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Abstract

The goal of response theory, in each of its many statistical mechanical formulations, is to predict
the perturbed response of a system from the knowledge of the unperturbed state and of the applied
perturbation. A new recent angle of the problem focuses on performing predictions of the change
in one observable of the system by using the change in a second observable as a surrogate for the
actual forcing. From the angle of control theory, this means that one can reconstruct the full state
of a perturbed process from the observation of just a few variables. It turns out that it is not always
possible to use perturbed observables as surrogates of the forcing, but no general method has been
provided to practically discriminate a priori the unsuccessful cases. In this work, we make the first
step towards the filling of this gap in the simple yet relevant case of forced and dissipative linear
systems, including the case of systems with memory. We introduce a rigorous test (which we refer
to as unpredictability criterion) that can rule out a variable as a predictor of other variables. This
applies when the linear feedbacks acting on such a variable are stronger than dissipation. At this
regard, we provide some simple yet informative examples and we propose some applications of our
results in control theory and rational approximation theory. We also show that the presence of non-
Markovian components in the dynamics enhances the predictive power of all variables. Moreover, we
extend our results to random matrices, obtaining an average form of that test. One of the reasons
for the effectiveness of response theory lies in its extreme flexibility in the definitions of response
and perturbation. In spatially extended systems it is possible to look at the response of some local
observables, defined in different zones of the system. In this work we apply response theory to the
spatially extended system Lorenz 96, which has been proposed in the context of climate science. We
perturb the system in a given location and then we study to what extent a given local observable
can predict the behaviour of another local observable. We show this kind of study allows to unveil
potential information flows and causal links within the system. Given this study of the dynamical
system Lorenz 96, we devise a rather general method to study spatially extended systems and their
emergent properties through response theory.
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Introduction

Elements of Response Theory

Response Theory (RT) is a Statistical Physics theory that provides a general method
for predicting the changes in the statistical properties of observables of interest once the
system under investigation is perturbed. A cornerstone in the development of RT has
been the work by Kubo [1,2], who considered the case of weakly perturbed systems near
thermodynamic equilibrium. When a system is in this kind of steady state, there are no
steady state currents in the system or, equivalently, the time-reversal property applies
on the trajectories of the system in its steady state. Although Kubo’s theory has been
criticized at an early stage (by the Van Kampen’s argument [3], also discussed in [4]),
it has been successful in a great variety of disciplines, such as materials science [5]. The
main practical tools of RT that are key to many applications are response formulae that
allow one to compute the response of the system from the knowledge of the applied
perturbation and of statistical properties of the unperturbed system. In particular, the
response of the system is defined as the change of the expectation value of an observable
of interest Ψ resulting from the applied perturbation. The expectation value of Ψ in
the perturbed system is expanded in a perturbative series where the zeroth-order term
is the expectation value of Ψ in the unperturbed system. The higher-order terms are
expressed in terms of response functions which contain information about the statistics
of the unperturbed system and the applied forcing. These response functions themselves
can be seen as expectation values in the unperturbed system of some quantities that
depend on the applied forcing and Ψ. Another key feature of these response functions is
that of, once we compute them, they allow the prediction of the response of the system
to a continuum of different forcings of the system. We can observe that knowing the
statistics of the unperturbed system, in particular its spontaneous fluctuations, it is
possible to compute the response of the system to a given weak perturbation. This
is the key idea behind the fluctuation-dissipation theorem (FDT) by Kubo [2], which
establish a link between the forced and free fluctuations in the perturbative regime.
We will go through the Kubo’s RT and the FDT in Chapter 1.

A crucial issue not treated in Kubo’s theory is related to how systems out of (thermody-
namic) equilibrium respond after being forced. These intrinsically dissipative systems
are extremely important, and their steady states are called non-equilibrium steady
states (NESS). Viscous hydrodynamics, granular materials, and the climate are a few
relevant examples [4,6]. A rigorous and crucial development in the context of determin-
istic dynamics was provided by Ruelle [7–10], who derived a RT for Axiom A dynamical
systems both at the equilibrium and out of equilibrium. Axiom A systems are a par-
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ticular class of dynamical system, but the chaotic hypothesis proposed by Gallavotti
and Cohen [11, 12] states that they are practically indistinguishable from the effective
properties of macroscopic observables in high-dimensional systems which display a suf-
ficient degree of chaotic behaviour. As a consequence, RT should work in this large
class of dynamical systems. Equilibrium dynamical systems possess an invariant mea-
sure absolutely continuous with respect to Lebesgue. Instead, general non-equilibrium
dynamical systems obeying Axiom A dynamics possess an invariant measure that is
not smooth along the stable manifolds over which it is defined and smooth along the
unstable manifold. On average, the phase space experiences a contraction along those
directions. Ruelle proved that the response relations are divided into two contributions:
the one which comes from the unstable and central manifolds, which can be framed as
a FDT result, and the one from the stable (or contracting) manifold, which cannot be
framed as a FDT result [10]. In other words, the natural fluctuations are not equivalent
to the forced perturbations along the stable directions [6,13,14]. The two contributions
are hard to compute directly in practical applications [15–17].

RT can also be approached by the stochastic dynamics point of view [17–19]. Adding
a noise term in the equation of the dynamical system, the invariant measure becomes
smooth even along the stable directions and the FDT fully holds [20]. In this setting,
the obtained formula is called the Kubo-Agarwal formula, which reduces to the Kubo
formula for equilibrium systems. The addition of a noise term has to be justified by
the nature of the considered problem. This stochastic perspective becomes relevant
in many complex systems, where the focus is on coarse-grained dynamics, which is
effectively stochastic as a result of the presence of microscopic degrees of freedom.
Note that the coarse-grained dynamics is in general non-markovian, with memory effect
becoming negligible in the limit of infinite time-scale separation between the fast and
slow variables [21–25]. A generalised version of the FDT valid for higher moments has
been proposed by [26] in the spirit of Zubarev’s generalization of Kubo’s results [27].
In Chapter 2 we will review and compare these two approaches to non-equilibrium
systems.

Predictors and Predictands

A different angle on the problem of defining the response of a system to perturbations
has been proposed in [28], where it is discussed in fairly general terms how to relate
the response of different observables of a system undergoing a perturbation. The goal
is to understand to what extent we can use perturbed observables as surrogates of the
perturbation to predict the future state of other observables. This viewpoint is relevant
since it allows one to predict the state of the desired observables even if we lack some
information on the actual perturbation acting on the systems. It turns out that not all
choices of predictor and predictand are equally successful: some pairs may work, some
other not, and there is an asymmetry in the predictive power of observables.

A surrogate response function that is able to predict the change in the observable Ψ1

from the knowledge of the change in the observable Ψ2 is truly predictive if it requires
only information on the past values of Ψ2. This requires the Fourier transform of the
surrogate response function to have only poles in the lower complex ω− plane. The
response functions of the usual RT satisfy this requirement by construction, and from
this fact it is possible to derive a set of Kramers-Kronig (KK) relations related to these
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response functions [6, 13, 14, 26], as shown in Chapters 1 and 2. Due to how surrogate
response functions are built, one can have an asymmetry between the predictive power
of Ψ1 on Ψ2 and Ψ2 on Ψ1: some observables cannot predict other observables (see
discussion in Chapter 2). In [28] it is possible to find an example of a dynamical
system, the climatic model Lorenz 96 (L96), where the state of an observable Φ1 can
be predicted by another observable Φ2 but it cannot be predicted by a third one Φ3.

In Section 2.6.2 we present an innovative method which quantifies how much a sur-
rogate response function is non-predictive. The method is rather efficient from the
computational point of view and its theoretical justification is based on the fact that
the surrogate response functions do not satisfy anymore the KK relations. The prob-
lem to actually quantify the predictive ability of the surrogate response functions can
emerge in a variety of situations where we have many non-predictive surrogate response
functions and we want to choose among them the one providing the best prediction.
Moreover, applying the method in such problems can unveil potential flows of informa-
tion or causal links present in the system, as we will see in the L96 system in Chapter
4.

Surrogate RT and Control in Linear Systems

The requirement for the success of the prediction turns out to be that the Fourier
transform of the surrogate response function has only poles in the lower complex ω−
plane. This is equivalent to the stability requirement found in the control theory
literature [29]. This is usually observed after the full computation of the response
functions, which can be quite cumbersome. We would like to have a criterion which
allows us to discriminate a priori, before obtaining the response function, whether an
observable is actually predictive or not. We present in Chapter 3 a first original step
towards the solution of this problem. We focus on simple linear systems (Markovian
and non-Markovian ones), and we find a criterion which clarifies when an observable
cannot be used for prediction purposes. We refer to this result as the Unpredictability
Criterion (UC). We show that adding memory effects the UC changes, improving the
predictive ability of the variables. Furthermore, we randomize the matrix which defines
the linear system, deriving a form of the UC which is valid on average over the dynamical
variables. This approach is meaningful in cases where we have just partial information
on the structure of the system, maybe due to measurement errors or noise, and hence
we have to add some randomness in the matrix of the dynamical system.

Even though this work is meant to be a first step towards the design of general methods,
focusing just on linearized systems could seem to be purely of academic interest. On the
other hand, linearized systems are extensively studied and used in the broad context of
control theory [29, 30]. Control theory studies how to implement feedbacks to control
the value of a variable of interest of a dynamical system [31], using the measured value
of that variable. In such a problem, the perturbation of the system is seen as an input,
and the variable of interest depending on the state of the system is seen as an output.
Controlling the system can be loosely divided into three tasks: (i) sensing of the state
or the output of the system, (ii) comparison of the measured values with the desired
ones and (iii) implementations of corrective actions on the input.

In the context of control theory, response functions are usually referred to as transfer
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functions, connecting input and outputs signals. A rich wealth of tools concerning
linearized systems have been developed in control theory, where they find extensive
applications. Remarkably, a large variety of non-linear systems can be reduced to a
linear version of them, employing a careful choice of the input of the system or by
expanding around an equilibrium point of interest [32]. Moreover, it is possible to
implement feedbacks which can keep a system in a linear regime [29, 30]. The main
motive of the success of linear systems is that explicit results can be derived much
more easily than non-linear systems and they can be studied and controlled more
transparently.

We propose here the idea that surrogate RT could provide some useful insights for con-
trol theory. One of the problems that emerge when designing a controller is the partial
information of the state of the dynamical system. To sense the output of the system,
we have to use an observer, which can consist of a few sensors. In many applications, it
is not practical for the observer to directly measure the whole system state, so typically
it focuses on a few observables of interest, which are the most meaningful to reconstruct
the full state. Surrogate RT could identify the most meaningful observables in terms
of their ability to predict other observables. In this sense, the predictive power of the
dynamical variables is the ability of the dynamical variables to reconstruct the state of
the other dynamical variables. In particular, our work in this thesis could provide an
efficient criterion to rule out a priori the useless observables, which are the ones without
predictive power. Another relevant application of our work in control theory deals with
the identification of non-minimum phase systems [29]. This class of dynamical systems
features controllability problems which can have detrimental effects on industrial con-
trollers [29, 33]. The UC gives an effective method to discover whether a dynamical
system is non-minimum or not, preventing eventual damages of the controller.

RT and Climate

Response Theory is a rather general and flexible theory, which can be applied to a
large variety of contexts in very different scientific disciplines. One of these contexts is
the climate, where it provides new insights and alternative methods to very long and
time-consuming numerical simulations. The climate is a NESS since it is a forced and
dissipative complex system. The forcing acting on the climate is given by variations in
time and space of the net energy flux at the top of the atmosphere. The system tends
to re-equilibrate to a steady state thanks to the transport of mass and energy provided
by moving geophysical fluids and to the exchange of infrared radiation [34–36].

One of the greatest issues which are studied within climate science is climate change.
The goal is to predict the change of the statistical properties after some internal (e.g the
atmospheric composition) or external parameter (e.g. the solar irradiance) is perturbed.
This is a very complicated task since the climate is a system extended in space and very
complex, with a lot of processes and feedbacks acting within it in a wide range of spatial
and temporal scales. A first and simplistic -but heavily used- start for tackling this
gargantuan problem can be found in the equilibrium climate sensitivity (ECS) [34],
which measures the globally and annually averaged surface air temperature increase
which would result from the doubling of the concentration of a given greenhouse gas
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(GHG) versus that of the reference state with temperature T0:

ECS ≡ ∆T = Λ(T0)∆R2×GHG, (1)

where the factor Λ(T0) is called linear gain factor and ∆R2×GHG is the extra net
radiative forcing which will be present in the atmosphere as a result of the doubling of
the concentration of the GHG. The underlying hypothesis of the definition of the ECS
is that ∆T is measured between two steady states. We can see that the ECS has some
serious shortcomings: it provides no temporal information since it addresses just long
term changes and no spatial information too.

To overcome this problem, recently it has been proposed to use the Ruelle’s RT pre-
sented in Chapter 2 to effectively predict the response of observables of interest, such
as the global average temperature, to a given perturbation, in a well-defined context,
where the climate is seen as a chaotic dissipative deterministic system. The FDT
cannot be applied since we are dealing with a NESS. As a consequence, due to the
presence of the stable manifold contribution, particular events called climate surprises
can emerge [37]. Remarkably, the climate surprises cannot be predicted by the natural
fluctuations present in the unperturbed system. The Ruelle’s approach has been suc-
cessfully applied to climatic models with increasing degree of complexity, going from
simple models [14], to intermediate-complexity ones [6,15] and even to Global Climate
Models (GCM) [38, 39], spanning over a large range of temporal scales [40]. the use-
fulness of RT lies in the fact that once we obtain the response functions for a given
observable from a known perturbation with a simple temporal pattern, we can use it to
make predictions for a continuum of temporal patterns, improving the climate change
predictions [34].

In Chapter 4 we apply the surrogate RT on a climate model: the Lorenz 96 (L96)
model [41–43]. The L96 model is a rather simple climatic model, but it contains all the
basic physical processes that are generally present in a non-linear dynamical system:
advection, mechanical damping and forcing. Moreover, it displays chaotic behaviour
and the presence of travelling waves within it. The L96 has already been a subject of RT
investigations in [6], showing successfully the applicability of the Ruelle’s RT. The first
application of the surrogate RT on the L96 model has been proposed in the seminal
paper [28], where surrogate response functions were built for global perturbations,
looking at global observables. In Chapter 4 we apply the surrogate RT again on the
L96 system, but focusing on local perturbations and local observables. This is possible
since the L96 system is an extended model in space. In other words, perturbing the
system in a given location, we analyze when a local dynamical variable is able to predict
the time behaviour of another local dynamical variable. A crucial role in solving this
problem is played by the form and the time scale of the propagation of the perturbation.
In particular, it is possible to define an hierarchy of dynamical variables in terms of their
predictive power, which is closely related to how fast they react to the perturbation.
The sooner a dynamical variable feels the perturbation and the better it could predict
other variables. In addition to that, we use the L96 system as a benchmark for our ratio
method derived in Chapter 2, showing that it could discover causal links or flows of
information with a definite direction. We conclude showing that perturbing the system
in two different ways and considering a combination of global and local observables,
possible bad predictions performed by local observables can be drastically improved.
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The experimental setting related to that observation is that of a local observer who tries
to predict what is happening to an observable in other parts of the globe. First, he/she
perturbs the system just with one forcing. If he/she discovers that the information
provided by that forcing is not enough, he/she considers additional forcings in order to
extract more information from the system, improving his predictions. Our application
of the surrogate RT on the spatially extended and chaotic L96 dynamical system shows
that it is a theory which can be successfully applied to non-trivial systems, providing
new insights on them. Using the L96 system as a toy model, we derive a methodology
which can be generally applied to a generic dynamical system to understand which
local observables can predict other local observables, using a well-defined hierarchy in
terms of their predictive power.



Chapter 1

Kubo’s Response Theory

In this section, we resume the Kubos’s theory, which can be considered as the first
cornerstone of RT [1, 2]. In Section 1.1 we present the Langevin equation and the
Fokker-Planck (FP) equation, and the connection between them [44]. Using this set-
ting, in Section 1.2 we remark the difference between thermodynamic equilibrium
and non-equilibrium steady-state (NESS). Next, in Section 1.3 we derive the Kubo’s
response formula in the Hamiltonian formulation, following [4], which holds for sys-
tems at the thermodynamic equilibrium. In Section 1.4 we derive the Krames-Kronig
(KK) relations related to the Kubo’s response formula, whose only ingredient is the
causality of the response function. In Section 1.5 we study the FDT, which focuses
on relating the fluctuations of unperturbed systems at the thermodynamic equilibrium
with their properties after being slightly perturbed. In Section 1.6 we present the
Green-Kubo relations, which compute transport coefficients by means of equilibrium
averages. Lastly, in Section 1.7 we explain in nutshell the famous van Kampen’s ob-
jection to Kubo’s response theory despite its effectiveness, and how his argument can
be objected supporting the effectiveness of RT.

1.1 Langevin equation and FP equation

1.1.1 Brownian Motion

Let’s first present the Langevin equation for the motion of a mesoscopic particle in d
dimensions over a fluid medium [44].This kind of motion is called Brownian Motion
(BM), and it features a separation of time scales between the collision time τc (the
typical time-scale between two collisions of the mesoscopic particle with the fast-moving
particles of the fluid) and the dissipation time τd (the typical time-scale over which the
mesoscopic particle reduces its speed due to viscosity):

τc << τd. (1.1)

We take the point of view of the mesoscopic particle, whose motion has characteristic
time τd. We have that the position ~x of the mesoscopic particle follows the following
equation, which is called Langevin equation:

mẍi = −γ̃ẋi + ηi, i = 1, ..., d, (1.2)

1
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where m is the mass of the particle and γ̃ is the viscosity coefficient. We have introduced
the white noise ηi, which is such that:

〈ηi〉 = 0, 〈ηi(t)ηj(t′)〉 = Γ̃δijδ(t− t′), (1.3)

for each i, j = 1...d and t, t′. The average is over many realizations of the system, i.e.
over many trajectories of the mesoscopic particle obtained by different realizations of the
white noise. The white noise expresses the influence of the collisions of the microscopic
degrees of freedom of the medium with the mesoscopic particle: their average influence
is zero and the collisions are uncorrelated over different dimensions and different time
instants.

From the Langevin equation we can extract a first FDT. In order to do that, we use
the following relation [44] for the velocity of the particle v = ẋ:

〈v2
i (t)〉 =

Γ̃

2mγ̃
(1− e−2 γ̃

m
t) + v2

i (0)e−2 γ̃
m
t, (1.4)

where v2
i (0) is the initial condition. In the limit of large times t→∞ we have:

〈v2
i (t)〉 →

Γ̃

2mγ̃
. (1.5)

On the other hand, the equipartition theorem gives the following relation at the equi-
librium:

1

2
m〈v2

i (t)〉 =
kBT

2
, (1.6)

where T is the temperature and kB is the Boltzmann constant. Comparing (1.5) and
(1.6) we obtain our first dissipation-fluctuation relation [4, 44]:

Γ̃ = 2γ̃kBT, (1.7)

It is called fluctuation-dissipation relation because it links dissipation coefficients (γ̃ ∼
m/τd) with fluctuation elements (T and Γ̃). The first one measures how fast the system
reacts to a perturbation, relaxing to equilibrium, whilst the second ones are property
of the unperturbed system.

In the Langevin equation the stochastic component of the system is described by the
noise ηi, which makes the trajectories of the dynamical variable xi random. We can
alternatively describe the system by means of a probability distribution function (PDF)
p(x, t) over all the possible positions at a given instant t, following [44]. Note that we
denote by x the vector {xi}i={1,...,d}. We will use this notation for each vector in our

work. The quantity p(x, t)ddx is the probability to find the mesoscopic particle at time
t in the infinitesimal volume x + ddx around the position x. We want to write an
equation which describes the evolution in time of this PDF. In order to do that, we
introduce the transition rate W (x′, x), which is the probability per unit time that the
particle jumps from x to x′. By means of this quantity, we can write the evolution in
time of the PDF through the following relation [44]:

∂p(x, t)

∂t
=

∫ ∞
−∞

ddx′[W (x, x′)p(x′, t)−W (x′, x)p(x, t)] (1.8)
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which resembles a master equation, where the first term is a gain term (particles jump
in x) and the second one a loss term (particles jump away from x). In this formalism
the characteristic time is way larger than τc, since the instantaneous influence of the
collisions is lost. At this point we can introduce the vectorial displacement χ = x′ − x
and rewrite the jump probability as follows:

W (x′, x) = W (x;χ). (1.9)

Then we take (1.8) and we change the integration variable from x′ to χ:

∂p(x, t)

∂t
=

∫ ∞
−∞

ddχ[W (x+ χ;−χ)p(x+ χ, t)−W (x;χ)p(x, t)], (1.10)

and we change the integration variable from χ to −χ in the first integral:

∂p(x, t)

∂t
=

∫ ∞
−∞

ddχ[W (x− χ;χ)p(x− χ, t)−W (x;χ)p(x, t)]. (1.11)

Now we Taylor expand the first term within in the integral in (1.11) around x for
small χ (this expansion is called Kramers-Moyal expansion [45]) and we stop at the
second order. This is justified by the fact that in the BM large displacements are very
unlikely to happen. Note that we cannot hope to obtain a better equation truncating
the expansion after the second order, thanks to the Pawula Theorem [45]. This theorem
states that for a positive transition probability W , the Kramers-Moyal expansion may
stop either after the first term or after the second term. If the expansion does not stop
after the second term, all the infinite number of terms have to be kept. Truncating up
to the second order and defining the following averages:

ai(x) =

∫
ddχW (x;χ)χi (1.12)

bij(x) =

∫
ddχW (x;χ)χiχj , (1.13)

we find the FP equation:

∂tp = −∇(ap) +
1

2

∑
i,j

∂i∂j(bijp), (1.14)

which describes the evolution in time of the PDF p(x, t) of a system described by the set
of N dynamical variables x and subject to the drift coefficients {ai(x, t)}i and diffusion
coefficients {bij(x, t)}ij .

1.1.2 General stochastic differential equation

In this section we generalize the Langevin equation and the FP equation taking the
point of view of stochastic differential equations [44, 46]. The main problem in the
Langevin equation derived in the BM case (1.2) is the fact that the deterministic part
is differentiable with respect to time, whilst the white noise is discontinuous at each
time t. To overcome this problem, we introduce the notion of Wiener process, which is
the stochastic process defined by the integration in time of white noise:

Wi(t) ≡
∫ t

0
dt′ηi(t

′). (1.15)
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The statistical properties of the white noise (1.3) are transferred in the following sta-
tistical properties of the Wiener process:

〈Wi〉 = 0, 〈Wi(t)Wj(t
′)〉 = Γ̃δijmin(t, t′), (1.16)

in particular:
〈Wi(t)

2〉 = Γ̃t, (1.17)

hence the variance of the Wiener process diffuses linearly in time. The Wiener process
has the following properties:

• Wi(t) is continuous in time and it has zero average at any instant t.

• For any t1 < t2 < t3, the non-overlapping increments (W (t2)−W (t1) and (W (t3)−
W (t2) are independent and identically distributed (iid).

• For any t1 < t2, the increment (W (t2)−W (t1) follows a Gaussian PDF with zero
average and variance Γ̃(t2 − t1), as a consequence of the central limit theorem
(since the Wiener process is built summing up iid realizations of the white noise).

It is possible to define an infinitesimal increment of a Wiener process as follows:

dWi(t) = Wi(t+ dt)−Wi(t) ∼ N(0, Γ̃dt). (1.18)

At this point we can define the general form of the overdamped Langevin equation
(we do not consider the inertial term in (1.2)) as a well-defined stochastic differential
equation, for a generic stochastic process Xi:

dXi(t) = ai(X(t), t)dt+ cij(X(t), t)dWj(t), (1.19)

where the ai are the generalized drift coefficient and the cij are coefficients which
generalize the previous Langevin equation (1.2) (they are linked to the generalized
diffusion coefficients, as it follows).

We can obtain the generalized FP equation from the generalized Langevin equation
(1.19). To do that, we consider a test function f(X, t) at least twice differentiable with
respect to X and we take its Taylor expansion up to the second order (without taking
care of the indices):

df =
∂f

∂t
dt+

∂f

∂X
dX +

1

2

∂2f

∂X2
dX2 +O(dt2, dX3). (1.20)

At this point we introduce the Langevin equation (1.19) in the increments and we use
the fact that dW 2 = dt:

df = (
∂f

∂t
+ a

∂f

∂X
+

1

2
c2 ∂

2f

∂X2
)dt+ c

∂f

∂X
dW, (1.21)

which is the celebrated Ito’s formula [44]. At this point we assume that ∂tf = 0 (i.e.
the test function f does not depend explicitly on time) and we take the average of
(1.21), recalling that 〈dW 〉 = 0:

d

dt
〈f〉 = 〈a ∂f

∂X
+

1

2
c2 ∂

2f

dX2
〉. (1.22)
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We explicit the PDF p(X, t) of the stochastic variable X at time t as follows:

〈f〉 =

∫
S
dXp(X, t)f(X),

where S is the state space of X. Doing some integration by parts in (1.22) and assuming
that the p(X, t) vanishes at the boundaries of S, we obtain the generalized FP equation
[44]:

∂tp(X, t) =
∑
i

{
− ∂

∂Xi
(ai(X, t)p(X, t)) +

1

2

∑
j

∂

∂Xi

∂

∂Xj
[bij(X, t)p(X, t)]

}
, (1.23)

where the generalized diffusion coefficients bij are linked to the coefficients cij intro-
duced in (1.19) as follows:

bij =
∑
k

cikckj . (1.24)

1.2 Thermodynamic equilibrium and NESS

We want now to define the possible types of steady state which can occur in system [44].
We do that considering the Fokker-Planck equation (1.14), recasting it in an alternative
form by means of the definition of a density current ~j:

∂tp = −∇j, (1.25)

where the vector j has components ji = ai − 1
2

∑
j ∂j [bijp]. At the equilibrium, the

PDF p(x, t) does not change, so we impose the LHS to be vanishing. This translates to
the condition ∇j = 0. This is the point where the difference between thermodynamic
equilibrium and NESS comes up:

• If we impose the stationarity condition ∇j = 0 together with j = 0, we are in a
thermodynamic equilibrium, or equilibrium.

• If we impose the stationarity condition ∇j = 0 with a non-vanishing current
j 6= 0, we are in a NESS.

1.2.1 DBE and equilibrium

We show now that the equilibrium condition can be linked to the time reversal condi-
tion, which refers to a situation where the probability of a forward path is equal to the
probability of the same path, but reversed [44]. To show this equivalence, we consider
the Langevin equation of a Brownian Motion in one dimension within a conservative
force with potential U(x) [44]:

mẍ = −γ̃ẋ−∇U + η, (1.26)

which can be recasted in the following first-order differential system:{
ẋ = p/m

ṗ = −γp−∇U + η
(1.27)
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where we have defined γ = γ̃/m. In this case, we refer to a couple of values of space
coordinates and momentum (x, p) as a state α, and we consider a path as a sequence
of states in time {αt}t. The time inversal operation T applied to a state α works as
follows:

α∗ = T(α) = T(x, p) = (x,−p) (1.28)

The condition of time reversal is the following (for simplicity we consider just a discrete
set of time instants {ti}i=1...N and we say that a path is a sequence of states αi in this
discrete set):

p(αt1 = α1, ..., αtN = αN ) = p(αt1 = α∗N , ..., αtN = α∗1) (1.29)

Before proving the equivalence between the time reversal property and the equilibrium
condition, we remark that we can have the condition (1.29) if and only if the follow-
ing set of relations is satisfied by the probabilities to be in a state pα and the jump
probabilities Wαβ [44]:

Wβαpα = Wα∗β∗pβ∗ . (1.30)

This set of equations is called Detailed Balance Equations (DBE). This equivalence can
be proven using the Kolgomorov’s criterion in the context of ergodic Markov chains and
it is presented in Appendix A.

In order to prove that the DBE are present at the equilibrium condition, we consider
as state α a couple (x, p) and for state β the couple (x′, p′) such that:{

x′(t) = x(t+ dt) = x(t) + p
mdt

p′(t) = p(t+ dt) = p(t) + (−U ′(x(t))− γp)dt+ dW,
(1.31)

where dW is the infinitesimal increment of a Wiener process (1.18), hence it follows a
Gaussian PDF with zero mean and variance Γ̃dt. At this point the jump probabilities
become:

Wβα = δ(x′ − x− p

m
dt)

1√
2πΓ̃dt

exp

[
− 1

2Γ̃dt
(p′ − p+ (

γ̃p

m
+ U ′(x))dt)2

]
(1.32)

Wα∗β∗ = δ(x− x′ + p′

m
dt)

1√
2πΓ̃dt

exp

[
− 1

2Γ̃dt
(p′ − p+ (

−γ̃p′

m
+ U ′(x′))dt)2

]
, (1.33)

where the Dirac deltas take care of the deterministic part while the Gaussians of the
stochastic part of the transition. Taking the ratio of the jump probabilities we obtain
[44]:

Wβα

Wα∗β∗
= exp

[
−2γ̃

Γ̃
(
(p′)2

2m
− (p)2

2m
+ U(x′)− U(x))

]
= (1.34)

= exp

[
−2γ̃

Γ̃
(E′ − E)

]
= exp

[
− 1

kBT
(E′ − E)

]
, (1.35)

where we have defined the energy:

E(α) =
p2

2m
+ U(x). (1.36)
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Note that the delta functions cancel each other in the ratio (1.34), since their arguments
are equal up to terms of order greater than dt, as it can be verified inserting the relation
(1.31) into (1.33) (p′ dt can be substituted by p dt). In the last equality we have used the
FDT (1.7). The last equality can be rewritten as the ratio

pβ∗
pα

since at the equilibrium
we have that the steady-state distribution is given by [44]:

pα =
1

Z
e
−E(α)
kBT = pα∗ , (1.37)

where Z is a normalization factor. All in all, we have showed that at the equilibrium
the DBE are valid, and hence the time reversal property for the trajectories holds. This
fact characterizes the equilibrium condition since in a NESS the time reversal property
is no more guaranteed.

