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Abstract

There are several programs that allow to plan, choose, study and analyze the

di�erent paths for a robot. These software packages provide tools to calculate a

path, make collision detection and several other tasks. But many of them lack a

3D physics engine.

The purpose of this work is to present Odin: a modular, multi-platform, open

source coded additional software tool for those motion planning software packages.

This project provides a rigid body dynamics simulator that works in parallel with

a collision detection engine.

The 3D physics core was developed making extensive use of the Open Dynam-

ics Engine library, an open source and free software physics engine developed in

C/C++. Odin provides the user with a way to build a virtual instance of a robot

in a scene, move it around, apply forces, gravity, and see it interact with the ob-

stacles. It is structured in three individually designed independent parts, loosely

coupled at runtime: the virtual world, the user interface and the viewer.

Communication between them is achieved through messages and service calls in

a Robot Operating System environment. This has been done to allow future users

to easily dispose of any part of this project and replace it with their own solu-

tions (for the user interface or the viewer), just by adding some communication

features to their code.

A few simulation examples will be shown in the conclusions.
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Glossary

• API - Application Programming Interface

A speci�cation containing a set of routines, protocols, and tools for building

software applications [1].

• BSD Licenses - Berkeley Software Distribution Licenses

A family of permissive free software licenses.

• CFM - Constraint Force Mixing

An ODE parameter that allows to soften constraints in a simulation.

• DOF - Degree of Freedom

Is the number of independent parameters that de�ne a con�guration of a

system.

• DOM - Document Object Model

A cross-platform and language-independent convention for representing and

interacting with objects in HTML, XHTML and XML documents [2] in a

tree structure.

• ERP - Error Reduction Parameter

An ODE parameter that de�nes which portion of joint errors will be �xed

in a time step [3].

• FPS - Frames Per Second

A Hertz equivalent frequency unit: 1fps = 1Hz.

• GUI - Graphical User Interface
A type of user interface that allows users to interact with electronic devices
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using images rather than text commands.

• LGPL - Lesser General Public License

A free software license published by the Free Software Foundation (FSF),

compromising between the strong-copyleft GNU GPL and permissive li-

censes such as the BSD licenses.

• ODE - Open Dynamics Engine

An open source, high performance library for simulating rigid body dynam-

ics written in C/C++ [4].

• OpenGL - Open Graphics Library

A cross-language, multi-platform API for rendering 2D and 3D computer

graphics [5].

• PQP - Proximity Query Package

A library for performing proximity queries on a pair of geometric models

composed of triangles [6].

• ROS - Robot Operating System

An open-source, meta-operating system that provides the message-passing

between processes, and package management [7].

• RPC - Remote Procedure Call

An inter-process communication that allows a computer program to cause

a subroutine or procedure to execute in another address space, also called

Remote Method Invocation [8].
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Preface

This project was born within the scope of theKautham Project, a robot simulation

toolkit for motion planning and teleoperation guiding software package developed

in the Institute of Industrial and Control Engineering (IOC), at the Universitat

Politècnica de Catalunya (UPC).

As de�ned in [9], the Kautham Project is �a simulation tool conceived both as an

aid for the development of robot motion planners and as aid for the teleoperation

of robots using haptic devices. It provides the user with an easy way to model and

visualize the problem, with collision-detection and sampling capabilities, basic

planners and communication modules, among others�.

The Odin project was indeed born as a feature to be integrated in the next

Kautham Project 's release. This has in�uenced the choice of some of the tools

used to create this project, C++ as the programming language to begin with,

CMake as the make system, Coin3D as the graphic library, etc.

One of the most evident in�uences can be seen in the user interface: sinceKautham

already has a working Graphical User Interface, Odin's one is going to be the

�rst thing to be dismantled and incorporated. That explains why it can open

Kautham's structured problem �les, and why it may not be as sophisticated as

the other parts.

There is another in�uence in the collision detection system. In fact, Kautham

already provided a PQP -based collision detection engine. Thus, in order to make

the package lighter and simpler, Odin has been developed to provide also the

same kind of collision detection provided by PQP.

But the main interest of Odin is the other type of collision handling: the one

that's integrated with the rigid body dynamics simulator and a 3D physics engine.
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Introduction

The purpose of this document is to describe the Odin project, by showing its

structure and its main features.

The �rst chapter will describe the motivations behind this project, the ideas

that inspired it and the requirements to be met.

The second chapter will give an overview of the software involved, with enough

detail to explain why it is important and which limitations it brings.

Odin is a modular, standalone software package composed by three indepen-

dent modules communicating over a peer-to-peer network. These modules are

the graphical user interface, the viewer and the virtual world. Each module con-

sists of two major classes: a core and a ROS layer. The core includes the module's

speci�c activities, performs calculations and processes data. The ROS layer works

as a portal to access the core, and deals with communication, externalization of

results and performs a �rst level incoming data processing.

The third chapter will describe Odin's ROS network and will give an idea of the

software general macro structure. But from the third chapter on, the software

structure will be explained in detail.

The �rst module analyzed is the most important and irreplaceable: the Virtual

World module. A chapter will be dedicated to the ROS layer, and the subse-

quent will cover the core. One chapter will be dedicated to the Viewer, simpler

but nonetheless tricky. Two chapters will cover the GUI module, the last also

chronologically speaking.

The �nal chapters will cover cost and environmental analysis, an analysis on ob-

tained results, and a section on future work.

Since this is a software project, an extensive Doxygen HTML documentation is

provided in the attached compact disk.
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Chapter 1

Purpose

Most of motion planning software packages are based on probabilistic path plan-

ning, random tree exploration, collision detection and other techniques.

The aim of this work is to create an additional tool for these packages: a rigid

body dynamics simulator that works in parallel with a collision detection engine.

But in order to be attached and integrated to any software kit, the project has

to be modular, multi-platform and open source coded.

On the other hand it has to be a stand-alone program to be distributed. Yet its

parts have to be detachable, so that users can just dispose of what is not needed

and replace it with their own solutions.

Therefore the project is structured in three individually designed independent

parts, loosely coupled at runtime: the virtual world, the user interface and the

viewer. This distributed framework of processes communicates through messages

and service calls in a Robot Operating System environment, so that future users

can easily replace any part at any time by just integrating their code with com-

munication features, that is just by adding a few lines of code.

The project has been thought to be used as a testing tool to validate a movement

path in a virtual environment, but as well to help calculating new paths, by in-

tegrating its capabilities with a random tree exploration algorithm that studies

the evolution of an element colliding with the environment.



2 Odin: a Dynamic Simulation Tool for Robotic Path Planning

1.1 Structure

Figure 1.1: The �ow of information in Odin.

At runtime, the program works in a peer-to-peer network, comprising three

nodes: the GUI, the Virtual World and the Viewer. The user interacts with the

GUI, de�ning every detail of the situation to be simulated, like objects, con-

straints, kind of collision handling and other parameters. The GUI converts this

information into messages and service calls and sends it to the Virtual World

node. This node creates the scene and actually runs the simulation. It attends

any call from the GUI and periodically publishes the simulation results into topic

nodes. At the same time, whenever an object is created or removed, the Virtual

World node calls the Viewer for the creation or removal of the object in the

viewer's scene.

The Viewer will pop up a window containing a 3D visualizer and build a scene

according to the information coming from the Virtual World. This node sub-

scribes to the simulation results topics to get information about the situation of

the world. This information is used to maintain the viewer's scene up to date by
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updating object transformation data and collision data when required.

A conceptual diagram is shown in �gure 1.1.

1.2 Requirements

The requirements to be met were de�ned thinking about what would be useful

for the Kautham Project, but at the same time having a standalone, independent,

modular project. Hence the program must be capable of:

• Simulating physics in scenes and problems built by the Kautham Project,

with the possibility of moving the robots around and see how they interact

with the rest of the world.

• Detecting collisions among objects, identify them and, optionally, quantify

the inter-penetration.

• Integrating collision detection in the physics engine and dealing with colli-

sions in a realistic way.

• Externalizing all information about the simulation at a user de�ned variable

rate.

• Simulating at di�erent speeds and precisions.

• Communicating with other modules through a ROS network.

• Reproducing the scene in a viewer, updating the image at 25fps.

• Allowing high level user interaction, letting the user the possibility of:

� Building objects, joints and motors.

� Applying forces and torques to objects and joints.

� Setting and controlling motors.

� Setting object position, orientation and velocity.

� Loading a scene from a XML �le.
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� Loading and executing a path for the robots, de�ned either in position

or in velocity.

Modularity is a very strong requirement. It means complete independence, �ex-

ibility, separability and replaceability of the three parts (user interaction, calcu-

lation and visualization).
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Chapter 2

Background Software

This is an introduction to the software packages used in this project. Only an

overview will be given on each tool, and more in-depth elucidations will be given

later on.

2.1 Robot Operating System

Robot Operating System (ROS, logo in �gure 2.1) is a software framework for

robot software development, providing operating system-like services, including

message-passing between processes and package management. It is based on a

graph architecture where processing takes place in nodes that may receive, post

and multiplex messages. The library is geared toward a Unix -like system (Ubuntu

Linux is listed as supported while other variants such as Fedora and Mac OS

X are considered experimental) [10]. This has prompted the author to immedi-

ately start developing under an Ubuntu distribution. The ROS runtime �graph�

is a peer-to-peer network of processes, called nodes, loosely coupled at runtime

through a communication infrastructure.

Figure 2.1: The Robot Operating System logo [10].
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ROS communication between Nodes is based on the Message: a data structure

comprising typed �elds. The Message can be used in two di�erent styles of com-

munication: synchronous RPC -style communication and asynchronous streaming

of data.

The �rst one is a request/reply interaction, and is done via a Service, which is

de�ned by a pair of Messages : one for the request and one for the reply.

The second one is a publish/subscribe communication style, which decouples the

production of information from its usage. The data streams from the publisher

Node to a Topic, a bus that bu�ers up the Messages. Other Nodes can then sub-

scribe to that Topic and read the Messages.

ROS package management features were utilized to organize the project in �ve

packages:

• Messages, containing all message templates.

• Services, containing all the services' message templates.

• VirtualWorld, containing the 3D physics simulator.

• Viewer, containing the viewer.

• GUI, containing the graphical user interface.

Each package includes a �le named Manifest, that contains information about

compilation speci�cations. These packages are organized into a Stack, called Odin

(which also contains its Manifest), to improve code sharing of Messages and

Services, and to simplify code distribution [7]. ROS is released under the terms

of the BSD license, and is an open source software. Although the last distribution

Fuerte Turtle was released in April 2012, the one used is the previous one, released

in August 2011: Electric Emys [11].

2.2 Open Dynamics Engine

The Open Dynamics Engine (ODE ) is an open source, high performance physics

engine. It is composed of a rigid body dynamics simulation engine integrated with
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Figure 2.2: The Open Dynamics Engine logo [3].

a collision detection engine, and it is also a popular choice for many computer

games and 3D simulation tools [4].

Another option could have been Bullet, a more recent open source 3D physics

engine, and despite that it looks more powerful and feature-rich than ODE, it

was discarded because its fast growing and recent age meant a rawer and less

extensive documentation. A poorly documented but powerful software might be

a reasonable choice for a skilled professional, but would make a poor choice for

research purposes. An important fact that helped decide among the libraries is

that Open Dynamics Engine is the library of choice for other existing robotics

simulation software packages like OpenRave of OMPL (in OMPL it is only sup-

ported, not integrated).

