups where are
present different outputs, the network is forced to learn a unique output to provide as estimate.
In order to do so, the network learns a sort of weighted average of outputs.

BestModel Selection

The training strategy presented before is enriched by a series of “experiments” on the features.
The first part of the strategy is the same: the optimal number of layers and number of units is
found and the most suited activation function is selected. In this case, it is the Rectified Lin-
ear Units (ReLU). The network’s architecture is depicted in Figure 3.9. In order to increase
readability, the various hidden layers are represented with same length, but the actual size is
reported for each layer in the pedix of the last hidden unit (e.g. H4096 is the last unit in the 1°
hidden layer). The activation function is also depicted, inside each hidden unit, using a stan-
dard symbol forReLU.The training andvalidation losses reach aplateau around0.16 and0.20,
respectively, as shown in Figure 3.10. Note that to allow a better representation, the vertical
axis is in logarithmic scale.
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Figure 3.10: Training Loss VS Validation Loss.

Before completing the fine-tuning, some experiments are carried out in order to assess the
soundness of the model. In each of them, the same split in training set and validation set is
used, to allow full comparability.
First, the contribution of the keywords encoding (f1, . . . , f1024) in the prediction of ground

truth (current bid), is checked. In order to do so, the encoding features are removed from
the training and validation set. The training and validation losses increases to 0.24 and 0.28,
respectively. This proves, as expected, that the encoding plays a role in prediction.

A specular experiment consists in dropping all the features but the encoding ones. Now the
goal is to verify if the non-encoding features provide a positive contribution in the prediction
accuracy. This check is motivated by the high asymmetry in the cardinality of encoding and
non-encoding features. The former are 1024, while the latter are just 6 (match type broad,
match type exact,match type phrase,suggested bid,competition andsearch volume).
So it’s needed to verify that the neural network is not just learning a relationship between the
encoding features and the output. Results show a reduction of the validation loss to 0.19: the
network reduces the prediction error using only the encoding features. This behavior is unex-
pected, since at least some features, like suggested bid, should have a strong relationwith the
output. The key point is that this result does not mean that all the non-encoding features are
useless: some of them could be helpful. In fact, dropping all the non-encoding features, only
their aggregate impact on the learning capacity of network has been assessed, and it is negative.
The next experiments will drop in turn different non-encoding features to check if they are all
really useless or not.

The feature search volume is removed: the training error halves to 0.08 (very close to the
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training error lower bound of Subsection 3.2.1) and the validation error reduces to 0.185. This
means that this feature is not helpful for the prediction of the dependent variable and it’s a
source of noise. The strong reduction in the training loss and the wider gapwith the validation
loss, suggests using some regularization technique to improve the generalization power of the
model. The hope is to find a compromise such that the validation loss decreases at the cost
of a higher training loss. Simultaneously also the learning rate is dynamically adjusted: the
validation loss of each epoch is recorded and, if it is not lower than the previous five validation
losses, the learning rate is reduced by 10 times. This ensures a finer grain learning as training
proceeds and reduces oscillations in learning curves. The dynamically adjusted learning rate,
together with dropout equal to 0.3, gets the best results: training error increases to 0.10, but
validation error decreases to 0.169.

In the next experiment, the same procedure is followed, but dropping, together with
search volume, the featuresmatch type broad,match type exact andmatch type phrase.
Different dropouts and weight decays are tried, but the validation loss increases in every trial.
This means that the features representing the match types are useful in the learning task.

Finally, in turn are dropped only the features competition and suggested bid. Both
turns out to be useful since the validation loss increases in every trial.

The full procedure is repeated for the loss functionsMSE, MAE and MLE. In the available
data, the most suited one is the MAE. The others lead to a higher validation loss.

To recap, the best model found has:

• features f1, . . . , f1024, match type broad, match type exact, match type phrase,
suggested bid, competition;

• adjusting learning rate;

• dropout probability equal to 0.3 and no weight decay;

• loss functionMAE.

Results on Full Training Set

The best model is trained over the full training set and tested on test set. Results are shown in
Figure 3.11. The test loss reaches a minimum value around 0.15, then starts some overfitting.
This means that the model predicts a ̂current bid which is, on average, 15 cents of dollar far
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Figure 3.11: Training Loss VS Validation Loss in the full training set.

Figure 3.12: Ground truth VS Output Neural Network in test set

away from the true one. The average current bid in test set is equal to 0.63$. The capacity of
the neural network’s output to “follow” the true output is graphically inspected in Figure 3.12.
The graph gives a raw idea of the fitting, but a quantitative assessment is needed. It is performed
in the next subsection.
The CV confirms the robustness of the model (Figure 3.13). Different splits show similar

behavior in train and validation loss. For example:

• split 1, the validation loss starts around≈ 0.177 and drops to 0.172;

• split 2, the validation loss starts≈ 0.18 and drops to≈ 0.177;

• split 3, the validation loss starts≈ 0.177 and drops to≈ 0.16;
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Figure 3.13: CV Neural Network

• split 4, the validation loss starts≈ 0.185 and drops to≈ 0.167;

• split 5 has an easier validation set. The validation loss starts at≈ 0.21, then drop around
0.151.

Moreover, all splits show some overfitting, with the smallest validation loss reached within the
first 20 epochs and in the range [0.152, 0.172]. The exception is split 5 which has an easier
validation set and so its smallest value is around 0.147. Hence, in all splits the best validation
loss is pretty the same. As expected, given the size of the dataset, different splits are similar.

3.2.2 Prediction Errors Analysis

The average absolute error is equal to 0.15$. This is a significant dropwith respect to the 0.19$
achieved using Ridge and Lasso regression.

To get a better feeling for the errors’ behavior, the distribution of absolute errors and the
corresponding box-plot are depicted in Figure 3.14.

The box-plot shows that 25% of errors are lower than 5 cents and 50% of errors are lower
than 11 cents. The average absolute error is also shown as a red diamond. 75% of errors are
below 20 cents. There is another approximately 18% of cases where the error is between 20

and 45 cents. Errors above 45 cents are limited to the last 7% of data.

3.3 Negative Test Set

The reliability of results is counter checked picking observations:

• belonging to the same keywords used in test set;
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(a) Neural Network’s Absolute Errors distribution.

(b) Neural Network’s Absolute Errors box‐plot.

Figure 3.14: Neural Network’s Absolute Error quantile distribution.
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Figure 3.15: Ground truth VS Output Neural Network in negative test set

• with negative profitability (profit-cost ratio< −0.2).

Such observations constitute the negative test set. It allows a ceteris paribus comparison with
the test set. In fact the only difference lies on the profit-cost ratio’s values.

The idea is that, since the network has learned the relationship between the set of features
and the output for observations with positive profitability, the average error in the negative test
set should be much higher than the one observed in the test set.

3.3.1 Results

The capacity of the neural network’s output to “follow” the true output of negative test set is
graphically inspected in Figure 3.15.
Theaverage absolute error in thenegative test set is equal to0.17$with theaveragecurrent bid

equal to 0.62$. This is a small increase with respect to the 0.15$ achieved in the test set. The
result is unexpected and needs further analysis in order to be explained. This is going to be
done in a while.

In the meantime, to get a better feeling for the errors’ behavior, the distribution of absolute
errors and the corresponding box-plot are depicted in Figure 3.16.

The error distribution and boxplot show similar results to the ones obtained in the test set.
25% of errors are lower than 5 cents and 50% of errors are lower than 12 cents. The average
absolute error is also shownas a reddiamond. 75%of errors are below27 cents. There is another
approximately 15% of cases where the error is between 24 and 45 cents. Errors above 45 cents
are limited to the last 10% of data.
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(a) Neural Network’s Absolute Errors distribution in negative test set.

(b) Neural Network’s Absolute Errors box‐plot.

Figure 3.16: Neural Network’s Absolute Error quantile distribution.
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3.3.2 Error Explanation

The goal of this subsection is to explain why the average prediction error of the neural network
(the same it’s true for any other model) in the negative test set is only slightly greater than the
error in the test set.
In order to do so, it’s necessary to go back to the original data and build a new dataset orga-

nized as follows:

1. both positive observations (clicks in> 0 and profit-cost ratio≥ −0.2) and
negative observations (clicks in> 0 and profit-cost ratio< −0.2) are taken;

2. observations are grouped at the keyword level.

This allows to get, for each keyword, all the observations “judgeable” (as positive or negative).
An example is reported in Table 3.1. The column profit-cost ratio contains positive ob-
servations, highlighted in green, and negative observations, highlighted in red. The column
current bid contains the actual bid submitted by the advertiser. In this case it is always equal
to 1.0$.
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The interesting aspect is that the same current bid can generate positive profit in one day
and negative profit in another one. This behavior is in line with the analysis carried out in
Subsection 2.2.3. In fact, for a given keyword, the effectiveness of a current bid’s value to
generate positive profit depends not just on the bid itself, but also on the market conditions.
Different market conditions can turn a profitable bid in an unprofitable one (or viceversa).

It’s important to notice that this behavior it’s independent by the use of theCPC-Optimizer.
It can increase the frequency with which the bids are updated and reduce the proportion of
negative observations, but anyway the presence of positive and negative profits associated to
the same (or similar) bid’s value, will remain. This is because the current bid is adjusted
mainly as reaction to a negative profit: first the bid is profitable and so not (or a little) adjusted,
then it becomes non-profitable and so a significant adjustment is needed. This process implies
that a similar bid’s value is associated with positive and negative profits.

When the trained network (on main dataset, hence with positive observations) receives
as input the features from the negative test set, it will produce an estimated ̂current bid based
on what learned on positive observations. The point is that this ̂current bid is also the true
current bid for many observations in the negative test set. Hence, the average error in the
negative test set will be just a little higher.

In order to quantify the level at which the above behavior affect the test set, for each pair
{keyword name, current bid} contained in the test set, the “proportion of positive observa-
tions” is computed and the corresponding distribution plotted (Figure 3.17).

For example, in Table 3.1 the pair {0 purchase credit cards, 1.0} counts 10 observations, of
which 4 are positive. Hence, the “proportion of positive observations” for this pair is equal to
0.4.

The distribution of the “proportion of positive observations” conveys the following mes-
sage:

• ≈ 30% of {keyword name, current bid} contain 0% of positive observations. In
other words, contains only negative observations.

• ≈ 8% of {keyword name, current bid} contain 100% of positive observations. In
other words, contains only positive observations.

• The remaining 62% of {keyword name, current bid} contain positive and negative
observations. This implies that the same bid is associated to both positive and negative
profit.
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Figure 3.17: Proportion of positive observations in test set

This evidence makes not reliable to judge the profitability at the observation level. It appears
more sound to assess the profitability at the keyword level. This means to gauge as positive or
negative, not the single observation, but the whole set of observations belonging to the same
keyword. For example, in Table 3.1, the keyword “0 purchase credit cards” is positive, since it’s
average profit-cost ratio is positive.
Changing the granularity level at which profitability is judged, implies to change the way in

which the positive observations are selected. Hence, the training set has to be rebuilt and the
training procedure redone. This is the task of the next chapter.
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4
Alternative Datasets Design

The chapter tackles the problem emerged in Subsection 3.3.2: assessing the profitability at the
observation level is notmeaningful, hence the assessment is shifted at the keyword level. In order
to do so, a new dataset is built selecting positive keywords instead of positive observations. This
dataset is referred as main dataset keyword level.

In detail, the chapter is composed by four sections:

• Datasets Construction: the new datasets are built.

• Training ErrorLowerBound: an estimation of theminimum achievable training
error for the new datasets is provided.

• Neural NetworkModel with BERT Encoding: keywords’ names are encoded
as done until now, using BERT. The same training procedure described in Section 3.2.1
is followed and the network’s outcome is checked against test set and negative test set.

• NeuralNetworkModelwithGloVeEncoding: keywords’ names are encoded
using GloVe (Global Vectors). The basic idea behind this new encoding technique is
presented. The same training procedure described in Section 3.2.1 is followed and the
network’s outcome is checked against test set and negative test set.
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4.1 Datasets Construction

An intermediate dataset is built from the original data as follows:

1. positive observations (clicks in> 0 and profit-cost ratio≥ −0.2) and
negative observations (clicks in> 0 and profit-cost ratio< −0.2) are taken;

2. observations are grouped at the keyword level.

This allows to get, for each keyword, all the observations “judgeable” (as positive or negative).
All observations not “judgeable” are removed from the intermediate dataset.

The next step is to define when a keyword is positive and when it isn’t. All keywords with av-
erage profit-cost ratio≥ −0.2 are classified as positive, otherwise as negative. All negative
keywords are removed from the intermediate dataset.

Then, for each encoding technique (BERT and GloVe), a new dataset is built starting from
the intermediate one:

1. each keyword name is converted in a vector;

2. the encoding is added to the set of features of the intermediate dataset;

3. theMIMIRdataset is joined according to the value of columnsdate andkeyword name;

4. all the columns unknown ex ante are removed, except for current bid, which plays the
role of dependent variable. Also the columnkeyword ID is removed, since each keyword
is now identifiedby its encoding. In thisway, the dataset contains only features known ex
ante and observations belonging to positive keywords. An overview of the set of features
whenBERTencoding is used is shown inTable 2.6. The only difference in case ofGloVe
is that the encoding features are f1, . . . , f50.

5. match type is One-Hot-Encoded.

These are exactly the same steps applied for the main dataset in previous chapters.
The resulting dataset is called:

• main dataset keyword level (BERT Encoding), in case of BERT encoding;

• main dataset keyword level (GloVe Encoding), in case of GloVe encoding.

The term keyword level indicates that the profitability is assessed looking at all judgeable
observations belonging to a keyword; the term (BERT Encoding) or (GloVe Encoding), is
necessary to avoid confusion about the encoding used.
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4.2 Training Error Lower Bound

The training set is scanned and identical observations are grouped together. Take one of such
groups as an example. If it contains all observations with the same output, then the proportion
of identical outputs is 100% for this group.

If it contains two different outputs, then there is a certain proportion, e.g. 0.9, of observa-
tions associated to an output and another 0.1 of observations associated to a different output.
In this case the highest proportion is considered, and so it’s possible to say that 0.9 of observa-
tions are associated with the same output.

If it contains10different outputs, then there is a certain proportion, e.g. 0.1, of observations
associated to each of the 10 different outputs. In this case, as always, the highest proportion
is considered, and so it’s possible to say that 0.1 of observations are associated with the same
output.