1.3 Linear Response Theory

Kubo’s theory has been a milestone in Response Theory. In his works [1, 2] he has
addressed the problem of studying the properties of slightly perturbed systems, relating
them to the properties of the unperturbed system [4, 44]. He focused on Hamiltonian
systems firstly taken at the equilibrium, with Hamiltonian H0(p, q) and equation of the
dynamics:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (1.38)

which are invariant under time reversal. At this point we perturb the system, acting
directly on the Hamiltonian, which becomes time-dependent: H(p, q, t) = H0(p, q) +
F(t)V (p, q), where F is considered small with respect to the other terms in the Hamil-
tonian. Note that V (p, q) does not depend in an explicit way on time t. The Hamilton
equations become:

q̇i =
∂H

∂pi
− F(t)Kq

i , ṗi = −∂H
∂qi
− F(t)Kp

i , (1.39)

where we have defined the generalized forces:

Kq
i = −∂V

∂pi
, Kp

i =
∂V

∂qi
. (1.40)

The phase space PDF in the unperturbed case feq(p, q) is given by the Boltzmann-Gibbs
formula:

feq(p, q) =
1

Z
e−βH0(p,q), β ≡ 1

kBT
(1.41)

which satisfies the Liouville equation in the unperturbed case [4]:

∂

∂t
feq(p, q) + iL0feq(p, q) = iL0feq(p, q) = 0, (1.42)

where L0 is the Liouville operator whose action on a function g(p, q, t) is given by the
following Poisson brackets:

iL0[g] = {g,H0} =
∑
j

(
∂H0

∂pj

∂

∂qj
− ∂H0

∂qj

∂

∂pj

)
g. (1.43)
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In the perturbed case the phase space PDF f(p, q, t) depends on time and it satisfies
the perturbed Liouville equation:

∂

∂t
f(p, q, t) + i[L0 + Lext]f(p, q, t) = 0, (1.44)

where the operator Lext is such that:

iLext[g] = F(t){g, V } = F(t)
∑
j

(
∂V

∂pj

∂

∂qj
− ∂V

∂qj

∂

∂pj

)
g. (1.45)

An approximated solution of (1.44), valid up to first order in iLext and with initial
condition f(p, q, 0) = feq(p, q) at t = 0, is the following [4]:

f(p, q, t) = feq(p, q)− i
∫ t

0
dt′e−i(t−t

′)L0Lextfeq(p, q). (1.46)

We remark that we are stopping at the first order since we are developing a linear
response theory, but we can consider even higher-order terms without much effort.
Now we consider a generic observable Ψ(p, q) and we compute its average over the
phase space at time t:

〈Ψ(t)〉 =

∫
dpdqΨ(p, q)f(p, q, t). (1.47)

We want to compute the linear perturbation in the average value of Ψ with respect to
equilibrium [4]:

〈∆Ψ(t)〉 = 〈Ψ(t)〉 − 〈Ψ〉eq. (1.48)

To do that we substitute (1.46) into (1.48), obtaining:

〈∆Ψ(t)〉 =

∫
dpdqΨ(p, q)

∫ t

0
dt′e−i(t−t

′)L0F(t′){feq, V } (1.49)

Since feq depends on p, q just through H0, we have that:

{feq, V } = {H0, V }
∂feq
∂H0

, (1.50)

where:

{H0, V } = −{V,H0} = −
(
dV

dt

)
t=0

,
∂feq
∂H0

= −βfeq. (1.51)

Note that in the first relation we have used the fact that dV
dt = {V,H0} + ∂V

∂t , in
addition to the fact that V does not depend in an explicit way on t (hence ∂tV = 0).
As a consequence, we have that (1.49) becomes:

〈∆Ψ(t)〉 = β

∫ t

0
dt′
{∫

dpdqΨ(p, q)e−i(t−t
′)L0

(
dV

dt

)
t=0

feq(q, p)
}
F(t′). (1.52)

As a last step we use the unitarity of the Liouvillian operator, obtaining:

〈∆Ψ(t)〉 = β

∫ t

0
dt′F(t′)

∫
dpdq

(
dV

dt

)
t=0

feq e
i(t−t′)L0Ψ(p, q), (1.53)
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which can assume a simplified form defining a response function ΓΨ,V :

〈∆Ψ(t)〉 =

∫ t

0
dt′F(t′)ΓΨ,V (t− t′), (1.54)

where [4]:

ΓΨ,V (t) = Θ(t)β

∫
dpdq

(
dV

dt

)
t=0

feq e
itL0Ψ(p, q). (1.55)

We can see in (1.54) that the effect of the time pattern of the perturbation F at time τ <
t on the observable Ψ at time t is mediated by the response functions ΓΨ,V . We added
a theta in the response function (1.55) to highlight the fact that the response function
is predictive: we can predict the state of the perturbed observable Ψ at time t just
using just the perturbation F(τ) up to time t, as it is shown in (1.54). It is remarkable
that (2.16), as (1.55), does not depend on the time pattern of the perturbation, while it
depends on the observable and the space pattern of the forcing. The practical use of this
fact is the possibility to compute the response function for a given time pattern, and
then use it to predict the response of the given observable Ψ to another time pattern
(performing the convolution of the response function with the new time pattern). We
can obtain a more compact form of the response function as follows. First, we define the
time-correlation functions of two observables A(q, p) and B(q, p) at two times t1 < t2
and at the equilibrium:

〈A(t2)B(t1)〉0 =

∫
dpdq A(q, p))e−iL0(t2−t1)B(q, p)feq(q, p)

=〈A(t2 − t1)B(0)〉0
=〈A(0)B(t1 − t2)〉0,

(1.56)

where we have used the invariance under time translations at the equilibrium of the
correlators. We can thus rewrite the response function ΓΨ,V as follows:

ΓΨ,V (t) =Θ(t)β〈V̇ (0)Ψ(t)〉0
=−Θ(t)β〈V (0)Ψ̇(t)〉0,

=−Θ(t)β
d

dt
〈V (0)Ψ(t)〉0

(1.57)

where V̇ (0) =
(
dV
dt

)
t=0

and V (0) = V (q(0), p(0)). The last formula has been obtained
from (1.55), taking the adjoint of the operator iL0:

ΓΨ,V (t) =Θ(t)β

∫
dpdq (iL0V ) feq e

itL0Ψ(p, q)

=Θ(t)β

∫
dpdq V feq (iL0)†eitL0Ψ(p, q).

(1.58)

It is important to observe that the response function ΓΨ,V (t), which describes the
perturbed system, is obtained from an average over the unperturbed system. Lastly,
we notice that we can rewrite (1.55) in another meaningful form defining the dissipative
flux j(p, q) as follows [4]:

j(p, q)feq(p, q) = −{H0, V }feq(p, q) =
∑
j

(
Kq
jF

(0)
j −Kp

j

pj
m

)
feq(p, q), (1.59)
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where we have used the generalized forces (1.40) and we have defined the force acting

on the j-th particle in the system defined by H0 as F
(0)
j = −∂H0

∂qj
. We can see that due

to the presence of the generalized forces the dissipative flux (1.59) is different from zero
in general. Using (1.59), the response function (1.55) becomes:

ΓΨ,V (t) = Θ(t)β

∫
dpdq j(p, q)feq e

itL0Ψ(p, q) = β〈j(0)Ψ(t)〉0. (1.60)

1.4 KK relations

In this section we derive the KK equations [44] which are peculiar of the response
function (1.57). These equations link the real and the imaginary part of the Fourier
transform of the response function, requiring just the causality of the response function
(1.55) (guaranteed from the presence of the Theta function). The KK equations can
be regarded as a set of constraints that any response function of the type (1.55) must
satisfy. First, we perform the Fourier transform of the response function ΓΨ,V , using
the third form of (1.57) and denoting as C(ω) the Fourier transform of the correlation
function C(t) = 〈V (0)Ψ(t)〉:

ΓΨ,V (ω) = −β
∫
dω′

2π
Θ(ω − ω′)(iω′)C(ω′), (1.61)

where we used the fact that the transform of a product in the time domain is a con-
volution in the frequency domain. We recall now that the Fourier transform of the
Heaviside theta is the following [44]:

Θ(ω) = lim
ε→0+

1

ε− iω

=πδ(ω) + iP

[
1

ω

]
,

(1.62)

where P [.] is the principal part. As a consequence, we can express ΓΨ,V as follows:

ΓΨ,V (ω) = −iβ
2
ωC(ω) + βP

[∫
dω′

2π

ω′

ω − ω′
C(ω′)

]
. (1.63)

In particular, we have that:

ΓIΨ,V (ω) = −β
2
ωC(ω). (1.64)

We can deduce from (1.63) the following relation, which is the KK relation [44]:

ΓRΨ,V (ω) = −P

[∫
dω′

π

ΓIΨ,V (ω′)

ω − ω′

]
, (1.65)

where ΓRΨ,V and ΓIΨ,V stands for the real and imaginary part of the response function.
An equivalent form of (1.65) is the following:

ΓIΨ,V (ω) = P

[∫
dω′

π

ΓRΨ,V (ω′)

ω − ω′

]
, (1.66)
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In other words, the real and the imaginary part of the response function are linked
by an Hilbert transform [13]. An alternative form for the KK relation can be found
plugging (1.62) and (1.64) into (1.61):

ΓΨ,V (ω) = − lim
ε→0+

∫
dω′

π

ΓIΨ,V (ω′)

(ω − ω′) + iε
. (1.67)

Another interesting observation about the real and imaginary part of the response
function is the following. From the definition of Fourier transform of ΓΨ,V , we have

that ΓΨ,V (ω) = Γ†Ψ,V (−ω). As a consequence, we have that ΓIΨ,V (ω) is an odd function

in ω while ΓRΨ,V (ω) is an even function in ω.

It could be of interest to expand more on the case V = Ψ = X, since in that case the
correlation function is C(t) = 〈X(t)X(0)〉0 and the Wiener.-Khinchin theorem holds
for its Fourier transform [44]. This theorem states that the following relation holds:

C(ω) = lim
T→∞

〈|XT (ω)|2〉0, (1.68)

where XT (ω) = 1
T

∫ T/2
−T/2 dte

iωtX(t). As a consequence we have that C(ω) is greater or

equal to zero: C(ω) ≥0.

1.5 Fluctuation dissipation theorem

We want now to obtain some relations, which form the FDT, which connect the spon-
taneous fluctuations present in an unperturbed system at the equilibrium with the
properties of the same system slightly perturbed [44]. We address this problem consid-
ering a system prepared very far in the past in the equilibrium state of the perturbed
Hamiltonian H = H0 − h(t)A, with h(t) = h (assumed to be small) for t < 0 and
h(t) = 0 for t ≥ 0. What happens is that we switch off the perturbation at t = 0 and
the system relaxes to the equilibrium state of the unperturbed Hamiltonian H0 .

Now we consider a generic observable X(p, q). Its average value up to t = 0 is given
by [4, 44]:

〈X〉eq =

∫
dpdq f(p, q)X(p, q), (1.69)

where f(p, q) is the canonical distribution of the perturbed system:

f(p, q) =
e−β(H0−hA)∫
dpdqe−β(H0−hA)

(1.70)

We want to study the average value 〈X(t)〉 of the observable X during the relaxation
process. During the relaxation process (for t ≥ 0) the evolution of X(t) is governed
by the Hamilton equation given by the Hamiltonian H0, with initial condition {p0, q0}.
This initial condition must be weighted by the canonical distribution f(p, q):

〈X(t)〉 =

∫
dpdq e−β(H0−hA(0))X(t)∫
dpdq e−β(H0−hA(0))

, (1.71)
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where we recall that the evolution of X(t) is governed by H0. At this point we expand
the canonical weight in h up to first order:

〈X(t)〉 ≈
∫
dpdq e−βH0(1 + hβA(0))X(t)∫
dpdq e−βH0(1 + hβA(0))

, (1.72)

We divide numerator and denominator by the unperturbed partition function Z0 =∫
dpdq e−βH0 and we expand again up to first order in h, obtaining the following relation

[44]:
〈∆X(t)〉 =〈X(t)〉 − 〈X〉0

=βh(〈X(t)A(0)〉0 − 〈X(0)〉0〈A(0)〉0),
(1.73)

where 〈.〉0 denotes the average using the canonical distribution given by H0 and where
we have replaced 〈X(t)〉0 with 〈X(0)〉0, since averaging over the equilibrium distribution
we obtain quantities independent on time. The relation (1.73) is crucial in linear
response theory. We can see from that relation that the evolution in time (related
to dissipation) of a perturbed macroscopic observable X(p, q) cannot be discriminated
by the thermal fluctuations around the equilibrium of the same observable. In this
linear regime, the time-scale of the out-of-equilibrium behavior of the observable X is
proportional to the time auto-correlation function of X in the unperturbed system.

This line of thinking can be applied directly on the response function ΓΨ,V . The non-
equilibrium response of the considered system to a forcing can be computed by means
of a time auto-correlation function (1.57), which we recall now:

ΓΨ,V (t) = −Θ(t)β
d

dt
〈V (0)Ψ(t)〉0. (1.74)

The meaning is the same as (1.73): the response of a system slightly perturbed out of
equilibrium can be fully described by a correlation function in the unperturbed system,
i.e. from its fluctuations. This fact can be observed also from the KK relation (1.64),
performing the inverse Fourier transform of that equation. Thanks to the Heaviside
theta present in (1.57), the response function has support just for positive times, hence
all its poles are located in the lower complex ω−plane, i.e. they all have a negative
imaginary part. These poles will be the same as the Fourier transform of the correla-
tion function C(ω) for positive times. This connection between C(ω) and ΓΨ,V (ω) is
basically the FDT.

Static susceptibility from the FDT

Sending h → 0 in (1.73) we can obtain the static susceptibility χ = ∂〈X〉
∂h |h→0

of a

macroscopic extensive observable X, which gives the variation of the average value
of X with respect to variations of the conjugated intensive variable h in the limit
h→ 0 [44]:

χ =
∂〈X〉
∂h |h→0

=β[〈X2(0)〉 − 〈X(0)〉20]

(1.75)

If we impose 〈X(0)〉 = 0 without loss of generality, we have:

χ = β〈X2(0)〉 (1.76)
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Moreover, it is remarkable that the static susceptibility can be obtained from the fol-
lowing limit:

χ = lim
ω→0

ΓΨ,V (ω), (1.77)

where ΓΨ,V (ω) is the Fourier transform of the linear response function (1.61)m with
V = Ψ = X. The relation (1.77) is important, because it shows that the static
susceptibility can be obtained considering the long time limit of the response function
ΓΨ,V . Let’s prove (1.77), proceeding as follows from (1.57):

lim
ω→0

ΓΨ,V (ω) =− β lim
ω→0

∫
eiωtΘ(t)

d

dt
〈X(t)X(0)〉0dt

=− β lim
ω→0

lim
ε→0+

∫ ∞
0

eiωte−εt
d

dt
〈X(t)X(0)〉0dt,

(1.78)

where we used Θ(t) to get rid of half of the integral and we regularized the integral
adding a convergence factor e−εt. At this point we perform a partial integration, ob-
taining [44]:

lim
ω→0

ΓΨ,V (ω) =− β lim
ε→0+

[
e−εt〈X(t)X(0)〉0

]∞
0

=β〈X2(0)〉
=χ,

(1.79)

where we have used (1.76), hence proving (1.77). Another unveiling formula for χ can
be derived by means of (1.77), (1.67) and (1.64):

χ = lim
ω→0

lim
ε→0+

∫
dω′

π

ΓIΨ,V (ω′)

(ω − ω′)− iε

χ =β

∫
dω

2π
C(ω),

(1.80)

which shows that the susceptibility χ is related to the sum of the correlation at all
frequencies ω. This relation is also called sum rule.

A particular instance of (1.75) could be determined by the choice X = H0, with
conjugated variable β = 1

kBT
. With that choice we have [44]:

− kBT 2CV =
(
〈H2

0〉0 − 〈,H0〉20
)
. (1.81)

we have defined the heat capacity at constant volume CV . This FDT connects the re-
sponse to an energy perturbation (the heat capacity) to the thermal energy fluctuations
of the system at the equilibrium.

Another relevant example comes up choosing as extensive variable the magnetization
M , with conjugated intensive variable the magnetic field H:

χ =
∂M

∂H |h→0
= β

(
〈M2〉0 − 〈M〉20

)
. (1.82)

The FDT (1.82) can be put in local form considering an Hamiltonian H0(m(r)) which
depends on the magnetization density m(r) and perturbing it in the following way:

H(m(r)) = H0(m(r))−
∫
drh(r)m(r), (1.83)
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Note that we have chosen to present also the constant second term for the sake of
showing the meaning of (1.81) and (1.82) in a clear way. Focusing on the observable
m(r), it is possible to show that the following local FDT holds between two spatial
points in r and r′ [4]:

χ(r, r′) =β
(
〈m(r)m(r′)〉0 − 〈m(r)〉0〈m(r′)〉0

)
=βΓ(r, r′),

(1.84)

where Γ(r, r′) is the correlation function.

1.6 Green-Kubo relations

In this section we derive the Green-Kubo relations, a set of equations within the con-
text of response theory which allows to compute transport coefficients (non-equilibrium
properties) by means of some correlations computed at the equilibrium [44]. A first
relation of this kind can be derived in the contest of the FP equation (1.14). We con-
sider just one variable, a vanishing drift coefficient and an homogeneous and constant
diffusion coefficient D. Given these assumptions the FP equation becomes:

∂tp = D∂2
xp. (1.85)

We multiply (1.85) by x2 and then we integrate over x. We obtain:

∂t〈x2〉 = 2D, (1.86)

whose result is the following, given an initial condition x(0):

〈x2(t)〉 = 〈x2(0)〉+ 2Dt. (1.87)

We have that x(t) =
∫ t

0 v(τ)dτ , where v is the velocity. We insert this relation in (1.87),
obtaining:

D = 〈
∫ t

0
v(t)v(τ)〉0. (1.88)

Since at the equilibrium the time translation invariance holds, we obtain the following
relation [44]:

D = 〈
∫ t

0
v(τ)v(0)〉0, (1.89)

which gives the diffusion coefficient D in terms of the integral in time of the time
autocorrelation function of the velocity. This is reasonable: the more correlated is the
velocity in time and the more the system diffuses. It is important to remark that in
practice the formula (1.89) holds in the limite of large t:

D = lim
t→∞
〈
∫ t

0
v(τ)v(0)〉0. (1.90)
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1.6.1 Hydrodynamic approach

A more general set of Green-Kubo relations can be derived by means of an hydrody-
namic approach [44]. Let’s consider a space density ρa of some extensive conserved
quantity a. We will start from two base equations. The first one is the continuity
equation for a:

∂tρa = −∇ja, (1.91)

where ja(x, t) is the vector density current associated to a, with components ji. The
second equation we will consider is a phenomelogical one:

〈ja(x, t)〉 = −Da∇〈ρa(x, t)〉, (1.92)

where the averages are non-equilibrium ones since we are considering fluctuating quan-
tities in a situation where a density gradient is applied. We condensate (1.91) and
(1.92) in the following relation, dropping the index a:

∂t〈ρ(x, t)〉 = D∇2〈ρ(x, t)〉. (1.93)

At this point we use the FDT (1.73), which tells us that fluctuations in the local
density cannot be discriminated from the relaxation in time of the same density if the
perturbation of the system is reasonably small. Using this idea, we have the following
proportionality, where the average in the RHS is at the equilibrium:

〈ρ(x, t)〉 ∝ 〈ρ(x, t)ρ(y, t′)〉0. (1.94)

We remark that we have assumed without loss of generality 〈ρ(x, t)〉0 = 0. Then, we
define the following correlation function C and we assume space translation invariance
(time space translation invariance is given by the fact that we are doing an equilibrium
average):

C(x, t; t, t′) ≡ 〈ρ(x, t)ρ(y, t′)〉0 = C(x− y; t− t′). (1.95)

We insert (1.94) into (1.93), obtaining:

∂tC(x− y; t− t′) = D∇2C(x− y; t− t′). (1.96)

We solve this equation performing the Fourier transform of the correlation function:

C(k; t− t′) =

∫
dxeik(x−y)C(x− y; t− t′). (1.97)

Then we use the fact that C is space translation invariant:

C(k; t− t′) =
1

V

∫
dx

∫
dyeik(x−y)C(x− y; t− t′)

=
1

V
〈ρ(k, t)ρ(−k, t′)〉0.

(1.98)

Now we go back to (1.96) in the Fourier domain, and we impose t > 0 and t′ = 0:

∂tC(k; t) = −Dk2C(k; t), (1.99)

which gives as solution:
C(k; t) = e−Dk

2tC(k; 0), (1.100)
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where k2 = |k|2. Using the time translation invariance we can extend this solution to
t < 0:

C(k,−t) =
1

V
〈ρ(k,−t)ρ(−k, 0)〉0

=
1

V
〈ρ(k, )ρ(−k, T )〉0

=
1

V
〈ρ(k, )ρ(−k, T )〉0

=C(k, t),

(1.101)

where we have exploited the fact that C(r, t) = C(−r, t) due to spatial parity. As a
consequence, for any t we have that:

C(k; t) = e−Dk
2|t|C(k; 0). (1.102)

At this point we perform the Fourier transform in time of C(k, t), obtaining:

C(k, ω) =

∫ ∞
−∞

dt eiωtC(k, t)

=C(k, 0)

∫ ∞
−∞

dt eiωte−Dk
2|t|,

(1.103)

which gives the following:

C(k, ω) = C(k, 0)
2Dk2

ω2 + (Dk2)2
. (1.104)

Now we can extrapolate by (1.104) a useful formula for the generalized diffusion coeffi-
cient, multiplying both sides for ω2/k2 and the taking the limit k → 0 and then ω → 0
(hence infinite time and infinite space) [44]:

D =
1

2φ
lim
ω→0

lim
k→0

ω2

k2
C(k, ω), (1.105)

where φ = C(k = 0; t = 0). We can see that the transport coefficent D is obtained by
the equilibrium correlation function C, by means of a double limit.

We now want to rewrite (1.105) in such a way that D can be computed starting from
the density current j which appears in the continuity equation (1.91), which form in
the Fourier space is the following [44]:

∂tρ(k, t) + ikj(k, t) = 0, (1.106)

where there is a product between the two vectors k and j. We now consider the following
relation:

∂t∂t′C(k, t− t′) =
1

V
〈∂tρ(k, t)∂t′ρ(−k, t′)〉0

=
1

V

∑
i,j

kikj〈ji(k, t)jj(−k, t′)〉0.
(1.107)
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We now perform the Fourier transform of (1.107), then we divide by k2 and we take
the limits for vanishing k and ω:

lim
ω→0

lim
k→0

ω2

k2
C(k, ω) = lim

ω→0

∫ ∞
−∞

d(t− t′)e−iω(t−t′) lim
k→0

∑
i,j

kikj
k2
〈ji(k, t)jj(−k, t′)〉0

= lim
ω→0

∫ ∞
−∞

d(t− t′)e−iω(t−t′)
∑
i,j

kikj
k2
〈jTi (t)jTj (t′)〉0,

(1.108)
where we have defined the total current at time t, since we are doing the limit k → 0:

jTi (t) =

∫
dxji(x, t). (1.109)

Now, assuming isotropy among the d dimensions at the equilibrium, we have:

〈jTi (t)jTi (t′)〉0 =
1

d
δij〈jT (t)jT (t′)〉0. (1.110)

Then we plug (1.105) and (1.110) into (1.108) and we use the fact that
∑

i,j
kikj
k2
δij = 1,

obtaining [44]:

D =
1

dV φ

∫ ∞
0

dt〈jT (t)jT (0)〉0, (1.111)

where we have used the invariance under time reversal t ↔ −t of the equilibrium
autocorrelation function. The equation (1.111) is the known Green-Kubo relation,
which connects the generalized transport coefficient D with an integral over time of the
time autocorrelation function of the density current at the equilibrium. The diffusion
coefficient can refer to any conserved quantity such as the mass or the energy. This is of
practical interest since we can compute non-equilibrium coefficients through equilibrium
averages, which can be obtained by means of numerical simulations.

1.7 Van Kampen’s objection

Van Kampen moved an objection towards the Kubo’s derivation of the Response for-
mula (1.55), claiming that the effectiveness of such a formula is very limited [3]. His
argument can be summarized as follows [4]. We consider a dynamical system with
state x(0) at time 0 and we perturb it with an instantaneous perturbation δx(0). Then
we take the difference δx(t) between the perturbed trajectory and the unperturbed
trajectory at time t, whose components are:

δxi(t) =
∑
j

∂xi(t)

∂xj(0)
δxj(0) +O(|δx(0)2). (1.112)

At this point we average over an ensemble of initial conditions:

〈 ∂xi(t)
∂xj(0)

〉 =

∫
∂xi(t)

∂xj(0)
ρ(x(0))dx(0), (1.113)

The relation (1.113) consists in the linear response function of the observable xi with
respect to a perturbation of xj :

Γij(t) = 〈 ∂xi(t)
∂xj(0)

〉. (1.114)
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To connect with Kubo’s theory, we consider Hamiltonian systems whose stationary
distribution at t = 0 is the canonical distribution: ρ(x) = 1

Z
exp(−βH(x)). We can now

integrate by parts within (1.114), obtaining:

Γij(t) = 〈xi(t)
∂H(x(0))

∂xj(0)
〉, (1.115)

which is the Kubo’s response function (1.55). If xi = qi and xj = qj the perturbation
potential is V = pj and the perturbed observable is xi. To see this, it is sufficient

to use the Hamilton equations (1.38) (identifying q with x), since the factor ∂H(x(0))
∂xj(0)

which appears in (1.115) is −ṗj . As a consequence we have that V = pj , looking at
the formula (1.55). This is consistent with the fact that the variable xi is perturbed
by an instantaneous kick at t = 0, since the perturbed Hamiltonian equations (1.39)
for qi with the perturbation potential V = pj and time pattern of the perturbation
F(t) = δ(t)δx(0) is the following:

ẋi =
∂H

∂pi
+ δx(0)δ(t)

pj
pj

⇒ xi(t) =

∫ t

dτ
∂H

∂pi
+ δx(0).

If xi and xj are instead momenta coordinates, the line of thinking is the same but with
different perturbation potential V = qj .

The van Kampen’s argument is related to(1.114) and stems from the following con-
sideration about Lyapunov exponents. Given a dynamical system of the following
form [47,48]:

ẋ = F (x), (1.116)

we perturb it with a small perturbation δx(t), and the linearised dynamics become:

dδx(t)

dt
=
∂f

∂x |x(t)
δx(t), (1.117)

with formal solution:

δx(t) = M(t, 0)δx(0). (1.118)

where the matrix M is called propagator. This matrix contracts/expands the errors
from time 0 to time t given by the perturbation with respect to the initial trajectory.
It has been shown [48] that if the system is ergodic1, then the following limit exists for
almost all initial conditions x(0):

lim
t→∞

(MM †)t/2 = λx0 . (1.119)

1Intuitively, a system is ergodic if the evolution in time (for a sufficiently long period) of a zone of its
phase space encompasses thoroughly the entire phase space. More mathematically, a transformation
T : X → X which preserves the measure (with µ(X) = 1) is ergodic if for every E in the phase
space such that T−1(E) ⊂ E, either µ(E) = 0 or µ(E) = 1. From the physical point of view, this is
translated that, for long periods of time, the time spent by a system over a region of the phase space
is equivalent to the measure of that region. As a consequence, averages over long periods of time are
equal to averages over the phase space.
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The logarithm of the eigenvalues of λx0are the Lyapunov exponents, which give the
rates of exponential separation between close orbits. In a chaotic system one or more
of them are positive, leading to an exponential increase over time of the errors δx(0). As
a consequence the expansion (1.112) is not valid for time larger than (1/λ) ln(L/|δx(0)|),
where L is the typical fluctuation size of x. Van Kampen used that fact to claim that
the response formula (1.115) is valid just for extremely small perturbations δx(0) or for
very short times, making the use of response formula (1.115) limited to a very narrow
range of cases.

Despite Van Kampen’s argument, response theory has been successfully applied to
various disciplines, such as materials science [5]. To explain that apparent contradiction,
it has to be noted that van Kampen’s based his argument of single trajectories, whilst
response theory is founded on averages over ensembles of trajectories. While various
physical observables can behave chaotically along their evolution in time. their spatial
or temporal averages will be much smoother [17], dampening the exponential growth
of the errors predicted by van Kampen, who observed that the ”instability of the
trajectories favours the stability of distribution functions”. This is the key to the
effectiveness of response theory.
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Chapter 2

Beyond Kubo’s Theory

Kubo’s key results were derived in the context of weakly perturbed Hamiltonian dy-
namical systems which were at their thermodynamic equilibrium. Non-Hamiltonian
systems, such as dissipative systems, i.e. open systems which evolution in time features
a variation in energy, are out of his scope even though they can be found in a large
variety of scientific fields: viscous hydrodynamics, granular materials, and the climate
are a few relevant examples [4, 6]. These are systems whose steady state is a NESS,
differently from the systems considered by Kubo. The extension of Kubo’s response
theory to such systems has been performed successfully in the next decades [4,7,10,17].
In Section 2.1 we derive a generalized response formula which can be approached by
two main approaches, as explained in the next sections. In Section 2.2 we present a
first pathway, which works on the invariant measure of the considered system, requiring
its smoothness. This can be achieved by adding a stochastic term or studying a reduced
phase space [20]. In this setting, the obtained formula is called the Kubo-Agarwal for-
mula, which reduces to the Kubo formula for equilibrium systems. In Section 2.3 we
present the second approach, which focuses on chaotic dissipative deterministic system,
where the measure is singular. In this context, the pioneering work of Ruelle [7, 10]
introduced a response formula divided into two contributions: one which can be framed
as a FDT result, and another which cannot. In other words, the natural fluctuations are
not equivalent to the forced perturbations [6]. Then, we present a simplified algorithm
to compute the linear response, proposed in [17], which slightly generalizes the one
described in [16]. In Section 2.4 we derive the generalized KK relations [6,13,14,26],
starting from the causality property of the response functions. These relations provide
the possibility to compute the whole response function starting just from the knowledge
of either the real or imaginary part of the Fourier transform of the response function.
In Section 2.5 we show the higher-order response theory, which allows the computa-
tion of the response of the system beyond the first order [13, 26, 49]. In Section 2.6
we present the surrogate response theory [28]: a new recent perspective in response
theory which allows us to understand to what extent we can use perturbed observables
as surrogates of the perturbation to predict the future state of other observables. This
viewpoint is relevant since it allows one to predict the state of the desired observables
even if we lack some information on the actual perturbation acting on the systems.