ODE is free software, licensed under the LGPL.

2.3 The Kautham Project

The Kautham Project is a simulation tool developed at the Institute of Industrial

and Control Engineering (IOC), Universitat Politècnica de Catalunya (UPC). It

is conceived both as an aid for the development of robot motion planners and as

an aid for the teleoperation of robots using haptic devices [9]. It provides the user

with an easy way to model and visualize the problem, with collision-detection and

sampling capabilities, basic planners and communication modules, among others.

It has been implemented as an open-source project following the directives given

in [12]. Its aim is to be a research and teaching tool, conceived as a compromise

between the need to program everything from scratch and the use of abstract

middleware available in the Internet.

Since the beginning of Kautham Project, much importance has been given to
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modularity. A next step will be a complete modularization of its components,

integrating ROS as a communication device.

Besides, many software choices are due to the packages used in the Kautham

Project, like CMake, Coin3D, Qt, PugiXML, PQP.

2.4 CMake

Figure 2.3: CMake logo [13]

CMake is an open-source system that manages the build process in an operat-

ing system and in a compiler-independent manner. Nevertheless it is designed to

be used in conjunction with the native build environment: being it Make, Apple's

Xcode, Microsoft Visual Studio or others [13].

The build process is controlled by creating one or more con�guration �les placed

in each directory, called CMakeLists.txt. They contain simple commands that are

used to generate standard build �les (e.g. Make�les on Unix ) which are used in

the usual way.

This way CMake generates a native build environment that compiles source code,

creates libraries, generates wrappers and builds executables in arbitrary combi-

nations. It is designed to support complex directory hierarchies and applications

dependent on several libraries, that is why it integrates perfectly with ROS pack-

ages and stacks �le organization [10].

CMake is integrated by default in the ROS build system, but was already Kau-

tham Project 's build system of choice because of its cross-platform features.

2.5 Coin3D

Coin3D is a C++ object oriented 3D graphics API used to provide a higher

layer of programming for OpenGL. It is developed by the Norwegian company
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Figure 2.4: Kongsberg's Coin3D logo [14]

Kongsberg Oil & Gas Technologies as clone of the 3D API Open Inventor [15].

It works by retaining a complete model of the object to be rendered in a tree

structure called �scene graph� [14]. The scene can be built at runtime but it is

usually built from a �le. The �le contains data in a tree structure in the VRML

format, that will be introduced later.

Coin3D is distributed with both proprietary and GPL license.

2.6 XML and PugiXML

Extensible Markup Language (XML) is a markup language that de�nes a set

of rules for encoding documents in a format that is both human-readable and

machine-readable [16]. It has been used since the beginning of the Kautham

Project to create the problem description �les. This �les describe a scene with a

robot and some obstacles, addressing to VRML �les for shape and appearance

descriptions of the single parts and objects.

PugiXML is a library for fast, convenient and memory-e�cient processing of

XML �les. It consists of a non-validating XML parser which constructs a Docu-

ment Object Model (DOM ) tree and enables traversing and modi�cation [17]. It

is used for parsing and processing problem �les.

PugiXML is distributed under the MIT license.

2.7 VRML and Qooliv

VRML (Virtual Reality Modeling Language) is a standard text �le format (with

the *.wrl extension) for representing 3-dimensional interactive vector graphics.

In these �les it is possible to specify vertices and edges for a 3D polygon along
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with the surface color, shininess and so on [18]. They are used in this project to

describe shape and color of some objects.

Both languages are open standards.

Qooliv, whose name is a portmanteau of �cool� and �inventor�, is a VRML-�le

reader and viewer based on Coin3D 's SoQtExaminerViewer. It has been devel-

oped in the IOC and has been inspiration and a starting point for Odin's viewer.

2.8 Qt

Figure 2.5: Qt logo [19]

Qt is a cross-platform application framework that is widely used for develop-

ing application software with a graphical user interface (GUI ). It uses standard

C++ but makes extensive use of a special code generator (called the Meta Object

Compiler or simply moc) together with several macros to enrich the language

[20].

Qt has its own integrated development environment that helps with macros and

and makes the developer work as if the �special code� had already been generated

(although it is not generated until compile time), but it needs to be compiled in

a certain way. CMake comes in aid this time too, because it all comes to a few

lines in the CMakeLists.txt to manage the moc and compilation correctly. Qt is

free and open source software, and is distributed under the terms of the GNU

Lesser General Public License (among others)[19].

2.9 PQP

Proximity Query Package was not actually a software used in this project, but it

deserves to be mentioned because it is the current collision detection library in

the Kautham Project. This library performs three types of proximity queries:
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• Detects whether two geometric models (triangle meshes) overlap.

• Computes the minimum distance between two models.

• Determines whether two models are closer or farther than a tolerance dis-

tance.

This library does not make any kind of physics simulation, it just performs colli-

sion culling and detection. Therefore, Odin and PQP can either be put side-by-

side or integrated, substituting the less e�cient library with the more e�cient

one when it comes to tasks they both perform well, like collision detection.
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Chapter 3

The General Structure

3.1 The ROS Network and the Master node

Figure 3.1: Odin's ROS network.

At runtime, the program consists of three modules communicating over a peer-

to-peer ROS network. The ROS network can be seen as a graph of nodes[10],

where each node is a di�erent process that performs computation and can com-

municate with other nodes, as in �gure 3.1. The Master node provides naming

and registration services to the rest of the nodes in the ROS system, letting them

locate each other before starting a peer-to-peer connection. Besides the Mas-

ter node, there are three major nodes: GUI_node (the graphical user interface),
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Viewer_node (the viewer) and VirtualWorld_node (the virtual world). Each one

registers to the Master on initialization.

Besides the Master, there is another node that is set up by default. It is the

RosOut, which is the console log reporting mechanism in ROS [10].

3.2 Communication paradigms

The communication unit is the message. A message is a simple data structure

comprising typed �elds, which can contain standard primitives, arrays of standard

primitives, other messages and even arrays of messages. Nodes can communicate

in two ways: through a Publisher/Subscriber semantics (�gure 3.2) or through a

Request/Reply paradigm.

3.2.1 Publisher/Subscriber

Figure 3.2: Model of the Publisher/Subscriber paradigm in ROS.

A node sends out a message by publishing it to a given topic. A topic is a

named bus which decouples the production of information from its usage, and is

intended for unidirectional, streaming communication. The topic name is used to

identify the content of the message published in it. A node that wants to have

access to the message locates the topic through the Master, and subscribes to it.
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Multiple nodes can publish on and subscribe to a same topic, but they do not

have to be aware of each other's existence.

Every node is connected by default to the RosOut topic, where it publishes logging

messages.

3.2.2 Request/Reply

Figure 3.3: Model of the Server/Client paradigm in ROS.

Request/Reply interaction is made through services. A service is de�ned by

a pair of messages: a request message and a response message. This interaction

can take place only after both nodes have registered to the Master : the node that

sends the request registers as a client, the one that serves and replies is called

server. While the server must register, the client registration is optional. In fact,

in the Remote Procedure Call mechanism, the calling node does not register as

a client, but simply sends the request and receives the response. This mechanism

is convenient for one time only calls, while for repetitive calls a client is more

appropriate.

3.3 Communications in Odin

As it can be seen in �gure 1.1, the �ow of information within Odin goes from the

GUI node to the VirtualWorld, and from the VirtualWorld node to the Viewer
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Figure 3.4: A more accurate computation graph showing the nodes, the topics and

the service calls in Odin.

node. In fact, the GUI node does not set up any publisher nor server, but just

clients. The Viewer, on the other hand, sets up servers and subscribers. In the

middle there is the VirtualWorld node, that sets up clients, servers and publishers.

A more accurate representation is shown in �gure 3.4.

Another way to see the computation graph is given by a ROS tool called RxGraph,

that allows to visualize the graph at runtime as shown in �gure 3.5. Because

of their ephemeral nature, services are not shown: RxGraph detects the servers

indeed, which are permanent, but since they are inside the nodes, they do not

appear in the graph representation.

Figure 3.5: Computation graph caught with RxGraph, showing the nodes and the

topics, including RosOut.
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3.3.1 GUI and VirtualWorld interaction

The communication between the GUI node and the VirtualWorld 's is Server/-

Client based. As shown in �gure 3.6, a conspicuous number of services is needed

to grant the user full action on the simulation. The services are:

Figure 3.6: Services called from the GUI and replied by VirtualWorld.

• New Scene: destroy the current scene and create a new one.

• Set World: set general simulation parameters.

• Set Step: set step sizes.

• Step Once: run one simulation step.

• Start: start/stop the simulation.

• Build Object: create a single object.
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• Build Composite: create a composite object, that is an object made of simple

primitive geometries.

• Build Entity: build a set of objects with some common features.

• Remove Object: destroy a single object.

• Set Joint: create a joint between two objects.

• Set Motor: add a motor to a joint or an object.

• Set Position: set object position.

• Set Velocity: set object or motor velocity.

• Set External Force: apply a force or a torque on an object.

• Set Joint Force: apply a force or a torque on a joint.

A deeper insight on the true meaning of these services will be given when ad-

dressing the nodes themselves in the next chapters.

3.3.2 VirtualWorld and Viewer interaction

The VirtualWorld node has to externalize all the information it produces, and

does it using both paradigms: Client/Server for the initialization of the scene

and the creation of new objects, and Publisher/Subscriber to update the scene

information and the system spatial layout (�gure 3.7). Services are used to create

the scene and put objects in it, as well as to remove them. The ones called by the

VirtualWorld node and serviced by the Viewer 's are:

• Viewer Remove Object: remove an object from the scene.

• View Object: add a new object to the scene.

• New Scene: reset the scene.

Subscriptions to the topics allow the Viewer to have updated information about

the state of the world, needed to render the scene properly.
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Figure 3.7: Information exchange between VirtualWorld and Viewer nodes.

• Collided (message: Collided): contains a list of all objects that collided since

the last message was sent.

• World Update (message: SpaceDistribution): contains position and orien-

tation of every object in the scene. A Space Distribution message is an

example of an array of messages, in this case Situation messages, describing

a single object position and orientation.

3.4 Node Structure and Class Architecture

Every module in Odin is a di�erent process, a node, that both communicates and

computes. To improve modularity, code reuseability and portability, every module

has been divided in two main parts: a Portal class dealing with communications

and a Core class dealing with speci�c node processing computations (�gure 3.8).

The Core class is instantiated as a member of the Portal class. So, the Portal

grants access and communication to the core. The Portal is in fact the ROS layer,

contains all servers, publishers and subscribers and sets up the node on start up.
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Figure 3.8: Each node is composed by a Portal (communication layer) and a Core

(computation layer).

The Core is the computation layer that deals with actual speci�c calculation for
the node, such as dealing with �les (gui), simulating (VirtualWorld) or rendering

(Viewer). It does not link to any ROS library, but rather links to other classes

that help with its process issues.

In the following chapters, every module will be analyzed extensively. For every

module, the �rst part to be analyzed will be the Portal, then the Core and

�nally the other supplementary classes. The next chapter starts with the most

complicated and irreplaceable module: VirtualWorld.
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Chapter 4

The Virtual World Portal

Figure 4.1: First level of collaboration diagram for VirtualWorld::Portal.

From the GUI point of view, the VirtualWorld node is a set of servers that

grant control over the simulation. To the Viewer it is a client that asks for the

creation of scenes and objects, as well as a publisher to the simulation related

topics. It is the key module, and its three most important classes are: Main, Por-

tal and Core.



