
University of Padua

Department of Information Engineering

Master Thesis in ICT for Internet andMultimedia

A Domain Adaptation approach for sequence modeling

through Deep Learning in semiconductor manufacturing:

adversarial training setup with Temporal Convolutional

Network and Long-Short TermMemory models

Supervisor Master Candidate
Prof. Gian Antonio Susto Filippo Dalla Zuanna
Co-advisor
Natalie Gentner

Academic Year 2021/2022
Graduation Date 11/07/2022

ii

vi

Abstract

The aimof this work is to developDeepLearning strategies to extend previous research [1, 2]
concerning a task related toVirtualMetrology field in a semiconductormanufacturing. This
intends to compare the previously developed model and other models more suited to the
time series data under examination. The strategy used in this problem is based on Domain
Adaptation through an adversarial training setup; the approach is recent and promising, al-
lowing for bettermanagement in the absence of large amounts of data andmakingpreviously
trained models reusable in similar scenarios.
This research is encouraged for its effects in this field; further improving the performance
of the models used means savings on production costs, since it would limit conformity tests
which lead to product damage. This also leads to a possible saving of materials, an impor-
tant aspect from an ecological point of view. Finally, it is increasingly necessary to consider
models that use less data or are more suitable for similar processes, as in the case of Domain
Adaptation techniques. The latter aspect is relevant because the data is expensive to obtain
in the considered application.

vii

viii

Sommario

Lo scopodi questo lavoro è sviluppare delle strategie diDeepLearning per estendere la ricerca
precedente [1, 2] riguardante una mansione relativa all’ambito di Virtual Metrology in una
produzione di semiconduttori. Questo vuole essere un confronto tra il modello sviluppato
in precedenza e alcuni modelli più adatti ai dati di serie temporali in esame. La strategia uti-
lizzata in questo problema si basa sulDomain Adaptation attraverso un’impostazione diAd-
versarial Training; l’approccio è recente e promettente, permettendo una miglior gestione
in assenza di grandi quantità di dati e rendendo i modelli precedentemente addestrati riuti-
lizzabili in scenari simili.
Questa ricerca è incoraggiata per gli effetti che può portare in questo campo; migliorare ul-
teriormente le prestazioni dei modelli utilizzati significa risparmiare sui costi di produzione,
poiché permetterebbe di limitare test di conformità che danneggiano i prodotti. Ciò com-
porta anche un possibile risparmio di materiali, aspetto importante dal punto di vista eco-
logico. Infine, è sempre più necessario considerare l’uso di modelli che utilizzano meno
dati o sono più adatti a processi simili, come nel caso delle tecniche diDomain Adaptation.
Quest’ultimo aspetto è rilevante perché i dati sono costosi da ottenere nell’applicazione con-
siderata.

ix

x

Contents

Abstract v

List of figures xiii

List of tables xv

Listing of acronyms xvii

1 Introduction 1

2 Background 3
2.1 Semiconductor Manufacturing . 3

2.1.1 Etching Process . 5
2.2 Virtual Metrology . 5
2.3 The Dataset . 6
2.4 Deep Learning . 7

2.4.1 The main topic of Machine Learning 7
2.4.2 The subcategory of Deep Learning 8

2.5 Domain Adaptation . 9
2.5.1 The main topic of Transfer Learning 9
2.5.2 The subcategory of Domain Adaptation 9

3 VirtualMetrology task with Deep Learning models 11
3.1 Deep Learning models . 11

3.1.1 One Dimensional Convolutional Neural Network model 11
3.1.2 Temporal Convolutional Network model 13
3.1.3 Long-Short TermMemory network 15

3.2 Virtual Metrology Regression task . 16
3.2.1 Performance metrics . 17
3.2.2 Dataset details . 17
3.2.3 Benchmark predictor model . 19
3.2.4 Training procedure parameters maintained 19
3.2.5 Hyperparameters tuning . 20
3.2.6 TCN predictor model . 21
3.2.7 LSTM predictor model . 22

xi

3.3 Results obtained on the Virtual Metrology regression task 24
3.3.1 Benchmark predictor . 24
3.3.2 TCN predictor . 26
3.3.3 LSTM predictor . 30
3.3.4 Cross-validation results . 33

4 Domain Adaptation methodwith Deep Learning models 35
4.1 DBAM architecture . 35

4.1.1 Autoencoder architecture . 37
4.1.2 GANmodel . 37
4.1.3 Wasserstein Generative Adversarial Networks 38

4.2 Adversarial Domain Adaptation task . 40
4.2.1 Training procedure parameters maintained 40
4.2.2 Training procedure hyper-parameters 41
4.2.3 Benchmark DBAM elements . 42
4.2.4 TCNDBAM elements . 43
4.2.5 LSTMDBAM elements . 44

4.3 Results obtained on the Domain Adaptation task 46
4.3.1 The need of a Domain Adaptation ad-hoc procedure 46
4.3.2 Benchmark DBAM . 50
4.3.3 Insertion of the new predictors 53
4.3.4 Insertion of the new aligners . 58
4.3.5 Insertion of the new discriminator 64
4.3.6 Results recap and cross-validation results 67

5 Conclusion 69

References 71

xii

Listing of figures

2.1 ANN architecture example from [3] . 8

3.1 Example of a CNN architecture from [4]. 12
3.2 Stacked Dilated Convolution from [5]. 14
3.3 LSTM cell overview from [6]. 16
3.4 LSTM-CNN architecture example from [7] 23
3.5 Benchmark predictor: training history 25
3.6 Benchmark predictor: predictions plot 25
3.7 TCN predictor: training history . 29
3.8 TCN predictor: predictions plot . 30
3.9 LSTM predictor: training history . 33
3.10 LSTM predictor: predictions plot . 33

4.1 Graphical representation of the DBAM architecture from [1] 36
4.2 Autoencoder architecture example from [8] 37
4.3 Predictions plot of the TCN predictor trained on the combination of A

and B data . 47
4.4 Predictions plot of the LSTM predictor trained on the combination of A

and B data . 47
4.5 Predictions plot of the TCN predictor trained on A data after the training

on B data . 49
4.6 Predictions plot of the LSTMpredictor trained onAdata after the training

on B data . 49
4.7 Benchmark DBAM: training history . 51
4.8 Benchmark DBAM: t-SNE plot of train data 51
4.9 Benchmark DBAM: predictions plot . 52
4.10 TCNpredictor-DBAM: training history 54
4.11 TCNpredictor-DBAM: t-SNE plot of train data 54
4.12 TCNpredictor-DBAM: predictions plot 55
4.13 LSTMpredictor-DBAM: training history 56
4.14 LSTMpredictor-DBAM: t-SNE plot of train data 56
4.15 LSTMpredictor-DBAM: predictions plot 57
4.16 TCN aligner: signals examples after warm-up training 58
4.17 TCNaligner-DBAM: signals examples after training 59
4.18 TCNaligner-DBAM: training history . 59

xiii

4.19 TCNaligner-DBAM: training history of the improved architecture 60
4.20 TCNaligner-DBAM: signals examples of the improved architecture 60
4.21 LSTM aligner: signals examples after warm-up training 61
4.22 LSTMaligner-DBAM: training history 63
4.23 LSTMaligner-DBAM: t-SNE plot of train data 63
4.24 LSTMaligner-DBAM: predictions plot 64
4.25 LSTMaligner-DBAM: signals examples after training 64
4.26 LSTMdiscriminator-DBAM: training history 66
4.27 LSTMdiscriminator-DBAM: t-SNE plot of train data 67
4.28 LSTMdiscriminator-DBAM: predictions plot 67
4.29 LSTMdiscriminator-DBAM: signals examples after training 67

xiv

Listing of tables

3.1 Benchmark predictor: performance evaluation 24
3.2 TCN predictor: hyper-parameter optimization, first step 27
3.3 TCN predictor: hyper-parameter optimization, second step 28
3.4 TCN predictor: performance evaluation 29
3.5 LSTM predictor: hyper-parameter optimization 31
3.6 LSTM predictor: performance evaluation 32
3.7 Cross-validation results of the regression task 34

4.1 TCN predictor: results on the different procedures 48
4.2 LSTM predictor’s results on the different procedures 48
4.3 Benchmark DBAM: performance evaluation 50
4.4 TCNpredictor-DBAM: alpha parameter optimization 53
4.5 LSTMpredictor-DBAM: alpha parameter optimization 55
4.6 Test results of DBAMs with new predictor 57
4.7 LSTMaligner-DBAM: alpha parameter optimization 62
4.8 LSTMaligner-DBAM: discriminator extra steps parameter optimization . . 62
4.9 LSTMaligner-DBAM: test results . 62
4.10 LSTMdiscriminator-DBAM: alpha parameter optimization 65
4.11 LSTMdiscriminator-DBAM:discriminator extra steps parameter optimiza-

tion . 65
4.12 LSTMdiscriminator-DBAM: test results 66
4.13 Cross-validation results of the Domain Adaptation task 68

xv

xvi

Listing of acronyms

ML Machine Learning

DL Deep Learning

VM Virtual Metrology

DA Domain Adaptation

TL Transfer Learning

FDC Fault Detection and Classification

PdM Predictive Maintenance

R2R Run-to-Run

ULSI Ultra-Large Scale Integration

CV Cross-validation

MSE Mean Squared Error

ME Maximal Residual Error

EV Explained Variance Regression Score

R2 R-square Regression Score

NN Neural Network

ANN Artificial Neural Network

ELU Exponential Linear Unit

ReLU Rectified Linear Unit

CNN Convolutional Neural Network

1DCNN One Dimesional Convolutional Neural Network

TCN Temporal Convolutional Network

xvii

RNN Recurrent Neural Network

NLP Natural Language Processing

LSTM Long Short TermMemory Network

GAN Generative Adversarial Network

WGAN Wasserstein Generative Adversarial Network

DANN Domain Adversarial Neural Network

DBAM DANN-Based Alignment Model

xviii

1
Introduction

Nowadays, the industrial sector is facing a continuous increase in the complexity of the
processes aimed at improving productivity and integrating the newmethodologies brought
about by the digital revolution. The semiconductor manufacturing sector is no exception
because its processes are extremely complex so spending resources to improve them is not
surprising. This includes integrating recent strategies that leverage the collection of large
amounts of data to extract useful information, used for different types of optimizations.
These methods include statistical techniques and Machine Learning, with Deep Learning
also emerging strongly in recent years. The latter is favoured by the promising performances
shown in various fields and the greater availability of data and computational resources than
in the past.
In this work, the problem of Virtual Metrology is taken into consideration, dealing specif-
ically with the Etching process in semiconductor manufacturing. This work aims to study
Deep Learning solutions to improve previous research on this specific problem [1, 2], ex-
panding the analysis with the use of architectures more suited to the data type related to
the problem. This configuration also deals with Domain Adaptation through an adversar-
ial training setup for solving this aspect. This is necessary as each of the machines involved
in the process, although the same, generates data that follows different distributions. This
disparity could be caused by imperfections in the machines, a slightly different environment
while in function, non-identical settings or different usage times. This forces to manage this
aspect since, otherwise, it would be necessary to develop a different model for each machine,

1

wasting resources and losing effectiveness.
As the first aspect of the work, the elements necessary to understand the industrial process
and the overview of the main topics of this work are present in the second chapter. Then,
in the third one, the contents focus on comparing the new models with the benchmark in
the regression aspect of the VirtualMetrology task. This includes the description of the vari-
ous architectures, the dataset details, the steps of themethodology for solving the prediction
problemand the results obtained. In the final chapter, theworkhandles theDomainAdapta-
tion aspect of the problem, including the architecture description for the adversarial training
with its elements and the steps for solving the Domain Adaptation problem. Finally, the re-
sults of the various configurations are presented and commented on.
This work has been done in collaboration with Infineon; it provided both the data and the
resources to train and evaluate the various models. Due to the NDA agreement, the signal
plots don’t show some data information.

2

2
Background

This chapter talks about the necessary information needed to understand the field of appli-
cation and the general topics concerning the task. So, the etching process and virtual metrol-
ogy are described to understand the motivations behind the need for this task resolution.
Accordingly, a general overview of the data is presented. Then, the general topic of Deep
Learning regarding the models used for solving is introduced. Finally, Domain Adaptation
is described, with its concepts to make the method used more generally.

2.1 SemiconductorManufacturing

The field of semiconductor manufacturing is one of the most technologically advanced in-
dustrial sectors [9]; every process involved is extremely complex and costs a lot, together with
the infrastructures that allow these processes to be carried out. This sector is one of themost
important for mankind since it is responsible for the production of the basic elements that
make up lots of objects present in our everyday life. Personal computers, smartphones and
cars are some of an infinite number of examples. Given such premises, it is not surprising
that semiconductor manufacturing companies are spending effort and resources to improve
quality and optimize the processes, heading towards smaller, faster and higher quality de-
vices along with cost reduction. These optimizations largely involve the use of tools for
process control and analysis, such as Machine Learning used for Virtual Metrology (VM)
systems, Fault Detection (FDC) systems, Predictive Maintenance (PdM) systems and Run-

3

to-Run (R2R) control [10]. All of these technologies have spread in the past few years in
semiconductor manufacturing facilities to improve productivity and decrease costs. The en-
tire semiconductormanufacturing process takes usually six to eightweeks from the first stage
up to final product shipping; it is performed in highly specialized fabrication plants, show-
ing how is long and complex. The latter is composed of many different steps, starting from
the wafer formation; this consist of the creation of a thin (525 - 775 µm) slice of semicon-
ductor material with 125 - 300mm diameter that serves as the substrate for microelectronic
devices. Wafers are formed from extremely pure crystalline material, usually silicon, thanks
to the Czochralski process. Then, the front end processing relates to the formation of tran-
sistor chips on the siliconwafer and is performed in controlled environments known as clean
rooms, which have the level of dust, vapours and particles artificially kept at a low level. This
is donewith air filtering and restricted access policies needed for performing the subprocesses
of this category. These are:

• Wafer cleaning: cleaning procedures are needed to prepare the wafers for subsequent
processes, asUltra-Large Scale Integration (ULSI) technology is characterizedby strict
requirements concerning surface smoothness and particle contamination;

• Deposition: filmdeposition iswidely used in IntegratedCircuits (IC) fabrication and
includes dielectric films, composed of silicon dioxide and silicon nitride which serve
as isolation, mask and passivation layer, and polysilicon films, which can be used as a
conducting layer, semiconductor, or resistor by proper doping with different impuri-
ties;

• Lithography: several techniquesmaybeused to createULSI circuit patterns onwafers,
like the most common photomask exposition which employs the use of ultraviolet ra-
diation that is transmitted through the clear part of the mask while the opaque part
blocks the rest of the radiation. The resist film, being sensitive to the radiation, is then
coated on the wafer surface, developing the resist image induced by the mask previ-
ously aligned on the wafer;

• Etching: described more in detail later.