21
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2.1 General derivation of the response formula

In this section we derive a general response formula [4,17], of much more general scope
than the Kubo’s one (1.55). Kubo’s theory is restricted to perturbations of Hamiltonian
systems which were at the equilibrium, while the following response formula is valid
also for perturbed systems starting in a NESS situation. We consider the setting of
Markovian systems defined over regions of Rd. This landscape of systems includes jump
processes described by master equations, diffusion processes and deterministic dynami-
cal systems. We will focus on diffusion processes, since they consider also deterministic
dynamical systems in the limit of vanishing diffusion coefficient. As a consequence,
our derivation works for both stochastic and deterministic systems. For simplicity we
consider overdamped diffusion, with overdamped Langevin equation:

ẋi(t) = Fi(x(t)) + cij(x(t))ηj(t), (2.1)

where c = {cij} are coefficients linked to the generalized diffusion coefficient, η = {ηj}
is a white noise and F (x) = {Fi(x)} describes a general dynamical system in the limit
c → 0. Now we define the backward generator L, which works on the observables
[50,51]. This generator defines the evolution backwards in time of a generic observable
Ψ, as follows. We consider the expectation value of Ψ at time t, averaging over the
possible initial conditions at time 0 with stationary measure ρ(dx) (which can refer to
an equilibrium state or to a NESS):

〈Ψ(x(t))〉 =

∫
ρ(dx)(etLΨ), (2.2)

where ρ(dx) can also be not differentiable with respect to x, or it can be singular with
respect to the volume element dx. We can restate (2.2) as follows, differentiating with
respect t:

∂

∂t
〈Ψ(t)〉 = 〈LΨ(t)〉. (2.3)

For the overdamped diffusion the backward generator is the following (as it can be seen
in (1.22)):

LΨ = F∇(Ψ) +
1

2
cikckj∂i∂j(Ψ). (2.4)

Now we perturb the equation of dynamics adding a small perturbation in the drift
term for t ≥ 0. The added perturbation has as time pattern e(t) and space pattern
G(x) = {Gi(x)}, and we denote with F e = {F ei } the perturbed dynamical system:

ẋi(t) =F ei (x(t)) + cij(x(t))ηj(t)

=Fi(x(t)) + e(t)Gi(x(t)) + cij(x(t))ηj(t).
(2.5)

We consider now the change in the expectation value of the observable Ψ due to the
perturbation [17]. First, we introduce the perturbed backward generator:

Lh = L+ e(t)L1, (2.6)

where:

L1Ψ = G∇(Ψ). (2.7)
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The change in the expectation value of Ψ is the following [17]:

〈Ψ(t)〉e − 〈Ψ(t)〉 =

∫
ρ(dx)(etL

h − etL)Ψ(x). (2.8)

We use now the variation of parameters formula [52,53] 1:

etL
h − etL =

∫
ρ(dx)

∫ t

0
ds esL

h
(e(s)G(x)∇)e(t−s)LΨ(x). (2.9)

We can substitute the factor esL
h

with the unperturbed evolution operator esL, intro-
ducing correction terms of order e2 and beyond:

etL
h − etL =

∫
ρ(dx)

∫ t

0
ds esL(e(s)G(x)∇)e(t−s)LΨ(x) + O(e2). (2.10)

Substituting (2.10) into (2.8) and truncating up terms of the first order, we obtain:

〈Ψ(x(t))〉e − 〈Ψ(x(t))〉 =

∫
ρ(dx)

∫ t

0
ds esL(e(s)G(x)∇)e(t−s)LΨ(x). (2.11)

Then we have that the linear change in the expectation value of the observable Ψ is:

δ〈Ψ(x(t))〉 =

∫ t

0
ds e(s)

∫
ρ(dx)esL(G(x)∇)e(t−s)LΨ(x) (2.12)

Looking at (2.12) we can notice that we can define a response function (where the
observable Ψ evolves for a time (t − s) and then the operator G∇ is applied to that
evolved observable) [17]:

ΓΨ,G(t, s) =

∫
ρ(dx)esL(G(x)∇)e(t−s)LΨ(x), (2.13)

which is such that:

δ〈Ψ(x(t))〉 =

∫ t

0
ds e(s)ΓΨ,G(t, s). (2.14)

1The formula can be quickly proven as follows [53] in a more general context (we will not enter into
the mathematical details). Let’s consider two continuous semigroups {T (t)}t≥0 with generator A and
{S(t)}t≥0 with generator C on the Banach space X such that C = A+ B for some bounded operator
B. Then we have that S(t)x = T (t)x+

∫ t
0
ds T (t− s)BS(s)x. To prove this statement let’s define the

functions χx(s) ≡ T (t− s)S(s)x ∈ X, for s ∈ [0, t]. We have that:

d

ds
χx(s) = T (t− s)CS(s)x− T (t− s)AS(s)x = T (t− s)BS(s)x.

As a consequence we have that:

S(t)x− T (t)x = χx(t)− χx(0) =

∫ t

0

d

ds
χx(s) ds =

∫ t

0

dsT (t− s)BS(s)x,

=

∫ t

0

dsS(s)BT (t− s)x,

proving the desidered statement for each x ∈ X. Choosing T (t) = etL and S(t) = etL
h

we obtain (2.9).
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We observe that since we have assumed that ρ is stationary at time zero, we can further
simplify the expression of the response function (2.13). We define the adjoint operator
L of the backward generator L. Then we rewrite the expression (2.13) using L:

ΓΨ,G(t, s) =

∫ (
esLρ(dx)

)
(G(x)∇)e(t−s)LΨ(x). (2.15)

Since ρ is the steady-state distribution, we have that it does not evolve under the
operator esL (also called transfer operator [55]). In other words, ρ is the eigenvector
with unitary eigenvalue related As a consequence, the response function becomes [17]:

ΓΨ,G(t) = Θ(t)

∫
ρ(dx)(G(x)∇)etLΨ(x), (2.16)

hence the response function ΓΨ,G(t, s) depends only on the difference (t − s) > 0.
Similarly to (1.55), the response function ΓΨ,G(t, s) connects the perturbation at time
s with the perturbed observable Ψ at time t > s. Performing a Fourier transform, the
relation (2.16) becomes:

δ〈Ψ〉(ω) = e(ω)ΓΨ,G(ω). (2.17)

00since the Fourier transform of a convolution is a product. The obtained formula
(2.16) provides a method to compute the non-equilibrium response of a system to a
perturbation by means of an equilibrium average. The response function defined in
(2.16) has support just for positive times. This is equivalent to the fact that the poles
of its Fourier transform are all located in the lower complex ω−plane, i.e. they all
have negative imaginary part. This fact is guaranteed by the stability of the considered
system [28]. To see this, we remark that the backward operator L must have all
eigenvalues σk with real part negative to have the system stable. In fact, if there is an
eigenvalue with positive real part, the evolution in time of the generic observable 〈Ψ(t)〉
would explode. The same applies to the response function (2.16): given a perturbation,
we would have an increasing in time response. Given that, we proceed taking the Fourier
transform of (2.16), obtaining [28,54]:

ΓΨ,G(ω) =

∞∑
k=1

αk{Ψ, G}
iω + σk

, (2.18)

where αk{Ψ, G} are factors which depend on Ψ and G. The derivation of such a formula
entails the decomposition of the evolution operator exp(tL) along its eigenvectors, with
eigenvalues exp(tσk), and the Fourier transform of such eigenvalues exp(tσk). Remark-
ably, since Re[σk] < 0, we have that the poles ωk = iσk all have imaginary part negative,
as claimed before. This equivalence between stability of the system and causality of
the response function can be see more clearly in the context of linearized system in
Chapter 3, in the relation (3.9). We can thus say that the response function is pre-
dictive: the state of the perturbed observable Ψ at time t can be predicted using just
the perturbation e(τ) up to time t, as it is shown in (2.14). Moreover, note that the
response function (2.16) does not depend on the time pattern of the perturbation, while
it depends on the observable and the space pattern of the forcing. In the following two
sections we provide a variety of different approaches to the key formula (2.16).
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2.2 Working on the measure: the Kubo-Agarwal formula

If we look at the response function ΓΨ,G we can observe that we can make further ma-
nipulations to it if the measure ρ is smooth with respect the reference volume element:
ρ(dx) = ρ(x)dx. This happens adding any small amount of noise in the equation of the
dynamical system [56–58]. The addition of the beneficial noise term has to be justified
by the nature of the considered problem. This stochastic perspective becomes relevant
in many complex systems, where the focus is on a coarse grained dynamics (mesoscopic
or macroscopic scale), which is effectively stochastic as a result of the presence of micro-
scopic degrees of freedom [20]. The basic idea can be showed as follows. Let’s consider
a linear system of two ODEs [34,59]:

ẋ = a11x+ a12y

ẏ = a21x+ a22y
(2.19)

Now we want to focus on the detailed behavior of x(t), considering the dynamics of y(t)
just in its statistical impact on the dynamics of x(t). This is relevant in cases where
y is a variable which fluctuates faster than x, which is the case when y is a degree of
freedom in a smaller scale than x. We can proceed solving the second formula in (2.19)
for y:

y(t) = ea22ty(0) +

∫ t

0
ea22(t−s)a21x(s)ds, (2.20)

and then plugging (2.20) into the first equation in (2.19), obtaining:

ẋ(t) = a11x+

∫ t

0
K(t− s)x(s)ds+ f(t), (2.21)

where f(t) = y(0)a12 exp(a22t) and K(t) = a12a21 exp(a22t). The relation (2.21) is a
generalized Langevin equation (GLE) where the second term is a memory term (and
the kernel K is a memory kernel) and the third term is the noise term, since the
factor y(0) is thought to be sampled from the fast variable y(t). The Mori-Zwanzig
formalism extends this idea, considering a general set of Markovian equation of the
dynamics with a large number of degrees of freedom (even an infinite number of them)
and focusing on a single variable, projecting the dynamics of the other variables in a
GLE which describes its evolution in time. Note that the coarse-grained dynamics is in
general non-markovian, with memory effect becoming negligible in the limit of infinite
time scale separation between the fast and slow variables [21–25]. In [20] the authors
argue that the projection of the singular measure of chaotic non-Hamiltonian systems
along a certain direction is generally smooth (after a coarse-graining procedure), apart
for a few particular cases in very simple low-dimensional systems. This procedure
can be summarized as follows. Given an invariant measure ρ(dx), defined over a d−
dimensional phase space, we ε− partition it in a finite set of d− dimensional hypercubes
Λk(ε) centered in xk. At this point the coarse grained invariant density ρ(x)ε becomes
the following:

ρ(x)ε =
∑
k

ρ(x)ε,k, (2.22)

where:

ρ(x)ε,k =

{ 1
εd

∫
Λk(ε) dµ(x), x ∈ Λk(ε)

0, else
(2.23)
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We can now project this coarse grained invariant density along a certain direction i
marginalizing over the other degrees of freedom. We call Zi the number of bins of form

[x
(q)
i − ε/2, x

(q)
i + ε/2), for q ∈ {1, ..., Zi}. We compute now the probability density to

be in x
(q)
i , by means of the probability to be in one of these Zi bins:

ρ(x
(q)
i )ε =

1

ε

∫ x
(q)
i +ε/2

x
(q)
i −ε/2


∫
ρ(x)ε

∏
j 6=i

dxj

 dxi, (2.24)

which is expected to be smoother than the previous distribution ρ(x)ε. This procedure
can be repeated for the perturbed distribution at any instant of its evolution in time.
As the number of degrees of freedom increases, this projection procedure is expected to
give smoother results. This is the case of macroscopic systems in non-equilibrium steady
states, since the dynamics of the observables of interest takes place in reduced phase
space, whose dimensions is extremely smaller than the one of the entire phase space.
In this case, the computation of the response can be safely carried out considering the
distribution ρ to be smooth.

Now that we have reviewed were the smoothness assumption of the invariant measure
ρ is valid, let’s see the consequences of such an assumption. If ρ is smooth we can do
a partial integration step within (2.16). Let’s start rewriting (2.16) introducing the
operator L1 = G∇, i.e. the perturbation of the backward generator:

ΓΨ,G(t) = Θ(t)

∫
ρ(dx)L1e

tLΨ(x). (2.25)

At this point we define the adjoint operator L1 of the operator L1:
∫
dx(L1φ1)φ2 =∫

dxφ1(L1φ2), for two smooth observables φ1 and φ2. The adjoint operator of the
backward generator is related to the forward evolution in time. Moreover, the adjoint
L of the backward generator L of the diffusion (2.4) is the operator which defines the
FP equation related to the diffusion process [45]:

∂tρ = Lρ, (2.26)

where:

Lρ = −∇(Fρ) + ∂i∂j(
1

2
cikckjρ). (2.27)

As a consequence the form of the adjoint operator L1, for the perturbation of the
deterministic part in (2.5) is the following:

L1ρ = −∇(Gρ). (2.28)

Given the form (2.28) of L1, we perform a partial integration within (2.16):

ΓΨ,G(t) =Θ(t)

∫
dx(L1ρ(x))etLΨ(x)

=−Θ(t)

∫
dx∇(Gρ)etLΨ(x).

(2.29)

which can be written in a more compact form:

ΓΨ,G(t) = Θ(t)〈L1ρ

ρ
(0)Ψ(t)〉. (2.30)
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The relation (2.30) is called the Kubo-Agarwal formula, and its derivation does not
require the unperturbed system to be in a NESS or at the thermodynamic equilibrium;
the only hypothesis is the smoothness of the measure ρ. For completely deterministic
systems, (2.30) is associated with equilibrium [10] since the smoothness of ρ is a feature
of equilibrium states in that kind of systems. We can see that the FDT holds, as in
the Kubo’s formula (1.74): the time correlation function of two suited observables fully
describes the forced response of a system to a weak perturbation. The fact that the
FDT holds for both equilibrium systems and NESS (with the main assumption of the
smoothness of ρ) can be fundamentally explained by the fact that a thermodynamic
theory can be constructed for both systems. In particular, the thermodynamics theory
for the NESS is called Steady State Thermodynamics (SST) and it has been introduced
in the seminal work [60]. In that paper, the notion of entropy has been extended to
include also a contribution, called excess entropy, whose existence discriminate the
NESS from the equilibrium systems.

We can observe that the Kubo-Agarwal formula (2.30) is more general than the Kubo’s
formula thanks to the fact that no specific form is assumed for the distribution ρ
and hence is a generalization of the Kubo’s formula (2.29) to general non-Hamiltonian
systems at the equilibrium. To recover the Kubo’s formula, we can consider a smooth
canonical distribution ρ = 1

Z
exp(−βU) with F = −∇U and coefficient c(x) =

√
2/(kBβ)

(related to an equilibrium state) and with perturbation G = −∇V , we have that:

L1ρ

ρ
= −β∇V · ∇U +∇2V = βLV, (2.31)

where we have used the backward generator (2.4) of the diffusion process. As a conse-
quence (2.30) can be rewritten as follows:

ΓΨ,G(t) =Θ(t)β〈(LV )(0)Ψ(t)〉
=Θ(t)β〈V̇ (0)Ψ(t)〉,

(2.32)

which is the Kubo’s formula (1.55) for the response function.

We remark that Kubo-Agarwal formula (2.30) can be derived in the same way as
we derived the more general (2.16), working with the adjoint operator L in the FP
formalism [4, 61]. The idea is the same: we consider the unperturbed FP equation
(2.26) (concerning ρ) and the FP perturbed with (2.28) (concerning ρe). The solution
of the latter equation is the following (following a very similar approach to the one
which leads to the equation (2.11)):

ρe(x, t) = ρ(x)−
∫ t

0
ds e(t−s)Le(s)∇(G(x)ρ(x)) +O(e2). (2.33)

Considering a general observable Ψ we can compute the difference δ〈Ψ(t)〉 between the
expectation value using the perturbed measure ρe(x, t) and the expectation value using
the unperturbed measure ρ(x), obtaining the response function (2.30). We remark
that this derivation of the Kubo-Agarwal formula, which is the adjoint version to the
one related to (2.16), is only possible because we have assumed that the steady state
distribution ρ is smooth, which allows the Taylor expansion (2.33) and the its truncation
at first order.
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2.2.1 Link with Information Theory

It is possible to relate the Kubo-Agarwal formula (2.30) to information theory quanti-
ties, in particular to the information potential I:

I ≡ − log ρ. (2.34)

To see how to explicit that relation, let’s proceed as follows [18, 62]. Without loss of
generality, we consider a perturbation which does not depend on time: e(t) = e. Then
we consider the consider the perturbed system with stationary density ρe and perturbed
generator Le. We rewrite the linear perturbation of the stationary density simply as:

ρe(x) = ρ(x) + hρ1(x) + ..., (2.35)

where ρ1 expresses the linear perturbation of the invariant measure. Since ρe is sta-
tionary, we have that Leρe = 0, where Le is the adjoint of the perturbed backward
generator Le. As a consequence, we have that:

L1ρ+ Lρ1 = 0. (2.36)

We can use the relation (2.36) to re-express the Kubo-Agarwal formula as follows:

ΓΨ,G(t) = −Θ(t)〈
(
Lρ1

ρ

)
(0)Ψ(t)〉. (2.37)

Now we take into consideration the information potential Ie (2.34) for the invariant
measure of the perturbed system ρe and we derive it with respect to e (we denote with
∂e the partial derivation with respect to e, taken for e = 0):

∂eI
e =− ∂e log ρe

=− lim
e→0

ρe − ρ
eρe

=
ρ1

ρ
.

(2.38)

We now plug (2.38) into (2.37), obtaining the following relation:

ΓΨ,G(t) =Θ(t)〈
(
L(ρ∂eI

e)

ρ

)
(0)Ψ(t)〉

=

∫
dxL(ρ(x)∂eI

e)(x)Ψ(x(t))

=

∫
dxρ(x)∂eI

e(x)LetLΨ(x)

=
d

dt
〈∂eIe(0)Ψ(t)〉,

(2.39)

which makes explicit the relation between the information potential and response the-
ory. Note that the formula (2.39) is valid both for NESS and for equilibrium systems,
since it is a rewriting of the Kubo-Agarwal formula (2.30). An advantage of (2.39) is
that detailed information on the dynamics is not needed (on the contrary of (2.30),
where the operator L1 explicitly appears). A very practical use of (2.39) could be to
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use parametrized versions of the stationary density ρ (for example, quasi-Gaussian ap-
proximations) in order to get a formula for the information potential I. Note that the
information potential (2.34) can be linked with the Shannon entropy as follows [63]:

S =−
∫

dxρ(x) log ρ(x)

=

∫
dxρ(x)I(x)

=〈I〉.

(2.40)

As a consequence, it is possible to directly relate the Kubo-Agarwal response formula
(2.30) with a notion of entropy by means of the information potential I.

2.2.2 Breaking time-reversal symmetry (NESS)

In an equilibrium state, we have seen that the distribution of trajectories is time-
symmetric: the probability of a path is equal to the probability of the reversed path
(1.29). In a NESS there is generally a breaking of the time-reversal property of the
trajectories. We observe now that the Kubo’s formula (1.55) is related equilibrium
showing that the Kubo-Agarwal formula (2.16) differs from the Kubo’s one by a term
which is not time-reversal symmetric.

First, we introduce the state-space velocity u, defining it from the stationary density
current jρ which solves the continuity equation in the steady state:

∂tρ = −∇jρ = 0. (2.41)

The state-space velocity u is defined as follows:

u ≡ jρ
ρ
, (2.42)

which becomes for the diffusion process with generator (2.27):

ui = Fi −
∂j(

1
2cikckjρ)

ρ
. (2.43)

We consider now two general smooth observables Ψ1 and Ψ2 and we consider their time
correlations 〈Ψ1(0)Ψ2(t)〉 and 〈Ψ1(0)Ψ2(−t)〉, where the averages are over the steady
state distribution ρ . These steady-state time-correlations are invariant under time
translations, but they are equal just in an equilibrium state. We have already defined
the operator L which generates the time-forward motion:

〈Ψ1(0)Ψ2(t)〉 =

∫
ρ(dx)Ψ1(0)etLΨ2(0). (2.44)

In addition to that, we define the operator L∗ which generates the time-reversed motion:

〈Ψ1(0)Ψ2(−t)〉 =

∫
ρ(dx)Ψ1(0)etL

∗
Ψ2(0). (2.45)
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We observe that detailed balance condition, i.e. the time-reversal property, holds for
L = L∗. An explicit form for L∗ can be found in the following way. Since time-
translation invariance holds for such correlations, we have that:∫

ρ(dx)(LΨ1)(x)Ψ2(x) =

∫
ρ(dx)Ψ1(x)(L∗Ψ2)(x), (2.46)

from which we have that: L∗(Ψ) = L(ρΨ)/Ψ for any smooth Ψ. In the case of diffusion
processes (2.1), we have that (using (2.27) and (2.43)):

L∗ =L− 2u∇
=− F∇+ ∂i(bij∂j) + 2 b∂i(log ρ)∂j ,

(2.47)

where we have shortened the notation defining the matrix b = {bij) = 1
2cikckj . Now we

observe that if we choose in the Kubo-Agarwal formula the following identification:

L1ρ

ρ
= −βL∗V, (2.48)

the Kubo-Agarwal formula (2.30) reduces to the Kubo’s formula (1.57):

ΓΨ,G(t) =−Θ(t)β〈(L∗V )(0)Ψ(t)〉
=−Θ(t)β〈V (0)LΨ(t)〉.

(2.49)

As observed before, we have that L = L∗ at equilibrium. As a consequence, we can
identify corrections to the Kubo’s formula making a different substitution:

L1ρ

ρ
=− β (L+ L∗)

2
V

=− βL∗V − (L− L∗)
2

V,

(2.50)

which reduces to the (2.48) in an equilibrium state. The second term is the non-
equilibrium part in the Kubo-Agarwal formula (2.30) since it is non-invariant under
time reversal. We can introduce the state velocity u in the Kubo-Agarwal formula for
diffusion processes using the relation (2.47), obtaining the following response function:

ΓΨ,G(t) = −Θ(t)β〈V̇ (0)LΨ(t)〉 − β〈[u∇V ](0)A(t)〉. (2.51)

We can see from (2.51) that the Kubo’s relation form is restored moving in the La-
grangian frame with relative drift velocity u with respect to the observer:

d

ds
→ d

ds
− u∇.

This transformation, making the observer move with a velocity proportional to the sta-
tionary density current jρ defined in (2.41), removes the non-equilibrium part obtaining
an equilibrium-like response function.
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2.3 Working on the observable: Ruelle’s approach

2.3.1 The setting: chaotic dissipative systems

In this section we examine how to approach the response formula (2.16) in the case the
measure ρ is not smooth. This is the case of chaotic dissipative deterministic systems.
The steady state of this class of system is generally a NESS, since the time-reversal
symmetry of the trajectories is broken by the presence of dissipation. Let’s see how the
dissipation enters in our description. We consider the following deterministic system:

ẋ(t) = F (x). (2.52)

where the deterministic system F is t-independent. The phase space is called Γ. The
related continuity equation, which describes the time evolution of PDF ρ, is the follow-
ing:

∂tρ(x, t) =−∇(Fρ)

=− (∇F )ρ− F (∇ρ).
(2.53)

Now there are two possibilities [64]:

• The velocity field F is incompressible: ∇F = 0. As a consequence the phase
space volume is conserved along trajectories, since [65]:

Dρ

Dt
=
∂ρ

∂t
+ (∇ρ)F = 0,

where we have inserted the continuity equation (2.53). This class of systems is
called conservative. The Hamiltonian systems considered by Kubo are conserva-
tive, as it can be shown using the Hamltonian equations2.

• If the velocity field F is compressible, hence if ∇F < 0, we are referring to
dissipative dynamical systems3. In this kind of systems, phase space volumes are
contracted along the trajectories, since:

Dρ

Dt
< 0.

As a consequence, the set of points reached at the steady state by the trajectories
forms a space of dimension smaller than the dimension of the whole phase space Γ.
This set of points is called an attractor. There could be more than one attractor in
a system and we call basin of attraction the set of point whose evolution goes into
one of these attractors. The geometry of the attractors can be quite peculiar and
not smooth. Usually, the geometry of the attractor is fractal [64] and we refer
to these attractors as ”strange”. On the contrary, conservative systems evolve
occupying the whole Γ, hence they do not possess an attractor. We remark that
the contraction of phase space is related to a non-zero entropy production in time
(which is linked to the asymmetry between the trajectories and their reversals),
but we will not further discuss this link [10,64,66].

2For an Hamiltonian system with Hamiltonian H we have that the dynamical system related to
the coordinates (q, p) is given by the Hamiltonian equations: (q̇, ṗ) = (∂pH,−∂qH). If we compute
the divergence of the dynamical system, we have ∇F = ∂q∂pH − ∂p∂qH = 0. As a consequence,
Hamiltonian systems are conservative.

3The case ∇F > 0 is not that interesting because it describes a motion without boundaries in the
phase space.
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We will focus on dissipative dynamical systems, taken in their chaotic regime. In this
setting, there is a very high sensitivity to the initial conditions. This is described by
the fact that at least one Lyapunov exponent (1.119) is greater than zero, hence small
variations δx(0) at time 0 increase exponentially in time. In these chaotic dissipative
regimes, there is no invariant measure ρ absolutely continuous with respect to the
Lebesgue measure, since their support are the strange attractors and hence they are
usually singular with respect to Lebesgue. Note that instead in conservative dynamical
systems the invariant measure is ergodic and absolutely continuous with respect to the
Lebesgue measure: ρ(dx) = ρ(x)dx, since there is no fractal attractor within the phase
space.

SRB and Axiom A systems

In order to well define an ergodic measure for chaotic dissipative dynamical systems,
among all the possible ones, it is interesting to introduce the notion of Sinai-Bowen-
Ruelle (SRB) measure [7,64]. A point x in the phase space Γ is called hyperbolic if its
associated tangent space Tx can be decomposed in the following direct sum:

Tx = Eux ⊕ Esx ⊕ E0
x, (2.54)

where Eux is the unstable subspace, Esx the stable subspace and E0
x the neutral subspace,

defined as follows. If a tangent vector z(0) belongs to:

• Eux , there existsK > 0 and α ∈ (0,1) such that z(−t) ≤ Kαz(0), i.e. the backward
time-evoluted vector z(t) expands exponentially.

• Esx, there exists K > 0 and α ∈ (0,1) such that z(t) ≤ Kαz(0), i.e. the forward
time-evoluted vector z(t) expands exponentially.

• E0
x, we have that z(±t) is bounded and finite at any time t. For dynamical systems

F (x) which are not dependent on t the direction tangent to the trajectory does not
shrink or expand along the trajectory, hence it belongs to the neutral subspace.
For ODE it is possible to show that Ecx is one dimensional [64].

If the points of the strange attractor of a chaotic dissipative dynamical system are hy-
perbolic, we can expect that the unstable stretching directions are traversed by rough
discontinuous stable directions. At this point, we say that the ergodic invariant measure
ρ of a dynamical system is an SRB measure if and only if it smooth along the unstable
directions, while it could be singular along the stable and neutral directions [8, 9, 66].
In a sense, the SRB measure generalizes the invariant measure in conservative sys-
tems, which was smooth along all the directions. We can argue that the SRB measure
identifies mathematically a NESS in chaotic dissipative dynamical systems.

Now we introduce two classes of systems [10,64], based on the notion of hyperbolicity.
First we define the hyperbolic set K as a set of points within the phase space such that
all points in K are hyperbolic and the splitting into the stable, unstable and neutral
directions is continuous over K (uniform hyperbolicity). At this point we define the
Asonov systems as systems defined by a smooth F over a smooth manifold which is
a hyperbolic set. Next, we define a generalization of the Asonov systems: if a system
defined by a dissipative and smooth F has an attractor K which is hyperbolic and
its periodic orbits are dense in K, we call it an Axiom A system. It is possible to



2.3. WORKING ON THE OBSERVABLE: RUELLE’S APPROACH 33

show in a rigorous way that Axiom A systems have exactly one SRB measure, and
hence they are of great interest. On the other hand, Axiom A systems are a particular
class of dynamical system and they are far to represent all the dynamical systems
(a not Axiom A system can be found for example in [10]). However, the chaotic
hypothesis proposed by Gallavotti and Cohen [11,12] states that Axiom A systems are
practically indistinguishable from the effective properties of macroscopic observables in
high-dimensional systems which display a sufficient degree of chaotic behaviour. This
hypothesis fundamentally explains the effectiveness of Ruelle’s approach (presented
below), which is based on SRB measures.