22 Odin: a Dynamic Simulation Tool for Robotic Path Planning

The �rst class produces the executable that initializes, runs and closes a Virtual-

World::Portal instance.

The Portal is the ROS layer that covers the Core class, which actually runs the

simulation. It instantiates the Core and sets up the VirtualWorld ROS node (�g-

ure 4.1). But most of all, it manages and controls the simulating core, by telling

it when, how, what and how much it has to simulate.

As a matter of fact, the Portal class has only three public member functions:

initialize, run and close. Besides these three, every other member is private.

4.1 Initialization

The init function �rst initializes ROS, the Core, sets up the servers and the

publishers and �nally sets a default value to all those variables that can be de�ned

by the user, but are indispensable for the program to run, such as the message

rate and the step sizes (�gure 4.2). When initialization is over, the program enters

the running loop.

4.2 Servers

The servers cover all those services that allow (through the GUI ) user interaction

with the simulation, like:

• Setting simulation parameters: gravity, ERP, CFM, maximum angular speed,

maximum correcting velocity, contact surface layer, damping values and

thresholds.

• Setting step sizes, number of ODE 's steps between messages and cycle rate.

• Creating/destroying objects, like spheres, cylinder, boxes, composites or

triangular meshes.

• Creating joints and motors.

• Adding/removing forces, torques on objects or joints.
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Figure 4.2: First level of call graph for VirtualWorld::Portal::init. All server call-

backs are visible as Portal functions, but are private and can be used only because

of ROS.
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• Setting desired goal speeds on a list of motors.

• Setting objects position and speed values.

Most of these servers' callback function are not very interesting, since they may

just set a value or wrap another Core function that will be analyzed later. But

those described in the following sections deserve a special attention, because it is

where Portal shows that it is not a mere access gate to the Core, but rather a

manager and an interpreter.

4.2.1 Creating and destroying elements

Objects

Creating a new object involves a series of checks: name collision, quaternion con-

sistency, non zero mass. If one of these checks fails, the object is not built and a

message is printed on the system out.

An additional check on the number of parameters determines whether the object

geometry is a simple primitive (sphere, cylinder or box as in �gure 4.3a) or if it

is a triangle mesh (�gure 4.3b), and the corresponding Core function is called.

Once the object is created, it has to appear in the viewer's scene.

Odin identi�es its objects through user de�ned strings. These IDs must match

those in the viewer's scene, so when an object is created (or destroyed), Portal

takes care of calling the Viewer 's object creation (or destruction) service using

the same ID that appears in the simulation. This separation between the GUI

and the Viewer makes the communication between the virtual world and the

visualizer more consistent and reliable.

The process of object destruction mirrors the one of creation: the object is

�rst removed from the Core, then a call is made to the Viewer to prompt its

removal from the rendering scene.

Composites

A composite is an object whose geometry is neither a simple primitive, nor a

triangle mesh. Its geometry can otherwise be de�ned as a sum of primitives (�gure
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(a) A primitive (b) A triangle mesh (c) A composite

Figure 4.3: Simple objects

4.3c). A table, for example, can be modeled as a large, thin box with four cylinders

as its legs. This way of representing the object gives several advantages over the

triangle mesh representation:

• Collision detection and dynamics work faster on primitives than on triangle

meshes.

• Inertia matrices are calculated internally for primitives by default, but must

be user de�ned in the case of triangle meshes.

• Rendering is faster and the scene, in general, lighter.

But there is a little complication. While the ODE library wants composites to be

de�ned as a single object with multiple geometries, the visualizer often prefers

to treat geometries as single entities, since it will not perform collision detection

nor it has to think about inertia matrices and other dynamics computations.

Therefore, while speci�c Core composite creation functions are called, Portal calls

standard object creation services on the Viewer for each primitive.

Entities

When two elements of a robot arm are linked by a joint, any collision happening

among them is automatically ignored. But there are some cases in which one

would like to ignore each collision happening among a group of objects. This is

when Build Entity Service becomes useful: it allows to create a group of objects,

and de�ne whether they collide or not among themselves (�gure 4.4).

The request message contains a vector of simple objects, a vector of composites
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Figure 4.4: An entity.

and an internal collision �ag. The callback function processes this vector by pass-

ing its elements to the competent callback functions, but in the meantime stores

their IDs in a list. Once every object is built, the callback function passes this

list to Core for it to deal with the collision �ags.

4.2.2 Joints, motors, forces and torques

Adding forces and creating joints is a more interesting subject from the point of

view of the Core, and it will be dealt with later on. But there is an aspect of it

that is dealt with within the Portal, and that is identi�cation.

In fact, everything in Odin is addressed through a string ID, from objects to

forces. In all these cases the user can give a name to the element he is creating,

but when he does not, Portal baptizes it for him.

If it is a joint, the name created is based upon the joint type and the IDs of the

objects involved (e.g. if it is a ball joint between �body1� and �body2� the ID will

be �0:body1& body2�).

A similar thing happens when a motor is created, with the only di�erence that

the new name will start with �motor:�.

But joints and motors are unique, that is there can only be one among two objects

(more than one joint is either redundant, zeros the degrees of freedom or it is just

a bad joint type choice). Forces and torques on the other hand can sum up and

be applied to the same joint or object. Thus, when adding a force or a torque,

the algorithm has an additional twist: every force added has a number at the end

of the ID. When a new force is added in the same place, the function looks for an

unused number among the forces present, and uses it to baptize the new force.



Odin: a Dynamic Simulation Tool for Robotic Path Planning 27

4.3 Publishers

Publishers are those members that, once in a cycle, manage to collect some in-

formation about the ongoing simulation and publish it on their respective topics.

Those topics can be subscribed by any node, but are particularly a feed to the

Viewer node, that has to update the rendering scene.

4.3.1 Objects position and orientation

The main topic VirtualWorld publishes on is the so called Space Distribution. It

contains all up-to-date geometries' position and orientation. This information is

gathered before each publication from the Core, which in turns extracts it from

the simulation.

The information is about geometries, not objects, which do not coincide in the

case of composite objects. As it has been previously said, ODE and viewer models

are di�erent in the case of composites. Therefore, when publishing the position

of a composite, the VirtualWorld node cannot give the position and orientation

of the whole body, but has to tear it apart and give separate data about every

single part.

The solution adopted to solve this divergence consists in letting the user de�ne

names for the composite parts, and not the whole body name. Portal builds the

whole object name using the part names separated by the symbol �>�, and uses

this name as the object's identi�er in the simulation: e.g. �>part1>part2�. When

preparing the message, however, Portal disassembles the object's name, and sends

transformation messages for each geometry coupled with that part's name. This

way, the viewer will never know whether two elements are part of the same object

or not, but it will render them correctly nonetheless.

4.3.2 Colliding objects

Among the parameters, there is a �ag that determines whether collisions in�uence

the dynamics or not. In one case objects collide, bounce and slide; in the other

case, they penetrate into each other constrained only by the joints that tie them
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together. This kind of simulation is said to be contact-less, because no contact

constraints are created during the simulation.

In case of a contact-less simulation, collision handling consists in detecting which

objects are colliding and in reporting them on a list. This task is made by the

Core and will be analyzed in the following chapter. The Portal, on the other

hand, publishes a message containing this list of objects to the Collided topic.

This topic will be subscribed by the Viewer, that will handle this information

properly.

4.4 Running loop

In the running loop, the program does basically three things:

1. May or may not advance the simulation.

2. Publishes the state of the world.

3. Processes and replies all Service calls.

4.4.1 Simulation advancing from Portal

Usually, one would like to have many simulation steps in a Portal running cycle.

That is because the ODE library becomes more exact and reliable as the simu-

lation step becomes smaller. Hence the standard procedure is to split the cycle

step time in smaller ODE steps. For this reason, advancing the simulation means

stepping forward the Core's simulation a number of times (see 4.5). For default

step values see table 4.1.

Simulation automatic advancing is determined by a �ag named �simulate�. This

�ag is changed through the Start Service, which allows to start and stop the

simulation at any time.

Automatic stepping

When the simulate �ag is set to true, every Portal cycle runs the simulation for

a certain number of steps. In this mode the user can intervene in the simulation
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at any time, but will be acting on the simulation as it is running. That means

that if there is gravity and a ball is created, it will start falling immediately.

This mode is perfect to see a system evolve on its own, after initial conditions

have been set.

Stepping at will

The simulate �ag might be set to false while setting the initial conditions of a

system, creating some new object, moving things around or simply just stop the

simulation. But the simulation can advance even if the simulate �ag is always

false. This is made through the Step Once Service. This service allows the user

to advance the simulation at will. This is useful when the user wants to run the

simulation only a certain number of times and then stop, or when he wants to

give a set of service calls for every time step. For example, when driving a motor

by feeding it the instantaneous velocity at each time step, one would like the

simulation to stop between velocity commands, in order to give the user time to

react or process information.

4.5 Step values

Step values are those variables that de�ne how the simulation is going to handle

time. There are four step values:

• The time to be simulated in one single step.

• The number of simulation steps to be taken within a Portal cycle.

• The time to be simulated in one Portal cycle, that is the time that passes

in the simulation between publications.

• The publication rate.

It is easily deduced that the third value is the product of the previous two (�gure

4.5). For this reason the callback function hides an interesting algorithm that al-

lows the caller to de�ne any number of values (from one to four), and the function
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will calculate the remaining and return the �nal values. In case of con�icting val-

ues, precedence is given to simulation step and Portal step size, to the detriment

of the number of steps in a Portal cycle.

Figure 4.5: Step values diagram. In red, the time simulated in a Core cycle. In

green, the actual time simulated in a Portal cycle. A Portal cycle includes the

publication, thus the publication rate is the cycle rate.

As a matter of fact, the simulation time elapsed between Portal cycles is not

a member variable, because the other values determine it univocally. But it is

accepted by the Set Step Service: it is just a user friendly variable.

The default step values have been chosen so that one second in the virtual world

equals one second in the real world, as it can be seen in table 4.1

Contact-less collision false

Simulate false

Number of Core steps in a cycle 40

Publishing rate 25fps

Simulation time elapsed between cycles 0.04s

Simulation step (Core) 0.001

Table 4.1: Default values for VirtualWorld::Portal and step sizes for Virtual-

World::Core.

4.6 Closing

When closing the process the function closes Core and shuts down the node.

When prompted for a new simulation, it just restarts Core and calls the same

service on the Viewer.
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Chapter 5

The Virtual World Core

The very beating heart of this project is the dynamics simulation engine inside

the VirtualWorld node: the VirtualWorld::Core class.

While Portal deals strictly with ROS features, Core performs the speci�c actions

of the module: creates the virtual world, acts on it and simulates.

Core works symbiotically with four smaller classes which perform easy, speci�c

tasks, such as body, geometry and joint creation, or force and torque management.

They are BodyManager, JointManager, BodyForce and JointForce (�gure 5.1).

Each one will be analyzed in the following sections.

Figure 5.1: Detail of dependency graph for VirtualWorld::Core.

The Core class is initialized by Portal by calling VirtualWorld::Core::init (�gure

5.2). This function involves the following tasks:

1. Initialize the ODE library.
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2. Create a new simulation environment.

3. Instantiate body and joint creation classes.

4. Allocate the data that is required for accessing ODE from the current

thread.

Figure 5.2: Call graph for VirtualWorld::Core::init. The space, the world and the

joint group are parts of the new simulation environment.