All the front end processes are repeated several times to produce multiple interconnected
layers on the wafer surface. After them, the products enter the testing phase looking for
functional defects, subdivided into parametric and electrical tests. The firsts are performed
on ad-hoc structures, calledTAG, prepared on the device tomonitor the efficiency of process
steps and the goodness of the design. These tests consist of electric measurements of phys-
ical quantities, such as impedance, capacitance and resistance. The seconds verify that the

4

behaviour of each device is consistent and within specifications, thanks to electrical testing
with sequentialmeasurements; if some value is out of specification range the circuit is flagged
as faulty, marking the non-passing quantities and storing that information. Finally, the mi-
crochips encounter the process of packaging, which provides electrical connection, protec-
tion from mechanical and environmental stress and a thermal path for the heat generated.
This is crucial for the performance and the reliability of the chip witch impact consequently
the final system.
The description of the phases involved in the production process makes us aware of its com-
plexity and it’s easy to understand how high the interest in optimizing the elements of the
process can be, in our case with a focus on front end ones.

2.1.1 Etching Process

In semiconductor manufacturing, Etching is a process involved in the fabrication of semi-
conductor devices which consists of any method that selectively removes material from a
thin film on a substrate. This removal creates the circuit arrangement which is defined by a
mask resistant to etching formed in a previous process. The elimination of the not protected
material can occur by either wet or dry methods. Wet methods consist most of immersing
the wafers in a chemical solution or spraying the wafers with them. Instead, drymethods are
synonymouswith plasma-assisted etching, which denotes several techniques that use plasma
in the formof low-pressure discharges, like plasma etching, reactive-ion etching, sputter etch-
ing, and high-density plasma etching. These include chemical and physical methods, where
in physical ones positive ions bombard the surface at high speed.
In this complex process, the monitoring of the variables involved is crucial for the success of
the process. For Plasma etching, such variables are for example gas flows, power and pressure
that determine etching properties such as etch rate, uniformity, selectivity and anisotropy.
This leads to the need of monitoring and controls these quantities through traditional con-
trol methods or statistical ones, such as mathematical models or VirtualMetrologymethods
[11].

2.2 VirtualMetrology

Virtual Metrology(also called Soft Sensing) refers to the set of methods that estimate quan-
tities that are important for quality control or process control, quantities that are costly or
difficult to be measured. These methods exploit the availability of data that are collected

5

by themachines or information systems during their operation and use them to estimate the
costlymeasure, benefiting from regressionmodelling techniques. This allows for an estimate
without metrology, reducing the number of product tests performed. These measurements
are usually taken in metrology stations where multiple measurements on various products
are performed after the process is finished. This often leads to functionality problems and,
in some cases, the product is destroyed. The costs related to these issues are summed upwith
the already present measurement costs; for this reason, only a subset of the products or pro-
cesses are tested.
Examples of literature about the development of techniques for Virtual Metrology are vari-
ous, even in the field of Semiconductor Manufacturing. A lot of them are based on classical
Machine Learning models such as prediction models based on regression algorithms [12] or
models based on least square optimization of the kernel like Ridge Regression, Lasso and Ef-
ficient net [13]. In [14], tree-based approaches like RF are been also investigated. However,
not only ML models are being used; Deep Learning approaches are spreading given their
promising results in this and other fields. Artificial Neural Networks are widely adopted in
VM like in [15], whilemore sophisticated architectures have been recently adopted [16] [17]
[6].

2.3 The Dataset

The dataset used in this work corresponds to the same of the reference work [1], provided
by Infineon experts.
Data is collected from two machines of the same type that are also running in parallel, with
a selection of almost two years of activity where the data acquisition characteristics are not
changed significantly. These samples contain physical quantities and process information
which are collected by the sensors of the machines that operate during the process. They are
stored for analysis for different behaviours, such as process control. After that, some samples
get data quantities added thanks to a metrology tool that performs multiple measurements
directly on the product. Such measurements are, for example, critical dimension and layer
thickness; the latter are chosen as labels for the VM prediction task since it shows high cor-
relations to the quantities’ evolution during the etching process. This permits to have the
data related to the analyzed problem: the samples of the evolution of the process with the
corresponding outcome are available, making the use of statistical models for its analysis and
resolution possible.

6

2.4 Deep Learning

2.4.1 The main topic ofMachine Learning

TheMachine Learning field refers to the study of computer algorithms that can learn a task
with the use of data. In this manner, ML programs can perform tasks without being explic-
itly programmed; computers are brought to learn directly from the data examples provided
instead of challenging a human to individuate the solution rule. This is performed by min-
imizing a performance measure called loss function, which permits training the model and
learning the task as much as possible. This approach should ideally lead to the correct man-
agement of similar but unseen examples. In many cases, this method turns out to be more
effective and efficient.
ML algorithms can be divided into categories depending on the data and the training ap-
proach used:

• Supervised Learning: Both an input X and the desired output Y are presented to
the model, to learn a mapping function f(x) such that f(X) = Y , representing the
hypothetical rule of the task;

• Unsupervised Learning: No output is provided to the algorithm, which is left to
discover the regularities in the data without feedback, learning its various properties
and being able to discriminate between similar and different examples;

• Semi-Supervised Learning: The learning algorithmwill work almost completely un-
supervised, butwith a small representative set of output samples available to guide the
extraction of useful information;

• Reinforcement Learning: The learner (called the agent) is left in an environment
where he can interact with it, making him discover patterns in the environment or
perpetrating a goal with the guidance of rewards/punishments.

In this work, a supervised learning approach is used thanks to the availability of labelled
data; supervised algorithms are preferable whenever possible, due to their simpler implemen-
tation and often better results. More precisely, the task refers to the learning of the rule
that connects various quantities measured in the etching process to the layer thickness. This
corresponds to a regression task since the output quantity is a real number, instead of a clas-
sification problem where the outputs are of finite values.

7

2.4.2 The subcategory of Deep Learning

Deep Learning refers to a subfield of Machine Learning that uses particular models called
Artificial Neural Networks [18]. This kind of model is inspired by the human brain, by
exploiting its ability to do extremely complex things with the efficient connection of many
simple units, the neurons. So, the logic behind these models is to use a simple processing
unit with limited learning capability and connect a lot of them to form a complex configura-
tion. Each of these units can be of a different type depending on the behaviour of themodel.
For example, it can be a perceptron (also named fully-connected neuron) for general process-
ing, an approximation of the neuron behaviour used in the first ANNmodels as in 2.1. In

Figure 2.1: ANN architecture example from [3]

image processing, it can be a filter or, for temporal processing, a recurrent cell. Given the
huge amount of units, some simplifications are required to reduce the computational effort
since the connection of these units together is unfeasible. For this reason, these elements are
grouped in layers that are stacked and connected. So, the elements of each layer are linked
with the previous and the following one, having no internal connections. This simplifies the
model configuration and permits the stack of a lot of these layers, making the network deep,
hence the origin of the name Deep Learning.
Some examples of ANNs will be described in later sections.

8

2.5 Domain Adaptation

2.5.1 The main topic of Transfer Learning

Transfer Learning is the topic that deals with all those applications where the used statis-
tical model has to face particular differences present in subproblems of a general category
already learned. It refers to techniques that permit to reuse of general properties of the task
learned previously and, starting from them, fit the knowledge in their particular aspects [19].
This is needed since a common assumption when dealing with statistical models is usually
not present and leads to a drastic decrease in performance. It refers to the fact that all sam-
ples used for learning the task are independent and identically distributed (i.i.d) according
to a probability distributionD [20]. So, the discrepancy between relative similar tasks that
have differences in distributions, which worsen the performances, are addressed by Trans-
fer Learning. This knowledge transfer is performed to improve the capabilities of a model.
Some examples of applications are cancer subtype discovery(medical imaging) [21], building
utilization [22], general game playing [23], text classification [24], digit recognition [25] and
object recognition/detection [26].

2.5.2 The subcategory of Domain Adaptation

Domain Adaptation refers to a particular case of the more general topic of Transfer Learn-
ing. In this case, the domains under consideration have the same feature space but different
distributions, while in general Transfer Learning feature space can differ. The domain used
for extracting the knowledge takes the name of the source domain, while the domain that
needs to be adapted is called the target domain. Domain Adaptation can be solved through
three different methods [27]:

• Instance re-weighting: Source samples are re-weighted to fit better the samples in
the target domain. For estimating those weights, a non-parametric minimization is
performed to reduce the gap between the re-weighted source distribution and the tar-
get distribution;

• Subspace alignment: The optimization of a mapping function is learned to lead to a
common subspace where the source and target domains have a similar distribution;

• Deep alignment: Deep Learning techniques can be used to align source and target
domains, either by minimizing the distance between distributions or by adversarial
domain alignment.

9

In this work, the latest solution is adopted using labelled data(source or target samples).
Usually, this alignment is performed in Semi-Supervised and Unsupervised settings, but the
use of labels can drastically reduce the task effort.

10

3
Virtual Metrology task with Deep Learning

models

This chapter talks about the description of the models used in this work, 1DCNN regard-
ing the reference work and TCN and LSTM regarding this one. Then the results of the
regression task are presented with the methodology that leads to them.

3.1 Deep Learning models

3.1.1 One Dimensional Convolutional Neural Network model

1DCNN models take their name from a particular behaviour of the more general Convo-
lutional Neural Network model. In this particular case, the convolution instead of being
applied in two dimensions, for example in image data, is performed only in one dimension.
The latter corresponds to the time dimension in our specific case to extract features from
the evolution in time of the signals. Since we are dealing with time series another imple-
mentation must be in place: the convolution must be causal since in this way each feature
depends only on the present and past information and does not include future information
that would be conceptually wrong. More details about 1DCNN can be found in [4].

11

Convolutional Neural Networks

The CNN models are inspired by the connectivity model between neurons present in the
animal visual cortex. For this reason, they were designed originally for image processing. Ev-
ery cortical neuron responds to the stimulus of a precise characterization of the visual field
called the receptive field, such as an edge with a certain orientation. The receptive fields of
different neurons partially overlap in such away as to cover all the characteristics of the visual
field. In a convolutional layer, the kernel filters are equated to the neurons in the biological
model where each of them generates a feature map being convoluted with the entire input.
In the case of a bi-dimensional input I and a two-dimensional kernel filterK , the discrete
convolution S of I andK can be expressed as:

S(i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(i+m, j + n)K(m,n). (3.1)

This feature map represents howmuch the filter is stimulated in every location of the input.
Hence the target of the training of these filters is to set their parameters in a way that they
can extract salient characteristics of the inputs.
Here in 3.1 an example of the CNNmodel to better understand his general elements. This

Figure 3.1: Example of a CNN architecture from [4].

simple network consists of two convolution and two pooling layers with 4 and 6 neurons.
The output of the last pooling layer is processed by a single fully-connected layer and fol-
lowed by the output layer that produces the classification output. The interconnections
feeding the convolutional layers are assigned by weighting filters (w) having a kernel size of
(Kx, Ky). The convolution takes place within the image boundaries; therefore, the feature
map dimension is reduced by the (Kx−1, Ky−1) pixels from thewidth and height, respec-
tively. The subsampling factors (Sx, Sy) are set in advance in the pooling layers, elements

12

used for reducing the dimension of the feature maps. The kernel sizes corresponding to the
two convolution layers were set to (Kx = Ky = 4), while the subsampling factors are set as
(Sx = Sy = 3) for the first pooling layer and (Sx = Sy = 4) for the second one. These val-
uesmake that the outputs of the last pooling layer (i.e. the input to the fully-connected layer)
are scalars (1×1). The output layer consists of two fully-connected neurons corresponding
to the number of classes to which the image is categorized.

3.1.2 Temporal Convolutional Network model

The TCN models refer to a family of models that exploit the characteristics of CNNs and
adapt them to use time sequences. To satisfy this use, the convolutions in the architecture
are causal, meaning that there is no information leakage from future to past. In addition, the
architecture can take a sequence of any length andmap it to an output sequence of the same
length, just as with a Recurrent Neural Network model, the basic Deep Learning model
for time sequence processing. To achieve the first point, the TCNs use convolutions where
output at time t is convolved only with elements from time t and earlier in the previous layer
or input. To accomplish the second point, theTCNsuse a 1DCNNarchitecturewhere each
feature map has the same length as the input layer. Also, zero padding of length (kernel size
− 1) is added to keep the subsequent layers of the same length as the previous ones. For these
reasons, as tell in [28], TCNs can be seen as the sum of 1DCNN and causal convolution.
This would make the TCN model almost equal to the previous presented 1DCNNmodel
but this is not true in practice. Indeed, TCNs refer to the architecture that implements other
features in addition to the ones presented above. These features are the dilated convolution
and the residual connections, taken fromWaveNet model [5].