2.3.2 RT derivation

We will present now the derivation of the general formula (2.16) under the perspective of
Ruelle [67]. We consider a chaotic dissipative deterministic system (2.52) with invariant
ergodic measure ρ given by a SRB measure. We have seen before the characterization
of the SRB measures in terms of their smoothness along the unstable directions. Other
equivalent characterizations of SRB measures are the following [66]:

• ρ is the zero-noise limit of small random perturbation of the dynamical system
F . In other words, let’s take a family of Markov chains P ε, with ε > 0, such that
P ε → δF , i.e. the Dirac delta which dictates the deterministic time evolution
given by F . If the invariant measure for P ε tends to ρ, we have that ρ is a SRB
measure.

• ρ is the long-time limit of an absolutely continuous measure m under the time
evolution given by F , For every smooth observable Ψ this condition is given by:

lim
s→−∞

∫
dxm(x)Ψ(f−sx) =

∫
ρ(dx)Ψ(x), (2.55)

where f is the evolution operator such that:

x(s, t) = x(t− s) = f t−sx(0). (2.56)

where we used the fact that the dynamical system F is time independent. In other
words, the absolutely continuous measure m evolves and shrinks in a singular SRB
measure ρ.S

Now we perturb the dynamical system (2.52) with a perturbation with time pattern
e(t) and space pattern G(x), as done previously in (2.5). The consequence on the
dynamical variables x is the following:

δx(t, s) =δ

∫ t

s
dτF (x(τ, s))

=

∫ t

s
dτ(Tx(τ,s)f

t−τ )e(τ)G(x(τ, s)).

(2.57)

where Txf
σ is the tangent map at x to fσ (in canonical coordinates it is the matrix of

partial derivatives). We consider now a generic smooth observable Ψ. Its expectation
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value at time t changes as follows:

δ〈Ψ〉(t) =δ lim
s→−∞

∫
dxm(x)Ψ(x(t, s))

= lim
s→−∞

∫
dxm(x)δx(t, s)∇x(t,s)Ψ.

(2.58)

Now we plug (2.57) inside (2.58) and we use the notation (f∗m)(φ) = m(φ ◦ f) (for a
generic smooth φ):

δ〈Ψ〉(t) = lim
s→−∞

∫ t

s
dτ

∫
((f τ−s)∗m)(dy)((Tyf

t−τ )e(τ)G(y))∇y(t,τ)Ψ, (2.59)

where we substituted x(τ, s) = y. Using the SRB measure ρ property (2.55) and the
fact that F is time independent (2.56) we have that:

δ〈Ψ〉(t) =

∫ t

−∞
dτ

∫
ρ(dy)((Tyf

t−τ )e(τ)G(y))∇y(t−τ)Ψ, (2.60)

which can be rewritten in the following equivalent form:

δ〈Ψ〉(t) =

∫ t

−∞
dτ

∫
ρ(dx)((Tx(τ−t)f

t−τ )e(τ)G(x(τ − t)))∇xΨ, (2.61)

or even:

δ〈Ψ〉(t) =

∫ t

−∞
dτ

∫
ρ(dy)e(τ)G(y)∇y(Ψ ◦ f t−τ ). (2.62)

The last formula (2.62) can be rewritten as the response formula (2.14):

δ〈Ψ〉(t) =

∫ t

−∞
dτe(τ)

∫
ρ(dy)G(y)∇y(Ψ ◦ f t−τ )

=

∫ t

∞
dτe(τ)ΓΨ,G(t− τ).

(2.63)

where we have defined the response function (2.16):

ΓΨ,G(t) = Θ(t)

∫
ρ(dy)G(y)∇y(Ψ ◦ f t). (2.64)

adding a Θ(t) to enforce causality. It is noticeable that causality enters in our derivation
thanks to the time asymmetry present in the SRB measure property (2.55), where the
time evolution goes in the forward direction. These response formulas can be proved
rigorously considering Axiom A systems [8]. Moreover, these formulas can be extended
to time-dependent F and ρ, and to random forces [8].

2.3.3 A partial FDT

Let’s consider briefly the equilibrium case. In this case the measure is absolutely con-
tinuous ρ(dx) = ρ(x)dx. In this case we can make a partial integration step, obtaining
the following response formula:

ΓΨ,G(t) = −Θ(t)

∫
ρ(dy)

∇y(Gρ)

ρ
(0)Ψ ◦ f t. (2.65)
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Performing the Fourier transform of (2.65) we obtain the following relation:

ΓΨ,G(ω) =−
∫ ∞
−∞

dt eiωtΘ(t)〈∇y(Gρ)

ρ
(0)Ψ ◦ f t〉

=SΨ,G(ω),

(2.66)

where S(ω) is the Fourier transform of the correlation function multiplied with the
Heaviside theta within the response function (2.65), also called spectral density. As
discussed for the formula (1.64), the poles of the spectral density are the same of the
response function. This is basically the FDT: the non-equilibrium response of the forced
system (which enters in the dissipative regime) is fully described by fluctuations of the
unperturbed system at the equilibrium.

On the other hand, if we consider a general SRB measure, or equivalently a NESS, the
FDT is just partially preserved. To see this, we use the characterization of the SRB
measure in terms of its smoothness along the unstable directions. First, we decompose
the spatial pattern of the perturbation along the unstable, stable and neutral directions:

G(x) = Gs(x) +Guc(x), (2.67)

where we have grouped together the neutral direction (tangent to the trajectory) and
the unstable direction. We can now decompose the response function (2.64) in two
contributes:

ΓΨ,G(t) = ΓsΨ,G(t) + ΓucΨ,G(t), (2.68)

where:

ΓsΨ,G(t) = Θ(t)

∫
ρ(dy)Gs(y)∇y(Ψ ◦ f t) (2.69)

and

ΓucΨ,G(t) =−Θ(t)

∫
ρ(dy)

∇ucy (Gucρ)

ρ
(0)Ψ ◦ f t

=−Θ(t)〈
∇ucy (Gucρ)

ρ
(0)Ψ ◦ f t〉.

(2.70)

Notice that along the unstable and neutral directions we have performed the partial
integration step since the SRB is smooth along these directions. This step is not
allowed in general along the stable direction, where the SRB measure ρ is singular.
We can see that just a contribute (the unstable-neutral one) can be rewritten in a
time auto-correlation function form (which expresses the natural fluctuations in the
system). As a consequence, we can infer that the non-equilibrium response of these
chaotic dissipative deterministic system to a weak forcing can not be fully described
by spontaneous fluctuations. The FDT can be recovered in this context considering
just perturbations tangent everywhere to the unstable-neutral directions in each point
of the phase space. To understand why the full FDT is lost, we have to recall that
the support of the SRB measure ρ is a strange attractor, i.e. a fractal geometrical
object. As a consequence, a general forcing will have a component along the unstable
manifold, which can be described by the natural fluctuations (since we are on the
support of the invariant SRB distribution ρ), and another component along the stable
direction which induces a motion (which will dissipate exponentially in time) outside
the support of ρ [6,20] and hence can not be described by spontaneous fluctuations. If
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the ρ is smooth this problem does not exist anymore, since there is no attractor and
the forced motion evolves within the support of the measure. Nevertheless, we remark
that still the response function ΓΨ,G can be computed by means of the steady-state
average of a suitable quantity.

We can observe that the FDT partially holds also from the point of view of the Fourier
transform:

ΓΨ,G(ω) = ΓsΨ,G(ω) + ΓucΨ,G(ω). (2.71)

For ΓucΨ,G we can apply the same line of thinking used in the equilibrium context (2.65):
since the poles with negative imaginary part of the spectral density are the same of
the response function, the FDT holds. On the other hand, this is no more true for
the stable component ΓsΨ,G. To clearly see this let’s consider that component using the
form of the response function (2.61):

ΓsΨ,G(ω) =

∫ ∞
0

dt eiωt
∫
ρ(dx)((Tx(−t)f

t)Gs(f−tx))∇xΨ

=

∫
ρ(dx)

(∫ ∞
0

dt eiωt(Tx(−t)f
t)Gs(f−tx)

)
∇xΨ.

(2.72)

At this point we introduce the contraction semigroup {Tt}t≥0 along the stable direction:

(TtXs)(x) ≡ (Tx(−t)f
t)Gs(f−tx). (2.73)

Let’s call −H the infinitesimal generator of the semigroup. We have, by the Hille-Yosida
theorem [68,69], the following relation:∫ ∞

0
dt eiωt(Tx(−t)f

t)Gs(f−tx) = (H − iω)−1, (2.74)

hence the Fourier transform of the stable component of the response function is:

ΓsΨ,G(ω) =

∫
ρ(dx)(H − iω)−1∇xΨ. (2.75)

We can see that the poles of ΓsΨ,G(ω) are linked to the spectrum of the infinitesimal
generator H, which are different from those of a spectral density S(ω). We can see that
due to this stable component the FDT holds only in part [67].

2.3.4 An algorithm to compute the linear response

The two contributions to the response function (2.68) are hard to directly compute
in practical applications, especially the one along the stable directions. Nevertheless
some algorithms have been developed to numerically evaluate them [15,16]. We present
here the simplified version proposed in [17], valid for both deterministic and stochastic
system. This algorithm does not need any knowledge of ρ because it focuses entirely
on computing the factor related to the observable ∇xΨ(x(t)), where the derivation is
with respect to the initial condition x. Let’s consider first a discrete evolution in time
n = 0, 1, ... of the following d− dimensional system:

xn+1 = gn(xn) = xn + vn(xn), x0 = x. (2.76)
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and:

vn(x) = ε[F (x) + ξn], (2.77)

where the parameter ε > 0 is such that the continuous evolution in time is recovered
for ε→ 0+ and ξn is a stochastic term. We apply now the chain rule recursively:

∇xΨ(xn) =(∇Ψ)(xn) · ∇x(gn−1 ◦ ... ◦ g0)(x)

=(∇Ψ)(xn) ·Gn−1(x)

=(∇Ψ)(xn)(∇gn−1)(xn−1) · ∇x(gn−2 ◦ ... ◦ g0)(x)

=(∇Ψ)(xn)(∇gn−1)(xn−1) ·Gn−2(x),

(2.78)

where ∇Ψ is a 1× d row vector. We have introduced in the above relations the d× d
propagation matrices Gk(x) = ∇(gk ◦ ... ◦ g0), which satisfy the following recursive
relations:

Gn(x) =∇gn(xn) ·Gn−1(x)

G0(x) =∇g0(x).
(2.79)

Now we explicit the form of the row vector: ∇gk = 1 + ε∇F . We can notice that the
form of this vector does not depend nor on the index k and neither on the noise ξk.
The term ∇xΨ(x(t)) reduces to the following expression:

∇xΨ(xn) = (∇Ψ)(xn) · [1 + ε∇F (xn−1)] · ... · [1 + ε∇F (x)]. (2.80)

We can obtain the continuous time evolution sending the number of steps n to ∞ or
equivalently making the time step ε = t/n vanish (with a suitable rescaling of the
noise). In this limit we have that [1 + ε∇F (x)] ≈ exp (ε∇F (x)), hence:

∇xΨ(x(t)) = (∇Ψ)(x(t)) · T exp

[∫ t

0
ds(∇F )(x(s))

]
. (2.81)

where x(s) depends on the initial condition x through the equation of the dynamics
with a frozen realization of the noise ξ (we will later average over these realizations)
and T is the time-ordering operator. Once the relation (2.80) or (2.81) is computed
recursively. we plug it into (2.16) and then we average first over the possible realizations
of the noise and then over an ensemble of possible initial conditions (i.e. over ρ). The
computational time required by our algorithm to estimate the propagator matrices
Gk for k ≤ n is O(n). Note that this algorithm is suited for systems which are at the
steady state before being perturbed, otherwise the propagator matrices Gk are different
from the propagator starting from index j and ending in index j + k, and the required
computational time increases to O(n2).

2.4 KK relations

In this section we reconsider the KK relations, introduced in section 1.4, within the
much general context of the response function (2.16). We can derive these constraints
for the response function using as a main ingredient the fact that the response function
ΓΨ,G is causal [26,70]. For t > 0 we have that the following identity holds:

ΓΨ,G(t) = Θ(t)ΓΨ,G(t), (2.82)
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whose Fourier transform is:

ΓΨ,G(ω) =

∫
dω′

2π
Θ(ω − ω′)ΓΨ,G(ω′), (2.83)

We recall now the form of the Fourier transform of the Heaviside theta (1.62). Using
that expression, we can rewrite (2.83) as follows:

ΓΨ,G(ω) =
1

2π

(
πδ(ω) + iP

[
1

ω

])
∗ ΓΨ,G(ω), (2.84)

where ∗ denotes the convolution operation. We can now derive from (2.84) the following
relation:

ΓΨ,G(ω) = iP

[∫
dω′

π

ΓΨ,G(ω′)

ω − ω′

]
, (2.85)

which is an Hilbert transform of the response function in itself. At this point we want
to derive the KK relations, which link the real and the imaginary part of the response
function through an Hilbert transform. Writing ΓΨ,G = ΓRΨ,G + iΓIΨ,G, we obtain them:

ΓRΨ,G(ω) = −P

[∫
dω′

π

ΓIΨ,G(ω′)

ω − ω′

]
(2.86)

and:

ΓIΨ,G(ω) = P

[∫
dω′

π

ΓRΨ,G(ω′)

ω − ω′

]
. (2.87)

These relations are equal to the ones already found within the Kubo’s theory. On
the other hand, in the Kubo’s theory an explicit form for the real and imaginary was
derived, due to the particular form of the response function (1.55). To connect with
Kubo’s theory, we rewrite the response function ΓΨ,G as follows [26]:

ΓΨ,G(t) = Θ(t)RΨ,G(t). (2.88)

where RΨ,G(t) ≡
∫
ρ(dx)(G(x)∇)etLΨ(x) contains all the details of the physical process

we are considering. In the Kubo’s theory, R is proportional to the derivative of a time-
correlation function C(t):

R(t) = −β d
dt
C(t) (2.89)

Now we perform the Fourier transform of (2.88), obtaining:

ΓΨ,G(ω) =
1

2π

(
πδ(ω) + iP

[
1

ω

])
∗RΨ,G(ω)

=ΓRΨ,G + iΓIΨ,G.

(2.90)

Explicit expressions connecting RΨ,G and the real and imaginary part of the full re-
sponse function ΓΨ,G can be found if R has some definite symmetry with respect to
time reversal [26]. In fact, if R(t) is even or odd under time reversal, we have that the
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Fourier transform R(ω) is respectively real or imaginary. To see this, it is sufficient to
notice that (dropping here the indices):

R(ω) =

∫
dt eiωtR(t)

=εR

∫
d(−t) eiω(−t)R(−t)

=εRR(−ω)

=εRR
∗(ω),

(2.91)

where εR = ±1 if R is even or odd under time reversal. In the case of an even sym-
metry we have that R(ω) = R∗(ω), hence R(ω) is real. On the other hand, for an odd
symmetry R(ω) = R∗(ω), hence R(ω) is imaginary. In the former case, from (2.90), we
derive R(ω) = 2ΓRΨ,G(ω), while in the latter R(ω) = 2iΓIΨ,G(ω). In section 1.4, we have
considered the case of an odd-symmetric R(t) (since usually the correlation function
C(t) in (2.89) is symmetric under time reversal), obtaining (1.64). We recall that it is
(1.64) the main cause of the FDT, since the Fourier transform of the response func-
tion can be reconstructed by the spontaneous fluctuations described by the correlation
function.

Before presenting other general KK dispersion relations, we want to explicit the link
between the short-time behaviour of the response function ΓΨ,G(t) and the asymptotic
behaviour of its Fourier transform [6]. In order to do that, we consider the following
relation: ∫

dtΘ(t)tkeiωt =(−i)k d
k

dωk

(
πδ(ω) + iP

[
1

ω

])
≈k!

ik+1

ωk+1
.

(2.92)

where in (2.92) we have overlooked the distribution nature of the solution and consid-
ered ω 6= 0. As a consequence, if the Taylor expansion of the response function ΓΨ,G

is:
ΓΨ,G(t) ≈ αΘ(t)tβ + .., (2.93)

the asymptotic behaviour of its Fourier transform, in the limit ω →∞ is:

ΓΨ,G(ω) ≈ α 1

ωβ+1
+ ..., (2.94)

where α = α(i)β+1β!. The specific values of α and β depend on the considered system
and on the perturbation. Moreover, since ΓΨ,G(ω) = Γ∗Ψ,G(−ω) for all real ω (including

the asymptotic limit), we have that ΓRΨ,G is even in ω and ΓIΨ,G is odd in ω. From that
we can deduce that α is real for odd β, while it is imaginary for even β.

It is possible to show, considering the asymptotic limit (2.94) and given the causality
of the response function, that the following set of generalized KK dispersion relations
holds [71]:

− π

2
ω2p−1ΓIΨ,G(ω) = P

∫ ∞
0

dω′
(ω′)2pΓRΨ,G(ω′)

(ω′)2 − ω2
, (2.95)

π

2
ω2pΓRΨ,G(ω) = P

∫ ∞
0

dω′
(ω′)2p+1ΓIΨ,G(ω′)

(ω′)2 − ω2
, (2.96)
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where p ∈ [0, ..., (β − 1)/2] if β is odd or p ∈ [0, ..., (β − 1)/2] if β is even. The KK
relations (2.95) and (2.96) provide a set of self-consistency relations that the response
function must satisfy. A practical use of them is to test if an obtained response function
is correct. Another possible use of these constraints could be to perform a parametric
fit in order to obtain a well-defined response function. The number of these constraints
increases with the parameter β, which measures how fast the response function is
around t = 0. In particular, we can consider certain limits for them, in order to get
more handy constraints. For example we can consider (2.96) for p = 0 and ω → 0,
obtaining:

ΓRΨ,G(0) =
2

π
P

∫ ∞
0

dω′
ΓRΨ,G(ω′)

ω′
, (2.97)

which links the static susceptibility (obtained for long times) with the response of the
system at all frequencies. This formula is exactly the sum rule (1.80) derived within the
Kubo’s theory, We observe that for ω → 0, the imaginary part of the response function
must vanish since ΓIΨ,G(0) = 0, since ΓIΨ,G(ω) is asymmetric in ω. On the other hand
the analiticity of the Fourier transform of the response function ensures the finitess of
ΓRΨ,G(0). This is consistent with the fact the the integral in the RHS of (2.97) is not

divergent, since ΓIΨ,G goes to zero at least fast as a linear function in ω′ (the linear

expansion of ΓIΨ,G around 0 admits only odd terms in ω).

We can derive from (2.95) and (2.96) additional constraints in the limit ω → ∞, as
explained in [72]:∫ ∞

0
dω′ (ω′)2p+1ΓIΨ,G(ω′) = 0,

p ∈ [0, β/2− 1], β even
p ∈ [0, (β − 3)/2], β odd,

(2.98)

∫ ∞
0

dω′ (ω′)2pΓRΨ,G(ω′) = 0,
p ∈ [0, β/2− 1], β even
p ∈ [0, (β − 1)/2], β odd,

(2.99)

which are referred to as vanishing sum rules. For β = 0 no vanishing sum rule can be
written, while for β = 1 only (2.99) gives a rule. Interestingly, in addition to a set of
KK relations, another non-vanishing sum rule can be found. If β is odd that rule is:∫ ∞

0
dω′ (ω′)βΓIΨ,G(ω′) = −π

2
α, (2.100)

while for even β: ∫ ∞
0

dω′ (ω′)βΓRΨ,G(ω′) = i
π

2
α, (2.101)

where α is defined by the asymptotic behaviour of the Fourier transform of the response
function (2.94).

2.5 Higher-order response theory

Until now, we have focused on computing the linear correction δ〈Ψ(x(t))〉 (2.14) to
the expectation value of an observable Ψ after the considered system is perturbed by
a forcing with time pattern e(t) and space pattern G(x). In order to do that, we have
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defined a linear response function ΓΨ,G (2.16). We now want to focus on the higher
order terms of the following expansion:

〈Ψ〉e(t) = 〈Ψ〉+
∑
n≥1

δ(n)〈Ψ〉, (2.102)

where 〈Ψ〉e is the expectation value of Ψ in the perturbed system at time t, 〈Ψ〉 the
same expectation values in the unperturbed system and δ(n)〈Ψ〉 is the perturbation
term of order n in the perturbation. Until now we have focused on the n = 1 term.
It can be shown that the general nth term can be expressed by the following n−uple
convolution integral [13,49]:

δ(n)〈Ψ〉(t) =

∫ ∞
−∞

...

∫ ∞
−∞

dτ1...dτnΓ
(n)
Ψ,G(τ1, ..., τn)e(t− τ1)...e(t− τn), (2.103)

where we have introduced the nth order response function. This response function is
causal, i.e. it is vanishing if any of its arguments is negative, and it can be expressed
as follows:

Γ
(n)
Ψ,G(τ1, ..., τn) =

∫
ρ(dx)Θ(τ1)...Θ(τn − τn−1)×

×G(x)∇(e(τn−τn−1)L...G(x)∇(eτ1LΨ(x))),

(2.104)

where etL is the operator of time evolution for the observables.

Let’s see what happens in the frequency domain [13, 26]. First, we Fourier transform
(2.103), obtaining:

δ(n)〈Ψ〉(ω) =

∫ ∞
−∞

...

∫ ∞
−∞

dω1...dωnΓ
(n)
Ψ,G(ω1, , , ωn)e(ω1)...e(ωn) δ

(
ω −

n∑
k=1

ωk

)
,

(2.105)
where the Dirac delta ensures that the sum of all the n frequencies ωk is equal to
the frequency ω of the perturbation. The Fourier transform of the nth order response
function is defined as follows:

Γ
(n)
Ψ,G(ω1, , , ωn) =

∫ ∞
−∞

...

∫ ∞
−∞

dt1...dtnΓ
(n)
Ψ,G(t1, , , tn) exp

(
i
n∑
k=1

ωktk

)
. (2.106)

We remark that the fact that the Fourier transform can be performed boils down to the
integrability of the response function. Ruelle [49] proved that in the n = 1 case showing
that the response function is not exponentially increasing, since both the terms coming
from the stable and unstable manifolds converge. In the non-linear case, i.e. for n > 1,
we can argue that this line of thinking remains valid. since higher-order correlations
(in the equilibrium case) are usually weaker and they decrease faster in time.

We can derive the generalized KK dispersion relations for the nth order response func-
tion following and extending the same line of thinking used in the n = 1 case (2.85).
First, we define the symmetric and asymmetric part of the response function:

S
(n)
Ψ,G(t1, , , tn) ≡ Γ

(n)
Ψ,G(t1, , , tn) + Γ

(n)
Ψ,G(−t1, , ,−tn), (2.107)
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A
(n)
Ψ,G(t1, , , tn) ≡ Γ

(n)
Ψ,G(t1, , , tn)− Γ

(n)
Ψ,G(−t1, , ,−tn), (2.108)

which are different from zero for tn > ... > t1 > 0 or tn < .... < t1 < 0. Since

Γ
(n)
Ψ,G(ω) =

(
Γ

(n)
Ψ,G

)∗
(−ω), we have that Im

[
Γ

(n)
Ψ,G

]
(ω) is odd under the transformation

ω → −ω (where ω is the vector with all the ωk), while Re
[
Γ

(n)
Ψ,G

]
(ω) is even under that

transformation, Performing the Fourier transform of S
(n)
Ψ,G and A

(n)
Ψ,G we have that:

2 Re
[
Γ

(n)
Ψ,G

]
(ω1, ..., ωn) =

∫ ∞
−∞

dt1...dtn exp

(
−i

n∑
k=1

ωktk

)
S

(n)
Ψ,G(t1, , , tn), (2.109)

and:

2i Im
[
Γ

(n)
Ψ,G

]
(ω1, ..., ωn) =

∫ ∞
−∞

dt1...dtn exp

(
−i

n∑
k=1

ωktk

)
A

(n)
Ψ,G(t1, , , tn). (2.110)

We consider now the following identities, given by the causality property of the response
function:

Γ
(n)
Ψ,G(t1, , , tn) =

q∏
i=1

Θ(tki)Γ
(n)
Ψ,G(t1, , , tn)

=

q∏
i=1

Θ(tk)S
(n)
Ψ,G(t1, , , tn)

=

q∏
i=1

Θ(tki)A
(n)
Ψ,G(t1, , , tn),

(2.111)

where q ≤ n and the indices k1...kq run over a subset of the indices 1...n. The relations
(2.111) are valid for any of these subsets. Performing the Fourier transform of (2.111)
we obtain:

Γ
(n)
Ψ,G(ω1, ..., ωn) =

q∏
i=1

(
i

π
P

[
1

ωki

]
+ δ(ωki)

)
∗
(

1

2q
Γ

(n)
Ψ,G(ω1, , , ωn)

)

=

q∏
i=1

(
i

π
P

[
1

ωki

]
+ δ(ωki)

)
∗
(

1

2q−1
Re
[
Γ

(n)
Ψ,G

]
(ω1, ..., ωn)

)

=

q∏
i=1

(
i

π
P

[
1

ωki

]
+ δ(ωki)

)
∗
(

i

2q−1
Im
[
Γ

(n)
Ψ,G

]
(ω1, ..., ωn)

)
,

(2.112)

where ∗ is a convolution product over the frequencies ωk1 ...ωkn . The relations (2.112)
are the generalized KK dispersion relations. Even in the non-linear regime it is possible
to reconstruct the full response of the system starting just from the real or the imaginary
part of the response function, with the only assumption of causality.

2.5.1 Higher-order FDT

We now want to extend the FDT found in the linear case (2.30) to all the orders [26].
In order to do that we must assume that the invariant measure of the system is smooth
ρ(dx) = ρ(x)dx, otherwise the contribution along the stable directions would spoil the
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FDT. We start from the nth order response function (2.104), rewriting it by means of
the perturbation operator L1(.) = G · ∇(.) defined in (2.7):

Γ
(n)
Ψ,G(τ1, ..., τn) =

∫
ρ(dx)Θ(τ1)...Θ(τn − τn−1)×

× L1(e(τn−τn−1)L...L1(eτ1LΨ(x))),

(2.113)

We simplify the notation introducing the evolution operator Λ(t) = exp(tL):

Γ
(n)
Ψ,G(τ1, ..., τn) =

∫
ρ(dx)Θ(τ1)...Θ(τn − τn−1)×

× L1Λ(τn − τn−1)...L1Λ(τ1)Ψ(x)

=Θ(τ1)...Θ(τn − τn−1)×
× 〈ρ, L1Λ(τn − τn−1)...L1Λ(τ1)Ψ(x)〉,

(2.114)

where 〈ψ1, ψ2〉 defines an integration operator in space for the product ψ1 and ψ2, for
any couple of integrable functions. Given that, we recall the definition of the adjoint
operator(2.28) of L1: L1(.) = −∇(G.) and of the operator L∗ which defines the time-
reversed motion (2.45). Moreover, we can define the adjoint operator of the evolution
operator Λ†(t) = exp(tL∗), which evolves the operators backwards in time:

Λ†(t)[ψ(x)] = ψ(x(−t)), (2.115)

for any function ψ. At this point, we derive from (2.114) the following relation, taking
the adjoint of all the operators:

Γ
(n)
Ψ,G(τ1, ..., τn) =Θ(τ1)...Θ(τn − τn−1)×

× 〈Λ†(τ1)L1...Λ
†(τn − τn−1)L1ρ,Ψ(x)〉,

(2.116)

which is the generalized FDT extending the Kubo-Agarwal formula (2.30) for non-linear
response functions.

2.6 Surrogate Response Theory

A new meaningful angle of the problem in RT has been introduced in [28] where response
relations between perturbed observables are built. These relations can be useful in a large
variety of contexts where the knowledge of the forcing is just partial, and we want to
use perturbed observables to predict the state of other perturbed observables. Let’s
consider the perturbed system (2.5), where the perturbation has time pattern e(t) and
space pattern G(x). We consider now the Fourier Transform of two linear response
relation of the kind (2.17), for two generic observables Ψ1 and Ψ2:{

δ〈Ψ1〉(ω) =ΓΨ1,G(ω)e(ω)

δ〈Ψ2〉(ω) =ΓΨ2,G(ω)e(ω)
(2.117)

Now we take the ratio between the two equations in (2.117), getting:

δ〈Ψ1〉(ω) =
ΓΨ1,G(ω)

ΓΨ2,G(ω)
δ〈Ψ2〉(ω). (2.118)
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It is remarkable that this can be done for any time pattern of the perturbation e(t). This
is because we are focusing on the linear order terms, while for higher-order terms the
time pattern enters in the Fourier transform of the change of the observables through
a more complicated integral formula (2.106) (and hence it cannot be deleted). We can
define the Fourier transform of the surrogate response function H12 between Ψ1 and
Ψ2 as follows:

H12(ω) ≡
ΓΨ1,G(ω)

ΓΨ2,G(ω)
. (2.119)

If we go back in the time domain, performing the inverse Fourier transform of the
relation (2.118), we have the following response relation:

δ〈Ψ1〉(t) =

∫ ∞
−∞

H12(t− τ)δ〈Ψ1〉(τ)

=H12(t) ∗ δ〈Ψ2〉(t)
(2.120)

H12 is called a surrogate response function because the perturbed observable Ψ2 in
(2.120) acts as a surrogate for the forcing to predict the state of the other perturbed
observable Ψ1. The surrogate response function depends on the spatial pattern of the
forcing and on the given couple of observables which act as predictor and predictand.
We remark that the observables can even be the same physical quantity but with
different spatial supports (if the system is spatially extended): the knowledge of the
state of the quantity in one location can effectively predict the state of the same quantity
in another location, as we will see in chapter 4 in the climatic model Lorenz 96.