This allows to verify not only the presence of different outputs associated to the same input,
but also to quantify the uncertainty. In fact, having the highest proportion of identical outputs
equal to 0.9, means that the neural network can learn a strong relationship. Having the highest
proportion of identical outputs equal to 0.1means that the neural network cannot learn any
relationship.

Repeating this analysis for every group and storing the corresponding proportions in a list,
it’s possible to draw a histogram in order to have an idea of the proportions’ distribution in
the entire training set. For example, in Figure 4.1, approximately 48% of groups have a unique
(or more that 95% of times) output. As another example, almost 10% of groups have half
of observations associated to the same output while the other half is associated to different
output/s.

Moreover, for each group j, the weighted average of outputs (outputj) is computed and its
distance from the output of each observation i in the same group is calculated:

errori = |outputj − outputi|

Storing these values for each observation and for each group, allows to compute the average
error (error) in the training set, which is a reasonable approximation of theminimum achiev-
able training error. It is shown as a red dotted line at 0.064$, together with the entire error
distribution in Figure 4.2.

In fact, if, by assumption, all groups contains a unique output, the error in each group is 0
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Figure 4.1: Distribution of proportion of the same observations in the training set.

Figure 4.2: Distribution of bids’ errors in the training set.
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and so also the average training error is 0. This is the case of a network which is perfectly fitting
the training set just learning it by heart.

If, more realistically, different groups contain different proportions of identical outputs, the
error is greater than 0, but anyway it’s not possible to do better. In all the groups where are
present different outputs, the network is forced to learn a unique output to provide as estimate.
In order to do so, the network learns a sort of weighted average of outputs.

Note that the above results are independent by the encoding technique used, so are valid for
BERT and GloVe.

4.3 Neural NetworkModel with BERT Encoding

Similarly to what done with the main dataset, the feature keyword name is used to group
main dataset keyword level (BERT Encoding) by keyword and split it at the keyword level
(instead of the observation level). This ensures that all observations belonging to a keyword
appear in just one of the training, validation and test sets.

The same training procedure described in Section 3.2.1 is used. It is not repeated here for
brevity and to avoid redundancy. What is reported here is:

• the best model selected;

• the results on full training set.

4.3.1 BestModel Selection

The best model found has:

• same architecture depicted in Figure 3.9;

• features f1, . . . , f1024, match type broad, match type exact, match type phrase,
suggested bid, competition;

• adjusting learning rate;

• dropout probability equal to 0.2 and no weight decay;

• loss functionMAE.
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Figure 4.3: Training Loss VS Validation Loss in the full training set.

Figure 4.4: Ground truth VS Output Neural Network in test set

4.3.2 Results on Full Training Set

The average absolute error achieved by the baseline models (multiple linear regression, Ridge
and Lasso) are 0.46$, 0.20$ and 0.20$, respectively. They can be found in Appendix C.

The best model is trained over the full training set and tested on the test set. Results are
shown in Figure 4.3. The test loss reaches a minimum value around 0.16, then starts some
overfitting. This means that the model predicts a ̂current bid which is, on average, 16 cents
of dollar far away from the true one. The average current bid in the test set is equal to 0.66$.
The capacity of theneural network’s output to “follow” the true output is graphically inspected
in Figure 4.4. The graph gives a raw idea of the fitting, but a quantitative assessment is needed.
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Figure 4.5: CV Neural Network

It is performed in the next subsection.
The CV confirms the robustness of the model (Figure 4.5). Different splits show similar

behavior in train and validation loss. For example:

• split 1, the validation loss starts around≈ 0.203 and drops to 0.157;

• split 2, the validation loss starts≈ 0.18 and drops to≈ 0.163;

• split 3, the validation loss starts≈ 0.184 and drops to≈ 0.177;

• split 4, the validation loss starts≈ 0.194 and drops to≈ 0.175;

• split 5, the validation loss starts≈ 0.172 and drops to≈ 0.154.

Moreover, all splits show some overfitting, with the smallest validation loss reached within the
first 20 epochs and in the range [0.150, 0.172]. Hence, in all splits the best validation loss is
pretty the same. As expected, given the size of the dataset, different splits are similar.

4.3.3 Prediction Errors Analysis

The average absolute error is equal to 0.16$. This is a significant dropwith respect to the 0.20$
achieved using Ridge and Lasso regression.

To get a better feeling for the errors’ behavior, the distribution of absolute errors and the
corresponding box-plot are depicted in Figure 4.6.

The box-plot shows that 25% of errors are lower than 5 cents and 50% of errors are lower
than 11 cents. The average absolute error is also shown as a red diamond. 75% of errors are
below 24 cents. There is another approximately 15% of cases where the error is between 25

and 45 cents. Errors above 45 cents are limited to the last 10% of data.
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(a) Neural Network’s Absolute Errors distribution.

(b) Neural Network’s Absolute Errors box‐plot.

Figure 4.6: Neural Network’s Absolute Error quantile distribution.
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Figure 4.7: Ground truth VS Output Neural Network in negative test set

4.3.4 Negative Test Set

The reliability of results is counter checked picking observations belonging to the negative key-
words. They have not been used in the training procedure, so are unknown observations for
the neural network. Such observations constitute the negative test set.

The idea is that, since the network has learnt the relationship between the set of features and
the output for observations belonging to positive keywords, the average error in negative test
set should be much higher than the one observed in the test set.

The capacity of the neural network’s output to “follow” the true output of the negative test
set is graphically inspected in Figure 4.7.

The average absolute error in the negative test set is equal to 0.30$, almost the double with
respect to the 0.16$ achieved in the test set. Negative keywords seem to be associated with
higher average bids: the average current bid is equal to 0.74$.

In order to check that the higher average absolute error is not just generated by some excep-
tionally high bids, it is recomputed using only negative keywords with current bid≤ 2.0$,
which is the maximum value of bids observed for the positive keywords.

The capacity of the neural network’s output to “follow” the true output of the negative test
set is graphically inspected in Figure 4.8.

The average absolute error is equal to 0.28$. This confirms that the neural network’s predic-
tions are, as expected, significantly different from the current bid observed in the negative
test set.
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Figure 4.8: Ground truth VS Output Neural Network in negative test set

4.4 Neural NetworkModel with GloVe Encoding

The training error lower bound has set a limit to the learning capacity of the neural network.
Hence, it’s not possible to improve the model reducing further the error. But it’s possible
to try to improve the model differently: reducing its complexity preserving (almost) the same
performances.

The wider margin of complexity reduction is on the encoding technique used. BERT is the
state of the art in Natural Language Processing, but even in its simpler version, it counts 128
encoding features in each of the two layers. Exists other encoding techniques requiring many
less features. Of course there is a trade-off between encoding complexity and quality of the
representation.

At first attempt, one of the encoding techniques which requires, in absolute, the least num-
ber of features is tried: GloVe with 50 dimensions.It is able to encode any token/word in a
vector with dimension equal to 50. This will reduce by almost 20 times the number of features,
hence a new suitable model architecture and hyperparameters are needed.

If the test error will be similar to the one achievedwith BERT encoding (0.16$), thenGloVe
will prove to be enough good to the data available. At the same time, the greater complexity
of BERT will be not justified by a significantly better performance. In this case, the preferred
model will be the neural network with GloVe encoding.

If the test error will be significantly greater than the one achievedwith BERT, than encoding
techniques more complex than GloVe will be tried.

Before going further, it’s necessary to introduce what GloVe model is and the main idea
behind it. The next subsection takes care of this.
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4.4.1 GloVe

Global Vectors (GloVe) is an unsupervised learning algorithm for obtaining vector represen-
tations for words [21]. Global refers to the fact that training is performed on word-word co-
occurrence statistics computed on the whole corpus.

Beside GloVe, exist two main model families for learning word vectors:

1. global matrix factorizationmethods, such as latent semantic analysis (LSA) (Deerwester
et al., 1990). In the latter, the matrix is of “term-document” type, i.e., the rows corre-
spond to words or terms, and the columns correspond to different documents in the
corpus;

2. local context windowmethods, such as the skip-grammodel of Mikolov et al. (2013c).

Both families suffer significant drawbacks. Methods like LSA efficiently leverage statistical
information, but they do relatively poorly on the word analogy task, indicating a sub-optimal
vector space structure. Methods like skip-gram may do better on the analogy task, but they
poorly utilize the statistics of the corpus since they train on separate local context windows
instead of on global co-occurrence counts.

GloVe overcomes both these issues.
For example,manmay be regarded as similar to woman in that both words describe human

beings; on the other hand, the two words are often considered opposite since they highlight a
primary axis along which humans differ from one another.

In order to capture in a quantitative way the nuance necessary to distinguish man from
woman, it is necessary for a model to associate more than a single number to the word pair.
A natural and simple candidate for an enlarged set of discriminative numbers is the vector dif-
ference between the two word vectors. GloVe is designed in order that such vector differences
capture as much as possible the meaning specified by the juxtaposition of two words.

The underlying concept that distinguishes man from woman, i.e. sex or gender, may be
equivalently specified by various other word pairs, such as king and queen or brother and sister.
To state this observation mathematically, we might expect that the vector differences:

• man− woman;

• king − queen;

• brother − sister
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Figure 4.9: Examples of linear structures discovered by GloVe.

might all be roughly equal. This property and other interesting patterns can be observed in
Figure 4.9.
TheGloVemodel is trainedonlyon thenon-zero entries of a globalword-word co-occurrence

matrix (rather than on the entire sparse matrix or on individual context windows in a large
corpus), which tabulates how frequently words co-occur with one another in a given corpus.
Populating this matrix requires a single pass through the entire corpus to collect the statistics.
Here the training set is the combination of Gigaword5+Wikipedia2014 for a total of 6 billion
tokens. Each term in the dataset is tokenized and lowercased; then a vocabulary of the 400,000
most frequent words is built.
These terms are used to compute the matrix of word-word co-occurrence counts, denoted

byX, whose entryXik tabulates the number of times word k occurs in the context of word i.
The number of words in the context of a word i,Xi, is determined by a decreasing weighting
function, so that any word k that are d words apart contribute 1/d to the total count ofXi.
This is one way to account for the fact that very distant word pairs are expected to contain less
relevant information about the words’ relationship to one another. LetXi =

∑
k Xik be the

number of times any word appears in the context of word i. Finally, let Pik = P (k|i) = Xik

Xi

be the probability that word k appears in the context of word i.
Themain intuition underlying themodel is the simple observation that ratios of word-word

co-occurrence probabilities have the potential for encoding some form of meaning. For exam-
ple, consider the co-occurrence probabilities for target words i = ice and j = steam with var-
ious probe words from the vocabulary. The relationship of these words can be examined by
studying the ratio of their co-occurrence probabilities with various probe words, k. For words
k related to ice but not steam, say k = solid, we expect the ratio Pik/Pjk will be large.
Some actual probabilities from a 6 billion word corpus are shown in Table 4.1:
As onemight expect, ice co-occurs more frequently with solid than it does with gas, whereas
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Probability and Ratio k = solid k = gas k = water k = fashion

P (k|ice) 1.9× 10−4 6.6× 10−5 3.0× 10−3 1.7× 10−5

P (k|steam) 2.2× 10−5 7.8× 10−4 2.2× 10−3 1.8× 10−5

P (k|ice)/P (k|steam) 8.9 8.5× 10−2 1.36 0.96

Table 4.1: Examples of co‐occurrence probabilities discovered by GloVe.

steam co-occurs more frequently with gas than it does with solid. Both words co-occur with
their shared property water frequently, and both co-occur with the unrelated word fashion
infrequently. Only in the ratio of probabilities does noise from non-discriminative words like
water and fashion cancel out, so that large values (much greater than 1) correlate well with
properties specific to ice, and small values (much less than 1) correlate well with properties
specific to steam. In this way, the ratio of probabilities encodes some crude form of meaning
associated with the abstract concept of thermodynamic phase.

The above argument suggests that the appropriate starting point for word vector learning
should be with ratios of co-occurrence probabilities rather than the probabilities themselves.
The most general model takes the form:

F (wi, wj, wk) =
Pik

Pjk

wherew ∈ Rd. The number of possibilities forF is vast, but by enforcing a few desiderata it’s
possible to get a unique choice. Wewould likeF to encode the information present in the ratio
Pik/Pjk in the word vector space. The most natural way to do this is with vector differences:

F (wi − wj, wk) =
Pik

Pjk

The final model takes the form of a weighted least squares regression:

J =
V∑

i,k=1

f
(
Xik

)(
wT

i wk + bi + bk − logXik

)2

where V is the vocabulary’s size, f(Xik) is the weighting function, bi and bk are bias terms for
words i and k.

The evaluation method is based on word analogies: it probes the finer structure of the word
vector space by examining not the scalar distance betweenword vectors, but rather their various
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dimensions of difference. For example, the analogy “king is to queen as man is to woman”
should be encoded in the vector space by the vector equation:

king − queen = man− woman.

The semantic statement is: “king is to queen as man is to _”. To correctly complete the state-
ment, the model should uniquely identify the missing term, with only an exact correspon-
dence counted as a correct match. The answer consists in the vectorwoman closest toman+

queen− king according to the cosine similarity.
Similarly to what done with the main dataset, the feature keyword name is used to group

main dataset keyword level (GloVe Encoding)bykeyword and split it at thekeyword level
(instead of the observation level). This ensures that all observations belonging to a keyword ap-
pear in just one of the training, validation and test sets.

The same training procedure described in Section 3.2.1 is used. It is not repeated here for
brevity and to avoid redundancy. What is reported here is:

• the best model selected;

• the results on full training set.

4.4.2 BestModel Selection

The best model found has:

• architecture depicted in Figure 4.10;

• features f1, . . . , f50, match type broad, match type exact, match type phrase,
suggested bid, competition;

• adjusting learning rate;

• dropout probability equal to 0.1 and weight decay equal to 1e− 4;

• loss functionMAE.
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Figure 4.11: Training Loss VS Validation Loss in the full training set.

4.4.3 Results on Full Training Set

The average absolute error achieved by the baseline models (multiple linear regression, Ridge
and Lasso) is 0.22$ for all models. They can be found in Appendix C.

Thebestmodel is trainedover the full training set and testedon the test set. Results are shown
in Figure 4.11. The test loss reaches aminimumvalue around 0.17. Thismeans that themodel
predicts a ̂current bidwhich is, on average, 17 cents of dollar far away from the true one. The
average current bid in test set is equal to 0.66$. The capacity of the neural network’s output
to “follow” the true output is graphically inspected in Figure 4.12. The graph gives a raw idea
of the fitting, but a quantitative assessment is needed. It is performed in the next subsection.