Dilated Convolution

A dilated convolution is a convolution where the filter is applied over an area larger than its
length by skipping input values with a certain step. The network can perform the convo-
lution on a coarser scale, like pooling or convolutions with a stride greater than 1, but the
output has the same size as the input. Formally, for a 1 − D sequence input x ∈ R

n and
a filter f : {0, ..., k − 1} → R, the dilated convolution operation F on element s of the

13

sequence is defined as:

F (s) = (x ∗d f)(s) =
k−1
∑

i=0

f(i) · xs−d·i (3.2)

where d is the dilation factor, k is the filter size, and s − d · i accounts for the direction of
the past. As a special case, dilated convolution with dilation of 1 yields the standard convo-
lution. 3.2 depicts dilated causal convolutions for dilations 1, 2, 4, and 8. Stacked dilated

Figure 3.2: Stacked Dilated Convolution from [5].

convolutions enable networks to have very large receptive fields with just a few layers, while
preserving the input resolution throughout the network as well as computational efficiency.
Usually, the dilation doubles up to a certain limit in a layer and then it is repeated with the
stacking of new layers. This leads to two benefits. First, exponentially increasing the dilation
factor results in exponential receptive field growthwith depth. Second, stacking these blocks
further increases the model capacity and the receptive field size.

Residual Connections

The residual connections consist of a solution that permits the network’s layers to learnmod-
ifications to the identity mapping rather than the entire transformation. This has repeatedly
been shown to benefit very deep networks since it preserves more information during the
flow into the model. In detail, the output features are determined by applying an activation
function to the sum of the input and the transformed input:

output = Activation(x+ F (x)). (3.3)

14

3.1.3 Long-Short TermMemory network

The LSTMmodels are an extension of the more general Recurrent Neural Networkmodels
and improve some of its aspects through optimizations of the information process.
The RNNmodels are a particular kind of ANN that focuses on processing data that corre-
lates in the time domain, then being able to process any time series data type. This is possi-
ble because the model introduces recurrent connections that permit the elaboration of the
information at timestamp t along with the information stored through the elaboration of
previous data. More specifically, the hidden representation of the data ht is calculated using
the current input xt, the previous representation ht−1 and the current timestamp t in this
way:

ht = f(ht−1, xt, t). (3.4)

This permits the network to remember past information, which makes them a great tool
when working with temporal data or NLP.
LSTMs introduce some improvements in the management of the past information to over-
come the lack of standard RNNs that limit their learning about short-term and not long-
term dependencies. This is done by adding a set of gated units to the basic structure of an
RNN tomanage the store of the information [29]. The use of those gates drastically reduces
the vanishing and exploding gradient problem which occurs in RNNs. In particular, those
gates are of three different categories:

1 Input gates, which manage the input utilization from the memory cell;

2 Output gates, which weight howmuch the current value stored in the memory cell is
present in output;

3 Forget Gates, which manage howmuch the current value stored has to be forgot.

More in detail, gates make use of the sigmoid function σ to determine when to add or
remove information. The forget gate decide when to keep or discard information by looking
at the current input xt and the previous activation ht−1:

ft = σ(Wf [ht−1, xt] + bf) (3.5)

whereWf is the weight matrix for the forget gate and bf is the bias term. The input gate will
determine which new information is going to be stored in the cell state. Which elements to

15

Figure 3.3: LSTM cell overview from [6].

store it is determined as follows:

it = σ(Wi[ht−1, xt] + bu) (3.6)

while the values to store Ĉt is computed using hyperbolic tangent:

Ĉt = tanh(Wc[ht−1, xt] + bc). (3.7)

The cell update just multiplies the old state by the forgetting factor, and adds the new input
information:

Ct = ft · Ct−1 + it · Ĉt. (3.8)

The output gate, which decide what to propagate forward in the output, is computed as:

ot = σ(Wo[ht−1, xt] + bo) (3.9)

where ht = ot · tanh(Ct). More details about these equations can be found in [30].

3.2 VirtualMetrology Regression task

As saidpreviously, the regression task studied is the one that tries topredict the layer thickness
given some quantities measured during the etching process. This is done as in the reference
work [1], fromwhich the benchmarkmodel is taken as comparison starting point with some
procedure characteristics. This is used as a reference to train and test the TCN and LSTM
models.

16

3.2.1 Performance metrics

For the performance comparison more metrics are being used: Mean absolute error (MAE),
maximal residual error (ME), explained variance regression score (EV) and R-square (coeffi-
cient of determination) regression score function (R2). Mean absolute error is used not only
for measuring performance but also as training loss. The equations are:

MAE(ytrue, ypred) =
n

∑

i=1

|ytruei − ypredi | (3.10)

ME(ytrue, ypred) = max
i

|ytruei − ypredi | (3.11)

V ar(y) =
n

∑

i=1

(yi − ȳ)2 (3.12)

EV (ytrue, ypred) = 1−
V ar(ytrue − ypred)

V ar(ytrue)
(3.13)

R2(ytrue, ypred) = 1−

∑n

i=1(y
true
i − ypredi)2

V ar(ytrue)
(3.14)

where ytrue are the dataset labels, ypred are the predictor outcomes, ȳ stands for the mean
value and V ar for the variance, the square of the standard deviation. R2 and EV are equal if
the mean error is 0, then both are taken into account to assure an unbiased evaluation. For
MAE and ME lower value is better, instead for EV and R2 higher value is better with 1 as
upper bound limit.

3.2.2 Dataset details

The 33 measured quantities contained in the dataset are coming from two different equip-
ment, corresponding to the source and the target domains respectively. Each time series has
the layer thickness as the label, not considered in the dimension of the dataset. The raw sen-
sor signals got some preprocessing steps; an outlier removal procedure is applied, then con-
stant features are deleted and, finally, data get normalized with a min-max scaler. Also, an
equal distributed upsampling of timestamps was used since time series have different lengths
caused by the endpoint detection present in the process, which cuts the series. In this way,
time series are generated of equal length, a characteristic thatmust be present to use datawith

17

themodels. Additional feature engineering approaches are not applied since themodels face
the raw time series directly. However, the data collection is been limited to only one process
to simplify the dataset, avoiding prediction on multiple ones. Therefore, only one label and
one group of products are considered for the prediction.
The B dataset is composed of 1271 samples which form the source domain, the one that
should consent to the extraction of the solution to the VM problem. The A dataset is com-
posed of 1209 samples which form the target domain, the one that should be adapted for be-
ing solved with the solution developed for the source domain dataset B. Each time sequence
has a length of 1024 given by the equal distributed upsampling performed in preprocessing
steps. Then, the number of quantities measured is 33, as told previously.

Cross-validation

A different number of datasets are created for cross-validation, a procedure used to validate
the final solutions, while only one of these datasets is used for the intermediate steps. This
method consists of applying the resolution of the problem on different distributions of the
dataset into training, validation and test sets, intending to average the results and reduce the
dependence on the specific distribution of the dataset. The training set consists of samples
that the model uses for learning the specific task. The validation set consists of samples that
guide the training into a more general solution. The test set is used to evaluate the final
performances.
For this specific task, 5 different datasets are created. The data is divided into 5 groups where
4 of them are used as training samples. The other one is divided equally into validation and
test sets. This happens before the normalization, avoiding information leakage from training
data distribution to validation and test ones. The min-max scaler parameters are calculated
on training samples and applied directly to the other. In this way, the training set doesn’t
contain information about the normalization parameters of the others.

Datasets dimensions

In summarizing, the datasets have the following dimensions, excluding the labels:

• Train dataset A: [968 : 1024 : 33];

• Validation dataset A: [120 : 1024 : 33];

• Test dataset A: [121 : 1024 : 33];

18

• Train dataset B: [1017 : 1024 : 33];

• Validation dataset B: [127 : 1024 : 33];

• Test dataset B: [127 : 1024 : 33].

3.2.3 Benchmark predictor model

The 1DCNN predictor model taken as the reference has the following elements:

1 1DCNN layer with 16 filters followed by a batch normalization layer;

2 1DCNN layer with 8 filters followed by amax-pooling layer with 4 as pool dimension
and a batch normalization layer;

3 Fully connected layer with 16 units applied to the flattened version of the features
extracted previously, followed by a batch normalization layer;

4 Output layer(1 fully connected unit) that use sigmoid as activation function.

The 1DCNN layers have a kernel size of 17 and a stride of 2. The stride halves the time
dimension at every layer. 1DCNN layers and the fully connected layer use Exponential Lin-
ear Unit (ELU) as the activation function, a slightly modified version of the more common
Rectified Linear Unit (ReLU). This configuration owns about 20k parameters, resulting in
a simple and lightweight model.

3.2.4 Training procedure parameters maintained

Some of the characteristics of the training procedure are kept untouched. This is done be-
cause the assumption is that the reference work has already encountered an optimization
process and so there is no need to touch the parameters of the benchmark training. Given
this, some parameters have to remain the same for pursuing that since the work focuses on
comparing models. Otherwise, the differences in the training procedure could lead to a not
meaningful comparison.
The first of these parameters is the training epochs, fixed at 300, in a way to train the model
for the same amount of iterations. The second is the optimizer, which guarantees that the
optimization process happens with the same tool. This is the Adam optimizer[31], one of
the most used thanks to the excellent results of his adaptive learning rate techniques. Then,

19

the learning rate value and the learning rate schedule aremaintained the same, with the usual
aim of preserving the optimization process equality; the learning rate started at 0.00001 and
undergoes an exponential learning rate decrease after 50 epochs. The third is the schedule of
the early stopping, which hasminδ = 0.00001 and patience = 20. Finally, the batch size
is fixed to 32; this parameter influences the calculation of the gradient in the optimization
process and, for this reason, is kept fixed. However, this is a more flexible parameter that in
general can be optimized withoutmessing with the comparison, but in this work, we choose
to keep the same.

3.2.5 Hyperparameters tuning

InMLand alsoDLmodels, someof their characteristics are not fixed anddeterminedifferent
behaviours depending on their configuration. The problem with these hyper-parameters is
that there isn’t a rule that relates them to the problem, so their choice should follow research.
The latter aims to find out the configuration that better suits the problem, solving it in the
best way possible. However, in DL we should consider the computational complexity since
some of these parameters govern the complexity of the model. In this way, the research is
focused not only on the better model but on a trade-off between better and simpler models,
although the problem resolution has more weight.
The hyper-parameters research can be done in different ways:

• Experience choice: the values are chosen by experience matured with the model or
with the work on similar problems;

• Grid search: the tested values come from the combination of the equidistant param-
eter lists that allows exploring a portion of the parametric space, with the computa-
tional burden depending on the density and size of the explored space;

• Random search: the values come from sampling predetermined ranges of parameters
to explore the parametric space, usually in a uniform way, with the drawback of not
being able to explore optimal regions of the space;

• Improved Random Search: The limitations of random search seek to be mitigated
with techniques that guide the exploration of the parametric space by exploiting the
results of previously tested instances, for example using the Bayesian rule.

In this work, the second method is mainly used, with the choice of intervals aided by the
first method. These will be shown in the following sections relating to specific models.

20

3.2.6 TCN predictor model

The TCN predictor model has two different configurations, the first hyper-parameter in
consideration. The first one uses the last temporal features extracted by the TCN layers to
make the regression prediction. So, this is composed of a series of TCN layers where the
last one returns only the features of the last timestamp that is fed directly into the output
layer. In this way the architecture results simpler but has the receptive field limited in the last
part of the sequence; if the network is not so deep the features used for the prediction aren’t
originated from thewhole sequence, which should limit the capabilities of the configuration.
Instead, the second configuration uses a series of TCN layers to extract a time sequence of
features that is suddenly reduced with a 1DCNN layer which has kernel size and stride of
5, reducing by 5 the time dimension. The reduction using 1DCNN is done to avoid the
huge amount of parameters that will be required using a fully connected layer on the whole
features. The reduced time sequence is flattened and sent to a fully connected layer with 16
units before arriving at the output layer. In this way the features processed are taken from
the whole sequence but the model is more complex. In both configurations, the activation
function of the output layer is a linear activation instead of a Sigmoid one. This is done be-
cause the vanishing gradient problem arises with the use of the Sigmoid function.
The other hyper-parameters are inspired from the example [32], which are all those possible
regarding the TCNmodel if we exclude regularization techniques. The activation function
for both TCN layers and fully connected one is added as it is a parameter not present in the
reference example. The optimization through a grid search is done in two steps. The first
step parameters are:

1 Activation function: ReLU or Leaky ReLU;

2 Number of TCN layers: 1 or 2;

3 Number of dilated convolution blocks: 1, 2 or 4;

4 Number of filters: 16, 32 or 64;

5 Kernel size: 3;

6 Dilated convolutional depth: 6.

The choice of grid parameters is adopted firstly to explore a portion of the parametric
space and then to use the results to explore further if these prompt to do so. This permits

21

avoidance testing of a series of configurations that prove bad behaviour from the beginning.
The second step parameters are:

1 Activation function: Leaky ReLU;

2 Number of TCN layers: 1;

3 Number of dilated convolution blocks: 1;

4 Number of filters: 64 or 128;

5 Kernel size: 3, 15 or 50;

6 Dilated convolution depth: 4 or 6.

In the second step, the more complex configurations were discarded, and we explored the
kernel size with the dilated convolution depth. Finally, the parameter of the number of fil-
ters was finished.
Given the satisfactory results, it was not necessary to further expand the research on the pa-
rameters. This approach is a mixture of grid search and experience choice, the latter mainly
guided by literature examples and the results achieved.

3.2.7 LSTM predictor model

As done for the TCN predictor model, the first hyper-parameter for the LSTM predictor
model consists of different configurations, in this case, three. The first one uses the last tem-
poral features extracted by the LSTM layers to make the regression prediction. As for the
TCN predictor, the last one returns only the features of the last timestamp that is fed di-
rectly into the output layer. In this case, there isn’t the problem of the receptive field; for
how LSTM architecture is made, the last features originated from the information of the
whole sequence. However, for long time sequences as in this case, there could be problems
related to learning long term dependencies. It means that such ones could be obfuscated by
short term ones, possibly resulting inmore or less the same receptive field problem for differ-
ent reasons. The second one is also in the same spirit as the TCN predictor; it uses stacked
LSTM layers to extract a time sequence of features that is then reducedwith a 1DCNN layer
by a factor of 5 as for TCN. The reasons that motivate this are the same. The reduced time
sequence is delivered to the same fully connected layer with 16 units that in this case have
Leaky ReLU as fixed activation function, as for the 1DCNN layer. The third configura-
tion adds after the results obtained in the first two, further exploring the architecture types.

