
Università degli Studi di Padova

Dipartimento di Ingegneria Industriale DII

Corso di Laurea Magistrale in
Ingegneria dell’Energia Elettrica

Validation of Kalman Filter method for
vertical position and speed estimation in the TCV

tokamak

Relatore: Laureando:
Prof. Paolo Bettini Luca Claude Gino Lebon

1234285

Correlatore:
Prof. Federico Felici (SPC)

Anno Accademico 2021/2022



2

Dedicato a mia mamma e a mio papà.
E a chi ha creduto in me.

Thesis carried at Swiss Plasma Center of EPFL, Lausanne, Switzerland



Acknowledgements

Je tiens tout d’abord à remercier le Prof. Paolo Bettini de m’avoir mis en contact avec le
team du SPC et d’avoir rendu possible cette expérience extraordinaire. Un merci spécial au
Prof. Federico Felici pour sa disponibilité, sa compétence et pour m’avoir initié à l’art de
la patience et de la précision. Un grand merci au PhD Stefano Marchioni pour ses précieux
conseils et pour le temps qu’il m’a dédié. Enfin, je tiens à remercier Eric Burtschell pour
m’avoir accueilli les bras ouverts chez lui parmi sa merveilleuse famille.

i



ii



Abstract

The main task of this project has been to validate the Kalman filter method in different
shots of the TCV tokamak, in order to estimate in real-time the position and speed of
the plasma. The plasma position and velocity can be retreived from the estimated state
of the system. The Kalman filter is a powerful tool for estimation and control goals, since
it deals with linear systems which are computationally fast to solve. This permits to esti-
mate plasma quantities in real-time during a plasma shot and fastly recover a control law
for plasma stabilization and shape. Indeed, since the Kalman filter is the optimal linear
predictor, it can be coupled with a LQR for LQG control. Moreover, it can properly filter
noises of the system, once the covariance matrices are properly tuned. The state-space
system we deal with derives from a linearization around a plasma-equilibrium point of
a non-linear Forward Evolutive Grad-Shafranov solver called fge. In order to properly
estimate the desired quantities, particular attention has been put in covariance matrices
tuning, to best recover the mismatches due to linearization and the unexpected additional
perturbations in the model, which have been modelled as additional noises in the state
equation. The Kalman filter design has been firstly performed on an artificial tokamak
called Anamak and at the end, once the filter behaviour has been validated, it has been
used for estimation purposes on TCV shots.

In the first Chapter, which gives an introduction of the physics of the problem and of the
equilibrium codes used for TCV, the Grad-Shafranov equation has been derived. It has
been introduced the plasma current discretization by means of polynomial basis functions,
the Green functions mapping for active and vessel currents and their filamentary discretiza-
tion. An eigenmodes formulation for the vessel currents has been presented too. Then,
a description of the linear link between measured quantities (Bm, Ψf , Ia) and external
currents has been described. After having written down the circuit equation, the main
equilibrium codes have been presented. The fgs algorithm and its evolutive extention fge
have been discussed. Finally, defining the external currents as the state, the linearization
of fge around an equilibrium point in the state-space has been performed. Coupling this
process equation with the measurement linearization (both in relative or physical frame)
the state-space representation has been reached. The Chapter has finished with a qualita-
tive comment around observability and controllability properties of the system.
In the second Chapter the Kalman filter algorithm has been presented. Futhermore, a
state-augmented filter has been developed. Finally, a complete description of the covari-
ance matrices design used during the simulations has been provided.
In the third Chapter three statistical tests to be performed onto the innovation residuals
have been presented. These rejection tests give a formal instrument in order to check faults
in the Kalman filter stochastical behaviour in terms of covariance matrices or in terms of
the stochastical hypothesis onto the process or observer noises.

iii



iv

In the fourth Chapter the open-loop results on Anamak have been presented. Firstly,
using the statistical tests after the imposition of known noises, the performances in the
cases of correct, underestimated and oversitimated process covariance matrices, with data
retrieved from a linearized fge run, have been compared. Thus, a comparison in terms of
estimated quantities has been set between the case in which measurement data are taken
from a run of fge or from a linearized fge run. Therefore, a covariance matrix improve-
ment has been developed in order to match the non-linearities of the system. Moreover,
using an augmented state filter with data from fge, an unknown sinusoidal and step per-
turbation on the first PF coil voltage have been recovered by the filter. Finally, the βp
and the qA parameters have been estimated after unknowns βp-ramp and qA-ramp profiles
impositions in the case of contraints state augmentation.
In the last Chapter, the previous simulations have been extended to several TCV shots.
The plasma position and speed evolutions have been estimated for all these shots and a
vertical error analysis has been performed in order to demonstrate the accuracy of the
method. Moreover, the open-loop performances of the Kalman Filter observer have been
compared to the existing estimates from mga observer, based on a linear combination
of measurements. The control voltages to vertical position transfer functions have been
shown and discussed demonstrating that the Kalman filter has a robust phase margin and
it is a better alternative to the previous observer also from the frequency point of view.
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Chapter 1

Control oriented modelling of
tokamaks

The physical description of the plasma which has been adopted in this work is summarized
in this section. It is also shown the link between the control coils, the vessel and the plasma
itself by means of Green functions and the model discretization for the coils and the vessel
filaments. The final model that will be derived will account for the force balance equation
given by the Grad-Shafranov equation and for the circuit equation linking all the currents
of the system. For more details we refer to [2], [4], [5], [17].

1.1 Derivation of Grad-Shafranov equation

Magnetic-fusion plasmas are complex self-organized systems with an extremely wide range
of spatial and temporal scales, from the electron-orbit scales (∼ 10−11 s, ∼ 10−5m) to the
diffusion time of electrical current through the plasma (∼ 102 s) and the distance along the
magnetic field between two solid surfaces in the region that determines the plasma-wall
interactions (∼ 102m) [2]. The most straightforward way for describing plasmas would be
the microscopic particle approach: solving the equations of motion for the many individual
particles (both electrons and ions) that form the plasma in externally imposed electromag-
netic fields and in the fields generated by the particles. However, this is computationally
impossible to apply to realistic magnetic-fusion plasmas, which typically contain 1022−1023

particles. The second formalism to describe plasma is the so-called kinetic description. It
describes the plasma with a probability density function in the phase space1. It gives a
precise description of the plasma, allowing to describe many nonlinear phenomena and it
is programmable using methods such as particle in cell (PIC) hence very promising in the
field of theoretical computational physics [2]. Finally, the last approach is the so-called
magnetohydrodynamics (MHD) description2. It is a fluid description of the plasma com-
bined with the the electromagnetic field evolution. As a fluid description, it also can be
obtained from the kinetic description looking at the first moments of the probability func-
tion distribution.

1In Hamiltonian Mechanics it consists of all possible values of position and momentum (q, p).
2The time scales of the MHD model are in the order of the resistive time scale [2].
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2 CHAPTER 1. CONTROL ORIENTED MODELLING OF TOKAMAKS

Definition 1. (Mass bulk fluid velocity) Given the ion mass bulk velocity ui and the
electron mass bulk velocity ue, i.e.,

ui =
1

Ni

∑
k

uik

ue =
1

Ne

∑
k

uek

where Ni and Ne are the number of particles of species i and e in the volume of plasma
taken into consideration, we define mass bulk fluid velocity as the quantity

u =
me ne ue +mi ni ui

me ne +mi ni

where nk and mk, k = i, e are the number of particles per unit volume and the mass of the
species respectively.

Since mi ≫ me we obtain u ∼ ui, and if we consider the presence only of electrons and
ions with a single charge the quasi neutrality condition reads n = ne = ni.

Definition 2. (Plasma current density) Given the ion mass bulk velocity ui and the
electron mass bulk velocity ue, the number of particles per unit volume of the species and
the electron charge e, we define plasma current density as the quantity:

jpl = e ni ui − e ne ue

If we define the total mass of the plasma m = mi + me and the total plasma pressure
p = pi + pe, the total momentum balance equation is the following:

nm
( ∂u

∂t
+ u · ∇u

)
+∇p = jpl ×B

We introduce two important time scales in the system:

Definition 3. (Alfvén time) We define the Alfvén velocity as

vA =
B

√
µ0 nimi

which represents the travelling velocity of typical oscillation of ions (hence the bulk mass of
the plasma) in magnetic fields. The Alfvén time τA is the characteristic time of propagation
of these waves in the system:

τA =
a

vA

where a is the minor radius of the torus.

Definition 4. (Resistive time) The characteristic time of momentum transport due to
particle collisions is defined as

τR =
µ0 a

2

η

where η is the plasma resistivity.
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The ratio of the two time scales defines the dimensionless Lundquist parameter S ≡ τR
τA

.
In modern fusion experiments S ∼ 106 − 1012 meaning that the propagation of the ion-
s/magnetic field oscillations in the system is much faster than the momentum diffusion
from collisions [2]. Since we are interested in phenomena of the order of the resistive time
we can use the parameter ϵ = S−1 to look for solutions in which all the time derivatives,
velocities, sources of dissipation and the electric field are of order of ϵ i.e:

∂

∂t
∼ u ∼ η ∼ E ∼ ϵ ≪ 1

Therefore we obtain:
ϵ2 nm

( ∂u

∂t
+ u · ∇u

)
+∇p = jpl ×B

and since we are interested in phenomena in the resistive time range we obtain the ideal
massless MHD force balance, also called plasma equilibrium equation:

jpl ×B = ∇p

The static free boundary equilibrium problem looks for the magnetic field which satisfies
the MHD force balance equation together with Maxwell’s equations both under the static
condition ∂

∂t = 0. The system of equations is then:
jpl ×B = ∇p
∇×B = µ0j
∇ ·B = 0

where the current density j is composed of the contribution of both the plasma current
density and current densities external to the plasma but present in the domain of validity
of the system (poloidal coils3 and passive structures) i.e. j = jpl + je where je = ja + jv is
the sum of contribution from the active coils and the vessel.
Now, as done in [21], if we consider a cylindrical frame (R,Z, φ) in the hypothesis of
axisymmetry ∂

∂φ = 0 we have that:

∇ ·B =
1

R

∂(RBR)

∂R
+

1

R

∂Bφ

∂φ
+

∂BZ

∂Z
=

=
1

R

∂(RBR)

∂R
+

∂BZ

∂Z
=

1

R

∂(RBR)

∂R
+

1

R

∂(RBZ)

∂Z
= 0

Definition 5. (Poloidal magnetic flux [21]) In cylindrical coordinates called R the
radius from the geometric centre of the torus, called Z the cylindrical height of the system
and identified with (R,Z)p the toroidal section, is called poloidal magnetic flux Ψ4 in P ,
where P ∈ (R,Z)p the total flux of B through the surface S having as its edge the toroidal
ring passing through P , i.e.,

Ψ = −
∫
S
B · dA = −2π

∫ RP

0
BZ RdR

Where RP is the radius value in P . We have immediatly that

RBZ = − 1

2π

∂Ψ

∂R
3We will not consider the toroidal coils currents.
4In a simply connected surface we have that ∇×B = A thus Ψ = RAφ.
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thus
1

R

∂(RBR)

∂R
+

1

R

∂(RBZ)

∂Z
=

1

R

∂(RBR)

∂R
− 1

2π R

∂Ψ

∂Z∂R
= 0

from which we get

RBR =
1

2π

∂Ψ

∂Z
We obtain

B =
1

2πR

∂Ψ

∂Z
eR − 1

2πR

∂Ψ

∂R
eZ +Bφ eφ

Definition 6. (Poloidal magnetic field [21]) We call poloidal magnetic field the quan-
tity:

Bp = BR eR +BZ eZ =
1

2πR

∂Ψ

∂Z
eR − 1

2πR

∂Ψ

∂R
eZ =

1

2πR
∇Ψ× eφ

We deduce that B · ∇Ψ = 0 so field lines lie on iso poloidal flux surfaces.

Figure 1.1: Frame of reference, (From [3])

Now, let’s consider Ampère’s law in cylindrical coordinates with the assumption of ax-
isymmetry:

∇×B =
( 1

R

∂BZ

∂φ
− ∂Bφ

∂Z
,
1

R

(∂(RBφ)

∂R
− ∂BR

∂φ

)
,
∂BR

∂Z
− ∂BZ

∂R

)T
=

=
(
−∂Bφ

∂Z
,
1

R

∂(RBφ)

∂R
,
∂BR

∂Z
− ∂BZ

∂R

)T
= µ0j

In homogeneous and isotropic conditions we obtain:

jR = − 1

µ0

∂Bφ

∂Z

jZ =
1

µ0R

∂(RBφ)

∂R

jφ =
1

µ0

(∂BR

∂Z
− ∂BZ

∂R

)
= − 1

2πµ0R

(
R

∂

∂R

( ∂Ψ

R∂R

)
+

∂2Ψ

∂Z2

)
Definition 7. (Poloidal current density [21]) We call poloidal current density the quan-
tity:

jp = jR eR + jZ eZ = − 1

µ0

∂Bφ

∂Z
eR +

1

µ0R

∂(RBφ)

∂R
eZ =

1

µ0R
∇
(
RBφ

)
× eφ
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Definition 8. (Grad-Shafranov operator) We define the bidimensional elliptical oper-
ator:

∆∗ = R
∂

∂R

(
1

R

∂

∂R

)
+

∂2

∂Z2

We can now rewrite the last equation:

jφ = − 1

2πµ0R

(
R

∂

∂R

( ∂Ψ

R∂R

)
+

∂2Ψ

∂Z2

)
= − 1

2πµ0R
∆∗Ψ

The current density is thereby totally defined by the following equations5:

j = jp + jφ eφ =
1

µ0R
∇
(
RBφ

)
× eφ + jφ eφ

∆∗Ψ = −2πµ0Rjφ

Now, since:
B · (jpl ×B) = B · ∇p = 0

and since we are in axisymmetry and so p = p(R,Z), we have that Bφ · ∇p = 0, thus:

Bp · ∇p =
1

2πR
∇Ψ× eφ · ∇p =

1

2πR
eφ · ∇p×∇Ψ = 0

therefore ∇p and ∇Ψ are parallel vectors, thus p = p(Ψ).
Focusing in a similar way on the plasma current density, since:

jpl · (jpl ×B) = jpl · ∇p = 0

for axisymmetry, we have that:

jp · ∇p =
1

µ0R
∇
(
RBφ

)
× eφ · ∇p =

1

µ0R
eφ · ∇

(
RBφ

)
×∇p = 0

therefore ∇
(
RBφ

)
, ∇p and ∇Ψ are parallel vectors, thus RBφ ≡ T (Ψ).

We can finally rewrite the cylindrical plasma equilibrium equation in axisymmetry and with
isotropic pressure:

jpl ×B =
( 1

µ0R
∇
(
RBφ

)
× eφ + jpl,φ eφ

)
×
( 1

2πR
∇Ψ× eφ +Bφ eφ

)
= ∇p =

=
( 1

µ0R

dT (Ψ)

dΨ
∇Ψ× eφ + jpl,φ eφ

)
×
( 1

2πR
∇Ψ× eφ +

T (Ψ)

R
eφ

)
=

dp(Ψ)

dΨ
∇Ψ

Now, by performing the vector products and deleting the terms ∇Ψ, we reach the following
equation:

− 1

µ0R

dT (Ψ)

dΨ

T (Ψ)

R
+

jpl,φ
2πR

=
dp(Ψ)

dΨ

If we combine the previous equation with the Poisson’s like equation of above and we con-
sider that je = je,φ eφ, we obtain the Grad-Shafranov equation:

∆∗Ψ = −4π2

(
µ0R

2 dp(Ψ)

dΨ
+ T (Ψ)

dT (Ψ)

dΨ

)
− 2πµ0Rje,φ , (R,Z) ∈ Ω = (R,Z)p

that is a Poisson’s problem once we fix the boundary conditions [2], [19].
5The second equation is similar to a Poisson’s problem so Ψ(R,Z) is totally defined once we know the

source jφ(R,Z) and the boundary conditions.
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1.1.1 Boundary conditions

The Grad-Shafranov equation is a non-linear 2-dimensional elliptic PDE that gives Ψ(R,Z)
once we give p(Ψ), T (Ψ) and the boundary conditions. First of all let’s define some poloidal
domains [2], [14]:

Ω = (R,Z)p - poloidal plane
Ωc ⊆ Ω - computational domain
Ωp ⊆ Ωc : jpl ̸= 0 - plasma region
Ωe = Ωa ∪ Ωv ⊆ Ω - active coil and passive vessel region

Ωvac = Ωc ∩ Ωp - vacuum region inside computational domain

Figure 1.2: Domains, (From [2])

The plasma region Ωp is contained
within the so-called “last closed flux
surface" (LCFS) which is the out-
ermost closed surface of the nested
flux surfaces at constant Ψ. There
are two possible conditions in a toka-
mak that can define the LCFS [19].
If the plasma touches the limiter
then the LCFS is given by the isoflux
line at the flux value of the contact
point and in these points the flux
reaches its maximum value, i.e.

ΨLCFS = max
(R,Z)∈∂ΩL

Ψ

In this case we refer to a so-called
“ limited" plasma and with ∂ΩL we
indicate the limiter contour. In
the second case the boundary of
the plasma region ∂Ωp is defined by
the isoflux line at the value of the
poloidal flux of the X point, which
is a saddle point of the flux map
Ψ(R,Z), i.e.

∇ΨLCFS = 0 ∧ detHess (ΨLCFS) < 0

In this case we refer to a so-called
“diverted" plasma [19].

In figure ( 1.2 ) the domains in the poloidal plane of TCV are shown. Now we can distin-
guish two different types of boundary conditions [2], [19]:

• Fixed BCs: we prescribe “a priori" Dirichlet boundary conditions:

Ψ(R,Z) = Ψpl +Ψe =
∑

i=pl,a,v

∫
Ωi

G(R,Z;R′, Z ′) ji(R
′, Z ′) dR′dZ ′ , (R,Z) ∈ ∂Ωc

where Ψpl is produced by current plasma density jpl,φ (jpl,φ = 0 outside Ωp ⊆ Ω),
Ψe is produced by je,φ = ja,φ + jv,φ and where G(R,Z;R′, Z ′) is the Green function
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connecting the source point (R′, Z ′) to the target point (R,Z) 6. Note that only the
toroidal component of the current density ji enters, due to the toroidal symmetry of
the tokamak.

• Free BCs: determining the plasma boundary is part of the solution of the equilib-
rium reconstruction and this leads to a non-linear numerical problem. In this case
the constraints are:

∆∗Ψ = −4π2

(
µ0R

2 dp(Ψ)

dΨ
+ T (Ψ)

dT (Ψ)

dΨ

)
, (R,Z) ∈ Ωp

∆∗Ψ = 0 , (R,Z) ∈ Ωvac

∆∗Ψ = g(Ψ) , (R,Z) ∈ Ωe

In this work we address to Free BCs since the plasma boundary is unknown and is a part
of the solution of the problem. The Dirichlet boundary conditions holds at every iteration
once the plasma region has been determined.

1.2 Model discretization

In order to give a description of the toroidal plasma current jpl,φ we need an approximated
approach. First of all the 2-dimensional computational domain Ωc is discretized with a
grid of elements of width ∆R and height ∆Z. Also the non-zero plasma current region Ωp

is discretized in the same way7 . Let’s give some definitions to present the basis function
discretization [19], [6], [17].

Definition 9. (Magnetic axis) We now define with ΨA = Ψ(RA, ZA) the value of the
poloidal flux at the plasma axis as the minumum point of the poloidal flux map Ψ(R,Z),
i.e.

∇ΨA = 0 ∧ detHess (ΨLCFS) > 0

The point (RA, ZA) in the poloidal plane represents the center of the plasma.

Definition 10. (Normalized poloidal flux) We define the normalized poloidal flux as:

Ψ̂ =
Ψ(R,Z)−ΨA

ΨLCFS −ΨA

Definition 11. (Poloidal beta) The poloidal pressure factor βp is the ratio between the
volume-averaged thermal pressure and the volume-averaged poloidal magnetic field pressure:

βp =
⟨p⟩
Bp

2µ0

Definition 12. (Total plasma current) The total plasma current Ip is defined by the
flux of the toroidal component of the plasma current density in the poloidal cross-section.

Ip =

∫
Ωp

jpl · dA =
1

2π

∫ ΨLCFS

ΨA

dΨ

∮
∂Ωp

Bp

6For the external current density je, instead of continuous distribution in the poloidal plane, we will
consider sets of filamentary currents located at the positions (Ri, Zi) with point-wise sections in the poloidal
plane. This is equivalent to consider ji , as a Dirac distribution ji δ(R−Ri, Z − Zi), where (Ri, Zi) is the
location of the filament i.

7In our codes we assume at this stage that the plasma current is contained inside a discretized contour
∂Ωp where jpl ̸= 0, hence we do not consider currents in the scrape off layer [2].
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After an initial ramp-up phase, Ip is maintained stationary and then ramped-down at the
end of the experiment. For the proof of the second equivalence in the previous definition
we refer to [2].

Definition 13. (Safety factor) If we consider the poloidal cylindrical frame (r, ϑ) and
if we call N the number of toroidal turns and M the number of poloidal turns following a
field line around the torus, we call safety factor qA the quantity 8 :

qA =
N

M
=

∂φ

∂ϑ
=

r

R

Bφ

Bp

Definition 14. (Basis functions representation of the plasma current distribu-
tion) As a direct consequence of the more fundamental representation of p′ and TT ′ as
basis functions, the plasma current is parametrized by a linear combination of polynomial
basis functions g(Ψ(R,Z)):

jpl,φ = 2π
(
R

dp(Ψ)

dΨ
+

T (Ψ)

µ0R

dT (Ψ)

dΨ

)
=
∑
ip

αip Rgip(Ψ(R,Z)) +
∑
iT

αiT R−1 giT (Ψ(R,Z))

In such a formulation the reconstruction problem consists of finding the coefficients αg ≡
{αip , αiT }. The more basis functions are included, the more coefficients are to find but the
description of the current will be more precise [14], [19].

Figure 1.3: Example of basis functions as a function of the normalized poloidal flux Ψ̂

As we will see, in fge-code the number of coefficients αg will be chosen in order to match
exactly the number of parameters in the vector c = [βp Ip qA]

T [8].

8In conventional tokamaks qA varies from 1 on axis to 3 − 4 on the edge. Since qA is related to the
number of toroidal turns to complete one poloidal revolution of a given magnetic field line lying on a given
flux surface, it can be shown that on the isobaric surfaces where qA ∈ Q we have periodicity on the plasma
configuration. The qA-profile is related to plasma instabilities and has become a crucial parameter to be
estimated and controlled during plasma operations [2].
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1.2.1 Current discretization

1.2.1.1 Active coils

In tokamaks, coils that are used to generate magnetic fields and to control the plasma
bulk position have toroidal symmetry. This is done in order to keep the 2-dimensional
physical description of the system. We will refer to this set of coils as active, control
or poloidal coils. The combination of physical active coils are connected in series9 to
form an active circuit that is labeled a. Each coil is discretized into coil ‘winding packs’
consisting each one of nw conductor filamentary windings, since most of the coils in a
tokamak are too large to consist of a single conductor (as shown in figure ( 1.5 )). In an
independent active coil k, k ∈ {1, ..., na} in which each winding is modeled by a filament
at (R′

i, Z
′
i) ,∀ i ∈ {1, ..., nw} and that each one carries the in-series current Iw, the flux

generated by all the windings combined is:

Ψk(R,Z) =

nw∑
i=1

M(R,Z;R′
i, Z

′
i) Iw = Mk(R,Z) Iw

where the Green function Mk(R,Z) =
∑nw

i=1M(R,Z;R′
i, Z

′
i) is the mutual inductance

between the entire k-coil and the point (R,Z) of the poloidal plane.

1.2.1.2 Vacuum vessel

The tokamak chamber where the plasma is confined is sorrounded by a low resistivity
metallic structure called vacuum vessel, in order to slow down the vertical instabilities.
Since the vacuum vessel is a metallic structure it has to be accounted that it can carry
toroidal electrical currents induced by the time-varying poloidal magnetic field. Morover,
since the thickness of the vacuum chamber is little, it is modeled as equidistantly spaced
toroidal independent filamentary windings labeled v as in figure ( 1.4 ). This filamentary
representation of vessels will sometimes also be referred to as passive circuits or passive
structures. The combination of the active circuit current and vacuum vessels stacked
together will be labeled as e, s.t. the number of external circuits is the sum of the number of
independent active circuits and vacuum vessel windings, i.e. ne = na+nv. The contribution
of a winding current (active circuit or vessels) to the poloidal flux is given by discretizing
the Green function:

ΨIe(R,Z) = ΨIa +ΨIv =

na∑
i=1

G(R,Z;Ri, Zi) Ia,i +

nv∑
j=1

G(R,Z;Rj , Zj) Iv,j = M Ie

where M ∈ Rne is the collection of the Green functions Mi = G(R,Z,Ri, Zi)
10 and Ie ∈ Rne

is the external circuit current, both active and passive.

9The poloidal coils of TCV have independent power supplies. They consists of 32 coils (some of them
are connected in series or in anti-series) making up na = 19 active circuits. In radial position control
the coils at the left (inner part of the poloidal cross-section) of the poloidal plane are in series and with
opposite sign with respect to the right ones (outer part of the poloidal cross-section) in order to counteract
the radial centrifugal force. In vertical position control the coils at the left and at the right of the top of the
poloidal cross-section are connected in series and have opposite sign with respect to the left and right coils
of the bottom of the poloidal cross-section, in order to counteract the vertical displacement instability.

10Because of the symmetry of the Green functions the mutual inductances are symmetric and positive
definite matrices.
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Figure 1.4: Current discretization

If we stack the contribution of the
circuit k, k ∈ {a, v} to the flux
x, x ∈ {a, v} in the flux vector
ΨIk

x ∈ Rne the above expression can
be written as a linear mapping:

ΨIa
a = Maa Ia

ΨIv
a = Mav Iv

ΨIa
v = Mva Ia

ΨIv
v = Mvv Iv

and in a more compact form:

ΨIe
e = Mee Ie

with:

Mee =

(
Maa Mav

Mva Mvv

)
∈ Rne×ne

Figure 1.5: Poloidal coils of TCV, (From [4])
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1.2.1.3 Plasma current

The plasma toroidal current density is modeled by the computational grid as a rectangular
filamentary current of width ∆R and height ∆Z. At each position (R,Z) of the discrete
grid Ωc the filament plasma current is defined as:

Iy = jpl(R,Z)∆R∆Z =

{ ∑
g=ip,iT

αg R
νg gg(Ψ(Ri, Zi))∆R∆Z , if (Ri, Zi) ∈ Ωp

0 , if (Ri, Zi) ∈ Ωc − Ωp

where νg = −1 if g = iT and νg = 1 if g = ip. Morover, since the plasma current is also a
source of the poloidal flux we have that the plasma contribution to the flux is:

Ψ
Iy
e = Mey Iy

where Mey ∈ Rne×ny is the matrix mutual inductance mapping the plasma current to the
circuit flux s.t. Mey,ij = G(Ri, Zi;Rj , Zj).
Therefore:

Ψe ≡ Ψ
Ie,Iy
e = Mee Ie +Mey Iy

1.2.1.4 Grad-Shafranov operator

The Grad-Shafranov operator is discretized by means of the Finite Difference Method [19]:

∆∗Ψ(Ri, Zj) ≈
(
DΨ

)
ij
=

1

∆Z2

(
Ψi,j+1 +Ψi,j−1 + aiΨi+1,j + biΨi−1,j − ciΨi,j

)
with: 

ai =
(
∆Z
∆R

)2
Ri

Ri+∆Ri/2

bi =
(
∆Z
∆R

)2
Ri

Ri−∆Ri/2

ci = 2 + ai + bi

Therefore, if we stack Ψ in a vector of Rnn, where nn is the number of grid nodes of Ωc
11,

the differential operation becomes a linear matrix multiplication:

∆∗Ψ ≈ DΨ

where Ψ = [Ψ11 Ψ12 ... Ψ21 Ψ22 ... Ψnn]
T and D is a matrix formed of 5 diagonals. Since

ai ̸= bi the matrix D is not symmetric. The discretized Grad-Shafranov equation is then:

DΨy = −2πµ0
Ry

∆R∆Z
Iy(αg,Ψy)− 2πµ0Ry Ie

where Ry is the radial coordinate in the poloidal plane computed in (Ry, Zy) ∈ Ωp. This
equation can be solved by means of the iterative Picard method12 once we impose the
boundary condition:

Ψo = Moa Ia +Mov Iv +Moy Iy , (R,Z) ∈ ∂Ωc

where Ψo is the discretized flux on the discretized boundary domain ∂Ωc, {Ia, Iv, Iy} are
respectively the discretized control coil, vessel and plasma currents vectors, and Mox =
G(Ro, Zo;Rx, Zx) ∈ Rno×nx , x ∈ {a, v, y} are the discretized Green functions linking the
source points (Rx, Zx) to the boundary points (Ro, Zo) ∈ ∂Ωc.