After all these tasks have been performed, the thread is ready for simulation.

The simulation is an integration process through which time is advanced by a

given step size, and every object state is adjusted for the new time value. It

involves two separate processes: rigid body dynamics simulation and collision

detection.

Rigid body dynamics deals with the object's dynamic properties. It computes the

evolution of the system using the laws of motion considering joints, constraints

and forces.

Collision detection deals with the object's shape and de�nes new constraints that

are passed back to the dynamic simulator.

Anyway, no simulation makes sense unless there is actually something to sim-

ulate. The �rst section will cover object creation and modeling.
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5.1 Object modeling

Open Dynamics Engine models an object as a combination of two concepts: body

and geometry.

5.1.1 The body

A body is a set of data, some of them are variable and some others are constant.

Conceptually each body has a coordinate frame embedded in it, that moves and

rotates with the body, as shown in �gure 5.3. The frame's origin corresponds to

the body's center of mass, and body variables are always referred to this reference

point.

Figure 5.3: The body coordinate frame moves with the body[3].

The variables are:

• Position vector (x, y, z).

• Linear velocity vector (vx, vy, vz).

• Orientation quaternion (qw, qx, qy, qz), also represented by a 3 × 3 rotation

matrix.

• Angular velocity vector (wx, wy, wz).

The remaining body properties are constant over time:
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• Mass value.

• Inertia, a 3× 3 matrix.

5.1.2 The geometry

Figure 5.4: The geometry: shape.

A geometry is a set of data describing shape,

position and orientation (Fig. 5.4). It is asso-

ciated with a position and an orientation, but

has no dynamic properties, such as velocity or

mass.

In order to move during the simulation, a ge-

ometry must be attached to a body. This way

both share position and orientation, and to-

gether describe the object.

5.1.3 Objects

Every object in ODE has one body, but can have multiple geometries. Therefore,

in ODE (and in Odin), body and object are basically equivalent concepts.

There are �ve types of objects that can be created:

• Spheres;

• Cylinders;

• Boxes;

• Composites;

• Triangle meshes.

The �rst three are simple primitives, and are built using native ODE functions

that automatically determine the inertia matrix from shape and total mass.
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Composites

A composite is an object made of multiple primitive geometries (�gure 5.5). ODE

allows this kind of objects but they have to be built in a certain way to work well:

Figure 5.5: A table built as a com-

posite made of box and cylinder

primitives.

1. First, create the body and attach it

to the �rst geometry, as if it was a

normal object.

2. Then, for each part:

(a) Create the geometry.

(b) Create the mass.

(c) Attach the geometry.

(d) Move and rotate the geometry to its correct position respect to the

body's center of mass.

(e) Move and rotate the mass.

(f) Add the mass to the body's mass.

These tasks are performed automatically by the Core, with the help of the body

builder: BodyManager.

Triangle meshes

Figure 5.6: Triangle mesh: palm

of a robotic hand.

A triangle mesh (�gure 5.6) is de�ned by two

vectors: a vertex vector that reports the posi-

tion of the shape boundary points, and a index

vector that tells how those vertices are ordered

to create triangles.

While for primitives and composites the iner-

tia matrix is automatically determined by the

library, in the case of triangle meshes it is not.

If the user does not de�ne an inertia matrix,

the identity matrix will be set by default.
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5.1.4 Objects in the simulation

The dynamics simulation engine uses body information altogether with the move-

ment limitation given by joints and other constraints. In fact, rigid body dynamics

engine does not deal with shapes or geometries, but deals only with bodies.

The collision detection engine, on the other hand, deals uniquely with geometries.

At every time step it �gures out which bodies touch each other and returns the

resulting contact point information. A Core function then uses that information

to de�ne new constraints by creating contact joints between bodies.

The rigid body dynamics simulator works with a �world�, an element that con-

tains all the bodies and constraints. On the other hand, the collision detection

engine works with a �space�, that contains all geometries. Both these elements

are created on initialization.

5.1.5 The BodyManager class

Object creation in VirtualWorld is managed by the BodyManager class. A Body-

Manager instance is present in Core as a private member, and creates the objects

in the world and space given at the time of construction.

This class was created in an attempt to simplify the Core class, and to provide

tools to make object and geometry creation simpler.

In fact, BodyManager handles the creation of bodies and geometries by requir-

ing only essential information and �guring out the rest. For example the kind of

primitive does not have to be explicit, because it is determined by the number of

shape parameters: if there is one parameter it is going to be a sphere's radius; if

there are two they will be a cylinder's radius and length; if there are three they

will be the sides of a box, and if there are more, they are going to describe a

triangle mesh.

BodyManager can also create body-less geometries, that can be used to represent

objects that never move but collide with the rest of the world.
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5.2 Simulation parameters

There are a few parameters that can be set to improve the quality of a simulation.

• Step size: most of dynamics calculation involve Taylor transformation's �rst

members instead of the actual motion equations. Thus accuracy increases

as the step size decreases.

• Linear and angular damping: avoid that objects drift inde�nitely. After

each time step, linear and angular velocities are compared to a threshold.

If they are bigger than that threshold, they are reduced accordingly to the

damping parameters. They can be set in a [0, 1] interval for the value, and

in a [0,+∞) for the threshold.

• Gravity: it is de�ned through a vector, thus giving the possibility to decide

direction, intensity and versus.

• Contact Surface Layer: it is the depth an object can sink into another

before contact is made. Even a very small value can help preventing jittering

problems due to contacts being repeatedly made and broken.

• Error Reduction Parameter: when for some reason a joint happens to be

out of alignment or a constraint is not met, a special force is activated to

bring the bodies back into alignment. The Error Reduction Parameter is a

value in the interval [0, 1] that determines the fraction of error this force

has to correct in a time step.

• Constraint Force Mixing: allows to soften the constraint by letting it to be

violated by an amount proportional to the value times the restoring force

that is needed to enforce the constraint.

The CFM and ERP can be used to simulate a spring-damping constraint with

the following rule:

ERP =
hkp

hkp + kd
(5.1)

CFM =
1

hkp + kd
(5.2)
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5.3 Joints and JointManager

where h represent the step size, kp the spring constant and kd the damping

constant[3].

A joint in ODE is represented as a constraint that imposes a relationship between

two bodies. At each time step, all the joints are allowed to apply constraint forces

to the bodies they a�ect. These forces are calculated by assuming that the bodies

have to move in such a way to preserve all the joint relationships.

There are several kinds of joints, each one constraining a di�erent set of degrees

of freedom:

• Ball and socket: keeps the anchor point still in the frame of reference of

each body (�gure 5.7a).

• Hinge: is de�ned by an anchor and an axis. It is like a ball-socket but

constraints an additional degree of rotation, allowing rotation only along

the axis (�gure 5.7b).

• Piston: a slider that does not constraint rotation along the axis (�gure 5.7c).

• Slider: allows bodies to translate along an axis, but any other degree of

freedom is denied (�gure 5.7e).

• Universal: a cardan joint, like two perpendicular hinges with the same an-

chor (�gure 5.7f).

• Double hinge: used to simulate vehicle suspensions, is composed of two

hinges connected in series, but with orthogonal axes (�gure 5.7d).

• Prismatic and Rotative: a combination of a slider and a hinge (�gure 5.7g).

• Prismatic and Universal: a combination of a slider and a cardan joint (�gure

5.7h).

A joint usually connects two bodies, but it can also connect a body and the static

environment. This case is useful, for instance, to model the moving base of a

robot.
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(a) Ball and socket. (b) Hinge.

(c) Piston. (d) Double hinge.

(e) Slider. (f) Universal.

(g) Prismatic-Rotative. (h) Prismatic-Universal.

Figure 5.7: The joints are just constraints and do not have a visual representation

in the Viewer, hence these are just graphical aids to help understand the nature

of each joint [3].
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There are two additional, special joint types: the �xed joint, that constrains

all DOFs among two bodies, and the contact joint, generated whenever a collision

happens. The �rst one is not very well implemented in ODE, and has to be used

with caution. The second one will be described in the collision section.

5.3.1 Motors

Another thing JointManager can do is to create motors. In ODE, a motor is a

type of soft constraint that allows the relative velocities between two bodies to

be controlled.

There are two kinds of motors: angular and linear. The user must set the velocity

axes and the maximum force allowed to the motor. Once the desired speed is

set, the motor will try to achieve it in one time step, limited by the maximum

force allowed. The velocity axis, by default is anchored to the �rst body, but can

otherwise be anchored to the second body or the static environment.

All motors are initialized with in�nite force and null speed.

5.3.2 Additional parameters

JointManager provides functions to set some additional parameters on joints and

motors. For instance, stops can be set on a joint to limit its range of motion,

which can be bouncy, rigid, have customized CFM, ERP etc.

5.4 Motion

5.4.1 Setting object position and velocity

Position and velocity are body properties that are set when the body is created.

They change over time, as the simulation advances, but they can also be changed

through Core functions.
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5.4.2 Forces and torques on bodies

Besides the forces generated as a result of a constraint or gravity, forces and

torques can be applied to the bodies, for them to take part in the simulation.

The force itself is not added when it is created, but is added at every step, as will

be explained later.

A force or a torque is created by instantiating an ExternalForce object, which

is de�ned by a target body pointer, a magnitude and a direction. The direction

can be given either in the body's frame of reference or the world's one, while the

point of application can be either the center of mass or another point, which can

be given in both frames of reference.

5.4.3 Forces and torques on joints

JointForce is the ExternalForce's sibling class that represents forces and torques

on joints. The JointForce object's �elds are a target joint pointer and a magni-

tude: it can either be a force on a sliding joint, a torque on a hinge or ball-socket

joint. In the future, it will be possible to add forces and torques on other kinds

of joints, but for now this feature is limited to those three. Since the target is a

joint and not a generic body, no direction information is needed: it is deduced

from the joint data instead.

5.4.4 Using motors

A motor is a type of soft constraint that applies all the force available to reach

the goal speed, without surpassing it. Thus, another way of acting on the bodies

is to create a motor and then control its speed.

On creation, Core creates a motor through JointManager, and creates a Joint-

Force object that manages the motor's velocity.
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5.5 Core's simulation step

Actually, Core does not have a running cycle because Portal has, and calls Core's

functions to step the simulation. There are two stepping functions, contactStep

and contactLessStep, that share a common structure:

1. Detect and handle collisions.

2. Add forces and torques to bodies.

3. Add forces and torques to joints and set goal speed on motors.

4. Take a step.

5. Reset unmovable bodies, to prevent unwanted errors.

All external forces and torques are deleted automatically at the end of each step.

That is the reason why they are all added before each step.

As the names suggest, the di�erence between the step functions resides in the

way collisions are handled: one creates contacts, the other does not.

5.5.1 Collision detection

The space

Collision handling is one of the most important features of Odin. Its mechanism

resides in the space, that is the object that contains all geometries. Among the

space kinds available in the ODE library, the one chosen is the multi-resolution

hash table space. It uses an internal data structure that records how each geom-

etry occupies cells of three-dimensional space. This strategy speeds up collision

culling if the cell sizes are accurately chosen, and if objects are not clustered

together too closely. These consideration have made it easy to chose the hash

space over the normal space (and the quad-tree-space, because it is still under

development [3]).
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(a) Wire frame overlay view. (b) Bounding box view.