22

While the second configuration is motivated by examples like in [7] showed in 3.4, the third
one reverses the LSTM and 1DCNN elements, like in [33]. In this way, instead of reduc-

Figure 3.4: LSTM‐CNN architecture example from [7]

ing the size of the LSTM features, the input is reduced in size before extracting the features
due to the LSTM layers. This leads to the simplification and lightening of the model, as the
1DCNN levels are less demanding from a computational point of view and putting them at
the beginning allows the LSTM elements to process lower dimensional data. As for TCN,
in all configurations, the activation function of the output layer is a linear activation instead
of a Sigmoid one, for the same reason.
The other hyper-parameters are taken from [34]. These parameters are:

1 Number of LSTM layers: from 1 to 3;

2 Number of units per layer: 25, 50 or 100;

3 Dropout rate: 0, 0.1 or 0.25.

Dropout [35] is a regularization technique that consists of deactivating with a certain
probability (the dropout rate) the units of the layers during training. This leads the units to
learn the general characteristics and actively participate in the analysis of the different charac-
teristics. This is because it is possible that some units are not involved in some training steps
and it is not possible to rely on them, preventing an excessive specialization of the units.
It was not necessary to further expand the research on the parameters except for the improve-
ment done with the third configuration; this was tested with the same other parameters.

23

3.3 Results obtained on the VirtualMetrology regression task

All the results that came out from the regression task described in the previous section will
be shown in this one. The study is carried out using the Python programming language, the
most used concerning ML and DL problems, with the support of the Keras library [36] for
the tools related to the construction and training of DL models and the scikit-learn library
[37] for evaluation metrics. The analysis is performed using only the first division of the
dataset and the statements are strengthened using CV at the end. This allows using fewer
computational resources during the studywith the drawback of depending on the particular
data distribution, which could produce less significant results. However, this drawback is
checked and mitigated using CV once selected the final configuration.

3.3.1 Benchmark predictor

We start showing and analysing the behaviour of the benchmark model. The model, as pre-
viously mentioned, has a low number of parameters due to its simplicity and lightness; this
is usually preferred since a simpler model allows not to waste computational resources and
to be exploited more, given the presence of fewer parameters that have to learn the task. The
latter is learned from the model, as the performance metrics in 3.1 show; the MAE andME
are low for the validation source dataset(B) and the test dataset. In addition, the training his-
tory in 3.5 shows the decrease in the training and validation losses, meaning that the model
is doing what is expected.

Evaluation of the benchmark predictor
Dataset MAE ME EV R2
Source (B) validation 0.0667 0.310 - -
Source (B) test 0.0705 0.256 0.822 0.816
Target (A) test 0.227 0.484 0.738 -0.573

Table 3.1: Benchmark predictor: performance evaluation

However, some defects are present; the simplicity of the model has its drawback since it
makes the trainingmore unstable, causing spikes in the validation loss given by the impact on
the change of the parameters which, being few, have a greater influence on the modification
of the forecast. This could cause the early stop criterion to intervene too soon during the
training procedure, worsening the final performance. In the same way, these few amounts

24

Figure 3.5: Benchmark predictor: training history

of parameters influence the predictions which appear to be strongly related to the dataset
presented during training.

Figure 3.6: Benchmark predictor: predictions plot

Aswe can see in 3.6, the predictions are good only for the source domain(blue dots) while
the ones regarding the target domain(red dots) are really bad. The test samples(grey dots) fol-
low the distribution of their respective provenance, behaving in the same way as the training
set. Perfect predictions belong to the centre dotted line, the place where true values (on the
x-axis) match their own predicted values (on the y-axis). The predictor was not expected to
do well in the target domain but it’s clear that the model is not capable at all of generalizing
into similar data, demonstrating howmuch the simplicity of the model makes it dependent

25

on the specific task learned. This also can be seen in the performance metrics results, where
the numbers are good for the B dataset while they are bad for the A-one; this is particularly
evident in the R2 score. These results invite the exploration of furthermodels to refine these
aspects, which may also be due to the model’s incompatibility in easy managing temporal
sequences.

3.3.2 TCN predictor

To improve the shortcomings of the benchmark, the first model chosen is TCN based.

Hyper-parameters optimization and selection

As previously described, a hyper-parameter procedure is made for finding the best param-
eters of the explored parametric space. The performances on the validation data are used
to compare them, averaging the results on the best performing configurations given the pa-
rameter in the examination; the MAE and ME of the 6 best models are averaged to provide
the metrics for the comparison. The number of models considered is chosen to also include
some of them that do not work verywell, avoiding focusing only on goodmodels to perform
a richer evaluation.
The first step of this optimization gives the results in 3.2. Thesemotivate the need for further
exploration of the parameters and the justification of the non-unique optimization attempt.
First of all, the more complex architectures prove to work bad, meaning that this aspect will
still lead to wrong behaviour, regardless of the other parameters. This will cause a waste
of resources in case of the further exploration of the configurations with more than 1 layer
and more than 1 block, highlighting the usefulness of more than one optimization attempt.
Then comparing themodel type and the activation function gives a clear result regarding the
best solution, instead of the number of filters parameter that tends to improve as the num-
ber increases. Therefore, the second optimization aims to dispel these remarks, exploring
further the number of filters and testing simpler configurations through the dilated convo-
lution depth parameter, with the addition of kernel size as a new variable.

26

First step of TCN predictor hyper-parameter optimization
Hyper-parameter MAE ME
Model type
TCN only 0.0859 0.298
TCN + 1dcnn 0.0734 0.260
Activation function
ReLU 0.0837 0.302
Leaky ReLU 0.0747 0.253
Number of TCN layers
1 0.0694 0.269
2 0.127 0.477
Number of dilated convolution blocks
1 0.0694 0.269
2 0.112 0.424
4 1.92 6.84
Number of filters
16 0.103 0.348
32 0.0893 0.293
64 0.0790 0.311

Table 3.2: TCN predictor: hyper‐parameter optimization, first step

Given the results in 3.2 and 3.3, the chosen configuration can be described, with the moti-
vations behind the selection, not dependent only on numerical results in some cases. The
architecture with the combination of TCN for extracting temporal features and 1DCNN
to combine and reduce them is chosen as it performs the best. For the same reason, the Leaky
ReLU activation function is selected among ReLU. The same happens for the number of
layers and blocks of 1 each. Leaky ReLU probably permits to mitigate the presence of dead
units(units that are not learning), a limitation occurring with using ReLU activation when
the values of the neurons are negative, justifying its better results. The number of filters is
set to 64, as the path of the improving performance with the increasing numbers stops with
the second optimization attempt since the parameter of 128 didn’t do better. Regarding the
kernel size, even if the results are evident, there is a drawback; the complexity of the model
increases enormouslywith a larger size than an analysis of the trade-off between performance
and complexity is due. In this case, the task results guided the choice since this aspect is more

27

important than the others and the complexity is manageable in the specific task, not requir-
ing an exaggerated time for training. So, 50 is chosen for the kernel size even if it leads to 5
timesmore the training time compared to themodel with the kernel size of 3 and an amount
of 1.5million parameters. Instead, the dilated convolution depth didn’t give useful informa-
tion, so the 6 parameter is chosen as the receptive field is wider than the 4 parameter, which
is preferable for extracting more general features.

Second step of TCN predictor hyper-parameter optimization
Hyper-parameter MAE ME
Model type
TCN only 0.0752 0.252
TCN + 1DCNN 0.0534 0.216
Number of filters
64 0.0586 0.207
128 0.0589 0.223
Kernel size
3 0.0755 0.259
15 0.0685 0.247
50 0.0555 0.215
Dilated convolutional depth
4 0.0575 0.214
6 0.0600 0.215

Table 3.3: TCN predictor: hyper‐parameter optimization, second step

Summarizing, the TCN architecture chosen for the regression task as the following charac-
teristics:

• Model type: TCN + 1DCNN;

• Activation function: Leaky ReLU;

• Number of TCN layers: 1;

• Number of dilated convolution blocks: 1;

• Number of filters: 64;

28

• Kernel size: 50;

• Dilated convolution depth: 6.

Regression task results

The improvements with the use of TCN architecture are visible. The task is learned from
the model in a better way compared to the benchmark results in 3.1, as it can be seen in
3.4; the MAE and, in particular, ME are lower for the validation and the test source dataset.
In addition, the training history in 3.7 is more stable, even if it starts from higher values
given by the greater complexity. This permits the training to last longer than the benchmark,
improving the overall behaviour.

Evaluation of TCN predictor
Dataset MAE ME EV R2
Source (B) validation 0.0531 0.185 - -
Source (B) test 0.0560 0.164 0.895 0.893
Target (A) test 0.129 0.357 0.720 0.377

Table 3.4: TCN predictor: performance evaluation

Figure 3.7: TCN predictor: training history

Therefore, the major complexity solves some issues encountered in the benchmark model;
along with the more stable training and the better results on the learned regression task, the

29

TCN architecture proves to extract more general properties. Indeed, the results are decent
also for the target domain, demonstrating a better generalization capability. This can be seen
from all the metrics and also from the predictions in 3.8. In this case, the target domain pre-

Figure 3.8: TCN predictor: predictions plot

dictions(red dots) are closer to the optimal prediction line compared to the benchmark, fur-
ther showing the claim regarding the best generalization properties. The source domain pre-
dictions(blue dots) do the same showing the better performances of the architecture. This
is followed by the test sets(grey dots) that behave the same as the training ones.
The huge complexity of the model seems the only drawback of the TCN architecture that
proves to generalize better than the benchmark, along with the better results. However, this
model doesn’t solve the regression task for the target domain even with its generalization
properties, an aspect that will be treated later on and requires other methods.

3.3.3 LSTM predictor

The other architecture chosen is based on LSTM, providing an alternative with the same
purposes as TCN.

Hyper-parameters optimization and selection

As previously described, a hyper-parameter procedure is made for finding the best parame-
ters of the explored parametric space. The performances on the validation data are used to
compare the parameters, averagingMAE andMEof the 6 bestmodels in the same behaviour
of the TCN architecture. This optimization gives the results in 3.5. These, differently from

30

TCN, show a stability property in the LSTM architecture given that most parameters be-
have very similarly; the results are almost the same except for the model type. This justifies
the stop in the hyper-parameters search procedure since there is no clear direction for test-
ing new parameters, with no need to improve performance. Hence, the LSTM architecture
chosen for the regression task has the following characteristics:

• Model type: 1DCNN+ LSTM;

• Number of LSTM layers: 1;

• Number of units: 50;

• Dropout rate: no dropout.

LSTM predictor hyper-parameter optimization
Hyper-parameter MAE ME
Model type
LSTM only 0.0753 0.300
LSTM + 1DCNN 0.0543 0.207
1DCNN+ LSTM 0.0470 0.187
Number of LSTM layers
1 0.0489 0.169
2 0.0481 0.184
3 0.0476 0.200
Number of hidden units
25 0.0511 0.188
50 0.0476 0.193
100 0.0474 0.181
Dropout rate
No dropout 0.0469 0.187
0.1 0.0482 0.189
0.25 0.0486 0.180

Table 3.5: LSTM predictor: hyper‐parameter optimization

31

The 1DCNN followed by LSTM configuration is chosen as it performs the best, the only
clear choice among the parameters. The number of LSTM layers is chosen for the principle
of selecting the simplest model if they perform similarly, as for the picking of the absence of
dropout. This, however, is not applied for the number of hidden units, where 50 is chosen
to allow themodel to have greater capabilities in extracting the features necessary to solve the
task. There is no problem having amore complexmodel since it remains simpler than TCN,
with 200k parameters instead of 1.5million. However, there is no need to complicate it too
much for no reason; this will happen using 100 for the number of hidden units without
proof of a performance improvement. Choosing 50 instead of 25 is intended to give the
model more room to manoeuvre on the problem.

Regression task results

Like the TCN model, the task is learned better than the benchmark results in 3.1, as it can
be seen in 3.6; theMAE andME are lower for the validation and the test source dataset. The
stability improvements also appear there, with themore stable training history in 3.9, which
permits the training behaviour to improve.

Evaluation of LSTM predictor
Dataset MAE ME EV R2
Source (B) validation 0.0535 0.177 - -
Source (B) test 0.0624 0.165 0.900 0.892
Target (A) test 0.141 0.338 0.689 0.302

Table 3.6: LSTM predictor: performance evaluation

The extraction ofmore general properties takes place there too, with the LSTM architecture
proving to demonstrate better generalization capability than the benchmark. This can be
seen from all the metrics and the predictions in 3.10, presenting decent results also in the
target domain. The better performances of the architecture compared to the benchmark are
shown with the source domain predictions(blue dots) that are closer to the optimal predic-
tion line andwith the target domain predictions(red dots) doing the same. The test sets(grey
dots) behave as the training ones.
Overall, the LSTM model appears to be more balanced than the TCN model, with archi-
tecture more stable concerning parameter modification and the lower complexity, however,
showing similar performances.

32

Figure 3.9: LSTM predictor: training history

Figure 3.10: LSTM predictor: predictions plot

3.3.4 Cross-validation results

The cross-validation results are shown in this subsection,with somefinal consideration about
the resolution of the regression task.
TheCV, as described previously, is performed to confirm the statements regarding the single
results, asserting that there isn’t a particular behaviour given by the specificity of the distribu-
tion of the samples used. For this reason, all the selected models described above are trained
on 5 different arrangements of the data to obtain the mean results (with the standard de-
viation indicated by the ± symbol) that are invariant to the different folds of the dataset.
The results are shown in 3.7; they reflect the previous ones, which means that there isn’t an

33

upheaval with the analysis on different disposals of the dataset and the models, therefore,
behave the same on all the 5 folds. So the previous claims are confirmed, with the TCN
and LSTM predictors solving the regression task better than the benchmark. Finally, we
can also compare the TCN model and the LSTM one in this task; the greater complexity
of the TCN model allows it to perform the best in the regression problem, which is more
evident by observing the target domain Awhere the results are much better. This proves the
better generalization properties of the TCNmodel compared to the LSTM one, sacrificing,
however, the simplicity and lightness aspect of the model.