For more details, we refer to [2], [4], [8], [19].
11In this example the computational domain has n× n nodes spaced ∆R along R and ∆Z along Z.
12The iterative Picard method is used in reconstruction codes such as liuqe where the solution is found

iteratively from measurements in a least square sense once we impose the boundary conditions and we fix
the first iteration of p′ and TT ′ (i.e., we impose the first iteration coefficients αg). But since the Picard
method presents instability to vertical displacement events the reconstruction problem has been recast into
a zero-finding problem and solved by means of the Jacobian free Newton-Krylov method [2], [8].
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1.2.2 Circuit equation

The evolution of the active and passive circuits follows the Ohm-Faraday law :

dΨe

dt
= Ve −Ree Ie

where Ve = [Va 0]T is the voltage applied to the circuit (only the PF coils have a voltage
source), Ree ∈ Rne×ne is a diagonal matrix with entries the resistances of each of the
conducting structure elements [4], [14]. Now, since:

Ψe = Mee Ie +Mey Iy

and since Mee and Mey are assumed constant in time, we get:

Mee İe +Mey İy − Ve +Ree Ie = 0

1.2.2.1 Vacuum vessel eigenmodes decomposition

Instead of looking at the vessel as a filamentary discretization it is often useful to change
the frame basis and describe the vessel according to its reaction speed to perturbations.
If we consider the linear ODE associated with the PF circuits, the vessel currents and the
plasma currents we get the following linear system [4]: Va

0
0

 =

 Maa Mav May

Mva Mvv Mvy

Mya Myv Lp

 İa
İv
İy

+

 Raa O O
O Rvv O
O O Rp

 Ia
Iv
Iy


Since from reconstruction codes we know iteratively the plasma boundary ∂Ωp, we can
know the value of the total toroidal plasma current Ip and stack the values of the inner
rectangles into a distribution vector Iy s.t. the self inductance of the plasma is defined as
[2]:

Lp =
ITy Myy Iy

Ip

The plasma resistance Rp ∈ Rny×ny is a diagonal matrix collecting the resistances of all
the plasma elements (Rp is usually defined externally). Now if we consider the second
equation of the system we obtain:

0 = Mva İa +Mvv İv +Mvy İy +Rvv Iv

Let’s pack the external factors as an input such that:

0 = Mvv İv +Rvv Iv + U

Solving the homogeneous equation and since the mutual inductance matrix is symmetric
and positive definite and thus invertible we get the continuous linear system:

İv = −M−1
vv Rvv Iv

Now, since M−1
vv and Rvv are symmetric and positive definite then −M−1

vv Rvv is symmetric
and negative definite thus, from the spectral theorem, diagonalizable in R such that:

−M−1
vv Rvv = T ΛT T
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where the orthogonal matrix T and the diagonal matrix Λ are made such as Λ has decreas-
ing diagonal elements. Now, if we define:

Iu = T T Iv

we have that:

İv = T ΛT T Iv =⇒ T T İv = ΛT T Iv =⇒ İu = Λ Iu

The solution of the linear system is therefore:

Iv(t) =

nv∑
i=1

vi αi exp(λit)

where vi ∈ Rnv are the eigenvectors of −M−1
vv Rvv (i.e., the columns of T ), λi are the

eigenvalues of −M−1
vv Rvv and αi ∈ R ∀ i are determined by imposing the initial conditions:

T [α1 ... αnv ]
T = [v1 ... vnv ] [α1 ... αnv ]

T = Iv(0)

Instead of considering all the modes, the fastest decaying ones could be omitted. This
would allow simplifying a lot the system while keeping an accurate description.
Let’s now find the vessel circuit equation with this new frame instead of the filamentary
description. The vessel circuit equation in Laplace domain becomes:

0 = L
(
0
)
= L

(
Mva İa +Mvv İv +Mvy İy +Rvv Iv

)
=

=
(
Rvv + sMvv

)
Iv + sMva Ia + sMvy Iy =

= Rvv

(
I + sR−1

vv Mvv

)
Iv + sMva Ia + sMvy Iy =

= Rvv

(
I − s T Λ−1 T T

)
Iv + sMva Ia + sMvy Iy =

= Rvv T
(
I − sΛ−1

)
T T Iv + sMva Ia + sMvy Iy =

=
Rvv

ru
T
(
ru I − s ru Λ

−1
)
T T Iv + sMva Ia + sMvy Iy =

=
Rvv

ru
T
(
ru I + sD

)
T T Iv + sMva Ia + sMvy Iy =

=
Rvv

ru
T
(
ru I + sD

)
T T Iv + sMva Ia + sMvy Iy

where ru is a positive resistance like term (arbitrary chosen) to give a resistive form to the
diagonalized expression, and D = −ru Λ

−1 is a positive definite matrix with deacreasing

diagonal elements. If we multiply the last equation for
(
Rvv
ru

T
)−1

we obtain:

0 =
(
ru I + sD

)
Iu + s T T

(Rvv

ru

)−1
Mva Ia + s T T

(Rvv

ru

)−1
Mvy Iy =

=
(
Ruu + sMuu

)
Iu + sMua Ia + sMuy Iy

The last equation is the corresponding circuit equation in the basis of vessel eigenmodes in

frequency domain. If we define Tuv ≡
(
Rvv
ru

T
)−1

= T T
(
Rvv
ru

)−1
we obtain the following
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linear tranformations: 

Iv = Tvu Iu
Iu = T T

vu Iv
Ruu = Tuv Rvv Tvu

Muu = Tuv Mvv Tvu

Mua = Tuv Mva

Muy = Tuv Mvy

where Tvu ̸= T T
uv , T−1

uv ̸= T T
uv and T−1

vu = T T
vu . The number of eigenmodes will be hereafter

defined as nu ≤ nv [14].

1.3 Measurements

Reconstruction codes apply also for RFP machines13 but in this work the vessel currents
of the TCV tokamak fusion reactor14 are estimated [11]. The Kalman filter method has
been already used in a previous work on a more basic simulated tokamak reactor called
Anamak [5], [14].

Anamak (analytical-tokamak) is a numerical tokamak developed at SPC that can
be configured to produce a circular stable shot (without vertical displacement event)
as well as elongated unstable shots. Anamak consists of na = 8 control coils, each
one corresponding to an active circuit, nf = 16 flux loops and nm = 16 magnetic
probes. Additionally the vessels are described by nv = 200 equally spaced toroidal
filaments.

In comparison,

TCV accounts for 32 control coils (some of them are connected in series or in anti-
series) making up na = 19 active circuits, 38 flux loops, and 38 magnetic probes.
The D-shaped chamber is allowing to produce elongated plasmas. The vessels are
described by nv = 256 equally spaced toroidal filaments that reduces to nu

15 most
significant modes (the slowest ones) in the eigenmode description.

An example of a stable shot is given in circular Anamak in figure ( 1.6 ) on the left while,
on the right, an unstable elongated and limited shot (66872) of TCV is presented.

In TCV plasma parameters16, currents, electric and magnetic fields, flux values and its
variations are measured by means of wires and coils17 set all around the tokamak, poloidally
and toroidally. Imposing the force balance equation represented in the poloidal plane by
the Grad-Shafranov equation we can solve the problem of reconstruction of the Ψ-surfaces
in a least square sense using the basis functions. The constant terms of the equations are
the measures of the Ψ values, the B values and the active coil currents Ia [5].
The active coils currents are measured and the filamentary discretization has already been
explained so the link between coil currents and measurements is trivially given by:

Ia = I Ia

A flux loop is a wire mounted on the vacuum vessel connected to a voltmeter. Since the
13Such as at Consorzio RFX in Padua, Italy.
14At SPC-EPFL in Lausanne, Switzerland.
15The choice on nu depends on the specific application.
16For example: poloidal beta βp, total plasma current Ip, internal inductance li, safety factor qA [24].
17For example: Rogowski coil, flux loop, diamagnetic loop, poloidal field probes, Mirnov coils [24].
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Figure 1.6: (From [14])

voltage is given by Vf = Ψ̇ it’s necessary to use an integrator (using operational amplifiers)
to obtain the magnetic poloidal flux:

Ψ(t) =

∫ t

0
Vf (τ) dτ

A magnetic probe consists of a small winding with several turns s.t. the magnetic field
is homogeneous inside of it. Coupled to a voltmeter it provides a direct measurement of
the magnetic field time derivative amplitude, i.e. Vm = NSḂ, where N is the number of
windings, S is the area of the probe. Using again an integrator we obtain a measure of the
magnetic field:

B(t) =
1

NS

∫ t

0
Vm(τ) dτ

The linear mapping between currents and poloidal flux and magnetic field is made as
usual by Green functions: {

Bm = Bma Ia +Bmv Iv +Bmy Iy
Ψf = Mfa Ia +Mfv Iv +Mfy Iy

where Bmx ∈ Rnm×nx , x ∈ {a, v, y} is a Green function made modifying the mutual induc-
tance matrix Mmx simply dividing by NS.

One possible reconstruction of the plasma and external currents from the measurements
devices diagnostics is given solving in a least square sense the system:

∥Ax− y∥22
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where the matrix A represents the linear link between the vector of measurements y =
[Ia Bm Ψf Is]

T and x = [Ie Iy Is αg]
T ∈ Rne+ny+nf+nαg 18 . The result can be used to

determine the plasma domain and solve the discretized Grad-Shafranov equation previously
presented. Unfortunately this approach is not feasible since to have an accurate solution
in flux surfaces reconstruction it is necessary to have a large number of plasma current
filaments. On the other hand another approach, that is used in post-shot equilibrium
reconstruction code developed on TCV, should be to define a new state x = [Ie αg]

T in
order to find the basis function coefficients and then solve for the plasma current Iy in a
further step [5], [14], [19].

1.4 Equilibrium codes

A matlab-based library of codes called meq has been developed at SPC in order to solve
various equilibrium problems. The main codes of such a library are:

• LIUQE:
Inputs: magnetic measurements y
Outputs: {Ia, Iv, dp

dΨ , T
dT
dΨ , Ψ(R,Z)}

It solves mer 19 using least squares estimation by finding the optimals αg coefficients.
It is used for post-discharge and real time analysis [19].

• FBT:
Inputs: { dp

dΨ , T
dT
dΨ , ∂Ωp}

Outputs: {Ia, Ψ(R,Z)}
It solves the liuqe inverse problem i.e. for a given plasma shape and contraints
on the Ψ-functions p′ and TT ′ it finds the active coils current Ia to achieve the
desired equilibrium. It is used for shot preparation and feedforward Ia(t) for TCV
operations [12].

• FGS:
Inputs: { dp

dΨ , T
dT
dΨ , Ia, Iv}

Outputs: {Ψ(R,Z)}
It is the Forward Static Grad-Shafranov solver, it solves a free boundary static prob-
lem for given contraints on the αg-coefficients. The main differences with respect to
liuqe are that in fgs Ia is assumed known and there are no measurements. Moreover
the algorithm of fgs is based on a root-finding problem [2], [8].

• FGE:
Inputs: {Ip(t), βp(t), qA(t), li(t), Va(t)}
Outputs: {Ia(t), Iv(t), Ψ(R,Z, t)}
It is a dynamical solver: for a given initial time condition on the outputs and a
set c of constraints on plasma quantities to constrain αg, it solves Grad-Shafranov
equations coupled with circuit equations. As we will see in the next Chapters, the
code can be used as a simulator for pre-shot preparation and a local linearization of
this system of equations around an equilibrium can be derived and used for linear
plasma position controller and observer design [2], [8].

Since the pourpose of this work is to design a state observer for the vessel current estima-

18The current vector Is represents the vessel currents in the positions of the poloidal flux loops and can
be defined as Is = − Ψ̇f

Rs
where Rs is the local vessel resistances matrix.

19Magnetic equilibrium reconstruction.
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tion, the fgs solver will be explained more in detail. Some details concerning the other
codes can be found in [2], [8], [12], [19].

1.4.1 fge - Forward Evolutive Grad-Shafranov solver

fge is a free boundary dynamical Grad-Shafranov solver. It is based on the time-step
iteration of fgs coupled to time-step dynamical circuit equation. Let’s introduce first
the principle of free boundary Grad-Shafranov equation: given ν = {Ia, Iv, c} where for
example c = {Ip(t), βp(t), qA(t)}20 is a set of fixed constraints, we aim to find x = {Iy, αg}
where αg is the coefficients vector of the polynomial function expansion of p′ and TT ′. The
problem is cast as a root-finding problem21:

Gk+1(x, ν) =

(
ϵyk+1

ϵck+1

)
k→∞−−−→

(
0
0

)
∈ Rny+nαg

The function G is now only function of Iy and αg since ν is fixed. The Grad-Shafranov
equation gives ny equations and the constraints equations give nag equations. The iterative-
step residuals must converge to zero. The plasma current residual is defined as:

ϵyk+1
= Iky − Ik+1

y

where Ik+1
y is computed from:

Ψk
o = MoeIe +MoyI

k
y , (R,Z) ∈ ∂Ωc

DΨk
y = −2πµ0

Rk
y

∆R∆Z
Iky − 2πµ0R

k
y Ie

And finally, once the plasma domain Ωk
p is known from Ψk

x, x ∈ {a, v, y} we obtain:

Ik+1
y =

{ ∑
g α

k
g R

νkg gg(Ψ
k
y(Ri, Zi))∆R∆Z , (Ri, Zi) ∈ Ωk

p

0 , (Ri, Zi) ∈ Ωc − Ωk
p

where νg = −1 if g = iT and νg = 1 if g = ip.
Moreover, concerning the constraints residual ϵck+1

if c = [c1 ... cnαg
]T is the vector of

constraints and ci , i ∈ 1, ..., nαg is a scalar, there exists a linear map

A : αg 7→ c

linking the αg-coefficients to the contraints, i.e. Aj(α1 ... αnαg
) = cj . For example let’s

take as scalar constraint the total plasma current at time t, i.e. ci = Ip. At the k-th
iteration (referring of course to the same time instant) we have that:

Ikp =
∑
y∈Ωk

p

Iky =
∑
y∈Ωk

p

∑
g

αk
g R

νkg gg(Ψ
k
y(Ri, Zi))∆R∆Z = Ak

pg α
k
g

In this case we have that ϵck+1
= Ak+1

pg αk+1
g − Ip.

Since the problem is non-linear the solution is not necessary unique and the method might
not converge. fgs is a static solver that allows computing equilibrium plasma flux surfaces

20If we consider the polynomial functions described in this work we have that nαg = 3 since we take a
linear function for gip and a combination of a linear and parabolic function for giT .

21It is solved using Newton-Krylov method.
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and toroidal plasma current distribution at time t, assuming known conductor currents Ie.
In reality, the currents are a result of the circuit equations (as it was presented in a previous
subsection), which are ODEs that involve also the movement of the plasma. Therefore a
dynamic solver is needed. fge is a dynamical solver, based on fgs, that includes the
circuit equations to express the time evolution of the poloidal flux Ψ combined with the
evolution of the conductor currents. We indicate with νt = {Ita, Itv, ct}22 the external
currents vector and the constraints vector at time instant t while we indicate the vector of
unknowns at time t with xt = {Ity, αt

g, I
t
e} since overall Ite is unknown (only Ia is known

from measurements in specific time instants). The active coils voltages Va(t) are provided
at each time-iteration. The problem is cast as a root-finding problem just as in fgs:

F (xt+1) =

 Ψt+1
e −Ψt

e
∆t − V t+1

a +ReI
t+1
e

Ψt+1
e −MeeI

t+1
e −MeyI

t+1
y

Gt+1(x, ν)

 N→∞−−−−→

 0
0
0

 ∈ R2ne+ny+nαg

where index t+1 means that the quantity is computed at time t+∆t, with user defined time
step ∆t. Hence if we call N the total number of time-steps and T the entire time interval of
interest we have T = N∆t. G-function has already been defined in fgs. Once we know all
the quantities at time t, the constraints at time t+ 1 and also the controller action on the
poloidal coils V t+1

a , the solution xt+1 can be found. Therefore the problem is solved once
we fix the initial conditions xt0 , νt0 , V t0

a and we know the values of the constraints and
input voltages step-by-step. The circuit equation has been treated as a DAE23 : the general
method to solve numerically DAEs is called θ-method. In this particular case θ = 1 and
the method is then called implicit Euler’s24 . A typical run of fge requires firstly to obtain
an initial active coil and vessel configuration for a wanted plasma shape using fbt. The
initial plasma current and poloidal flux could then be obtained using fgs. Once the initial
conditions have been obtained it is possible to run fge to simulate a plasma evolution.
This procedure is very useful to control design and tuning. For the linearization procedures
we adopted the formalism of [8] and [14].

1.4.1.1 fge linearization

In this section the linearization of F -function is performed along an equilibrium plasma
trajectory for fge, which means a trajectory of Ie for which the equilibirum is kept fixed
while inducing the plasma current with external coils [8]. The linearization is computed
assuming a fixed Ip current25 . The linearization of the F -function simplifies the formalism
of the current circuit equation and allows to write the problem in state-space. In this way
it is described the evolution of the circuit currents (both active and passive structures)
around a nominal point x0 = [Iy,0 Ie,0 αg,0 c0]

T that is solution of the operator F :

F (x0) = 0

The output equation is obtained instead from the linearization of the measurements, and
will be treated in the next section. We can expand G(x0+δx) in Taylor series and truncate
to the first order and furthermore we aim to find small δx perturbations s.t. G(x0 + δx) is
zero at first order:

G(x0 + δx) = G(x0) +∇xG
∣∣
x=x0

δx+O(δx2)

22In our work ct = {Ip(t), βp(t), qA(t)}.
23Differential algebraic equation.
24It can be proved that the method is asymptotically stable if θ ≤ 1

2
.

25The case of a current diffusion equation, valid during the stationary phase, is presented in [2]. In this
case the basis function coefficients must be such that Ip matches the Ip computed by the CDE [8].
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where ∇xG
∣∣
x=x0

is the Jacobian of G evaluated in x0. With our hypothesis on small
perturbations we get ∇xG

∣∣
x=x0

δx = 0, i.e. δx ∈ ker∇xG
∣∣
x=x0

.
Since G(x) = [Gy(x) Gg(x)]

T ∈ Rny+nαg we can rewrite the previous equation in the
following way:

(
∇IyGy

∣∣
x=x0

∇IeGy

∣∣
x=x0

∇αgGy

∣∣
x=x0

0

∇IyGg

∣∣
x=x0

∇IeGg

∣∣
x=x0

∇αgGg

∣∣
x=x0

∇cGg

∣∣
x=x0

)
δIy
δIe
δαg

δc

 = 0

where dim∇IyGy = ny × ny, dim∇IeGy = ny × ne and so on. Since the constraits vector
c doesn’t appear directly in Gy we have that ∇cGy = 0 ∀x. If c ∈ Rnαg , i.e. there are as
many constraint equations as basis function coefficients, the matrix ∇αgGg has full rank
and so it can be inverted. From the second line of the system is then possible to isolate
the unknown δαg:

δαg = −(∇αgGg

∣∣
x=x0

)−1
[
∇IyGg

∣∣
x=x0

δIy +∇IeGg

∣∣
x=x0

δIe +∇cGg

∣∣
x=x0

δc
]

Therefore, by replacing it into the first line of the system we obtain:

Z1 δIy + Z2 δc+ Z3 δIe = 0

with: 
Z1 ≡ [∇IyGy

∣∣
x=x0

+∇αgGy

∣∣
x=x0

(−(∇αgGg

∣∣
x=x0

)−1∇IyGg

∣∣
x=x0

)]

Z2 ≡ [∇αgGy

∣∣
x=x0

(−(∇αgGg

∣∣
x=x0

)−1∇cGg

∣∣
x=x0

)]

Z3 ≡ [∇IeGy

∣∣
x=x0

+∇αgGy

∣∣
x=x0

(−(∇αgGg

∣∣
x=x0

)−1∇IeGg

∣∣
x=x0

)]

We can then isolate the unknown δIy:

δIy = D
Iy
c δc+D

Iy
Ie
δIe

with: {
D

Iy
c = −Z−1

1 Z2

D
Iy
Ie

= −Z−1
1 Z3

δIy is now a function only of δc and δIe. Replacing δIy into δαg we obtain:

δαg = D
αg
c δc+D

αg

Ie
δIe

with: {
D

αg
c = −(∇αgGg

∣∣
x=x0

)−1[∇IyGg

∣∣
x=x0

D
Iy
c +∇cGg

∣∣
x=x0

]

D
αg

Ie
= −(∇αgGg

∣∣
x=x0

)−1[∇IyGg

∣∣
x=x0

D
Iy
Ie

+∇IeGg

∣∣
x=x0

]

Now since both δαg and δIy are functions of only δc and δIe we can write:
D

αg
c = ∇c αg

∣∣
x=x0

D
αg

Ie
= ∇Ieαg

∣∣
x=x0

D
Iy
c = ∇c Iy

∣∣
x=x0

D
Iy
Ie

= ∇IeIy
∣∣
x=x0

Now let’s consider the first two equations in the definition of the F -function:{
Ψ̇e = Va −ReIe
Ψe = MeeIe +MeyIy
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Collecting them together and recalling that the mutual inductances are time-invariant, we
obtain:

Meeİe +Mey İy = Va −ReIe

Since we are linearizing around the fixed nominal point x0 we have that:
Ie(t) = Ie,0 + δIe(t)
Iy(t) = Iy,0 + δIy(t)
c(t) = c0 + δc(t)

Thus: {
İe = δİe
İy = δİy

Once again, since the we have linearized around an equilibrium point, the matrices D
Iy
c

and D
Iy
Ie

are assumed time-invariant. Therefore, substituting δIy we obtain another set of
equation that are functions only of δc and δIe:

Va −ReIe = Meeİe +Mey İy =

= Meeδİe +Meyδİy =

=
(
Mee +MeyD

Iy
Ie

)
δİe +MeyD

Iy
c δċ

The linearized evolution of Ie can be written as:

M1 İe = M2 Ie +M3 ċ+ Va

with: 
M1 = Mee +MeyD

Iy
Ie

M2 = −Re

M3 = −MeyD
Iy
c

Finally, since c is assumed constant in time26 and M1 is invertible 27 , we obtain the con-
tinuous LTI state-space representation for the state Ie:

İe = AIe +B Va

with: {
A = M−1

1 M2

B = M−1
1

In order to implement a Kalman filter the previous continuous LTI model must be con-
verted into a discrete one. Using an implicit Euler’s scheme we obtain:

M1
It+1
e − Ite
∆t

= M2 I
t+1
e + V t+1

a +M3
∆ct+1

∆t

where ∆ct+1 = ct+1 − ct and V t+1
a are supposed to be known at the next time step

t+ 1 = t+∆t. Therefore:

It+1
e = (M1 −∆tM2)

−1 [M1 I
t
e +∆t V t+1

a +M3∆ct+1]

26If the constraints are not constant in time they can be considered as exogenous inputs in the state
equations.

27Mee (and Mey) is invertible since in a magnetic system the energy is defined as Wee = ITe Mee Ie and
so Mee (and Mey) is positive definite. Thus M1 is invertible since it is the sum of invertible matrices.
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In the end we obtain the following discrete LTI state-space representation:

It+1
e = AIte +B ut+1

with: 
A ≡ (M1 −∆tM2)

−1M1 ∈ Rne×ne

B = [B1 B2] ≡ (M1 −∆tM2)
−1 [∆t Ine M3] ∈ Rne×(ne+nαg )

ut+1 = [V t+1 ∆ct+1]T ∈ Rne+nαg

since V t+1 = [V t+1
a V t+1

v ]T = [V t+1
a 0]T ∈ Rne=na+nv .

1.4.1.2 Measurements linearization

The output equation is obtained from the linearization of the measurements relations be-
tween {Ia, Bm, Ψf} and {Ie, Iy}, around a nominal equilibrium point x0 = [Iy,0 Ie,0 αg,0 c0]

T .
Since we have proven that Iy = Iy(Ie, c) and αg = αg(Ie, c) the equilibrium point28 reduces
to [Ie,0 c0]

T . If we consider a generic measurement at time step t we can write:

yt = yt(Iy(Ie, c), Ie, αg(Ie, c), c) = yt(Ie, c)

Linearizing around the equilibrium point y0 = y(Ie,0 c0) and remembering that no mea-
surement depends explicitly on αg or c we get:

yt = y(Ie,0 c0) +∇Iey(Ie,0 c0) δI
t
e +∇Iyy(Ie,0 c0) δI

t
y

Now remembering that:
δIy = D

Iy
c δc+D

Iy
Ie
δIe

we obtain:

yt = y(Ie,0 c0) +∇Iey(Ie,0 c0) δI
t
e +∇Iyy(Ie,0 c0)D

Iy
Ie
δIte +∇Iyy(Ie,0 c0)D

Iy
c δct

Assuming constant contraints, i.e. δct ≃ ∆ct ≈ 0 29 , the equation takes the following
form:

yt = y(Ie,0 c0) +
(
∇Iey(Ie,0 c0) +∇Iyy(Ie,0 c0)D

Iy
Ie

)
δIte

that can be written in compact form:

δyt = yt − y(Ie,0 c0) =
(
∇Iey(Ie,0 c0) +∇Iyy(Ie,0 c0)D

Iy
Ie

)
δIte = C δIte

So, together with the state equation, we reach the following state-space description:{
It+1
e = AIte +B ut+1

δyt = C δIte

Otherwise, if the constraits are time-varying (such as in the general form of the state
equation presented at the end of the fge linearization), the observer equation is given by:

δyt = C δIte +D∆ct

with:
D = ∇Iyy(Ie,0 c0)D

Iy
c = ∇Iyy(Ie,0 c0)∇cIy(Ie,0 c0)

28An equilibrium point x0 and an initial condition point x0 are different concepts that, at steady-state,
are linked together by a linear relation. For details see [25].

29In this assertion the passage between continuous and discrete formulation is implicit.
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In the case of constant constraints, the magnetic probes relation is:

Bm = Bme Ie +Bmy Iy

thus, linearizing around x0 we obtain:

Bt
m = Bm,0 +

(
Bme +Bmy D

Iy
Ie

)
δIte

therefore:
δBt

m =
(
Bme +Bmy D

Iy
Ie

)
δIte

where Bm,0 = Bme Ie,0 +Bmy Iy,0 is the value at the linearization point.
Similarly, the relation for the flux loops is:

δΨt
f =

(
Mfe +Mfy D

Iy
Ie

)
δIte

And for the active coils, remembering that δIte = [δIta δItv]
T , we obtain trivially:

δIta = [ Ina 0 ] δIte

1.4.1.3 Choice of the frame in the observer equation

In the state-space representation with previously defined matrices A, B, C, D:{
It+1
e = AIte +B ut+1

δyt = C δIte +D∆ct

the state equation of the model is described in a physical frame whereas the output equation
is described in a relative frame with respect to the linearization point. It is possible to
change coordinates and skip to a measurement equation in physical frame:

δyt = C δIte +D∆ct

yt = C Ite +D ct + D̃ νt

with: {
D̃ ≡

[
−C −D Iny

]
νt ≡ [Ie,0 c0 y0]

T ∈ Rne+ny+nαg

As a matter of fact, our transformation is based on the assumption that the total trajectory
of Ie does not change the equilibrium30, i.e. ∂Iy

∂Ie
Ie is close to zero on the trajectory Ie(t).

This transformation holds at steady-state condition and close to the linearization point. Its
validity decreases if is the plasma boundary is changing. Since the estimator is thought to
be coupled to a controller, we will assume that the plasma will be close to its equilibrium.
Otherwise, it is always possible to change coordinates in real time imposing non-constant
nominal trajectories equations to switch from the relative formulation to the physical one.
In this cases the transformation is less trivial but still well defined.
More details about this topic can be found in [25].