Figure 5.8: Example of two objects close together but not colliding yet. Collision

culling is made on bounding boxes, and their bounding boxes intersect. In this

case, objects pass both collision culling and bounding box test, but are discarded

when the �nal check is performed, that is when the collision points are searched.

Collision detection

Collision culling is the process that shortlists the pairs of geometries that are

more likely to be colliding. This process is followed by a bounding box collision

check, that creams o� the best candidates for the �nal collision detection (�gure

5.8).

The last process consists in �nding collision points, if there are any. At this point,

the program can either just record the names of colliding objects, or it can create

contacts between them and handle collisions in a realistic way.

5.5.2 Contact-less collision handling

This PQP -like collision policy consists in pushing the colliding bodies' names in a

list, without building any contacts (�gure 5.9). It means that objects will simply

slip through each other during simulation, inter-penetrating each other just like

in a PQP simulation.

The list will then be accessed by another part of the program.

5.5.3 Contact collision handling

This kind of simulation is more realistic, because objects do not slip through each

other but make contact and interact with each other.

This behavior is achieved through the creation of special joints that last only one
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Figure 5.9: Call graph for VirtualWorld::Core::contactLessCallback.

step: the contact joints (�gure 5.10). A contact joint constraints the bodies to

have an outgoing velocity along the contact normal. Theoretically, the contact

normal is the direction along which lies the shortest distance a body has to move,

in order to stop colliding. Actually the one used is an approximation calculated

by an ODE function. The ODE library, in fact, provides a function that besides

determining if and where a pair of geometries collide, can create a contact joint.

Those joints have to be attached to the colliding objects, and have to be destroyed

after each step.

The maximum number of contacts allowed between a pair of geometries is a

simulation parameter that in�uences signi�cantly the quality of the simulation,

slowing it down at the same time as the number increases. At the same time, a

combination of contact joints can simulate rotation, pivoting and other contact

behaviors.

An example of collision

Imagine a box falling corner-side on a table, colliding inelastically. When the parts

touch, a ball joint is created in order to simulate the �rst contact. Within a short

amount of time, the box will fall and the edge will completely touch the surface
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Figure 5.10: A contact joint.[3]

and then a hinge joint is created. Finally, the box will rotate along the hinge axis

and will lay all a side on the surface, thus a plane joint is created: the kind of

joint created depends on the type of collision. Therefore, the more the contact

joints, the more realistic the simulation, on detriment of speed.

5.5.4 Optimizations and exclusions

Frequently there are situations in which collisions detection among some speci�c

bodies has to be avoided, mostly because it slows down the simulation signi�cantly

to have bodies permanently colliding. Therefore, a few solutions have been found

to make it possible to exclude some pairs of geometries from collision detection

(an example is given in �gure 5.11).

Since most of the data fed to the simulator consists of kinematic chains or trees,

the collision has been optimized in order to ignore collisions between consecutive

objects of a kinematic chain: if two objects are already connected with a joint,

no contact is created.

Another possibility is to avoid collision detection within an entire group of bodies,

e.g. the whole kinematic chain. This function is the one called when an Entity

Service from Portal arrives with an internal collision �ag set to false. In this
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Figure 5.11: Robot geometries' bounding boxes will always collide, so it is a smart

move to avoid collision detection among them.

case, a special geometry property is used to avoid collision detection among a

group of geometries.

5.5.5 ODE step

ODE 's function worldStep allows to determinate the dynamic evolution of the

system over the next time step. This uses a �big matrix� method that takes time

on the order of m3 and memory on the order of m2, where m is the total number

of constraint rows.

It bases its calculations on �rst Taylor's transformation members for quadratic

equations, therefore it is more accurate when the time step is very small. That

leads to repeat its operation many times before reaching any noteworthy advance.

Whenever the simulation run time is considered enough, some information can be

extracted from the simulation, using the features exposed in the following section.
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5.6 Information extraction

When Portal wants to publish on some topic the results of the simulation, it

has to call a function in Core to retrieve it. The most important information

about the simulation is the current position and orientation of each geometry. As

explained in chapter 4, the information published about the state of the world

involves geometries, and not bodies, since that is what is shown in the Viewer.

In fact, the Core::getTransformation function iterates all the geometries, and for

each one it gets its position and orientation.

Another function implemented gets position and speed of every existing joint.

Although this information is published by Portal, no subscriber has been imple-

mented in Odin.

The last information that can be retrieved from the simulation is, in case of

contact-less collision detection, a list of colliding geometries. The act of reading

this list automatically clears it, deleting every name on it. This makes sense

because many cycles can happen before this list is read, and the calling class

would like to know about all objects that have collided in the last steps, and not

just in the last one.

5.7 Check functions

As it was explained before, Core stores all objects, joints, motors and external

forces in di�erent maps, to quickly �nd them by their names. Specularly, it has a

complete set of functions to �nd the names by their pointers, �nd a joint by the

bodies it connects, and check name validity.

5.8 Close

Closing means deleting every body, geometry, joint, forces, space and world, and

clearing every list and register in the class. This function does not stop the main

method, meaning that Portal can call close and then init just to reset the simu-

lation.
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Chapter 6

The Viewer

Figure 6.1: The Viewer logo: the Triple Horn of Odin[21].

6.1 Previous versions

Throughout the developing of Odin, several attempts have been made to make a

working Viewer node. The main reason for that is that the viewer requirements

have changed over time. At �rst, the idea was to put the Kautham in a ROS shell

and use its Coin3D based viewer. Then, the idea changed and it was thought to

separate the viewer from the Kautham and put them into separate ROS nodes.

But the idea has always been that of using a Coin3D based viewer, because of

the Kautham experience and previous work with that environment.
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6.1.1 Drawstu�

Figure 6.2: Drawstu�, ODE 's default viewer

To visualize the world, the easiest way would have been to use ODE 's inte-

grated visualizer, Drawstu� (�gure 6.2). This library is already tested, working

and of simple use. But there were a few reasons not to take advantage of it:

• Drawstu� 's interface is terminal based, no GUI is provided nor any kind

of user friendly features is developed.

• It has to be integrated in the ODE environment, which means it is neither

modular nor �exible.

Kautham Project 's Coin3D based viewer already visualizes robot and kinematics,

and is developed in a Qt graphic framework, which makes it very �exible and

prone to future changes. If one day someone wants to integrate the viewers it is

going to be a simpler task if Odin's viewer is already based on this one.

Hence, it was decided to take advantage of Kautham viewer's source code and

develop it to work with ROS, in order to transform it in an independent stand-

alone entity: a module just like VirtualWorld.

6.1.2 The QtRos attempt

A �rst attempt to build a ROS integration was made using Qt_Ros (�gure 6.3.

Qt_Ros is a package that provides tools, templates and other utilities that assist
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Figure 6.3: Conceptual scheme of the QtRos attempt. Portal and Core are two

separated threads that work in parallel, communicating through a pointer given

by the main function that instantiates both classes.

people in developing Qt applications in a ROS environment with minimum e�ort.

It generates a template comprising a subscribing node that works in a parallel

thread to a window thread, referring to each other through respective pointers

exchanged in the main class.

The idea was to create a Core class by putting an instance of Coin3D viewer

in the window, and extend the subscribing node to make an e�ective Portal for

the Viewer node. The Portal worked as a communication central, handling topic

subscription and the server calls from VirtualWorld. Each callback function then

called Core functions to update the scene.

The Core class contained the viewer and kept the scene stored. It also acted on

the scene tree every time the callbacks from Portal called the modifying functions.

But it turned out that Coin3D is not designed to be used with multi-threading.

And in this case, Portal was a thread calling functions in Core, a parallel thread.

The result was a very unstable program, that crashed randomly in segmentation

fault errors, sometimes after a few minutes, sometimes after a few seconds. Several

attempts were made to try to ensure thread-safe operation, from applying write

and read locks on the scene tree to the use of signal-slot connections from the
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Boost library, but none worked.

6.2 Final solution

Figure 6.4: The �nal solution: one thread.

Giving up the idea of having two sep-

arated threads that worked in paral-

lel, the �nal solution consists in uni-

fying Core and Portal in one thread.

The node is actually set up in the

main and not in the Portal, which in-

stead manages all ROS communica-

tions. The Core is a member of Por-

tal and handles the viewer, as shown

in �gure 6.4.

6.2.1 The main

The main launches the Qt window and sets up a ROS communications central

(�gure 6.5):

• Sets up servers for object creation and scene reset.

• Starts subscribers to the world situation topic and the collided objects topic.

ROS spinning through callbacks is timed by the Core-Portal thread, to ensure

seamless connection to the scene tree modi�cation functions. This was done sub-

stituting the ROS timer with a Qt timer, that emits a signal on time out con-

nected to the spinning function, through the Qt signal-slot mechanism. Hence

there is no ROS cycle: spinning through the available callbacks is made in Qt 's

own cycle instead.

The timer is calibrated in order to get the scene updated at 25fps, a common

value for frame refreshing rate because it is faster than the human eye.
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Figure 6.5: First levels of Call Graph for Viewer 's main, that sets up the node,

the servers and the subscribers.

6.3 Portal

Although Portal in this case does not set up the node, it actually grants access to

the Core, because here reside the callback functions that, called from the main,

act on the Core (�gure 6.6). In fact, Core is a private member that gets initialized

on construction.

This class builds also the window, that works as a container for the Core viewer.

The callback functions of this main window allow to:

• Reset the scene;

• Add and remove objects to the scene: calling the build/remove function in

the Core;

• Update the scene, calling the Core updating function on every object, by

passing it the latest position and orientation read from the topic;

• Add the names of colliding objects to a Core's dedicated list.
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Figure 6.6: First levels of Collaboration Diagram for Viewer::Portal.

Whenever Portal acts on the scene tree, it makes sure it is locked from reading

to avoid memory access errors, and unlocks it when the action is over.

As it was explained before, the Viewer node has a special structure due to its

thread restrictions. In fact, the ROS spinning function that calls all available

callback functions resides in this class, and not in the main, where the node is

set up.

6.4 Core

The Core is the actual viewer (�gure 6.8), based on Coin3D 's SoQtExamin-

erViewer (�gure 6.7). Thus, the scene is stored in a tree structure, where all

elements are children of a scene node, child of the root node.
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Figure 6.7: The Coin3D's SoQtExaminerViewer.

6.4.1 Objects

An object is a Separator node with three children:

• The transformation node, that stores position and orientation;

• The color node;

• The shape node, which de�nes the object's geometry.

Every Separator node is stored in a map that stores key�value pairs consisting in

the identi�cation string (key) and the separator node (value). This map allows

instant access to the separator node when an action on its nodes is needed.

Object creation means making a new Separator node and storing it into the object

map. Then the three children nodes are created and �lled with information. Once

the object is created, the viewer zooms out to give a view of the whole scene.

Besides the name, the color is stored in a di�erent map. This is needed to restore

the original color in case the object has appeared as colliding, and therefore

temporarily changed its color to dark gray.
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Figure 6.8: The Viewer. In this scene every object is a triangle mesh.

6.4.2 Updating the scene

Whenever Portal calls Viewer::Core::updateScene, Core will update position and

orientation of the node, with data collected by the main's subscriber. While ODE

has the real part of the quaternion as the �rst term (w, x, y, z), Coin3D has it as

the last (x, y, z, w). Thus the topic argument has to be reordered to match the

new convention.

When updating an object, Core also checks if the object appears as colliding. If

it is, changes its color to a default gray. Then it clears the colliding status, so

that in the next cycle the object will recover its original color.