As discussed for the response functions Γ in (2.16), we want to deal with response
functions which have predictive power, i.e. they are zero for negative times. Only if
the surrogate response functions have this feature, they can be used for predictions
purposes since the state of the perturbed observable Ψ1 can be predicted with just the
information about the evolution of Ψ2 up to time t. Moreover, we observe that if the
surrogate response function is predictive, it is possible to derive a corresponding set
of KK dispersion relations. To have the surrogate response function H predictive, it
is necessary that its Fourier transforms has no poles in the upper complex ω−plane.
In order to check that, we have to consider (2.119), looking for the zeros of the global
response function ΓΨ2,G at the denominator (the poles of the response function at the
numerator are not in the upper complex ω−plane since Γ is predictive). The presence
of zeroes in the Fourier transform ΓΨ,G is not trivial to detect [73]. Physically, it is
equivalent to stating that exists a frequency ω1 such that δ〈Ψ〉(ω1) = ΓΨ,G(ω1)e(ω1) =
0. As a consequence, if we consider a mono-chromatic perturbation with frequency ω1,
there is no response of the system looking through the lens of δ〈Ψ〉: some information
is lost and this can signal the possibility of the absence of predictive power of the
observable Ψ. The dependence of the predicative power of the surrogate response
function on the particular choice of the observables is physically reasonable: we expect
that not all choices of predictors and predictands are equally fortunate. For instance, if
there is a causal link in a feedback or a flow of information from one variable to another,
there is an asymmetry in the predictive power, which can be observed in the magnitude
of the non-causal part of the surrogate response functions H (i.e. for negative times). In
the case the surrogate response function H12 has a non-causal component, predictions
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must be performed using the following modified surrogate response function:

H ′12(t) ≡ Θ(t)H12(t). (2.121)

On the other hand, if the problem at hand focuses on the reconstruction of a past
signal from the data, also the non-causal part can be considered. In the context of
control theory (which considers general linearized systems), it is possible to derive an
effective criterion which can identify non-predictive dynamical variables, as we will see
in chapter 3.

In order to get a physical insight of the structure of the surrogate response functions
H12, we will now make some assumption on its functional form. The following re-
sults are not general, but they are extremely useful in order to better understand the
surrogate response theory. Let’s approximate H12 with the following rational function:

H12(ω) =
P12(ω)

Q12(ω)
=

a
N∏
j=1

(ω − ωj)

b
M∏
k=1

(ω − vk)
. (2.122)

where N and M are integers which can also be very large, and the ωj and vk are
in general distinct. Moreover, we assume that each of the the ωj and vk are of first
order. For very large ω, we have that H12(ω) ∼ a

bω
N−M . We can now rewrite (2.122),

performing a division of the polynomials:

H12(ω) =S12(ω) +
R12(ω)

Q12(ω)

=S12(ω) +K12(ω),

(2.123)

where S12(ω) is a polynomial of order N − M (if N ≥ M , otherwise that term is
vanishing), while the order of R12 is strictly smaller than the order of Q12. We can
express S12 as follows:

S12(ω) =
N−M∑
j=0

cj(−iω)j . (2.124)

The second term K12 can be written in the following way, performing a partial fraction
expansion:

K12(ω) =
a

b

M∑
k=1

αk
ω − vk

, (2.125)

where αk = R12(vk)
(
dQ12(x)
dx |x=vk

)−1
. We now want to go back in the time domain,

performing the inverse Fourier transform of (2.123). We thus recall that the inverse
Fourier transform of (−iω)j is δj(t), i.e. the jth derivative of the Dirac delta. Moreover,
we divide now the M poles vk of K12 into Mp predictive poles pk and Mnp not predictive
poles np, which have respectively negative and positive imaginary part. Performing the
inverse Fourier transform, we have:

H12(t) =

N−M∑
j=1

cjδ
j(t) +

a

b
Θ(t)

Mp∑
k=1

αke
−ipkt +

a

b
Θ(−t)

Mnp∑
p=1

αpe
−inpt

=S12(t) +K12(t),

(2.126)
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where the first term S12 gives a singular contribution, while the second is not-singular
and it is further divided in a predictive term and a not-predictive term. Since the
singular term has to be interpreted in a distributional way, we consider its action
within the expression (2.120):

δ〈Ψ1〉(t) =
N−M∑
j=0

(−1)jcj
djδ〈Ψ2〉(t)

dtj
+

+

∫ ∞
−∞

dτ

Θ(τ)

Mp∑
k=1

αke
−ipkτδ〈Ψ2〉(t− τ) + Θ(−τ)

Mnp∑
p=1

αpe
−inpτδ〈Ψ2〉(t− τ)

 .
(2.127)

The first term in (2.127) links the values of the two observables 〈Ψ1〉 and 〈Ψ1〉 at the
same time t, hence it is local in time. On the other hand, the non-singular terms
give a non-local (in time) contribution, also called memory terms. The smaller is
the imaginary part of the pole, the bigger will be its contribution in the asymptotic
limit (for t → ±∞, depending on the causal or not causal nature of the pole). The
smallest predictive pole p and the smallest not-predictive pole n control the asymptotic
behaviour of the surrogate response function. Moreover, note that if M < N , the
surrogate response function H12(ω) presents a singular term, while H12(ω) = 1/H12(ω)
does not, hence the local (in time) flow of information has a definite direction in this
setting where we consider observables as surrogates of the forcing. The fact that the
poles are different between H12 and H12 is relevant, because it shows that different
observables keep memory of the system in different ways, with different time scales
given by the imaginary terms of the poles. Note that (2.127) slightly generalizes the
relation found in [28], since it considers also non-causal terms.

We can further the inspection of H12 as a rational function allowing poles or zeros of
higher order. For example we can assume that one predictive pole v1 (and just one)
has order s ≥ 1:

H12(ω) =
P12(ω)

Q12(ω)
=

a
N∏
j=1

(ω − ωj)

b(v − v1)s
M−s∏
k=1

(ω − vk)
. (2.128)

As a consequence, for some coefficients αk and γk, we have that the non-singular com-
ponent K assumes the following form:

K12(ω) =
M−s∑
k=1

αk
ω − vk

+
s∑

k=1

γk
(ω − v1)k

. (2.129)

The terms of the second sum in (2.129) will give a contribute in the time domain in
H12(t) of the following form:

Θ(t)

s∑
k=1

γkt
k−1e−iv1t. (2.130)

These terms, thanks to the polynomial factor tk−1, are the cause of the emergence of
peaks of the surrogate response function H12(t) away from t = 0.
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2.6.1 More complex forcings: more surrogates

Let’s considered the perturbed system (2.5) but with a more complex pattern of forcing,
consisting in two independent perturbations:

F (x)⇒ F (x) + e1(t)G1(x) + e2(t)G2(x), (2.131)

where G1,2(x) are space patterns while e1,2(x) time patterns. We consider now three
independent observables Ψ1, Ψ2 and Ψ3. The linear change in their expectation value
after the perturbation is the following (in the frequency domain):

δ〈Ψ1〉(ω) =ΓΨ1,G1(ω)e1(ω) + ΓΨ1,G2(ω)e2(ω)

δ〈Ψ2〉(ω) =ΓΨ2,G1(ω)e1(ω) + ΓΨ2,G2(ω)e2(ω)

δ〈Ψ3〉(ω) =ΓΨ3,G1(ω)e1(ω) + ΓΨ3,G2(ω)e2(ω).

(2.132)

We want to surrogate the two forcings using two observables, as follows:

δ〈Ψ3〉(ω) = H31(ω)δ〈Ψ1〉(ω) +H32(ω)δ〈Ψ2〉(ω). (2.133)

We plug the RHS in (2.132) into (2.133), obtaining the following (we drop the depen-
dence on ω for clarity):

ΓΨ3,G1e1 + ΓΨ3,G2e2 =H31ΓΨ1,G1e1 +H31ΓΨ1,G2e2+

+H32ΓΨ2,G1e1 +H32ΓΨ2,G2e2.
(2.134)

We use now the fact that the time patters are arbitrary, since they do not appear in the
definition of the linear response functions. We can thus express (2.134) in a matricial
form: (

ΓΨ1,G1 ΓΨ2,G1

ΓΨ1,G2 ΓΨ2,G2

)(
H31

H32

)
=

(
ΓΨ3,G1

ΓΨ3,G2

)
. (2.135)

which can be recasted in the following form, in order to explicit the surrogate response
functions: (

H31

H32

)
=

(
ΓΨ1,G1 ΓΨ2,G1

ΓΨ1,G2 ΓΨ2,G2

)−1(
ΓΨ3,G1

ΓΨ3,G2 .

)
, (2.136)

where we have assumed the invertibility of the considered matrix. Once we obtain the
surrogate response H from the relation (2.136), we can go back in the time domain in
order to compute δ〈Ψ3〉(t):

δ〈Ψ3〉(t) = H31(t) ∗ δ〈Ψ1〉(t) +H32(t) ∗ δ〈Ψ2〉(t), (2.137)

which do not depend on the time patterns e1,2(t) at all.

We can generalize the derivation of the surrogate response functions considering N
independent forcings:

F (x)⇒ F (x) +
N∑
l=1

el(t)Gl(x) (2.138)

and N + 1 independent observables Ψ1,...,N+1. We want to express the linear change of
the expectation value of an observable as a function of the other N observables;

δ〈ΨN+1〉(ω) =

N∑
l=1

HN+1,l(ω)δ〈Ψl〉(ω). (2.139)
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As before, we have that δ〈Ψk〉(ω) =
∑N

j=1 ΓΨk,Gj (ω)ej(ω), where ΓΨk,Gj is the response
function related to the observable Ψk and the space pattern Gj . We plug these relations
into (2.139), obtaining (dropping the dependence on ω): ΓΨ1,G1 . . . ΓΨN ,G1

...
. . .

...
ΓΨ1,GN . . . ΓΨN ,GN


 HN+1,1

...
HN+1,N

 =

 ΓΨN+1,G1

...
ΓΨN+1,GN

 (2.140)

 HN+1,1
...

HN+1,N

 =

 ΓΨ1,G1 . . . ΓΨN ,G1

...
. . .

...
ΓΨ1,GN . . . ΓΨN ,GN


−1 ΓΨN+1,G1

...
ΓΨN+1,GN

 , (2.141)

where the N Fourier transform of the surrogate response functions are explicited by
means of an expression containing a priori all the possible response functions ΓΨk,Gj .
As a consequence, the poles of the surrogate response functions are no more the poles
of the response functions, but a function of them. Then, if few observables are not able
to predict the state of another observable Φ, it can happen (considering more forcings)
that a combination of these non predictive observables can succeed in predicting Φ, as
observed in the climatic model Lorenz 96 in [28]. This is reasonable: forcing the system
in more ways and considering more observables as surrogates of the perturbations we
gain more information and thus more predictive power of the system. Once we have
obtained the surrogate response functions, we plug them into (2.139), obtaining the
following expression after an inverse Fourier transform:

δ〈ΨN+1〉(t) =

N∑
l=1

HN+1,l(t) ∗ δ〈Ψl〉(t). (2.142)

The generality of the derivation of response theory and surrogate response theory en-
ables them to be applied in several scientific disciplines, providing new insights and
points of view. In the following two chapters we apply the surrogate response theory
in two diverse contexts: control theory and in the climatic model Lorenz 96.

2.6.2 A new ratio method to quantify unpredictability

As we have seen before, the surrogate response functions H12 (between two generic
observables Ψ1 and Ψ2) could be non-predictive. In other words, they have a non-
vanishing non-causal component with support on the negative times. The presence of
the non-causal component hinders the prediction of Ψ1 at time t using just the time
behaviour of Ψ2 up to time t. An interesting problem is to actually quantify the non-
causal component of the surrogate response function. This problem can emerge in a
variety of situations where we have more non-predictive surrogate response functions
and we want to choose between them the one which provides the best prediction. For
example, we could have a set of observables {Ψ1, ...,Ψm} and we want to find the
one that better predicts another observable Ψa. If one observable Ψk is such that the
surrogate response function Ha,k is predictive, we choose Ψk without hesitations. The
choice becomes hard when all the picked observables {Ψ1, ...,Ψm} are not predictive.
We want to have a method which allows us to choose the best predictive one between
them. Another setting where such a method could be helpful is that of two observables
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Ψa and Ψb which try to predict each other. We would like to understand whether it is
Ψa which predicts better Ψb or the contrary since a better prediction power could be
linked to a causal link or a flow of information with a definite verse from an observable
to the other. It could happen that both the two surrogate response functions Ha,b and
Hb,a are non-predictive. In that case, the existence of the before-mentioned method
would be crucial to identify the observable with more prediction power.

We now present such a method, developing the idea behind it. If the surrogate response
function H12 is predictive, a set of KK relations could be derived from it. In particular,
following the derivation presented in Section 2.4, for H12 we would have:

H12(t) = Θ(t)Hc
12(t), (2.143)

where Hc(t) is the causal part of H12. Performing the Fourier transform of (2.143) we
get:

H12(ω) =Θ(ω) ∗Hc
12(ω)

=

(
1

2
δ(ω) +

i

2π
P

[
1

ω

])
∗Hc

12(ω)

=
1

2
Hc

12(ω) +
i

2π
P

[
1

ω

]
∗Hc

12(ω).

(2.144)

Let’s see how the KK relation (2.144) changes with the presence of a non-predictive
component Hnc in the surrogate response function:

H12(t) = Θ(t)Hc
12(t) + Θ(−t)Hnc

12 (t). (2.145)

We perform the Fourier transform of (2.145) obtaining the following modified KK
relation:

H12(ω) =Θ(ω) ∗Hc
12(ω) + Θ(−ω) ∗Hnc

12 (ω)

=

(
1

2
δ(ω) +

i

2π
P

[
1

ω

])
∗Hc

12(ω) +

(
1

2
δ(ω)− iP

[
1

ω

])
∗Hnc

12 (ω).
(2.146)

We can see in (2.146) that for each ω there are two contributes for the Fourier transform
of the response function: a causal one and a not-causal one. We notice that in the limit
of vanishing not-causal component, (2.146) reduces to the usual KK relation (2.144).

Looking at (2.146) we can deduce that the non-causal part is more important as the
second term grows. As a consequence, we could assess the importance of the non-causal
component with respect to the causal-component quantifying the norm of those two
terms. In particular, we choose the L2 norm to quantify the norm of a function, which
is defined as follows for a complex function g(x):

‖g‖2 ≡
∫

dx g(x)g∗(x) =

∫
dx |g(x)|2. (2.147)

Given that, we say that to assess the importance of the non-causal component of the
response function H12, we have to look at the following ratio:

R(H12) ≡ ‖Θ(−ω) ∗Hnc
12 (ω)‖2

‖Θ(ω) ∗Hc
12(ω)‖2

. (2.148)
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We can translate the ratio (2.148) in the time domain using the Plancherel Theorem,
which states that the L2 norm of a function g(t) is equal to the L2 norm of its Fourier
transform:

‖g(t)‖2 = ‖g(ω)‖2. (2.149)

As a consequence, we can say that the following ratio quantifies the unpredictable
component of a surrogate response function:

R(H12) ≡ ‖Θ(−t)Hnc
12 (t)‖2

‖Θ(t)Hc
12(t)‖2

. (2.150)

The practical use of the method (2.150) is the following: we take the non-causal com-
ponent Θ(−t)Hnc

12 (t) of the surrogate response function H12 and we compute its L2

norm:

‖Θ(−t)Hnc
12 (t)‖2 =

∫ 0

−∞
dt |Hnc

12 |2(t). (2.151)

We do the same for the causal component:

‖Θ(t)Hc
12(t)‖2 =

∫ ∞
0

dt |Hc
12|2(t), (2.152)

then we take the ratio between these two quantities, obtaining (2.150). We can see that
the method (2.150) is very straight-forward and easy to implement. Note that if there
is no non-causal component, the ratio is vanishing: the surrogate response function is
predictive. Moreover, since this method revolves around the response function, it does
not depend on the chosen time pattern. The relation (2.150) provides a method a priori
which permits to quantify the unpredictive power of the surrogate response function.
In Section 4.2.2 we will actually see the effectiveness of this method.

Note that in the causal component Hc(t) there could be an eventual singular component
S(t), as in (2.127). In that case the integral over time of the singular part

∫∞
0 S(t)dt

could be divergent since generally, it is a sum of derivatives of delta functions. One
could think to use a method like (2.150) but just for the non-singular component of the
surrogate response function.

A pedagogical example

We now consider a very simple example, to show the idea behind the effectiveness of
the ratio method (2.150). We consider the following response function:

H(t) = Θ(t)Ae−at + Θ(−t)B ebt, (2.153)

where the coefficients a and b are positive while the constants A and B are real numbers.
The non-causal component is Hnc = B ebt and the causal component is Hc(t) = Ae−at.
Note that the time scale related to the causal component is 1/a, while the time scale
related to the non-causal component is 1/b. The smaller is the coefficient, the bigger is
the time scale and the importance of the related component in the response function.
Note that the Fourier transform of this function is the following:

H(ω) =
iA

ω + ia
+

(−i)B
ω − ib

, (2.154)
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hence it falls in the general category of rational functions (2.122). The ratio method
(2.150) takes the following form for the surrogate response function (2.153):

R(H) =

(
B2

2b

)/(A2

2a

)
=
B2

A2
· a
b
,

(2.155)

which depends on the interplay between the time scales of the causal and not causal
components and on the interplay between the magnitude of these components. We can
see from the ratio method (2.155) that if the time scale 1/b of the non-causal component
Hnc is much smaller than the time scale 1/a of the causal component, the ratio goes
to zero. This is reasonable: in that case the surrogate response function has a very
important non-causal component. A similar conclusion can be drawn considering a
non causal component whose magnitude B is much smaller than the magnitude A of
the causal term. Also in that case the ratio method goes to zero, as expected by a
predictive surrogate response function. In this very simple example we can see that
the ratio method is very useful to quantify the relation between the causal and not-
causal components of the response function. We can extend this line of thinking to the
following more general surrogate response function:

H(t) = Θ(t)
∞∑
k=1

Ak e
−akt + Θ(−t)

∞∑
k=1

Bk e
bkt, (2.156)

where both components have infinite terms, each one with its time scale and its mag-
nitude. The ratio method (2.150) takes the following form, which generalizes (2.155):

R(H) =

( ∞∑
k=1

B2
k

bk

)/( ∞∑
k=1

A2
k

ak

)
, (2.157)

where it is present a complicated relation between the various time scales and magni-
tudes of infinite causal and not causal terms. Each one of these terms is weighted by
its magnitude and its time scale. The basic limits considered in the context of (2.155)
can be taken also for the relation (2.157): if the time scale or the magnitude of one
term vanishes, the importance of the relative component (be it causal or not causal) is
drastically reduced with respect to the other.
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Chapter 3

Surrogate RT and Control in
Linear Systems

In Section 2.6 we have introduced the surrogate RT: a fairly general theory which
focuses on understanding when perturbed observables can be used as surrogates of the
actual forcing to predict the state of another perturbed observable. There are cases
where the prediction is possible and other cases where it is not, due to the non-causal
nature of the surrogate response function. In this chapter we apply such a theory in the
engineering context of control theory. This chapter is organized as follows. In Section
3.1 we present our setting, which consists in linearized models around asymptotically
stable equilibrium points [29, 30, 64]. Then, we derive response functions (or transfer
functions) and surrogate response functions in this linearized context. In Section 3.2
we present the main result of the chapter: the Unpredictability Criterion (UC). This
Criterion allows us to rule out a priori the dynamical variables of our system which
cannot be used for prediction purposes. The UC takes a very explicit and simple form,
which makes it amenable to use in many applications, as listed above in the contexts of
control theory and rational approximation theory. Next, we provide the proof of this
theorem and a simple yet hopefully illustrative numerical example of an application of
the UC. In Section 3.3 we add memory effects to the linear systems considered before
and we see how the UC changes its form. We observe that because the variables know
more of each other it is less likely that they are unpredictive. In Section 3.4 we take a
different point of view, considering linear systems defined by random matrices. After
discussing the stability conditions for these systems, we derive an average UC, which
tells us on average whether a dynamical variable is unpredictive. In Appendix B we
show a simple pedagogical example to show the idea beneath the UC.

3.1 Our setting

3.1.1 Linearized dynamical systems

Let’s consider a generic dynamical system (sometimes referred to as process in the
control theory literature [29,30]):

~̇y = ~F (y), (3.1)

53
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where ~y is a vector ofN dynamical variables which belongs to some phase space Ω ⊆ RN .
We now suppose that this dynamical system has an equilibrium point ỹ, i.e. a point in
the phase space such that F (ỹ) = 0. We can now expand the function ~F around the
steady-state point ỹ, obtaining:

ẏi(t) = −
∑
j

Aij(yj(t)− ỹj) + ..., Aij = −∂Fi
∂yj |y=ỹ

(3.2)

We introduce the variables ~x = ~y − ỹ in such a way to have the fixed point in 0:

ẋi(t) = −
∑
j

Aijxj(t) + ..., (3.3)

In our following analysis we will focus just on equilibrium points which are asymp-
totically stable, i.e. stable and attractive.1 Doing so, the matrix A will have just
eigenvalues with positive real part [74] .

3.1.2 Adding the input: perturbing the linearized dynamical system

Response functions

Let’s consider the dynamical system (3.3), linearized around an asymptotically stable
equilibrium x̃ = 0. Starting from the system at the steady-state, we perturb the system
with a small perturbation, with spatial pattern {Gi}i (with at least one Gi 6= 0) and
time pattern e(t):

ẋi(t) = −
∑
j

Aijxj(t) +Gie(t). (3.4)

What we want to do now is to build the response functions Γi,gl which connect the
perturbation Gie(t) (the input) with the response of the system seen through the dy-
namical variable xi (the output). Those response functions are called transfer functions
in the control theory literature [29]. In our setting, we can find those response functions
with just a few steps of computations.

Let’s take the Fourier transform of the equation (3.4), looking at it component by
component:

− iωxi(ω) = −
∑
j

Aijxj(ω) +Gie(ω) (3.5)

We can now solve this equation with respect to x(ω):

xi(ω) =
∑
j

(A− iω1)−1
ij Gje(ω), (3.6)

where (A− iω1)−1
ij is the (i, j)−entry of the matrix (A− iω1)−1. From equation (3.6)

we can extract the Fourier transform of the response function which we refer to as

1We recall that an equilibrium point x̃ is stable if for each neighbourhood U of x̃ there is another
neighbourhood U0 of x̃ such that ΦFt (U0) ⊆ U for all t, where ΦFt is the flow associated to the map
F . Moreover, we recall that an equilibrium point is attractive if it exists a neighbourhood V of x̃ such
that for any ~x0 ∈ V , we have that limt−→∞ ~x(t) = x̃.
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the global response function because it takes into account all the contributes of the
dynamical variables:

Γi,gl(ω) =
N∑
j=1

Γij(ω), (3.7)

where:
Γij(ω) = Gj(A− iω1)−1

ij . (3.8)

It is important to remark that in (3.8) there is no summation over the index j, the
constant Gj is just multiplied. We can rewrite (3.8) using the Cramer’s rule:

Γij(ω) =
Gj

det[A− iω1]
Cji(ω), (3.9)

where Cji is the determinant of the minor Mji, i.e. the matrix obtained removing the
row j and the column i from the full matrix A− iω1. If we perform the inverse Fourier
transform of (3.6), we obtain the response relation [4]:

xi(t) =

∫ t

−∞
Γi,gl(t− τ)e(τ)dτ, (3.10)

where the effect of the perturbation at time τ < t on the dynamical variable xi at
time t is mediated by the response functions Γij , which depend just on the perturbed
observable and the space pattern of the forcing (not on the time pattern of the forcing).
The response function defined in (3.10) has support just for positive times. This is due
to the fact that the poles of its Fourier transform (3.8) are all located in the lower
complex ω−plane, i.e. they all have negative imaginary part (this can be noticed very
quickly observing that at the denominator there is the secular equation for the matrix A,
which eigenvalues all have positive real part). As a consequence, the response function
is predictive: we can predict the state of the perturbed dynamical variable xi(t) using
just the perturbation e(τ) up to time t, as it is shown in (3.10).

Surrogate response functions

A new angle of the problem in RT has been introduced in [28] where, given a per-
turbation of a rather general statistical mechanical system,response relations between
perturbed observables are built. Let’s build them in our setting. We consider the Fourier
Transform of two response relation of the kind (3.10), for the dynamical variables xi
and xj : 

xi(ω) = Γi,gl(ω)e(ω)

xj(ω) = Γj,gl(ω)e(ω)
(3.11)

Now we take the ratio between the two equations in (3.11), getting:

xi(ω) =
Γi,gl(ω)

Γj,gl(ω)
xj(ω). (3.12)

We can define the Fourier transform of the surrogate response function Hij between xi
and xj as follows:

Hij(ω) ≡
Γi,gl(ω)

Γj,gl(ω)
. (3.13)



56 CHAPTER 3. SURROGATE RT AND CONTROL IN LINEAR SYSTEMS

If we go back in the time domain, performing the inverse Fourier transform(3.12), we
have the following response relation (we remark that in the following formula there is
no implicit index summation):

xi(t) =

∫ ∞
−∞

Hij(t− τ)xj(τ). (3.14)

Hij is called a surrogate response function because the perturbed observable xj in (3.14)
acts as a surrogate for the forcing to predict the state of the other perturbed observable
xi. The variable xj is reconstructing the state of the other dynamical variable xi.

As discussed for the response functions Γ in section 3.1.2, we want to deal with response
functions which have predictive power, i.e. they are zero for negative times. Only if
the surrogate response functions have this feature, they can be used for predictions
purposes. To have the surrogate response functions H predictive, it is necessary that
their Fourier transforms have no poles in the upper complex ω−plane. In order to check
that, we have to consider (3.13), looking for the zeros of the global response function
at the denominator (the poles of the global response function at the numerator are not
in the upper complex ω−plane, as discussed in 3.1.2).

3.2 Unpredictability Criterion

We may wonder whether we can find a criterion that allows us to discover a priori
whether an observable j is actually able to make predictions by looking at the properties
of the matrix A and of the vector G. We claim to have found in our setting such
a criterion, which can be used to study the properties of all variables xj such that
the corresponding component Gj of the forcing is not vanishing. Note that, unless
symmetries are present in the system, this limitation is only minor. We first define the
following quantity:

SRj [A] =
N∑
k=1

AjkGk, (3.15)

i.e. the sum of all the elements in the row j of the matrix A of the linearized system
(3.3), weighted by the spatial pattern of the forcing Gj . Given that definition, we
present the claimed criterion:

Unpredictability Criterion (UC): We consider the perturbed problem (3.4) with a
spatial pattern of the forcing Gj 6= 0 for some j. If the following inequality is valid for
the perturbed dynamic variable xj (with Gj 6= 0), then that variable is generally not
able to predict the future state of other variables2:

SRj(A) > GjTr[A]. (3.17)

2A particular case where two not-predictive variables xi and xj can predict each other can happen
when their global response function Γ present the same zeros in the complex upper ω−plane. In this
case the surrogate response function Hij is predictive since the singularity is cancelled:

Hij =
Γi,gl
Γj,gl

∼ Πi
XXXXX(ω − ωNPi )

Πi
XXXXX(ω − ωNPi )

(3.16)

This predictive power emerges from the particular combination of the observables i and j and the
spatial pattern of the forcing G. As a consequence, the occurrence of such a zero/pole cancellation is
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We can see that it is a very simple and efficient criterion. Using the UC we can rule
out a priori some of the variables which cannot be used for prediction purposes.
Its physical meaning can be explained as follows. Let’s rewrite the criterion (3.17),
removing from both sides the single term GjAjj :∑

k 6=j
AjkGk > Gj

∑
h6=j

Ahh. (3.18)

The quantity at the LHS could be seen as the linear feedback from the system to the
dynamical variable j, while the RHS as the total dissipation encountered in the system
(as it can be seen in the context of (2.19)).

The LHS can be seen as measuring the total information received by xj from the whole
system, while the quantity at the RHS as the total information retained by the other
variables xh. We can say that the sense of the criterion is that the observable j is not
able to predict the state of the other variables if too much information arrives at j
from them. In Appendix B we provide an explicit derivation of the UC for the case
of systems with 3 degrees of freedom. In Section 3.3 we show how the UC changes
introducing memory effects in the dynamical system.

In control theory one of the detrimental problems which can emerge in designing con-
trollers is the presence of zeros with positive imaginary part in the response functions.
The dynamical systems which shows this feature are called non-minimum phase sys-
tems [29]. These zeros can be linked with delays of the response of the system to a
perturbation [29]. We can see this very quickly considering a generic response function
Γ whose Fourier transform has a zero iωNP with ωNP > 0 and performing a Padé
approximation [75]. The Padé approximant of a function f(x) is a ratio of polynomials
of order p and q such that it better approximates f(x) for increasing p and q:

f(x) ≈
∑p

i=1 aix
i∑q

j=1 bjx
j
, (3.19)

where the coefficients ai and bj generally depend on the orders p and q. For the
exponential function f(x) = e−x the Padé approximant is:

f(x) = e−x ≈
∑p

i=1
(p+q−j)!p!

(p+q)!j!(p−j)!(−x)i∑q
j=1

(p+q−j)!q!
(p+q)!j!(q−j)!(x)j

. (3.20)

For small x, we can truncate at the first order considering p = q = 1:

f(x) = e−x ≈ 1− x/2
1 + x/2

. (3.21)

At this point we make the assumption that the non-predictive pole ωNP has a large
magnitude. This is equivalent to assume that the surrogate response functions whose

not generic and not robust. In fact, it is sufficient to slightly modify the system so that the two poles
do not match anymore.
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use the observable related to Γ as predictor have a small non-causal component, as
explained in Section 2.6.2. We can thus use the Padé approximant (3.21) for the
exponential function in the Fourier transform of the response function Γ:

Γ(ω) =(ω − iωNP )R(ω)

=
(ω − iωNP )

(ω + iωNP )
(ω + iωNP )R(ω)

≈− e−2
(

ω
iωP

)
(ω + ωNP )R(ω)

(3.22)

where R(ω) is the remaining part of the response function. The exponential factor
in the frequency space is translated in a delay in the time domain. In fact, defining
Γ̃(ω) = −R(ω)(ω + ωNP ), we have:

Γ(t) =

∫
dω

2π
Γ̃(ω)e−iωt

≈
∫
dω

2π
e
−2

(
ω

iωNP

)
Γ̃(ω)e−iωt

≈ Γ̃(t− 2

ωNP
).