30Weak definition: Equilibrium is defined as the electrical condition on external currents for which forces
are balanced and plasma is stabilized to a certain shape and average current Ip.
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1.4.1.4 About Controllability and Observability of the system

In order to get structural informations on the previous system we have considered not
varying constraints and we have analyzed two different shots in Anamak: the first stable
with limiter plasma and the other unstable with diverted plasma. Since the dimensions
of the system are big (A ∈ R208×208, B ∈ R208×8, C ∈ R40×208) it has been performed
a singular value decomposition of the Gramians of Controllability and Observability. A
similar procedure was used in [7].

Theorem 1. The n-state discrete LTI system xt+1 = Axt + B ut+1 is controllable iff the
Controllability Gramian:

Wc(k) =

k∑
i=0

Ak−iBBT (AT )k−i ∈ Rn×n

is positive definite for some k < ∞. In this case Wc is the positive definite solution of the
Lyapunov equation:

Wc(k) = AWcA
T +BBT

Theorem 2. The n-state discrete LTI system:{
xt+1 = Axt +B ut+1

yt = C xt

is observable iff the Observability Gramian:

Wo(k) =

k∑
i=0

(AT )iCT C (A)i ∈ Rn×n

is positive definite for some k < ∞. In this case Wo is the positive definite solution of the
Lyapunov equation:

Wo = AT WcA+ CT C

In the stable shot, if we look at the 2-norm induced condition number κ = σmax
σmin

we can
see that both Gramians are very ill-conditioned, indeed κo = κ(Wo) = 1.7279 · 1019 and
κc = κ(Wc) = 4.2787 · 1021. Furthermore, we can see that all the eigenvalues of A have
absolute value minor than one and so, even if the Gramians are singular (as we can see
from SVD), the system is both stabilizable and detectable. In the unstable shot there is
an eigenvalue of A which has absolute value major than one. This eigenvalue represents
the vertical instability and it is always present in vertically elongated plasma profiles.

In any case the unstable subsystem is both controllable and observable since there exist
a non singular input actuator and a non singular state-observer for this subsystem. To
check this we have verified that this unstable eigenvalue is not in the null spaces of the
Observability and Controllability Gramians, therefore also in the unstable case we have a
stabilizable and detectable system.

Finally, since we are in the hypothesis of the general DRE convergence theorem, we can
use for these systems both adaptative or asymptotic Kalman filters. The results are shown
in the following figures ( 1.7 ).



24 CHAPTER 1. CONTROL ORIENTED MODELLING OF TOKAMAKS

Figure 1.7: Stable limiter plasma shot (higher) and unstable diverted plasma shot (lower)



Chapter 2

State observer design

In control theory, a state observer is a dynamical system that provides an estimate of the
internal state of a given real system, from measurements of the input and output of the
real system and using a model of the system. Knowing the system state is necessary to
solve many control theory problems for example, stabilizing a system using state feedback.
In many practical cases, the physical state of the system cannot be determined by direct
observation. Instead, indirect effects of the internal state are observed by means of the
system’s outputs. In our work the building of a state observer is required since the vessel
currents, taking part of the state, are difficult to measure. Vessels currents have great
influence on the plasma behaviour, since they participate, together with active coil currents
and plasma current, to the poloidal flux evolution. Tokamak vessels are also of paramount
importance as their induced currents slow down vertical displacement events [6]. Vessel
currents vector Iv is not readily available but can be modeled with a certain degree of
uncertainty. An observer would aim to best estimate Iv and this will be done in TCV by
means of a real-time Kalman filter. Moreover, the observer based on Kalman filter is the
optimal linear estimator 1 and it is of foundamental importance in LQG control 2 .
Since we have already introduced our state-space model, the notation for the Kalman
filter’s parameters will follow the one of the model in exam.

Figure 2.1: Kalman filter block diagram, (From [16])

1If the noises are white and uncorrelated or if the covariances of the noises are known exactly.
2Thanks to Separation Principle on LQR and LQE.

25
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2.1 Kalman Filter for state estimation

In this section, we will develop the observer of the active coils and vessel currents using
a Kalman filter algorithm. Before starting writing the equations of our specific work let’s
refresh what a Kalman filter does and which formulation has been adopted.

Let’s consider the following discrete dynamical system:{
x(t+ 1) = F (t)x(t) +G(t)u(t) + w(t)
y(t) = H(t)x(t) + v(t) , t ∈ Z

where, if δ(t) indicates the Kronecker delta and the white noises w and v are uncorrelated:

E [w(t)] = 0 , ∀ t
E [v(t)] = 0 , ∀ t
E [w(t1)w

T (t2)] = Q(t1) δ(t2 − t1)

E [v(t1) v
T (t2)] = R(t1) δ(t2 − t1)

E [w(tk) v
T (tj)] = 0

As we can see in the Appendix ( A.3.2.2 , A.3.3 ), the equations for the Kalman one-step
predictor are the following:

x̂(N + 1 | N) = F (N) x̂(N | N − 1) +G(N)u(N) +K(N) e(N)
ŷ(N + 1 | N) = H(N) x̂(N + 1 | N)
e(N) = y(N)− ŷ(N | N − 1)

where e is the innovation and K(N) is the Kalman predictor gain:

K(N) = [F P (N)HT ] [H P (N)HT +R(N)]−1

with covariance matrix of the state predictor error:

P (N) = E [ ν(N) ν(N)]T ] = V ar [ν(N)]

solving the DRE. Moreover, we performed the equations of the filter too:

x̂(N | N) = x̂(N | N − 1) +K0(N) e(N)

where K0(N) is the Kalman filter gain:

K0(N) = P (N)HT ] [H P (N)HT +R(N)]−1

In order to give a coherent and consistent formulation to the problem, accordingly to the
previous works around Kalman filters applications in TCV [14], let’s rename some of the
main quantities:

Definition 1. (“a priori" estimate) Given a set of N−1 measurements yN−1 = [y(N−
1)T ... y(t0)

T ]T = [y(N − 1)T ... y(1)T ]T , where the output at time t is s.t. y(t) = yt ∈ Rp,
k ∈ {1, ..., N − 1} we call “a priori" estimate of the state x(t) ∈ Rn the quantity:

x̂−N = x̂(N | N − 1) = E [x (N) | y(N − 1) , ... , y(1)]

Definition 2. (“a posteriori" estimate) Given a set of N measurements yN = [y(N)T ... y(t0)
T ]T =

[y(N)T ... y(1)T ]T , where the output at time t is s.t. y(t) = yt ∈ Rp, k ∈ {1, ..., N} we call
“a posteriori" estimate of the state x(t) ∈ Rn the quantity:

x̂+N = x̂(N | N) = E [x (N) | y(N) , ... , y(1)]
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Definition 3. (“a priori" estimation error covariance) Given the state prediction
error also called “a priori” estimation error:

ϵ−N = ν(N) = x(N)− x̂(N | N − 1) = x(N)− x̂−N

we call “a priori" estimation error covariance the already defined variance matrix
of state predictor error:

P−
N = P (N) = V ar[ν(N)] = E [[x(N)− x̂−N ] [x(N)− x̂−N ]T ]

Definition 4. (“a posteriori" estimation error covariance) Given the state filter
error also called “a posteriori” estimation error:

ϵ+N = x(N)− x̂(N | N) = x(N)− x̂+N

we call “a posteriori" estimation error covariance the already defined variance ma-
trix of filter error:

P+
N = V ar[x(N)− x̂+N ] = E [[x(N)− x̂+N ] [x(N)− x̂+N ]T ]

The covariance matrices of the state and the observer equations will be renamed with Q
and R. With the above replacements it is now possible to recast the Kalman filter algorithm
presented in the Appendix into a computationally more convenient set of equations based
on time-update and measurement-update3 . In order to avoid overloading the notation we
will use xt instead of x(t).

2.1.1 Time-update and measurement-update formulation

We will now develop the filter equations that will be used in the numerical code. The
results are developed in the relative frame and matrices are supposed fixed, nevertheless
the results are the same if we replace X with Xt, X ∈ {A,B,C}. In our specific work the
measurement vector at time t can be expressed both in a physical or relative frame, i.e.
yt = y(t) or δyt = δy(t). We referred to [22] (in particular p. 85 and ch. 5-7).

Theorem 1. If we consider the n-state discrete LTI system:{
xt+1 = Axt +B ut +Gwt

yt = C xt + vt

with ut deterministic input, wt ∼ (0, Qt
w)

4 and vt ∼ (0, Rt) zero-mean uncorrelated noises
with symmetric and positive definite covariance matrices ∀ t, the linear5 adaptative6

unbiased miniumum variance estimator is the one who is retrieved by the following

3The equivalence between the one-step Kalman predictor/filter formulation and the time/measurement-
update equations is described in [22].

4G is the matrix connecting the input noise to the state. For example, if x is a current and w is a
voltage noise, then G is a conductance.

5If the noises are Gaussian then it will be the minimum variance estimator. In this work the noises will
be supposed normally distributed.

6If we are in the hypothesis of the general DRE convergence theorem it is possible to compute the
steady-state gain of the filter without iterations.
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set of equations7 :

P−
t = AP+

t−1A
T +Qt

Kt = P−
t CT [C P−

t CT +Rt ]−1

x̂−t = A x̂+t−1 +B ut−1

x̂+t = x̂−t +Kt et = x̂−t +Kt [ y
t − C x̂−t ]

P+
t = [ I −KtC ]P−

t [ I −KtC ]T +KtR
tKT

t

where et is the innovation and Qt = GQt
w GT , and where the equations for x̂−t and P−

t

are the time-update equations for x̂ and P , whereas the equations for x̂+t and P+
t are

the measurement-update equations for x̂ and P .

Proof. Given the set of measurements Y t ≡ {y1, ..., yt} from time t0 = 1 to time t, we look
at the linear estimate of the state x̂t which fulfills ∀ t the following conditions:

• E [xt − x̂t] = 0 Unbiased condition

• x̂t = argmin x̂t E [∥xt − x̂t∥22] Minimum square error condition

Since we do not have any measurement avaible to estimate x(0) since the first measurement
is taken at time t0 = 1, it is reasonable to initialize the algorithm imposing x̂+0 as the
expected value of the initial state x0 = x(0) 8 :

x̂(0 | 0) = x̂+0 = E [x0] P+
0 = E [[x0 − x̂+0 ] [x0 − x̂+0 ]

T ]

Therefore, supposing to know the “a posteriori" estimate of the state x̂+t at time t, the “a
priori" estimate at time t+ 1 given Y t is, by induction:

x̂−t+1 = E [xt+1 | Y t] = E [Axt +B ut +Gwt | Y t] =

= AE [xt | Y t] +B ut +GE [wt | Y t] = A x̂+t +B ut

Moreover, if we suppose the “a posteriori" estimate of the state x̂+t to be unbiased, i.e.
E [x̂+t ] = E [xt], then also x̂−t+1 will be unbiased:

E [x̂−t+1] = E [A x̂+t ] +B ut =

= E [Axt] +B ut =

= E [A x̂+t +B ut] = E [xt+1]

The “a priori" estimation error covariance is therefore given by:

P−
t+1 = E [[xt+1 − x̂−t+1] [x

t+1 − x̂−t+1]
T ] =

= AE [[xt − x̂+t ] [x
t − x̂+t ]

T ]AT +GE [[wt] [wt]T ]GT =

= AP+
t AT +GQt

w GT = AP+
t AT +Qt

Since we know x̂−t+1 and P−
t+1 if we suppose to get a new measurement yt+1 we write our

“a posteriori" estimate as a weighted sum of the prediction and the new observation. We
aim to find the gain matrices Lt+1 and Kt+1 s.t.:

x̂+t+1 = Lt+1 x̂
−
t+1 +Kt+1 y

t+1

7If we use the physical frame, we must add into the innovation at third equation D̂ νt ( 1.4.1.3 ) too.
8Otherwise, we can initialize the algorithm at time t0 = 1 starting from an “a priori" guess, i.e.:

x̂(1 | 0) = x̂−
1 = x(1) P (1) = P−

1 = E [[x(1)− x̂−
1 ] [x(1)− x̂−

1 ]
T ]

.



2.1. KALMAN FILTER FOR STATE ESTIMATION 29

with x̂+t+1 satisfying the unbiased condition and minimizing the conditional square error.
If we take the mean of the “a posteriori" estimate and we use the condition that the “a
priori" estimate is unbiased, we obtain:

E [x̂+t+1] = E [Lt+1 x̂
−
t+1 +Kt+1 y

t+1] =

= E [Lt+1 x̂
−
t+1 +Kt+1C xt+1 +Kt+1 v

t] =

= Lt+1 E [x̂−t+1] +Kt+1C E [xt+1] = [Lt+1 +Kt+1C]E [xt+1]

To obtain the “a posteriori" estimate unbiased we must impose that:

Lt+1 +Kt+1C = I ⇒ Lt+1 = I −Kt+1C

Thus:

x̂+t+1 = Lt+1 x̂
−
t+1 +Kt+1 y

t+1 =

= [I −Kt+1C] x̂−t+1 +Kt+1 y
t+1 =

= x̂−t+1 +Kt+1 [y
t+1 − C x̂−t+1] = x̂−t+1 +Kt+1 et+1

The “a posteriori" estimation error covariance is therefore given by:

P+
t+1 = E [[xt+1 − x̂+t+1] [x

t+1 − x̂+t+1]
T ] =

= E [[xt+1 − [I −Kt+1C] x̂−t+1 −Kt+1 y
t+1] [xt+1 − [I −Kt+1C] x̂−t+1 −Kt+1 y

t+1]T ] =

= E [[xt+1 − [I −Kt+1C]x̂−t+1 −Kt+1[Cxt+1 + vt+1]][xt+1 − [I −Kt+1C]x̂−t+1 −Kt+1[Cxt+1 + vt+1]]T ]

= E [[[I −Kt+1C][xt+1 − x̂−t+1]−Kt+1v
t+1] [[I −Kt+1C][xt+1 − x̂−t+1]−Kt+1v

t+1]T ] =

= [I −Kt+1C]P−
t+1 [I −Kt+1C]T − [I −Kt+1C]E [[xt+1 − x̂−t+1] [v

t+1]T ]KT
t+1−

−Kt+1 E [[vt+1] [xt+1 − x̂−t+1]
T ] [I −Kt+1C]T +Kt+1 E [[vt+1] [vt+1]T ]KT

t+1

Using the properties of the noise vt+1 and since the “a priori" estimation error xt+1 − x̂−t+1

is independent of vt+1, i.e. E [vt+1 [xt+1− x̂−t+1]
T ] = E [vt+1]E [xt+1− x̂−t+1] = 0, we obtain:

P+
t+1 = [I −Kt+1C]P−

t+1 [I −Kt+1C]T +Kt+1R
t+1KT

t+1

Finally, using the assumption of minimum square error if we define as cost functional:

Jt+1 = E [∥xt+1 − x̂t+1∥22] =
= E [[xt+1 − x̂+t+1]

T [xt+1 − x̂+t+1]] =

= E [ Tr ([xt+1 − x̂+t+1] [x
t+1 − x̂+t+1]

T )] =

= TrE [[xt+1 − x̂+t+1] [x
t+1 − x̂+t+1]

T ] = TrP+
t+1

Then:
Kopt

t+1 = arg min
Kt+1

Jt+1

Recalling that, if P is symmetric:

∂

∂K

(
Tr (K P KT )

)
= 2KP

then:
∂Jt+1

∂Kt+1
= 2 (I −Kt+1C)P−

t+1 (−CT ) + 2Kt+1R
t+1 = O
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and since both P−
t+1 and Rt+1 are symmetric and positive definite we can find the optimal

gain of the filter by matrix inversion:

Kt+1 ≡ Kopt
t+1 = P−

t+1C
T [C P−

t+1C
T +Rt+1 ]−1

Particular attention has to be set in the covariance matrices design and in the filter ini-
tialization. In our work we handled with time-invariant covariance matrices Qt = Q and
Rt = R. A common choice in adapltive filtering has been to set P−

1 = 10Q, like in [14],
since we maintain a degree of incertitude on the initial condition.

2.2 Filter augmented state

In this subsection will be detailed the stochastic behavior of the system in order to develop
our Kalman filter [14]. In our model Gaussianity for the noises will be assumed. Diagnostic
noise in the the observer equation is represented with an additive white noise vt = v(t) ∼
N (0, R(t)) with covariance matrix Rt = R(t). This noise aims to model the measurement
inaccurancies. The value of the covariance matrix Rt can be obtained from the standard
deviation taken from devices references [18]. Adding noise vt on the diagnostics has the
same effect on a relative or physical frame description since:

(yt + vt)− y0 = δyt + vt

On the other hand uncertainties on the active coil and vessel current model are described
by an additive white noise in the state equation wt

x = wx(t) ∼ N (0, Qx(t)) with covariance
matrix Qx

t = Qx(t) where the state update is the vector xt+1 = It+1
e .

Moreover we add an offset unknown disturbance vector in the state equation ξt = ξ(t) ∈
Rnξ , nξ ≤ ne. These disturbances are assumed to be constant on average with white noise
wt
ξ = wξ(t) ∼ N (0, Qξ(t)) with covariance matrix Qξ

t = Qξ(t) added to the evolution
equation of these disturbances.

Finally, the state is augmented to account for time-varying constraint vector c 9 since it is
never the case that the parameters used as constraints are constant during the shot and
so we want the observer to be able to estimate them too. We consider the discrete-time
derivative of the constraint to be constant on average, i.e. E[∆ct+1] = E[∆ct], where
∆ct ≡ ct−ct−1. Again a white noise wt

∆c = w∆c(t) ∼ N (0, Q∆c(t)) with covariance matrix
Q∆c

t = Q∆c(t) added to the evolution equation of these time derivatives. Another white
noise wt

c = wc(t) ∼ N (0, Qc(t)) with covariance matrix Qc
t = Qc(t) is added as well to the

evolution equation of the vector c, i.e. ct+1 = ct +∆ct + wt
c.

Furthermore, the state can be augmented also to estimate the input voltage increment δV t

assuming a constant on average evolution of the voltage V t = [V t
a V t

v ]
T = [V t+1

a 0]T ∈
Rne=na+nv s.t. V t = V t

known + δV t and adding a white noise wt
δV = wδV (t) ∼ N (0, QδV (t))

with covariance matrix QδV
t = QδV (t) to the evolution equation of δV t.

We obtain the following state-space set of equations:

9fge code is built in a way assuming constraints on some of the internal parameters such as Ip, βp, li
or qA s.t. dim c = dimαg.
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

It+1
e = AIte +B ut+1 + ξt +Gwt

x

ξt+1 = ξt + wt
ξ

∆ct+1 = ∆ct + wt
∆c

ct+1 = ct +∆ct + wt
c

δV t+1 = δV t + wt
δV

δyt = C δIte +D∆ct + vt

Matrices A, B, C, D 10 have already been defined in fge linearization in Chapter 1
( 1.4.1.1 ). As we will see the input vector ut+1 = [V t+1 ∆ct+1]T ∈ Rne+nαg will be reduced
only to the voltage since the contraints will be part of the state to be estimated. Matrix G
accounts for the fact that process noise may enter in a different form than the state (the
external currents). For example if the process noise appears in the input voltage, we take
G = R−1

e .
Let’s gradually augment the state x = Ie = [Ia Iv]

T ∈ Rne :

Constant disturbance: Assuming a constant disturbance ξi ∈ R on the state component
xi ∈ R evolution equation, with process noise wξ. The disturbances are stacked in a vector
ξ ∈ Rnξ . The disturbance can be added to each elements of the state or to selected parts
of x in which case nξ ≤ ne. The state evolution at index i and time t is:

xt+1
j = Aj x

t + ξtj +B1j V
t+1

xt+1
i = Ai x

t +B1i V
t+1

ξj = ξj

where Aj is the j-th line of A. In a matrix formulation we obtain:(
xt+1

ξt+1

)
=

(
A Aξ

Onξ×ne Inξ×nξ

)(
xt

ξt

)
+

(
B1

Onξ×na

)
V t+1

where the lines of the matrix Aξ are non-zero only corresponding to the index on which
the disturbance is added. For example, if we consider ne = 4 and nξ = 2 and we add
disturbances on x1 and x3 we obtain:

Aξ =


1 0
0 0
0 1
0 0


The observer equation is not affected by these disturbances so:

δyt =
(
C Ony×nξ

)(xt
ξt

)
In this way it is possible to account for constant disturbances on the state currents only
in specific coils. By the way in the simulations on TCV shots, since the perturbation is
unknown and can affect every coil, we have set Aξ = Inξ×nξ

, with nξ = ne.

10D matrix has not been introduced in the previous theorem (written in relative frame) since the stochas-
tic part of the measurement equation is carried by the vector vt. If we had considered D matrix the
innovation would have been different, taking into account for the ∆ct deterministic input. But since ∆ct

can be considered as a part of an augmented state of the system, the variables used for the statement are
consistent.
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Constraints: If we define the augmented state as xt = [Ite ∆ct ct]T ∈ Rne+2nαg the state
space equations assume a different form with respect to the ones derived after fge lin-
earization11 but keep the same physical meaning. We add the two state update equations:

∆ct+1 = ∆ct

ct+1 = ct + (ct+1 − ct) = ct +∆ct+1 = ct +∆ct

Hence in matrix form we obtain: xt+1

∆ct+1

ct+1

 =

 A B2 One×nαg

Onαg×ne Inαg×nαg
Onαg×nαg

Onαg×ne Inαg×nαg
Inαg×nαg

 xt

∆ct

ct

+

(
B1

O2nαg×na

)
V t+1

δyt =
(
C D Ony×nαg

) xt

∆ct

ct


where B1 and B2 are defined inside B matrix in the FGE linearization section around the
nominal point [Iy,0 Ie,0 αg,0 c0]

T .

Constant input voltage perturbation: If we suppose the known input voltage V t
known

over or underestimated by a factor δV ∈ Rna we can define the augmented state as xt =
[Ite δV t]T ∈ Rne+na . In this case the disturbance is carried directly by the voltages: the
effect is similar to the one induced by the constant disturbances, the main difference is
that it is possible to augment the degree of freedom in the covariance matrix design if we
assume a probability distribution on coils voltage errors. We obtain:(

xt+1

δV t+1

)
=

(
A B1

Ona×ne Ina×na

)(
xt

δV t

)
+

(
B1

Ona×na

)
V t+1
known

δyt =
(
C Ony×na

)( xt

δV t

)

General case: If we define the augmented state 12 as:

Xt ≡ [xt ξt ∆ct ct δV t]T

with xt = Ite and the vector of process disturbances as:

wt ≡ [wt
x wt

ξ wt
∆c w

t
c w

t
δV ]

T

then the following state-space representation is reached:{
Xt+1 = AXt + BV t+1

known +Gwt

δyt = C δXt + vt

11In that case the constraints, if present, were interpreted as inputs into the state-equation.
12Since the measurements are fixed, if we augment the state we could loose degrees of observability [14].
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with matrices:

A =


A Aξ B2 O B1

O I O O O
O O I O O
O O I I O
O O O O I



B =


B1

O
O
O
O


C =

(
C O D O O

)

G =


G O O O O
O I O O O
O O I O O
O O O I O
O O O O I


The state estimation problem of this LTI system can be solved using the time-update and
measurement-update equations of the Kalman filter previously presented in ( 2.1.1 ) 13 , once
we design the covariance matrices of the disturbances, that in our work will be assumed
fixed in time. In this work we will also assume the noises on the state and the noises on
the observer uncorrelated. A matlab function called kalsass.m has been implemented
to recover all state augmented combinations and it is discussed in ( 4.4 ).

2.3 Covariance matrix design

In this work we have considered time-invariant covariance matrices both for the process
and the observer’s errors.

First of all, we fix the covariance of the measurements errors: the matrix R is a block-
diagonal matrix where each block is a diagonal matrix collecting the standard deviations of
the diagnostics, respectively of the active currents, of the magnetic fiels and of the fluxes,
i.e.: σa = ω2

a Ina ∈ Rna , σm = ω2
m Inm ∈ Rnm , σf = ω2

f Inf
∈ Rnf , where {ωa, ωm, ωf} =

{100A, 10−3 T, 10−3 Wb} s.t.:

R =

 σa O
σm

O σf


The process covariance matrix Q has a block-diagonal structure too i.e.:

Q =

 Qa O
Qv

O Qc


where Qa is the covariance matrix of the active currents, Qv is the covariance matrix of
the vessel currents and Qc is the covariance matrix of the constraints.

13The matrices of the system are assumed time-invariant around the linearization point.
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Since the active coils of TCV have independent power supplies the active currents are
assumed independent, so Qa ∈ Rna is diagonal. A practical and well performing choice of
the diagonal terms is to take Qa = (σa)

1/2 = ωa Ina .

In the other hand, since the vessel is modelled with discretized filaments sorrounding the
cross-section, the vessel current are assumed correraled with each others with degree of
correlation decreasing linearly with the distance. The idea has been to give Qv ∈ Rnv

the structure of a Toeplitz matrix 14 . Moreover, since the vessel cross-section has a cir-
cular profile, the covariance between filaments k and k + j should be the same between
filaments k and k − j and so, giving the filaments an increasing numbering from 1 to nv,
then Cov12 = Qv(1, 2) = Cov1nv = Qv(1, nv). In particular two different Toeplitz matrices
have been designed: one with continuous decreasing correlation between contiguous fila-
ments and another one in which the correlation decreases linearly until a certain quantity
of filaments, out of them the vessel currents are assumed uncorrelated. The limit distance
between filaments in order to assume uncorrelation introduces a matrix gap between di-
agonals15 and can be fixed manually. Degrees of freedom of such a matrix are then the
gaps and the coefficients of the principal diagonal: a possible choice should be to take
Qv(i, i) = 1

10 Qa(k, k), i ∈ {1, ..., nv}, k ∈ {1, ..., na}. Moreover, if we use the eigenmode
representation of the vessel the matrix Qv will transform into Qu in the following way:

Qu = TiQv T
T
i

where Ti = T−1 is s.t. Iv = T Iu with Iv filamentary vessel currents vector and Iu vessel
eigencurrents vector. If we adopt a model reduction in order to take into account only a
reduced relevant subset of slow eigenmodes, then Ti = T+ is the pseudoinverse of T .

Finally, the matrix block Qc ∈ Rnαg = R3 can be chosen diagonal supposing the con-
straints independent. The values of the optimal combination of coefficients varies with
the shot that is considered: in order to tune properly this block, several shots of TCV
have been performed with different covariances and compared to liuqe results. In the
Results Chapter ( 4.4 ) are reported several combinations of covariance matrices: the esti-
mation behavior changes if we use a diagonal matrix or a not-sparse matrix Qc counting
for correlations between contraints errors.

If the filter is extended to account for δV and ∆c quantities, their covariance matrices
should be tuned properly for each shot. If c vector is no longer assumed constant in the
time interval of operations so that the state is augmented to estimate the ∆c contraint
variation vector, it is possible to design a coupled block covariance matrix Qc,∆c ∈ R2nαg

(a possible design for it can be found in [14] and will be used in the βp-ramp testcase
( 4.4.4.1 )).

Finally, if the state is augmented to estimate constant perturbations, the simplest possi-
bility is to define another block matrix Qξ ∈ Rnξ , nξ ≤ ne to fix into Q ∈ Rnx+nξ and
furthermore to choose diagonal this block (i.e. assuming the constant disturbances errors
independent).

In the Results Chapter it will be shown that even if we make this assumption the constant
disturbances are very well recovered by the filter even if the diagonals terms of Qξ are
chosen small. However, in the restricted case of constant perturbations added only to the
active coils currents (i.e. nξ = na) it has been assumed correlation only between the active

14i.e.: square matrix with constant decreasing diagonals from the principal one.
15We call gap the fixed number of contiguous vessel filaments that present correlation.
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currents errors and the errors of the constant perturbations referring to the same coils
( 4.4.2.1 ). If we consider a coil i, with i ∈ {1, ..., na}, we have imposed that16 :

Coviaiξ = Q(i, i+ na + nu) = Q(i+ na + nu, i) = Coviξia =
√
Qa(i, i)Qξ(i, i)

In this case the matrix Q is no longer block diagonal.