Obviously in the case of contact creating collision handling policy objects will

never appear as colliding, because no collision list is ever published.
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6.4.3 Resetting the scene

The separator node is a child of a scene node, which in the meantime is the

only child of the root node. This redundancy (the scene node could be removed

because it contains no additional information) is needed to make a quick change

of scene just by replacing the root's child with a new scene node.

In fact, when a new scene is queried, Core clears all maps and lists, closes the

scene and then replaces the scene node with a new one.
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Chapter 7

The GUI Portal

Figure 7.1: Odin GUI logo[22].

Odin's front-end is the Graphical User Interface, developed under a Qt frame-

work. Like the other modules, it is composed of a main, a Portal, a Core and

minor classes.

This node contains only ROS clients, and the GUI can be seen as an automatized

way of calling services.

While themain serves only to build the executable, the Portal contains the graph-

ical interface and sets up the ROS node and its clients. Whereas the Core, on

the other hand, is used mainly to process input �les and return the data to the

Portal.

As a Qt gui, structurally it is a widget divided in �ve tabs:
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1. Simulation: to handle the fundamentals of a simulation and open problem

�les;

2. Settings: to set step sizes and all other parameters;

3. Objects: to build, remove and position objects;

4. Motion: to manage forces and paths;

5. Joints: to build, remove and set joints.

7.1 First tab: Simulation

Figure 7.2: First page of Odin GUI. A problem �le has been opened, and has

appeared in the tree view: a Kuka robot, a can and columns.
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The Simulation tab (�gure 7.2) does basically three things:

• Requests for a new scene.

• Opens a �le.

• Visualizes all scene elements IDs.

• Starts and pauses the simulation.

Asking for a new scene involves resetting all lists and memories in the widget.

Clicking the Open �le button pops up a widget in a new window. This widget

prompts the user to choose a �le within its �lesystem, with the XML extension.

This �le is then processed by Core, which returns the data and lets Portal build

the scene based on the information in the �le.

This feature is created to read and process Kautham style problem �les, which

describe a scene with some robots and becomes, through Portal, a series of service

calls to build entities, objects, joints and motors.

Whenever a new element is built, it is stored internally in a tree structure and

visualized at the top half of the page. This view lets the user know which objects,

joints and motors have been sent, and to which robot they belong.

The New scene button resets the scene in the VirtualWorld (which will command

the same thing to the Viewer), e�ectively resetting all lists and tree data struc-

tures in the gui.

The Simulate button calls the Simulate Service to start (�gure 7.3b) or pause

(�gure 7.3a) the simulation.

(a) Simulation paused. (b) Ongoing simulation.

Figure 7.3: The button changes aspect and text on clicking.
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Figure 7.4: Second page of the GUI. Step sizes tab shows the default values.

7.2 Second tab: Settings

The second page (�gure 7.4) allows setting actions on every parameter.

Actually only two services are called from this tab:

• World Set Service.

• Step Set Service.

The tab is organized as a tool box, with two buttons: one for step setting and

one for the other parameters. A Qt toolbox is a widget that displays a column of

tabs one above the other, with the current item displayed below the current tab

(opened items displayed in �gure 7.5). One tab is dedicated to the step services,
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the others to the other parameters.

Whenever the de�nitions of step sizes are not consistent with each other, some of

them are changed in VirtualWorld in order to match the others, and the actual

values are returned and displayed in the step tab.

Figure 7.5: Details of Settings tool box: Gravity, Collision policy and ERP tabs

open. In the parameters section, almost every parameters needs a check box, since

zero is actually a valid value for each one of them.

7.3 Third tab: Objects

The third tab is for object managing (�gure 7.7). It allows creation, removal and

position setting on each object in the simulation.

To create an object, the user has to insert a valid name (a name that is not used

already). Then a shape must be selected from a drop-down menu, choosing among

sphere, cylinder, box and a trimesh (�gure 7.6).

In the last case, a window will pop up to allow input from �le. In the other

Figure 7.6: The shape selection drop down menu.

cases, the Parameters widget below the Shapes menu will change to show spin

boxes for the insertion of geometric parameters.

Those parameters are in fact hidden in a stack widget. When a shape is chosen,
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Figure 7.7: Third page of the GUI : object management.

(a) Neutral parameters. (b) Sphere parameters.

(c) Cylinder parameters. (d) Box parameters.

Figure 7.8: Parameters are hidden in a stack widget. When a shape is chosen from

the drop down menu, the correct parameters page appears on top.
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the correct parameters page appears on top (�gure 7.8). For each parameter, from

the radius of a sphere to the four values of a quaternion, there are some preset

values, that save the user the boring task of setting some random values to every

parameter just to see something happen.

Each and every parameter has validity limitations, that are hard coded so that,

for example, no one will ever have the chance of sending a message with a negative

value for the mass.

The lower half of the widget contains a simple list of all objects in the scene. Each

object can be selected for its deletion, or to change its position and/or orientation.

7.4 Fourth tab: Motion

The Motion page is organized, as well as the Settings one, in a Tool Box widget

(�gure 7.9). It is an interface to act on:

• Objects, by setting velocities, forces and torques.

• Joints, by setting forces and torques.

• Motors, by setting velocity controls.

• Robots, through path �les.

7.4.1 Moving an object

The object motion tab allows to add forces acting on the center of mass as well

as in an o�set point, and the position and force vectors can be de�ned either

relatively to the global frame or relatively to the body's own frame of reference.

Besides the force, a torque can be set by just de�ning its intensity in a vector.

Whenever one of these actions is performed, the force ID returned from Virtual-

World is stored and visualized in the bottom list, allowing each force or torque

to be selected and deleted.

Another way of moving an object is by directly setting a velocity, either linear

or angular. But these two actions only act for one step, since forces and torques
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Figure 7.9: Fourth page of the GUI : motion.

and other constraints in the simulation will change the velocities in the following

steps.

7.4.2 Moving joints and motors

Moving a joint is a much simpler task. The user chooses the joint from a drop-

down menu (�gure 7.10) among those present in the virtual world, and sets the

action intensity: VirtualWorld itself will deduce, from the kind of joint, if the

action is either a force or a torque, and will set the proper action to the target
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bodies.

Just like in the previous tab, also this one contains a list of existing joint forces

and torques, which can be selected and removed. For motors, it is even simpler.

Figure 7.10: Detail of joint motion tab.

There is no list, just a menu to choose the motor (�gure 7.11), a spin box to set

the desired velocity and a button to send the message.

Figure 7.11: Motor motion tab.

7.4.3 Moving robots

Robots motion is done via path �les, which are processed in the Core. Four

buttons are available (�gure 7.12):

• Setting the initial position. A �le containing the angles of the joints is fed

to the GUI through a pop up window, the Core translates it in position
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Figure 7.12: Robot motion tab.

values for every object composing the robot and the Set Position Services

are called.

• Velocity path: data is retrieved from a �le containing velocity values for

every motor. The robot starts to move from the initial position, and a

service is called at the same publishing rate set in the Settings tab, every

time setting the velocity values for each motor. It is a speed control motion.

• Position path: a �le containing angles of joints for every time step is sent

to the VirtualWorld in Set Position Services.

The velocity path involves a motor that applies the force to the body to achieve

the goal speed. This means that the simulation can be at a �ne grain scale while

the �le can still be at gross grain: one can just set the simulator to take many

little steps between publications.

Otherwise, the position path involves setting the position of the robot at each

time step, thus even if the simulator takes many steps between messages, in that

lapse of time the objects will stay still, moving abruptly when the next message

arrives. Thus, this kind of simulation is more �arti�cial�, while the velocity path

simulation can be seen as more �natural�. In fact the position path will actually

move the robot even if the simulation is paused, while the velocity path will not.

The di�erence between position and velocity paths is appreciated in collision

detection with contacts. When moving a body abruptly it will, from a step to
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another, collide with another body in many points at the same time. Thus many

contact joints are created in a single step and can con�ict with each other: since

a contact is a constraint, con�icting constraints reduce to zero the degrees of

freedom of the colliding object, which stops moving at all.

This has been resolved by setting to three the maximum number of allowed con-

tacts between objects, but it is an indicator of how a velocity path simulation

will lead to more realistic collisions with respect to position paths. Another tool

to improve collision precision is a button that allows to re�ne a position path

to smaller steps. This tool interpolates between consecutive points to double the

thinness of the step size.

7.5 Fifth tab: Joints

The �fth tab aids in the creation of joints(�gure 7.14). It allows to choose the

type of joint from a drop down menu (�gure 7.13). Then there are two menus to

choose the bodies among those present in the simulation.

There are spin boxes to de�ne the geometric properties of the joint. Depending

on the kind of joint, some rows will be enabled. For example, to build a hinge,

only two rows are needed: therefore the third one will be disabled until another

kind of joint is chosen.

Several parameters can be set for each joint. They can be de�ned either on a new

joint, before creating it, or on an existing joint, by choosing it from the list. It is

also possible to remove a joint, just like objects.

Figure 7.13: Joint type can be chosen from a drop down (combo box) menu.
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Figure 7.14: Joint creation page.
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Chapter 8

The GUI Core

8.1 Reading a �le

The Core deals mainly with processing problem, shape and path �les. Problem

�les come in XML format, shape �les are written in VRML and paths are simple

text �les.

8.2 Processing problem �les

The XML problem �les ideated in the Kautham Project are a tree structured

representation of a situation of interest in robotics. The Core uses the PugiXML

library to transform the �le into a Document Object Model tree structure, which

allows to navigate the tree and access the node contents (�gure 8.1).

Here is an example:

1 <?xml version=" 1 .0 "?>

2 <Problem name="example">

3 <Robot robot=" robots /KukaLWR. rob" s c a l e=" 1 .0 ">

4 <Limits name="X" min=" 0 .0 " max=" 1000.0 " />

5 <Limits name="Y" min=" 0 .0 " max=" 1000.0 " />

6 <Limits name="Z" min=" 0 .0 " max=" 1000.0 " />

7 <Limits name="WX" min=" 0 .0 " max=" 1 .0 " />
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Figure 8.1: The Document Object Model tree structure of a problem �le. Ovals:

tree nodes, Boxes: values. In bold, address values.

8 <Limits name="WY" min=" 0 .0 " max=" 1 .0 " />

9 <Limits name="WZ" min=" 0 .0 " max=" 1 .0 " />

10 <Home TH=" 0 .0 " WZ=" 1 .0 " WY=" 0 .0 " WX=" 0 .0 " Z=" 0 .0 " Y=" 400 .0 " X="

−300.0" />

11 </Robot>

12 <Scene scene=" scene s /columns . i v " s c a l e=" 18 .0 " movable = " f a l s e ">

13 <Locat ion TH=" 0 .0 " WZ=" 0 .0 " WY=" 0 .0 " WX=" 1 .0 " Z=" 0 .0 " Y=" 0 .0 " X=

" 250 .0 " />

14 </Scene>

15 </Problem>

Thus the �rst step consists in the creation of a problem node. Then an iterator

is created, in order to sweep all robots and scene elements.