The CV confirms the robustness of the model (Figure 4.13). Different splits show similar
behavior in train and validation loss. For example:

• split 1, the validation loss starts around≈ 0.165 and drops to 0.16;

• split 2, the validation loss starts≈ 0.174 and drops to≈ 0.172;

• split 3, the validation loss starts≈ 0.181 and drops to≈ 0.169;

• split 4, the validation loss starts≈ 0.212 and drops to≈ 0.175;

• split 5, the validation loss starts≈ 0.181 and drops to≈ 0.159.

Moreover, all splits show some overfitting, with the smallest validation loss reached within the
first 20 epochs and in the range [0.154, 0.168]. Hence, in all splits the best validation loss is
pretty the same. As expected, given the size of the dataset, different splits are similar.
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Figure 4.12: Ground truth VS Output Neural Network in test set

Figure 4.13: CV Neural Network
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4.4.4 Prediction Errors Analysis

The average absolute error is equal to 0.17$. This is a significant dropwith respect to the 0.22$
achieved using multiple linear, Ridge and Lasso regression.

To get a better feeling for the errors’ behavior, the distribution of absolute errors and the
corresponding box-plot are depicted in Figure 4.14.

The box-plot shows that 25% of errors are lower than 5 cents and 50% of errors are lower
than 11 cents. The average absolute error is also shown as a red diamond. 75% of errors are
below 25 cents. There is another approximately 17% of cases where the error is between 25

and 45 cents. Errors above 45 cents are limited to the last 8% of data.

4.4.5 Negative Test Set

The reliability of results is counter checked picking observations belonging to the negative key-
words. They have not been used in the training procedure, so are unknown observations for
the neural network. Such observations constitute the negative test set.

The idea is that, since the network has learnt the relationship between the set of features and
the output for observations belonging to positive keywords, the average error in the negative
test set should be much higher than the one observed in the test set.
The capacity of the neural network’s output to “follow” the true output of the negative test

set is graphically inspected in Figure 4.15.
Theaverage absolute error innegative test set is equal to0.32$, almost the doublewith respect

to the 0.17$ achieved in test set. Negative keywords seem to be associated with higher average
bids: the average current bid is equal to 0.74$.

In order to check that the higher average absolute error is not just generated by some excep-
tionally high bids, it is recomputed using only negative keywords with current bid≤ 2.0$.
The capacity of the neural network’s output to “follow” the true output of the negative test

set is graphically inspected in Figure 4.16.
The average absolute error is equal to 0.30$. This confirms that the neural network’s predic-

tions are, as expected, significantly different from the current bid observed in the negative
test set.
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(a) Neural Network’s Absolute Errors distribution.

(b) Neural Network’s Absolute Errors box‐plot.

Figure 4.14: Neural Network’s Absolute Error quantile distribution.
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Figure 4.15: Ground truth VS Output Neural Network in negative test set

Figure 4.16: Ground truth VS Output Neural Network in negative test set
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5
Conclusion

The correct estimation of the optimal initial bid for a new keyword is crucial for the broker’s
profitability: if the bid is too low, the advertisement appears in a low rank position, with a low
probability to be clicked; if the bid is too high, the advertisement appears in a top position but
at a too high cost, generating a lower or even negative profit.

The problem has been tackled empirically, using the most recent data available at the time
of writing, covering 4 months (January-April 2021) of daily observations involving more than
10 thousands keywords.

The most important features have been presented and the actual behavior of the bids’ time-
series checked against the expected one. The analysis has been possible thanks to the use of
algorithms, like “Window-Sliding” and “Binary Segmentation”, able to detect change points
(CP) in a timeseries. It turned out to be meaningless the distinction of different phases, since
does not exist any long run bid. The primary driver of the bid’s changes is its profitability,
which can vary abruptly depending on market conditions.

Hence, the observations with a bid value able to generate traffic satisfying a minimum prof-
itability threshold have been selected, discarding the others.

Following the idea to make the keywords’ names an input of the model, each keyword has
been encoded in a numerical vector using the pre-trained BERT model. It comes in different
sizes and flavors; moreover, different layers and pooling strategy can be chosen for the encoding.
A series of empirical tests have been carried out to find the best encoding for the keywords’
names in the dataset.
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The dataset has been completed joining for each keyword a set of features known ex ante,
coming fromMIMIR.

In this framework, the estimation of the optimal initial bidhas been cast as a regression prob-
lem. It was first solved using simple models: multiple linear regression, Ridge regression and
Lasso regression. They are fast to train and have zero or one hyperparameter to fine tune. Their
performances have been used as a benchmark to evaluate the effectiveness of a more complex
model: Fully Connected Neural Network (FCNN).

The training procedure has been organized as follows. First, the dataset has been split in
training, validation and test set at the keyword level. In other words, the split has not involved
single observations, but single keywords. This was needed to avoid the spread of observations
belonging to the same keyword over the training, validation and test set, whichwould have arti-
ficially shrunk the validation and test error. As useful indication about the maximum learning
capacity achievable, an estimate of the training error lower bound has been computed. The best
value of each hyperparameter has been set sequentially: first the optimal values for themost im-
portant hyperparameters have been found; then, keeping the latter fixed, the optimal values for
the hyperparameters of secondary importance have been found. A series of “experiments” have
been applied on the set of features in order to understand their relative importance in the pre-
diction of the output. The entire procedure has been repeated using different loss functions
(MSE,MAE,MLE). TheMAE turned out to perform best. The robustness of the best model
to different splits has been checked using a 5 folds CV. Finally, it has been retrained over the
full training set and tested in the test set.

The MAE in the test set was equal to 0.15$. Results justify the use of a FCNN: the error
drops significantly: ≈ 40% lower thanmultiple linear regression and≈ 20% lower thanRidge
and Lasso regression.

Results have been counter checked against the negative test set: a dataset containing observa-
tions belonging to the same keywords used in the test set, but with negative profitability. The
idea is that the network should forecast a bid estimate learnt on the observations with positive
profitability, and so significantly different from the one observed in the negative test set, leading
to a higher average error. This counter check highlighted a problem: the average error was just
slightly higher (0.17$) in the negative test set. The explanation has been found noticing that
the same pair {keyword name; bid} is associated to positive and negative profit for the major-
ity of keywords. This is a structural characteristic of the dataset: the bid is adjusted mainly as
a reaction to a negative profit; first the bid is profitable and so not adjusted, then it becomes
non-profitable and so an adjustment is needed. The process implies that a similar bid’s value
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is associated with positive and negative profits. This aspect was noticed during the analysis of
the timeseries’ behavior, but its actual impact not.
This evidence made not reliable to judge the profitability at the observation level. So it has

been assessed at the keyword level: only the observations belonging to positive keywords have
been used. In this way, the observations selected have been changed, requiring to repeat the
entire training procedure.

The MAE in the test set was 0.16$. The negative test set has been used to counter check
results: its MAE was equal to 0.30$. This result confirmed the significant difference between
the bids’ estimates proposed by the model and the bids observed for negative keywords.

Finally, an alternative encoding technique has been tried: GloVe. The training error lower
bound proved the impossibility to reduce the error below a certain threshold. Anyway was pos-
sible to try preserving a similar error with a simpler model. In order to do so, GloVe with 50

dimensions was used. The number of features shrank by almost 20 times, but the test error in-
creased by just 1 cent to 0.17$. For this evidence, the bestmodel found, considering complexity
and performances, was the FCNNwith GloVe encoding.

Some important final remarks:

• for each keyword, the bid estimated by the model (ŷ) is an average of the various bids
observed given the same set of input features. This implies that the ŷ is optimal in the
sense that it’s a good starting value for that keyword, and not in the sense that it is for
sure able to generate a positive profit immediately. In fact, the market conditions can
require to increase or decrease such initial bid. But the key point is that such initial bid
will be enough close to a profitable one, allowing a quick adjustment that can take some
days rather than some weeks.

• The limited size of adjustments in the bids’ values foster the effectiveness of the CPC-
Optimizer. The synergy between the model’s capacity to estimate good initial bid and
theCPC-Optimizer to adjust it on the right direction and right amount, should increase
the overall average broker’s profits.

• The choice to select the model with the best trade-off between performance and com-
plexity it’s a matter of efficiency. In fact, the model, in the business context in which
is going to be applied, has to be updated at a regular frequency, to incorporate the last
available data of existing and new keywords.

• It’s reasonable to state that some keywords present a seasonality component (e.g. key-
wordChristmas gift, swimsuit, ski boots, etc.). It would have been interesting to identify
such keywords and then estimate their optimal initial bid taking into account the season.
But the data available does not allow to do it due to the limited time interval available.
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• The use of a Fully Connected Neural Network architecture is the most natural choice
given the dataset’s structure (each row is an observation, each column a feature) and the
type of problem (regression). Anyway a future development could consist in solving
the same problem with a Convolutional Neural Network (CNN). This architecture has
been used mainly in tasks such as image recognition, image classification and computer
vision [22, 23]. Considering that an image is represented as a matrix of data with each
numerical entry corresponding to the color’s intensity in a given pixel, almost any 2D
data structure is potentially suited to become an input of a CNN. This observation has
extended the use ofCNNtopanel data of almost any type, like data from inertialmotion
sensors, showing state-of-the-art performances in human activity recognition classifica-
tion tasks [24, 25, 26]. CNN has also been applied for regression problems [27]. In
this thesis, the dataset could be segmented in portion with a fixed number of rows, and
each portion could become a sample to feed the CNN. Anyway a criticity that hurdles
a direct application of this idea is that the dataset is actually not a panel data. In fact,
it is not a continuous set of features observed through time, but an aggregation of dis-
continuous timeseries (one for each keyword). From the way in which the dataset has
been assembled, all judgeable observations (Section 4.1) belonging to the same keywords
occupy contiguous rows. The point is that all judgeable observations are usually a small
subset of all available ones, creating temporal gaps between them. Hence, the idea to use
a CNN with a 2D kernel size in order to capture the correlations through time, is not
guaranteed to work at all. It could even be possible to use a 1D kernel size (to capture
correlation through features in a point in time) and apply a Recurrent Neural Network
(RNN) in next layers to capture correlation through time. The effectiveness of these ar-
chitectures should be empirically tested in order to claim something about their utility.
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Part II

Profitable New Keywords Suggestion
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6
Web Scraping and Keywords Extraction

The chapter addresses thenewkeywords’ suggestion problem in SSA, presenting a system formul-
tiword keyword recommendations. The problemhas been already tackled by theNewKeyword
Generation Module developed by ACTOR in the project perimeter. Here a complementary
procedure is used, designed to work in synergy with the existing module, improving the quan-
tity, quality and variety of proposed keywords. The chapter explains the process followed to
retrieve information from webpages, to clean it and to extract keywords with and without the
help of a BERT-filter.
In detail, it is composed by two sections:

• Web Scraping: for each keyword, raw text is retrieved from top URLs returned by a
Google query.

• Keywords Extraction: among the rich corpora of keywords’ extraction algorithms,
two of them (RAKE and YAKE!) are selected, according to their suitability to the task
and to the overall business framework. Both are presented and explained.

6.1 Web Scraping

At the time of writing, the suggestion of new keywords relies on the New Keyword Genera-
tionModule. It extracts keywords directly from the landing pages associated to each ad. From
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the pages, the most significant tokens are extracted and ranked on the basis of the occurrences
of each token in each type of HTML tag, which have different weights according to their im-
portance. Single tokens are combined to form couples and triples of words, whose weighted
co-occurrence score is greater than a fixed threshold.
The great advantage of this approach is that the generated keywords are tailored on the ad

landing page, ensuring the highest possible matching between the page’s contents and the key-
words. Moreover, if the page changes, new keywords can be extracted again in order to be in
line with the new page’s contents.
The potential drawback is that a low quality in page’s contents is directly reflected in a low

quality of the suggested keywords.
The motivations behind the development of a new tool for keywords’ suggestion are:

1. reduce the reliability on the ad landing page;

2. increase the quantity, quality and variety of proposed keywords.

Both points try to suggest non-obvious yet relevant keywords, which are economically more
viable. Bidding on many non-obvious low traffic keywords, the combined traffic from them
can add up to the level produced by a popular keyword, at a fraction of the cost. Moreover,
the traffic received is targeted better and will typically result in a better convertion rate. It is
important to find out new alternative keywords, relevant to the base query, but non-obvious
in nature, so that little competition is faced from other advertisers. The challenge lies in not
only finding relevant keywords, but also in finding many of them.

The tool is designed towork on top of theNewKeywordGenerationModule. The keywords
extracted by the latter on a given ad landing page (referred as query/seed keywords) become the
input to feed the former. Each given seed keyword is entered as a query into Google search
engine and the top nURLs (n_urls) are considered. Among them, could be, or could not be,
present the ad landing page’ URL.

In turn, all URLs retrieved for a query keyword are parsed. The corresponding web pages
are scraped using HTML tags. Here comes an important choice: which HTML tags to take
among all possible ones. A crucial observation is that the web scraping has to be effective on
an undefinetely large pletora of websites. This implies the impossibility to retrieve the exact
information of interest, since it would require to know a priori the website’s structure (HTML
tags and classes’ names) where the information is stored. For this reason, the web scraping can
be carried on only in general terms, just taking all text belonging to a selectedHTML tag. This
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Scrap level
Super-Light Light Full

H
T
M
L
ta
gs

<title> <title> <title>
<h1> <h1> <h1>

<h2> <h2>
<ul> <ul>
<ol> <ol>

<p>

Table 6.1: Web scraping’s depths.

could lead to retrieve information meaningful in the context of the webpage (and so present
on it), but not related semantically with the query keyword.
The obvious idea is to use the most common HTML tags. In particular, it’s of interest to

investigate the effect of different text richness on the suggested keywords. In fact, depending on
the HTML tags used, it’s possible to retrieve a tiner or broader amount of text. For example,
using <title> and <h1> tags, the text extracted tends to be short, general and close to the seed
keyword. Using <p>, <ul> and <ol> tags, the text tends to be long, specific and not always
related to the seed keyword. With these considerations in mind, three different depths of web
scraping are used: super-light, light and full. They are reported in Table 6.1.