In the pictures below the spectra of the vessel Toeplitz matrices in filamentary decom-
position are shown both in the cases continuous and with gap. Finally, it is shown the
spectrum of the process covariance matrix in previuously presented state augmented case
with correlation. The pictures in figure 2.2 refers to Anamak and the vessel is described
by its nu = 8 slowest eigencurrents.
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Figure 2.2: Sparsity pattern of Q with correlation, na = nu = nξ = 8 ∧ nc = n∆ξ =
n∆c = nδV = 0

16In this experience we have not estimated the constraints so we do not have the block Qc.
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Chapter 3

Filter validation

In this Chapter we discuss three analythical tests that have been implemented in order to
verify the optimality of the filter and the assumptions of Gaussianity of the noises. All
these tests are performed on the innovation residuals et ( 1 , 1 ) , [14], [7]. Before presenting
the following statement ( 1 ), we rememeber that this result will remain consistent even if
we consider the relative or the physical frame description, as discussed in ( 1.4.1.3 ).

Figure 3.1: Typical innovation residuals dynamics along a simulation

3.1 Innovation as a white noise process

Proposition 1. If we consider the innovation residuals at time t defined as:

et = δy − δŷ−t = δy − C δx̂−t =

= y − ŷ−t = y − (C x̂−t + D̄ νt) =

= (C xt + D̄ νt + vt)− (C x̂−t + D̄ νt) = C ϵ−t + vt

and iff we use the optimal Kalman gain in the filter equations, then the innovation residuals
are uncorrelated in time and follow a centered Gaussian distribution of covariance matrix

37
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St = C P−
t CT +Rt ∈ Rny×ny , i.e.:

et ∼ N (0, St)

Proof. Since the “a priori" estimate is unbiased then E [ϵ−t ] = 0 and since vt is white then:

E [et] = C E [ϵ−t ]C
T + E [vt] = 0

Therefore the covariance matrix is given by:

St = E [et e
T
t ] = E [[C ϵ−t + vt] [C ϵ−t + vt]T ] =

= C E [[ϵ−t ] [ϵ
−
t ]

T ]CT + C E [[ϵ−t ] [v
t]T ] + E [[vt] [ϵ−t ]

T ]CT + E [[vt] [vt]T ] =

= C E [[ϵ−t ] [ϵ
−
t ]

T ]CT + E [[vt] [vt]T ] = C P−
t CT +Rt

In order to prove that there is not cross-correlation in the innovation residuals let’s consider
a time instant k < t, thus:

E [et e
T
k ] = C E [[ϵ−t ] [ϵ

−
k ]

T ]CT + C E [[ϵ−t ] [v
k]T ] + E [[vt] [ϵ−k ]

T ]CT + E [[vt] [vk]T ] =

= C E [[ϵ−t ] [ϵ
−
k ]

T ]CT + C E [[ϵ−t ] [v
k]T ]

since the vt are uncorrelated in time and since the state estimation is independent of future
output noises. Let’s obtain now the recursive equation of the state estimate error using
Kalman filter equations:

ϵ−t+1 = xt+1 − x−t+1 = Axt +B ut +Gwt −Ax+t −B ut =

= Axt +Gwt −A ([I −KtC]x−t +Kt y
t) =

= Axt +Gwt −A ([I −KtC]x−t +KtC xt +Kt v
t) =

= A (xt − x−t )−AKtC (xt − x−t ) +Gwt −AKt v
t =

= A [I −KtC] ϵ−t + (Gwt −AKt v
t) = Φt ϵ

−
t + ṽt

Therefore, starting from initial condition ϵ−k , with k < t, then the free and forced evolutions
become1 :

ϵ−t = Φt,k ϵ
−
k +

t−1∑
i=k

Φt,i+1 ṽ
i

where:

Φt,k =

{ ∏t
i=k Φi , t > k

I , t = k

Now, since the forced term is zero mean we can then assert that:

E [[ϵ−t ] [ϵ
−
k ]

T ] = Φt,k E [[ϵ−k ] [ϵ
−
k ]

T ] = Φt,k P
−
k

Moreover E [[ϵ−k ] [v
k]T ] = O : the “a priori" state error estimate ϵ−k is indeed uncorrelated

to the observer noise. Therefore, since E [[ṽi] [vk]T ] = O if k < i ≤ t− 1, and since wk and

1If the gain Kt = K is constant ∀ t, then Φt = Φ is constant and we can rewrite the evolution of ϵ−t as:

ϵ−t = Φt−k ϵ−k +

t−1∑
i=k

Φt−i−1 ṽi
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vk are uncorrelated:

E [[ϵ−t ] [v
k]T ] = E

[(
Φt,k ϵ

−
k +

t−1∑
i=k

Φt,i+1 ṽ
i
)
[vk]T

]
=

= E
[( t−1∑

i=k

Φt,i+1 ṽ
i
)
[vk]T

]
= E [[Φt,k+1 ṽ

k] [vk]T ] =

= E [[Φt,k+1 (Gwk −AKk v
k)] [vk]T ] = −Φt,k+1AKk R

k

Since Φt,k = Φt,k+1Φk we can now rewrite the previous cross-correlation equation for the
innovation residuals as follows:

E [et e
T
k ] = C E [[ϵ−t ] [ϵ

−
k ]

T ]CT + C E [[ϵ−t ] [v
k]T ] =

= C Φt,k+1 [Φk P
−
k CT −AKk R

k] =

= C Φt,k+1 [A [I −Kk C]P−
k CT −AKk R

k] =

= C Φt,k+1 [AP−
k CT −AKk C P−

k CT −AKk R
k] =

= C Φt,k+1 [AP−
k CT −AKk (C P−

k CT +Rk)]

Finally, iff we use the optimal Kalman gain Kk ≡ Kopt
k = P−

k CT [C P−
k CT + Rk ]−1 we

remove the cross-correlation in the innovation residuals, i.e.:

E [et e
T
k ] = C Φt,k+1 [AP−

k CT−AKk (C P−
k CT+Rk)] = C Φt,k+1 [AP−

k CT−AP−
k CT ] = O

Figure 3.2: Trace of P+
t in Anamak, measurements taken from fge, indexes from 1 to l

with tolerance δ = 0.1

In order to consistently evaluate the stochastic behaviour of the innovation residuals it
should be necessary in principle to perform many runs of filter. We can instead assume the
innovation residuals to be an ergodic process2 [14] that after many time steps is statistically
converging and thus perform the tests after each single run of the simulation. The tests
presented below are indeed performed assuming that the filter has converged, i.e. that the

2A stochastic process {et}t is said to be ergodic if its statistical properties can be deduced from a single,
sufficiently long, random sample of the process.
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Frobenius norm3 of the difference of the “a posteriori" estimation error covariance between
two time steps is less than a user-defined tolerance δ. If nt is the total number of time
instants then the total amount of time-steps to perform the tests will be N = nt − l + 1,
with index j = l s.t:

l = argmax
j

∥P+
t(j) − P+

t(j−1)∥F < δ

The convergence is usually very fastly recovered as we can see in figure ( 3.2 ).

3.1.1 Test no 1 - 1σ gate test

For this test we have partitioned the innovation of the measurements at each time-step t
in this way:

et = [et,a et,m et,f ]
T ∈ Rny = Rna+nm+nf

In order to verify if the residuals follow the distribution N (0, St) as proven in ( 1 ), instead
of looking at all the covariance elements of St the check has been done only on the diagonal
terms of St with respect to the diagonal elements of the estimator defined below:

q̂ =
1

N

nt∑
t=l

et e
T
t ∈ Rny×ny

The mean in time of the et components defines the center of the 1σ gate, where σ is defined
as the distance between the mean in time (from t(l) to t(nt)) of the standard deviations
of each innovation (i.e. the mean of the square roots of the diagonal elements of St) from
the mean in time of the innovations..

If the innovations follow a normal distribution, the 68% of each innovation index will
stand inside the 1σ gate after the running time of the test simulation. We will see in the
Results Chapter 4 ( 4.1 ) how this test performs in Anamak. The previous estimator can
be implemented in real time too. Supposing to know q̂k = 1

k

∑k
t=1 et e

T
t at time k we can

achieve recursively the estimator at the next time step:

q̂k+1 =
1

k + 1

k+1∑
t=1

et e
T
t =

1

k + 1

k∑
t=1

(
et e

T
t + ek+1 e

T
k+1

)
=

k

k + 1
q̂k +

ek+1 e
T
k+1

k + 1

3.1.2 Test no 2 - Cross-correlation test

With this test we aim to prove that the estimated cross-correlation of the innovation
residuals is zero or close to zero, as proven in ( 1 ). The estimator we performed is the
following:

r̂ =
1

N − τ

nt−τ∑
t=l

et e
T
t+τ ∈ Rny×ny , ∀ τ = {0, 1, 2, ..., 100}

However, in order to have a scalar function of the discrete time index τ we performed the
trace of the above estimator, i.e.:

r̃ =
1

N − τ

nt−τ∑
t=l

eTt et+τ = Tr r̂ ∈ R , ∀ τ = {0, 1, 2, ..., 100}

3If A ∈ Km×n then ∥A∥F =
√∑m

i=1

∑n
j=1 |aij |2 =

√
TrAA† =

√
TrA† A =

√∑min{m,n}
i=1 σ2

i , where σi

is the i-th singular value of A. If A ∈ Rm×n then A† = AT .



3.1. INNOVATION AS A WHITE NOISE PROCESS 41

If the innovation residuals are uncorrelated in time then it should be:

r̃ =

{
1 , τ = 0
0 , τ ≥ 1

We can see that if τ = 0 we are computing the trace of the first estimator q̂: dividing this
trace by the mean of the diagonal elements of q̂ we reach the normalized unitary value,
which shows that the innovation (if Gaussian) can be correlated only at the same time
instants ( 4.1 ).

3.1.3 Test no 3 - χ2 test

Let’s first of all introduce the following Theorem:

Theorem 1. If et ∼ N (0, St), with St = C P−
t CT+Rt ∈ Rny×ny , then eTt S−1

t et ∼ χ2
ny

∀ t,
where the quadratic form eTt S−1

t et is called the normalized innovation.

Proof. If {γi(t)} i=1,...,n
t=1,...,nt

are independent, standard normal aleatory variables s.t. ∀ t, ∀ i

γi(t) ∼ N ( 0, 1 ), then the sum of their squares Γt follow a chi-squared distribution with n
degrees of freedom ∀ t = 1, ..., nt:

Γt =

n∑
i=1

γ2i (t) ∼ χ2
n ∀ t = 1, ..., nt

Moreover, thanks to the additivity property :

Γ =

nt∑
t=1

Γt =

nt∑
t=1

n∑
i=1

γ2i (t) ∼ χ2
n×nt

Now, since St is a covariance matrix it is symmetric positive definite and so its inverse S−1
t

is well defined and it is symmetric positive definite too. By Spectral Theorem St and S−1
t

are both diagonalizable with orthogonal change of basis matrices:

St = V Λt V
T ⇔ Λt = V TSt V

S−1
t = (V Λt V

T )−1 = V Λ−1
t V T ⇔ Λ−1

t = V TS−1
t V

Hence we obtain:

eTt S−1
t et = eTt V Λ−1

t V T et = yTt Λ
−1
t yt =

=

ny∑
i=1

yt,i (λt,i)
−1yi,t =

ny∑
i=1

( yt,i√
λt,i

)2
where in the last step we used the fact that St > 0 ∧ S−1

t > 0 an so their eigenvalues
are always positive, i.e. λt,i > 0 ∀ i = 1, ..., ny. Moreover, using the property of Gaus-
sianity conservation under linear transformations4 if et ∼ N ( 0, St ) then yt = V T et ∼
N ( 0, V TSt V ) = N ( 0,Λt ). Therefore, ∀ i = 1, ..., ny we have that:

yt,i ∼ N (0, λt,i) ⇔ yt,i√
λt,i

∼ N (0, 1) ⇒ eTt S−1
t et ∼ χ2

ny
∀ t = 1, ..., nt

4See Theorem 3 of Appendix ( 3 ).
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Finally, we obtain that:

nt∑
t=1

eTt S−1
t et =

nt∑
t=1

ny∑
i=1

( yt,i√
λt,i

)2
∼ χ2

ny×nt

For this test we have defined the following normalized estimator:

ŝ =
1

N

nt∑
t=l

eTt S−1
t et

where l-index and the total amount of time-steps N = nt−l+1 has already been discussed.

The estimator ŝ is the sample mean of the normalized innovations: we aim to show that
Nŝ ∼ χ2

ny×N in order not to refuse the hypothesis of et ∼ N (0, St) which arises from the
optimality of the filter.
We defined indeed the null hypothesis Ho as the hypothesis that the normalized estimator
Nŝ follow a χ2

ny×N distribution with probability 1 − α, and significance level α = 0.05 5 .
We defined the confidence interval s.t.:

[r1, r2] =
[
χ2
ny×N (α/2), χ2

ny×N (1− α/2)
]
| P (Nŝ ∈ [r1, r2] | Ho) = 1− α

If the estimator is not within this interval the null hypothesis can be rejected and we
can assert with 1 − α confidence that the normalized residuals are not following a χ2

ny

distribution, which in turns means that the filter is not performing optimally. Otherwise,
if the estimator is within the confidence interval it doesn’t mean that the normalized
residuals are following a χ2

ny
distribution. In order to show that the residuals are following

a χ2
ny

distribution we should define a null hypothesis saying that the residuals are not
following the distribution and then reject this null hypothesis. Details on the computation
of the χ2 inverse cumulative distribution function can be found in [15].

However, these tests have been performed only to check faults in the filter, which may
arise from various reasons: first of all the noise level included in the model may be wrong.
Moreover, in the Kalman filter derivation, white noises on the process and measurements
equations have been assumed and it is not necessarily the case.

If those tests fail, we ensure the filter is not following the good statistics while otherwise,
if they are successful, they do not give certainty on the probability distributions of the
innovation residuals. In this sense they are properly called rejection tests rather than
validation tests [14]. By the way these tests give a powerful instrument to best tune the
covariance matrices in order to ensure the innovation residuals not to follow the wrong
statistics. The outcomes of these tests are shown in the Results Chapter 4 ( 4.1 ).

5For the sake of completeness: if the p-value is less than the level significance level, then the null
hypothesis is rejected. The lower the p-value is, the more significant will be the result. In our case we aim
just not to reject the null hypothesis, and so the results of this test will not give us statistical informations.
Otherwise if the null hypothesis is rejected (and the statistical significance increases if the p-value decreases
with respect to α) we can conclude that the filter is not optimal.



Chapter 4

Anamak results

A good orientation for this chapter was following what has been done in [14] where the
statistical tests have been used with typical induced perturbations. Starting from this, in
this work an augmented state Kalman filter has been implemented by means of kalsass.m
function that permits changements in the filter design with respect to the encoutered prob-
lems. In the next Chapter this full augmented state Kalman filter, designed on Anamak,
is then tested on existing TCV shots and a comparison with the previous implemented
mga observer is detailed in the frequency domain ( 5.2 ). For the filter’s design, in this
Chapter all the tests have been run on a stable shot of Anamak (similar to the one in
the left in figure 1.6 ) where na = 8, nv = 200, nm = 16 and nf = 16. The simulation
run-time has been set from 0 s to 1 s with equally spaced time-steps of Ts = 1ms. For test
performances comparison, eigenmodes decomposition of vessel currents has been set with
nu = 20, whereas for fge vs linearized fge comparison as well for the sinusoidal PF001
voltage and βp-ramp perturbation it has been set nu = 8.

4.1 Test performances

In this section the performances of the filter with different process covariance matrices are
discussed. The measurements are taken from a simulation of linearized fge afer known
perturburbations in the model. In the observer equation white noises have been added
to the measurements with amplitudes matching exactly their standard deviations. The
diagnostics covariance matrix R is therefore kept constant during the simulations. In
the linear model equations the only source of perturbation has been set onto the active
coil voltages, adding a known white noise disturbance. Moreover, we have assumed the
constraints to be time-invariant i.e. ∆ct = 0 ∀ t and for filter’s design pourposes the state
has been limited only to the external currents, i.e. xt = Ite ∀ t.
The process equation is the following:

It+1
e = AIte +B1 Ṽ

t+1
a

with:
Ṽ t
a = V t

a + wt
V ∈ Rna

where wt
V ∼ N (Va,err, Q̃V ), V t

a = V t
known and Q̃V = V 2

a,err Ina×na . We have set Va,err =
10V . Therefore, the correct process covariance matrix of the system is:

QV = B1 Q̃V BT
1 ∈ Rna+nu

43
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We have compared the three tests ( 3.1.1 , 3.1.2 , 3.1.3 ) using:

1. A correct process covariance matrix, i.e. Q = QV

2. An underestimated process covariance matrix by a factor 10, i.e. Q = 0.1QV

3. A overestimated process covariance matrix by a factor 10, i.e. Q = 10QV

4.1.1 Correct process covariance matrix

The 1σ gate test is presented in the following figures ( 4.1 ). For each measurement, we can
see that the innovation residuals stay inside their theoretical averaged standard deviations
with probability of 68%, like in perfect normal distributions ( 4.2 ).

Figure 4.1: 1σ gate test for all the innovations Q = QV
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In the following pictures are also presented the cross-correlation test and the χ2 test
( 4.3 , 4.4 ). We can see that in the case 1. the statistical behaviour of the innovations
is well respected, since we have set the correct covariance matrix matching exactly the
covariances of the imposed noises on the system. In all these tests the filter’s statistical
assumptions cannot be rejected, as expected.

68 %

Figure 4.2: Computing of the percentage of innovations which belong to the 1σ gate

Figure 4.3: Residual cross-covariance test: we can see that only for τ = 0 we have r̂ = 1,
while for all other time instants r̂ = 0 as expected with Gaussian innovations ( 3.1.3 )
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Figure 4.4: χ2-test to check the Gaussianity on et pdf

Finally the state estimates are shown, in comparison to the linearized fge results: the sum
of active currents estimates is shown in figure ( 4.5 ), while in figure ( 4.6 ) and in figure
( 4.7 ) the slowest and the fastest eingencurrents estimates are shown respectively.

Figure 4.5: Sum of active currents, Q = QV
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Figure 4.6: 1st eigencurrent, Q = QV

Figure 4.7: 20th eigencurrent, Q = QV

4.1.2 Underestimated process covariance matrix

We present now in figures ( 4.8 , 4.9 , 4.10 , 4.11 ) the three tests in the underestimated case.
First of all, for instance, only the plot of the 1σ gate of the Active coils innovations is
displayed ( 4.8 ) since all the innovations follow approximately the same behaviour. The
1σ test and the χ2 test fail ( 4.9 , 4.11 ) as expected even if the cross-covariance ( 4.10 )
remains around zero for each time step except τ = 0. Since the filter is putting a lot
of trust in the model with respect to measurements, it is missing up some informations
from the measurements. This leads to higher values on the residuals, as we can see in
the normalized residual distribution plot ( 4.11 ). Once again the state estimates have
been computed, in comparison to the linearized fge results but, since the estimates are
really well performed by the filter, as in figure ( 4.7 ), even in the underestimated or in the
overestimated case the plots are not shown, since they don’t give additional informations
to the reader.
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Figure 4.8: 1σ gate test for the Active coils innovations with Q = 0.1QV

68 %

Figure 4.9: Computing of the percentage of innovations which belong to the 1σ gate

Figure 4.10: Residual cross-covariance test: we can see that only for τ = 0 we have r̂ = 1,
while for all other time instants r̂ = 0 as expected with innovations uncorrelated in time
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Figure 4.11: χ2-test to check the Gaussianity on et pdf

4.1.3 Overestimated process covariance matrix

Finally, we present the three tests in the overestimated case in figures ( 4.12 , 4.13 , 4.14 , 4.15 ).
The 1σ test and the χ2 test fail ( 4.13 , 4.15 ) as expected even if, one more time, the cross-
covariance remains around zero for each time step except τ = 0 ( 4.14 ). In this case
too many residuals are within the 1σ gate and the normalized innovations are too low.
Therefore in this case, like in the underestimated one, the innovations are no longer white
noises with covariance matrix St ∀ t = t(l), ..., t(nt). One more time the state estimates
are computed, in comparison to the linearized fge and the estimates are well retrieved by
the filter despite the overestimation on Q.

Figure 4.12: 1σ gate test for the Active coils innovations with Q = 10QV
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68 %

Figure 4.13: Computing of the percentage of innovations which belong to the 1σ gate

Figure 4.14: Residual cross-covariance test: we can see that only for τ = 0 we have r̂ = 1,
while for all other time instants r̂ = 0 as expected with innovations uncorrelated in time

Figure 4.15: χ2-test to check the Gaussianity on et pdf
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In both the three situations the estimates match with the measurements. This is due to
the fact that, in Anamak, measurements are directly provided by linearized fge, which
is the state space-model we adopted. Moreover, the measurement noise has been assumed
“a priori" known and therefore the only fault has been in the guess on Q. In any case, in
this particular and very limited case, the wrong choice on Q doesn’t affect too much the
estimation performances.

4.2 Comparison between linearized fge and non-linear fge

In this Section the same tests as before have been performed. The model is still the
linearization around an equilibrium point in the state-space of the fge equations. The
divergence of the measurements evolution in the linearized case with respect to non-linear
fge is shown in figures ( 4.16 ).

Figure 4.16: Divergence from the equilibrium point between fge and linearized fge

Test validations and estimation performances are compared in the cases in which measure-
ments are taken from the linearized version of fge (as before) or in which they are taken
directly from a run of the non-linear fge solver. The process covariance matrix Q has been
chosen equal to QV in order to match exactly the imposed voltage perturbation. Finally,
the noises on the observer equation have been assumed “a priori" known and so the R ma-
trix is well defined and time-invariant. All the tests are shown in figures ( 4.17 , 4.18 , 4.19 ).
We can see that in the non-linear case we loose the hypothesis of white innovations. This
is due to the fact that we should have modelled the non-linearity as an additional noise
and we should have taken it into account in the Q-design. Contrary to the linearized case,
the disturbance does not have the structure associated with one particular input, therefore
it cannot be classified as an input disturbance but as a structural disturbance arising from
a modeling error [7]. The χ2 test and the 1σ gate test give the confirmation of such a
behaviour since their failures are similar to the ones of the previous underestimated case
( 4.9 , 4.11 , 4.19 ). Nevertheless, the cross-correlation tests give almost the same results in
both cases as we can see in ( 4.19 ). In figures ( 4.20 , 4.21 ) the main estimates are compared
in the two cases.
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Figure 4.17: 1σ gate test, diagnostics from linearized fge
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Figure 4.18: 1σ gate test, diagnostics from non-linear fge: we can see some perturbations
on the magnetic probes and flux loops innovations due to the amplification of the voltage
perturbation in the non-linear model
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68 % 68 %

Figure 4.19: 1σ gate test, cross-correlation test, χ2 test comparison between the cases of
measures taken from linearized fge and from non-linear fge
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Figure 4.20: Post-processing measurements estimations and sum of active currents com-
parison using data from linearized fge and from non-linear fge



56 CHAPTER 4. ANAMAK RESULTS

Figure 4.21: 8st and 1th eigenmodes comparison using data from linearized fge and from
non-linear fge
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4.3 Covariance matrix tuning for non-linear fge

In this Section we have performed the Kalman filtering on the same perturbed system as
before, but trying to account also for the non-linearities of the system in the design of the
process covariance matrix Q. We can distinguish three main cases:

1. Q = QV

2. Q = Qx

3. Q = QV +Qx

where Qx is the block diagonal matrix presented in Chapter 2 ( 2.3 ), with a diagonal block
for the active currents and a Toeplitz block for the vessel currents.

4.3.1 Case Q = QV

As we have already anticipated in the previous section, if we impose:

Q = QV = B1 Q̃V BT
1 = V 2

a,err B1B
T
1

in the non-linear fge, there will be a lack in the estimation performance and a fault in the
tests since we are missing the non-linearities of the system, which should be modelled as
additionals noises. Let’s see the tests ( 4.22 ):

68 %

Figure 4.22: As we have already stressed, the main faults affect the 1σ gate test and the χ2

test. We can see big spikes in the normalized residuals distribution and an underestimated
process covariance matrix behaviour
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4.3.2 Case Q = Qx

We introduce now a block diagonal matrix in order to properly account for non-linearities
in the system. The structure of such a matrix has already been presented in ( 2.3 ). Let’s
see in ( 4.23 ) the test performances, perturbing the system with the same voltage noise.

68 %

Figure 4.23: Of course all the tests fail: we have indeed imposed a voltage noise that we
didn’t account for in the design of the process covariance matrix. An intuitive solution
is to combine the information around input voltage noise from the QV matrix with the
covariance matrix Qx which models the random contributions in the state equation due to
linearization and external currents additional perturbations

4.3.3 Case Q = QV +Qx

If we suppose that the noise due to voltage perturbation and the noises due to external
currents perturbations and non-linearities in the system are independent, we can define the
covariance matrix of their sum as the sum of their covariance matrices, i.e. Q = QV +Qx.
Since the cross-correlation test gives a value around 0 ∀ τ ̸= 0, we have presented here
below only the 1σ gate test and the χ2 test ( 4.24 , 4.25 ). As we can see, even if the tests
are not perfectly performed, in the χ2 test the averaged value of the sample mean of the
normalized residuals has decreased since the spikes in their distribution have disappeared.
Moreover, in the 1σ gate test we are no more in a underestimated situation.
Finally, the time evolutions of the state estimates in all the different cases are shown in
figures ( 4.26 , 4.27 ).
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68 %

Figure 4.24: 1σ gate test with Q = QV +Qx

Figure 4.25: χ2 test with Q = QV +Qx
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Figure 4.26: Kalman 1 : Q = QV ; Kalman 2 :
Q = Qx

As we can see in figure ( 4.26 ) the
slowest and fastest eigencurrents
and the sum of active currents are
computed in the cases of Q = QV

and Q = Qx. We can see that the
estimation given by Q = Qx doesn’t
follow the right dynamics since the
perturbation is given essentially by
an external voltage noise. We must
take into account this behaviour in
our filter design, since in real-time
applications, there should exist
a voiltage noise in the system.
Considering Q = QV we can see
that the difference with respect to
fge is less significant.

In figure ( 4.27 ) the slowest and
fastest eigencurrents and the sum of
active currents are computed in the
cases of Q = QV and Q = QV +Qx.
The introduction of Qx + QV with
respect to only QV is giving a
significant improvement to the filter
in the statistical level and in the
estimates dynamics of the slowest
eigencurrent. The other quantities
are well estimated in both cases
since the voltage perturbation is the
principal cause of perturbation and
both noises due to linearization and
external currents perturbations are
almost negligible with respect to it.

As a conclusion, in real-applications
we should always account for white
noise in the voltages adding to the
covariance matrix of the process
a diagonal covariance matrix with
user defined diagonal elements or,
to avoid the hypothesis of indepen-
dence between state errors, account
for a voltage covariance block matrix
using an augmented state Kalman
filter. This topic will be discussed
in detail in the next section.
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Figure 4.27: Kalman 1 : Q = QV ; Kalman 2 : Q = QV +Qx



62 CHAPTER 4. ANAMAK RESULTS

4.4 Filter augmented state for non-linear fge

In this Section we present the situation in which the system is perturbed without giving
this information to the Kalman filter. In order to recover this unknown perturbation one
strategy was to augment the process covariance matrix in order to improve the contribution
of the measurements giving less faith to the model. The problem in this case is that the
estimate is very noisy, even if it follows the correct unknown perturbation profile. In order
to tackle this issue, a filter with augmented state has been implemented.
In some particular simulations nξ additionals state components have been added to all
the components of the previous external current state vector, s.t. nξ = ne = na + nu.
Therefore, the augmented state has doubled its dimension: for large state-space systems,
like in TCV with filamentary vessel currents, the state augmentation could cause a lack
in observability since the measurements could no longer be sufficient to recover all the
components of the state vector. By the way in the next Chapter we have checked that
this doesn’t happen for the TCV shots taken into account but we have noted a decrease
on estimation performance due to state dimensionality, as we can see in figure ( 5.27 )).
In the sinusoidal case two different covariance matrices for the additional disturbances are
discussed: the first with correlation with active currents and the second one uncorrelated
with active currents. In this particular cases the number of additional states has been set
equal to the number of active currents, i.e. nξ = na.