(3.23)

We can see that the smaller is the imaginary part ωNP of a non-predictive zeros, the
longer is the delay of the response and then the more difficult is the system to control
(since it is slower to respond to the given input). For smaller ωNP we assume that
a delay is still present in the response function, generally different from 1/ωNP . It
is noticeable that the presence of a zero with positive imaginary part in a response
function of an observable is the same condition which hampers the predictive power of
that observables in the surrogate RT. As a consequence, if we find using the UC that
some observable of a dynamical system cannot make predictions of other observables,
we deduce that the considered system is necessarily a non-minimum one. The presence
of a Criterion which can immediately establish whether a system is non-minimum or not
can have relevant industrial applications in designing controllers, since those systems
have controllability issues [29,33].

3.2.1 Proof of the Unpredictability Criterion

Let’s prove the UC for general matrices NxN, with the spatial pattern of the pertur-
bation Gi 6= 0 for some i. We consider the global response function for the dynamical
variable xj , with Gj 6= 0:

Γj,gl =

N∑
k=1

Γjk,

and we look for its zeros. We plug the relation (3.9) into each of the terms Γjk. Doing
that, we have that looking for the zeros of Γj,gl is equivalent to finding the N − 1 roots
of a polynomial in ω of order N − 1, i.e. the following equation (the determinant at
the denominator in (3.9) has been simplified):

(−iω)N−1 + αN−2(−iω)N−2 + ...+ α0 = 0. (3.24)



3.2. UNPREDICTABILITY CRITERION 59

We make the rewriting (−iω) = x, obtaining:

xN−1 + αN−2x
N−2 + ...+ α0 = 0, (3.25)

where (recalling that Gj 6= 0):

αN−2 =

−∑
k 6=j

Ajk
Gk
Gj

+
∑
h6=j

Ahh

 . (3.26)

Now we prove that if the coefficient αN−2 is negative, the equation (3.25) admits at
least one solution with positive real part. There are two ways to prove it:

• Using the Vieta’s formula [76]:

− αN−2

αN−1
= x1 + ...+ xN−1, (3.27)

where xi is the i−th solution of (3.25) and αN−1 is the coefficient of the (N − 1)-
power term. At this point, since αN−2 is negative and αN−1 = 1, we can observe
that if all the solutions {xi} have a negative real part, the Vieta’s equation (3.27)
is violated. Hence there should be at least one solution xk with positive real part.

• Using the Routh–Hurwitz stability criterion [77, 78]. This method counts the
number of roots with negative real part or positive looking at the coefficients of
the polynomial. This method could be useful to count how many zeros actually
are in the upper complex ω plane if we compute the whole series of coefficients in
(3.25). In particular, it predicts that if the first two coefficients αN−1 and αN−2

of the polynomial have opposite sign, then there is at least one root xk with a
positive real part.

We have found that if the coefficient of the (N −2)-power term αN−2 is negative, there
is at least one root xk with a positive real part. This implies that the corresponding
zero ωk = i xk of the global response function has an imaginary part positive. This
gives the UC (3.17).

3.2.2 Numerical tests

In this section, we will test the effectiveness of the UC on a system of the type (3.4).
We will see that these numerical test will support the predictions made by the UC
regarding the unpredictive dynamical variables.

A remark: how to plot the surrogate response functions

We can compute the Fourier transform of the response functions Γi,gl(t) of systems of
the type (3.4) using the relations (3.7) and (3.9). Taking the ratio of two response
functions related to two dynamical variables xi and xj , we get the Fourier transform
of the surrogate response function Hij(ω) (3.13).
At this point, in order to clearly plot the surrogate response functions, we make the
following consideration. Since the ratio between global response functions Γi,gl(t) is
just a ratio between polynomials (3.9), we can decompose the Fourier transform of
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the surrogate response function as the sum of two terms after performing the division
between polynomials (2.123):

Hij(ω) = Sij(ω) +Kij(ω), (3.28)

where S is just a polynomial whilst K is a fraction where the polynomial at the de-
nominator has a smaller order with respect to the polynomial at the numerator. S is
called the singular part, because if we perform the inverse Fourier transform on it we
obtain a sum of Dirac delta and its derivatives. This singular part would make the plot
of Hij(t) not easy to analyze. In order to remove it we study the behaviour of Hij(ω),
and we notice that it converges to a constant (we assume that the space pattern of the
forcing is different from zero for both dynamical variable xi and xj , which will be the
case in our example):

lim
ω→∞

Hij(ω) = lim
ω→∞

∑
kGkCki(ω)∑
kGkCkj(ω)

=
Gi
Gj
. (3.29)

In order to see that, we can notice that the dominant term in
∑

kGkCki(ω) for large
ω is (−iω)N−1Gi, as we can see in (3.24) and, more explicitly, in the 3×3 case (B.2).

As a consequence, removing the constant Gi
Gj

from Hij(ω), we remain with the non-

singular part of the surrogate response function (3.28), whose plot does not have any
delta function, making it easier to visualize. In all the plots of the following sections,
just the non-singular part of the surrogate response functions is shown.

Examples of applicability of the Unpredictability Criterion

We consider the linear dynamical system (3.3) defined by the following 5×5 matrix:

A =


80 90 90 90 90
60 80 20 30 0
0 0 80 20 30
0 0 40 80 40
0 0 50 0 80

 , (3.30)

This matrix has only eigenvalues with positive real part, hence the fixed point around
which we are linearizing the system is asymptotically stable. We now consider two
possible spatial pattern for the perturbation:

• G
(1)
1 = 3 and G

(1)
j = 1 for j 6= 1. In this case the UC cannot be applied any

dynamical variable x1.

• G
(2)
1 = 0.5 and G

(2)
j = 1 for j 6= 1. In this case the UC can be applied to the

dynamical variable x1. We can infer that this variable is not usable for prediction
purposes, as we will show it explicitly in a numerical example below.

We want to see in both cases whether the dynamical variable x1 can or cannot be used
for prediction purposes, in order to test the UC. We first compute the global response
functions of the dynamic variables Γ1,3,5gl using the relations (3.9) and (3.7). The
results for both G(1) and G(2) are shown in Figure 3.1. Using the definition (3.13) we
can compute the surrogate response functions H13, H31, H15 and H51, for both spatial
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Figure 3.1: Global response functions Γ1,3,5,gl in the time domain for x1, x3 and x5 in the linear
system defined by the 5×5 matrix (3.30) and space pattern of the perturbation G(1) (a) and
G(2) (b).

pattern in Figure 3.2. We can notice that for G(2) the surrogate response functions
H21 and H51 are not zero for negative times, hence they cannot be used for prediction
purposes, as predicted by the UC.

Next, we test the effectiveness of the predictions made by our response functions and
surrogate response functions for both G(1) and G(2). We perturb the system (3.30)
with a perturbation with the following time pattern:

e(t) = Θ(t)

[
0.05 sin(π t)− 0.1 sin

(
6

7
π t

)
+ 0.04 sin(8π t)

]
We focus on the response of the dynamical variable x3. We predict its time behaviour
using Γ3,gl, making the convolution of it with the new time pattern as in (3.10). We can
see in Figure 3.3 that the comparison between this prediction and the time behaviour
of x3 is excellent for both the spatial patterns of the forcing. We now predict the
time behaviour of x3 using the surrogate response functions H35 and H31, making the
convolution of them with with x5 and x1 respectively. We want to use the formula
(3.14), but it does not provide causality, since it considers all the trajectory in time of
x5 and x1. Since it is a prediction, we have to enforce causality in the formula (3.14),
considering the trajectory of x1 and x5 up to time t to predict the state of x3 at time
t, using the modified surrogate response function (2.121):

x3(t) =

∫ t

−∞
H31(t− τ)x1(τ). (3.31)

We can see in Figure 3.3(a) and (c) that the comparison between the time behaviour of
x3 and the prediction with H35 is excellent for both G(1) and G(2), whilst the comparison
between x3 and the prediction with H31 is bad for G(2) and excellent for G(1), as
expected. This was expected since we found before, using the UC, that x1 cannot be
used for prediction purposes for G(2). In the panels (b) and (d) the predictions are
made without enforcing causality, hence they work well.
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Figure 3.2: We consider the linear system defined by the 5×5 matrix (3.30). (a) Non singular
components K13 and K31 using G(1). (b) Non singular components K15 and K51 using G(1).
(c) shows the non singular components K13 and K31 using G(2). (d) shows the non singular
components K15 and K51 using G(2). We can notice that in the case of G(2) we have that x1 is
not predictive since the support of K31 and K51 is not restricted to the positive semi-domain.
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Figure 3.3: (a) and (b): Time behaviour of the response of x3 (dashed black line) to the
perturbation with time pattern e(t) = 0.05 sin(π t) − 0.1 sin( 6

7π t) + 0.04 sin(8π t) and spatial

pattern G(1). in the system defined by the 5×5 matrix (3.30). The coloured lines predict the
response of x3 using the response function Γ3,gl (blue line), the surrogate response functions H31

(orange line) and H35 (green line). The prediction with H31 in (a) is made enforcing causality,
as in (3.31), whilst the one in (b) is made with the full (3.14). (c) and (d): same graphs but
with spatial pattern of the perturbation G(2). We can see in (c) that in this case x1 cannot be
used to predict x3.
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3.3 Memory effects and UC

The goal of this section is to examine how the UC (3.17) changes considering the
perturbed linear dynamical system (3.4) with additional Non-Markovian memory terms:

ẋi = −Aijxj +Gie(t) +

∫ t

−∞
Mij(t− s)xj(s), (3.32)

where the Mij are the memory kernels. We choose the following form for the memory
kernel (like in the Mori-Zwanzig formalism [21–23,34]):

Mij(t) = Θ(t)αije
−βijt, αij ∈ R, βij > 0, (3.33)

with Fourier transform:

Mij(ω) =
iαij

ω + iβij
. (3.34)

The condition βij > 0 is necessary in order to have the memory kernel causal, i.e. to
have the Heaviside theta in (3.33). At this point we Fourier transform the perturbed
linear system looking for the Fourier transform of the response function, as we have
done in Sec 3.1.2:

−iωxi = −
∑
j

Aijxj +Gie(ω) +
∑
j

Mij(ω)xj

⇒ xi(ω) =
∑
j

(A− iω1−M(ω))−1
ij Gje(ω).

Hence we obtain the Fourier transform of the global response function for the dynamical
variable xi (we recall that the factor Gj is just multiplied to the element of the inverse
matrix):

Γi,gl =
N∑
j=1

Gj(A− iω1−M(ω))−1
ij . (3.35)

We want now to see how the UC (3.17) changes with the introduction of the memory
effects. To see that, we follow the proof of the UC in Sec 3.2.1, looking for the zeroes
of the global response function of a dynamical variable xj such that Gj 6= 0. Finding
the zeroes of Γi,gl means to look for the roots of the following equation, where −iω = x
and L is an integer which depends on the number N of dynamical variables and on
how many memory kernels are present (i.e. how many kernels are such that αjk 6= 0):

xL + cL−1x
L−1 + ...+ c0 = 0, (3.36)

where (recalling Gj 6= 0):

cL−1 =

−∑
k 6=j

Ajk
Gk
Gj

+
∑
h6=j

Ahh +
∑

r=1...N
v 6=j

βrv(1− δαrv)

 , (3.37)

where the factor (1 − δαrv) accounts for the fact that the terms which contribute to
the last summation of (3.37) are related to memory kernels different from zero (hence
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such that αrv 6= 0). Using the Vieta’s formula or the Routh-Hurwitz method, as in Sec
3.2.1, we are able to say that if the coefficient cM−1 is negative, then there is at least
one root of equation (3.36) with positive real part. This gives the following form of the
UC.

UC and Memory effects: We consider the perturbed problem (3.32). We consider
one dynamic variable xj such that Gj 6= 0. If the following inequality is satisfied for
such xj , then that variable is not predictive of the other dynamical variables:

SRj(A) > Gj

Tr[A] +
∑

r=1...N
v 6=j

βrv(1− δαrv)

 . (3.38)

As in (3.17), the LHS can be seen as the linear feedback seen by xj whilst the RHS
can be considered as the total dissipation occurring within the system. We observe
that considering memory effects the UC is more difficult to satisfy with respect to the
case without memory effects (3.17) since the RHS is greater. This is reasonable: due
to the addition of memory effects, each variable knows more of the other variables. As
a consequence, it is more difficult that the perturbed variables are not able to predict
the other ones.
Following the same steps, it is possible to derive a different form of the UC for more
complicated memory kernels with Fourier transform like the following (where the roots
have a negative imaginary part, in order to have a causal kernel):

Mij(ω) =
Poln(ω)

Pold(ω)
, n < d, (3.39)

where Polm stands for a polynomial of order m.

3.4 UC and random matrices

3.4.1 Stability

We want now to apply the UC to random matrices. The introduction of stochasticity
in the entries of the matrix A can model a general context where the knowledge of
the linearized system is only partial or subjugated to noise. If we want to construct a
meaningful RT in this context, the first thing we have to check is that of the asymptotic
stability of the system. If the system is asymptotically stable (i.e. if the eigenvalues
of the random matrix all have a negative real part), the response functions are predic-
tive, as noted in Sec. 3.1. In order to understand when that happens, let’s start from
the following fundamental result for the stability of random matrices, called Circular
law [79].

Circular law: If A is a N × N matrix with entries independent and identically dis-
tributed (iid), which follow a distribution p with mean 0 and standard deviation (std)
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1, then the eigenvalues of A/
√
N are uniformly distributed over the unit disk in the

complex plane in the limit of N →∞.

An immediate consequence of the Circular law is about the minumum value of the real
part of the eigenvalues. If we call λmin the eigenvalue with the smallest real part, then
we have that:

Re[λmin] ∼ −
√
N (3.40)

We can generalize that result with a generic value for the std σ, obtaining [80]:

Re[λmin] ∼ −σ
√
N (3.41)

Moreover, we can introduce the connectance C ∈ [0, 1] of the matrix A: for each
entry Aij we have that with probability C the entry Aij is distributed as p, while with
probability (1 − C) it is vanishing [80]. As a consequence, we can make the following
substitution in (3.41):

N → CN, (3.42)

obtaining:
Re[λmin] ∼ −σ

√
CN < 0. (3.43)

The quantity CN can also be called complexity of the system. As it can be noticed in
(3.43), we have that the linearized system (3.3) with random matrix A is not stable on
average, since it is probable that some eigenvalues have real part negative. In order to
stabilize the system, we can introduce a parameter d > 0, also called self-competition
or selg-interaction parameter, such that the entries Aii are iid (and independent also
from the off-diagonal entries) with a translated distribution such that [80,81]:

EAii = d. (3.44)

If we do that, the average value 〈λ〉 of the eigenvalues (i.e. the center of the disk) is
translated by d towards positive values:

〈λ〉 =

∑N
i=1 λi
N

=
Tr[M ]

N

=

∑N
i=1Aii
N

=d.

(3.45)

Not only the center of the disk is translated, but also all the disk is rigidly translated
of d towards positive values [82]. We can notice that looking at the secular equation of
the matrix A with diagonal (3.44):

det(λ1− (A+ d1)) = det((λ− d)1−A)

= det(λA1−A),
(3.46)

hence:
λ = λA + d, (3.47)
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where λA are the eigenvalues of the matrix A without the translated diagonal (3.44)
and λ with that diagonal. At this point the condition for the stability Re[λmin] > 0 of
the translated matrix A is the following [81]:

σ
√
CN < d, (3.48)

hence the higher is the self-competition d parameter and the more stable is the system.

We can further generalize these stability results considering a distribution for the off-
diagonal entries of M with non-vanishing mean µ, as done in [81]. As a consequence,
the expectation value of these entries is the following:

E[Aij ] = Cµ, (3.49)

where C is the connectance. The introduction of a non-vanishing mean µ has con-
sequences also on the stability criterion (3.48). To see this, let’s consider the vector
v = (1, ..., 1) and then we look at its eigenproblem with the matrix A with eigenvalue
λ:

Av = λ1v. (3.50)

The equation (3.50) can have no solution. But if we consider that equation on average,
we have that the eigenvalue λ1 is:

λ1 =E

 N∑
j=1

Aij


=d+ (N − 1)Cµ,

(3.51)

where we have used that the off-diagonal elements Aij (along the same row) are iid and
EAii = d. Notice that λ1 ∼ N , while the radius of the eigenvalues disk goes like µ

√
N .

Moreover, we observe that the disk has translated, and its center is [82]:

〈λ〉 =

∑N
i=1 λi
N

=

∑N
i=1Aii − λ1

N

=
dN − (d+ (N − 1)Cµ)

N
≈ d− Cµ,

(3.52)

where in the last step we have considered that we are in the limit of big N . The last
element we need before we can write the new stability criterion for non-vanishing µ is
the exact form of the radius of the eigenvalues disk (apart for λ1). Thanks to (3.41),
we have that the radius goes like

√
(N − 1)v, where v is the variance of the entries Aij :

v =E[A2
ij ]− (E[Aij ])

2

=C(σ2 + µ2)− C2µ2

=C(σ2 + (1− C)µ2).

(3.53)

Then we have that the radius R of the disk goes like:

R =
√
CN(σ2 + (1− C)µ2). (3.54)
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As a consequence, depending on the sign of µ and on how big is N , the stability criterion
of the random matrix A for the system (3.3) becomes [81]:

max{
√
CN(σ2 + (1− C)µ2) + Cµ,−(N − 1)Cµ} < d, (3.55)

where the first term is related to the minimum eigenvalue within the disk, whilst the
second term is related to λ1. We can consider (3.55) as the stability criterion for the
RT.

3.4.2 The average UC

In the section before we have found a well-defined random matrices context where
there is an effective criterion (3.55) to see if a matrix is obtained linearizing around an
asymptotically stable fixed point (in the limit of big N). Now we want to see which
form the UC assumes in this context. We add another layer of stochasticity assuming
that the spatial pattern of the perturbation G is distributed with a PDF g(G) with
mean µG and std σG. As a consequence, the vector with entries Gi is composed of N
realizations of the random variable G. We consider the UC in the following form for
the dynamical variable xj :

N∑
k=1

AjkGk > Gj

N∑
h=1

Ahh. (3.56)

Now we take the average of (3.56), recalling that along the diagonal the entries Aii
have average value d (and that N is very large):

E[AkjGk] > dGj . (3.57)

We assume that there is no correlation between the values of G and the values of Aij ,
i.e. we assign these values without correlating them. As a consequence, we have that:

E[AkjGk] = E[Akj ]E[Gk], (3.58)

and the UC becomes:
CµµG > dGj . (3.59)

Note that (3.59) is valid for any variable xj . If we average over them, we obtain:

CµµG > dµG. (3.60)

If we assume µG 6= 0 we obtain the following relation, which we call average UC:

Cµ > d, (3.61)

which tells us that on average if the UC is satisfied. In particular, if the average
value µ of the off-diagonal entries Aij is too much positive and it overcomes the self-
interaction term d, the relation (3.61) is satisfied. As a consequence, on average the
perturbed variables cannot predict other perturbed variables in that case. The meaning
of that fact is the following. If in the system there much more negative feedbacks (links
between i and j such that (−Aij) < 0 3, also called mutualistic interactions) than

3Recall that in the equation of the dynamics (3.3) there is a minus in front of the matrix A.
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positive feedbacks (such that (−Aij) > 0, also called competitive interactions), the
perturbed dynamical variables cannot predict each other on average. In other words,
the full state {xj}j=1,...,N cannot be fully reconstructed from knowing just a few of the
dynamical variables. We can observe again what we had observed for the UC, but on
average: if the average linear feedback µ from the system to the dynamical variable j is
greater than the average self-interaction d within the system, the perturbed dynamical
variables cannot predict other perturbed dynamical variables on average. If we want
to have the possibility to have the prediction possible on average, it is necessary to
change the distribution of the entries in such a way to increase the positive feedbacks,
to obtain CµG < d.

If we have µG = 0 the line of thinking drastically change. The relation (3.59) becomes:

0 > dGj , (3.62)

which does not depend on the average value of the entries µ, but just on the distribution
of G. We have that with probability p− =

∫ 0
−∞ g(Gj)dGj a generic dynamical variable

xj cannot make predictions of the other variables. As a consequence we observe that
if we perturb the system with a stochastic perturbation which contains both positive
and negative contributes (in such a way that on average they cancel each other), the
UC does not depend on how much positive or negative feedbacks are already present
in the system.

3.4.3 Adding correlations

We may wonder what happens to the results above if we introduce correlations within
the system defined by the matrix A. In particular, given two dynamical variables xi
and xj we say that there is a correlation between Aij and Aji. For example, we can
impose that Aij and Aji have the same sign, or that they have opposite sign [81]. In
that case, the circular law changes as follows [83].

Elliptic Law: If A is a N ×N real matrix such that:

• The pairs of entries (Aij , Aji)i 6=j are iid such that EAij = EAji = 0 and EA2
ij =

EA2
ji = 1,

• max(E|Aij |4,E|Aji|4) ≤M4 for a M4 ≥ 0,

• E(Aij , Aji) = ρ̃, with ρ̃ ≤ 1,

• The diagonal entries Aii are iid, and independent from the off-diagonal entries,
such that EAii = 0 and EA2

ii <∞,

then for N →∞ the eigenvalues of A/
√
N converge to an uniform PDF over an ellipse

in the complex plane with center (0, 0), horizontal axis of length (1 + ρ̃) and vertical
axis of length (1− ρ̃).

Note that the elliptic law reduces to the circular law for ρ̃ = 0. As we have done for
the circular law, we can generalize this result [81], considering a non-vanishing mean
µ and a non-unitary std σ for the off-diagonal entries Aij , the connectance C of the
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matrix and shifting the average value of the diagonal entries Aii of d. Given that, the
correlation parameter ρ̃ has to be multiplied for the square std:

ρ̃→ σ2ρ̃. (3.63)

Moreover, the parameter which enters in the axes of the ellipse is the following ρ:

ρ =
E(AijAji)− E2Aij

v

=
(ρ̃σ2 + µ2)− Cµ2

σ2 + (1− C)µ2
,

(3.64)

where we have used the variance v of the off-diagonal terms Aij defined in (3.53). Due
to these generalizations, we have that the ellipse is shifted rigidly of (d− Cµ) towards
positive values and there is a eigenvalue λ1 whose value goes like N , as in the circular
case. The stability criterion (3.55) for the system (3.3) becomes [81]:

max{
√
CN(σ2 + (1− C)µ2)(1 + ρ) + Cµ,−(N − 1)Cµ} < d. (3.65)

Remarkably, since the correlations introduced are between the entries Aij and Aji,
the average UC (3.60) does not change. This is because its formulation is focused on
the entries of the matrix A along the same row, and there are no couples of entries
(Aij , Aji)i 6=j along the same row. We can deduce that the average UC applies with the
same form for both systems without and with correlations between (Aij , Aji)i 6=j .



Chapter 4

Surrogate RT and Lorenz 96

In this chapter we will apply the surrogate RT 2.6 on a climate model: the Lorenz 96
(L96) model [41–43]. In Section 4.1 we will present this model and we will analyze
its instabilities and the presence of travelling waves within it. The L96 has already
been subjected to RT investigations in [6], showing successfully the applicability of
the Ruelle’s RT. The first application of the surrogate RT on the L96 model has been
proposed in the seminal paper [28], where the surrogate RT has been introduced for
the first time. In that paper, both the perturbation and the observables of interest
were global quantities. In this chapter instead, we want to perturb locally the system
and we want to predict the behaviour of local quantities using the surrogate RT. In
Section 4.2 we will show how to numerically retrieve the response functions and the
surrogate response functions. We will discuss how their asymptotic behaviour for small
times after the application of the local perturbation permits to classify the dynamical
variables in a hierarchy in terms of their predictive ability. Moreover, we will introduce
the concepts of anticipated and retarded surrogate response functions, discarding the
anticipated ones as non-physical. Then, we will quantify the predictive power of the
surrogate response functions using the ratio method derived in Section 2.6, which shows
the presence of a definite verse of the flow of information. To show the effectiveness of
the RT and the surrogate RT in this context, we will perform predictions of the actual
response, pointing out the successful and unsuccessful cases. Lastly, we will improve the
unsuccessful predictions provided by local observables, using the information provided
by an additional forcing.

4.1 The L96 model

The L96 model [41–43] is a paradigmatic climate model which can be defined as follows.
Let’s consider a circle at a constant latitude on the globe and let’s divide it into N
sectors {i = 1, ..., N}. Then we consider a generic atmospheric variable x (e.g. the pres-
sure or the vorticity) and we assign a value of x to each of the N sectors: {xi}i=1,...,N .
Since we are on a latitudinal circle, the index i is cyclic: xi−N = xi = xi+N . The L96
model is the following dynamical system model, which describes the evolution in time
of these N coupled dynamical variables:

ẋi = xi−1(xi+1 − xi−2)− γxi + F, (4.1)

71
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where {i = 1, ..., N}, F is a generic forcing term and γ is the viscosity coefficient which
we will take unitary γ = 1. Note that the statistical properties of each of the variables
are the same since the system is invariant under translations: i→ i+ 1. Even though
it is a very simple model, all the basic physical processes are represented: the first
quadratic term in (4.1) stands for a non-trivial advection process of the quantity x, the
second linear term simulates the mechanical damping while the third constant term is
an external forcing. The quadratic term which stands for the advection process is such
that, in the unviscid and unforced regime (F = γ = 0), it allows for the conservation
of the energy of the system, expressed as the sum of the squares of the variables:

E =

N∑
i=1

x2
i . (4.2)

To see this it is sufficient to derive E with respect time t and then plug (3.14) inside
the derivative (in the unviscid and unforced regime)

dE

dt
=

N∑
i=1

xi ẋi

=

N∑
i=1

xixi−1xi+1 −
N∑
i=1

xixi−1xi+2

=0,

(4.3)

in the last step we have used the fact that periodic boundary conditions are imposed
in the system (3.14). In the viscid and forced regime, on the other hand, we have:

dE

dt
= −

N∑
i=1

xixi + F
N∑
i=1

xi, (4.4)

hence the energy varies in time. The L96 dynamical system shows different behaviours
accordingly to the values of F and N , which modify the geometry of the attractor. It
can be shown that, when the dissipation parameter is unitary as in (4.1), the dynamics
of the model is chaotic for F ≥ 6 and N ≥ 20, since some Lyapunov exponents turn
positive [84]. This is intuitive: F forces energy in into the system so we expect that
with its increase turbulence should appear in the system. We can see the emergence
of the chaotic behaviour in the contour plots (a), (c) and (e) in Fig. 4.1, realized for
N = 10, where the top and middle panels show the L96 system in the non-chaotic
regime for respectively F = 0.1 and F = 1, while the bottom panels are in the chaotic
regime since they are realized for F = 8. It is noticeable that in the top and middle left
panel we can observe some waves travelling from right to left. These waves are roughly
still present in the chaotic regime in the bottom left panel.

4.1.1 L96 instability analysis

As observed before, in Fig. 4.1 we can observe the presence of travelling waves from
right to left in the L96 systema for a certain range of parameters. We now study
their emergence due the modulation of the forcing parameter F , fixing the number of
variables to N > 4 [41]. We notice that a fixed point for the L96 system (4.1) is given
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by xj = F for each j ∈ {1, ..., N}. We want to understand when this steady state is
stable or unstable. To do that we consider the following solution type, formed by a
mono-chromatic wave perturbing the steady state xi = F :

xj = F + yj , yj = a eσtei(kj−ωt), (4.5)

with momentum k = 2π/N , frequency ω, constant a � F and σ ∈ R. If σ > 0 the
fixed point xj = F is unstable, while it is stable for σ < 0. If we substitute (4.5) into
(4.1) we obtain the following relation:

(σ − iω) = F
(
eik − e−2ik

)
− 1. (4.6)

Considering separately the real and the imaginary part we obtain:

σ = F (cos(k)− cos(2k))− 1

ω = −F (sin(k) + sin(2k)).
(4.7)

We want to derive the minimum value of the forcing term Fc such that σ > 0 for F ≥ Fc
(and hence the fixed point xj = F is unstable). We observe that the maximum value of
the difference (cos(k)− cos(2k)) in (4.7) is 9/8 and it is realized for k = arccos(1/4) =
argk max(cos(k) − cos(2k)) 1. As a consequence, we have that σ becomes positive for
values of F bigger or equal than F = Fc = 8/9, making unstable the fixed point xj = F .
We have thus that in the stable steady state a travelling wave appears, with frequency
given by ω in (4.7). In particular, for k = k and F = Fc we have that ωc = 1.291 and
the corresponding period is Tc = |2π/ωc| ≈ 4.8668. Note that here we have disregarded
the discrete nature of k. It is remarkable that the crest of these waves goes from right
to left, since the phase velocity is:

vp =
ωc

k
≈ −0.98 < 0. (4.8)

This fact confirms the observations made above regarding Fig. 4.1. Interestingly, it
has to be noted that the group velocity is given by:

vg =
∂ωc
∂k |k=kc

=− Fc(cos(k) + 2 cos(2k))

≈ 1.333 > 0,

(4.9)

hence the wave packets propagate from left to right. This is remarkable, since the group
velocity marks the direction of the propagation of information within the system. There
is a distinct verse of the flow of information. We show the emergence of the travelling
waves with the increase of F in Fig. 4.1. In the top panels there are a contour plot
for a realization of the L96 system (4.1) for a random initial condition and N = 10
and F = 0.1, and the time behaviour of two dynamic variables. We can see that
there are no travelling waves and the dynamical variables converge to the fixed point
xj = F = 0.1. In the middle panels there are a contour plot N = 10 and F = 1 and

1Since the cosine is even in k, we could have chosen −k. The main results afterwards would not
have changed with that choice.
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the time behaviour of the same two dynamical variables considered in the top panels.
In this case we observe the presence of the travelling waves in the contour plot and in
the fact that the dynamical variables evolve periodically in time. Lastly, in the bottom
panels, realized for N = 10 and F = 8, we are in the chaotic regime, as it can be
observed looking at the time behaviour of the dynamical variables in the right panel.
In the left panel we can see that the travelling waves are roughly preserved.