An example of raw text retrieved with super-light web scraping with query keyword “houses
for saleMiami” is reported here:

Raw text retrived by super-light web scraping.
Pardon Our Interruption | Pardon Our Interruption... | Please contact Customer Service at (800)
878-4166\n\x03or unblockrequest@realtor.com with any issues. Please include the Reference ID
shown above. | | | Miami, FL Real Estate & Homes For Sale | Trulia | Miami, FL Homes For Sale
& Real Estate | Miami, FL Luxury Real Estate - Homes for Sale | 190 homes for sale in Miami |
| | Miami, FL Real Estate & Homes for Sale | RE/MAX | Miami, FL Real Estate and Homes for
Sale | Miami Real Estate | Find Houses & Homes for Sale in Miami, FL | Miami Homes for Sale |
Miami, FL Homes For Sale | Real Estate by Homes.com | 19,374 Homes For Sale in Miami, FL |
ERROR: The request could not be satisfied | 403 ERROR | Savills | Property for sale in Miami,
Florida, United States of America | 687 Properties for sale in Miami | Access to this page has
been denied. | Please verify you are a human

For each URL associated to a query keyword, the parts of text retrieved from different HTML
tags are joined by “|” symbol to form a unique new broader text. Then, the text extracted from
each URL is joined with the texts extracted from the other URLs of the same query keyword,
again by the “|” symbol. In this specific example, each part of text can be a <title> or a <h1>
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tag. Note that not all websites allow web scraping, hence the number of URLs returned for
each keyword has to be enough high. Here, and in all future results, it’s set n_urls= 10. This
value covers the standard number of results returned by Google in the first page. Considering
that users seldom go beyond the first four/five results and that it’s unprobable that all websites
do not allow web scraping, this choice seems reasonable.

The next step consists in cleaning the raw text. Whatever keyword extraction algorithm will
be used, the punctuation is crucial: it allows to split the text in sentences and sub-sentences
(chunks). The “|” delimits different content displayed on the website, which could terminate
with or without a punctuation mark. Moreover, other special characters could be present (\n,
\@, +, etc.). For these reasons:

• the “|” symbol is replaced by “.” symbol. In other words, each HTML tag content
becomes a sentence in the cleaned text;

• the \n is replaced by an empty space ' ';

• only alpha-numerical, punctuation and empty space characters (A-Za-z0-9,.!?:;' ')
are kept.

Continuing with the previous example, the cleaned text looks like:

Cleaned text.
Pardon Our Interruption. Pardon Our Interruption. Please contact Customer Service at 800
8784166 or unblockrequestrealtor.com with any issues. Please include the Reference ID shown
above.. Miami, FL Real Estate Homes For Sale. Trulia. Miami, FL Homes For Sale Real Estate.
Miami, FL Luxury Real Estate Homes for Sale. 190 homes for sale in Miami. Miami, FL Real Estate
Homes for Sale. REMAX. Miami, FL Real Estate and Homes for Sale. Miami Real Estate. Find
Houses Homes for Sale in Miami, FL. Miami Homes for Sale. Miami, FL Homes For Sale. Real Estate
by Homes.com. 19,374 Homes For Sale in Miami, FL. ERROR: The request could not be satisfied.
403 ERROR. Savills. Property for sale in Miami, Florida, United States of America. 687
Properties for sale in Miami. Access to this page has been denied. Please verify you are a
human

The first lines are garbage text, just the information that web scraping is not allowed. But from
the third line, some interesting alternative to the seed keyword can be seen at first glance (“FL
Luxury Real Estate Homes”, “Miami Real Estate”, “Property for sale in Miami”, etc.).
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6.2 Keywords Extraction

Once the clean text coming from the desired HTML tags is available, automatic keywords ex-
traction methods are needed. They are frequently used to capture the fundamental idea of a
document by a list of most relevant terms, able to provide the user with a kind of “summary”
of the document.

Keywords extraction are of interest to people who need to become acquainted with a given
topic. For instance, a journalist looking for informationon theU.S.A. president electionwould
find useful a summary consisting of keywords automatically created to explore existing infor-
mation. It would also be beneficial to researchers who wish to have a quick glimpse of a given
article or, as here, for advertisers looking for the most relevant keywords of a web page.

A broad set of keywords extraction algorithms have been developed by the research commu-
nity. An overview of the most important ones, classified by type, methodology and name is
presented in [28] and schematically depicted in Table 6.2.

Supervised models, like Keyphrase Extraction Algorithm (KEA), make use of discriminant
features and ofmachine learning algorithms to learn the distinction between relevant and non-
relevant keywords. The main hurdle to their concrete use is the need of a rather long training
process and the demand of large manually annotated collections of documents in order to cap-
ture the nature of a language. For example KEA requires, for each document in the training
corpus, the list of manually assigned keywords in order to learn which features’values allow to
minimize the training error [29]. Then, optimal value of model’s hyperparameters should be
chosen according to the validation error, or even better, according to a Cross-Validation pro-
cedure. And the entire process crucially depends on the training corpus used, so it’s language
and domain specific [30].
In order to overcome the need of human labeled training sets, unsupervised models have

been developed over the last few years. They can be broadly classified in two methodologies:
Graph-based and Statistical.
Graph-based methods represent the text using a graph. They rely on Part Of Speech (POS)

tagging system, which consists in assigning a tag (noun, verb, adjective, preposition, adverb,
conjunction) to each word in a document. The selection of the employed tag depends on the
language and specific domain of application. Given a sequence of words, the output is a list of
pairs (word, tag), where there may exist more tags for a given word and the POS tagger task is
to solve these ambiguities by selecting the most appropriate tag given the word context.
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The level of granularity can go well beyond using a richer POS tagging system. For example
45 Penn Treebank and 87 Brown corpus use, respectively 45 and 87 different POS tags.
In any case, the POS tag provides crucial information to determine the role of the word itself
and of the words close to it in the sentence. For example, if the word is a personal pronoun
(i.e. I, you, he/she, etc.), it has a higher probability to be followed by a verb; instead, if it is a
possessive pronoun (i.e. my, your, his/her, etc.), it has a higher probability to be followed by a
noun.

Some graph-basedmodels rely on a Stemming procedure, which reduces inflected or derived
words to their word stem, base or root form. Others rely on External Corpus, like dictionaries,
providing useful relations among words, as synonyms (alternative words with same meaning);
antinomyns (words with opposite meaning); hypernyms (words with a more general meaning
that include as a specific case the target word) and hyponyms (words with amore specificmean-
ing that are included as a specific case of the targetword). These resources enpower the capacity
to “understand” the text, but depend clearly on the language and the domain.

TextRankmodel [31] builds an undirected graph where nodes are terms filtered using POS
tags, and edges (connections) are set between nodes that co-occur within a window of n terms.
A ranking algorithm is then run on top of this graph, and keywords are sorted by decreasing
order. SingleRank and ExpandRank [32] are variations of TextRank, with the latter enriched
by terms of the k-nearest neighboring documents.

TopicRank model is a generalization of TextRank, where nodes instead of terms, are topic
clusters of single and composed expressions.
An exhaustive overviewof the various graph-basedmethods is out of the scope of the current

exposition, so the interested reader can consult [28] and the references herein. The take-home-
message is that all graph-based methods rely on a POS tagging system, which is language and
domain dependent. This implies the impossibility to apply these models directly to new lan-
guages or new domains.

In the SSA business framework, a desirable feature for a keyword extraction model is the
possibility to be easily extended to new languages and domains. This capacity would help the
expansion in new country markets, regardless the existence or not, of pre-built POS tags sys-
tems, stemming and external corpus. For example, an advertising company active in the US
market, could apply the keyword extraction tool even in non-English speaking countries, like
Spain, Italy, France, Germany and many others.

This crucial feature is owned by the Statistical models, which are able to extract keywords
using uniquely the input text and the Stopword List (except for TF.IDF which requires a col-
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lection of documents). Note that a complete language independence is not possible using the
models currently available, since the stopword list is a requiered input of each of them, and it
is clearly language dependent. Anyway building a stopword list is much easier than building a
POS tags system or a stemming. The latters requiere to consider ideally all the words existing in
the language’s vocabulary. The former requires to pick a small subset of frequently used words
which do not convey any particular meaning.

Among the Statistical models, TF.IDF [33] is not considered since it requires access to a
large corpus, which is not available in this application framework. KP-Miner [34] is a feasible
choice, but is anyway excluded in favor of two models which are gaining popularity for their
simplicity and effectiveness: RAKE and YAKE!. Both are going to be presented in the next
two subsections.

6.2.1 RAKE

RAKE stands for Rapid Automatic Keyword Extraction [35]: an unsupervised model for ex-
tracting keywords from individual documents. It does not requiere labeled data for training
(as supervised models do), and it is almost independent by external-corpora, language or do-
main (as unsupervised graph-based models do). In fact, the only language dependency is a list
of stopwords. Anyway building a stopword list is a relatively easy task, since it does not involve
all the words in the vocabulary but a small portion of them.

RAKE is based on the observation that keywords frequently contain multiple words but
rarely contain standard punctuation or stop words, such as the function words and, the, and
of, or other words with minimal lexical meaning. This reasoning is based on the expectation
that suchwords are too frequently and broadly used to aid users in their analyses or search tasks.

Words that do carry meaning within a document are described as content bearing and are
often referred to as content words.
The input parameters for RAKE comprise a list of stop words, a set of phrase delimiters,

and a set of word delimiters. RAKE uses stop words and phrase delimiters to partition the
document text into candidate keywords, which are sequences of content words as they occur
in the text.

Co-occurrences ofwordswithin these candidate keywords aremeaningful and allow to iden-
tify word co-occurrence without the application of an arbitrarily sized sliding window. Word
associations are thus measured in a manner that automatically adapts to the style and content
of the text, enabling adaptive and fine-grained measurement of word co-occurrences that will
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be used to score candidate keywords.
It works in three steps [36], described in the following.

Step 1: Text Pre-Processing

Convert all text to lower case (i.e.: “Google”→ “google” or “GOOGLE”→ “google”).
Then split it into an array of words (tokens) by the specified word delimiters (space, comma,

dot etc.).
For example, the input text:

Input text.
Google quietly rolled out a new way for android users to listen to podcasts and subscribe to
shows they like, and it already works on your phone. Podcast production company pacific content
got the exclusive on it. This text is taken from Google news.

becomes:

Partitioned text.
['google','quietly,'rolled,'out,'a','new,'way','for','android','users','to','listen','to','
podcasts','and','subscribe','to','shows','they','like',',','and','it','already','works','on','
your','phone','.','podcast','production','company','pacific','content','got','the','exclusive
','on','it','.','this','text','is','taken','from','google','news','.']

Step 2: Candidate Keywords Generation

The array is then split into sequences of contiguous words by phrase delimiters and stop word
positions. Words within a sequence are assigned the same position in the text and together
are considered a candidate keyword, as in Table 6.3, where stopwords and punctuation are
reported in red.

Table 6.3: Sentence splitting using RAKE.

Split by delimiters Split by stop word Candidate Keyword

google google [google, quietly, rolled]
quietly quietly
rolled rolled
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Table 6.3: Sentence splitting using RAKE (Continued from previous page)

Split by delimiters Split by stop word Candidate Keyword
out
a
new
way
for
android android [android, users]
users users
to
listen listen [listen]
to
podcasts podcasts [podcasts]
and
subscribe subscribe [subscribe]
to
shows shows [shows]
they
like
,
and
it
already
works works [works]
on
your
phone phone [phone]
.
podcast podcast [podcast, production, company, pacific, content]
production production
company company
pacific pacific
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Table 6.3: Sentence splitting using RAKE (Continued from previous page)

Split by delimiters Split by stop word Candidate Keyword
content content
got
the
exclusive exclusive [exclusive]
on
it
.
this
text text [text]
is
taken
from
google google [google, news]
news news
.

Step 3: Candidate Keywords’ Score

A score is computed for each candidate keyword in the following way. First, the co-occurrence
graph (a term document matrix with one extra count of each word coming in a phrase) is com-
puted. Continuing with the previous example, the results is shown in Table 6.4.

The keywords extracted in step 2 are split in single words and each unique word becomes an
entry of a row and column of the co-occurrences graph (i.e. “google” appears two times in the
keywords, but a unique row and column is reserved to it). On the main diagonal is shown the
number of times each word appears in the candidate keywords. Out of the main diagonal is
reported (when different from 0) the number of times two words appear in the same keyword.

Twometrics are needed for eachword: word frequency (freqw) andworddegree (degw). The
freqw counts howmany times a particularwordw appears among all candidate keywords. The
degw counts howmany timesw appears among all candidate keywords (freqw) plus howmany
words appear in the same candidate keyword/s containing w. freqw favors words that occur
frequently regardless of the number of words with which they co-occur. degw favors words
that occur often and in longer candidate keywords.
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google quietly rolled
degw 5 3 3
freqw 2 1 1

scorew = degw
freqw

2.5 3 3

Table 6.5: Degree, Frequency and Score metrics for the first keyword.

The word score is calculated as the ratio:

scorew =
degw
freqw

The idea is to penalize thedegw as freqw increases: in fact it’s easier to have a higher degree for a
word appearingwith high frequency. In other words, scorew favors words that predominantly
occur in longer candidate keywords. This is the best metric for keyword suggestion in SSA,
because longer keywords are usually:

• more specific, leading to a more targeted traffic with an higher conversion rate;

• less common, that is, are cheaper, since are exposed to less competition among advertis-
ers.

Both observations lead to higher profit for the advertiser.
Theword score is computed for each word in a candidate keyword (KW ) and the individual

scores are summed to provide the candidate keyword score (scoreKW ):

scoreKW =
∑

w∈KW

scorew.

As an example, theDegree, Frequency and Scoremetrics are reported for the candidate keyword
“google quietly rolled” in Table 6.5.
The resulting score for the first candidate keyword (“google quietly rolled”) is:

scoreKW =
5

2
+

3

1
+

3

1
= 8.5

The score for all the candidate keywords in Table 6.3 is shown in Table 6.6.
Continuing the example started in Section 6.1, from the cleaned text:
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keyword score
podcast production company pacific content 25.0
google quietly rolled 8.5
google news 4.5
android users 4.0
exclusive 1.0
works 1.0
phone 1.0
text 1.0
podcasts 1.0
subscribe 1.0
listen 1.0
shows 1.0

Table 6.6: Score for all keywords.