4.4.1 kalsass.m function

The matlab function kalsass.m providing all possible state augmented Kalman filter’s
linear state spaces, following what described in ( 2.2 ), has been implemented and has
been called into the environmental matlab script kal_stateaugmented.m accounting
for different testcases, each one with its particular state extention and properly designed
covariance matrices. The kalsass.m function requires as inputs: the simulation time t,
the linearization structure given by the fgel.m function, the linear state space model
(with state: Ie, inputs: {Va, c,

dc
dt}

1 and outputs: {Ia, Bm, Ff}) given by fgess.m and
then six logical entries which can characterise all the state’s components combinations of
the Kalman Filter. Furthermore an extra logical input defines if the state space will be
in continuous time or in discrete time2 . The kalsass.m function gives as output the
extended state space structure kalsass. If δV t = ∆V t the generalized ne equations for the
external currents are:

It+1
e = AIte +Aξ ξ

t +Oc c
t +A∆ξ ∆ξt +B2∆ct +B1 (V

t
known +∆V t) +Gwt

Ie =

= AIte +
(
Aξ Oc

)(ξt
ct

)
+
(
A∆ξ B2 B1

)∆ξt

∆ct

∆V t

+B1 V
t
known +Gwt

Ie =

= AIte + Z1 φ
t + Z2∆Φt +B1 V

t
known +Gwt

Ie

where we have introduced the vectors φt = [ξt ct]T with dimφt = nφ = nξ + nc ∀ t and
∆Φt = [∆ξt ∆ct ∆V t]T with dim∆Φt = n∆Φ = n∆ξ + n∆c + n∆V ∀ t. Since n∆V = nV =
na, if we impose for exemple Aξ = Ine×ne and n∆ξ = nξ = ne we have nξ = ne = na + nu,
therefore nφ = na+nu+nc and n∆Φ = 2na+nu+nc, whereas if n∆ξ = 0 ∧ nξ = ne then

1If we consider simulations with regular time stepping ∆t = Ts we have that ∆c = dc
dt

Ts. The model
can be easily written taking into account ∆ct or dct

dt
simply by multiplying or dividing the related matrix

blocks by Ts.
2In this work discrete time formulation has always been adopted.
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nφ = na + nu + nc and n∆Φ = na + nc. The matrices we imposed are defined here below:

Z1 =
(
Aξ Oc

)
=
(
Ine×ne One×nc

)
Z2 =

(
A∆ξ B2 B1

)
=
(
One×n∆ξ

B2 B1

)
Now imposing an averaged constant behaviour for ξt and ∆V t and a linear track for ct we
obtain that nc ≡ n∆c and the following nξ + 2nc + nV equations:

ξt+1 = ξt + wt
ξ

ct+1 = ct +∆ct + wt
c

∆ct+1 = ∆ct + wt
∆c

∆V t+1 = ∆V t + wt
∆V

that have been rearranged into the following nφ + n∆Φ equations:

φt+1 = Z3 φ
t + Z4∆Φt +Qφwt

φ

∆Φt+1 = Z5∆Φt +Q∆Φwt
∆Φ

with white noise vectors wt
φ = [wt

ξ wt
c]
T and wt

∆Φ = [wt
∆ξ wt

∆c w
t
∆V ]

T and matrices defined
here below:

Z3 =

(
Inξ×nξ

Onξ×nc

Onc×nξ
Inc×nc

)
Z4 =

(
Zξ
4 Onξ×nc Onξ×nV

Onc×n∆ξ
Inc×nc Onc×nV

)
=

(
Onξ×n∆ξ

Onξ×nc Onξ×nV

Onc×n∆ξ
Inc×nc Onc×nV

)

Z5 =

 Z∆ξ
5 On∆ξ×nc On∆ξ×nV

Onc×n∆ξ
Inc×nc Onc×nV

OnV ×n∆ξ
OnV ×nc InV ×nV

 =

On∆ξ×n∆ξ
On∆ξ×nc On∆ξ×nV

Onc×n∆ξ
Inc×nc Onc×nV

OnV ×n∆ξ
OnV ×nc InV ×nV


If we want to impose a linear track for ξ it is sufficient to set Zξ

4 = Z∆ξ
5 = Inξ×nξ

and in
this case nξ ≡ n∆ξ. If we didn’t deal with ∆ξt the matrices Qφ and Q∆Φ are simply:

Qφ =

(
Inξ×nξ

Onξ×nc

Onc×nξ
Inc×nc

)

Q∆Φ =

Onξ×nξ
Onξ×nc Onξ×nV

Onc×nξ
Inc×nc Onc×nV

OnV ×nξ
OnV ×nc InV ×nV


Once defined the augmented state 3 as xt = [Ite φt ∆Φt]T , with dimxt = ne+nφ+n∆Φ

we have obtained the following generalized state space model :

xt+1 = Aau x
t +Bau V

t
known +Qxw

t
x =

=

 It+1
e

φt+1

∆Φt+1

 =

A Z1 Z2

O Z3 Z4

O O Z5

 Ite
φt

∆Φt

+

 B1

Onφ×na

On∆Φ×na

 V t
known +

G O O
O Qφ O
O O Q∆Φ

 wt
x

3The filter behaviour has been validated with the previous rejection tests considering only the external
currents as state vector components: i.e. with nφ = 0 ∧ n∆Φ = 0.
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with white noise vector wt
x = [wt

Ie
wt
φ wt

∆Φ]
T 4 . The kalsass.m function computes also

the matrices which appear into the generalized observer equation. In physical frame, if we
define the equilibrium state as xeq = [Ie,eq ceq]

T we get:
yt = C1 I

t
e + C2 c

t + C3∆ct + yo

yo = D̃ U = D̃

(
xeq
yeq

)
Since ξeq = ∆ξeq = ∆ceq = ∆Veq = 0, then U = [Ie,eq ceq yeq]

T , thus:

D̃ =
(
−C1 −C2 Iny×ny

)
=
(
−C −D Iny×ny

)
with ny = na + nm + nf = dim yt. We therefore obtain:

yt = Cau x
t + D̃ U =

=

 Ita
Bt

m

F t
f

 =
(
C1 M N

) Ite
φt

∆Φt

+
(
−C1 −C2 Iny×ny

)Ie,eq
ceq
yeq


with matrices:

M =
(
Ony×nξ

C2

)
=
(
Ony×nξ

D
)

N =
(
Ony×n∆ξ

C3 Ony×nV

)
=
(
Ony×n∆ξ

Ony×n∆c Ony×nV

)
4.4.2 Sinusoidal perturbation

A sinusoidal perturbation has been added to the first PF coil voltage Va1:

Ṽ t
a1 = V t

a1 + xt1 + wt
1

where Va1 < 0 is the constant voltage of the first PF coil after an unperturbed run of fge,
x1 is the sinusoidal disturbance defined by:

xt1 = −k
√
2Va1,RMS sin(2πft)

with k = 0.01, Va1,RMS = |Va1| and f = 1
T = 1

t(nt)−t(1) = 1Hz since T = 1 s.
We added to this perturbation a white noise w1 too, with amplitude Va1,err = 0.2V .
Finally, a global white noise of amplitude k has been added to all the voltage components.
For the covariance matrix design the active currents block Qa has been chosen diagonal with
diagonal elements equal to Qa(i, i) = 100. For the vessel block Qv it has been implemented
a continuous Toeplitz algorithm with main diagonal elements equals to Qv(i, i) = 10. A
change of basis then sent Qv to Qu since we adopted the eigenmode representation with
nu = 8. Finally, the process covariance matrix has been set block diagonal with blocks Qa

and Qu.

In order to show that an increasing process covariance matrix improves the estimation of
unknown perturbations in the system, both cases Q and 10Q have been considered. In
the state augmented case we assumed that the additional state components enters in all
the components of the external current state. The initial condition of these perturbations
has been fixed to zero and their stochastic dynamics is driven by the sum of an additional

4In any case the stochastic addendum Qx w
t
x is not computed by kalsass.m since for Kalman Filters

models the predictive equation takes only the deterministic contributions.
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unitary white noise. Therefore, the block Qξ ∈ Rnξ = Rna+nu has been chosen diagonal
with diagonal elements Qξ(i, i) = 1. Since we have assumed the external currents to be
independent of the ξi ∀ i = 1, ..., nξ, the global state augmented process covariance matrix
is the block diagonal matrix of blocks Q and Qξ. In figures ( 4.28 , 4.29 , 4.30 , 4.31 ) the
estimation performances of the fastest and slowest eigencurrents estimates, the sum of the
active currents estimates and the first PF coil current are depicted, in the cases of process
covariance matrices Q and 10Q or in the augmented state case. As we can see, we can
recover the unknown perturbations simply by augmenting the process covariance matrix.
However, this increases a lot the quantity of measurement noise in the system. In the state
augmented case the tracking is more accurate and not very noisy.

Referring to the kalsass.m function, we have compared the simplest state with nφ =
0 ∧ n∆Φ = 0 with the simple augmented state with nφ = nξ = ne ∧ n∆Φ = 0. We can
see in figure ( 4.32 ), the normalized Power Density Spectrum of the ξ disturbances. This
plot has been implemented first of all computing the FFT 5 of the ξi and then multiplying
each transformed component with its complex conjugate. We can see that most of the ξi-
disturbances have an high amplitude in the Fourier space at 1Hz, which is the frequency
at which the first PF coil has been perturbed.

Figure 4.28: 1st and 8th eigencurrents, sum of active currents with Q, nφ = n∆Φ = 0

5Fast Fourier Transform: Fd (ξi) =
∑nt

k=1 ξi(k) exp(−ȷ 2π
nt

k t) , t = 1, ..., nt, ∀ i = 1, ..., nξ.
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Figure 4.29: 1st and 8th eigencurrents, sum of active currents with 10Q, nφ = n∆Φ = 0

Figure 4.30: 1st and 8th eigencurrents, sum of active currents with augmented state Q,
nφ = nξ = ne ∧ n∆Φ = 0
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Figure 4.31: First coil current estimates comparison with sinusoidal unknown perturbation

Figure 4.32: Normalized Power Density Spectrum of the ξ disturbances

Finally, we presented the augmented state case in which nφ = nξ = ne ∧ n∆Φ = nV = na,
with covariance matrix block QδV of the δV ∈ Rna state component, matching exactly the
input white noise imposed in all the coils, i.e. QδV = k2 Ina×na . In this way the filter is
able to predict the state taking into account multiple sources of perturbation (in this case
constant disturbances on the currents and on the input voltages, with random evolutions
driven by the measurement-update equations) that participate to the state evolution. We
obtained a further improvement in the estimation performance since in this case the signal is
closer to the sinusoidal input even though it is a bit more noisy. In figures ( 4.33 , 4.34 , 4.35 )
the first poloidal coil currents are compared together with the sparsity patterns of the
covariance matrices Q in all the three situations.
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Figure 4.33: nφ = nξ = ne ∧ n∆Φ = 0

Figure 4.34: nφ = nξ = ne, ∧ n∆Φ = n∆V = na

Figure 4.35: nφ = nξ = ne ∧ n∆Φ = n∆ξ + n∆V = ne + na = 2na + nu
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4.4.2.1 Correlated and uncorrelated comparison

So far we have not considered correlation between the noises on ξi and the noises on the
active currents. In this subsection we have fixed nφ = nξ = na ∧ n∆Φ = 0 and we have
tried to study, by imposing correlation between perturbation noises and active current
noises of the same index, whether there would have been estimation improvements with
respect to the previous uncorrelated state augmented case. The cross-covariances have
already been defined in the Chapter 2 ( 2.3 ) and have been chosen as the geometric mean
of the covariances of the i-th noises of ξ and Ia.

Like before the main estimated quantities are presented in both cases in figures ( 4.38 ).
With this specific perturbation the performances are almost the same, except for the very
initial time-steps of the estimation, as we can see looking at the first coil current estimation
in figure ( 4.36 ).

Figure 4.36: Correlated and uncorrelated comparison for first coil current estimation

Figure 4.37: Correlated and uncorrelated global process covariance matrices sparsity pat-
terns
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Figure 4.38: Slowest and fastest eigencurrent, sum of active currents with correlation (red)
and without correlation (blue): as we can see the performances are almost the same in
both cases



4.4. FILTER AUGMENTED STATE FOR NON-LINEAR FGE 71

4.4.3 Step perturbation

In this subsection a noisy step perturbation affects one more time the first PF coil voltage
Va1:

Ṽ t
a1 = V t

a1 + xt1 + wt
1

where Va1 < 0 is the constant voltage of the first PF coil after an unperturbed run of fge
and where x1 is the step disturbance from 0.4 s to 0.6 s defined by:

xt1 = rect
( t− 0.5

5

)
i.e. the unitary rectangle centered in t = 0.5 s and with length of 0.1 s. Moreover, w1 is
a white noise over all the time domain with amplitude k = 0.01 ( 4.40 ). Finally, a global
white noise of amplitude k has been added to all the voltage components. For the process
covariance matrix design we adopted the same approach of the sinusoidal case. In figures
( 4.39 , 4.41 , 4.42 , 4.43 ) are exposed the differences between the main estimated quantities
both with Q, 10Q and in the augmented state case with nξ = na + nu. Referring to the
kalsass.m function, we have compared the simplest state with nφ = 0 ∧ n∆Φ = 0 with
the simple augmented state with nφ = nξ = ne ∧ n∆Φ = 0.

Figure 4.39: Active current estimates of the first PF coil

Figure 4.40: Stochastic step input voltage perturbation of the first PF coil
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Figure 4.41: 1st and 8th vessel eigencurrents, sum of active currents with Q

Figure 4.42: 1st and 8th vessel eigencurrents, sum of active currents with 10Q



4.4. FILTER AUGMENTED STATE FOR NON-LINEAR FGE 73

Figure 4.43: 1st and 8th vessel eigencurrents, sum of active currents with Kalman filter
augmented state

As we can see, we can recover the unknown perturbations simply by augmenting the process
covariance matrix but, once more, this increases the quantity of measurement noise in the
system. In the state augmented case the tracking is improved allowing to estimate more
accurately while remaining less sensitive to noise, compared to the case without state
augmentation. This can be ascertained looking at the active current estimates of the first
PF coil in all the three cases ( 4.39 ).

4.4.4 Constraints estimation

In this subsection we have extended the state in order to estimate the internal plasma
constraints evolution βp(t) and qA(t) after an unknown perturbation of their derivatives.
In particular we have performed the estimations in these two cases:

• Monotonically increasing qA-ramp

• Monotonically decreasing and increasing βp-ramp with dβp

dt discontinuity

For both cases we extended the state in order to impose nφ = nc ∧ n∆Φ = n∆c = nc.
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4.4.4.1 qA-ramp

First of all we have perturbed the system introducing a monotonically increasing qA-ramp
which has been computed by integrating its time derivative dqA

dt which is a 0.2 constant
with an extra white noise perturbation of amplitude k = 0.5 · 10−6. Then we add a
tiny amount of white noise to all the voltages in order to let the dynamics of the system
been excited essentially by the qA-perturbation. We set for Anamak the TCV standard
measurement noises {ωa, ωm, ωf} = {100A, 10−3 T, 10−3Wb} and then we reattempted
the estimation with a 10-times lower measurement noises. We set initial condition of the
estimation error covariance matrix P0 = 10Q and we imposed Qc, Q∆c submatrices as
diagonal uncorrelated blocks. The process covariance matrix is varying with time-step ∆t
and it is equal to:

Q =

Qe O O
O Qc O
O O Q∆c


with:

(
Qc O
O Q∆c

)
=



∆t σIp 0 0 0 0 0
0 ∆t σβp 0 0 0 0
0 0 ∆t σqA 0 0 0
0 0 0 1

3∆t3 σ∆Ip 0 0
0 0 0 0 1

3∆t3 σ∆βp 0
0 0 0 0 0 1

3∆t3 σ∆qA


In the simultation t ranges from 0 to 1 s with ∆t = 10−3. We have chosen {σIp , σβp , σqA} =
{106, 1, 10−5} and {σ∆Ip , σ∆βp , σ∆qA} = {106, 1, 10−2} and we imposed the right initial
condition on dqA

dt . At the end of the subsection the estimations of {qA, βp}-ramps and their
derivatives are presented both with standard and reduced measurement noises ( 4.45 , 4.46 ).

4.4.4.2 βp-ramp

First of all we have perturbed the system introducing a monotonically increasing βp-ramp
from t ∈ [0, 0.5] s and a monotonically decreasing βp-ramp from t ∈ [0.5, 1] s, which
has been computed by integrating its time derivative dβp

dt which presents a discontinuity at
t = 0.5 s and a symmetrical jump of amplitude 8·10−5. Then we add a tiny amount of white
noise to all the voltages in order to let the dynamics of the system been excited essentially
by the βp-perturbation. We set, in a first moment TCV standard measurement noises
{ωa, ωm, ωf} = {100A, 10−3 T, 10−3Wb} and then we retrieved the simulation with a
lesser measurement noise i.e. {ωa, ωm, ωf} = {10A, 10−4 T, 10−4Wb}. We have seen that
the tracking is less oscillating if there is less measurement noise. In any case the estimation
of βp is really hard to recover with high precision since the initial condition over dβp

dt is
given wrong and equal to 0. In order to increase the estimation performances a big initial
condition onto the estimation error covariance matrix has been set, i.e. P0 = 200Q. Like in
the qA-ramp case we have imposed Qc, Q∆c submatrices as diagonals without introducing
correlation between these two blocks. In a further step we have tried to introduce some
correlation through a new block Qc,∆c but without seeing great improvements in the results.
The process covariance matrix is varying with time-step ∆t and it is equal to:

Q =

Qe O O
O Qc Qc,∆c

O Qc,∆c Q∆c


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with:

(
Qc Qc,∆c

Qc,∆c Q∆c

)
=



∆t σIp 0 0 0 0 0
0 ∆t σβp 0 0 0 0
0 0 ∆t σqA 0 0 0
0 0 0 1

3∆t3 σ∆Ip 0 0
0 0 0 0 1

3∆t3 σ∆βp 0
0 0 0 0 0 1

3∆t3 σ∆qA


or, if there is correlation, it is equal to [14]:

(
Qc Qc,∆c

Qc,∆c Q∆c

)
=



∆t σIp 0 0 1
2∆t2 σIp 0 0

0 ∆t σβp 0 0 1
2∆t2 σβp 0

0 0 ∆t σqA 0 0 1
2∆t2 σqA

1
2∆t2 σIp 0 0 1

3∆t3 σ∆Ip 0 0
0 1

2∆t2 σβp 0 0 1
3∆t3 σ∆βp 0

0 0 1
2∆t2 σqA 0 0 1

3∆t3 σ∆qA


In the simultation t ranges from 0 to 1 s with ∆t = 10−3. We have chosen {σIp , σβp , σqA} =
{106, 7 · 10−6, 10−6} and {σ∆Ip , σ∆βp , σ∆qA} = {106, 105, 10−6}.

Figure 4.44: First coil current after
βp-ramp perturbation; sparsity pat-
tern of covariance matrix Q, with c -
∆c correlation but without Ie - c cor-
relation

If the measurement noise is set low it is possible to se-
lect a higher process covariance matrix (with respect to
measurements covariance matrix R) so that the filter
will be able to easily adapt to quick changes such as a
discontinuity in the time derivative of a component of
its state. On the other hand, if the measurement noise
is set high, keeping the process covariance high as well
all the measurement noise will enter in the estimates
( 4.47 , 4.48 ). Therefore in this case it is necessary to
lower the process covariance matrix, renouncing to the
possibility of recovering fast changes of the parameters.
An intersting estimation improvement would be to an-
alyze in depth the relationships between the parame-
ters and the active and vessel currents. In order to do
so it will be necessary to reduce the perturbation on
the voltages letting the state evolution being a direct
consequence of βp-perturbation. An intersting further
covariance matrix design improvement would be to fill
some correlations between the errors of βp, the first
vessel eigenmodes (the slowest ones) errors and the
active coils errors. The estimated first coil current af-
ter βp-ramp perturbation and the sparsity pattern of
Q introducing correlation between c and ∆c are shown
in figure ( 4.44 ). We can see that the estimation of first
coil Ia retrieved by the Kalman filter follows the fge
profile and reduces the noises of the measurements.
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Figure 4.45: Tracking of qA-ramp and dqA
dt -step with {ωa, ωm, ωf} =

{100A, 10−3 T, 10−3Wb}

Figure 4.46: Tracking of qA-ramp and dqA
dt -step with {ωa, ωm, ωf} = 0.1 ·

{100A, 10−3 T, 10−3Wb}
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Figure 4.47: Tracking of βp-ramp and dβp

dt -step with {ωa, ωm, ωf} =
{100A, 10−3 T, 10−3Wb}

Figure 4.48: Tracking of βp-ramp and dβp

dt -step with {ωa, ωm, ωf} = 0.1 ·
{100A, 10−3 T, 10−3Wb}
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4.4.5 Plasma position estimation

In this subsection the post-processing plasma vertical and radial position estimates are
presented. The position of plasma is computed directly from the estimated state and the
measured total plasma current6 . We will see in the next Chapter ( 5.2 ) that it is possible
to compute the baricentral positions rIp and zIp of the plasma by multiplying the state
x of the system (Ie or [ Ie c ]T ) by ∂rIp

∂x and ∂zIp
∂x (see block diagrams in 5.19 , 5.20 ). The

radial and vertical positions are then computed by multiplying these quantities by Ip.

In figures ( 4.49 , 4.50 , 4.51 , 4.52 , 4.53 ) the radial and vertical plasma positon evolutions
are computed in a stable circular shot of Anamak over a 1 s time window of simulation.
The following perturbations have been used:

1. Sinusoidal voltage perturbation (first coil)

2. Step voltage perturbation (first coil)

3. White noise voltage perturbation

4. qA-ramp constraint perturbation

5. βp-ramp constraint perturbation

In the case 3. the white noise has been injected with amplitude of 4V to all the na voltages,
whereas for the other cases the disturbance is the same as that presented in the previous
subsections.

Several combinations of the state augmentation have been set using the kalsass.m func-
tion which have given some improvements in the plasma position estimation. In any case,
even if we set nφ = n∆Φ = 0 and we refer to the simplest state accounting only for the
external currents, neglecting the constraints contributions and using a reduced substate
that takes into account only the slowest nu = 8 vessel eigencurrents, the plasma position
is still well recovered in Anamak for all these induced perturbations test-cases.

In the first part of the next Chapter ( 5.1 ) the full augmented state design of the Kalman
filter is maintained and tested on several shots of TCV. The stress has been put in the
evaluation of the plasma position estimation, like it was done this Section with induced
perturbations. Moreover, in Section ( 5.1.4 ) the z-error with respect to a plasma recon-
struction solver (in that case liuqe) has been compared for different typical TCV shots.

6It is possible to estimate Ip too and make the computation with all estimated quantities.
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Figure 4.49: Case 1.: from top to bottom (1)− (3): (1) nφ = nξ ∧ n∆Φ = 0 ,
(2) nφ = nξ ∧ n∆Φ = n∆ξ, (3) nφ = nξ ∧ n∆Φ = n∆ξ + n∆V
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Figure 4.50: Case 2.: from top to bottom (1)− (3): (1) nφ = 0 ∧ n∆Φ = 0 ,
(2) nφ = nξ ∧ n∆Φ = 0, (3) nφ = nξ + nc ∧ n∆Φ = n∆ξ + n∆c + n∆V
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Figure 4.51: Case 3.: nφ = 0 ∧ n∆Φ = n∆V

Figure 4.52: Case 4.: from top to bottom (1)− (2) with nφ = nc ∧ n∆Φ = n∆c :
(1) {ωa, ωm, ωf} = 0.1 · {100A, 10−3 T, 10−3Wb},
(2) {ωa, ωm, ωf} = {100A, 10−3 T, 10−3Wb}
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Figure 4.53: Case 5.: from top to bottom (1)− (2) with nφ = nc ∧ n∆Φ = n∆c :
(1) {ωa, ωm, ωf} = 0.1 · {100A, 10−3 T, 10−3Wb},
(2) {ωa, ωm, ωf} = {100A, 10−3 T, 10−3Wb}



Chapter 5

TCV results

In this Chapter the filter performs in the TCV framework with na = 19, nv = 256,
nm = 38 and nf = 38. The measurements are taken from the plasma reconstruction code
liuqe (we refer to 1.4 and to [19] for further details) and the vessels are described by their
slowest nu = 20 eigenmodes. Moreover, to account for three unreliable flux loops sensors1 ,
a mask has been imposed to reduce nf to 35. As a remark, all these simultations are
achieved in an open-loop while, during real working operations, the observer is assumed
to be implemented onto a controlled closed-loop network.

5.1 Simulations

In this subsection the filter has been tested onto experimental data from several TCV shots
with various typical configurations. The shots presented are numbers: 61400 (diverted),
69293 (limited), and 69393 (negative triangularity). The linearization of fge has been set
at the beginning of the flat-top zones2 . In order to recover all the plasma profiles as well
as possible, a unique filter has been implemented for all these tests. The full extended
state has been used and particular attention has been put in covariance matrix tuning.
The choices adopted for the augmented blocks are the following:

Qξ = κ Inξ

Qc = diag
(
Ts [1010 109 108]T

)
Q∆ξ = Qξ

Q∆c = diag
( T 3

s

3
[10−1 10−1 10−1]T

)
QδV = V 2

a,err Ina

with nξ = ne = na + nu = 39 and where κ = Va,err = 1 [V ] and Ts = 10−3 [s].

5.1.1 Shot 61400 - Diverted

In this particular shot two different linearizations have been set at the beginning of two
flat-top zones. The ending part of the first flat-top is affected by a fast increase of βp

1Ψf10, Ψf11, Ψf12.
2The filter performs less good in the ramp-up since the hypothesis of constant Ip is no longer valid. A

solution should be to add a CDE and perform several closer fge linearizations.
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while in the beginning of the second flat-top there are fast variations both on βp and in qA.

TCV#61400 0.5990s/16

r,z=0.894,+0.184m+0.5mm:525

Ip=-187kA bp=0.43 li=1.13
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Figure 5.1: TCV 61400 shot, time 0.5990 s

The shape of plasma is shown in fig-
ure ( 5.1 ) at time t ≈ 0.6 s among
the first interval of simulation. The
full interval of simulation of shot
61400 started at time t = 0.1 s and
ended at t = 2 s. Hereafter the lin-
earization criterium has been shown
in a plot dividing the two subinter-
vals of simulation ( 5.2 ). Moreover,
using the augmented state Kalman
Filter, the estimation plots of the
main quantities are shown: the es-
timated plasma position, the most
significant estimated currents and
the estimated constraints are com-
pared to the ones retrieved by liuqe
code.

Figure 5.2: Full interval of magnetic reconstruction of shot 61400



5.1. SIMULATIONS 85

5.1.1.1 First flat-top

The first observer simulation has been set in the first flat-top, from time t = 0.2 s to time
t = 0.9 s. The fge linearization has been set at time t = 0.2 s. In figures ( 5.3 , 5.4 ) we
can see that, with this particular choice of the covariance matrices of the process, the most
critical remarks can be set on βp, qA and the fastest eigencurrent trackings which diverge
approximately at the middle of the simulation. Moreover, the first eigencurrent estimate
is affected by a amplification of its oscillating behaviour. The sum of active currents, the
radial and vertical position estimations are performed very well by the filter (an analytical
description will be carried in subsection ( 5.1.4 )). However, even though some estimates
are not fully precise the results are very satisfactory since the state-space model retrieved
from the linearization of fge carries the vertical instability of the system. This means
that thanks to the measurement-update equations the filter reaches the good information
from the measurements to handle its inbuilt unstability. Moreover in all these simulations
we have considered only nu = 20, and we will see in Section ( 5.2 ) that the Kalman filter
has an higher phase margin if we increase the number of vessel eigenmodes. Improvements
can be achieved also reducing the sample time Ts.

Figure 5.3: From top to bottom (1)-(3): slowest (1) and fastest (2) eigencurrents, sum of
active currents (3)



86 CHAPTER 5. TCV RESULTS

Figure 5.4: From top to bottom (1)-(5): Ip (1), βp (2), qA (3), radial (4) and vertical (5)
plasma position
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5.1.1.2 Second flat-top

The second observer simulation has been set in the second flat-top, from time t = 1.2 s
to time t = 1.9 s. In this case the fge linearization has been set at time t = 1.2 s. In
figures ( 5.5 , 5.6 ) we can see that, with this particular choice of the covariance matrices
of the process, the most critical remarks can be set on βp, qA and the fastest eigencurrent
trackings. In this case the constraints results are affected by some offsets which are tiny
for Ip and impact basically on βp and qA evolutions. The 20th eigencurrent estimate starts
at a wrong working point and then converges to the correct values after ∆t ≈ 0.25 s. The
sum of active currents and, most of all, the vertical position estimation are very close to
the reconstructed ones (the difference is in the order of mm or lesser ( 5.1.4 )).