Cross-validation results of the regression task
Dataset Predictor MAE ME EV R2
Source (B) Benchmark 0.0711± 0.006 0.286± 0.07 - -
validation TCN 0.0557± 0.004 0.251± 0.06 - -

LSTM 0.0589± 0.004 0.279± 0.08 - -
Source (B) Benchmark 0.0721± 0.004 0.249± 0.02 0.845± 0.01 0.837± 0.02
test TCN 0.0549± 0.003 0.214± 0.05 0.904± 0.01 0.902± 0.02

LSTM 0.0584± 0.005 0.191± 0.02 0.896± 0.02 0.892± 0.02
Target (A) Benchmark 0.223± 0.1 0.509± 0.1 0.684± 0.1 -0.712± 1
test TCN 0.130± 0.02 0.397± 0.07 0.735± 0.02 0.345± 0.1

LSTM 0.174± 0.03 0.426± 0.02 0.682± 0.04 -0.113± 0.2

Table 3.7: Cross‐validation results of the regression task

34

4
Domain Adaptation method with Deep

Learning models

This chapter talks about the Domain Adaptation method used for solving the problem of
making the solution for the regression task more general and scalable. We introduce the con-
figuration of this method, the DBAM approach, with its components and the adversarial
training principle used, taken from theWasserstein GAN. Finally, we present the results ob-
tained in this task.

4.1 DBAM architecture

DANN-Based Alignment Model (DBAM) was introduced in the reference work [1, 2] and
bases its development, as the name says, on Domain Adversarial Neural Network (DANN).
Neural Networks have become a standard solution for performing Domain Adaptation in
recent years, where the first use of DANN was presented in [38]. In [38], the adaptation
is based on a deep feature extractor meaning that the Domain Adaptation is performed on
the features space to produce similar features for both the domains. Instead, in [2] the align-
ment is performed using an aligner model with an autoencoder structure. This allows for
interpretability of the aligned data, with the possibility of using different features size be-
tween source and target domains. In this case, theDomainAdaptation is performed directly
in the data space, being able to compare the samples of the two domains instead of relying

35

Figure 4.1: Graphical representation of the DBAM architecture from [1]

only on features.
The three main components of the DBAM architecture, which base on the GAN model,
are:

1 A prediction model P (also called predictor), which performs the main task, a regres-
sion one in this case;

2 An alignermodelA (also called aligner), used to perform theDomainAdaptationpart
adapting data from a target domain to a source domain;

3 A discriminatormodelD (also called discriminator), which is necessary to distinguish
between domains in the adversarial training procedure.

Regarding the single components architecture, one of the predictors is known already
since it was presented previously for the various solutions, with the others that will be de-
scribed in detail later. To briefly knowwhat to expect, the discriminator model has the same
structure as the predictor as it performs a similar task with different behaviour since it needs
to analyze the data and produce a single number as the predictor does. Instead, two predic-
tors’ components form the aligner model, one used in the sameway as the predictor and one
mirrored. The first is used for extracting features usingmultiple outputs instead of only one
for the predictor model’s case. The other is used to reconstruct the data from the extracted
features, making them, in this case, look more like target domain data.

36

4.1.1 Autoencoder architecture

To better understand the behaviour and structure of the aligner architecture, we briefly de-
scribe the autoencodermodel. This one is aNeuralNetwork architecture that aims to extract
a representation of the data taken into consideration, usually in a lower-dimensional form.
This is pursued with two components, the encoder and the decoder; the first is a NN ar-
chitecture that has the role of compressing the data in a lower-dimensional representation,
named code or bottleneck. The second does the opposite thing, reconstructing the samples
from the code. For this reason, this part usually is made by mirroring the encoder, but it is
not required. This kind of model is included in the Unsupervised Learning category since

Figure 4.2: Autoencoder architecture example from [8]

the output, in this case, is the input itself, so there isn’t a need for labels. This training aims to
learn to extract data features that permit data reconstruction, information likely to represent
all the useful information in a compressed form.

4.1.2 GANmodel

Generative Adversarial Network (GAN) [39] is a particular architecture which introduced
into Deep Learning the concept of Adversarial Training to learn and perform a particular
task, usually related to the generation of new data. The generation and manipulations of
images are one field where this kind of approach is used a lot like this example [40]. This
architecture employs two different pieces called generator and discriminator. The generator
has the role of producing believable artificial data, while the discriminator has the role of

37

distinguishing between real data and generated data. Both the generator and the discrimi-
nator are ANN with arbitrary architecture. As usually happens in DL, the entire system is
trained by using backpropagation [41], with the weights of the generator that are updated
to maximize the training loss. This is correlated to the inability of the discriminator to per-
form its job. In contrast, the discriminator weights are updated to minimize such loss. The
maximization of this metric means that the generated data is brought to be better as it can
deceive the discriminatormore. Instead,minimizationmeans that the discriminator is better
at distinguishing between real and generated data. In this manner, the learning dynamic is a
min-max two-players game based onGameTheory, with a value function that one agent (the
discriminatorD) tries tominimizewhile the other agent (the generatorG) tries tomaximize:

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (4.1)

whereD(x) is the probability that x originated from the true data distribution. Discrimina-
tor parameters are updated by ascending its stochastic gradient:

∇θd =
1

m

m
∑

i=1

[

logD(x(i) + log(1−D(G(z(i))))
]

(4.2)

while generator parameters are updated by descending its stochastic gradient:

∇θg =
1

m

m
∑

i=1

log(1−D(G(z(i)))) (4.3)

where z(i) is a sample in aminibatch of sizem. The game, which follows the claims of Game
Theory, ends in an equilibrium which is a maximum for one player’s strategy and a mini-
mum for the other player’s strategy. If this happens, the training of a GAN is performed suc-
cessfully as the discriminator cannot discern between real and generated samples once the
equilibrium state is reached, correctly guessing about 50% of the time, meaning a random
choice.

4.1.3 Wasserstein Generative Adversarial Networks

It is common in GANs to face issues such as training instability and mode collapse because
the optimization is a competition between twoparts that, if one prevails, leads to the training

38

purpose failing as it can’t reach the equilibrium. A variation of GAN called Wasserstein
GAN (WGAN)[42]was proposed to solve those issues by replacing the discriminatormodel
with a critic, which acts as a helper to estimate an approximation of theWasserstein distance
between source and target distributions. The WGAN discriminator is named critic since it
doesn’t discriminate between real and artificial samples but instead outputs a score regarding
the realness of the samples. In this manner, it evaluates how much the data seems to come
from each of the two data distributions. Indeed, one of themajor differences betweenGAN
and WGAN is removing the sigmoid function in the last layer of the discriminator since
the output could be an arbitrary number and not a value between 0 and 1 representing a
probability. The critic, therefore, seeks to maximize the distance between its output on real
samples and its output on artificial samples. At the same time, the generator tries tomaximize
the discriminator output for target samples. Formally, the loss function for the critic can be
written as follows:

∇w =
1

m

m
∑

i=1

[

f(x(i))− f(G(z(i)))
]

(4.4)

while the loss for the generator is:

∇θ =
1

m

m
∑

i=1

f((G(z(i)))). (4.5)

To enforce a Lipschitz constraint on f , weight clipping is applied to restrict the maximum
weight value of f . Lipschitz constraint limits the gradient of the discriminator making it
worse but providing more gradient information which helps train the generator; this im-
proves the performance of the GAN in general. However, the weight clipping utilization
can result in poorly generated outputs and failure to converge. [43] propose an alternative
which adds a penalization term to the norm of the critic gradient compared to its input. For-
mally, the gradient penalty is obtained as in equation 4.6:

gp = λ(||∇x̂f(x̂)||2 − 1)2 (4.6)

where x̂ is uniformly sampled from the real data distribution and the artificial data distribu-
tion, and λ is a weight parameter for the gradient penalty. The gradient penalty term is then
added to the critic loss in 4.4. Another aspect to note is that the critic must be updatedmore
times with respect to the generator (e.g., 10 times more as suggested in [42]) to avoid the
generator prevails on it and ensure critic convergence.

39

Since WGANs seek to minimize the distance between distributions, the idea of using them
in the Domain Adaptation field is immediate.

4.2 Adversarial Domain Adaptation task

In Adversarial Domain Adaptation, the network’s objective is not to generate new samples
but to standardize samples from the target domain to appear more similar to the source do-
main elements. The discriminator will try to separate source and target samples. The gen-
erator will try to fool the discriminator by adapting target samples. Ideally, this will train
a generator model capable of shifting samples from target to source domain. The latter is
obtained with an overall training procedure similar to what was previously seen for Wasser-
stein GANs [42] with a loss coefficient added regarding the supervised setting part. As for
Wasserstein GANs, a balance between discriminator and aligner is obtained through itera-
tive training. The discriminator is first trained a certain number of additional times, with
the aligner’s weights fixed. Then, the aligner is trained while the discriminator’s weights are
fixed. Moreover, the aligner undergoes a warm-up training procedure which is suggested to
ensure a good initialization. Since the predictor is assumed to be a trainedmodel, its weights
are kept frozen during the whole DBAM training.
This procedure is performed as in the reference work [1], fromwhich the benchmarkmodel
is taken as the comparison starting point with some procedure characteristics. In this work,
the configurations tested progressively change from the benchmark elements to the TCN
and LSTMones. It starts by changing the predictor model, keeping theWGAN elements as
the benchmark. Continue introducing the new aligner models and completing the modifi-
cation with the discriminator part. It allows us to see progressively the improvements or the
problems encountered in each element. Before that, a parenthesis opens to show the limita-
tions and problems of using the predictive model alone to perform the Domain Adaptation
part, justifying the use of an ad-hoc procedure.

4.2.1 Training procedure parameters maintained

The training is performed with some parameters that don’t change compared to what is de-
scribed in [1]. It happens for the same motivation of the regression task to preserve the pos-
sibility of comparing the new solutions with the benchmark. These are:

• Available data: same data used with 32 as batch size;

40

• Training epochs and early stopping criterion: fixed at 300without early stopping;

• Optimizer: Adam;

• Learning rates and their schedule: fixed for the aligner at 0.00001 and the discrimi-
nator at 0.0001, without decreasing during training;

• Critic gradient penalty factor[43]: fixed to 10.

Furthermore, the warm-up training of the aligner was kept the same, as it doesn’t add
valuable comparison information but is useful only to see if themodel is working. It has 100
epochs with Adam optimizer, the learning rate of 0.0001 and the learning rate schedule and
early stopping criterion as the training of the regression task.

4.2.2 Training procedure hyper-parameters

In this case, some aspects of the training procedure have to be tuned, since the training config-
uration is much more complex than the one of the regression task. The models that should
be trained are two and also depend on the already trained predictor, therefore needing some
tweaks to make the training effective. However, it is counterproductive to change too many
parameters since the testing requires considerable time. For this reason, they are limited to
two:

1 Adversarial loss weight (alpha): chosen from the set {0.1, 0.25, 0.5, 1, 5};

2 Discriminator training extra steps: chosen from the set {5, 10, 20}.

The first one refers to the balancing between the use of the unsupervised loss, the loss of
the adversarial setup, and the supervised one, the predictor’s loss; the overall loss is equal to
the sum of the two, with one of the two components multiplied by alpha or it’s inverse de-
pending on the value of alpha. If the latter is lower than 1means that the training is focused
more on finding an alignment that preserves the performance of the prediction, so the pre-
dictor’s loss is multiplied by the inverse of alpha to enhance it. With alpha bigger than 1, the
model focuses more on the quality of the domains’ alignment, so the adversarial loss is mul-
tiplied by alpha to enhance it. This parameter is always tested, choosing the configuration
that balances the training depending on the predictor characteristics. The benchmark uses
5 for this parameter.
The secondone is changedonly if needed after the alpha results, otherwise kept at the original

41

value of 20. This parameter balances the training ratio between the aligner and the discrim-
inator, an aspect needed to keep the competition alive between the two parts, avoiding that
one suppresses the ability of the other. The decreasing of this value is needed in the presence
of a complex discriminator model that is more capable of its task and so needs less training
to compete, being able to save time too. The latter could also be the reason for the decrease
in this parameter if a compromise on training time is necessary.

4.2.3 Benchmark DBAM elements

Aligner

The 1DCNN aligner model taken as reference has the following elements:

1 1DCNN layer with 32 filters, 7 as kernel size and stride of 2;

2 Average pooling layer with 2 as pooling dimension;

3 1DCNN layer with 16 filters, 7 as kernel size and stride of 2;

4 Upsampling layer with 3 as upsampling parameter;

5 1DCNN layer with 32 filters, 21 as kernel size and stride of 1;

6 Upsampling layer with 3 as upsampling parameter;

7 1DCNN layer with 33 filters, 33 as kernel size and stride of 1.

The 1DCNNlayers haveReLUas an activation function, use the valid paddingparameter
in the convolution(which is not causal) and have also a dropout rate of 0.15. The compo-
nents from 1 to 3 compose the encoder, while the others form the decoder. The time dimen-
sion of the input is halved 3 times, so the first dimension of the code is 1024/8 = 128which
becomes 124 for the convolution operation in these steps. Instead, the feature dimension is
16, the number of filters of the last 1DCNN layer of the encoder. The last 1DCNN layer
uses the number of filters equal to the dimension of the input features, to reconstruct its
exact dimension, and uses a linear activation function without dropout. This configuration,
as the predictor counterpart, results in simple and lightweight with about 57k parameters.