Cleaned text.
Pardon Our Interruption. Pardon Our Interruption. Please contact Customer Service at 800
8784166 or unblockrequestrealtor.com with any issues. Please include the Reference ID shown
above.. Miami, FL Real Estate Homes For Sale. Trulia. Miami, FL Homes For Sale Real Estate.
Miami, FL Luxury Real Estate Homes for Sale. 190 homes for sale in Miami. Miami, FL Real Estate
Homes for Sale. REMAX. Miami, FL Real Estate and Homes for Sale. Miami Real Estate. Find
Houses Homes for Sale in Miami, FL. Miami Homes for Sale. Miami, FL Homes For Sale. Real Estate
by Homes.com. 19,374 Homes For Sale in Miami, FL. ERROR: The request could not be satisfied.
403 ERROR. Savills. Property for sale in Miami, Florida, United States of America. 687
Properties for sale in Miami. Access to this page has been denied. Please verify you are a
human

themost relevant keywords are extractedbyRAKEusing thePythonpackagepython-rake [37].
The resulting keywords are reported in Table 6.7, sorted by decreasing importance.

Final remarks:

1. RAKE does not have hyperparameters to be empirically set up;

2. sometimesRAKE results could be not accurate if relevant keywords contains stopwords
and appear once in the document. For example, “new” is listed inRAKE’s stopword list.
This means that neither “New York” nor “New Zealand” can be ever a keyword. But if
RAKE finds pairs of keywords that adjoin one another at least twice in the same docu-
ment and in the same order, then a new candidate keyword is created as a combination
of those keywords and their interior stop words. Because adjoining keywords must oc-
cur twice in the same order within the document, their extraction is more common on
texts that are longer than short abstracts.
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Ranking Keyword Extracted
1 fl luxury real estate homes
2 fl real estate homes
3 fl real estate
4 contact customer service
5 reference id shown
6 find houses homes
7 miami real estate
8 sale real estate
9 real estate
10 fl homes

Table 6.7: Keywords extracted by RAKE.

6.2.2 YAKE!

YetAnotherKeywordExtractor! (YAKE!) [38, 28] is anunsupervised algorithmable to select the
most important keywords using the text statistical features extracted from single documents.
It does not need to be trained on a particular set of documents and it does not depend on
labeled data for training (as supervised models do), external-corpora, language or domain (as
unsupervised graph-based models do).

YAKE! is composed by five main steps:

1. text-pre-processing,

2. features extraction,

3. individual term score,

4. candidate keywords generation,

5. data deduplication and ranking.

Each of them is going to be explained in the following.

Step 1: Text Pre-Processing

Given a text, the algorithm divides it into sentences using the segtok rule-based sentence seg-
menter [39], able to splits Indo-European texts into sentences following a given predefined pat-
tern. It does not blindly rely on punctuation, allowing a higher quality split (i.e. “Mr. Smith”
would be considered a single sentence).
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Each sentence is then divided in chunks (whenever punctuation is found) and split into
words. Each word is then converted into its lowercase form.

The result of this pre-processing stage is a list of sentences, where each sentence is divided
into chunks formed by words.

Step 2: Features Extraction

A set of five features able to capture the characteristics of each individual term is defined. They
are: (1) Casing; (2) Word Position; (3) Word Frequency; (4) Word Relatedness to Context;
(5)Word Different Sentence.

Particular attention has to bemade about features’ interpretation: Word Position andWord
Relatedness to Context are designed, as will become clear in the remaining, to assign a lower
value to important terms;

Casing is designed to assign a higher value to important terms;
Word Frequency andWord Different Sentence have not an obvious interpretation in terms

of wordw importance, but have to be assessed in relation toWord Relatedness to Context.

Casing (WCase)
Word starting with a capital letter (excluding ones at the beginning of sentences) or acronyms
(all letters of the word are capital) are considered more important, since this is what often hap-
pens in any text. The weight is computed as:

Wcase =
max{TF (U(w)), TF (A(w))}

log2(TF (w))

where TF (U(w)) is the number of times the candidate wordw starts with an uppercase letter;
TF (A(w)) is the number of times the candidate wordw is marked as an acronym and TF (w)

is the frequency ofw. Thus, the more often the candidate term occurs with a capital letter, the
more important it is considered.

Word Position (WPosition)
The underlying hypothesis is that early parts of the text tend to contain a high rate of relevant
keywords. The formula is:

WPosition = log2(log2(2 +Median(Senw)))
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where Senw indicates the positions in the text of the set of sentences where the wordw occurs
andMedian is the median function. The result is an increasing function, where values tend
to increase smoothly as words are positioned at the end of the document, meaning that the
more often a word occurs at the beginning of a document the less itsWPosition value. Instead,
words positioned more often at the end of the document (likely less relevant) will be given a
higherWPositional value. Note that a value of 2, is considered in the equation to guarantee that
WPosition > 0.

Word Frequency (WFreq)
It indicates the frequency of the wordw within the document. It reflects the belief that higher
the frequency, more important the word is. To prevent a bias towards high-frequency in long
documents the TF value of a word w is divided by the mean of the frequencies (MeanTF )
plus one time their standard deviation (σ). The goal is to score all those words that are above
the mean of the terms balanced by the degree of dispersion given by the standard deviation:

WFreq =
TF (w)

MeanTF + 1 · σ
.

This feature itself has not anobvious interpretation in termsofwordw importance: a particular
word of no importance (name, adjective, verb, preposition, etc.) could appear just one time,
having a very low WFreq. A stopword could appear in almost every sentence, having a high
WFreq. So unimportant words could have low or high values ofWFreq. The same reasoning
applies to important word in analogous way. This feature has to be interpreted in relationwith
WRel.

Word Relatedness To Context (WRel)
It quantifies the extent to which a word resembles the characteristics of a stopword. To com-
pute this measure, the number of different terms that occur in a window of sizem to the left
(and right) side of the candidate word are considered (m is a hyperparameter to be set experi-
mentally). Higher the number of different terms that co-occur with the candidate word (on
both sides), the more meaningless the candidate word is likely to be. WRel is defined as:

WRel = 1 + (DL+DR) · TF (w)

MaxTF
+ PL+ PR

where:
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m = 2 m = 1 w m = 1 m = 2
of the relations that connect

semantic relations
that this relations supervene solely

Table 6.8: Word relatedness to context table.

Figure 6.1: Word relatedness to context plot.

• DL[DR] = |Aw,t|∑
k∈Aw,t

CoOccurw,k
with |Aw,t| the number of different terms that occurs

on the left [right] side of a candidate word w within a given predefined window, with
regard to the number of k terms that it co-occurs with.

• TF (w)
MaxTF

is the term frequency of the candidate word divided by the maximum term fre-
quency (MaxTF ) among all candidate words that occur in the document, in order to
penalize candidate words that occur with high frequency (as stopwords do).

• PL[PR] = |Aw,t|
MaxTF

is the ratio between the number of different terms that co-occur
with the candidate word (on the left [right] hand side) and theMaxTF .

The more insignificant the candidate word is, the higher the score of this feature will be. Thus,
stopwords-like terms will easily obtain higher scores.
An example is needed to clarify how the various formula’s components are computed. InTa-

ble 6.8 are shown the different terms that co-occur with the candidate term “relations” within
a window of sizem = 2. In Figure 6.1, the number on the edges is the frequency that the can-
didate term “relations” co-occurs with the term in the corresponding oval. Gray color indicates
stopwords.
In detail:

• DL = |Aw,t|∑
k∈Aw,t

CoOccurw,k
= 5

5
, since all 5 terms on Table 6.8 (highlighted in green)

are different (so |Aw,t| = 5) and each of them co-occurs 1 time with “relations” (so∑
k∈Aw,t

CoOccurw,k = 5). Analogous reasoning holds forDR = 4/4.

• TF (w)
MaxTF

and PL[PR] are easy to understand.
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WordDifferent Sentence (WDifSentence)
It represents the proportion of sentences containing the wordw, computed as:

WDifSentence =
SF (w)

#Sentences

whereSF (w) is the number of sentences wherew appears, and#Sentences is the total num-
ber of sentences in the text. This feature itself has not an obvious interpretation in terms of
word w importance: a particular word of no importance (name, adjective, verb, preposition,
etc.) could appear in just one sentence, having a lowWDifSentence. A stopword could appear
in almost every sentence, having a WDifSentence close to one. So unimportant words could
have low or high values of WDifSentence. The same reasoning applies to important word in
analogous way. This feature has to be interpreted in relation withWRel.

Step 3: Individual Term Score

The five features are combined into a single score S(w). The smaller the value S(w), the more
important the wordw is:

S(w) =
WRel ·WPos

WCase +
WFreq

WRel
+

WDifSentence

WRel

.

TheWRel and theWPos are directly proportional to the word’s score, so both features appear
at the numerator. WFreq andWDifSentence are offset byWRel in order to assign a high weight
to words that appear frequently and appear in many sentences (likely indicative of their impor-
tance) as long as the word is relevant (WRel is low). Indeed, some words may occur plenty of
times and inmany sentences and yet be useless (stopwords or similar). Both previous ratios take
higher values more important is the word, hence are inversely proportional to the way S(w) is
interpreted. For this reason are placed at the denominator. WCase is also inversely proportional
to S(w), so it appears in the denominator.

Step 4: Candidate keywords generation

In order to generate the candidate keywords, a sliding window of size n is considered, generat-
ing a contiguous sequence of terms ranging from 1-gram to n-gram (where n is a hyperparam-
eter to be set experimentally).

Each candidate keyword will be composed by words belonging simultaneously to:
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• same sliding window;

• same sentence;

• same chunk.

This avoids having, for example, a candidate keyword including the end of a sentence and the
beginning of the next one. In addition, keywords beginning or ending with a stopword will
not be considered. Digits are also not considered, as they are rarely part of a keyword. No
conditions are set in respect to theminimum frequency or sentence frequency that a candidate
keyword must have. This means that a keyword can be considered as significant/insignificant
with either one occurrence or with multiple occurrences.

Each candidate keyword will then be assigned a final S(kw), such that the smaller the score
the more meaningful the keyword will be:

S(kw) =

∏
w∈kw S(w)

TF (kw) · (1 +
∑

w∈kw S(w))

where S(kw) is the score of a candidate keyword with a maximum size of n terms, determined
by multiplying (in the numerator) the score of the first term of the candidate keyword by the
subsequent scores of the remaining terms, such that the smaller this multiplication the more
meaningful the keyword will be. This is divided by the sum of the S(w) scores in order to
average out with respect to the length of the keyword, such that longer candidate keywords are
not benefited/harmed just because they have a higher length. The result is further divided by
the term frequency of the keyword, TF (kw), to penalize less frequent candidates.

Step 5: Data Deduplication And Ranking

The final step in determining suitable candidate keywords is to eliminate similar candidates.
For this, there are three available metrics: SequenceMatcher, Levenshtein and Jaro-Winkler dis-
tances. All of themmeasure the similarity between two strings. Among the strings considered
similar (two strings are considered similar if their distance is above a given threshold θ, a hyper-
parameter to be set experimentally) the one that has the lowest S(kw) score is kept. The final
list of keywords and corresponding scores are sorted according to their relevance and returned
as output, concluding the algorithm.
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Hyperparameters Set Up

Empirical trials on a collection of20different datasets show that the following hyperparameters
choices works well [28]:

• window-sizeWRel (m)= 1;

• window-size kw generator (n)= 3;

• distance metric= Sequence Matcher;

• θ = 0.9

In our data, the query keywords available have an average length equal to 3.4. Considering that
more specific keywords tend to be composed by more words and are often less used (and so
cheaper), it’s advisable to choose a higher value for the hyperparameter n. A reasonable choice
is a slightly higher value, able to generate longer keywords without exceeding in length. A good
compromise is n = 5.

Continuing the example started in Section 6.1, from the cleaned text:

Cleaned text.
Pardon Our Interruption. Pardon Our Interruption. Please contact Customer Service at 800
8784166 or unblockrequestrealtor.com with any issues. Please include the Reference ID shown
above.. Miami, FL Real Estate Homes For Sale. Trulia. Miami, FL Homes For Sale Real Estate.
Miami, FL Luxury Real Estate Homes for Sale. 190 homes for sale in Miami. Miami, FL Real Estate
Homes for Sale. REMAX. Miami, FL Real Estate and Homes for Sale. Miami Real Estate. Find
Houses Homes for Sale in Miami, FL. Miami Homes for Sale. Miami, FL Homes For Sale. Real Estate
by Homes.com. 19,374 Homes For Sale in Miami, FL. ERROR: The request could not be satisfied.
403 ERROR. Savills. Property for sale in Miami, Florida, United States of America. 687
Properties for sale in Miami. Access to this page has been denied. Please verify you are a
human

themost relevant keywords are extractedbyYAKE!using thePythonpackageyake( [40] and [41]).
The resulting keywords are reported in Table 6.11, sorted by decreasing importance.

6.2.3 BERT Filter

The BERT Filter is designed as an additional tool working on top of RAKE and YAKE!. It
takes as input the keywords returned by the keyword extractor algorithm for each query key-
word, and applies the following operations:
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1. it encodes the keywords using BERT-Large Uncased (Whole Word Masking), with 24
hidden layers and 1024 hidden units, pooling layer = 2 and pooling strategy = REDUCE
MEAN. These settings come from the analysis in Subsection 2.3.2, to which the reader is
directed for a complete explanation;

2. it computes the cosine similarity between the query keyword and each of the suggested
keywords;

3. it sorts the suggested keywords in descending order of cosine similarity with the query
keyword.

In this way, suggested keywords more similar to the query are moved on top positions of the
ranking. On one side, this filtering avoids suggesting garbage keywords on top positions, like
“pardon our interruption” in position 1 of Table 6.11. On the other side, the non obviousness of
suggestions could be negatively affected, as appears clear comparing the top three suggestions
for RAKE and RAKE+BERT in Table 6.9 and 6.10, respectively.

This implies that the use of BERT filter should not be done automatically, but depending
on the extraction algorithm used and on the scrap level selected. In the introductory example
shown here, the text for the query “houses for sale Miami” is retrieved using super-light scrap
level (<title> and <h1>HTML tags). This text tends to be close to the query by definition,
hence generating keywords with a good relatednesswith the seed keyword. In this context, the
BERT filter seems to provide, overall, no particular improvements.

But changing the number of keywords extracted and/or the scrap level, the situation could
change. For example, a deeper scrap level is expected to retrieve a broader text with a higher
heterogeneity of words. Not all text will be closely related to the query, since a website contains
much supplementary information, useful for the user but not always directly related to the seed
keyword. In this case, a keyword extraction algorithmwill extract also keywords low related to
the query, which could be ranked in top positions. Here comes in place the utility of BERT
filter.