Figure 5.5: From top to bottom (1)-(3): slowest (1) and fastest (2) eigencurrents, sum of
active currents (3)
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Figure 5.6: From top to bottom (1)-(5): Ip (1), βp (2), qA (3), radial (4) and vertical (5)
plasma position
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5.1.2 Shot 69293 - Limited

The observer simulation has been set during flat-top, from time t = 0.5 s to time t = 1.6 s.
This time region presents slow-varying constraints.

TCV#69293 0.5990s/18

r,z=0.897,+0.001m-0.0mm:615

Ip=336kA bp=0.22 li=1.07
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Figure 5.7: TCV 69293 shot, time 0.5990 s

The shape of plasma is shown in fig-
ure ( 5.7 ) at time t ≈ 0.6 s. The full
interval of simulation of shot 69293
started at time t = 0.1 s and ended
at t = 1.8 s. In figure ( 5.8 ) the lin-
earization criterium has been shown
in a graph that identifies the range
of the simulation. Moreover, using
the augmented state Kalman Fil-
ter, the estimation plots of the main
quantities are shown: the estimated
plasma position, the most signifi-
cant estimated currents and the es-
timated constraints are compared to
the ones retrieved by liuqe code.

Figure 5.8: Full interval of magnetic reconstruction of shot 69293
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As already said, the simulation has been set in the flat-top region, from time t = 0.5 s to
time t = 1.6 s. In this case the fge linearization has been set at time t = 0.5 s. In figures
( 5.9 , 5.10 ) we can see that, with this particular choice of the covariance matrices of the
process, the most critical remarks can be set on qA and the fastest eigencurrent trackings.
In this case the qA estimation evolution is affected by both offsets and uncorrect slope.
The 20th eigencurrent estimate starts at a wrong working point and then converges to the
correct values after ∆t ≈ 0.25 s. All the other estimation quantities are performed very
close to the reconstructed ones. We will see in ( 5.1.4 ) that for this shot we have the best
z-error performances, since the plasma is less vertically elongated and the constraints are
varying slowly. This implies that the divergence from equilibrium is less significative with
respect to the other shots taken into account.

Figure 5.9: From top to bottom (1)-(3): slowest (1) and fastest (2) eigencurrents, sum of
active currents (3)
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Figure 5.10: From top to bottom (1)-(5): Ip (1), βp (2), qA (3), radial (4) and vertical (5)
plasma position
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5.1.3 Shot 69393 - Negative triangularity

The observer simulation has been set during flat-top, from time t = 0.9 s to time t =
1.5 s. This time interval presents slow-varying constraints since the negative triangu-
larity is imposed by the sorrounding magnetic configuration around instant t ≈ 0.3 s.

TCV#69393 0.2640s/9

r,z=0.896,-0.025m-0.1mm:540

Ip=-224kA bp=0.23 li=1.09

TCV#69393 0.3340s/19

r,z=0.907,-0.058m-0.3mm:470

Ip=-212kA bp=0.26 li=1.02
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Figure 5.11: TCV 69293 shot, times 0.2640 s
and 0.3340 s

The shape of plasma is shown in fig-
ure ( 5.11 ) at times t ≈ 0.3 s, just
before and after the change of trian-
gularity. The full interval of simu-
lation of shot 69293 started at time
t = 0.2 s and ended at t = 1.6 s.
In figure ( 5.12 ) the linearization cri-
terium has been shown in a graph
that identifies the range of the sim-
ulation. Moreover, using the aug-
mented state Kalman Filter, the es-
timation plots of the main quantities
are shown: the estimated plasma
position, the most significant esti-
mated currents and the estimated
constraints are compared to the ones
retrieved by liuqe code.

Figure 5.12: Full interval of simulation of shot 69393
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As already said, the observer simulation has been set in the flat-top region, from time
t = 0.9 s to time t = 1.5 s. In this case the fge linearization has been set at time t = 0.9 s.
In figures ( 5.13 , 5.14 ) we can see that, with this particular choice of the covariance matrices
of the process, the most critical remarks can be set on βp, qA and the fastest eigencurrent
trackings. In this case the βp and qA estimation evolutions are affected by some spikes
induced by the filter amplification of the measurement variations. In any case the aver-
age values of the estimated constraints perfectly center the required profiles. The 20th
eigencurrent estimate starts at a wrong working point and then converges to the correct
values after ∆t ≈ 0.1 s. All the other estimation quantities are performed very close to the
reconstructed ones.

Figure 5.13: From top to bottom (1)-(3): slowest (1) and fastest (2) eigencurrents, sum of
active currents (3)
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Figure 5.14: From top to bottom (1)-(5): Ip (1), βp (2), qA (3), radial (4) and vertical (5)
plasma position
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5.1.4 Error analysis

In this subsection a vertical position error analysis has been done. In table ( 5.1 ) are
reported the means, the minima and the maxima errors in the z-position estimation with
respect to liuqe for all the shots taken into account. As we will see in ( 5.27 ), if we
increment the number of vessel eigencurrents the estimation performance doesn’t change
too much if we adopt the same parameters in the covariance blocks design. This is due
to the significative increase in the size of the augmented state of the system. In figures
( 5.15 , 5.16 ) the z-error evolutions of the shots presented in ( 5.1 ) are shown. We can see,
as reported in figures ( 5.2 , 5.4 ), that the estimation of the z-position is diverging at the
end of the interval of simulation, since at the end of the flat-top there is a fast increase
in the βp parameter, i.e. the plasma pressure is fastly changing. The mean values of the
errors are in the order of [mm] except for the limited shot in which the mean is of the
order of tenths of a millimeter.

Figure 5.15: Diverted first and second flat-top z-error evolution
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Figure 5.16: Limited and Negative Triangularity z-error evolution

The maximum values of the errors are still in the [mm] range except for the diverted case,
escpecially in the 1st flat-top where the error reaches the [cm] range. As we can see in
( 5.15 ) the elongated shape of the plasma leads to a fast unstability the more we are far
from the equilibrium. A solution should be to retrieve many close linearizations of fge
for high elongated plasmas. The minimum values of the errors range from tenths of a
millimeter (shot 69393) to tenths of a micrometer (shot 69293).

z-errors [mm]

61400 1st flat-top 61400 2nd flat-top 69293 69393
Mean of z-error 4.3 2.0 0.39794 3.4

Max of z-error 20.1 9.1 1.7 5.8

Min of z-error 0.025876 0.0074226 0.00050041 0.83672

Table 5.1: Table of z-errors for different shots in the [mm] scale
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5.2 Observers comparison in the frequency domain

In this section the open-loop performances of the Kalman Filter observer have been com-
pared to the previous implemented observer’s ones. This observer is called mga3 and it is
based on a linear combination of measurements obtained by solving a linear least-squares
problem, fitting a plasma current distribution on the plasma domain using Finite Elements
Method (for further details we refer to [11] and [23]).

The control voltages to vertical position transfer functions have been shown and discussed
in the frequency domain. The stress has been put at first on three specific coils: F4, G1
and E4. Then, due to the particular choice of the simulation interval, we have considered
only slow coil F7 and fast coil G1 since they where the closest to the plasma under analysis
and so their responses are more significant. As a remark, in TCV there is only one series
connected fast coil circuit called G1, as we can see from figures ( 1.4 , 1.5 ).
First of all we have compared the Va to zIp frequency responses taken from fgess4 in
continuous time and in discrete time. As we can see from the following Bode diagrams
( 5.17 ), the responses diverge only in close proximity to the Nyquist frequency. In order
to reach a better understanding of the observer responses the sample time has been set at
Ts = 10−5 s in order to increase the Nyquist frequency of the system.
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Figure 5.17: Va to zIp frequency responses in continuous and discrete time from fgess,
Ts = 10−5 s

Since until now the Kalman filter has been developed mainly in discrete time, this descrip-
tion has been retained for the next diagrams. Connecting properly the state spaces of the
model given by fgess with the state space model of the state augmented Kalman Filter
given by kalsass, the tranfer function of the Kalman Filter between the Va input and the
estimated ẑIp output has been compared with the transfer function between the Va input
and the output zIp of the model given by fgess ( 5.19 , 5.20 ). As we can see in the next
Bode diagram ( 5.18 ), it has been proven that the the Kalman Filter frequency response is
exactly the same of the one of the model ∀ K ∈ Rnx×ny , where in our case K is the Kalman
gain given by the Riccati equation. The frequency analysis computations have been made
taking into account a state with only external currents s.t. nx = ne = na + nu = 39, and
with external currents and constraints s.t. nx = ne + nc = 42.

3It takes its name from the method on which it is based: mga i.e Measurements Green’s Analysis.
4This function computes the state-space model based on fge linearization.
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This result is detailed and proven in the following statement5 .

Proposition 1. Given the following state-space linear model of the system:{
ẋ = Ax+B u
y = C x

with Y(s) = L
(
y(t)

)
= W(s) U(s) =

[
C ( sI − A )−1B

]
U(s) and with nx ≜ dimx,

ny ≜ dim y, and given the following state-space model of the observer:
˙̂x = A x̂+B u+K (ỹ − C x̂) =

= (A−K C) x̂+ [B K] [u ỹ]T =

= Ã x̂+ B̃ ũ
ŷ = C x̂

if ỹ ≡ y 6 , then ∀K ∈ Rnx×ny we obtain that Ŵ(s) ≡ W(s), with tranfer function Ŵ(s) =
Ŷ(s)

Û(s)
.

Proof. Since:
˙̂x = (A−K C) x̂+ [B K] [u ỹ]T

then:

Ŷ =
[
C ( sI − (A−K C) )−1[B K]

]
[U Ỹ]T =

= C ( sI −A+K C )−1B U + C ( sI −A+K C )−1K Ỹ =

= C ( sI −A+K C )−1B U + C ( sI −A+K C )−1K
[
C ( sI −A )−1B

]
U =

=
[
C ( sI −A+K C )−1 [ I +K C ( sI −A )−1]

]
B U

The statement is proven iff :

C ( sI −A+K C )−1 [ I +K C ( sI −A )−1]B = C ( sI −A )−1B

If K = O it is trivially proven since:

C ( sI −A+OC )−1 [ I +OC ( sI −A )−1]B = C ( sI −A )−1B

If K ̸= O the statement is proven if we impose that:

( sI −A )−1 = ( sI −A+K C )−1 [ I +K C ( sI −A )−1] =

= ( sI −A+K C )−1 + ( sI −A+K C )−1K C ( sI −A )−1

If we multiply right-hand side and left-hand side by ( sI −A ) at right, we get:

I = ( sI −A+K C )−1( sI −A ) + ( sI −A+K C )−1K C =

= ( sI −A+K C )−1[ sI −A+K C ]

5The statement has been proven in continuous time.
6i.e. the second component of the input of the observer is exactly the output of the model.
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Moreover since the transfer functions are equivalent ∀C ∈ Rny×nx this in particular implies
that:

X̂ (s)

Û(s)
=

X (s)

U(s)

Therefore, since zIp = F x and ẑIp = F x̂ 7 we obtain:

ẑIp(s)

Û(s)
= F

X̂ (s)

Û(s)
= F

X (s)

U(s)
=

zIp(s)

U(s)

In order to graphically validate the previous statement the frequency responses of fgess
and of the Kalman filter are shown in figure ( 5.18 ). Only for these plots we have considered
a generic interval of the flat-top zone of the shot 69393. In this case E4, F4 and G1 coils
responses have been computed.
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Figure 5.18: Va to ˆzIp frequency responses in discrete time from fgess and from the
Kalman filter; From top to bottom (1-2): with nx = ne (1) and with nx = ne+nc (2). We
can see that the frequency responses of fgess and of the Kalman filter are the same ∀K
and are not changing so much if the state is augmented

7If x = Ie then F =
∂zIp
∂Ie

, if x = [Ie c]T then F = [
∂zIp
∂Ie

∂zIp
∂c

].
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As we can see, E-coils and F-coils have similar frequency responses both in the magnitude
and in the phase diagram. On the other hand the frequency response of the fast coil
G1 has a higher bandwidth and presents a bigger phase margin with respect to the slow
coils. The reason of such a difference in the responses is that E and F-coils have a bigger
inductance and therefore their response is affected by a higher time constant. Whereas, in
the case of G-coils we have a bigger promptness due to the fact that these in-series wings
have a smaller inductance and because these coils are placed inside the vacuum chamber
and so the response is not affected by the attenuation and phase lag caused by the vessel’s
eddy-currents.
For the frequency analysis comparison of the observers (mga and Kalman Filter) the
simulation is carried on a subinterval of the second flat-top zone of shot 61400, i.e. t ∈
[1.35 , 1.5] s. Since in this time interval the plasma position is quite high, only fast coil G1
and slow F7 are considered, since they give the most significant contribution in vertical
stabilization. The open-loop frequency responses of the mga observer are computed in
continuous time and then compared to fgess and to the discrete time Kalman filter.

mga estimator computes the plasma vertical position directly form a combination of mea-
surements. It takes the measurements of Ia, Bm, Ψf and Is which represents the vessel
current of 38 segments relating to the 38 poloidal fluxes measuring the loop voltages. This
quantities will be multiplied to a block of matrices Ipzf , Ipzm, Ipza and Ipzv giving the con-
tributions on zIp calculation 8 . In order to evaluate the frequency responses of mga two
methods have been developed to account for Is. The first one, called mga-Tius, consists in
a direct mapping from the vessel eigencurrent Iu passing directly from the plant (fgess) to
the 38-dimensional Is current vector distributed as the poloidal flux loops, s.t Is = Tius Iu.
In this case the influence of the first eigenmode on the global frequency response has been
detailed. The second one, called mga-Ψ̇f , (which is the most realistic, since Iu is not
accessible and it is only predictable) consists in the computation of Is directly from the
knowledge of the emf Ψ̇f s.t. Is = −Ψ̇f/Rs, with Rs local vessel resistances matrix. In this
case the computation has been done using a one-step derivator in discrete time or a high
pass filter in continuous time. Since a perfect derivator in continuous time is a not-causal
system, a good solution is to create an HPF as a not strictly proper tranfer function, and
set an high cut off frequency fc with respect to the simulation frequency (at least Nyquist
one) so since D = s

1+τ s and fc = 1
τ , the time constant τ has been set to 10−6 s in order

to have a cut frequency at 1MHz. The block diagrams describing the block connections in
the two mga approaces are shown in figures ( 5.19 , 5.20 ).

Figure 5.19: Block diagrams of fgess and Kalman filter tranfer functions

8To have a detailed description on how these matrices have been computed we refer to [23].
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Figure 5.20: Block diagrams of mga tranfer functions in the cases of (1) Is = Tius Iu or
(2) Is = −Ψ̇f/Rs

In the next plots we compare the frequency results of mga in the cases of considering only
the slowest eigenmode with respect to the full vessel eigencurrent for the Is contributions
( 5.21 ). The case with nu = 1 represents the situation where one measurement of the loop
voltage, together with an estimation of the global vessel resistance, is used to estimate the
total vessel current, without taking any spatial dependencies into account.
On the other hand we have computed the Ψf -derivative for the Is calculation ( 5.22 ) both
in discrete time and in continuous time. The mga results are compared to the continuous
time fgess responses, which are very close to the discrete time Kalman filter responses.
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Figure 5.21: Va to ˆzIp frequency responses in continuous time from fgess and from the
mga-Tius observer in the cases of nu = 1 and nu = nv = 256

We can see that in the Tius-case the frequency response of mga with nu = 256 is almost
equivalent to the fgess response. In ( 5.22 ) we see that the derivators produce almost the
same responses in the discrete or continuous cases and the divergence occurs only in the
proximity of the Nyquist frequency. As we will see in figures ( 5.25 , 5.26 ), these responses
are very close to the ones of mga-Tius with nu = 1.
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Figure 5.22: Va to ˆzIp frequency responses in continuous time from fgess and from the
mga-Ψ̇f observer in the cases of discrete time derivator and continuous time derivator

Let’s now present the frequency responses of the Kalman filter in discrete time con-
sidering the slow F7 coil and the fast G1 coil. We have considered the cases nu =
1; 20; 50; 100; 200; 256: we can see from ( 5.23 , 5.24 ) that in the case nu = 256 the fre-
quency response is exactly equal to the discrete time fgess, as expected. The phase
margin grows up with the number of eigenmodes. In order to get the maximum efficiency,
in feedback-control the optimal choice is to run the Kalman filter with nu = nv = 256 but
for the zIp(s)

Va(s)
frequency responses it is sufficient to take to set nu ≥ 50 to augment the phase

margin on F7 while to see significant improvements on G1 nu should be close to nv. In any
case we have seen in Section ( 5.1 ) that the vertical position estimation is accurate, with
errors in the mm range or lesser (see table ( 5.1 )), even if we consider nu = 20. Moreover,
in figure ( 5.27 ) we can see in the error plot that we can obtain better performances if we
consider a lower nu since the augmented state will reduce its dimensionality.
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Figure 5.23: Va to ˆzIp frequency responses of the Kalman filter in discrete time with
increasing nu, F7-coil
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Figure 5.24: Va to ˆzIp frequency responses of the Kalman filter in discrete time with
increasing nu, G1-coil

In the next plots shown in ( 5.25 , 5.26 ), the Bode diagrams of the mga-Tius with nu = 1,
and both continuous time and discrete time mga-Ψ̇f derivator blocks are compared to the
Kalman filter case with nu = 1 and to fgess. We have already shown in ( 5.21 ) that
the continuous time frequency response of fgess is almost equivalent to the mga-Tius

frequency response with nu = 256. In figures ( 5.25 , 5.26 ), we can see that the mga-Tius

response due to the slowest eigenmode (nu = 1) has almost the same frequency response
of the continuous time mga-Ψ̇f response using the HPF block, which considers 38 vessel
currents.
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Figure 5.25: Va to ˆzIp frequency responses of mga and of the Kalman filter with nu = 1,
F7-coil
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Figure 5.26: Va to ˆzIp frequency responses of mga and of the Kalman filter with nu = 1,
G1-coil

Moreover we can see that, since the real mga takes directly the measurements of Ψf to
determine Is, the mga observer has a lower margin phase 9 with respect to Kalman, which
is exactly equivalent to fgess and only diverges close to the Nyquist frequency. However,
this improvement is reached when the Kalman filter works with nu = 256 since in the
nu = 1 case the phase margin is lower in Kalman with respect to mga.

In the last figure ( 5.27 ) the plasma vertical position estimation is shown using mga (the
implemented one i.e. mga-Ψ̇f ) or the full augmented state Kalman filter and it is compared
to liuqe. We have compared the cases in which the Kalman filter performs with nu = 20
and nu = 256. We have proven that even if the phase margin of the Kalman filter Va to
zIp frequency response reduces when nu reduces, for the vertical position estimation the
estimates are better for the majority of the time instants if we consider nu = 20 as we can
see in the error plot. This is due to the fact that considering nu = 256 means consider a
covariance matrix Q of order na+nu+nφ+n∆Φ = 19+256+(19+256+3)+(19+256+
3+ 19) = 850 while if nu = 20 we obtain dimQ = na + nu + nφ + n∆Φ = 142. In this case
we should put particular attention in the choice of the parameters in the blocks: tuning
properly the covariances in the case with nu = 256 should be more accurate than the case
with nu = 20 since the filter more degrees of freedom for the model design. In any case
the results are very similar: we can see that mga has a vertical distance error with low
variance and a mean value approxilately around 3.5mm, while in the Kalman filter the
variance of the error is higher with maxima around 3mm, minima in the order of tenths
of a millimeter and mean value approximately around 2mm 10 .

From the error analysis ( 5.1.4 ) and error plot ( 5.27 ) we can conclude that, for the vertical
position estimation, the augmented state Kalman filter performs better than mga in almost
all the time instants regardless of the number of selected vessel eigencurrents. We have
therefore validated the Kalman Filter method for vertical position and speed estimation
in the TCV tokamak.

9These transfer functions can be easily stabilzed using a simple P-controller in the case of G-coils or
using a PD-controller for the E and F-coils.

10The error plot is contained in a 1 cm interval in the y-axis.
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Figure 5.27: State augmented Kalman filter with nu = 256 and nu = 20, and mga-Ψ̇f

estimates compared to liuqe vertical position reconstruction, sample time Ts = 10−3 s,
nφ = nξ + nc = na + nu + nc ∧ n∆Φ = n∆ξ + n∆c + n∆V = ne + nc + na
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Conclusions and Outlook

In this thesis a Kalman filter based observer has been designed. The open-loop simulations
have been firstly carried onto a stable shot of Anamak and then brought onto unstable
plasma configurations of already existing TCV shots. Statistical methods to test the cor-
rectness of the filter implementation have been developed. Moreover, the state has been
augmented in order to recover some internal parameters of the plasma as well as particular
unknown perturbations in the system. Finally, the open-loop frequency responses of the
Kalman filter have been compared to the ones given by mga observer. The Kalman filter
is not decreasing the robustness of the responses and it is giving more accurate estimates
with respect to the existing observer mga, which allow to have a real-time understanding
of the state of the system and of global plasma parameters. The next step will be the real-
time implementation of the Kalman filter and its test on TCV shots. The filter should
be coupled with a controller in order to be able to better perform with elongated unstable
shots.

Improvements can be done if the filter will be set on multiple equilibria linearizations dur-
ing the shot. To do so, a faster way of linearizing fge should be found. The filter should
be tested also on RzIp code [8] to decrease the time of the computations. An improved
modeling and understanding of plasma physics would allow for a more accurate and de-
tailed description of the system, in particular in covariance matrix tuning and avoiding the
hypothesis of uncorrelation of the state components. More advanced stochastic descrip-
tions of the system should be taken into account, especially considering cross-correlation
between respectively active and vessel currents with their augmented pairs and trying to
figure out the stochastic link between currents and constraints. Current Diffusion Equa-
tion must be add to avoid the assumption of constant Ip and so to make the Kalman filter
ready also for ramp-up and slow-down phases [2]. Other possibilities can be tested as well,
like Particle filters to avoid the Gaussian hypothesis on process noises and in the posterior
pdf. Another approach, that would directly deal with the full non-linear system, can be
considered. For this task an Unscented Kalman filter should be designed and, in order not
to loose the real-time objective, tested on faster approximated non-linear solvers like for
example RzIp.
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Appendix A

Elements of Linear Estimation

The following Chapter will give the mathematical background used in this thesis: the
probability concepts and the predicition theory have been mainly taken from [1] but also
from [20] and [13]. The main structural features of linear systems for the asymptotic
predictor theorems formulation have been taken from [9].

A.1 Concepts of Probability and Statistics

Definition 1. The first element to consider is the set of all possible results of a phe-
nomenum: these will be called outcomes and their set will be indicated with S (Possibility
space).

The set S should be both finite or infinite. We call events combinations of outcomes of
S, they are substets of S.
An event A is verified if an outcome s ∈ A ⊆ S.
If we call F the set of all possible events, F must respect:

1. if A ∈ F then Ā = S −A ∈ F

2. if Ai ∈ F, i = 1, ..., N , with N both finite or infinite, also

N⋃
i=1

Ai ∈ F

Definition 2. When a set F respects conditions 1. and 2. it is called a σ-algebra.

From 1. and 2. we necessarily obtain that:

• ∅ ⊆ F

• S ⊆ F

Definition 3. We call probability the function

P : F → [0, 1] ⊆ R
A 7→ P (A)

The probability function has the following properties:
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1. P(S)=1

2. given a family {Ai}i of events, Ai ∈ F, i = 1, ..., N , with N both finite or infinite,
s.t. Ai ∩Aj = ∅ for i ̸= j we must have that:

P
( N⋃

i=1

Ai

)
=

N∑
i=1

P (Ai)

A random experiment C, also called stochastic process, is fully defined by our previous
definitions, so we can write C = {S,F, P (·)}.

Definition 4. We call v real aleatory variable on experiment C the variable v = φ(s),
with φ : S → R.

Given a subset V ⊆ R we can define the probability that v belongs to V as Prob (v ∈ V )
and so Prob (v ∈ V ) represents the probability of the subset K ⊆ S of the outcomes s
s.t φ(s) ∈ V ∀ s ∈ K 1. From our previous definition of probability it is natural that
φ−1(V ) ∈ F, so the subset K is an event. If the last condition holds then:

Prob (v ∈ V ) = P (φ−1(V ))

Definition 5. If we take q ∈ R we call probability distribution function (PDF) of
the aleatory variable v the function of q:

F (q) = Prob (v ≤ q) = P (φ−1
( ]

−∞, q
] )

In general F has the following properties:

• F (−∞) = 0

• F (+∞) = 1

• it is monotonic and not decreasing

• it is continous or at least discontinuous but a numerable number of discontinuity
points (in these points the right limit of F is well defined)

• it is differentiable and the derivative is defined everywhere except in a null-measure
set of points.

It contains the probabilistic informations of v such that:

P (a ≤ v < b) = F (b−)− F ( a)

is the probability that v belongs to [a, b] ∈ R.

Definition 6. We define probability density function (pdf) the function of q:

p (q) =
dF (q)

dq
1To be more precise, the definition of real aleatory variable requires first the introduction of the σ-

algebra R generated by the intervals [a, b] of R. R is the smallest σ-algebra containing intervals [a, b] of
R. A real aleatory variable is an application from S to R s.t. φ−1(V ) ∈ F , ∀V ∈ R. These elements V of
R are called borelians.



A.1. CONCEPTS OF PROBABILITY AND STATISTICS 111

If we consider a point q ∈ R and an infinitesimal interval [q, q+dq], then the area underneath
the function p in this interval represents the probability that the aleatory variable v assumes
values between q and q + dq:

p (q) dq = Prob (q ≤ v < q + dq)

Definition 7. We call expected value of an aleatory variable the function:

µ = E [v] =

∫ +∞

−∞
q p(q) dq

If p is symmetric around q then E [v] = q.

Definition 8. We call variance of an aleatory variable the function:

σ2 = V ar [v] =

∫ +∞

−∞
(q − E [v])2 p(q) dq

In general the k-moment mk [v] of an aleatory variable is defined as:

mk [v] =

∫ +∞

−∞
qk p(q) dq

We easily obtain that:

• if k = 0 then m0 [v] = 1

• if k = 1 then m1 [v] = E [v]

• if k = 2 then m2 [v] = V ar [v] +
(
E [v]

)2
If we consider a real aleatory variable v and a function g : R → R such that w = g (v) is
a new variable we can proove that w is a real aleatory variable too and its expected value
can be predicted from the knowledge of the probability density pv of v:

E [w] =

∫ +∞

−∞
q pw(q) dq =

∫ +∞

−∞
g (q) pv(q) dq

The expected value is a linear operator, i.e. E [αv1 + βv2] = αE [v1] + β E [v2], in fact if
the map g is linear, i.e. w = α v, α ∈ R we get

E [w] = E [α v] =

∫ +∞

−∞
α q pv(q) dq = α

∫ +∞

−∞
q pv(q) dq = αE [v]

Definition 9. The vector v = [v1 v2 ... vn]
T is called a R-vector aleatory variable if

∃φ : S → Rn s.t. φ−1 (v1 ≤ q1, v2 ≤ q2, ..., vn ≤ qn) ∈ F, ∀ q = [q1 q2 ... qn]
T ∈ Rn.

The function F (q1 q2 ... qn) is defined by:

F (q1 q2 ... qn) = Prob (v1 ≤ q1, v2 ≤ q2, ..., vn ≤ qn) , qi ∈ R , ∀ i = 1, ..., n

All the inequalities must be verified at the same time2 such that F : Rn → [0, 1] is well
defined and it is a multivariate distribution called joint probability distribution.

2There is a link between the joint probability distribution F (q), q ∈ Rn and the marginal probability
distribution Fi(qi) i.e. Fi(qi) = F (+∞,+∞, ..., qi, ...,+∞).
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Definition 10. We define joint probability density the function of q ∈ Rn:

p (q1 q2 ... qn) =
∂nF (q1 q2 ... qn)

∂q1∂q2...∂qn

Like in the univariate case the quantity p (q1 q2 ... qn) dq1dq2...dqn represents the probabil-
ity that qi ≤ vi < qi + dqi holds ∀ i = 1, ..., n and so we obtain the link between marginal
and joint probability density:

pi (qi) =

∫ +∞

−∞
...