4.2 Numerical tests

4.2.1 Linear response functions

We will now apply the formalism of the surrogate RT, presented in Section 2.6, to the
L96 dynamical system (4.1). We will pose ourselves in the chaotic regime, choosing
N = 36 for the number of dynamical variables xj and F = 8 for the forcing term. In
Fig. 4.2 we can explicitly see that we are in the chaotic regime. In the paper [28], where
the surrogate RT has been introduced for the first time, the author focused on global
perturbations, affecting all the xi. We want now to take a different route, focusing on
local perturbations. In particular, we will choose as a spatial pattern of the forcing the
following:

Gi(x) = δikG, (4.10)

where δik is the Kronecker delta which is different from zero just for i = k, and G is
a real number which measures the magnitude of the perturbation. In other words, the
perturbation (4.10) perturbs the forcing term in the equations of L96. We will consider
as observables of interest local quantities too: the dynamical variables xj . We remark
that this approach is feasible since the L96 system is an extended system in space.
In other words, the problem we are addressing amounts to asking to what extent a
perturbed variable i can predict the future state of another perturbed variable j after
the system has been perturbed locally in a location k.

Numerical estimation

We call Γi,k the response function of the perturbed variable xi to the perturbation
with spatial pattern (4.10), located in xk. In order to compute these response function
we proceed as follows [28, 85]. First, we run a long simulation with a random initial
condition. We discard an initial transient and then we create an ensemble of M states,
taking a state each Tgap time units. We use this ensemble of L96 states on the attractor
in order to compute the response functions. We consider now a perturbation with
spatial pattern (4.10) and instantaneous time pattern e(t) = δ(t). Looking at the
response relation (2.14) we can see that doing so the response function Γi,gl is just
proportional to the perturbation of the dynamical variable xi(t):

δ〈xi〉(t) = Γi,k(t). (4.11)

As a consequence, we can compute the response function Γi,k as an average over the
ensemble of M initial conditions within the steady state regime built before:

Γi,k(t) =
1

M

M∑
k=1

δx
(k)
i (t), (4.12)
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Figure 4.1: (a) and (b): the left panel shows a contour plot for a realization of the L96 system
(4.1) for a random initial condition, for N = 10 and F = 0.1. On the horizontal axis there is the
spatial index {i = 1, ..., N}, while on the vertical axis there is the time t. The colour of a point
(i, t) shows the magnitude of the value of xi at time t. The right panel shows the behaviour in
time of two variables x2 and x10. They both converge to the fixed point xj = F = 0.1. (c) and
(d): the same figures, for N = 10 and F = 1. The periodic travelling wave can be recognized
visually in the left panel and from the periodic behaviour of the dynamical variables showed in
the right panel.(e) and (f): the same figures, for N = 10 and F = 8. Even though the travelling
waves are roughly preserved in the left panel, we are in the chaotic regime as it can be seen in
the time behaviour of the dynamical variables in the right panel.
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Figure 4.2: (a): Contour plots of a realization of the L96 system (4.1) for a random initial
condition for N = 36 and F = 8. On the horizontal axis there is the spatial index {i = 1, ..., N},
while on the vertical axis there is the time t. The colour of a point (i, t) shows the magnitude
of the value of xi at time t. (b): Behaviour in time of two variables x2 and x10. We can see
that the system is in the chaotic regime, but still the travelling waves from right to left can be
seen in the right panel.

where δxki (t) is computed as follows. We pick an initial condition, i.e. an ensemble
member k. We integrate the perturbed system and the unperturbed system for a
certain number T of time steps, starting from the picked initial condition. We remark
that, due to the chosen instantaneous time pattern, the perturbation enters in the
evolution of the perturbed system with just a modification of the initial condition xkj
picked in the ensemble:

xkj (0)→ xkj (0) +G. (4.13)

Then, we compute δxki (t) taking the difference between the value of xi at time t for the
perturbed trajectory and the unperturbed trajectory. We do that for any t between 0
and T . Moreover, in order to compute the global response function in a more precise
way, removing second-order corrections, we adopt the following procedure [6]. Given
the initial condition picked in the ensemble, we consider the trajectory integrated using
the dynamical system perturbed with a time pattern e(t) and the trajectory integrated
perturbing the system with a time pattern with amplitude −e(t). We compute the
ensemble average (4.12) taking the semi-difference between the value of xi at time t
between these two trajectories.

The first thing we have to confirm in our numerical study is that of we are in the linear
regime. To check that, we have used the procedure described above to numerically
compute the response functions Γi,k for i = {k − 2, k − 1, k, k + 1, k + 2}, for different
values of the forcing. The smaller is the value of the forcing G and the better is the
description of the system by the linear RT. On the other hand, a smaller G implies that
the perturbation is less felt by the system and the signal-to-noise ratio decreases. As a
consequence, the smaller is G and the more ensemble members M we need to have clear
response functions. Given that, we choose G as the biggest value of the forcing such
that we are in the linear regime. Note that we have to check to be in the linear regime
not only for the response function of the directly perturbed site Γk,k, but also for the
response functions of the other sites. This is due to the fact that the perturbation is
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less felt in those sites: for the same value of the forcing G it could happen a priori that
the linear regime succeeds in describing the system in xk but fail in these sites. In that
case, it is necessary to resort to a smaller value of G. We varied the forcing parameter
G in the range G = {0.5, 0.75, 1, 2, 2.5, 3, 6, 12}, obtaining the results showed in Fig.
4.3, where we plotted Γi,k/G. We can observe in that figure that in all the locations
i = {k − 2, k − 1, k, k + 1, k + 2} the curves overlap for G smaller or equal than 1. For
higher values of the forcing G, the other non-linear orders of the RT start to matter
more. As a consequence, we continuously deviate from the linear regime increasing G.
Then, we choose G = 1 as the value of the forcing that we will use in our investigations
thereafter. The response functions Γi,k for i = {k−2, k−1, k, k+1, k+2} and G = 1 are
showed in Fig. 4.4, which are obtained for M = 2·106 ensemble members. We have used
such a large ensemble because, as we will see later, in order to retrieve the surrogate
response functions H it is necessary to obtain the Fourier transform of the response
functions. As a consequence, we need a large signal-to-noise ratio at each individual
frequency ω, thus we need a large ensemble. If we stay in the time domain, this problem
does not come up, since we integrate the response function in a convolution and hence
the specific value of the response function at a time t is not relevant per se [40]. We
remark that we have chosen to focus on just a few dynamical variables around the
perturbation site. This is due to the fact that the perturbation is felt way less as more
we move from the directly perturbed variable, and as a consequence the quality of the
response functions decreases.

Asymptotic behaviour

We remark that it is possible to obtain the behaviour of the response functions Γi,k
for t → 0+, hence just after the system is perturbed, as follows. Let’s consider the
response function (2.16) in our case:

Γi,k =Θ(t)

∫
ρ(dx)

∑
l

Gδkl∂l(xi(t))

=Θ(t)

∫
ρ(dx)G∂k(xi(t)),

(4.14)

where ∂k stands for the derivation with respect to xk(0) and ρ is the steady-state
distribution over the initial condition x(0) from which the trajectory x(t) starts. We
now expand xi(t) around t = 0+ and we exploit the equation of dynamics (4.1):

∂k(xi(t)) ≈ δi,k + t(C
(1)
k−1δi,k−1 + C

(1)
k+1δi,k+1 + C

(1)
k+2δi,k+2 − δik) + ..., (4.15)

where C
(a)
p is the coefficient related to the dynamical variable p of the term of order a

in the expansion above (we have that C(0)k = δik). Note that the leading term in the
expansion (4.15) depends on the distance between the considered dynamical variable
xi and the location of the perturbation (xk): the leading term is tq if xi is distant q

from xk from the left or 2q−1 or 2q from the right. If we compute the coefficients C
(a)
p ,

further details emerge. The coefficients for the linear terms (k = 1) give:

C
(1)
k−1 =xk−2(0)

C
(1)
k+1 =(xk+2(0)− xk−1(0))

C
(1)
k+2 =− xk+1(0).

(4.16)
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Figure 4.3: Plots of the response functions Γi,k/G for i = {k− 2, k− 1, k, k+ 1, k+ 2}, showed
respectively in (a), (b), (c), (d) and (e). We used different values of the forcing, ranging in
G = {0.5, 0.75, 1, 2, 2.5, 3, 6, 12}. Note that for G smaller or equal than 1 we are in the linear
regime. For higher values of the forcing, the response functions start to change in a continuous
way, deviating from the linear regime.
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Figure 4.4: Plots of the response functions Γi,k for i = {k− 2, k− 1, k, k+ 1, k+ 2} and G = 1.
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As a consequence, if we consider the expansions of the response function (4.14) which
are linear in the limit t→ 0+ we obtain the following relations:

Γk−1,k =Θ(t)

(
G

∫
ρ(dx)xk−2(0)

)
t+ ...

Γk+1,k =Θ(t)

(
G

∫
ρ(dx)(xk+2(0)− xk−1(0))

)
t+ ...

Γk+2,k =Θ(t)

(
−G

∫
ρ(dx)xk+1(0)

)
t+ ...

(4.17)

We can observe in (4.17) that the coefficient 〈C(1)
k+1〉 (the average is over the measure

ρ) of the linear term in the expansion of Γk+1,k is vanishing, since:∫
ρ(dx)xk+2(0) =

∫
ρ(dx)xk−1(0). (4.18)

The relation (4.18) is due to the fact that the statistical properties of the dynamical

variables are the same, as noted above. We can notice that 〈C(1)
k−1〉 = −〈C(1)

k+2〉 for the
same reason. As a consequence, the leading term in the expansion for small t of Γk+1,k

is a quadratic term t2. We can repeat the same derivation for all orders k, observing
that the leading term of Γk+2q−1,k is tq+1 instead of tq. Given that, we can say that
the leading term of a generic Γi,k is:

Γi,k(t) ≈
t→0+


Θ(t)G, i = k

Θ(t)
(
G〈C(1)

i 〉
)
t. i ∈ {k − 1, k + 2}

Θ(t)
(
G〈C(q)

i 〉
)
tq, i ∈ {k − q, k + 2q − 3, k + 2q}, q ≥ 2,

(4.19)

where the averages are over the stationary measure ρ. In particular, we notice that at
t = 0 the response function Γi,k is equal to G if i = k and it is vanishing for i 6= k. This
is intuitive: at t = 0 the perturbation is felt in all its intensity in the spot which has
been directly perturbed, while it is not felt at all in the other locations. As t increases,
the perturbation propagates also to the other spots, with time scale which depends on
the leading order (4.19) of the response function Γi,k or, in other words, on the distance
with respect to the directly perturbed xk. Note that the perturbation propagates more
at right than left, since for each dynamical variable xk−q at the left of xk with leading
term tq in the response function (4.19) there are two dynamical variables xk+2q−3 and
xk+2q (for q > 1) at its right with the same leading term in the response function
(hence they feel the perturbation for t→ 0+ after the same time scale). We can have a
figurative intuition of the actual propagation of the signal in space and in time in Fig.
4.5. It is remarkable that there are some sites like k+3 or k+5 that, even though they
are very close to the perturbation site k, they are not affected by the perturbation at
time t+ 2 or t+ 3. This is because the advection taking place in the L96 system is not
a pure one, since it is mixed with other physical processes.

As noted in the relations (2.93) and (2.94), the asymptotic behaviour of the response
function in the time domain for small t is related to the asymptotic behaviour for big
ω of the Fourier transform of the response function:

Γi,k(t) ≈ αi,kΘ(t)tβ
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a b

Γk−1,k 2.033± 0.006 0.9940± 0.0006
Γk+1,k −2.241± 0.007 1.9542± 0.0006

Table 4.1: Results of the fit of Γk−1,k(t) and Γk+1,k(t) for small t with the function f(t) = a tb,
with error given by standard deviation.

m

Γi,k(ω) ≈ (αi,k β! iβ+1)
1

ωβ+1

As a consequence, we can derive from (4.19) the asymptotic behaviour of the Fourier
response of the response functions:

Γj,k(ω) ≈
ω→∞



i
G

ω
, j = k

−
G〈C(1)

j 〉
ω2

j ∈ {k − 1, k + 2}

(iq+1q!)
G〈C(q)

j 〉
ωq+1

, j ∈ {k − q, k + 2q − 3, k + 2q}, q ≥ 2,

(4.20)

We have tested the relation (4.20) for Γk−1,k, Γk,k and Γk+1,k, whose leading term in
the expansion (4.19) is respectively of order t, t0 and t2. We have fitted the response
functions Γk−1,k(t) and Γk+1,k(t) for small t with the function f(t) = a tb, obtaining
the result showed in Table 4.1. We can notice that the exponent b gives the behaviour
predicted by (4.20) in both cases. For Γk,k the situation is simpler: in Fig. 4.4 we can
see that in t = 0 we have Γk,k(0) = G = 1, as predicted. We now plug the coefficients
in Table 4.1 obtained by the fits in (4.20), and compare the results with the asymptotic
behaviour of the response functions for large ω. As we can observe in Fig. 4.6 that the
comparison is very good in all the three cases.

Making predictions

Lastly, we test the effectiveness of the response functions we derived, predicting the
response of the L96 system (4.1) perturbed as follows:

ẋi = xi−1(xi+1 − xi−2)− xi + F +Gδi,ke(t), (4.21)

where the spatial pattern of the perturbation is given by (4.10), while the time pattern
is the following:

e(t) = Θ(t)−Θ(t− τ), (4.22)

with τ = 0.1. The time perturbation is equal to 1 for t ∈ [0, τ ], then it goes to zero. We
integrate the perturbed system (4.21), taking the initial condition from an ensemble of
M = 2 · 106 members and then averaging the obtained response, as follows:

δ〈xi〉(t) =
1

M

M∑
q=1

δx
(k)
i (t), (4.23)
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Figure 4.5: Propagation of the perturbation for small times in the L96 model perturbed locally
in xk starting from a time t. The vertical lines are the dynamical variable xk taken at different
time instants, while the horizontal line below is the time axis. We have discretized the time in
unit time steps for clarity purposes. At a given time, we have coloured the dynamical variables
which feel directly the perturbation from the perturbed variables of the instant before with red.
The colour loses its intensity as time goes by. We can notice that there are more red-coloured
variables above the site xk than below. This is consistent with the fact that the information
propagates from the dynamical variables xk+j with j < 0 to the dynamical variables xk+j with
j > 0, with a velocity given by the group velocity vg, shown with a green arrow in the figure.
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Figure 4.6: Comparison of the asymptotic behaviour of the Fourier transform of Γk−1,k, Γk,k

and Γk+1,k with the predictions provided by (4.20), with the values provided by the fit results
in Tab. 4.1. In (a) there is Re[Γk−1,k], in (b) Im[Γk,k] and in (c) Im[Γk+1,k].
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Figure 4.7: Integrated response of the perturbed L96 system (4.21) to the perturbation with
time pattern e(t) = (Θ(t)−Θ(t− τ)) with τ = 5, compared to the prediction made by the
response functions Γi,k for i ∈ {k− 2, k− 1, k, k+ 1, k+ 2}. The integrated response is denoted
by xi, while the predicted one by xΓ

i .

where δx
(k)
i (t) is the difference between the trajectory integrated in the perturbed L96

system (4.21) and the trajectory integrated in the unperturbed L96 system (4.1). Both
these trajectories start from the same initial condition, with index k, picked from the
ensemble. To improve the results, as we have done for the response functions, we
remove second-order contributions taking the semi-difference between the trajectory
integrated using the L96 system perturbed with time pattern e(t) and the trajectory
integrated using the L96 system perturbed with time pattern −e(t) [6].

Next, we compare the result with the response predicted by the response functions Γ(t)
through the following convolution:

δ〈xi(t)〉 =

∫ t

−∞
dtΓi,k(t− τ) e(τ), i ∈ {k − 2, k − 1, k, k + 1, k + 2} (4.24)

for the temporal pattern e(t) given by (4.22). The comparison between the actual
response and the prediction for τ = 5 is shown in Fig. 4.7. We can see that the
prediction performed by the response function perfectly overlaps the integrated response
in all its components: the initial kick, the following plateaux and the relaxation to the
steady state after the time interval τ .
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4.2.2 Surrogate linear response functions

As explained above, we have perturbed the L96 system locally in xk and we have looked
at the response in xi, with i ∈ {k− 2, k− 1, k, k+ 1, k+ 2} through the linear response
functions Γi,k. We want now to numerically compute the surrogate response functions
Hij , with i, j ∈ {k−2, k−1, k, k+1, k+2}. In other words, we want to see if we are able
to predict the response in time of one of these sites xi using the response in another
site xj . To compute the surrogate response functions Hij , as explained in Section 2.6,
we have to perform the inverse Fourier transform of the following ratio between Fourier
transforms of the response functions Γi,k and Γj,k:

Hij(ω) =
Γi,k(ω)

Γj,k(ω)
. (4.25)

Asymptotic behaviour

It is possible to obtain the asymptotic behaviour of the Fourier transform of the sur-
rogate response function Hij using the asymptotic behaviour of the response functions
in (4.20). In particular, if Γi,k goes like 1/ωαi and Γj,k goes like 1/ωαj , we have that:

Hij(ω) ∝
ω→∞

1/ωαi

1/ωαj

∝
ω→∞

ωαj−αi .
(4.26)

If αi ≤ αj we have that Hij(ω) diverge for large ω. As a consequence, the surrogate
response function Hij(t) in the time domain will have a singular component Sij(t) since,
as shown in Section 2.6, we have that the inverse Fourier transform of (−iω)α is δα(t),
i.e. the j−th derivative of the delta function δ(t). In that case, the surrogate response
function can be written as:

Hij(t) = Sij(t) +Kij(t), (4.27)

where Kij(t) is the non-singular component and Sij(t) is given by huge peaks around
t = 0. On the contrary, if αi > αj the surrogate response function Hij(t) has no
singular component Sij .

A hierarchy between variables

As it is explained by the relations (3.22) and (3.23), a time delay in a response function
Γi,k(t) corresponds to a zero with positive imaginary part in the Fourier transform
of the response function Γi,k(ω). The longer is the delay and then the smaller is the
imaginary part of the pole. That fact has consequences on the predictive ability of
the variable i: the smaller is the imaginary part of the pole and the bigger is the non-
predictive component in the surrogate response functions Hnc

ji (t) where i tries to predict
other observables. This is reasonable: the more delayed is the response of a variable
and the more information after a generic time t is required to perfectly reconstruct the
state of another variable j at time t. In the specific case of a local perturbation in the
L96 system, we have seen in (4.19) that different variables respond after different time
scales after the perturbation in the site k: the bigger that time scale is and the less
predictive that variable will be.
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As a consequence, a local perturbation in the site k creates a hierarchy of dynamical
variables based on their predictive power. The higher is the rank of a variable in that
hierarchy and the more it is predictive. It is remarkable that a variable with a given
rank cannot even try to predict the time behaviour of the variables of higher ranking.
This is due to the fact that we would use a response with a given time delay to predict
another response with a smaller delay. In other words, we would use an anticipated
surrogate response function Hij , since we would anticipate the variable with smaller
delay. We can see that with the following computation. Let’s consider the Fourier
transform of a surrogate response function Hij(ω) which is such that:

Hij(ω) =
Γi,k(ω)

Γj,k(ω)

=
(ω − iωi)
(ω − iωj)

Zij(ω),

(4.28)

where both the Fourier transform of the response functions Γi,k(ω) and Γj,k(ω) have
a non-predictive zero, i.e. ωi > 0 and ωj > 0. We have defined a suitable function
Zij(ω) which contains all the rest of the surrogate response function. Similarly to what
we have done in (4.19) [29], we perform a double Padé approximation using the Padè
approximant [75] for the exponential function (3.21). To use this Padè approximant we
assume that the both ωi and ωj are sufficiently big, hence that the non-causal parts of
the surrogate response functions which use them as predictors are small (as explained
in Section 2.6.2). As a consequence, we have that:

Hij(ω) =
(ω − iωi)
(ω + iωi)

(ω + iωj)

(ω − iωj)
Z̃ij(ω)

≈ e
−2

(
ω
iωi
− ω
iωj

)
Z̃ij(ω),

(4.29)

where Z̃ is another function suitably defined. Now if we go in the time domain we see
that the exponential factor in (4.29) gives a delay in the time domain:

Hij(t) =

∫
dω

2π
Hij(ω)e−iωt

≈
∫
dω

2π
Z̃(ω)e

−iω
(
t−2

(
1
ωi
− 1
ωj

))

≈ Z̃ij
(
t− 2

(
1

ωi
− 1

ωj

))
.

(4.30)

For smaller ωi and ωj we can go on with the Padé approximations, adding corrections

to the delay
(

1
ωi
− 1

ωj

)
. As a consequence, the surrogate response function Hij has a

time delay which depends on the difference between the time delays of the response of
the two variables used as predictor and predictand. We have two possibilities:

• The response of i has a longer delay than the one of j:
(

1
ωi
− 1

ωj

)
> 0. In this

case we can refer to the surrogate response function as retarded.

• The response of i has a shorter delay than the one of j:
(

1
ωi
− 1

ωj

)
< 0. In this

case the surrogate response function is called anticipated. We will not deal with
this kind of surrogate response function since they violate the causality principle.
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The choice to focus only on the retarded surrogate response functions implies that
their asymptotic behavior of their Fourier transform (4.26) for large ω will be at most
constant. In particular, the only case where a singular component Sij(t) can be present
in the surrogate response function we consider is that of two dynamical variables which
have the same asymptotic behavior for small t, hence they have the same rank. In that
case the singular component is proportional to a delta function δ(t):

Sij(t)) = sijδ(t), sij ∈ R. (4.31)

Moreover, we observe in (4.30) that the larger is the difference between the delays of
the response functions Γi,k and Γj,k, i.e. the difference between their ranks, and the
larger is the delay of the related surrogate response function Hij . As a consequence,
the non-causal component of the surrogate response function will grow larger. This
can be seen more directly performing the inverse Fourier transform of (4.28) (with the
simplifying assumption that Z(ω) has no poles):

Hij(t) = (ωj − ωi)Zij(ωj)etωj , t < 0. (4.32)

We can see from (4.32) that the non-causal component which emerges from the inverse
Fourier transform is proportional to the difference between the non-predictive poles. We
can thus deduce that the bigger is the difference between the time delays (proportional
to the inverse of the pole), the larger in magnitude will be the non-causal component.

Now that we have introduced the hierarchy in the predictive power of the dynamical
variables, let’s see some examples of surrogate response functions, using the response
functions we have numerically computed shown in Fig. 4.4. We can observe the actual
propagation of the signal in Fig. 4.5, where different dynamical variables are perturbed
after different times from the local perturbation in xk, hence building the hierarchy
discussed above. The most predictive variable (the one with the highest rank) is the
one which is directly perturbed, hence xk, since it responds without any delay to the
perturbation, as it can be seen in (4.19). In fact, if we look at the surrogate response
functions Hj,k showed in Fig. 4.8, we notice that the non-causal component is practi-
cally vanishing with respect to the causal one. The second most predictive variables
are xk−1 and xk+2. As discussed above, we will discard the anticipated surrogate re-
sponse function Hk,k−1 and Hk,k+2 since they are non-physical. The retarded surrogate
response functions are shown in Fig. 4.9 and Fig. 4.10. We can observe that the sur-
rogate response functions show a rather small non-causal component. Notice that just
the non-singular component of the surrogate response functions Kk−1,k+2 and Kk+2,k−1

is shown in the figures, for clarity purposes. In order to remove the singular compo-
nent, we have removed from the Fourier transform of the surrogate response function
its asymptotic behavior. For Hk−1,k+2, the asymptotic behavior is:

Hk−1,k(ω) →
ω→∞

−G〈C(1)
k−1〉/ω

2

−G〈C(1)
k+2〉/ω2

Hk−1,k+2(ω) →
ω→∞

− 1,

(4.33)

as we can deduce using (4.18) and (4.20). The asymptotic behavior of Hk+2,k−1 is just
the inverse of (4.33), i.e −1. Hence we have sk−1,k+2 = sk+2,k−1− 1, using the relation
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sk+2,k−1 sk−1,k+2 sk+1,k−2 sk−2,k+1

-1 -1 -1/0.90 -0.90

Table 4.2: Constant which multiplies the delta function in the singular component of the
surrogate response functions Hk+2,k−1, Hk−1,k+2, Hk+1,k−2 and Hk−2,k+1, as defined in (4.31).

(4.31). The third most predictive variables between the ones we have considered are
xk−2 and xk+1. In Fig. 4.11 we show the non-singular part of the surrogate response
functions Kk−2,k+1 and Kk+1,k−2. To remove the constant limit behavior of their
Fourier transform we proceeded as in (4.33):

Hk−2,k+1(ω) →
ω→∞

−2iG〈C(2)
k−2〉/ω

3

−2iG〈C(2)
k+1〉/ω3

Hk−2,k+1(ω) →
ω→∞

〈C(2)
k−2〉

〈C(2)
k+1〉

,

(4.34)

where 〈C(2)
k−2〉 and 〈C(2)

k+1〉 can be computed directly from the expansion for small times
(4.19) of the response functions Γk−2,k and Γk+1,k:

〈C(2)
k−2〉 =〈xk−3xk−2〉

〈C(2)
k+1〉 =− 〈xk−3xk−2〉 − 〈xk−2xk〉.

(4.35)

We can compute the expectation values in (4.35) directly from the unperturbed L96 sys-
tem, obtaining the results shown in Tab. 4.2. The asymptotic behavior of Hk+1,k−2(ω)
is given by sk+1,k−2 = 1/sk−2,k+1. We can notice that the non-causal components of
these non-singular parts of the surrogate response functions are more relevant than
the ones considered before, as expected. It is noticeable the non-causal component of
Kk−2,k+1 is significantly larger than the one of Kk+1,k−2. As discussed below, this is
consistent with the fact that the group velocity vg, which is the velocity of the flow of
information, goes from left to right as showed in (4.9).

Quantifying the predictive power

We quantified the importance of the non-causal component of the surrogate response
functions derived numerically by means of the ratio method (2.150) derived in Section
2.6. The results are presented in Table 4.3 for the retarded surrogate response functions
between the dynamical variables xk−2, xk−1, xk+1 and xk+2. For the surrogate response
functions Hk−1,k+2, Hk−2,k+1 and their inverse, which display a singular component, we
may wonder how much the numerical (and hence imperfect) representation of the delta
functions impacts on the ratio method. In order to check that, we have also applied the
ratio method to just the non-singular components of these surrogate response functions.
The results are listed in Tab. 4.4. We can see that the ratio method is lowered
considering just the non-singular component, in the large majority of cases.

Looking at the values provided by the ratio method, we observe that the weight of the
non-causal part is bigger for the predictions made by k − 2 and k + 1, which are the
less predictive variables between the ones we have considered. This observation is valid
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Figure 4.8: Surrogate response functions Hi,k for i ∈ {k − 2, k − 1, k, k + 1, k + 2}.
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Figure 4.9: (a) Non-singular part of the surrogate response function Kk−2,k+1. (b) Surrogate
response functions Hk−2,k−1 and Hk+1,k−1.
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Figure 4.10: (a) Non-singular part of the surrogate response function Kk−1,k+2, for. (b) Surro-
gate response functions Hk−2,k+2 and Hk+1,k+2.
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Figure 4.11: (a) Non-singular part of the surrogate response function Kk+1,k−2. (b) Non-
singular part of the surrogate response function Kk−2,k+1.
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xk−2 xk−1 xk+1 xk+2

xk−2 · · 0.30 ·
xk−1 0.013 · 0.019 0.12
xk+1 0.68 · · ·
xk+2 0.0068 0.13 0.014 ·

Table 4.3: Results of the ratio method (2.150) applied to the retarded surrogate response
functions between the dynamical variables xk−2, xk−1, xk+1 and xk+2. In the first column
there are the predictors, while in the first row there are the predictands.

H K

(k − 1, k + 2) 0.12 0.0025
(k + 2, k − 1) 0.13 0.0037
(k − 2, k + 1) 0.68 0.66
(k + 1, k − 2) 0.30 0.11

Table 4.4: Result of the ratio method (2.150) applied to the retarded surrogate response func-
tions which display a singular component. The method is applied to both the full response
function (H) and just the non-singular component (K).

for both the full surrogate response function and just the non-singular component, so
it is not due to the numerical representation of the delta function.