It appears clear from now the need to develop a methodology to evaluate systematically the
keywords extracted for all the possible combinations of scrap level, model and number of key-
words returned. This task is going to be addressed in the next chapter.
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Ranking Keyword Extracted
1 fl luxury real estate homes
2 fl real estate homes
3 fl real estate
4 contact customer service
5 reference id shown
6 find houses homes
7 miami real estate
8 sale real estate
9 real estate
10 fl homes

Table 6.9: Keywords extracted by RAKE.

Ranking Keyword Extracted
1 miami homes
2 sale
3 sale real estate
4 miami real estate
5 374 homes
6 find houses homes
7 fl luxury real estate homes
8 fl real estate homes
9 florida
10 fl real estate

Table 6.10: Keywords extracted by RAKE+BERT.

Ranking Keyword Extracted
1 pardon our interruption
2 homes for sale
3 miami homes for sale
4 real estate
5 homes for sale in miami
6 miami real estate
7 sale
8 miami
9 luxury real estate
10 homes

Table 6.11: Keywords extracted by YAKE!.

Ranking Keyword Extracted
1 miami homes for sale
2 homes for sale in miami
3 property for sale in miami
4 properties for sale in miami
5 homes for sale
6 sale in miami
7 estate and home for sale
8 property for sale
9 properties for sale
10 miami homes

Table 6.12: Keywords extracted by YAKE!+BERT.
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7
EvaluationMethodology and Results

Analysis

The chapter tackles the evaluation task introduced in Subsection 6.2.3: it defines the metrics
and the procedure to follow in order to get a quantitative evaluation of the results for the dif-
ferent scrap levels, keywords extractors models and number of suggestions returned.

In detail, the chapter is composed by three sections:

• EvaluationMethodology: an overview of the available metrics is presented, high-
lighting pros and cons of each of them, selecting the most suitable ones for the problem
at hand and defining the overall evaluation procedure.

• Results Analysis: results for the selected metrics are shown and commented, for
each combination of scrap level, keywords extractorsmodels and number of suggestions
returned.

• Illustrative Example: a subset of 5 keywords is used to present some empirical re-
sults.
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7.1 EvaluationMethodology

7.1.1 AvailableMetrics

In order to assess the reliability of a model it’s necessary to define a methodology to evaluate
its results. In the context of keywords extraction, different metrics and procedures are adopted
by the research community. It’s worth noting that keywords extraction is fundamentally a
ranking task rather than a classification task, where higher ranking’s positions are reserved to
more relevant keywords.

Traditional classification tasks just predict which class a sample belongs to and therefore,
do not consider any form of ranking during evaluation. In this context, the most widely used
metrics are Precision (a.k.a. Relatedness),Recall, F-score.

Keywords extraction, on the other hand, requiresRank-Aware evaluation metrics. An easy
modification of the above metrics able to include the ranking positions, consists in computing
them only on the topK results. For this reason, the new metrics are called Precision@K, Re-
call@K and F-score@K. Anyway, within the topK positions, the rank is still irrelevant for the
computation of each measure.

More advanced metrics have been proposed in the literature [42]: Mean Reciprocal Rank
(MRR), n-DiscountedCumulativeGain (nDCG) andMeanAverage Precision (MAP ). Any-
way not all of them are suited for the problem at hand.

For example, MRR only considers the single highest ranked relevant item. If the model
returns a relevant keyword in the third highest position, then MRR only cares about it. It
doesn’t take into account other relevant keywords ranked belowposition 3. This feature comes
from the definition onMRR:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

whereQ is a sample of query keywords and ranki refers to the rank position of the first relevant
keyword for the i-th query keyword. Hence, this metric is not suited when multiple keywords
are returned.

nDCG relies on anumerical scale of relevance (i.e. 3 = highly relevant,2 = medium relevant,
1 = low relevant, 0 = irrelevant) in order to assign a final relevance score. Given a sorted list
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(in descending order of relevance) ofK suggested keywords, first theDCG is computed:

DCGi,K =
K∑
k=1

relk
log2(k + 1)

where i is thequery keyword and relk is the graded relevanceof suggestedkeyword at positionk.
The denominator penalizes the relevance as ranking position moves away from the top. Then,
a second quantity is needed:

IDCGi,K =
K∑
k=1

relk
log2(k + 1)

where I stands for “Ideal”, since the ranking of the keywords is the “ideal” one, produced by a
human evaluator. The final relevance score for the list of keywords returned as response to the
query keyword i is the ratio:

nDCGi,K =
DCGi,K

IDCGi,K

which by definition takes value in the interval [0, 1]. The overall relevance score for a sample of
query keywordsQ is:

nDCGQ,K =
1

|Q|

|Q|∑
i=1

nDCGi,K

The quality of this metric depends crucially on two elements:

1. the possibility to assign a numerical scale of relevance to each suggested keyword;

2. the capacity to define an ideal ranking.

Both points tend to increase the difficulty of the evaluation. Considering that often is impos-
sible to automatize the evaluation procedure, the task has to be assigned to human evaluators.
The higher difficulty introduces a higher level of subjectivity. Of course human evaluation is
subjective by its own nature, but finer the grain of judgement required, higher the room for
subjectivity. The problem gets worse when the scale increases: higher the number of suggested
keywords, richer their variety, which implies a less obvious (and so more subjective) solution
to point 1. and 2..

MAP considers the extracted list of suggested keywords as an ordered list. In other words,
it evaluates considering the ranks at which relevant keywords are extracted. The goal is to penal-
ize more, irrelevant keywords placed higher in the ranking and gradually less, keywords placed
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lower in the ranking. Given a query keyword i, for each relevant suggested keyword k in the
ordered list, the precision of the list till that relevant keyword is computed. For example, if the
first relevant suggested keyword is in second position, the precision is computed considering
just the first two positions and would be 0+1

2
= 0.5; if the second relevant suggested keyword

is in fifth position, the precision is computed considering the first five positions and would be
0+1+0+0+1

5
= 0.4. Then, the scores obtained for each relevant keyword are averaged. Contin-

uing the example, if there are only two relevant keywords in the whole list, theMAPi would
be 0.5+0.4

2
= 0.45. Finally, the same procedure has to be repeated for each keyword j in the

sample of query keywordsQ, producingMAPj . The overallMAP for the whole set of query
keywords is:

MAPQ =
1

|Q|

|Q|∑
j=1

MAPj.

This metric works really well when there are only binary ratings (relevant/irrelevant).
Other possible metrics come from research. In [11], Joshi and Motwani use the metrics

Relatedness andNon obviousness and compute an approximation of theRecall. Then, the three
measures are combined, two at time, in an F-score. Relatedness andNon obviousness are binary
variable, taking values {0, 1}. The former is evaluated by humans, while the latter is evaluated
automatically, defining a hard rule to assess originality: if the suggestion does not contain the
query keyword, part of it, or its variants sharing a common stem, than it’s non-obvious.

In [16], Thomaidou and Vazirgiannis suggest an additional measure aside Relatedness and
Non obviousness: Specificity. It quantifies how original are the suggested keywords with respect
to the query one. The authors define a graded scale of 5 different levels for eachmetric and rely
exclusively on human evaluators to score the results.

7.1.2 BestMetrics selection

The new keywords suggestions’ procedure presented in Chapter 6 is designed to return multi-
ple keywords, henceMRR is not a suited metric.

The query keywords are composed, on average, by 3.4 terms, meaning that are characterized
by a higher level of lexical richnesswith respect to short queries. As result, also the suggestions
will tend to be longer and having many variants. The effect is a higher difficulty in assigning,
each suggested keywords, to the most appropriate level in the graded scale of each metric. So
nDCG has also to be excluded from the eligible metrics. Also, methods like the one followed
in [16] cannot be easily adopted.
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On the other side, metrics and procedures adopting binary values reduce the complexity
of evaluation task at a feasible level. Relevant suggested keywords receive a score equal to 1,
not relevant equal to 0. The same logic is applied for other metrics. In this way the room
for subjectivity is reduced and the evaluation task greatly simplified. TheMAP respects this
criterium, so it’s a potential good candidate metric.

Anyway in the current work, considering:

• the high number of keywords under evaluation,

• the three different scrap levels (super-light, light and full),

• the four different models (RAKE,RAKE+BERT, YAKE!, YAKE!+BERT ),

• the five different n° suggested keywords (10, 20, 30, 40, 50),

• the human evaluation,

the choice is fallen on Relatedness@K,Non obviousness@K and F-score@K, following a similar
evaluation procedure as the one described in [11], but with some differences. Relatedness@K
andNon obviousness@K still take binary values, but theRecall is not used and the human eval-
uation is extended also toNon obviousness@K.
The first modification is motivated by the objective difficulty in computing theRecall. It is

the proportion of relevant keywords that are retrieved, out of all relevant keywords available.
The problem with determining exact recall is that the total number of relevant keywords is
unknown. Joshi and Motwani approximate this quantity as the size of the union of relevant
results from all techniques used. Since it is anyway an approximate value and is not the primary
metric of interest in the business framework (are relatedness and non-obviousness), a natural
choice is not using this measure at all.

The second modification is also motivated by the difficulty in defining an automatic rule
able to discriminate in a reliable way between related/non-related and non-obvious/obvious
keywords suggestions. The authors’rule works well for keywords composed by a single word,
but it’s not reliable for longer keyword. For example, retaking the query keyword “houses for
sale Miami”, the suggestions:

• “fl luxury real estate homes”,

• “fl real estate homes”,

• “miami real estate”,
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• “properties for sale in miami”,

are all considered obvious since contain part of the query or a common stem. But it’s reasonable
to state that, at the human perspective, the suggestions are non obvious. For this reason, the
whole evaluation procedure is carried on by human evaluators. The unique objective rules
used in order to assess the relatedness and non obviousness are, respectively:

1. when the suggested keyword is a copy of the query (evenwith a different order ofwords),
then it is for sure related (i.e. “homes for sale in miami”, “miami homes for sale”, etc.);

2. when the suggested keyword is a subset of the query, then it is for sure obvious (i.e. “mi-
ami homes”, “sale in miami”, “homes for sale”, etc.).

It’s important to notice that:

• non obviousness and relatedness are independent evaluation metrics. Hence, when a sug-
gestion is obvious, then it could be related or not (i.e. “miami homes” could be even
related, “homes for sale” for sure not, since it’s too broad to be used as a valid alternative
to the query);

• for all the suggestions towhich the objective rules are not applicable, the evaluation relies
entirely on human interpretation. This implies a certain degree of subjectivity, which
anyway could be offset using different human evaluators.

7.2 Results Analysis

A list of 3306 unique query keywords is obtained from the same dataset used to train, validate
and test the model in Part I. The evaluation methodology described in Section 7.1 is not appli-
cable to the entire list, since it would take toomuch time to be completed. A feasible alternative
consists in selecting a well representative sample of keywords from the whole list. In order to
be sure about its representativity, a set of 100 keywords is manually selected from different
thematic areas, promoting several products and services. The main categories are:

• health care services,

• internet providers,

• job search,
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• gps devices,

• lawyers,

• postal services,

• phones and mobile services,

• education,

• vacation packages.

The choice to take 100 keywords is based on two motivations:

1. the number is high enough to represent well the keywords,

2. it is still enough low to allow a manual evaluation.

As pointed out in Subsection 7.1.2, there are three different scrap levels, each of them with
four different models. For every model, five different number of suggested keywords (K) are
extracted. All the possible combinations can be figured out as 3·4·5 = 60 tableswith 100 rows
(one for each query keywords) and a number of columns equal to the number of suggestions
required.

This representation reflects theway inwhich results are stored: for each scrap level, an.xlsx
file is created, containing for each model the results (Relatedness@K,Non obviousness@K and
F-score@K) for five different number of suggestions (10, 20, 30, 40, 50), for a total of 4·5 = 20

sheets per file.
All results are shown in Figure 7.1

Comments on Figure 7.1a:

1. taking only <title> and <h1> tags, the text contains more terms closely related to the
query keywords and tends to exhibit a lower lexical variability. This implies that RAKE
and YAKE! discover keywords close to the seed keyword (receiving high score) or quite
different (receiving low score). When BERT filter is applied to these keywords, the ones
closed to the query keywords receive high similaritywhile the ones quite different receive
low similarity. So BERTfilter tends to award keywords similar to the query, despite their
originality. Looking at theplots (RAKE vs RAKE+BERTandYAKE! vs YAKE!+BERT),
Relatedness@K is pretty similar with andwithout BERTfilter for each n° suggested key-
words (K). Non obviousness@K is≈ 0.20 lower with BERT filter. These two observa-
tions put together imply that BERT filter has replaced in top positions some relevant
and non-obvious keywords with some relevant and obvious ones. Hence, the applica-
tion of BERTfilter is not suggested using super-light scrap level since the “originality” of
suggestions decreases while theRelatedness@K does not increase.
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(a) Super‐Light web scrap.

(b) Light web scrap.

(c) Full web scrap.

Figure 7.1: Relatedness@K, Non obviousness@K and F‐score@K for different scrap levels, models and n° suggested keywords.
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2. Looking at the plots RAKE vs YAKE!, YAKE! offers higherRelatedness@K at the price
of a slightly lowerNon obviousness@K. The overall tradeoff is favourable to YAKE!, since
its F-score@K is higher for every n° suggested keywords, except 10. For 10 suggested key-
words, RAKE has a significantly higherNon obviousness@K and an F-score@K ≈ 0.05
higher. Anyway it’s just a little better performance, which does not change the overall
superior shown by YAKE!.

3. Putting together points 1. and 2., the best model using super-light scrap level is YAKE!.

Comments on Figure 7.1b:

1. taking <title>, <h1>, <h2>, <ul> and <ol> tags, the text contains a higher proportion
of terms not closely related to the query keywords and tends to exhibit a richer lexical
variability. This implies thatRAKEandYAKE!discover keywordswhich are less close to
the seed keyword. When BERT filter is applied to these keywords, the ones closed to the
query keywords receive high similarity while the ones quite different receive low similar-
ity. So BERTfilter tends to award keywords similar to the query, despite their originality.
Looking at the plots (RAKE vs RAKE+BERT and YAKE! vs YAKE!+BERT),Related-
ness@K improves significantly with BERT filter for each n° suggested keywords (K).
Non obviousness@K is also significantly lower with BERT filter. These two observations
put together imply that BERTfilter has replaced in top positions some non-relevant and
non-obvious keywords with some relevant and obvious ones. Hence, the application of
BERT filter is suggested using light scrap since the “originality” of suggestions decreases
less than the increase in theRelatedness@K. In general, RAKE seems to benefit more by
the BERT filter, while YAKE! benefits less, and the marginal benefits of BERT filter re-
duces as the n° suggested keywords increases (i.e. YAKE!with 50 keywords is just slightly
worse than YAKE!+BERTwith the same number of suggestions).