∫ +∞

−∞
p (q1 q2 ... qn) dq1...dqi−1dqi+1...dqn

Definition 11. (Expected value in Rn) If v = [v1 v2 ... vn]
T then

E [v] = [E [v1] E [v2] ... E [vn]]
T

Definition 12. (Covariance matrix) If v = [v1 v2 ... vn]
T and q ∈ Rn then

Cov [v] =

∫
Rn

(q − E [v])(q − E [v])T p(q) dq

Defining w ≜ q − E [v] we obtain

Cov [v] = E [wwT ]

with the following properties:

1. it is symmetric: Covij [v] = Covji [v]

2. it is positive semi-definite, in fact if we consider the quadratic form:

xT Cov [v]x = xT E [wwT ]x = E [xT wwT x] = E [xT w (xT w)T ] = E [(xT w)2] ≥ 0

since x ∈ Rn is a constant for E [·] and xT w ∈ R

3. the elements on the main diagonal are the variances of the univariate real aleatory
variable vi:

Covii [v] = V ar [vi]

and the off diagonal terms represent the covariances of vi and vj :

Covij [v] = E
[(
vi − E [vi]

)(
vj − E [vj ]

)]
4. E [v vT ] = Cov [v] + E [v]E [vT ]

We see that if v is a White Noise aleatory signal its expected value is zero, and so:

Cov [v] = E [v vT ]

Definition 13. (White noise) A vector aleatory variable w is called white noise iff:

µw = E [w] = 0

Cov [w] = E [wwT ] = σ2I
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Definition 14. (White process) An aleatory process w(t), t ∈ R is white iff:

µw(t) = E [w(t)] = 0

E [w(t1)w(t2)] = σ2 δ(t1 − t2)

with δ(t) Dirac’s delta.

Definition 15. If we consider a 2-vector aleatory variable v = [v1 v2]
T we call correlation

coefficient the real number

ρ =
Cov12 [v]√

Cov11 [v]Cov22 [v]
=

E
[(
v1 − E [v1]

)(
v2 − E [v2]

)]√
V ar [v1]V ar [v2]

Since the covariance matrix is positive semi-definite, therefore(
E
[(
v1 − E [v1]

)(
v2 − E [v2]

)])2 ≤ V ar [v1]V ar [v2]

so ρ ∈ [−1,+1]. We say that two variables are uncorrelated when ρ = 0,
i.e. E

[(
v1 − E [v1]

)(
v2 − E [v2]

)]
= 0.

Theorem 1. Necessary and sufficient condition to have uncorrelation between two aleatory
variables v1 and v2 is that E [v1 v2] = E [v1]E [v2]

Proof. Using linearity:

E
[(
v1 − E [v1]

)(
v2 − E [v2]

)]
= E

[
v1 v2 − v1 E [v2]− v2 E [v1] + E [v1]E [v2]

]
=

= E
[
v1 v2

]
− 2E

[
v1
]
E
[
v2
]
+ E

[
v1
]
E
[
v2
]
=

= E
[
v1 v2

]
− E

[
v1
]
E
[
v2
]
= 0

iff E [v1 v2] = E [v1]E [v2].

Definition 16. If we consider a 2-vector aleatory variable v = [v1 v2]
T we say that their

components are stochastically independent if pv(q1 q2) = pv1(q1) pv2(q2).

Theorem 2. If two aleatory variables v1 and v2 are independent from each other, they are
also uncorrelated.

Proof. From the definition:

E [v1 v2] =

∫ +∞

−∞

∫ +∞

−∞
q1 q2 p12(q1 q2) dq1 dq2

For the independence of the variables:

E [v1 v2] =

∫ +∞

−∞

∫ +∞

−∞
q1 q2 p12(q1 q2) dq1 dq2 =

=

∫ +∞

−∞
q1 p1(q1) dq1

∫ +∞

−∞
q2 p2(q2) dq2 = E [v1]E [v2]
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Definition 17. We say that an aleatory variable is normal when its probability density
follows a Gussian distribution i.e.:

p (q) =
1√

2πV ar [v]
exp
(
−(q − E [v])2

2V ar [v]

)
In this cases we write v ∼ N (E [v], V ar [v] ).

Theorem 3. Gaussianity is conserved for linear transformations.

Proof. We know that a normal variable v under the linear transformation w = α + βv is
still an aleatory variable with:

E [w] = E [α+ βv] = α+ β E [v]

V ar [w] = V ar[[α+ βv] = β2 V ar [v]

so w ∼ N (E [w], V ar [w] ).

If we take the linear transformation w = (V ar [v])−1(v−E [v]) we obtain a standard normal
variable s.t. w ∼ N (0, 1).
If v ∈ Rn, v is normal if its density probability is:

p (q) =
1

(2π)n/2
√
detCov [v]

exp
(
−1

2
(q − E [v])T (Cov [v])−1(q − E [v])

)
We say that a set of n aleatory variables is jointly Gaussian if the n-vector aleatory variable
obtained putting in column the variables is normal. We have the following properties:

• if v1...vn are jointly Gaussian then each vi si normal

• if vi is normal and independent ∀ i then v = [v1 ... vn]
T is normal

• if v1...vn are jointly Gaussian and uncorrelated then they are also independent

• if v ∼ N (µv, Cov [v] ) and w = Av + b, with A ∈ Rm×n maximum rank, b ∈ Rm,
then w ∼ N (µw, Cov [w] ) with µw = Aµv + b and Cov [w] = ACov [v]AT

• if normal scalar variables are jointly Gaussian then their linear combinations are
normal scalar variables

Theorem 4. (Law of large numbers) Given a set of independent aleatory variables
{vi}i i = 1, ..., N , if we define the sample mean as

xN =
1

N

N∑
i=1

vi

then:
lim

N→∞
xN − E [xN ] = 0

Theorem 5. (Central limit theorem) Given a set of independent aleatory variables {vi}i
i = 1, ..., N , with the same probability distribution and with E [vi] = µ and V ar [vi] = σ2,
if we consider the sample mean xN as defined in the previous theorem we have that
E [xN ] = µ and V ar [xN ] = σ2. If we define the standard variable of xN as:

yN =

√
N (xN − µ)

σ
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then:
lim

N→∞
yN = v

with v ∼ N (0, 1)

Definition 18. (Kolmogorov definition of conditional probability) Given two events
A and B from the σ-algebra F, with the (unconditional) probability of B being greater than
zero i.e. P (B) > 0, the (conditional) probability of A given B, P (A | B) is the probability
of A occurring if B has already happened. The conditional probability of A given B is the
quotient of the probability of the joint intersection of events A and B, P (A∩B) = P (A,B)
which represents the (joint) probability of A and B occurring together (not necessarily at
the same time) and the probability of B:

P (A | B) =
P (A ∩B)

P (B)

Definition 19. We call likelihood the joint probability of the observed data as a function
of the parameters. Let X be an aleatory variable with probability density p depending on a
parameter θ. We call likelihood the function:

L (θ | x) = pθ(x) = P (X = x | θ)

considered as a function of θ, given the outcome x of the aleatory variable X. The likelihood
is equal to the probability that a particular outcome x is observed when the true value of
the parameter is θ.

With no event (no data) L (θ | x) = 1, any non-trivial event will have a lower likelihood
[10].

Theorem 6. (Bayes’ theorem) Given two events A and B with P (B) ̸= 0 then:

P (A | B) =
P (B | A)P (A)

P (B)

with:

• P (A | B) is a conditional probability: the probability that the event A occurs by
the assumption that B has already occured. It is also called the posterior probability
of A given B

• P (B | A) is a conditional probability: the probability that the event B occurs by
the assumption that A has already occured. It can also be interpreted as the likelihood
of A given a fixed B since P (B | A) = L (A | B)

• P (A), P (B) are the probabilities of observing A and B respectively without any given
conditions. They are marginal probabilities also called prior probabilities

Proof. From the definition of conditional probability:

P (A | B) =
P (A ∩B)

P (B)
, P (B) ̸= 0

P (B | A) =
P (B ∩A)

P (A)
, P (A) ̸= 0

and since P (A ∩B) = P (B ∩A).
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A.2 Bayes Estimation

Sometimes we have “a priori" informations about the unknown of an estimation problem.
These informations can improve the estimation and compensate for random errors in the
data. In Bayes estimation the unknown θ is seen as a vector aleatory variable. The density
of probability of θ without any data (“a priori" density probability) summarises the “a
priori" informations. A possible estimation is the expected value and the variance will be
the “a priori" uncertainty. As data is received, the probability density is updated: this
changes the expected value with respect to the “a priori" one and variance is expected to
decrease. Formally there are two random experiments C1 and C2, C1 generates θ and C2

the data set d. The joint random experiment C1×C2 will generate the joint outcome vector
s = (s1, s2). A generic estimator is a function of data i.e. θ̂ = h(d), and the most it will
be close to the vector aleatory variable θ to estimate the better it will be the estimation.
If we take the following cost functional

J(h(d)) = E [∥θ − h(d)∥2]

we call optimum Bayes estimator the function ho(·) s.t.

J(h(d)) = E [∥θ − ho(d)∥2] ≤ E [∥θ − h(d)∥2] , ∀h(·)

Proposition 1. The optimum Bayes estimator which minimizes J(h(·)) is:

ho = E [θ | d = x]

where x is the current variable for the data d. ho is the expected value of θ conditioned to
the fact that data have assumed the value x.

Proof. (Scalar case) In the expression:

E [∥θ − h(d)∥2] = E [θ2 − 2θ h(d) + h(d)2]

we define g(d, θ) = θ2 − 2θ h(d) + h(d)2 s.t.:

E [∥θ − h(d)∥2] = E [g(d, θ)] =

∫
x,y

g(x, y)p(x, y) dxdy

where x and y are the current variables for d and θ respectively, and p(d, θ) is the joint
probability density of d and θ. From the definition of conditional probability it is automatic
to get the following relation for the probability densities:

p(x, y) = p(y | x) p(x)

so:

E [∥θ − h(d)∥2] =
∫
x,y

g(x, y)p(x, y) dxdy =

∫
x

[ ∫
y
g(x, y)p(y | x) dy

]
p(x) dx

where: ∫
y
g(x, y)p(y | x) dy = E [g(d, θ) | d = x]

Replacing g(d, θ) we obtain:

E [g(d, θ) | d = x] = E [θ2 | d = x]− 2E [h(d) θ | d = x] + E [h(d)2 | d = x]
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When d = x, h(·) is no longer a function of an aleatory variable and becomes a deterministic
function. In such a case the expected value of h(x) corresponds to h(x) and we obtain:

E [g(d, θ) | d = x] = E [θ2 | d = x]− 2h(x)E [θ | d = x] + h(x)2

Adding and substracting E [θ | d = x]2 we obtain:

E [g(d, θ) | d = x] = ∥E [θ | d = x]− h(x)∥2 + E [θ2 | d = x]− E [θ | d = x]2

therefore:

E [∥θ − h(d)∥2] =
∫
x

[
∥E [θ | d = x]− h(x)∥2 + E [θ2 | d = x]− E [θ | d = x]2

]
p(x) dx =

=

∫
x

[
∥E [θ | d = x]− h(x)∥2 + V ar [θ | d = x]

]
p(x) dx

Finally, since V ar [θ | d = x] ≥ 0 we get the minimum with:

h(x) = E [θ | d = x]

We will call Bayes estimator the function θ̂(d) = ho(d) and Bayes estimation the value
θ̂(x) = ho(x) where x is the value of data d corrispondent to a particular outcome s.

If d and θ are jointly Gaussian i.e.:(
d
θ

)
∼ N

(( 0
0

)
,

(
λdd λdθ

λθd λθθ

))
their joint probability density will be:

p (d, θ) = K exp
( 1

2

(
d θ

)( λdd λdθ

λθd λθθ

)−1(
d
θ

))
= K exp

(
− 1

2λ2

( λθθ

λdd
d2−2

λθd

λdd
dθ+θ2

) )
with λ2 = λθθ −

λ2
dθ

λdd
and K ∈ R.

The density probability of d is: p (d) = K ′ exp
(
− d2

2λdd

)
so the density probility of θ

conditioned by d is:

p (θ | d) = p (d, θ)

p (d)
=

K

K ′ exp
(
− 1

2λ2

(
θ − λθd

λdd
d
)2 )

so

p (θ | d) ∼ N (
λθd

λdd
d, λ2)

We can now calculate the Bayes estimator and evaluate its performances.
We obtain:

θ̂(x) = ho(x) = E [θ | d = x] =
λθd

λdd
x
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Since by hypothesis E [d] = 0, then E [θ̂] = 0 thus E [θ − θ̂] = 0.
Therefore:

V ar [θ − θ̂] = E [(θ − θ̂)2] = E [(θ − λθd

λdd
d)2] =

= E [(θ)2]− 2
λθd

λdd
E [θd] +

λ2
θd

λ2
dd

E [d2] =

= λθθ −
λ2
θd

λdd
= λ2

If d and θ are vector aleatory variables and if their expected values are not null, i.e.
E [d] = dm, E [θ̂] = θm, we can easily extend the formalism:

θ̂ = θm + Λθd Λ
−1
dd (d− dm)

V ar [θ − θ̂] = Λθθ − Λθd Λ
−1
dd Λdθ

In the absence of any measure (“a priori”), the only information available on the unknown
is its expected value θm. In the posterior estimation to the expected value θm is added the
quantity Λθd Λ

−1
dd (d − dm). Let’s take dim d = dim θ = n. If Λθd = Odim θ×dim d = On×n

the knowledge of d does not alter the "a priori" estimation since d − dm and θ − θm
are uncorrelated and so it is not provided any additional information on the unknown.
Otherwise if Λθd ̸= On×n there is a relation between θ and d and therefore an improvement
in the estimation. If Λθd is positive definite this means that the components of the vectors
d − dm and θ − θm have on average opposite sign so if [d − dm]k > 0 then [θ − θm]k < 0.
Morover, supposing Λθd fixed, and having defined the standard matrix 2-norm, high value
of ∥Λdd∥2 means that the data is affected by considerable uncerainty, and is therefore
unreliable. In the evaluation of the unknown, a big value of ∥Λdd∥2 gives less weight to the
information provided by the data.
For the variance discussion, let’s take the scalar case for simplicity:

V ar [θ − θ̂] = λθθ −
λ2
θd

λdd
= λθθ

(
1−

λ2
θd

λθθ λdd

)
and remembering that the correlation coefficient is:

ρ =
λθd√
λθθ λdd

∈ [−1,+1]

we obtain:
V ar [θ − θ̂] = λθθ

(
1− ρ2

)
Since |ρ| ≤ 1 the posterior variance is always inferior or at least equal to the “a priori"
variance λθθ. If ρ = 0 the “a priori” and the posterior variances coincide.

A.2.1 Geometrical interpretation of Bayes Estimation

The following results can be applied in a deeper formalism into Hilbert space L2 thanks to
Riesz representation theorem. The scalar case is considered for first.
Let’s consider the set H of all 1-vector aleatory variables with null expected value i.e.
v ∈ H ⇒ E [v] = 0. Since H is closed to linear combinations of its elements it is has a
structure of vector space, i.e. if v1(s), v2(s) ∈ H then α v1(s) + β v2(s) ∈ H, with α, β ∈ R
, ∀ s outcome. The “zero" element of H is the variable s.t. the set of outcomes s for which
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the corresponding variable cancels out is an event with probability equal to 1. Such a
variable has zero variance. We can equip H with an internal product so defined:

⟨v1, v2⟩ = E [v1v2] = Cov [v1v2]

Therefore:

⟨v1, v2⟩ = ⟨v2, v1⟩
⟨v, v⟩ = V ar [v] ≥ 0

⟨v, v⟩ = 0 ⇐⇒ v ∼ N (0, 0)

⟨αv1 + βv2, v3⟩ = α ⟨v1, v3⟩+ β ⟨v2, v3⟩

We can then introduce the induced norm:

∥v∥ =
√

⟨v, v⟩ =
√
V ar [v] = σ

thus:
cosφ =

⟨v1, v2⟩
∥v1∥ ∥v2∥

=
E [v1 v2]

σ1 σ2
= ρ

In such a case two vectors of H will be orthogonal iff their corresponding aleatory variables
are independent. They will be aligned when ρ = 1 and opposite when ρ = −1.
If λ11 = V ar [v1] and λ12 = Cov [v1v2] then from Bayes we have that:

E [v2 | v1] =
λ12

λ11
v1 =

E [v1v2]

V ar [v1]
v1 =

⟨v1, v2⟩
∥v1∥2

v1 =

= ∥v2∥
⟨v1, v2⟩
∥v1∥ ∥v2∥

v1
∥v1∥

= ∥v2∥ cosφ
v1

∥v1∥

So if v1 = d and v2 = θ the conditional expected value θ̂(d) = E [θ | d] is the projection of
θ on d.

The posterior variance of estimation error of θ known d is the length of θ−E [θ | d]. Using
Pitagora’s formula we obtain:

V ar [θ − E [θ | d]] = ∥θ∥2 − ∥E [θ | d]∥2 = λθθ − λ2
dθ/λdd

where λθθ = V ar [θ] is the “a priori” variance.
If we consider n-vector aleatory variables the vector space structure of H is conserved since
vk ∈ H ⇒ E [v] = On×1 , ∀ k = 1, ..., n. In this case if we take two vector aleatory variables
v and w with null expected value we can generate the subspace V (v) = span{v} from the
components of v that are elements of H. It’s easy to proove that E [w | v] is a vector
with dimE [w | v] = dim v in which the k − th-component is the aleatory variable of H
obtained from the projection of the k− th-component of w on V (v). The difference vector
w − E [w | v] is orthogonal to the subspace V (v).
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A.3 Kalman Filter

Let’s take the following discrete LTI dynamical system:{
x(t+ 1) = F x(t) + w(t)
y(t) = H x(t) + v(t) , t ∈ Z

where the state x(t) = [x1(t) ... xn(t)]
T ∈ Rn and the output y(t) = [y1(t) ... yp(t)]

T ∈ Rp.
F and H are deterministic matrices while the disturbances w(t) ∈ Rn and v(t) ∈ Rp are
described in a probabilistic way assuming them uncorrelated and white noise Gaussian
signals. Indicating with Q ∈ Rn×n and R ∈ Rp×p the coviariance matrices of these signals
we can write w ∼ N (0, Q) and v ∼ N (0, R). In particular:

E [w(t)] = 0 , ∀ t
E [v(t)] = 0 , ∀ t
E [w(i)wT (j)] = 0 , ∀ j ̸= i

E [v(i) vT (j)] = 0 , ∀ j ̸= i

E [w(i) vT (j)] = 0 , ∀ j, i

Another element of uncertainty is the initial state x(t0), t0 ∈ Z. The problem we want to
face is the estimation of the state at time N + k, k,N ∈ Z from the observations of the
ouput until the instant N . The solution of the problem in case k = 1 (one-step prediction)
will be derived for first. From this solution the problem of multi-step prediction (k > 1)
and filtering (k = 0) will be easier to solve.
x(t) and y(t) are vector aleatory variables since w(t) and v(t) are described in a probabilistic
way. The problem can be seen as a Bayes estimation problem with θ = x(t) and d =
[y(N) y(N − 1) ... y(t0)]

T , therefore:

x̂ (N + k | N) = E [x (N + k) | y(N) , y(N − 1) , ... , y(t0)] =

= x (N + k)m + Λx(N+k) d Λ
−1
dd (d− dm)

where x (N + k)m = E [x (N + k)] and dm = E [d]. Λdd is the covariance matrix of d
and Λx(N+k) d is the unknown-data covariance matrix. Since the disturbances have null
expected value and are Gaussian, the state and the output will have null expected value
and will be Gaussian too, so:

x̂ (N + k | N) = Λx(N+k) d Λ
−1
dd d

is the optimum Bayes estimator of the state.
Let’s find now a recursive formulation for the estimation, that is essential for real-time
data processing.

A.3.1 Recursive Bayes Estimator and Innovation

Let’s consider the scalar case for first. Furthermore let’s take d = [d(N) d(t0)]
T =

[d(2) d(1)]T s.t.:  θ
d(1)
d(2)

 ∼ N
( 0

0
0

 ,

 λθθ λθ1 λθ2

λ1θ λ11 λ12

λ2θ λ21 λ22

)
where λij = E [i j]. The optimum Bayes estimation of θ given d(1) is:

E [θ | d(1)] = λθ1

λ11
d(1)
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while the optimum Bayes estimation of θ given d(1) and d(2) is:

E [θ | d(1), d(2)] =
(
λθ1 λθ2

)( λ11 λ12

λ21 λ22

)−1(
d(1)
d(2)

)
, λ12 = λ21

If we define λ2 = λ22 −
λ2
12

λ11
then we get:

E [θ | d(1), d(2)] = 1

λ11λ2
(−λθ1λ21 + λθ2λ11) d(2) +

1

λ11λ2
(λθ1λ22 + λθ2λ12) d(1) =

=
1

λ2
(λθ2 − λθ1

λ12

λ11
) d(2) +

1

λ2
(λθ1

λ22

λ11
− λθ2

λ12

λ11
− λ2 λθ1

λ11
) d(1) +

λθ1

λ11
d(1) =

=
λθ1

λ11
d(1) +

1

λ2
(λθ2 − λθ1

λ12

λ11
) [d(2)− λ12

λ11
d(1)]

Definition 1. (Innovation) Given two aleatory variables d(1) and d(2), we call innova-
tion of d(2) with respect to d(1) the quantity:

e = d(2)− E [d(2) | d(1)] = d(2)− λ12

λ11
d(1)

The main properties of e are the following:

1. E [e] = 0

2. λee = V ar [e] = E [(d(2)− λ12
λ11

d(1))2] = λ2

3. λθe = E [θ (d(2)− λ12
λ11

d(1))] = λθ2 − λθ1
λ12
λ11

4. λ1e = E [(d(1) (d(2)− λ12
λ11

d(1))] = λ12 − λ11
λ12
λ11

= 0

Thanks to these definitions we obtain:

E [θ | d(1), d(2)] = λθ1

λ11
d(1) +

1

λ2
(λθ2 − λθ1

λ12

λ11
) [d(2)− λ12

λ11
d(1)] =

=
λθ1

λ11
d(1) +

λθe

λee
e = E [θ | d(1)] + E [θ | e]

If d(1) and d(2) are uncorrelated then E [d(2) | d(1)] = 0 and so e = d(2). In this case we
get:

E [θ | d(1), d(2)] = E [θ | d(1)] + E [θ | d(2)]

The optimum Bayes estimation from d(1) and e is thus obtained by:

E [θ | d(1), e] =
(
λθ1 λθ2

)( λ11 λ1e

λe1 λee

)−1(
d(1)
e

)
= E [θ | d(1)] + E [θ | e]

since, from 1. and 3., d(1) and e are uncorrelated. We observe that the estimation from
d(1) and e is equal to the estimation from d(1) and d(2):

E [θ | d(1), d(2)] = E [θ | d(1), e]

Innovation represents the part of d(2) that cannot be predicted from d(1).
Generalising to the multivariate case let’s take: θ

d(1)
d(2)

 ∼ N
( θm

d(1)m
d(2)m

 ,

 Λθθ Λθ1 Λθ2

Λ1θ Λ11 Λ12

Λ2θ Λ21 Λ22

)
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In this case defining

e = d(2)− E [d(2) | d(1)] = d(2)− Λ21Λ
−1
11 d(1)

we obtain:

E [θ | d(1), d(2)] = θm + Λθ1Λ
−1
11 (d(1)− d(1)m) + ΛθeΛ

−1
ee e =

= E [θ | d(1)] + E [θ | e]− θm

All the properties of e in the scalar case are valid in the multivariate case too.
It is possible to give a geometrical interpretation of the recursive Bayes estimation, where
every aleatory variable is a vector of a normed vector space H and the estimation of
θ from d is the projection of the vector θ on d. If we consider θ, d(1) and d(2) with
null expected value and jointly Gaussian they belong to H. If we consider the subspace
H[d(1), d(2)] = span{d(1), d(2)} the optimum Bayes estimation of d(2) from d(1) is the
projection of d(2) on d(1). The innovation e belongs to H [d(1), d(2)] and it is orthogonal to
d(1) since it is given by the difference between d(2) and the projection of d(2) on d(1). The
optimum Bayes estimation of θ from d(1) is the projection of θ on d(1) and the optimum
Bayes estimation of θ from e is the projection of θ on e. Since:

⟨e, d(1)⟩ = 0

then:
⟨E [θ | d(1)],E [θ | e]⟩ = 0

and so:
E [θ | d(1), d(2)] = E [θ | d(1)] + E [θ | e]

(From [1])

A.3.2 One-step Kalman Predictor

In the one-step state prediction problem at time N+1 , the data consists of the observations
of the output y from instant t0 = 1 to instant N s.t.:

yN = [y(N)T y(N − 1)T ... y(1)T ]T
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In the vector space H of the aleatory variables, the components of yN generate a subspace
H [yN ] = span{yN} called subspace of the past.
The innovation of y(N + 1) with respect to yN is defined as:

e(N + 1) = y(N + 1)− E [y(N + 1) | yN ]

with dim e(N + 1) = p.
Since E [y(N+1) | yN ] is the projection of y(N+1) on H [yN ], the innovation is orthogonal
to the subspace H [yN ]. We say that the innovation is orthogonal to the past.

Definition 2. (State prediction error) We call state prediction error the quantity:

ν(N + 1) = x(N + 1)− E [x(N + 1) | yN ] =

= x(N + 1)− x̂(N + 1 | N)

We have that dim ν(N + 1) = n and the state predictor error is orthogonal to the past.

The optimum one-step prediction of the output is given by:

ŷ(N + 1 | N) = E [y(N + 1) | yN ]

and using the state-space equation of the ouput we get:

ŷ(N + 1 | N) = E [H x(N + 1) + v(N + 1) | yN ] =

= H E [x(N + 1) | yN ] + E [v(N + 1) | yN ] =

= H E [x(N + 1) | yN ]

since from state-space equations yN = f(wN−1, x(1), vN ) and since vN is independent of
v(N +1) because v(t) is a white noise, we have that v(N +1) is independent of yN and so
E [v(N + 1) | yN ] = E [v(N + 1)] = 0.

Proposition 2. The recursive expression of state prediction is given by:

x̂(N + 1 | N) = F x̂(N | N − 1) +K(N) e(N)

with:
K(N) = [F P (N)HT ] [H P (N)HT +R]−1

and
P (N) = E [ ν(N) ν(N)]T ] = V ar [ν(N)]

Proof.

x̂(N + 1 | N) = E [x(N + 1) | yN ] =

=E [x(N + 1) | yN−1, y(N)] =

=E [x(N + 1) | yN−1] + E [x(N + 1) | e(N)]

with e(N) innovation of y(N) with respect to yN−1.