Another interesting observation we can make is the presence of a definite direction of
the predictive power. If we take two variables xi and xj , we can ask ourselves whether
it is better to use xi to predict xj or the other way around. Due to the fact that we
have a hierarchy between variables in terms of their predictive power, we are able to
say that it is the variable with higher rank the one which has to be used as predictor.
Otherwise we would use an anticipated response function. The ambiguity lies in the
case of two variables xi and xj which have the same rank. This is the case of xk−1 and
xk+2 and of xk−2 and xk+1. We can make use of the tables 4.3 and 4.4, in order to
have a quantitative way to make our decision. We see that in both cases the variable
at the left of perturbation site is the best predictor, since the ratio methods gives lower
values for Hk−2,k+1 and Hk−1,k+2 with respect to the values for Hk+1,k−2 and Hk+2,k−1.
There is a definite verse for the flow of information. This is consistent with the fact
that the group velocity vg of the travelling waves in the L96 system is positive (from
left to tight) (4.9), since the group velocity is related to the information transport in
the system.

Making predictions

Now we test the predictive ability of the surrogate response function computed above.
We consider the L96 system (4.21) perturbed with a perturbation with spatial pattern
G(x) = Gδi,k given by (4.10) and time pattern (4.22):

e(t) = Θ(t)−Θ(t− τ),
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with τ = 5. We start from the most predictive variable xk, which tries to predict xj ,
with j ∈ {k− 2, k− 1, k+ 1, k+ 2} through the following convolution, where we forced
the causality of the surrogate response function, as in (2.121):

δ〈xi〉(t) =

∫ t

−∞
dτ H

′
ij(t− τ)δ〈xj〉(τ). (4.36)

The responses of the dynamical variables δ〈xi〉 and δ〈xj〉 are computed using (4.23).
The results are shown in Fig. 4.12. The comparison between the integrated response
and the prediction made by the surrogate response functions is very good.

We now consider the second most predictive dynamical variables xk−1 and xk+2. Since
we are focusing on just the retarded surrogate response functions, xk−1 can predict
only xk−2,k+1,k+2 while xk+2 can predict only xk−2,k−1,k+1. The predictions are showed
in Fig. 4.13. We notice that the predictions work very well. We could have expected
these good predictions by the fact that the non-singular component of the surrogate
response functions are very small, as shown in Fig. 4.9 and 4.10. We remark that
for the prediction made using Hk+2,k−1 and Hk−1,k+2, we have not directly used the
surrogate response function obtained performing the inverse Fourier transform of the
ratio of the response functions (4.25), in order to avoid errors due to the finite numerical
representation of the delta function. We instead used the following trick, which is
possible because we know that the singular component is proportional to just a delta
function, as shown in (4.31). Knowing that, we can rewrite the convolution as follows
(4.36):

δ〈xi〉(t) =

∫ t

−∞
dτ K

′
ij(t− τ)δ〈xj〉(τ) +

∫ t

−∞
dτ sijδ(t− τ)δ〈xj〉(τ)

=

∫ t

−∞
dτ K

′
ij(t− τ)δ〈xj〉(t) + sijδ〈xj〉(t),

(4.37)

where the convolution is made just using the non-singular component of the surrogate
response function. The factor sij are listed in Tab. 4.2. It is remarkable that the worst
prediction performed by xk−1 is the one about xk+2 and the the worst performed by
xk+2 is the one about xk−1. This is consistent with the quantitative results showed in
Table 4.3.

Lastly, we take into account the predictions made the less predictive variables xk−2 and
xk+1, where we used the trick (4.37). The variables xk−2 and xk+1 can only predict each
other since we are dealing with retarded response functions. As we can see in Fig. 4.14
the predictions do not work well, even though it has similar qualitative behaviour. We
could have expected that from the fact that the non-causal component of the surrogate
response functions Hk−2,k+1 and Hk+1,k−2 is relevant, as it can be seen in 4.11 and as it
can be quantified in Tab. 4.4. Remarkably, we can observe in Fig. 4.14 the asymmetry
between the predictive power of xk−2 and xk+1 we discussed before: xk+1 makes a
prediction which differs more from the actual response than xk−2, providing a hint for
the presence of a definite verse of the flow of information within the L96 system.

4.2.3 Making predictions with more observables

We have seen that some local variables cannot predict other local variables, due to
how the perturbation propagates. We want to show now that these local variables can
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Figure 4.12: Integrated response of the perturbed L96 system (4.21) to the perturbation with
time pattern e(t) = (Θ(t)−Θ(t− τ)) with τ = 5, compared with the predictions made by the
surrogate response functions Hi,k for i ∈ {k− 2, k− 1, k+ 1, k+ 2}. The integrated response is

denoted by xi, while the predicted one by xHk
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Figure 4.13: Integrated response of the perturbed L96 system (4.21) to the perturbation with
time pattern e(t) = (Θ(t)−Θ(t− τ)) with τ = 5, compared with the predictions made by the
surrogate response functions Hi,k−1 for i = {k− 2, k+ 1, k+ 2} in (a) and with the predictions
made by the surrogate response functions Hi,k+2 for i = {k − 2, k − 1, k + 1} in (b). The

integrated response is denoted by xi while the predicted one by x
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i and x
Hk+2

i .
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Figure 4.14: Integrated response of xk+1 in (a) and xk−2 in (b) of the perturbed L96 system
(4.21) to the perturbation with time pattern e(t) = (Θ(t)−Θ(t− τ)) with τ = 5, compared
with the predictions made by the surrogate response functions Hk+1,k−2 and Hk−2,k+1. The
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i and x
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still make predictions of other local variables, using also other observables to make
predictions, as explained in Section 2.6. In particular, we want to improve the local
variables’ prediction using an additional local perturbation. The situation we have in
mind is that of a local observer who wants to predict the state of an observable in
other zones of the globe. First, he/she tries to use just the information provided by a
local perturbation of the system, in a given zone of the globe. He/she can be unlucky
and he/she can be in a location which in principle has no predictive power. In this
case, he/she can improve his predictions considering the information given by another
perturbation. We consider the particular case of xk+1 which tries to predict xk−2. Due
to the relevant non-causal part of the surrogate response function Hk−2,k+1, which can
be seen in Fig. 4.11 (b), this prediction, shown in Fig. 4.14 (b) is unsuccessful. To
improve the prediction, we will consider the following global observable, defined over
the whole set of dynamical variables:

Ψ1(t) ≡ 1

N

N∑
i=1

xi, (4.38)

which can be seen as the average energy of the L96 system at a time t. In order to use
two observables as predictors, we perturb the system with two different forcings as in
(2.131). The first one is the local perturbation of the forcing (4.10) used before, with
time pattern given by (4.22):{

G
(1)
i (x) =δikG1

e(1)(t) =Θ(t)−Θ(t− τ1),
(4.39)

with G1 = 1 and τ1 = 5, as before. The second forcing we consider is a local perturba-
tion in the viscosity of the system, which is the following:{

G
(2)
i (x) =− xi δikG2

e(2)(t) =Θ(t)−Θ(t− τ2),
(4.40)
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with G2 = 0.1 and τ2 = 3. At this point we can use the relation for the Fourier
transform of the surrogate response function (2.141) for three observables:

Hk−2,Ψ1(ω) =

(
Γk+1,G(2)Γk−2,G(1) − Γk+1,G(1)Γk−2,G(2)

)
(

Γk+1,G(2)ΓΨ1,G(1) − ΓΨ1,G(2)Γk+1,G(1)

) (ω)

Hk−2,k+1(ω) =

(
−ΓΨ1,G(2)Γk−2,G(1) + ΓΨ1,G(1)Γk−2,G(2)

)
(

Γk+1,G(2)ΓΨ1,G(1) − ΓΨ1,G(2)Γk+1,G(1)

) (ω)

(4.41)

where Hk−2,Ψ1 links the global predictor Ψ1 and the predictand xk−2, while Hk−2,k+1

links the local predictor xk+1 and the predictand xk−2. We can see that these surrogate
response functions have in general different poles than the ones previously defined in the
case of just one forcing. We now want to investigate the eventual presence of singular
components in these surrogate response functions. To do that, we take the limit for
ω →∞ of the relations (4.41) and we use the limits obtained for the response functions
which appear in these relations, listed in Tab. 4.5. These limits are obtained taking the
limit for t → 0+ of the response functions in the time domain and using the relations
(2.93) and (2.94). Given these results, the limit behaviour of (4.41) is the following:

lim
ω→∞

Hk−2,Ψ1(ω) =0

lim
ω→∞

Hk−2,k+1(ω) =sk−2,k+1,
(4.42)

where sk−2,k+1 is a constant which can be obtained as follows:

lim
ω→∞

Hk−2,k+1(ω) =
−〈x〉〈C(2)

k−2〉+ 〈D(2)
k−2〉

〈D(2)
k+1〉 − 〈x〉〈C

(2)
k+1〉

, (4.43)

where 〈C(2)
k−2〉 and 〈C(2)

k+1〉 are given by (4.35), while 〈D(2)
k−2〉 and 〈D(2)

k+1〉 can be computed
from the expansion for small times of Γk+1,G(2) and Γk−2,G(2) , obtaining:

〈D(2)
k−2〉 =〈xk−3xk−2xk〉

〈D(2)
k+1〉 =− 3〈xk−2xk〉+ 3〈xk−1xk〉+ 2〈xkxk+1xk+3〉 − 2〈x2

kxk−1〉 − 2〈x2
kxk−2〉.

(4.44)
The expectation values on (4.44) can be found directly from the unperturbed L96
system, and they gives sk−2,k+1 = 0.071. Looking at (4.42) we can deduce that Hk+1,Ψ1

has no singular component since it vanishes for ω →∞, while Hk+1,k−2 has a singular
component proportional to a delta:

Sk+1,k−2(t) = sk−2,k+1δ(t). (4.45)

In Fig. 4.15 the surrogate response function Hk+1,Ψ1 and the non singular component
Kk−2,k+1 of the surrogate response function Hk+1,k−2 are shown. We can notice that
the non-causal component is much smaller than the one displayed in Fig. 4.11 for
both the surrogate response functions. We can quantify that observation using the
ratio method (2.150), obtaining the results shown in Tab. 4.6, where we can see that
the relative importance of the non-causal component is lowered a lot considering two
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ω →∞

ΓΨ1,G(1) (iG1/(Nω))

Γk+1,G(1) −2iG1〈C(2)
k+1〉/ω

3

Γk−2,G(1) −2iG1〈C(2)
k−2〉/ω

3

ΓΨ1,G(2) −(iG2/(Nω)) · 〈x〉
Γk+1,G(2) 2iG2〈D(2)

k+1〉/ω
3

Γk−2,G(2) 2iG2〈D(2)
k−2〉/ω

3

Table 4.5: Limit behaviour for ω →∞ of the Fourier transform of the response functions for the
observable Ψ1, xk−2 and xk+1 and the perturbation with local spatial pattern G(1) (4.39) and

global spatial pattern G(2). The constants C
(2)
k+1 and C

(2)
k−2 are defined as in (4.19), while the

constants D
(2)
k+1 and D

(2)
k−2 are defined in a similar way for the perturbation G(2). The average

〈x〉 can be computed directly by an ensemble average.
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Figure 4.15: (a) Surrogate response function Hk−2,Ψ1
. (b) Non-singular part of the surrogate

response function Kk−2,k+1.

forcings. This is reasonable, as we extract more information from the system looking at
its response to two different perturbations. Given the fact that Hk+1,k−2 has a singular
component, we compute the response of xk−2 using the trick (4.37):

δ〈xk−2〉(t) = Hk−2,Ψ2(t) ∗ δ〈Ψ2〉(t) +Kk−2,k+1(t) ∗ δ〈xk+1〉(t) + sk−2,k+1δ〈xk+1〉(t).
(4.46)

We can see in Fig. 4.16 that the prediction performed by the surrogate response
functions in the case of two forcings (bottom panel) is much better than the one made
using just one forcing (top panel). We can see that using more forcings and hence more
observable to make predictions, we gain access to more information and we can make
better predictions of what happens in the other locations of the system.
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Kk−2,k+1 Hk−2,Ψ1 Kk−2,k+1

0.66 0.0012 0.086

Table 4.6: In the first column there is the result of the ratio method applied to the surrogate
response function Kk−2,k+1 when just one forcing G(1) is used. In the last two columns there
are the results of the ratio method (2.150) applied to the surrogate response functions Hk−2,Ψ1

and the non-causal component Kk−2,Ψ1 when two forcings G(1) and G(2) are used.
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Figure 4.16: Integrated response of xk−2 of the perturbed L96 system (4.21), compared (a) with
the predictions made by the surrogate response functions Hk−2,k+1 with just one forcing (4.39)
and (b) with the predictions made by the surrogate response functions Hk−2,Ψ1

and Hk−2,k+1

with the two forcings and (4.40) . The integrated response is denoted by xi while the predicted
one by xHi .
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Conclusions

In our work we have first built a framework where all the possible approaches to RT
have been included, reviewing the literature regarding RT. We started from the Kubo’s
Theory [1,2], which studies how to predict the out of equilibrium response of a system
which was at its thermodynamic equilibrium. In particular, the Kubo’s theory is able
to link through the FDT the spontaneous fluctuations occurring in the unperturbed
steady state with the non-equilibrium response of the system. We have seen that the
effectiveness of RT lies in the fact that it is a theory fundamentally built on ensembles
of trajectories [4]. We have expanded the regime of applicability of RT to systems which
display a NESS, showing that there are two main pathways to tackle the problem to
predict the out-of-equilibrium response of the system with just the information provided
by the steady state and the applied forcing [17].

The first approach assumes the smoothness of the invariant measure ρ of the unper-
turbed system and it derives the Kubo-Agarwal response formula [17], which reduces
to the Kubo’s response formula assuming the time-reversal property for the trajec-
tory of the considered system. Remarkably, the Kubo’s response formula structure is
preserved in the Kubo-Agarwal formula, together with the FDT. This approach is par-
ticularly suited for systems which have a noise term in their equation of motion, which
can emerge from a coarse-graining procedure or from the projection of the invariant
microscopic measure along certain relevant directions [20].

There are cases where it is not possible to assume the smoothness of the invariant
measure. This is the case of chaotic dissipative deterministic systems, which display
a NESS since there is dissipation within the system. In such systems, the trajectories
reach in the long time limit a set of points called strange attractor, which is usually
fractal and with a dimension smaller than the one of the phase space [64]. As a conse-
quence, the invariant measure is singular with respect to the Lebesgue measure, since
it is supported on this attractor. Ruelle, in order to well define a RT for these sys-
tems, considered Axiom A systems. These systems are special because their invariant
measure is an SRB measure, which is such that their tangent space can be split be-
tween an unstable manifold, a neutral manifold and a stable manifold. Ruelle showed
in its seminal works [10, 67] that the Kubo formula is preserved along the unstable
and central directions, where the measure is smooth, while the contribution along the
stable manifold is deeply different and it is also harder to compute in practice than the
unstable and central contributions [15, 17]. The main consequence of this fact is that
the FDT holds just partially since the stable manifold contribution has no counterpart
in the spontaneous fluctuations of the unperturbed steady state. Note that Axiom A
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systems are a class of systems of a certain physical relevance, thanks to the chaotic
hypothesis devised by Gallavotti and Cohen [11,12], which states that the reduced sys-
tem composed by macroscopic observables in high-dimensional systems is practically
an Axiom A system.

In all approaches to the RT presented above, the purpose is to predict the response of
the perturbed system using the information given by the steady state of the unperturbed
system and the forcing applied to the system, focusing on a few observable of interest.
In Section 2.6, we have presented a rather new and insightful point of view in RT,
introduced by Lucarini in his work [28]. Starting from the usual RT, Lucarini showed
that it is possible to use the response of some perturbed observables as surrogates of the
actual forcing to predict the response of other perturbed observables. This is achieved
using some newly defined response functions, called surrogate response functions. We
have seen that one of the main issues raised by the surrogate RT is about the presence
of a non-causal component in the surrogate response functions, since some poles of their
Fourier transform could be collocated in the upper complex ω− plane. This non-causal
component could seriously hamper the predictive power of some perturbed observables,
leading to the impossibility to predict the state of another perturbed observable at
a time t using just the information provided up to time t. A meaningful question
which can emerge from this fact is the following: can we actually quantify this loss of
information? This question becomes important in cases where we have to choose the
most predictive observable from a set of observables {Ψ1, ...,Ψk}, to predict another
observable Ψ. All the surrogate response functions HΨ,Ψj might display a non-causal
component. In Section 2.6 we have derived for the first time a quantitative method
which measures how much a predictor is unpredictive, starting from a generalized form
of the KK relations for non-causal response functions. This new method computes the
relevance of the non-causal component of the surrogate response function with respect
to its causal component and it is very easy to numerically implement. Furthermore, this
method can unveil the potential presence of information flows or causal links between
couples of non-predictive observables. We have shown that in the L96 system in Chapter
4, where we have found results consistent with the group velocity present in the system,
which is associated with the transport of information.

In this thesis we have shown the effectiveness of the surrogate RT, providing new results
and insights in linear systems and a chaotic spatially extended non-linear dynamical
system. In Chapter 3 we have implemented the surrogate RT formalism in the context of
linearized systems, building response functions between different perturbed observables.
We have devised and proved a criterion, called the Unpredictability Criterion (3.17),
which can rule out a priori the perturbed observables which are generally not able
to make predictions. It turns out, considering dynamical variables xj such that the
spatial pattern of the perturbation Gj is different from 0, that if the linear feedback
seen by xj is greater than the dissipation which occurs within the system, xj cannot be
generally used for prediction purposes. The derivation of the UC is a first step towards a
general method which can allow us to discriminate a priori between predictive and not-
predictive observables, just looking at the equation of the dynamics. We have provided
numerical tests in a non-trivial case, which supported and confirmed the UC predictions.
Next, we have plugged memory effects in the dynamical systems considered in the main
body of the chapter, studying their impact on the UC. We have discovered that it is



CONCLUSIONS 101

more difficult that the variables are unpredictive in this case because the variables know
more about each other. Lastly, we have extended the UC on dynamical systems defined
through a random matrix, deriving in this context the average UC, which tells us if
a dynamical variable is predictive on average. In particular, the average UC states,
consistently with what observed before for the UC, that if there are too much negative
feedbacks between the variables with respect to the self-interactions terms, on average
they fail in their role of predictors. This is because the dynamical variables know way
less about each other in this regime, and hence they cannot make faithful predictions.

A relevant first application of the UC can be found in the context of non-linear rational
approximation [86]. In that context, the goal is to find the best rational function that
fits the relation between two variables in the frequency domain [87]. The Criterion
could provide some indications on the nature of the poles we expect to find after the
fitting procedure and detect possible errors.

Moreover, we envision applications of our work in the context of control theory, where
linearized systems are extensively studied and used. The UC can be useful in over-
coming one of the main problems which emerges while designing a controller: the
reconstruction of the state of the dynamical system starting from the sensed partial
information. To do that, it is crucial to detect the most useful variables which can
reconstruct the full state of the system. The surrogate RT could provide a set of tools
to actually identify those variables, looking at their predictive ability. Our UC could
be used as a method to immediately rule out the unpredictive variables looking directly
at the equation of the dynamics.

Finally, our work can be used in control theory to understand whether a system is non-
minimum [29]. These systems have controllability problems caused by the presence of
zeros of the response functions with positive imaginary part [33] [88]. These zeros can
be linked to delays of the response of the system to a perturbation [29]: the closer the
imaginary part of a non-predictive zero is to zero, the longer is the delay of the response
and then the more difficult is the system to control. This is extremely reasonable since
a non-predictive zero in a response function Γi (of a dynamical variable xi) with a very
small imaginary part provides a substantial non-causal component of the surrogate
response function Hji, hence the variable xi is a bad predictor of the other variables xj .
We can see that the presence of controllability problems (maybe due to a delay in the
response) can be linked with the presence of unpredictability issues of the dynamical
variables. As a consequence, if we can employ our UC to say whether some dynamical
variable xj is not predictive, we can infer that the analyzed system is necessarily a
non-minimum one. This method could be of relevance for the design of controllers
since those systems can have controllability issues derived from using non-minimum
systems. Some industrial case studies can be found in [33] and [89]: a SISO industrial
evaporator, a SISO isothermal CSTR, a MIMO non-isothermal CSTR and FCC reactors
units. We envision applications of our work in more contexts where linearized systems
are important. We have in mind species interaction networks, where it is difficult to
know the precise state of all species each time. Lastly, a very significant direction would
be to move out of linearized systems. Other paradigmatic non-linear models could be
studied, for example models where a limit cycle is present in the steady state.

In Chapter 4 we have applied the Surrogate RT to a more complex model than the
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ones considered in Chapter 3: the L96 model, which is a chaotic and spatially extended
deterministic model [41–43], with travelling waves within it. It has been derived in
climate studies, where it is used to describe the evolution in time of a meteorological
quantity along a circle along the globe at constant latitude. The L96 system contains
all the basic needed processes: advection of the meteorological quantity, dissipation
and forcing. Since it is a spatially extended system, we have chosen to perturb it
locally in a given location xk and to observe the response of the system through the
lens of the dynamical variables xi of the system. The problem we studied amounts to
understand when a local dynamical variable is able to predict another local dynamical
variable. We have shown that the local perturbation in xk introduces a hierarchy of
the dynamical variable xi in terms of their predictive power, which is strictly related to
the delay in their response to the perturbation (the bigger the delay and the larger is
the non-causal component of the surrogate response function). The higher is the rank
of a variable in this hierarchy and the more predictive it is, starting from the directly
perturbed variable xk. Moreover, we have divided the surrogate response functions into
anticipated surrogate response functions and retarded surrogate response functions. If
the predictor feels the perturbation with a smaller or equal delay than the predictand,
the related surrogated response function is retarded, while on the contrary it is antic-
ipated. We have restricted ourselves just to the retarded surrogate response function,
while we have discarded the anticipated surrogate response functions since they violate
the causality principle and hence they are non-physical. As a consequence, variables of
a given rank can predict the behaviour of other dynamical variables of the same rank
or below. We have numerically derived some retarded surrogate response functions
related to a few dynamical variables around the directly perturbed xk, showing that
the non-causal component increases as we move from xk, together with the quality of
the predictions, while the non-causal component is practically vanishing when xk is
the predictor. Furthermore, we have observed that for two variables which have the
same rank in the hierarchy, the variable at the left of the perturbation can predict the
behaviour of the variable at the right better than the reverse. This can be observed
looking at the non-causal component of the related surrogate response functions, and
it can be quantified using the ratio method devised in Section 2.6. This observation
is consistent with the fact that in the system there is a group velocity vg which goes
from the left of the perturbation to its right. We can see that the surrogate RT and
the ratio method in particular can unveil the presence of information flows within the
system. Lastly, we have shown that it is possible to drastically improve the predictions
of some non-predictive local dynamical variables using more than one forcing. This is
reasonable: using more information from the system we can make better predictions
about it. The situation we have in mind is that of a local observer which can have
access to local and global information provided by a few forcings in order to predict
the behaviour of a few observables of interest in other parts of the globe.

Our study of the L96 system employing the surrogate RT, with local perturbations
and local observables, is meant to be a benchmark for a general methodology to study
spatially extended systems:

• We locally perturb the system in a given location or a few selected close locations.

• We study how the perturbation propagates in the system for small times looking
at the response functions of the local observables, showing that different local
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observables react to the perturbations with different time scales.

• We build a hierarchy of these local variables in terms of their predictive power, i.e.
the delay of their response to the perturbation. In that way, we can understand
which are the most useful local observables to use for predictions of other local
observables.

• We divide the surrogate response functions between these observables into antic-
ipated and retarded, focusing just on the retarded ones. This means that a given
local observable can make predictions just of other local observables with a lower
or equal rank in the hierarchy.

• We numerically derive the surrogate response functions and we test their pre-
dictive ability perturbing the system with a perturbation with the same spatial
pattern but different time pattern.

• We use the ratio method to quantify how much a surrogate response function
is unpredictive, measuring the relative importance of its non-causal component.
Using these numbers, we try to see if there is some systematic behaviour, with
the purpose of unveiling potential causal links or flows of information between
local variables.

We can see that the application of this rather general method can provide useful insights
into the emergent properties of the system at hand. Furthermore, it provides a solid
and flexible theory which points out which variables are better suited to be predictors
and predictand, allowing predictions all over the system.
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Appendix A

Kolgomorov’s Criterion

In this appendix we show in the context of the Markov Chains a characterization of
equilibrium steady state [44, 50, 90]: the Kolgomorov’s Criterion. In particular, the
criterion states that an equilibrium steady state, characterized by the DBE (1.30),
is given if and only if the probability of a path in the phase space is equal to the
reversed path. We first have to define some properties in order to introduce the theorem,
considering a discrete Markov chain with transition matrix W , with state space S =
{si}i=1,...,N and steady-state distribution psi [44, 50,90].

First, we say that a state si is accessible by another state sj if there is a path of finite
length which connects si and sj , i.e. it exists a sequence of states {αk}k=1,...,M , with
M finite, such that its probability:

Wsi,α1 ....WαM ,sj > 0. (A.1)

Then, we say that a Markov chain is irreducible when all the states are accessible by
another state. Second, we define a state si as transient if, starting from si, there is a
non-vanishing probability that the chain will never come back to si. If this probability
is vanishing, the state si is said to be recurrent. Then, we further characterize the
recurrent states si, by means of the mean hitting time Mi for si:

Mi = E[Ti] =
∞∑
n=1

n · p(n)
si,si , (A.2)

where Ti is the time required from a generic path which starts from si to come back

in si and p
(n)
si,si is the probability to have such a path of length Ti = n. A recurrent

state si is said to be positive if Mi is finite and null otherwise. A Markov chain is
called positive (null) recurrent when all its states are positive (null) recurrent. Lastly,
we define the period k of a state si as the greatest common divisor of the lengths of
the paths that start from si and end in si:

k = gcd{n > 0 : p(n)
si,si > 0}. (A.3)

If the period of a state si is one, the state is called aperiodic. In an irreducible Markov
chain, if a state is aperiodic, all the states are aperiodic and the Markov chain is called
aperiodic [50].
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We now have all the tools to introduce the Kolgomorov’s criterion:

Kolgomorov’s criterion: An irreducible, positive recurrent, aperiodic Markov chain
with transition matrix W has a steady state which satisfies the DBE (1.30) if and only
if W satisfies:

Ws1,s2 ....,Wsn,s1 = Ws1,sn ....,Ws2,s1 , (A.4)

for all finite sequence of states s1, ..., sn ∈ S.

In particular, notice that (A.4) means that a loop in the phase space can be travelled
with equal probability in a verse or in the opposite. This implies the condition (1.32),
hence that the probability to walk a path in the forward direction {si}i=1,...,n and in
the reverse direction {si}i=n,...,1 is equal. We can prove this last statement using the
DBE (to see this it is sufficient to multiply (A.4) by ps1 and then use the DBE). The
Criterion can be extended in continuous-time Markov Chain, using the same ideas of
the discrete case proof presented below.

The proof of the Criterion is the following. We start from proving the DBE (1.30)
imply (A.4). We can rewrite the LHS of (A.4) as follows, using the DBE for the first
factor Ws1,s2 :

Ws1,s2 ....,Wsn,s1 = (
ps2
ps1

Ws2,s1)....,Wsn,s1 (A.5)

We can do the same for each of the factors, obtaining in the end the RHS of (A.4),
hence proving this verse of the equivalence. which gives the time inversal condition
(1.29).

The other verse of the proof, i.e. that the relation (A.4) implies the DBE (1.30), is the
following. We fix two states s and t. Then, we have, thanks to (A.4):

Ws,s1 ...Wsn,t =
Wst

Wts
Wt,snWi1,s, (A.6)

for a choice of states s1, ..., sn. We sum both sides of (A.6) for all possible choices of
s1, ..., sn, obtaining:

p
(n)
s,t =

Wst

Wts
p

(n)
t,s . (A.7)

Now we use the fact that, since the chain is positive recurrent, aperiodic and irreducible,
we have that [50]:

lim
n→∞

p(n)
si,sj = psj , (A.8)

hence the steady-state probability that the chain is in sj can be computed from the
probability to start in a generic state si, ending in sj after an infinite number of moves.
Given that, we take n→∞ in (A.7), obtaining the DBE and proving the Criterion:

pt
ps

=
Wst

Wts
. (A.9)
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The pedagogical case of 3x3
matrices for the UC

We provide an explicit derivation of the UC for the instructive case of systems with 3
degrees of freedom. with a perturbation with spatial pattern G3 6= 0. Let’s find the
matrix with entries Γjk = Gk(A− iω1)−1

jk which describes the response functions:

1

det[A− iω1]

 (−A23A32 + (A22 − iω)(A33 − iω))G1 (A13A32 −A12(A33 − iω))G2

(A23A31 −A21(A33 − iω))G1 (−A13A31 + (A11 − iω)(A33 − iω))G2

(A21A32 −A31(A22 − iω))G1 (A12A31 −A32(A11 − iω))G2

(A12A23 −A13(A22 − iω))G3

(A13A21 − (A11 − iω)A23)G3

(−A12A21 + (A11 − iω)(A22 − iω))G3

 (B.1)

Let’s look at the global response function of x3: Γ3,gl = Γ31 + Γ32 + Γ33. Recalling that
G3 6= 0 and we look for the zeros of this global response function:

−G3ω
2 − iω(−A31G1 −A32G2 +G3A11 +G3A22)− f [A] = 0 (B.2)

where f [A] is just a constant which is a function of the matrix A. Now we look for the
roots of this equation, finding:

ω1,2 = − i
2

[
(−A31

G1

G3
−A32

G2

G3
+A11 +A22)∓√(

−A31
G1

G3
−A32

G2

G3
+A11 +A22

)2

+ 4 f [A]


We can see that if the linear coefficient of (B.2) is negative, the global response function
Γ3,gl has a zero in the upper complex ω−plane, hence the variable xj cannot be used for
prediction purposes. The linear coefficient is negative if the following inequality holds:

A31G1 +A32G2 > (A11 +A22)G3, (B.3)

confirming in this case the UC (3.17).
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