2. Looking at the plots RAKE vs YAKE!, YAKE! offers higherRelatedness@K at the price
of a lowerNon obviousness@K. Anyway the overall tradeoff is favourable to YAKE!, since
its F-score@K is≈ 0.2 higher for every n° suggested keywords.

3. Putting together points 1. and 2., the best model using light scrap is:

• for K = {10, 20}: RAKE+BERT, since its F-score@K is ≈ 0.1 and ≈ 0.06
higher than YAKE!+BERT, respectively;

• forK = {30, 40}: RAKE+BERT and YAKE!+BERT are different for less than
0.05, so are almost equivalent alternatives;

• forK = 50: YAKE!+BERT is≈ 0.05 higher than RAKE+BERT.

123



Comments on Figure 7.1c:

1. taking <title>, <h1>, <h2>, <ul>, <ol> and <p> tags, the text contains an even higher
proportion of terms not closely related to the query keywords and tends to exhibit an
even richer lexical variability. This implies that RAKE and YAKE! discover keywords
which are less close to the seed keyword. When BERT filter is applied to these keywords,
the ones closed to the query keywords receive high similarity while the ones quite differ-
ent receive low similarity. So BERT filter tends to award keywords similar to the query,
despite their originality. Looking at the plots (RAKE vs RAKE+BERT and YAKE! vs
YAKE!+BERT),Relatedness@K improves significantlywithBERTfilter for each n° sug-
gested keywords (K). Non obviousness@K is also significantly lower with BERT filter.
These two observations put together imply that BERT filter has replaced in top posi-
tions some non-relevant and non-obvious keywords with some relevant and obvious
ones. Hence, the application of BERT filter is suggested using full scrap level since the
“originality” of suggestions decreases less than the increase in theRelatedness@K. In gen-
eral, RAKE and YAKE! show very similar performances and seem to benefit in the same
way by the application of BERT filter.

2. Looking at the plots RAKE vs YAKE!, RAKE offers a slightly higherRelatedness@K at
the price of an identic Non obviousness@K. Hence, the overall tradeoff is favourable to
RAKE, since its F-score@K is≈ 0.05 higher for every n° suggested keywords.

3. Putting together points 1. and 2., the best model using full scrap level is RAKE+BERT.
It shows a slightly higher Relatedness@K than YAKE!+BERT for low n° suggested key-
words and a higherNon obviousness@K for any number of suggestions. Its F-score@K is
always greater except forK = 50, where F-scores are almost the same.

Having an idea of which model works better for every scrap level, it’s time to find the best
model in absolute. Themodelwith the highestRelatedness@K,Non obviousness@K and hence,
F-score@K , for almost allK’s values it’s RAKE+BERT with full scrap level, closely followed
by YAKE!+BERT. Both models have an initial Relatedness@K (K = 10) well above 0.80,
which declines until ≈ 0.65 for K = 50. The Non obviousness@K starts above 0.60 and
increases over 0.8. Exist combinations of models and scrap levels with a betterRelatedness@K
(i.e. YAKE!+BERTwith light scrap level) orwith a betterNon obviousness@K (i.e. RAKEwith
super-light scrap level; RAKE with light scrap level; RAKE and YAKE! with full scrap level).
But no one of them has both metrics as high as RAKE+BERT and YAKE!+BERT with full
scrap level.

It’sworthnoticing thatYAKE! shows a clear superioritywith respect toRAKEfor super-light
and light scrap levels, probably determined by the farmore complex keywords extraction proce-
dure (Chapter 6, Subsection 6.2.2). Anywaywhen the text’s size increases excessively (full scrap
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level), YAKE!’s complexity becomes a double edge sword, producing a lower Relatedness@K
and F-score@K, for allK values, than the simpler RAKE algorithm.

The importance of the BERT filter increases with the text’s size and with the simplicity of
the keywords extractor algorithm. A simpler extractor, like RAKE, benefits by the BERT filter
from the light scrap level onward; a more complex extractor, like YAKE!, benefits significantly
by the BERT filter for deeper scrap levels.

These results confirm what claimed at the end of Chapter 6: the best model and the effec-
tiveness of the BERT filter depend on the scrap level and n° suggested keywords. It’s anyway
possible to identify a model which works pretty well always, being the best or close to the best
in every case: YAKE!+BERT. Its performances are:

• close to the best model (YAKE!) for super-light scrap level;

• the best, together with RAKE+BERT, for light scrap level;

• close to the best model (RAKE+BERT) for full scrap level.

Hence, as a rule of thumb, it’s possible to use YAKE!+BERT for any scrap level and number
of suggestions.

For completeness, the exact values of eachmetric for all scrap levels, models, andn° suggested
keywords are reported in Tables 7.2, 7.3, and 7.4.
Recalling that RAKE and YAKE! have been chosen, respectively, for their simplicity and

effectiveness (Chapter 6, Section 6.2), it’s expectable to find a computational time for the latter
of several order of magnitude greater than the former. In order to quantify the running time
of both algorithms, the text retrieved for each query is provided to the keywords extractors and
the time needed to return the suggested keywords is measured. Using the representative set of
100 keywords introduced ealier, 100 running times are computed for both RAKE and YAKE!.
Moreover, for each query, exist three different retrieved texts, one for each scrap level.

To get a synthetic and robust measure, the average value of the running time for each scrap
level and each model is computed. Results are reported in Table 7.1. For example, YAKE!’s
computational time it’s≈ 400× the one required by RAKE using super-light scrap level. In-
terestingly, YAKE! scales better than RAKE with the text’s size: for light and full scrap levels,
YAKE! running time is ≈ 6× and ≈ 8× bigger, while RAKE running time is ≈ 30× and
≈ 174× bigger. The size reported in the table refers to the dictionary containg all the retrieved
text for all query keywords for a certain scrap level.
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Size (KB) Running time (seconds)
RAKE YAKE!

Sc
ra
p
lev

el Super-Light 105 0.005 1.983

Light 2915 0.151 12.193

Full 9354 0.870 16.281

Table 7.1: Average running time per query keyword.

Figure 7.2: Average running time per query keyword.

The average running time is also depicted in Figure 7.2. Note that RAKE’s average run-
ning time per keyword, when super-light scrap level is used, is so short (0.005 seconds) that the
horizontal blue bar is invisible.

7.3 Illustrative Example

The goal of this section is to show some results to the reader for various models and scrap lev-
els. In order to keep the presentation short and avoid and endless collection of tables, only an
illustrative example of five query keywords is reported, together with the first 10 suggestions.
Note that not all combinations of models and scrap levels are shown. For super-light web

scrap, all four models’ results are reported, allowing the reader to get a rough idea about how
the suggestions vary for different keywords extractor techniques (Tables 7.5, 7.6, 7.7, 7.8).

Then, for themodelwith thebest averageperformances emerged inSection7.2 (YAKE!+BERT),
results for the remaining scrap levels (light and full) are shown (Tables 7.9 and 7.10). In this
way, the reader can have an intuitive idea of the scrap level’s effect on suggested keywords.

Being aware of the difficulty dictated by the reduced number of query keywords and sug-
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RAKE
n° suggested keywords (K)

10 20 30 40 50
Relatedness@K 0.78 0.54 0.38 0.29 0.23
Non obviousness@K 0.79 0.79 0.84 0.89 0.91
F-score@K 0.78 0.64 0.52 0.43 0.37

RAKE+BERT
n° suggested keywords (K)

10 20 30 40 50
Relatedness@K 0.82 0.55 0.39 0.29 0.23
Non obviousness@K 0.63 0.75 0.83 0.87 0.90
F-score@K 0.71 0.64 0.53 0.43 0.37

YAKE!
n° suggested keywords (K)

10 20 30 40 50
Relatedness@K 0.81 0.70 0.59 0.51 0.44
Non obviousness@K 0.68 0.68 0.71 0.74 0.78
F-score@K 0.74 0.69 0.64 0.61 0.56

YAKE! +BERT
n° suggested keywords (K)

10 20 30 40 50
Relatedness@K 0.83 0.74 0.65 0.56 0.48
Non obviousness@K 0.48 0.60 0.67 0.72 0.76
F-score@K 0.61 0.66 0.66 0.63 0.59

Table 7.2: Relatedness@K, Non obviousness@K and F‐score@K for Super‐Light web scrap.
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RAKE
n° suggested keywords (K)

10 20 30 40 50
Relatedness@K 0.19 0.26 0.29 0.31 0.32
Non obviousness@K 0.99 0.98 0.97 0.97 0.97
F-score@K 0.32 0.41 0.45 0.47 0.48

RAKE+BERT
n° suggested keywords (K)

10 20 30 40 50
Relatedness@K 0.90 0.84 0.77 0.70 0.64
Non obviousness@K 0.57 0.63 0.65 0.69 0.72
F-score@K 0.70 0.72 0.70 0.69 0.68

YAKE!
n° suggested keywords (K)

10 20 30 40 50
Relatedness@K 0.44 0.54 0.58 0.59 0.59
Non obviousness@K 0.79 0.73 0.72 0.73 0.73
F-score@K 0.56 0.62 0.64 0.65 0.65

YAKE! +BERT
n° suggested keywords (K)

10 20 30 40 50
Relatedness@K 0.91 0.87 0.84 0.80 0.77
Non obviousness@K 0.46 0.54 0.61 0.66 0.69
F-score@K 0.61 0.66 0.70 0.72 0.73

Table 7.3: Relatedness@K, Non obviousness@K and F‐score@K for Light web scrap.
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RAKE
n° suggested keywords (K)

10 20 30 40 50
Relatedness@K 0.17 0.23 0.26 0.28 0.30
Non obviousness@K 0.99 0.97 0.96 0.95 0.95
F-score@K 0.29 0.37 0.40 0.43 0.45

RAKE+BERT
n° suggested keywords (K)

10 20 30 40 50
Relatedness@K 0.89 0.83 0.76 0.71 0.65
Non obviousness@K 0.68 0.75 0.79 0.83 0.85
F-score@K 0.77 0.79 0.78 0.76 0.74

YAKE!
n° suggested keywords (K)

10 20 30 40 50
Relatedness@K 0.14 0.18 0.21 0.25 0.27
Non obviousness@K 0.99 0.97 0.96 0.95 0.94
F-score@K 0.24 0.31 0.35 0.40 0.42

YAKE! +BERT
n° suggested keywords (K)

10 20 30 40 50
Relatedness@K 0.83 0.78 0.74 0.70 0.67
Non obviousness@K 0.60 0.72 0.76 0.79 0.82
F-score@K 0.70 0.75 0.75 0.74 0.73

Table 7.4: Relatedness@K, Non obviousness@K and F‐score@K for Full web scrap.
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gestions reported here, the hope is that the reader can anyway find confirmation of (at least
some of) the comments provided in Section 7.2 and find them reasonable. In particular, given
the first 10 suggested keywords, it’s possible to verify that their average Relatedness@K and
Non obviousness@K are in linewith the values reported in Figure 7.1a andon the leftmost graph
in Figure 7.1b and 7.1c forK = 10.

Related suggestions are written in green and non-obvious suggestions have a purple back-
ground. From Section 7.1, it’s useful to recall that the unique objective rules used in order
to assess the relatedness and non-obviousness of a suggestion are:

1. when the suggested keyword is a copy of the query (evenwith a different order ofwords),
then it is for sure related (i.e. “rent office space”);

2. when the suggested keyword is a subset of the query, then it is for sure obvious (i.e. “office
space”).
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8
Conclusion

The suggestion of relevant and non-obvious new keywords is of main importance for the bro-
ker’s profitability: bidding on many non-obvious low traffic keywords, the combined traffic
of them can add up to the level produced by a popular (and so very expensive) keyword, but at
a fraction of the cost. Moreover, the traffic received is targeted better and will typically result
in a better convertion rate. These observations motivated the need to find out new alternative
keywords, relevant to the base query, but non-obvious in nature, so that little competition was
faced from other advertisers.

The problem has been addressed keeping in mind also other important requirements:

1. reduce the reliability on the ad landing page;

2. suggest keywords with good quality, quantity and variety;

3. be (as far as possible) language independent.

All these considerations have led to the development of a procedure based on two main steps:
web scraping and keywords extraction. The starting point was a query or seed keyword for which
the user wanted to find some meaningful alternative suggestions.

Web scraping allowed to retrive the raw text associated to each query directly from the top
URLs resulting from a Google search. In detail, given the seed keyword, the top URLs’ web
pages have been scraped using different sets of HTML tags. Based on which set was used, the
depth towhich thewebpagewas scraped varied, defining three different levels (super-light, light
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and full). The texts coming from all URLs have been joined in a unique one, which has been
cleaned from special characters.

Keywords extraction received as input the cleaned text and identified the keywords (single or
multiple words). An overview of the main types of keywords extractors models available in the
literature have been presented, highlighting pros and cons of each of them and motivating the
chosen ones: RAKE and YAKE!.

RAKE has been chosen for its simplicity, fastness, and almost language independence. More-
over, it represented a good benchmark to evaluate more complex models. Here came in play
YAKE!, which has been chosen as a state-of-the-art model for its performances in keywords
extractions tasks (and language independence). The theory underlying both models has been
presented together with some examples.

A BERT Filter has been developed in order to increase the relevance of the keywords ex-
tracted by both models. It worked by encoding the query keyword and each suggestion using
”BERT-Large Uncased model” and then computing the cosine similarity between the query
and each of the suggestions. This tool moved suggested keywords, very similar to the seed, on
top positions, which could be positive (avoid non relevent suggestions) but even negative (in-
crease obviousness of suggestions).

This showed the need to develop a methodology to evaluate systematically the keywords
extracted for all the possible combinations of scrap levels, models and number of keywords re-
turned. In order to do so, an overview of the available metrics has been presented, highlighting
pros and cons of each of them and selecting the most suitable ones for the problem at hand:
Relatedness@K ,Non obviousness@K and F-score@K .

Then the selectedmetrics have been used to evaluate the performances of all possible combi-
nations of scrap levels, models and n° suggested keywords. Results have been presented graph-
ically and in tabular format, highlighting the most important observations and defining the
best model for each scrap level. As expected, it turned out the non-existence of a model always
superior to others, but emerged also that YAKE!+BERTwas the model with more robust per-
formances through different scrap levels and number of suggestions.