In case of a robot element, the program �nds the *.rob extended named �le (�gure

8.2), searching it using data stored in the XML problem �le. Those robot �les

have the .rob extension and look like this:

1 <?xml version=" 1 .0 " encoding="UTF−8"?>
2 <Robot name="KukaLWR" DHType="Modif ied " robType="Chain">

3 <Jo in t s s i z e="8">

4 <Jo int name="Base" i vF i l e="kukaLWR/base . wrl ">

5 <DHPars alpha=" 0 .0 " a=" 0 .0 " theta=" 0 .0 " d=" 0 .0 "></DHPars>

6 <Desc r ip t i on r o t a t i o n a l=" f a l s e " movable=" f a l s e "></Desc r ip t i on>

7 <Limits Hi="0" Low="0"></Limits>

8 <Weight weight=" 1 .0 "></Weight>

9 <Parent name=""></Parent>
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10 </ Jo int>

11 <Jo int name="Link1" i vF i l e="kukaLWR/ l i nk1 . wrl ">

12 <DHPars alpha=" 0 .0 " a=" 0 .0 " theta=" 0 .0 " d=" 310 .0 " ></DHPars>

13 <Desc r ip t i on r o t a t i o n a l=" true " movable=" true " ></Desc r ip t i on

>

14 <Limits Hi=" 170 .0 " Low="−170.0"></Limits>

15 <Weight weight=" 1 .0 "></Weight>

16 <Parent name="Base"></Parent>

17 </ Jo int>

18 .

19 .

20 .

21 <Jo int name="Link7" i vF i l e="kukaLWR/ l i nk7 . wrl ">

22 <DHPars alpha="−90.0" a=" 0 .0 " theta=" 0 .0 " d=" 78 .0 "></DHPars>

23 <Desc r ip t i on r o t a t i o n a l=" true " movable=" true "></Desc r ip t i on>

24 <Limits Hi=" 170 .0 " Low="−170.0"></Limits>

25 <Weight weight=" 1 .0 "></Weight>

26 <Parent name="Link6"></Parent>

27 </ Jo int>

28 </ Jo in t s>

29 </Robot>

Figure 8.2: The Document Object Model tree structure of a robot �le.

The base position was retrieved from the problem �le, and the orientation is

converted from axis-and-angle to quaternion. The positioning of each subsequent



74 Odin: a Dynamic Simulation Tool for Robotic Path Planning

element of a robot is de�ned with Denavit-Hartenberg coordinates, thus a con-

version takes place here too.

The program then iterates through robot parts and stores them in an object vec-

tor. Since physics analysis is a new feature, most problem �les don't de�ne masses

and inertias, hence default values are de�ned. For each object a name is de�ned

(from �le name), then the geometric data is processed.

8.2.1 Processing shapes

The shape is stored in an VRML �le, which is read and processed. Any shape is

turned into a triangular mesh: the mesh is de�ned by two vectors: vertices and

indices. The vertices de�ne the points of the triangles, the indices identify which

points de�ne a triangle.

After triangularization, if n triangles were de�ned, 3 × n vertices and 3 × n

indices are produced by Coin3D methods. This information is redundant, thus

those vectors are optimized to reduce their number and avoid double vertices.

Triangle mesh optimization

1 unsigned int count = 0 ;

2 double t o l e r an c e = 0 . 00001 ;

3

4 for (unsigned int i = 0 ; i < vec . s i z e ( ) ; i+=3)

5 {

6 unsigned int j = 0 ;

7 for ( ; j<obj−>v e r t i c e s . s i z e ( ) ; j+=3)

8 i f ( ( ( obj−>v e r t i c e s [ j ]− t o l e r an c e )<=vec [ i ] ) &&((obj−>v e r t i c e s [ j ]+

t o l e r an c e )>=vec [ i ] )

9 &&((obj−>v e r t i c e s [ j+1]− t o l e r an c e )<=vec [ i +1])&&((obj−>v e r t i c e s [

j+1]+ to l e r an c e )>=vec [ i +1])

10 &&((obj−>v e r t i c e s [ j+2]− t o l e r an c e )<=vec [ i +2])&&((obj−>v e r t i c e s [

j+2]+ to l e r an c e )>=vec [ i +2]) )

11 break ;

12 i f ( j<obj−>v e r t i c e s . s i z e ( ) )

13 obj−>ind i c e s . push_back ( j /3) ;

14 else
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15 {

16 obj−>v e r t i c e s . push_back ( vec [ i ] ) ;

17 obj−>v e r t i c e s . push_back ( vec [ i +1]) ;

18 obj−>v e r t i c e s . push_back ( vec [ i +2]) ;

19 obj−>ind i c e s . push_back ( count++) ;

20 }

21 }

In the code, the input vertices vector is named vec, while the outputs are vertices

and indices.

This optimization is a custom made process, that creates a new pair of vectors.

Before inserting a new vertex, a check is performed to assure it is not already in

the vector, taking into account a certain tolerance. If it is already in, it is not

pushed in, but the index of the �rst copy is pushed in the indices vector. If it is

not already in, it is a new vertex. It is inserted and a new index is pushed into

the indices vector. Finally, object color is gotten if present.

The last task is analyzing the object motion to deduce the kind of joint (connected

to the parent) and motor parameters. The object can be immovable, in which case

no joint is stored but a �ag is activated. Otherwise a joint connected to the parent

is stored. Low and high stops are set on joints if existing.

In case of a scene element, like a table or a column, the program gets the ob-

ject's transformation through a �eld in the problem �le. The scenes can either be

a single object or another robot, in which case the problem �le addresses another

robot �le. In the �rst case, the location node is read and stored in a position vector,

while the shape address is used to �nd the VRML �le. The shape information is

processed with the Coin3D library to convert it to a triangle mesh representation.

All objects built are named from their �le name and their parent nodes name.

In case of colliding names (which usually happens for scene objects) a number is

added at the end of the name.
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8.3 Increasing path resolution

The other task performed is increasing the step de�nition of a position path.

This is achieved by making a linear interpolation between consecutive position

vectors. Linear interpolation might not be a correct reproduction of the e�ective

path wanted by the user, and indeed this process does not pretend to do that.

This action serves only the purpose of feeding the VirtualWorld a �ner grained

path to avoid strange behaviors in collision handling.



Odin: a Dynamic Simulation Tool for Robotic Path Planning 77

Chapter 9

Costs Analysis

Since Odin is a free software project, it will be distributed under the GNU General

Public License. Therefore, every software tool and library used in this project is

free of charge under its license agreement and conditions.

This chapter's goal is to make a cost analysis under the assumption that it

will be distributed with a commercial license.

9.1 Lines of code

A �rst estimation of costs involves the cost of work. Since the author is not an

expert professional programmer, it is assumed that he is able to produce 150 lines

of code per day. Assuming a total cost, involving taxes, of 150eper day, the cost

of a line of code is 1e/line.

9.1.1 Line count

The program CLOC is a tool to count lines of code that automatically excludes

comments and blank lines. Its output on the project's analysis, excluding exam-

ples and documentation, counts nearly thirty thousand lines. Anyway, since Qt

and ROS have their own code generating compiling tools, some of this code was

auto generated. On the other hand, messages and services are not recognized by

CLOC, thus are not counted. A more honest analysis can be made considering
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only the �les actually written by the author. The output of CLOC on Odin gives:

Language �les blank comment code

C++ 13 521 381 3350

C/C++ Header 10 377 2132 728

CMake 4 52 89 100

XML 4 21 2 65

SUM: 31 971 2604 4243

Table 9.1: Total costs.

with 1795 for the GUI module, 615 for the Viewer, 1819 for the VirtualWorld

and 14 for the Odin stack.

The Messages and Services �les contain 30 and 125. All those line number do not

include comments or blank lines.

9.2 Commercial licenses

Of all code libraries used in this project, only two have a commercial license that

has to be bought in order to produce a saleable program: Coin3D and Qt.

The �rst one costs 2342e. The second has more than one, but for the use made

in this project, the Qt-one platform-light edition might be enough: 1510e.

9.3 Total cost

Programming 4398, 00e

Licenses 3852, 00e

Sum 8250, 00e

Table 9.2: Total costs.

The �nal cost will then be: 8250, 00e.
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Chapter 10

Results

Several simulations have been made in order to test the simulator. In this chapter,

three simulations will be shown and described. The �rst two will focus on contact

and contact-less collision handling, while the third will show the simulation of a

grasping problem.

10.1 Collisions without contacts

Figure 10.1: Starting position: a Kuka robot and a can.

To better see how contact-less simulation works, a very simple example has

been chosen. A Kuka robot is at rest, horizontal to the ground (�gure 10.1, while

a can falls and slightly touches the end of the robot.
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The can starts moving downwards and approaches the tip of the robot (�gure

10.2a). In �gure 10.2a it can be observed that even if very close, the objects are

not touching and, indeed, are not highlighted. But when they do, as in �gure

10.2c, they suddenly change their color to a default gray.

(a) (b) (c)

(d) (e) (f)

Figure 10.2: A can falls and touches the Kuka's end.

10.1.1 Observations

This simulation did not slow down when the objects collided. This is due to the

fact that no constraints are added to the simulation matrix when not creating

contacts. Also, the simulation was successful because the can and the robot part

highlighted correctly. In fact, no error could be detected even looking very closely

to the contact area.

The simulation parameters are described in the following table.
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Collision policy Highlight contacts

Number of steps in a cycle 1

Publishing rate 10fps

Simulation step 0.001

Gravity (0, 0, 0)

Contact surface layer 0.0

Table 10.1: Parameters used during the last simulation. Those not de�ned had

the default values.

10.2 Collisions with contacts

Figure 10.3: The scene is loaded from an XML �le named

�TX90_RHand_ICRA10_5PMD_TwoCanb_new�.

Another interesting simulation is watching a Staubli TX90 robot, equipped

with a Schunk SAH anthropomorphic hand, hit a pile of cans. Like the previous

simulation, it can show both collision and gravity, but this time with contacts.

Through the user interface, the scene is loaded (�gure 10.3) using the Open �le

button. Then the robot is set to its starting position by setting its motors veloc-

ities by hand. At last, the cans are positioned by simply changing its position.

The result is �gure 10.4a.
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By setting the base's motor velocity to 0.1rad/s, the robot starts to rotate (�gure

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10.4: Throwing a pile of cans setting motor velocities.

10.4b), and eventually hits the bottom can (�gure 10.4c). The cans keep moving
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while the robot eventually stops (�gure 10.4f). In �gures 10.4h and �gure 10.4i,

the cans drop to the ground, accelerated by gravity. In �gure 10.4j, the bottom

can already reached the ground and bounce, thus moving upwards.

10.3 Grasping

Perhaps the most signi�cant simulation is the grasping problem. In this simula-

tion, a Staubli TX90 equipped with a Schunk SAH hand has to grasp, move and

drop a can that lays on a table.

Through the user interface, the problem is loaded (�gure 10.3).

A starting position is set through the appropriate gui button (�gure 10.5a).

(a) Starting position. (b) Movement starts. (c) Movement continues.

Figure 10.5: The robot grasping a can.

(d) Movement continues. (e) Top view of grasp. (f) Side view of grasp.

Figure 10.6: Di�erent views of the grasp.

A position path is opened and its de�nition is increased through the �Double path

precision� button.

Then the movement starts as in �gure 10.5b, and continues until �gure 10.5d.

Once the path has been completed, the robot is moved through setting motor

velocities in the GUI (�gures 10.7a to 10.7c).
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(a) (b) (c)

Figure 10.7: Moving the robot setting motor velocities.

Finally, the can is dropped by slowly opening the hand. Again, this movement

is made by setting motor velocities through the GUI.

(a) (b) (c)

Figure 10.8: Dropping the can setting motor velocities.