1. E [x(N + 1) | yN−1] = E [F x(N) + w(N) | yN−1] =
= F E [x(N) | yN−1] + E [w(N) | yN−1] = F E [x(N) | yN−1] = F x̂(N | N − 1)
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2. E [x(N + 1) | e(N)] = Λx(N+1) e(N) Λ
−1
e(N) e(N) e(N)

• Calculation of the covariance matrix Λx(N+1) e(N):

Λx(N+1) e(N) =E [x(N + 1) e(N)T ] =

=E [x(N + 1) [y(N)− ŷ(N | N − 1)]T ] =

=E [x(N + 1) [H (x(N)− x̂(N | N − 1)) + v(N)]T ] =

=E [ [F x(N) + w(N)] [H (x(N)− x̂(N | N − 1)) + v(N)]T ] =

= F E [x(N) [(x(N)− x̂(N | N − 1))]T ]HT + F E [x(N) v(N)T ]+

+ E [w(N) [H (x(N)− x̂(N | N − 1)) + v(N)]T ]

x(N) and v(N) are independent since v(t) is independent of w(t) and initial data.
Therefore the expected value of their product is equal to the product of the expected
values and it is null since v(N) is a white noise, thus F E [x(N) v(N)T ] = 0.
Morover, the third term of the last equation is:

E [w(N) [H (x(N)− x̂(N | N − 1)) + v(N)]T ] =

E [w(N)x(N)T ]HT − E [w(N) x̂(N | N − 1)T ]HT + E [w(N) v(N)T ] = 0

for the properties of the white noises w and v.
Thus:

Λx(N+1) e(N) = F E [x(N) [(x(N)− x̂(N | N − 1))]T ]HT + F E [x(N) v(N)T ]+

+ E [w(N) [H (x(N)− x̂(N | N − 1)) + v(N)]T ] =

= F E [x(N) [(x(N)− x̂(N | N − 1))]T ]HT =

= F E [ [x(N)− x̂(N | N − 1)] [(x(N)− x̂(N | N − 1))]T ]HT+

+ F E [ x̂(N | N − 1) [(x(N)− x̂(N | N − 1))]T ]HT =

= F E [ ν(N) ν(N)]T ]HT + F E [ x̂(N | N − 1) ν(N)T ]HT

Now, since the state predictor error is orthogonal to the past ν(N) is orthogonal to
H [yN−1] = span{yN−1}. ν(N) is thus orthogonal to x̂(N | N−1) since the predictor
x̂(N | N − 1) ∈ H [yN−1] is based to data of the past until N − 1 and so we have
E [ x̂(N | N − 1) ν(N)T ] = 0. Finally, calling P (N) = E [ ν(N) ν(N)]T ] = V ar [ν(N)]
the variance matrix of the state predictor error, we obtain:

Λx(N+1) e(N) = F P (N)HT

• Calculation of the variance matrix of the innovation Λe(N) e(N):

Λe(N) e(N) = E [ e(N) e(N)T ] =

= H E [ ν(N) ν(N)T ]HT +R+H E [ ν(N) v(N)T ] + E [ v(N) ν(N)T ]HT

directly from the definitions of e and ν. With a similar calculation as for Λx(N+1) e(N)

we can proove that the last two terms of the equation are null so we obtain:

Λe(N) e(N) = H P (N)HT +R
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The recursive expression of state prediction is then:

x̂(N + 1 | N) =E [x(N + 1) | yN−1] + E [x(N + 1) | e(N)] =

= F x̂(N | N − 1) + Λx(N+1) e(N) Λ
−1
e(N) e(N) e(N) =

= F x̂(N | N − 1) + [F P (N)HT ] [H P (N)HT +R]−1 e(N)

Therefore, defining3:

K(N) = [F P (N)HT ] [H P (N)HT +R]−1

we get:
x̂(N + 1 | N) = F x̂(N | N − 1) +K(N) e(N)

A.3.2.1 Riccati Equation

There is a recursive way to calculate the variance matrix of the state predictor error
P (N) ∈ Rn×n. Since:

ν(N + 1) = x(N + 1)− E [x(N + 1) | yN ] =

= F x(N) + w(N)− F x̂(N | N − 1)−K(N) e(N) =

= F ν(N) + w(N)−K(N) e(N) =

= F ν(N) + w(N)−K(N) (H (x(N)− x̂(N | N − 1)) + v(N)) =

= [F −K(N)H] ν(N) + w(N)−K(N) v(N)

we can compute:

P (N + 1) = V ar [ν(N + 1)] = E [ ν(N + 1) ν(N + 1)]T ] =

= E [ [F −K(N)H] ν(N) ν(N)T [F −K(N)H]T ] +

+ E [w(N)w(N)T ] +

+ E [K(N) v(N) v(N)T K(N)T ] +

+ E [ [F −K(N)H] ν(N)w(N)T ]−
− E [ [F −K(N)H] ν(N) v(N)T K(N)T ]−
− E [w v(N)T K(N)T ] +

+ E [w ν(N)T [F −K(N)H]T ]−
− E [K(N) v(N) ν(N)T [F −K(N)H]T ]

We can proove that the last five addenda of the last equation are null, therefore:

P (N + 1) = E [ [F −K(N)H] ν(N) ν(N)T [F −K(N)H]T ] +

+ E [w(N)w(N)T ] +

+ E [K(N) v(N) v(N)T K(N)T ] =

= [F −K(N)H]P (N) [F −K(N)H]T +Q+K(N)RK(N)T

3K(N) is well defined because H P (N)HT +R is symmetric and positive definite and so invertible, since
H P (N)HT is symmetric and positive semi-definite and R is symmetric and assumed positive definite.
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And since:

[F −K(N)H]P (N) [F −K(N)H]T +Q+K(N)RK(N)T =

= F P (N)F T −K(N)H P (N)F T − F P (N)HT K(N)T +

+ K(N)H P (N)HTK(N)T +Q+K(N)RK(N)T

Morover, if we sum together the fourth and the sixth addenda and then we collect K(N)
both left and right, we obtain:

K(N)H P (N)HT K(N)T +K(N)RK(N)T = K(N) [H P (N)HT +R]K(N)T

and using the definition of K(N) on the first K(N) of the last equation:

K(N) = [F P (N)HT ] [H P (N)HT +R]−1

we get:
K(N) [H P (N)HT +R]K(N)T = F P (N)HT K(N)T

and so the sum of the fourth and the sixth addenda cancels out with the third addendum.
We can finally derive four equivalent formulations of the recursive variance matrix of the
state predictor error:

P (N + 1) = F P (N)F T −K(N)H P (N)F T +Q =

= F P (N)F T − [F P (N)HT ] [H P (N)HT +R]−1H P (N)F T +Q =

= F P (N)F T −K(N) [H P (N)HT +R]K(N)T +Q

By means of this matrix equation, called the Riccati Equation4, the variance matrix of the
state prediction error can be updated. This matrix P (N + 1) is symmetric and positive
semi-definite if the equation is initialized with a symmetric and positive semi-definite ma-
trix.

Initialization: With the hypothesis that t0 = 1 and using the multivariate posterior
variance of the Bayes estimator, if we call θ = x(2), θ̂ = x̂(2 | 1) and d = y(1) we obtain:

P (2) = V ar [x(2)− x̂(2 | 1)] = V ar [ν(2)] =

= E [ [x(2)− x̂(2 | 1)] [x(2)− x̂(2 | 1)]T ] =
= Λx(2)x(2) − Λx(2) y(1) Λ

−1
y(1) y(1) Λy(1)x(2)

If we define P1 = V ar [x(1)] the variance matrix of the initial state, we obtain of course a
symmetric and positive semi-definite initializing matrix, so from:

Λx(2)x(2) = E [ [F x(1) + w(1)] [F x(1) + w(1)]T ] = F P1 F
T +Q

Λx(2) y(1) = F P1H
T

Λy(1) y(1) = H P1H
T +R

Λy(1)x(2) = H P1 F
T

we obtain:
P (2) = F P1 F

T +Q− F P1H
T [H P1H

T +R]−1H P1 F
T

In conclusion the initialisation can be put at the at time 1 if we impose P (1) = P1. This
result can be interpreted by holding that at instant 1, when you do not have past output

4It will often be called with the acronym DRE (Difference Riccati Equation).
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measurements, the optimum prediction of the state x̂(1 | 0) coincides with the expected
value of the variable x(1), which is null. In the absence of information, the most reasonable
prediction is the expected value, consequently the state prediction error ν(1) coincides with
x(1) whose variance is precisely P1.
Concerning the initialization of the recursive expression of state prediction we have that :

x̂(2 | 1) = E [x(2) | y(1)] = Λx(2)y(1) Λ
−1
y(1)y(1) y(1) =

= F P1H
T [H P1H

T ]−1 y(1)

since e(1) = y(1). In conclusion the initialisation can be put at time 1 if we impose
x̂(1 | 0) = 0 5.

It is shown below the block diagram of the optimum one-step Kalman predictor:

In this block diagram v1(n) = w(n) and v2(n) = v(n), (From [1])

A.3.2.2 Time-varying systems with exogenous input

We can generalize the previous theory to time-varying linear systems with exogenous6

input u(t) and with correlated disturbances between state and output. We consider the
following discrete dynamical system:

{
x(t+ 1) = F (t)x(t) +G(t)u(t) + w(t)
y(t) = H(t)x(t) + v(t) , t ∈ Z

5If the initial condition is E [x(1)] = x1 then x̂(1 | 0) = x1.
6i.e. a variable with a completely known trend
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where, if δ(t) indicates the Kronecker delta and V12 = Cov [w v], we obtain the following
properties for w(t) and v(t):

E [w(t)] = 0 , ∀ t
E [v(t)] = 0 , ∀ t
E [w(t1)w

T (t2)] = Q(t1) δ(t2 − t1)

E [v(t1) v
T (t2)] = R(t1) δ(t2 − t1)

E [w(t1) v
T (t2)] = V12(t1) δ(t2 − t1)

with the hypothesis that R(t) = V ar [v(t)] is positive definite ∀ t ∈ Z. The initial condition
x(t0) = x(1) is probablistically described as follows:

E [x(1)] = x1(t)

E [[x(1)− x1(t)] [x(1)− x1(t)]
T ] = P1

with the assumption that the disturbances and the initial condition are jointly Gaussian
and uncorrelated, i.e.:

E [vi(t) [x(1)− x1(t)]
T ] = 0 , ∀ i = 1, 2

In this case the equations for the Kalman one-step predictor are the following:
x̂(N + 1 | N) = F (N) x̂(N | N − 1) +G(N)u(N) +K(N) e(N)
ŷ(N + 1 | N) = H(N) x̂(N + 1 | N)
e(N) = y(N)− ŷ(N | N − 1)

where the Kalman gain is:

K(N) = [F (N)P (N)H(N)T + V12(N)] [H(N)P (N)H(N)T +R(N)]−1

and P (N) solves the DRE:

P (N + 1) = F (N)P (N)F (N)T −K(N) [H(N)P (N)H(N)T +R(N)]K(N)T +Q(N)

The initializations are then:
x̂(1 | 0) = x1

P (1) = P1

A.3.3 Multi-step Kalman Predictor and Optimum Kalman Filter

Let’s for first consider the following discrete LTI dynamical sistem:{
x(t+ 1) = F x(t) + w(t)
y(t) = H x(t) + v(t) , t ∈ Z

where w(t) and v(t) are white noises eventually correlated, i.e.:

E [vi(t1) v
T
j (t2)] = Vij δ(t2 − t1) i, j = 1, 2

The multi-step predictor of the state in k > 1 steps, with k ∈ Z, has the task of estimating
the aleatory variable x(N + k) from the data up to N , that is from the observation of
y(N), y(N − 1), .... The optimal predictor x̂(N + k | N) will be given by:

x̂(N + k | N) = E [x(N + k) | yN ]
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and since x(N+k) = F x(N+k−1)+w(N+k−1) and since w(N+k−1) is uncorrelated
to yN 7, we have that:

x̂(N + k | N) = F x̂(N + k − 1 | N) = F k−1 x̂(N + 1 | N)

Furthermore, since v(N + k) is uncorrelated to yN the optimum k-step prediction of the
output is:

ŷ(N + k | N) = H x̂(N + k | N)

With regard to filtering, that is the problem of estimating x(N) from the data y(N), y(N−
1), ... , it is necessary to reset the calculation of the estimation:

x̂(N | N) = E [x(N) | yN ] = E [x(N) | yN−1, yN ] =

= E [x(N) | yN−1] + E [x(N) | e(N)] =

= x̂(N | N − 1) + Λx(N)e(N) Λ
−1
e(N)e(N) e(N)

The variance matrix of the innovation Λe(N)e(N) had already been calculated, while for the
coviariance matrix Λx(N)e(N) the calculation is similar to the one done for Λx(N+1)e(N) and
gives rise to:

Λx(N)e(N) = P (N)HT

where, as usual, P (N) is the variance matrix of the one-step prediction error of the state.
Therefore:

x̂(N | N) = x̂(N | N − 1) +K0(N) e(N)

with K0(N) Kalman filter gain defined by:

K0(N) = P (N)HT [H P (N)HT +R]−1

Morover, if F is invertible and disturbances w(t) and v(t) are uncorrelated, we obtain that
E [w(N) | yN ] = 0 and so:

x̂(N + 1 | N) = E [F x(N) + w(N) | yN ] =

= F x̂(N | N) + E [w(N) | yN ] = F x̂(N | N)

thus:
x̂(N | N) = F−1 x̂(N + 1 | N)

Definition 3. (Variance matrix of filter error) The variance matrix of filter error
x(N)− x̂(N | N) is easily obtained from the variance matrix P (N) of the prediction error.
We have:

V ar [x(N)− x̂(N | N)] = P (N)− P (N)HT [H P (N)HT +R]−1H P (N)

We can hence give an alternative formulation of the DRE:

P (N + 1) = F V ar [x(N)− x̂(N | N)]F T +Q

7The vector of data yN depends on w(t) until t = N − 1 and on v(t) until t = N .
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A.3.3.1 Asymptotic Predictor

On our previous LTI dynamical system we will suppose that the disturbances w(t) and v(t)
are independent and their variance matrices are constant in time. We note that, despite
the time invariance of the system, the predictor is time variant since the gain K(N) is not
constant as it depends on the solution of the Riccati equation. The prediction problem
can be solved in a sub-optimal way, with an invariant predictor, whenever the following
condition holds:

lim
N→∞

K(N) = K̄

K̄ is called steady-state gain and the corresponding predictor is called asymptotic predictor.
Since:

K(N) = F P (N)HT [H P (N)HT +R]−1

the convergence of K(N) is ensured if the solution of the Riccati equation converges asymp-
totically, i.e.:

lim
N→∞

P (N) = P̄

with positive semi-definite limit matrix P̄ 8. If we initialize the DRE with P̄ , the solution
will be P̄ , indeed defining P = P (N + 1) = P (N) we obtain:

P = F P F T − F P HT [H P HT +R]−1H P F T +Q

that is an algebraic equation called Algebraic Riccati Equation (ARE) with matrix
unknown. P̄ is the positive semi-defined solution of ARE from which we obtain the steady-
state predictor gain9 :

K̄ = F P̄ HT [H P̄ HT +R]−1

Remember that the solution of the Riccati Equation is the variance matrix of the state
prediction error. The convergence of this matrix indicates the predictor’s ability to provide
predictions of state variables with a limited probabilistic error.
Morover, since:

x̂(N + 1 | N) = F x̂(N | N − 1) + K̄ e(N) =

= F x̂(N | N − 1) + K̄ [y(N)− ŷ(N | N − 1)] =

= F x̂(N | N − 1) + K̄ [y(N)−H x̂(N | N − 1)] =

= [F − K̄ H] x̂(N | N − 1) + K̄ y(N)

the stability of the asymptotic predictor depends on the eigenvalues of the matrix:

[F − K̄ H] = F − F P̄ HT [H P̄ HT +R]−1H

From the Schur’s condition the asymptotic predictor is stable iff the eigenvalues are strictly
inside the complex circle of radius 1.

A.3.3.2 Asymptotic stability

If we consider the solution of the state equation of the mechanism of generation of data

x(t+ 1) = F x(t) + w(t)

8The limit of a succession of positive semi-definite matrices is a positive semi-definite matrix.
9The steady-state filter gain is simply given by K∞ = F−1 K̄.
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it is a sequence of aleatory variables, i.e. a stochastic process. If we apply the expected
value operator we get:

E [x(t+ 1)] = F E [x(t)]

therefore:

E [x(1)] = x1 → E [x(2)] = F x1 → E [x(3)] = F 2 x1 → E [x(4)] = F 3 x1 ...

If the system is stable the eigenvalues of the powers of F become smaller and smaller as
the exponent grows. F k tends to zero with k. Therefore E [x(t)] also tends to zero ∀x1.
Morover if F k = On×n with finite k ∈ Z then F is a nilpotent matrix and the system of
generation of data is a dead-beat stochastic process. Let’s consider the variance matrix of
x(t):

V ar [x(t+ 1)] = E [ [x(t+ 1)− E [x(t+ 1)] [x(t+ 1)− E [x(t+ 1)]T ] =

= E [ [F [x(t)− E [x(t)] ] + w ] [F [x(t)− E [x(t)] ] + w ]T ] =

= F E [ [x(t)− E [x(t)] ] [x(t)− E [x(t)] ]T ]F T +Q

since w(t) is uncorrelated to the past as it is a white noise. We obtain the so called
Difference Lyapunov Equation (DLE):

V ar [x(t+ 1)] = F V ar [x(t)]F T +Q =

= Λ(t+ 1) = F Λ(t)F T +Q

therefore:

V ar [x(1)] = P1 → V ar [x(2)] = F P1 F
T+Q → V ar [x(3)] = F 2 P1 [F

T ]2+F QF T+Q ...

and finally:
V ar [x(t)] = [ I + F 2 + ...+ F 2(t−2) ]Q+ F 2(t−1) P1

If F is stable then the matrix sum converges and so V ar [x(t)] ∀ P1. Hence, if we define Λ̄
the asymptotic limit solution of the DLE, it will be the positive semi-definite solution of:

Λ = F ΛF T +Q

that is called the Algebraic Lyapunov Equation (ALE).
Summarizing, if the system is asymptotically stable, the data generation mechanism pro-
duces a stochastic process with expected value and variance matrix both convergent, i.e.
produces asymptotically a stationary stochastic process. If we use the optimum predictor
instead of the trivial one (based on the expected value estimation) the prediction error will
be smaller and, for all the above considerations, it is therefore reasonable to expect that
the prediction error cannot have, in such circumstances, divergent variance. We will now
give some important results of stability theory for linear systems and optimal control.

Theorem 7. (First DRE convergence theorem) If the data generation mechanism is
stable, then:

1. the solution of the Riccati Equation converges asymptotically to the same limit matrix
P̄ , ∀ positive semi-definite matrix P1

2. the asymptotic predictor is stable
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The stability of the data generation mechanism is a sufficient condition for predictor con-
vergence but it is not a necessary condition.
Let’s now refresh some important results from System Theory (proofs can be found in [9]):

Definition 4. (Indistinguishable states in the future) Given a discrete state space
model: {

x(t+ 1) = F x(t) +Gu(t)
y(t) = H x(t) , t ∈ Z

with x ∈ Rn, u ∈ Rm and y ∈ Rp, we say that two states x1 and x2 are indistinguishable
in [0, k] = {0, 1, ..., k} k ≥ 0 if ∀u(0), u(1), ..., u(k − 1) ∈ Rm, calling y1(t) and y2(t) the
outputs of the system given the input and the initial conditions x(0) = x1 and x(0) = x2
we obtain y1(t) = y2(t) ∀ t ∈ [0, k]. Since:{

y1(t) = y1l(t) + y1f (t)
y2(t) = y2l(t) + y2f (t) , t ∈ Z

and the forced responses coincide y1f (t) ≡ y2f (t) since the input is the same we obtain that
x1 is indistinguishable from x2 iff the free evolutions coincide y1l(t) = y2l(t) i.e.:

H F t x1 = H F t x2 ∀ t ∈ [0, k]

We will then write x1 ∼ x2
10.

Definition 5. (Observability) A state x0 ∈ Rn is called not observable in [0, k] if x0 ∼ 0,
i.e. iff yl(t) = 0 ∀t ∈ [0, k]. Formally:

[H | H F | ... | H F k]T x0 = Ok x0 = [0 | 0 | ... | 0]T

where Ok = [H | H F | ... | H F k]T is the k-steps observability matrix. Thus x0 is
not observable in [0, k] iff x0 ∈ kerOk ⊆ Rn. If x0 ∈ kerOk+1 then x0 ∈ kerOk so
kerOk+1 ⊆ kerOk, thus:

{0} ⊆ ... ⊆ kerOk ⊆ ... ⊆ kerO2 ⊆ kerO1 ⊆ kerO0 ⊆ Rn

Morover, if kerOk = kerOk+1 then kerOk+1 = kerOk+2
11.

Theorem 8. (First criterium for observability) Defining the observability matrix
O = [H | H F | ... | H F k]T , we say that (F,H) is observable iff kerO = {0} i.e. iff
rankO = n.

Theorem 9. (Popov-Belevitch-Hautus criterium for observability) Given F ∈
Rn×n, H ∈ Rp×n, we say that (F,H) is observable iff rank [λ I − F | H]T = n ∀λ ∈ C,
where [λ I − F | H]T ∈ R(n+p)×n is the PBH matrix of observability. If (F,H) is not
observable the PBH matrix loses rank in correspondence to all and only the eigenvalues of
the not observable subsystem.

Theorem 10. If (F,H) is observable, then the ARE admits at least one positive semi-
definite solution.

This final theorem suggests that even in the hypothesis that the pair (F,H) is observable,
it may happen that the ARE admits more positive semi-definite solutions. A simple way
of imposing that the ARE admits a single solution is to require that the noise that disturbs
the state actually affects all the state variables.

10It’s easy to proove that ∼ is an equivalence relation.
11This result can be proved using the Cayley-Hamilton theorem.
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Definition 6. (Square root of a matrix) Given the state equation:

x(t+ 1) = F x(t) + w(t)

with w ∼ N (0, Q) n-vector aleatory variable, it is possible to define the square root of
the matrix Q as the matrix G s.t. GGT = G I GT = Q. The system equation is now:

x(t+ 1) = F x(t) +Gu(t)

with the following properties:

• such as w(t) also u(t) is a white noise i.e. E [u(t1)u
T (t2)] = 0 iff t1 ̸= t2

• V ar [u(t)] = I , ∀ t.

In order to characterize the action of the noise state w(t) let’s consider the equation of
state in the convenient form:

x(t+ 1) = F x(t) +Gu(t)

Making the assumption that the initial state at time t0 = 1 is deterministically known and,
for example, null:

x(1) = 0

then:
x(2) = Gu(1)

By indicating with u1(t), u2(t), ..., um(t) the elements of the vector u(t) and by g1, g2, ..., gm

the columns of G, we obtain:

x(2) =
m∑
i=1

ui(1) g
i

The state x(2) is therefore a linear combination of the columns of the matrix G. The
coefficients of this combination are the elements of the aleatory vector u(t). As evidenced
by the variance matrix (the identity) of u(t) these elements are uncorrelated aleatory
variables with not null variance. Considering all possible values they can assume, x(2) can
describe all possible linear combinations of G-columns. We can thus conclude that noise
at time 1 affects all states belonging to the set [G]. At time 3 we have that:

x(3) = F Gu(1) +Gu(2)

Taking into account that u(t) is a white noise, u(1) and u(2) are uncorrelated. We can
conclude saying that noise at times 1 and 2 affects only all states that can be obtained
as linear combinations of the G-columns and FG-columns, i.e. all states belonging to the
set [G | F G]. Iterating this reasoning, we can conclude that noise at instants 1, ..., k has
influence on the set [G | F G | ... | F k−1G]. We can proove that this set is a subset of the
state space. Let’s introduce the concept of reachability:

Definition 7. (Reachability) Given a discrete state space model:{
x(t+ 1) = F x(t) +Gu(t)
y(t) = H x(t) , t ∈ Z
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with x ∈ Rn, u ∈ Rm generic input vector and y ∈ Rp, we say that a state x is reachable
at time k if ∃u(0), ..., u(k − 1) ∈ Rm that brings the state from x(0) = 0 to x(k) = xf i.e.

xf = x(k) = F k x(0) +
k−1∑
t=0

F k−1−tGu(t) =
k−1∑
t=0

F k−1−tGu(t) =

= [G | F G | ... | F k−1G] [u(k − 1) u(k − 2) ... u(0)]T =

= Rk [u(k − 1) u(k − 2) ... u(0)]T

where Rk = [G | F G | ... | F k−1G] is the k-steps reachability matrix. Thus x is reachable
at time k if x ∈ ImRk.

Theorem 11. (First criterium for reachability) Since ImRk ⊆ Rn and ImRk ⊆
ImRk+1, and since:

1. if ImRk = ImRk+1 then ImRk = ImRk+t ∀t ≥ 0

2. k̄ = mink{ImRk = ImRk+1} ≤ n

then, defining the reachability matrix R = [G | F G | ... | Fn−1G], we say that (F,G) is
reachable iff rankR = n.

Theorem 12. (Popov-Belevitch-Hautus criterium for reachability) Given F ∈
Rn×n, G ∈ Rn×m, we say that (F,G) is reachable iff rank [λ I − F | G] = n ∀λ ∈ C,
where [λ I − F | G] ∈ Rn×(n+m) is the PBH matrix of reachability. If (F,G) is not
reachable the PBH matrix loses rank in correspondence to all and only the eigenvalues of
the not reachable subsystem.

If λ ∈ C ∧ λ /∈ Θ(F ) then det [λ I − F ] ̸= 0 and so rank [λ I − F | G] = n since the first n
columns of [λ I − F | G] are linearly independent, therefore the PBH matrix can loose
rank only if λ ∈ C ∧ λ ∈ Θ(F ), where Θ(F ) is the spectrum of F .

Corollary 1. Necessary condition to get (F,G) reachable is that the inputs are linearly
independent, i.e. m ≥ c where c = maxi∈{1,...,r}mg(λi) is called cyclicity index of F , m
is the number of columns of G, r is the number of different eigenvalues of F and mg(λi)
is the geometrical molteplicity of the eigenvalue λi.

In the case of feedback systems we have the following:

Proposition 3. Given F ∈ Rn×n and G ∈ Rn×m then ∀K ∈ Rm×n and ∀ i ∈ Z, i ≥ 0
we have that:

Im [G | F G | ... | F i−1G] = Im [G | (F +GK)G | ... | (F +GK)i−1G]

Hence if i = n we have that (F,G) is reachable iff (F +GK,G) is reachable.

It is not difficult to prove that a pair (F,G) is reachable iff the pair (F,GGT ) is reachable.
For this reason, in the context of the prediction or filtration problem, the hypothesis (F,G)
reachable is also found in the literature in the equivalent statement (F,Q) reachable.

Theorem 13. (Second DRE convergence theorem) If the data generation mechanism
is such that the pair (F,H) is observable and, for a square root matrix G of the disturbance
variance matrix Q influencing the state, the pair (F,G) is reachable, then:

1. the solution of the Riccati equation converges asymptotically to the same limit matrix
P̄ , ∀ positive semi-definite initial condition P (1)
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2. the limit matrix P̄ is positive definite

3. the asymptotic predictor is stable

Note that the reachability mentioned in the previous theorem is the reachability of the
state from noise. Thus, if the equation of state is:

x(t+ 1) = F x(t) +Bw(t) +Gu(t)

where w(t) is an exogenous variable, the recheability of the pair (F,B) has no influence on
the problem of convergence of the Riccati equation. There exists a weacker formulation of
the problem that uses the concepts of stabilizability and detectability instead of reachabil-
ity12 and observability. Since not all systems are reachable ImR ⊆ Rn we can decompose
the state space Rn into two orthogonal subspaces:

Rn = ImR⊕
(
ImR

)⊥
where

(
ImR

)⊥
is the not reachable subspace.

Theorem 14. (Hautus Lemma for stabilizability) Given F ∈ Rn×n, G ∈ Rn×m the
following assertions for a discrete LTI system are equivalent:

1. the pair (F,G) is stabilizable iff ∃K ∈ Rm×n s.t. F +GK is asymptotically stable

2. the pair (F,G) is reachable or otherwise, the matrix of the not reachable subsystem
is asymptotically stable

3. rank [λ I − F | G] = n , ∀λ ∈ C s.t. |λ| ≥ 1.

Dually, we can derive similar considerations for the concepts of detectability and observ-
ability :

Theorem 15. (Hautus Lemma for detectability) Given F ∈ Rn×n, H ∈ Rp×n the
following assertions for a discrete LTI system are equivalent:

1. the pair (F,H) is detectable iff ∃L ∈ Rn×p s.t. F + LH is asymptotically stable

2. the pair (F,H) is observable or otherwise, the matrix of the not observable subsystem
is asymptotically stable

3. rank [λ I − F | H]T = n , ∀λ ∈ C s.t. |λ| ≥ 1.

Theorem 16. (General DRE convergence theorem) Let’s take the following discrete
LTI dynamical system: {

x(t+ 1) = F x(t) + w(t)
y(t) = H x(t) + v(t) , t ∈ Z

with white noises w ∼ N (0, Q) and v ∼ N (0, R) uncorrelated and with positive definite
variance matrix R s.t. detR ̸= 013. If the data generation mechanism is such that the pair
(F,H) is detectable and, for a square root matrix G of the disturbance variance matrix Q
influencing the state, the pair (F,G) is stabilizable, then:

12Reachability implies controllability.
13If detR = 0 we obtain a singular case in wich it is necessary to introduce pseudo-inverse matrices to

solve both DRE and ARE.
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1. the solution of the Riccati equation converges asymptotically to the same limit matrix
P̄ , ∀ positive semi-definite initial condition P (1)

2. the asymptotic predictor is stable

When the two noises are correlated the convergence theorem no longer holds. Intuitively,
this can be understood by observing that if V12 ̸= 0 then it is possible to obtain information
on the state of the system starting from the observation of the output even in the case of
H = 0 i.e. even if the system is totally unobservable.
The estimation error variance matrix V ar [x(t)− x̂(t | t)] converges iff the prediction error
variance matrix P (t) = V ar [x(t)− x̂(t | t− 1)] converges.
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