42

Discriminator

The 1DCNN discriminator model taken as reference has the following elements:

1 1DCNN layer with 32 filters, 17 as kernel size and stride of 1;

2 Maximum pooling layer with 4 as pooling dimension;

3 1DCNN layer with 16 filters, 17 as kernel size and stride of 1;

4 Maximum pooling layer with 4 as pooling dimension;

5 Fully connected layer with 512 units applied to the flatten version of the features ex-
tracted previously;

6 Fully connected layer with 256 units;

7 Fully connected layer with 128 units;

8 Fully connected layer with 64 units;

9 Fully connected layer with 32 units;

10 Output layer(1 fully connected unit) that use linear activation function.

1DCNN and the fully connected layers use Leaky ReLU as an activation function. It
should be noted that in this configuration, differently from the predictor’s one, the output is
linear as the critic requires to express a number indicating the quality of the sample analyzed.
The discriminator owns about 726k parameters, resulting in amore complexmodel because
of the fully connected part.

4.2.4 TCNDBAM elements

Aligner

The TCN autoencoder structure for the aligner takes most of the characteristics of the con-
figuration in [44]. Then, a series of TCN layers are used to extract features that subsequently
are compressed, decompressed and finally passed through another series of TCN layers to re-
construct the signals. The first stack of TCN layers uses causal convolutionwhile the second
stack uses the valid padding parameter. As described in [44], the TCN layers for the recon-
struction possess a dilated convolution depth that is inverted, in a way that the end output
can exploit more of the compressed features, using all of them after the upsampling. Instead,

43

two parts that are not adopted are the use of the convolution layer at the end of each TCN
layer and the combination of the subsequent outputs evolving after each TCN layer. The
first is avoided since the intention is to study only the TCN elements while the second re-
quires lots of layers to be useful, which are not present. A common characteristic of the
TCN layers, in this case, is the use of ReLU instead of Leaky ReLU, used in the predictor
counterpart. In this particular task, it doesn’t make sense to have negative numbers since all
the signals are positive and the reconstruction is applied to them. Another characteristic of
these layers is that they use only one dilated convolution block.
Hyperparameter optimization, in this case also, is performed in the warm-up training part,
used mainly to see if different configurations are working. The performances, in this case,
aren’t very important for the DBAM training results, but of course, the aligner needs to be
a working architecture. The combination of parameters tested for this architecture are:

1 Number of TCN layers: 1 or 2;

2 Number of filters: 8, 16 or 32;

3 Kernel size: 15 or 50;

4 Type of compression: Average pooling or 1DCNN pooling.

The last parameter is chosen to see if a learned pooling performs better than a fixed one,
with both of themwith 16 as the compression factor. Thismodel is the starting architecture,
which will be modified if necessary based on the results achieved.

Discriminator

The architecture of the TCN discriminator was not developed, as the aligner results did not
make it necessary, as will be seen later. However, a general idea for imagining the architecture
could be the union of the feature extraction part of the TCN predictor with the feature
processing part of the benchmark discriminator. The LSTM discriminator uses this idea
later.

4.2.5 LSTMDBAM elements

Aligner

The LSTM autoencoder structure for the aligner takes inspiration from [8, 45]; a series of
LSTM layers are stacked together to produce the features. They are compressed, decom-
pressed and finally used to reconstruct the original signals with a new series of LSTM layers.

44

Differently from [8, 45], the whole sequence of features is retained and compressed instead
of producing a single vector(the last output of the LSTM elaboration); this is because the
degree of compression would be too stringent and would deteriorate the performance, as
previously seen with the predictor’s counterpart. Anyway, it is done the same way for the
TCN aligner, which shares the behaviour of not using other types of layers. It is done for the
same reason, testing only the specific type of layers without using 1DCNN ones. Instead,
one different aspect is in the decompression part: as showed in [45], the feature code is not
upsampled but repeatedN times to restore the original dimension. This choice ismade since
it suits more the elaboration of the LSTM layer, which can have available all the sequence of
features in the progression of the elaboration, instead of relying on a series of repeated static
features, as happens with the upsampling.
Also in this case an hyperparameter optimization is performed, for the same reason of the
TCN aligner. The combination of parameters tested for this architecture are:

1 Number of LSTM layers: 1 or 2;

2 Number of units: 25 or 50;

3 Dropout rate: 0, 0.1 or 0.25;

4 Type of compression: Average pooling or 1DCNN pooling.

As for theTCNaligner, the last parameter owns 16 as the compression factor. Thismodel
is the starting architecture, which will be modified if necessary based on the results achieved.

Discriminator

Combining the LSTM predictor and the benchmark discriminator inspires the LSTM dis-
criminator architecture. For this reason, the model is built using the first part of the LSTM
predictor for the features extraction part and the fully connected part of the benchmark one
for the features elaboration. However, we implement two other changes. The first is to add
a 1DCNN layer to reduce further the sequence size, subsequently processed by the LSTM
layer. The second modification is the fewer units present in the LSTM layer. These two are
both forced by the higher computational complexity of the LSTM layer, which enormously
increases the required time in the DBAM training. Without these and then with the same
feature extraction part of the predictor model, each epoch requires more than 10 minutes
to be addressed, which is almost 3− 4 times the configuration with the two changes and 10

45

times the benchmark DBAMone. The reduction of the LSTMunits also makes the feature
dimension similar to the benchmark one, so it’s not increasing the parameters regarding the
fully connected part. In summarizing, the architecture is composed by:

1 1DCNN layer with 50 filters, 5 as kernel size and stride of 5(divides by 5 the dimen-
sion);

2 1DCNN layer with 50 filters, 3 as kernel size and stride of 3;

3 LSTM layer with 16 units and without dropout;

4 Fully connected layer with 512 units applied to the flatten version of the features ex-
tracted previously;

5 Fully connected layer with 256 units;

6 Fully connected layer with 128 units;

7 Fully connected layer with 64 units;

8 Fully connected layer with 32 units;

9 Output layer(1 fully connected unit) that use linear activation function.

1DCNN layers and also the fully connected ones use Leaky ReLU as activation function,
like themodels they are inspired by. The discriminator has nearly the same amount of param-
eters as the benchmark, but with the LSTM layer being more computationally demanding.

4.3 Results obtained on the Domain Adaptation task

This section will show all the results achieved in the Domain Adaptation task described in
the previous ones. As for the regression task, the study is carried out using the Python pro-
gramming language supported by theKeras library [36] and the scikit-learn library [37]. The
analysis is performed using only the first division of the dataset. In the end, the most impor-
tant statements are strengthened using cross-validation once selected the final configuration.

4.3.1 The need of a Domain Adaptation ad-hoc procedure

First of all, we want to motivate how it is necessary to adopt an ad-hoc solution instead of
solving the problem using the predictor only. For this reason, the TCN and LSTM predic-
tor models found in the previous chapter encounter another two training procedures, the

46

two most immediate to try to adapt the resolution of the problem to both domains. The
first one is to train the models using the overall dataset, presenting to them both the source
domain(B) and the target domain(A). The other one is to extend the training of the models
with the target domain. In the latter case, the models are already capable of solving the re-
gression task on the source domain, so the training adds after it. Instead, in the first case, the
models are freshly initialized.
Thefirst trainingprocedure is performed in the sameway as theone alreadydescribed, present
in the previous chapter. The only difference is that all the dataset parts used in the training
procedure are doubled in dimension since they include the data from the A domain.

Figure 4.3: Predictions plot of the TCN predictor trained on the combination of A and B data

Figure 4.4: Predictions plot of the LSTM predictor trained on the combination of A and B data

The performance results on both the procedures can be seen in 4.1 and 4.2. In this case, as

47

we can see from the prediction plots in 4.3 and 4.4 and from the results, the task is resolved
for either the source and the target domains.

TCN predictor’s results on the different procedures
Dataset Procedure MAE ME EV R2
Source(B) Original 0.0560 0.164 0.895 0.893
test First 0.0537 0.173 0.904 0.895

Second 0.104 0.400 0.806 0.615
Target(A) Original 0.129 0.357 0.720 0.377
test First 0.0627 0.263 0.825 0.825

Second 0.0565 0.202 0.857 0.857

Table 4.1: TCN predictor: results on the different procedures

LSTM predictor: results on the different procedures
Dataset Procedure MAE ME EV R2
Source(B) Original 0.0624 0.165 0.900 0.892
test First 0.0533 0.158 0.903 0.903

Second 0.161 0.413 0.784 0.219
Target(A) Original 0.141 0.338 0.689 0.302
test First 0.0640 0.246 0.832 0.825

Second 0.0664 0.261 0.848 0.817

Table 4.2: LSTM predictor’s results on the different procedures

Instead, the second training procedure is a reduced version of the already described one
present in the previous chapter. This one aims to add the knowledge to solve the task for
the A domain. For doing this, the models are trained on the A domain for fewer epochs
since we expect the model to exploit the common characteristics of the two domains already
learned from theBdata. The epochs, in this case, are 100, butwe also expect that the training
stops early because of the latter described point. In this case, as we can see from the predic-
tion plots in 4.5 and 4.6 and from the results in 4.1 and 4.2, the task is resolved for the target
domain, but the model experiences performance degradation in the source domain, forget-
ting how to resolve the task for the source domain. With these two approaches, we can state
mainly two things. First of all, in an incremental environment, we can’t use this method;
the addiction of another dataset in the training procedure cause, in the first case, the dou-
bling of the training data, so the doubling of the training time. The epochs are the same

48

Figure 4.5: Predictions plot of the TCN predictor trained on A data after the training on B data

Figure 4.6: Predictions plot of the LSTM predictor trained on A data after the training on B data

in each of them, but with the samples processed doubled. This factor, if the domains were
more numerous, would increase accordingly. Instead, in the second case, the new presented
samples make the models forget how to solve the task in the previous domain, ruining the
previous work done. The second statement is that we can’t reuse the previous work done.
In the first case, the training starts from scratch, using only the characteristics of the model
from the previous results. These, however, do not guarantee good results, especially dealing
with amounts of data wider than before. In the second case, further operations ruined the
work done previously.
These aspects justify the need for a specific solution to address the domain adaptation task,
ensuring that previous results can be adopted without modification to multiple domains

49

without problems. This work addresses this aspect through DBAM, which exploits the al-
ready trained predictor without modification and uses the aligner model for the DA part.
This choice is preferable to using the DANNmodel, which involves the additional training
of the predictor with the alignment performed on the feature space. The DBAM, instead,
permits reliance on a steady model in the prediction part and benefits from the possibility
of visually interpreting the results of the aligner since it works on the signal domain instead
of the features one. Anyhow, a problem persists as, for each new domain, adapting the old
aligner or training a new one is a difficult choice that has to be considered.

4.3.2 Benchmark DBAM

First of all, we want to present the results achieved from the benchmark, in a way to see the
detailed characteristics of his training results to be directed towards subsequent comparisons.
The evaluation metrics used for this approach refer to the predictor performances used on
the target domain data that have been aligned. These are reported in 4.3, with the results of
the previous chapter where the predictor was tested on the original target domain data.

Evaluation of the benchmark DBAM
Dataset MAE ME EV R2
Target(A) validation 0.117 0.400 0.590 0.421
Target(A) test 0.118 0.463 0.565 0.393
Target(A) test (no DBAM) 0.227 0.484 0.738 -0.573

Table 4.3: Benchmark DBAM: performance evaluation

As we can see from the results, the improvements are obtained, mainly in MAE and R2.
This one can also be seen in the predictions of 4.9, which are better than the results of 3.6, re-
ported in the precedent chapter. It refers only to red points since blue points are the same as
the predictor model doesn’t change from the previous chapter, as the source data. However,
there are visible issues related to the higher values that aren’t predicted very well, so there is
room for further improvement.
Another aspect considered is the training history, whichmakes it possible to see if something
wentwrong during the learning phase. In theDBAMprocedure, as in every adversarial train-
ing setup, the outcome of the training metrics isn’t straightforward. In this case, we should
considermultiple losses, with some of thesemetrics that don’t need to beminimized ormax-
imized. The relevant aspect is to evaluate the stability of the training, even if we also have a

50

(a) First metric (b) Second metric

(c) Third metric

Figure 4.7: Benchmark DBAM: training history

(a) Before alignment (b) After alignment

Figure 4.8: Benchmark DBAM: t‐SNE plot of train data

metric that shows the predictor’s performance. We choose the three most important to eval-
uate this stability, among the various metrics concerning the different DBAM components

51

Figure 4.9: Benchmark DBAM: predictions plot

that act on the different parts of the dataset.
In all themetrics, the blue points are the training data results, while the orange points are the
validation ones. The first one regards the error of the discriminator on the combination of
source and target domains, with the target domain incurring the alignment, which is useful
for understanding if the training behaviour is stable. A continuous and steep decrease of this
metricmeans that the discriminator is not challenged by the generator, with the training not
performed as needed. This aspect also happens if the values are steeply increasing, meaning
that the aligner is predominating. Instead, in the presence of lots of oscillations, the training
becomes unstable with the models that are not learning something useful. These aspects are
the same for the secondmetric, which is the part of the discriminator error connected to the
aligned target domain only. With this separate part, we can see the isolated behaviour of the
aligner to see if it is working. The specific values of these metrics are not so relevant since the
important thing is the shape they assume. Instead, the thirdmetric values are important since
they represent the evolution of the performances of the predictor; in this plot, we should see
that the numbers are decreasing since the plot shows the MAE of the predictions over the
data. In the benchmark case, we can see that the training is performing well since the overall
discriminator error is stable and also slightly decreasing(the discriminator is improving), and
the discriminator error on the aligned data is steady with also a slight increase(the aligner is
improving) and the predictor error is decreasing.
Another important aspect is the alignment evaluation since the numerical results with the
training error histories can not give the information necessary for the correct behaviour of
the DBAM. This one is performed using the t-SNE[46] plot, which indicates the distribu-

52

tion of the data. This one is applied to the features extracted from the predictor, the output
data of the last layer before the fully connected part in the model. What we should expect
is the separation of the features of the source and target domains in the beginning, as the
predictor should extract different features. Then, after the alignment, these should overlap
as the two domains become similar. It’s happening with the benchmark DBAM, as shown
in 4.8. As usual, the blue points are from the source domain and the red ones are from the
target one.
With the benchmark results, we saw an example of DBAM configuration with the specific
aspects we considered to evaluate it. These will be used immediately afterwards in the study
of the other configurations.