Finally, a subset of 5 keywords was used to present some empirical results.
Some important final remarks:

• the new keywords’ suggestion procedure has been designed towork both autonomously
and in synergy with the New Keyword Generation Module, previously developed by
ACTOR;
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• RAKEdoes not have hyperparameters to set; YAKE! counts fourmain hyperparameters
(Subsection6.2.2), which values have been set following the analysis providedby authors
in their reference paper [28]. With more time and human resources, could have been
possible to fine tune such hyperparameters on the specific features of the text scrapped
from webpages, which it’s expected to be significantly different from a homogeneous
body of text written by a human (like a report, an abstract, a thesis, etc.).

• An alternative metric to evaluate “relevance” and “non-obviousness” could have been
MAP (Subsection 7.1.1). It would have required to store for each set of suggested key-
words, not only the aggregate number of related and non-obvious suggestions, but also
the judgement (non-related/obvious = 0, related/non-obvious = 1) for each suggested
keyword. It would have taken too much time, hence simpler metrics (Relatedness@K ,
Non obviousness@K) have been used. The use of MAP could be deferred as a future
development to check further the robustness of results.
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A
CPC-Optimizer

The CPC-optimizer is a tool, developed by ACTOR in the business project perimeter, able to
dynamically adjust the bids for existing keywords. It empirically works well, providing a valu-
able help in the resolution of part of the BBS problem. Anyway it is not able to propose an
initial bid for new keywords, which is important in order to maximize profits. In fact, an op-
timal (or quasi-optimal) initial bid allows to avoid wide bid adjustments when a new keyword
is launched. Such adjustments are economically costly, either in terms of missing revenue (un-
derbidding) and of excessive costs (overbidding).
To better understand the context, the CPC-optimizer is going to be briefly presented in the

following. Note that only the main idea is explained, while the low level details are voluntarily
omitted, in order to protect ACTOR’s intellectual property on this tool and its client, who
paid for it. The CPCOptimizer has to determine, for each keyword, a bid suggestion value in
order to increase profits. Increasing or decreasing the bid decision is not obvious at all. Increas-
ing the bid of some keywords possibly leads to more clicks andmore revenues, even though an
excessive increase could result in paying too much with respect to the induced revenues. Sim-
ilarly, decreasing the bid of other keywords could balance a current losing trend and in some
case also increment profit, if previously the bid was set to a too high value compared to the
revenues.
The result is a local search oriented online algorithm, that tries to get closer to the optimum

configuration at each step. Obviously, there not exist a configuration that is better than the oth-
ers forever. The environment characteristics, like users’interest and platforms’auctions contes-
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tants, change day by day. What this method does is trying to detect, and thus follow or invert,
current trends. The more these trends are stable, the more accurate the suggestions are.
In detail, there are two main steps:

1. bid proposal;

2. bid validation.

A.1 Bid Proposal

The input data for the CPC-optimizer is the clustering of keywords at the ad-group level. The
keywords are clustered along two dimensions which represent the profitability: profit (p) and
Return on Investment (r). So each keyword i can be visualized as a point (pi; ri) in the plane
withponhorizontal axis and r onvertical axis. Each clusterk has a centroid indicated as (pk; rk).
An example table is reported:

Cluster p̄ r̄

0 6654.84 1.11

1 2963.41 0.76

2 719.35 0.69

3 0 0

4 −19.80 −3.97
5 −115.92 −0.33

Table A.1: keywords clustered by profitability.

The sum of the positive p̄
(∑

p+
)
and the sum of negative p̄

(∑
p−

)
are computed. The

same is done also for the r̄, obtaining
∑

r+ and
∑

r−.

∑
p+

∑
p0

∑
p−

10337.60 0 −135.72

Table A.2: Sum of positive and negative profits.
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∑
r+

∑
r0

∑
r−

2.56 0 −4.30

Table A.3: Sum of positive and negative return on Investment.

Then two cases are distinguished.

A.1.1 Case 1:
∑

p+ ≥
∑

p−

In this case the ratio
∑

p+/
∑

p− > 1, indicating that the profitability scenario is favorable
and more risk could be undertaken. For each keyword i the formula to determine the new bid
is:

BIDnew
i = min

(
β;BIDi + (M1 · w1 +M2 · w2 +M3 · w3) · α ·BIDi

)
with:

▷ β the max bid value

▷ BIDi the current bid

▷ M1 represents the incidence of the pi on the total positive or negative profit.

▷ M2 represents the incidence of the ri on the total positive or negative ratio.

▷ M3 represents the risk factor.

▷ w1, w2, w3 ≥ 0 represent the contribution of each metricM , with
∑

j wj = 1.

▷ α =

{
α+, ifM1 · w1 +M2 · w2 +M3 · w3 ≥ 0

α−, ifM1 · w1 +M2 · w2 +M3 · w3 < 0

α+ represents the maximum increment percentage while α− represents the maximum
decrement percentage.
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A.1.2 Case 2:
∑

p+ <
∑

p−

In this case the ratio
∑

p−/
∑

p+ > 1, indicating that the profitability scenario is negative
and more protection could be undertaken. For each keyword i the formula to determine the
new bid is still:

BIDnew
i = min

(
β;BIDi + (M1 · w1 +M2 · w2 +M3 · w3) · α ·BIDi

)
with:

▷ β,BIDi,M1 andM2 defined as in Case i

▷ M3 represents the risk factor.

▷ w1, w2, w3 represent the contribution of eachmetricM , withw3 < 0 to ensure theM3

behaves as a protection factor.

Note that in both cases, β, w1, w2, w3, α+ and α− are hyperparameters to be fine-tuned on
the available data.

A.2 Bid Approval

Thebidproposal (BIDnew
i ) is validatedusing the variation in theprofits (∆p

(t)
i = p

(t)
i − p

(t−1)
i )

recorded in the previous timeframe. If the bid proposal of the previous time led to∆p
(t)
i > 0

then itwas correct and so it’smeaningful to confirm its variationdirection (increase or decrease)
even in the current bid proposal. If the bid proposal of previous time led to∆p

(t)
i < 0 then

it was wrong and so it’s meaningful to change its variation direction (increase or decrease) in
the current bid proposal. The equationA.1.1 determines theBIDnew

i , fromwhich is possible
to compute the associated bid variation∆BIDi = BIDnew

i −BIDi. The bid approval just
takes the bid variation value and confirms its direction or change it.

The CPC-optimizer procedure described above clearly requires the existence of historical
observations. In factBIDnew

i is computed usingmetricsM1,M2 andM3, which need records
aboutprofitp andROI r at the keyword’s and cluster’s level. This explainswhyCPC-optimizer
is not able to propose an initial bid for new keywords.
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B
BERT Encoding

The example used in Subsection 2.3.2 is expanded, showing the results from “BERT-Base Un-
cased” and “BERT-Large Uncased”. To allow comparison, the same strategies and the same
target keyword “pediatric nurse” are used and its cosine similarity with all the other keywords
is computed. Then the keywords are ranked in decreasing order of cosine similarity. If the
BERT encoding is effective, the most similar keywords should be considered similar also by a
human reader.
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C
Baseline Models Results

The results for the baseline models:

• multiple linear regression,

• Ridge regression,

• Lasso regression,

are reported for the datasets:

• main dataset keyword level (BERT Encoding),

• main dataset keyword level (GloVe Encoding).

C.1 BERT Encoding

C.1.1 Multiple Linear Regression

Firstly, the capacity of themultiple linear regressionoutput to “follow” the true output is graph-
ically inspected in Figure C.1. This allows to verify that the regression is not just returning a
dummy value, like the average, for all the observations.
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Figure C.1: Ground truth VS Output Regression.

(a) Regression’s Absolute Errors distribution.

(b) Regression’s Absolute Errors box‐plot.

Figure C.2: Regression’s Absolute Error quantile distribution.

154



The average absolute error is equal to 0.46$. To get a better feeling for the errors’ behavior,
the distribution of absolute errors and the corresponding box-plot are depicted in Figure C.2.
The box-plot shows that 25% of errors are lower than 18 cents and 50% of errors are lower

than 40 cents. The average absolute error is also shown as a red diamond. 75% of errors are
below 62 cents. There is another approximately 15% of cases where the error is between 63

and 90 cents. Very large errors are limited to the last 10% of data.

C.1.2 Ridge Regression

The Ridge Regression model requires the value of the hyperparameter λ. The term hyperpa-
rameter means that it is not determined by the model itself through the training, but it has to
be specified externally. Different values of λ allow to reach different minima for the objective
function. The optimal lambda (λ∗) is the one which leads to the smallest possible value of the
objective function.

In order to find λ∗ a grid search procedure together with a cross validation (CV) is applied.
First, a list of λ values is identified; then, for each of them, the training set is split in five folds
and, in turn, one is used as validation set and the remaining ones as training set. For each λ,
the average value of the objective function through the five splits is computed and used as the
metric to determine λ∗.

The whole procedure is repeated a second time selecting a finer grid of λ values around the
best value found before. The λ∗ is equal to 4850.
The capacity of the Ridge regression’s output to “follow” the true output is graphically in-

spected in Figure C.3. This allows to verify that the regression is not just returning a dummy
value, like the average, for all the observations.

The average absolute error is equal to 0.20$. This is a significant drop with respect to the
0.46$ achieved using multiple linear regression.

To get a better feeling for the errors’ behavior, the distribution of absolute errors and the
corresponding box-plot are depicted in Figure C.4.

The box-plot shows that 25% of errors are lower than 7 cents and 50% of errors are lower
than 15 cents. The average absolute error is also shown as a red diamond. 75% of errors are
below 28 cents. There is another approximately 15% of caseswhere the error is between 29 and
50 cents. Errors above 50 cents are limited to the last 10% of data. Considering the simplicity
of the model, results are already good.
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Figure C.3: Ground truth VS Output Ridge regression

(a) Ridge’s Absolute Errors distribution.

(b) Ridge’s Absolute Errors box‐plot.

Figure C.4: Ridge’s Absolute Error quantile distribution.
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Figure C.5: Ground truth VS Output Lasso regression.

C.1.3 Lasso Regression

TheLassoRegressionmodel requires the valueof thehyperparameterλ. In order tofindλ∗, the
same grid search procedure together with the cross validation (CV) used for Ridge regression
is applied here. First, a list of λ values is identified; then, for each of them, the training set is
split in five folds and, in turn, one is used as validation set and the remaining ones as training
set. For each λ, the average value of the objective function through the five splits is computed
and used as the metric to determine λ∗.

The whole procedure is repeated a second time selecting a finer grid of λ values around the
best value found before. The λ∗ is equal to 0.0010.

The capacity of the Lasso regression’s output to “follow” the true output is graphically in-
spected in Figure C.5. This allows to verify that the regression is not just returning a dummy
value, like the average, for all the observations.

The average absolute error is equal to 0.20$. This is a significant drop with respect to the
0.46$ achieved using multiple linear regression and equal to the Ridge result.

To get a better feeling for the errors’ behavior, the distribution of absolute errors and the
corresponding box-plot are depicted in Figure C.6.

The box-plot shows that 25% of errors are lower than 7 cents and 50% of errors are lower
than 16 cents. The average absolute error is also shown as a red diamond. 75% of errors are
below 28 cents. There is another approximately 15% of cases where the error is between 29

and 50 cents. Errors above 50 cents are limited to the last 10% of data.
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(a) Lasso’s Absolute Errors distribution.

(b) Lasso’s Absolute Errors box‐plot.

Figure C.6: Lasso’s Absolute Error quantile distribution.
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Figure C.7: Ground truth VS Output Regression.

C.2 GloVe Encoding

C.2.1 Multiple Linear Regression

Firstly, the capacity of themultiple linear regressionoutput to “follow” the true output is graph-
ically inspected in Figure C.7. This allows to verify that the regression is not just returning a
dummy value, like the average, for all the observations.

The average absolute error is equal to 0.22$. To get a better feeling for the errors’ behavior,
the distribution of absolute errors and the corresponding box-plot are depicted in Figure C.8.
The box-plot shows that 25% of errors are lower than 8 cents and 50% of errors are lower

than 17 cents. The average absolute error is also shown as a red diamond. 75% of errors are
below 29 cents. There is another approximately 15% of cases where the error is between 30

and 50 cents. Very large errors are limited to the last 10% of data.

C.2.2 Ridge Regression

The same procedure described in Subsection C.1.2 is followed to find the optimal value of
hyperparameter λ. The λ∗ is equal to 1400.

The capacity of the Ridge regression’s output to “follow” the true output is graphically in-
spected in Figure C.9. This allows to verify that the regression is not just returning a dummy
value, like the average, for all the observations.

The average absolute error is equal to 0.22$.
To get a better feeling for the errors’ behavior, the distribution of absolute errors and the
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(a) Regression’s Absolute Errors distribution.

(b) Regression’s Absolute Errors box‐plot.

Figure C.8: Regression’s Absolute Error quantile distribution.

Figure C.9: Ground truth VS Output Ridge regression
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(a) Ridge’s Absolute Errors distribution.

(b) Ridge’s Absolute Errors box‐plot.

Figure C.10: Ridge’s Absolute Error quantile distribution.

corresponding box-plot are depicted in Figure C.10.
The box-plot shows that 25% of errors are lower than 8 cents and 50% of errors are lower

than 17 cents. The average absolute error is also shown as a red diamond. 75% of errors are
below 29 cents. There is another approximately 14% of caseswhere the error is between 30 and
50 cents. Errors above 50 cents are limited to the last 11% of data. Considering the simplicity
of the model, results are already good.

C.2.3 Lasso Regression

The same procedure described in Subsection C.1.3 is followed to find the optimal value of
hyperparameter λ. The λ∗ is equal to 0.0009.
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Figure C.11: Ground truth VS Output Lasso regression.

The capacity of the Lasso regression’s output to “follow” the true output is graphically in-
spected in Figure C.11. This allows to verify that the regression is not just returning a dummy
value, like the average, for all the observations.

The average absolute error is equal to 0.22$.
To get a better feeling for the errors’ behavior, the distribution of absolute errors and the

corresponding box-plot are depicted in Figure C.12.
The box-plot shows that 25% of errors are lower than 8 cents and 50% of errors are lower

than 16 cents. The average absolute error is also shown as a red diamond. 75% of errors are
below 29 cents. There is another approximately 12% of cases where the error is between 30

and 50 cents. Errors above 50 cents are limited to the last 13% of data.
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(a) Lasso’s Absolute Errors distribution.

(b) Lasso’s Absolute Errors box‐plot.

Figure C.12: Lasso’s Absolute Error quantile distribution.
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