10.3.1 Observations

Both simulations have distinctively slowed down when contacts were made, espe-

cially the �rst one. This is due to the fact that each contact represents a number

of constraints. Each constraint increases the simulation matrix, and thus, the time

needed to solve a step.

The parameters used to simulate are described in the following table.
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Collision policy With contacts

Number of steps in a cycle 40

Publishing rate 25fps

Simulation step 0.001

Gravity (0, 0,−9810)

Linear damping 0.5

Linear damping threshold 0

Angular damping 0.2

Angular damping threshold 0

Contact surface layer 0.001

Table 10.2: Parameters used during the last two simulations. Those not de�ned

had the default values.
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Conclusions

The project has successfully reached the goals and the program has implemented

all the features required:

• It is seamlessly submerged in a ROS network, thus it can interact with

other modules using ROS communications.

• The program is modular, composed of three conceptually di�erent parts:

user interface, calculator and viewer. If someone wants to replace the gui or

the viewer, he just needs to take a look at the Messages and the Services,

and implement the communication features in the new module.

• It can produce information about any object position, collision situation

and even about its joint. Furthermore, it can publish this information at

any rate, which is set through a ROS service.

• The VirtualWorld module makes full use of the ODE physics library, allow-

ing a wide spectrum of simulating tools and features, including rigid body

dynamics and collision detection.

• The collision detection engine can be used in two di�erent ways: integrated

with the rigid body simulator or used in parallel with it. In the �rst case, it

leads to a realistic simulation, whereas in the second, it leads to a PQP -like

simulation.

• The simulation can go at any combination of simulation speed, publishing

rate and step size, giving the user a wide spectrum of possibilities between

slow and fast, precise and gross.
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• The viewer, on the other hand, keeps updating the scene at 25fps, no matter

what.

• Through the gui, Kautham scenes and problems can be easily loaded with

a single click. Robots can be moved through their motors or through paths

stored in �les, while objects and joints can be built and acted upon using

forces and torques of many kinds.

Unluckily, the inter-penetration of two objects cannot be measured using the

ODE library, thus the PQP library cannot be replaced in all its features. But

this was not a requirement, rather an additional feature. Hence, for this kind of

query, PQP is still a valid choice.

Finally, Odin is now a complete and full featured tool for physics simulation

in robotics. It is ready to be integrated to the Kautham Project, that will then

be able to extend its working scope by taking into account, from now on, the

physical interactions of a robot with the environment.
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Future Work

The most imminent part of future work is integrating Odin and Kautham in a big

modular project. This step will be able to start once the IOC team has completed

the process modularizing and putting ROS layers to the Kautham Project.

This integration will allow to develop path algorithms based on collision detection

and 3D physics.

As it has been said, Odin's viewer is based on Coin3D because of the Kautham

experience. But ROS has its own very powerful and full featured viewer, that is

designed speci�cally for robotics: RViz. Upgrading Odin to this viewer would be

an interesting improvement, and could introduce a new set of features, including,

for example, feedback from the user. In fact, the RViz has some features called

�interactive markers �involving the actions of the mouse on the rendering window,

which could be used to ideate many features. This way, Odin could become a

module that allows the user to play and experiment with a physics library.

Other improvements could be made working on a more extensive GUI, allowing

customization of contacts, creation of composites, and other features that are

actually available only through the ROS interface.

The viewer could be improved by adding a tab that shows the output of joint

data (position and speed), maybe graphically.



90 Odin: a Dynamic Simulation Tool for Robotic Path Planning



Acknowledgements

A special acknowledgement goes to my supervisor, Professor Alexander Pérez

Ruiz, and to my co-supervisor, Professor Jan Rosell Gratacòs for their patience

and for the opportunity they gave me. Without them, this work would not have

been possible.

Also, I am grateful to Andrés Montaño for the precious help, and the other

people from the IOC.

Finally, a special acknowledgement goes to Luis Cuevas, for the invaluable

graphical support.



92 Odin: a Dynamic Simulation Tool for Robotic Path Planning



Odin: a Dynamic Simulation Tool for Robotic Path Planning 93

Bibliography

[1] (2012, Sept.) Webopedia. IT Business Edge Network. [Online]. Available:

http://www.webopedia.com/TERM/A/API.html

[2] (2012, Aug.) Document object model. Wikipedia. [Online]. Available:

http://en.wikipedia.org/wiki/Document_Object_Model

[3] R. Smith, The ODE Manual, ODE community, May 2012. [Online].

Available: http://ode-wiki.org/wiki/index.php?title=Manual

[4] (2012, Aug.) Open dynamics engine. Wikipedia. [Online]. Available:

http://en.wikipedia.org/wiki/Open_Dynamics_Engine

[5] (2012, Aug.) Opengl. Wikipedia. [Online]. Available: http://en.wikipedia.

org/wiki/OpenGL

[6] G. research group. (2012, Jan.) Pqp, a proximity query package. University

of North Carolina. [Online]. Available: http://gamma.cs.unc.edu/SSV/

[7] (2012, Jan./Aug.) Robot operating system. Wikipedia. [Online]. Available:

http://en.wikipedia.org/wiki/ROS_(Robot_Operating_System)

[8] (2012, Sept.) Remote procedure call. Wikipedia. [Online]. Available:

http://en.wikipedia.org/wiki/Remote_procedure_call

[9] A. Pérez, J. Rosell, and A. Montaño, �The kautham project: A robot simu-

lation toolkit for motion planning and teleoperation guiding,� submitted for

review since september 24th 2012.

http://www.webopedia.com/TERM/A/API.html
http://en.wikipedia.org/wiki/Document_Object_Model
http://ode-wiki.org/wiki/index.php?title=Manual
http://en.wikipedia.org/wiki/Open_Dynamics_Engine
http://en.wikipedia.org/wiki/OpenGL
http://en.wikipedia.org/wiki/OpenGL
http://gamma.cs.unc.edu/SSV/
http://en.wikipedia.org/wiki/ROS_(Robot_Operating_System)
http://en.wikipedia.org/wiki/Remote_procedure_call


[10] (2012, Jan./Aug.) The ros community site. Willow Garage, Stanford

Arti�cial Intelligence Laboratory. Menlo Park (CA). [Online]. Available:

http://www.ros.org/wiki

[11] (2012, Jan./Aug.) Ros electric emys. Willow Garage. Menlo Park (CA).

[Online]. Available: http://www.ros.org/wiki/electric

[12] A. Pérez and J. Rosell, �A roadmap to robot motion planning software de-

velopment,� Computer Applications in Engineering Education, 2009.

[13] (2012, Jan./Aug.) Cmake. Wikipedia. [Online]. Available: http://en.

wikipedia.org/wiki/CMake

[14] (2012, Jan./Aug.) Coin documentation. Kongsberg Oil&Gas Technologies.

[Online]. Available: http://doc.coin3d.org/Coin-3.1/

[15] (2012, Jan./Aug.) Coin3d. Wikipedia. [Online]. Available: http://en.

wikipedia.org/wiki/Coin3D

[16] (2012, Aug.) Extensible markup language (xml). World Wide Web

Consortium. [Online]. Available: http://www.w3.org/XML/

[17] (2012, Aug.) Pugixml. Arseny Kapoulkine. [Online]. Available: http:

//pugixml.org/

[18] (2012, Aug.) The de�nitive source for virtual reality modeling language.

Web3D Consortium. [Online]. Available: http://www.vrml.org/

[19] (2012, Jan./Aug.) Qt (framework). Wikipedia. [Online]. Available: http:

//en.wikipedia.org/wiki/Qt_(framework)

[20] (2012, Jan./Aug.) Qt-cross platform application and ui framework. Nokia.

[Online]. Available: http://qt.nokia.com/

[21] L. Cuevas, �Odin's viewer logo.�

[22] ��, �Odin's gui logo.�

http://www.ros.org/wiki
http://www.ros.org/wiki/electric
http://en.wikipedia.org/wiki/CMake
http://en.wikipedia.org/wiki/CMake
http://doc.coin3d.org/Coin-3.1/
http://en.wikipedia.org/wiki/Coin3D
http://en.wikipedia.org/wiki/Coin3D
http://www.w3.org/XML/
http://pugixml.org/
http://pugixml.org/
http://www.vrml.org/
http://en.wikipedia.org/wiki/Qt_(framework)
http://en.wikipedia.org/wiki/Qt_(framework)
http://qt.nokia.com/




96 Odin: a Dynamic Simulation Tool for Robotic Path Planning



Odin: a Dynamic Simulation Tool for Robotic Path Planning 97

Appendix A

User Manual

A.1 Installation

To successfully install Odin, make sure you have ROS installed and working.

Go to your ROS workspace. Open a terminal and create a Stack named Odin:

$ ro s c r ea t e−s tack Odin

The stack could be copied from �le, but this way we can make sure that the stack

appears in your ROS_PACKAGE_PATH.

Open the manifest.xml �le with a text editor, and modify it to include the de-

pendencies: physics_ode, qt_ros, ros_comm. Just add these three lines at the

bottom:

1 <depend stack="physics_ode" /> <!−− opende −−>
2 <depend stack="qt_ros" /> <!−− q t_bu i l d −−>
3 <depend stack="ros_comm" /> <!−− std_srvs , std_msgs , roscpp −−>

Now it should look like this:

1 <stack>

2 <de s c r i p t i o n b r i e f="Odin">Odin</ de s c r i p t i o n>

3 <author>Maintained by a l f r e</author>

4 <l i c e n s e>BSD</ l i c e n s e>

5 <review s ta tu s="unreviewed" notes=""/>

6 <ur l>ht tp : // ros . org /wik i /Odin</ u r l>

7 <depend stack=" ros " />
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8 <depend stack="physics_ode" /> <!−− opende −−>
9 <depend stack="qt_ros" /> <!−− q t_bu i l d −−>
10 <depend stack="ros_comm" /> <!−− std_srvs , std_msgs , roscpp −−>
11 </ stack>

Since these packages have not been built, you have to run �rospack pro�le� on

each:

1 Odin/ S e r v i c e s $ rospack p r o f i l e

2 Odin/Messages $ rospack p r o f i l e

3 Odin/GUI$ rospack p r o f i l e

4 Odin/Viewer$ rospack p r o f i l e

5 Odin/VirtualWorld $ rospack p r o f i l e

Now roscd to Odin, or simply cd to Odin, and run rosmake:

1 $ roscd Odin

2 $ rosmake

It should work too to simply run rosmake Odin from any directory. This command

should compile and link the whole library and make it ready to use. Resuming:

• Create the Odin stack and add the dependecies to the manifest.

• Copy the packages inside it: Messages, Services, GUI, Viewer and Virtu-

alWorld. Then �roscd� to them and run �rospack pro�le� to make them

visible.

• Rosmake Odin.

To make sure that everything has compiled, you can cd to the build directories

of each package and run:

1 $ cmake . .

2 $ make

A.2 Starting
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Figure A.1: Odin at start up. A terminator window is open in the background,

running �roscore�, �rosrun GUI gui�, �rosrun Viewer viewer� and �rosrun Virtual-

World virtualWorld�. On top, the gui and the viewer windows.

Open four terminals (a Terminator window should help). On the �rst one, launch

ROS:

$ r o s c o r e

On the remaining three, launch the gui, the viewer and the simulator:

$ rosrun GUI gui

The gui window should pop up.

$ rosrun Viewer viewer

The viewer window should pop up.

$ rosrun VirtualWorld

This starts the simulator A.1. Enjoy!
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