4.3.3 Insertion of the new predictors

The first improvement studied is the replacement of the benchmark predictorwith theTCN
and LSTMmodels studied in the previous chapter. In this case, the adversarial training com-
ponents remain the same as in the benchmark, so we analyse the impact of the new models
applied only in the prediction part.

TCNpredictor-DBAMconfiguration

We show the results on the configuration having only the TCN predictor as the difference
from the benchmark configuration, named TCNpredictor-DBAM for simplicity. We can
find the alpha parameter optimization in 4.4, where the parameter 0.1 performs the best.

TCNpredictor-DBAM: alpha parameter optimization
Parameter MAE ME EV R2
0.1 0.0900 0.317 0.689 0.659
0.25 0.0974 0.367 0.611 0.579
0.5 0.0910 0.370 0.669 0.649
1 0.109 0.467 0.478 0.460
5 0.121 0.463 0.384 0.371

Table 4.4: TCNpredictor‐DBAM: alpha parameter optimization

However, the results on validation data are not enough, as we should have confirmation re-
garding the domain alignment. This confirmation is obtainedwith the t-SNEplot, shown in
4.11. In this case, the t-SNE plots corroborate the statements of the TCNpredictor done in

53

Figure 4.10: TCNpredictor‐DBAM: training history

(a) Before alignment (b) After alignment

Figure 4.11: TCNpredictor‐DBAM: t‐SNE plot of train data

the previous chapter. The greater generalization capabilities can also be seen there since the
two domains are overlapped before the alignment, which serves only to refine this task. This
aspect can also justify the good performances with an alpha parameter of 0.1; the predictor
performance is themain focus, but this does not cause problems in the domain alignment as

54

Figure 4.12: TCNpredictor‐DBAM: predictions plot

the generalization capabilities of the TCN predictor aid this alignment.
The correct behaviour of the task can also be seen on the training history in 4.10, as the
stability of the training is visible. This one permits us not to explore further the discrimi-
nator extra steps parameter, as the configuration is working, so we don’t need to reduce the
training time since it is the same as the benchmark. Finally, the prediction plot in 4.12 is
more concentrated towards the target line than the benchmark, demonstrating the config-
uration improvements again. Later, we will show the final test results with the benchmark
and LSTM results.

LSTMpredictor-DBAM configuration

We show the results on the configuration having only the LSTM predictor as the difference
from the benchmark configuration, named LSTMpredictor-DBAM for simplicity. We can
find the alpha parameter optimization in 4.5, where the parameter of 0.1 performs the best.

LSTMpredictor-DBAM: alpha parameter optimization
Parameter MAE ME EV R2
0.1 0.0780 0.340 0.739 0.736
0.25 0.0833 0.349 0.711 0.707
0.5 0.101 0.385 0.574 0.560
1 0.101 0.421 0.561 0.556
5 0.106 0.460 0.523 0.518

Table 4.5: LSTMpredictor‐DBAM: alpha parameter optimization

55

Figure 4.13: LSTMpredictor‐DBAM: training history

(a) Before alignment (b) After alignment

Figure 4.14: LSTMpredictor‐DBAM: t‐SNE plot of train data

However, the alignment is not happeningwith this parameter, so we should discard this con-
figuration. Instead, the one with 0.25 as the alpha parameter is working, as we can ascertain
on the t-SNE plot in 4.14. In this case, the lack of generalization properties makes it neces-
sary to weigh more the loss related to the alignment.

56

Figure 4.15: LSTMpredictor‐DBAM: predictions plot

The correct behaviour of the task can also be seen on the training history in 4.13, as the sta-
bility of the training is visible. This one permits us not to explore further the discriminator
extra steps parameter, as the configuration is working, so we don’t need to reduce the train-
ing time since it is the same as the benchmark. Finally, the prediction plot in 4.15 is more
concentrated towards the target line than the benchmark, demonstrating the configuration
improvements again. The sequent sectionwill show the final test resultswith the benchmark
and TCN results.

Final results

The test results of the different configurations with the new predictor added are compared
in 4.6.

Test results of DBAMs with new predictors
DBAMmodel MAE ME EV R2
Benchmark DBAM 0.118 0.463 0.565 0.393
TCNpredictor-DBAM 0.0881 0.387 0.687 0.646
LSTMpredictor-DBAM 0.0822 0.320 0.713 0.707

Table 4.6: Test results of DBAMs with new predictor

As we can see, inserting a new predictor improves overall performance. Additionally, the
new predictors demonstrate improved readiness to facilitate data alignment, as the required
alpha parameter is less than the value of 5 used in the benchmark. This one benefits the

57

prediction results, which are the best for the LSTM architecture, looking at the test results
and the predictions in 4.15. The TCN configuration has difficulty in the alignment due to
its better generalization properties, a side effect that still allows it to beat the benchmark.

4.3.4 Insertion of the new aligners

The second improvement studied is the replacement of thebenchmark alignerwith theTCN
and LSTMmodels. In this case, the only component that remains the same as in the bench-
mark is the discriminator model. With this configuration, we analyze the impact of the new
alignment architecture.

TCNaligner-DBAM configuration

Weshowthe results on the configurationwith theTCNaligner, namedTCNaligner-DBAM,
for simplicity. With this new aligner, the evidence of problems emerges at the beginning by
looking at the warm-up training behaviour. The architecture introduces a huge amount of

Figure 4.16: TCN aligner: signals examples after warm‐up training

noise in the signals reconstruction, as we can see for some signals of the A domain in 4.16. In
this figure, some signal samples are plotted in the original form and reconstructed with the
pre-trained aligners, which act as simple autoencoders. This bad behaviour happens with
all the hyper-parameters tested for this model, demonstrating that the problem isn’t derived
from the specific parameters. This noise also makes DBAM training problematic as it be-
comes very unstable as we can see from 4.18, especially for the aligner. This aspect prevents
proper training of this DBAM architecture, which generates bad signals to pass to the pre-
dictor, as for the signals of the B domain in 4.17 after the training. As for the previous case,
some signal samples are plotted in the original form and aligned with the trained models.

58

Given these results, the objective becomes to understand how to reduce the noise origin.

Figure 4.17: TCNaligner‐DBAM: signals examples after training

Figure 4.18: TCNaligner‐DBAM: training history

The first experiment focuses on a complex 1DCNN structure, extending and complicating
the benchmark elements in a way to see if the noise shows up with a complex architecture
in general: the noise did not show up, meaning that the problem doesn’t come from the
complexity of the architecture but a particular aspect of the TCN aligner.

59

Figure 4.19: TCNaligner‐DBAM: training history of the improved architecture

Figure 4.20: TCNaligner‐DBAM: signals examples of the improved architecture

This statement leads us to use 1DCNN layers beforeTCN to reduce the signal dimension
before the TCN layers computations and see if this reduces the noise. This idea is based on
the example of the predictor architecture with 1DCNN followed by the LSTM layers[33]
which, however, performsworse than the standardTCNarchitecturewhen looking at hyper-
parameters optimization results and noise in the warm-up training. This one also happens
by trying to invert the position of the 1DCNN and TCN components, an aspect based on
TCNpredictor architecture. The next choice is oriented to reduce the influence of theTCN
elements, with the use of TCN layers followed by 1DCNN layers in the encoder part and
the use of only 1DCNN elements in the decoder part. The behaviour improved a bit, but
not sufficient since most of the noise is still present and the DBAM training, tested in this
case, shows the same instability problems. The last attempt was to simplify the TCN layer
by diminishing the dilated convolution depth and using the repeat function to upsampling
the compressed features, as used in the LSTM aligner[45]. Also, in this case, the results are

60

almost the same as the previous point; this leads to thinking that the TCN layers are not
suited for building an effective aligner architecture. The training history of the last config-
uration tested is shown in 4.19 and the signals in 4.20. These results conclude the analysis
of the TCN-DBAM elements since the discriminator study without a functioning aligner
would be meaningless.

LSTMaligner-DBAM configuration

We show the results on the configuration with the LSTM aligner, named LSTMaligner-
DBAM for simplicity. In the warm-up training the chosen aligner has the following param-
eters, given the results of the optimization procedure:

• Number of LSTM layers: 1;

• Number of units: 50;

• Dropout rate: 0;

• Type of compression: Average pooling.

Figure 4.21: LSTM aligner: signals examples after warm‐up training

The signals, as we can see from 4.21, resultmore regular than the benchmark, demonstrat-
ing that the LSTM aligner is doing his job well. Regarding the DBAM architecture, we can
find the alpha parameter optimization in 4.7, where the parameter 0.25 performs the best.

61

LSTMaligner-DBAM: alpha parameter optimization
Parameter MAE ME EV R2
0.1 0.0872 0.401 0.704 0.663
0.25 0.0817 0.364 0.708 0.707
0.5 0.0823 0.366 0.705 0.703
1 0.0863 0.377 0.686 0.685
5 0.0879 0.351 0.684 0.670

Table 4.7: LSTMaligner‐DBAM: alpha parameter optimization

LSTMaligner-DBAM: discriminator extra steps
parameter optimization

Parameter MAE ME EV R2
5 0.0878 0.379 0.670 0.670
10 0.0827 0.361 0.702 0.702
20 0.0817 0.364 0.708 0.707

Table 4.8: LSTMaligner‐DBAM: discriminator extra steps parameter optimization

In this case, we investigate the discriminator extra steps parameter as introducing a more
complicated aligner causes the elongation of the training time. The objective is to see if the
performance can retain even if the discriminator participation is lowered. This aspect doesn’t
happen since the performance degrades as reported in 4.8, also presenting more difficulties
in the alignment. The other aspects of the configuration with 0.25 as the alpha parameter
and 20 as the discriminator extra steps parameter show that the architecture is working. This
includes the training history in 4.22, the predictions plot in 4.24 and the t-SNE plot in 4.23.
Finally, the test results are presented in 4.9. These compare the actual configurationwith the
benchmark and the LSTMpredictor-DBAM configuration.

LSTMaligner-DBAM: test results
DBAMmodel MAE ME EV R2
Benchmark DBAM 0.118 0.463 0.565 0.393
LSTMpredictor-DBAM 0.0822 0.320 0.713 0.707
LSTMaligner-DBAM 0.0856 0.342 0.693 0.691

Table 4.9: LSTMaligner‐DBAM: test results

62

Figure 4.22: LSTMaligner‐DBAM: training history

(a) Before alignment (b) After alignment

Figure 4.23: LSTMaligner‐DBAM: t‐SNE plot of train data

It is clear that the benchmark is beaten in this case too, but introducing the aligner does
not improve the performance, which remains the same. However, an improvement can be
seen in the signals generated by the aligner in 4.25 which are smoother than the benchmark
aligner although failing to capture abruptmovements. The latter behaviour does not change
in the LSTMpredictor-DBAM configuration since it depends only on the architecture of
the aligner, then the new predictor does not affect it. Therefore, with the LSTMaligner-

63

Figure 4.24: LSTMaligner‐DBAM: predictions plot

Figure 4.25: LSTMaligner‐DBAM: signals examples after training

DBAMconfiguration, the aligned signals aremore regular than theLSTMpredictor-DBAM,
at the expense of a greater computational complexity given by the more complicated aligner
architecture.

4.3.5 Insertion of the new discriminator

The last improvement studied is replacing the benchmark discriminator with the LSTM
model, applied only for the LSTM configuration as the TCN one does not work. With
this addition, all parts of the configuration own LSTM elements.

LSTMdiscriminator-DBAM configuration

Weshowthe results on the configurationdescribed above, named simplyLSTMdiscriminator-
DBAM. We can find the alpha parameter optimization in 4.10, where the parameter of

64

0.25 performs the best. Given the previous results on the LSTMpredictor-DBAM and the
LSTMaligner-DBAM, the 0.1 alpha parameter is not tested.

LSTMdiscriminator-DBAM: alpha parameter optimization
Parameter MAE ME EV R2
0.25 0.0873 0.367 0.679 0.675
0.5 0.0881 0.369 0.670 0.670
1 0.0918 0.373 0.650 0.648
5 0.0951 0.367 0.630 0.626

Table 4.10: LSTMdiscriminator‐DBAM: alpha parameter optimization

In this case, the discriminator extra steps parameter is investigated. The new discriminator
enormously increases the required time in the DBAM training, as said previously in its ar-
chitecture description. This aspect induces seeking solutions to improve it, achieved by low-
ering the discriminator extra steps parameter. Furthermore, the discriminator is also more
complex, so reducing its influence on training can better balance the competition between
the aligner and become beneficial for training. It occurs as a performance improvement is
present, as reported in 4.11, so the value of 5 is chosen for this parameter.

LSTMdiscriminator-DBAM: discriminator extra steps
parameter optimization

Parameter MAE ME EV R2
5 0.0861 0.384 0.685 0.679
10 0.0869 0.358 0.685 0.681
20 0.0873 0.367 0.679 0.675

Table 4.11: LSTMdiscriminator‐DBAM: discriminator extra steps parameter optimization

The other aspects of the configurationwith 0.25 as the alpha parameter and 5 as the discrimi-
nator extra steps parameter show that the architecture is working. This includes the training
history in 4.26, the predictions plot in 4.28, the t-SNE plot in 4.27 and the signals in 4.29.
The introduction of the more complex discriminator makes, at first, the aligner training a
bit more unstable, but it takes the right path after a while.

65

LSTMdiscriminator-DBAM: test results
DBAMmodel MAE ME EV R2
Benchmark DBAM 0.118 0.463 0.565 0.393
LSTMaligner-DBAM 0.0856 0.342 0.693 0.691
LSTMdiscriminator-DBAM 0.0917 0.324 0.676 0.663

Table 4.12: LSTMdiscriminator‐DBAM: test results

Figure 4.26: LSTMdiscriminator‐DBAM: training history

Finally, the test results in 4.12 show that the configuration beats the benchmark also in this
case. However, introducing the new discriminator doesn’t improve the results compared to
the LSTMaligner-DBAM configuration. Instead, the training is longer and more compli-
cated, thus making use of this configuration inadvisable.

66

(a) Before alignment (b) After alignment

Figure 4.27: LSTMdiscriminator‐DBAM: t‐SNE plot of train data

Figure 4.28: LSTMdiscriminator‐DBAM: predictions plot

Figure 4.29: LSTMdiscriminator‐DBAM: signals examples after training

4.3.6 Results recap and cross-validation results

Among all the configurations, some improvements result better than the others. Changing
the predictor is themost beneficial improvement,making the performancemuchbetter than

67

the benchmark in both the TCN and LSTM case. However, the TCN, while generalizing
better, makes it more problematic to achieve a stable final configuration. Its properties make
alignment more difficult using the benchmark aligner, with problems worsening with the
addition of the TCN aligner, which does not work. This aspect leads to the absence of the
TCN discriminator test and the consideration of TCN failing to perform this task. Instead,
LSTMelementsworkedwellwith the introductionof an alignerwhich generatesmore stable
signals. However, this has the same prediction performance compared to using the aligner
benchmark, making the choice of the type indifferent if there is no preference on the shape
of the signals. Even the LSTM discriminator gives the same results as the benchmark. How-
ever, its training is longer and more complex, making its use not recommendable.
These considerations lead to the decision to apply CV to the LSTMaligner-DBAM config-
uration. The shape of the signals is not relevant in the research that focuses more on using
new architectures, thus preferring the architecture with more LSTM elements.

Cross-validation results of the Domain Adaptation task
DBAMmodel MAE ME EV R2
Benchmark DBAM 0.110± 0.008 0.423± 0.07 0.506± 0.05 0.462± 0.07
LSTMaligner-DBAM 0.0820± 0.007 0.305± 0.05 0.712± 0.03 0.708± 0.02

Table 4.13: Cross‐validation results of the Domain Adaptation task

The average test results(with the standard deviation indicated by the± symbol) of the cross-
validation procedure, reported in 4.13, confirm the previous statements as the models have
almost identical performances compared to the results of the first data arrangement. This as-
pect proves that the previous models do not depend on the particular samples used for their
formation. However, compared to the results of the reference research, these have discrep-
ancies as the benchmark is performing worse than them. Details in the implementation or
procedure not reported in that work may have determined these differences, such as, for ex-
ample, the version of the python libraries or the data usage. Nevertheless, these discrepancies
don’t influence the comparison results as, in this work, the same method is applied to every
architecture type.

68

5
Conclusion

The main purpose of this work was to improve the architecture of the reference research
[1, 2] with the use of more sophisticatedmodels such as TCN and LSTM. These are models
more suited to deal with temporal information, proving it also in this research.
In the first part of the work, the results of the predictors showed superiority over the bench-
mark, improving the reliability of the estimate of the measure sought, reaching the desired
goal. These improvements would translate into cost savings and increased productivity in a
process environment.
In the secondpart of thework, the use of theDomainAdaptationprocedure showed its bene-
fits; introducing theDBAMmethodology that can standardize data distributions belonging
to similar environments is crucial to permit the exploitation of all the capabilities of the pre-
diction model. With this task more complex than the previous one, the tested TCNmodels
failed to reach the goal and compete with the benchmark. This, instead, was performed by
theLSTMmodelswhichwere capable of solving this task, however not improving compared
to the benchmark elements, except for some minor aspects.
In any case, the various architectures have not been explored beyond the aspects necessary for
comparison, which means that there is room for improvement as, for example, the LSTM
models inDBAMstill have potential. The lattermay be the first hint for futurework, includ-
ing the further exploration of types of neural network models. Another aspect to consider
for future work is implementing this method in a production line since this research bases
its results on a controlled and simplified environment. It means it is needed to confirm the

69

actual performance and benefits in a real application example.
The main contributions of this work concur deepening a prediction task with the assistance
of Domain Adaptation, a field still in its early stages with limited applications and scarce
literature backing it.

70

References

[1] N. Gentner, M. Carletti, A. Kyek, G. A. Susto, and Y. Yang, “Dbam: Making virtual
metrology/soft sensing with time series data scalable through deep learning,” Control
Engineering Practice, vol. 116, p. 104914, 2021.

[2] N.Gentner, A. Kyek, Y. Yang,M.Carletti, andG. A. Susto, “Enhancing scalability of
virtual metrology: a deep learning-based approach for domain adaptation,” in 2020
Winter Simulation Conference (WSC). IEEE, 2020, pp. 1898–1909.

[3] H. Hassan, A. Negm, M. Zahran, and O. Saavedra, “Assessment of artificial neural
network for bathymetry estimation using high resolution satellite imagery in shallow
lakes: Case study el burullus lake.” InternationalWater Technology Journal, vol. 5, 12
2015.

[4] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman,
“1d convolutional neural networks and applications: A survey,” Mechanical
Systems and Signal Processing, vol. 151, p. 107398, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0888327020307846

[5] A. van denOord, S.Dieleman,H.Zen, K. Simonyan,O.Vinyals, A.Graves,N.Kalch-
brenner, A. W. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw
audio,” ArXiv, vol. abs/1609.03499, 2016.

[6] X. Yuan, L. Li, and Y. Wang, “Nonlinear dynamic soft sensor modeling with super-
vised long short-term memory network,” IEEE Transactions on Industrial Informat-
ics, vol. 16, no. 5, pp. 3168–3176, 2020.

[7] J. Zhang, Y. Li, J. Tian, and T. Li, “Lstm-cnn hybrid model for text classification,” in
2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Con-
trol Conference (IAEAC), 2018, pp. 1675–1680.

71

[8] A. Sagheer andM. Kotb, “Unsupervised pre-training of a deep lstm-based stacked au-
toencoder for multivariate time series forecasting problems,” Scientific Reports, vol. 9,
p. 19038, 12 2019.

[9] G. S. May and C. J. Spanos, Fundamentals of semiconductor manufactoring and pro-
cess control. JohnWiley Sons, Inc., Hoboken, New Jersey, 2006, vol. 1.

[10] G. A. Susto, S. Pampuri, A. Schirru, G. D. Nicolao, and S. F. McLoone, “Automatic
control and machine learning for semiconductor manufacturing: Review and chal-
lenges,” in The 10th EuropeanWorkshop on Advanced Control and Diagnosis(ACD),
2012.

[11] J. Ringwood, S. Lynn, G. Bacelli, B. Ma, E. Ragnoli, and S. Mcloone, “Estimation
and control in semiconductor etch: Practice and possibilities,” Semiconductor Man-
ufacturing, IEEE Transactions on, vol. 23, pp. 87 – 98, 03 2010.

[12] G. A. Susto and A. Beghi, “Least angle regression for semiconductor manufacturing
modeling,” in 2012 IEEE International Conference on Control Applications, 2012, pp.
658–663.

[13] C. Park and S. B.Kim, “Virtualmetrologymodeling of time-dependent spectroscopic
signals by a fused lasso algorithm,” Journal of Process Control, vol. 42, pp. 51–
58, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0959152416300294

[14] C.-H. Chen, W.-D. Zhao, T. Pang, and Y.-Z. Lin, “Virtual metrology of
semiconductor pvd process based on combination of tree-based ensemble
model,” ISA Transactions, vol. 103, pp. 192–202, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0019057820301397

[15] S. Kang, “On effectiveness of transfer learning approach for neural network-based
virtual metrology modeling,” IEEE Transactions on Semiconductor Manufacturing,
vol. 31, no. 1, pp. 149–155, 2018.

[16] K. Lee and C. Kim, “Recurrent feature-incorporated convolutional neural network
for virtual metrology of the chemical mechanical planarization process,” J Intell
Manuf, vol. 31, p. 73–86, 2020.

72

[17] X. Wu, J. Chen, L. Xie, L. L. T. Chan, and C.-I. Chen, “Development
of convolutional neural network based gaussian process regression to construct
a novel probabilistic virtual metrology in multi-stage semiconductor processes,”
Control Engineering Practice, vol. 96, p. 104262, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S096706611930214X

[18] Y.Bengio, I.Goodfellow, andA.Courville,Deep learning. MITpressMassachusetts,
USA:, 2017, vol. 1.

[19] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A
theory of learning fromdifferent domains,”Machine learning, vol. 79, no. 1, pp. 151–
175, 2010.

[20] G. James, D.Witten, T.Hastie, andR. Tibshirani,An introduction to statistical learn-
ing. Springer, 2013, vol. 112.

[21] E. Hajiramezanali, S. Z. Dadaneh, A. Karbalayghareh, M. Zhou, and X. Qian,
“Bayesian multi-domain learning for cancer subtype discovery from next-generation
sequencing count data,” 32nd Conference on Neural Information Processing Systems
(NeurIPS 2018), Montréal, Canada, 2018.

[22] I. B. Arief-Ang, F. D. Salim, and M. Hamilton, “Da-hoc: Semi-supervised
domain adaptation for room occupancy prediction using co₂ sensor
data,” in Proceedings of the 4th ACM International Conference on Systems for Energy-
Efficient Built Environments, ser. BuildSys ’17. New York, NY, USA: Association
for Computing Machinery, 2017. [Online]. Available: https://doi.org/10.1145/
3137133.3137146

[23] B. Bikramjit and P. Stone, “General game learning using knowledge transfer,” IJCAI,
2007.

[24] R. Rajat, A. Y. Ng, and D. Koller, “Constructing informative priors using transfer
learning,” Twenty-third International Conference onMachine Learning, 2006.

[25] D. S. Maitra, U. Bhattacharya, and S. K. Parui, “Cnn based common approach to
handwritten character recognition of multiple scripts,” in 2015 13th International
Conference on Document Analysis and Recognition (ICDAR), 2015, pp. 1021–1025.

73

[26] U. Budak, A. Şengür, A. B. Dabak, and M. Çibuk, “Transfer learning based object
detection and effect of majority voting on classification performance,” in 2019 In-
ternational Artificial Intelligence and Data Processing Symposium (IDAP), 2019, pp.
1–4.

[27] L. Zhang, “Transfer adaptation learning: A decade survey,” CoRR, vol.
abs/1903.04687, 2019. [Online]. Available: http://arxiv.org/abs/1903.04687

[28] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling,” ArXiv, vol. abs/1803.01271, 2018.

[29] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 11 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[30] C. Olah, “Understanding lstm networks,” 2015. [Online]. Available: http://colah.
github.io/posts/2015-08-Understanding-LSTMs/

[31] D. P. Kingma and J. Ba, “Adam: Amethod for stochastic optimization,” 2017.

[32] Y. Cao, Y. Ding, M. Jia, and R. Tian, “A novel temporal convolutional network
with residual self-attention mechanism for remaining useful life prediction of rolling
bearings,”Reliability Engineering System Safety, vol. 215, p. 107813, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0951832021003355

[33] R. Mutegeki and D. S. Han, “A cnn-lstm approach to human activity recognition,”
in 2020 International Conference on Artificial Intelligence in Information and Com-
munication (ICAIIC), 2020, pp. 362–366.

[34] N. Reimers and I. Gurevych, “Optimal hyperparameters for deep lstm-networks
for sequence labeling tasks,” 2017. [Online]. Available: https://arxiv.org/abs/1707.
06799

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The journal
of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[36] F. Chollet et al., “Keras,” https://keras.io, 2015.

74

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in
Python,” Journal ofMachine Learning Research, vol. 12, pp. 2825–2830, 2011.

[38] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M.Marc-
hand, and V. Lempitsky, “Domain-adversarial training of neural networks,” 2016.

[39] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural infor-
mation processing systems, vol. 27, 2014.

[40] G.Antipov,M.Baccouche, and J.-L.Dugelay, “Face agingwith conditional generative
adversarial networks,” 2017. [Online]. Available: https://arxiv.org/abs/1702.01983

[41] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L.D. Jackel, “Backpropagation applied to handwritten zip code recognition,”Neural
computation, vol. 1, no. 4, pp. 541–551, 1989.

[42] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” 2017.

[43] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved
training of wasserstein gans,” CoRR, vol. abs/1704.00028, 2017. [Online]. Available:
http://arxiv.org/abs/1704.00028

[44] M. Thill, W. Konen, H. Wang, and T. Bäck, “Temporal convolutional autoencoder
for unsupervised anomaly detection in time series,” Applied Soft Computing, vol.
112, p. 107751, 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1568494621006724

[45] D. Li, L. Li, X. Li, Z. Ke, and Q. Hu, “Smoothed lstm-ae: A spatio-temporal deep
model for multiple time-series missing imputation,” Neurocomputing, vol. 411, 05
2020.

[46] L. van derMaaten andG.Hinton, “Visualizing data using t-sne,” Journal ofMachine
Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008. [Online]. Available:
http://jmlr.org/papers/v9/vandermaaten08a.html

75

76

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Background
	Semiconductor Manufacturing
	Etching Process

	Virtual Metrology
	The Dataset
	Deep Learning
	The main topic of Machine Learning
	The subcategory of Deep Learning

	Domain Adaptation
	The main topic of Transfer Learning
	The subcategory of Domain Adaptation

	Virtual Metrology task with Deep Learning models
	Deep Learning models
	One Dimensional Convolutional Neural Network model
	Temporal Convolutional Network model
	Long-Short Term Memory network

	Virtual Metrology Regression task
	Performance metrics
	Dataset details
	Benchmark predictor model
	Training procedure parameters maintained
	Hyperparameters tuning
	TCN predictor model
	LSTM predictor model

	Results obtained on the Virtual Metrology regression task
	Benchmark predictor
	TCN predictor
	LSTM predictor
	Cross-validation results

	Domain Adaptation method with Deep Learning models
	DBAM architecture
	Autoencoder architecture
	GAN model
	Wasserstein Generative Adversarial Networks

	Adversarial Domain Adaptation task
	Training procedure parameters maintained
	Training procedure hyper-parameters
	Benchmark DBAM elements
	TCN DBAM elements
	LSTM DBAM elements

	Results obtained on the Domain Adaptation task
	The need of a Domain Adaptation ad-hoc procedure
	Benchmark DBAM
	Insertion of the new predictors
	Insertion of the new aligners
	Insertion of the new discriminator
	Results recap and cross-validation results

	Conclusion
	References

