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Abstract

In this thesis, I present the development of a computational acoustic model of an ancient Roman
tube that can be compared to a trumpet, using the MATLAB environment. The idea is to recreate
the sound characteristics and functioning of this historical instrument, which has implications for
both archaeological acoustics and the field of digital musicology.

I started by performing a vast research of currently existing methods of modelling the mouthpiece
and the movement of the lips, further diving into modelling the instrument itself. Using the dig-
ital waveguide and wave equations, I have managed to create a model of the tube simulating the
behaviour of a brass instrument.

With the use of the book Numerical Sound Synthesis: Finite Difference Schemes and Simulation
in Musical Acoustics by Stefan Bilbao[1] I managed to create a segmented model of the tube using
the digital waveguide synthesis methods, as well as scattering matrices in order to properly model
the wave reflection and transition from one segment to another.

Later I tested the created MATLAB code with different input bores and bell shapes and generated
its behaviour with different reflection parameters and configurations.

Additionally, for every shape, a test with the .wav sound of a mouthpiece was created in order to
assess the behaviour of the model with a real-world looking sound wave as input.

At the end, a proposition of a further development of the model is presented, with different conditions
and implications noted.

The full code can be found at: https://gitlab.dei.unipd.it/pitteri.giulio/RomanTube

This research not only contributes to the understanding of instrument modelling but also offers a
framework for virtual reconstruction of lost or inaccessible musical instruments.
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Chapter 1

Introduction

1.1 Sound

Sound is a vibration propagated through a medium, i.e., gas, liquid or solid. On the other hand,
from the biological point of view, sound is a reception of waves and the perception of them by the
brain. But not all the waves are being processed by the brain. Human brain can only perceive waves
that are between frequencies of 20 Hz and 20 kHz, or, as we call them, the audible frequency range.
When considering the air at normal atmospheric pressure, these frequencies represent sound waves
with wavelengths between 17 meters to 1,7 centimetres. Shorter wavelengths are called ultrasounds,
whereas longer wavelengths are called infrasounds, but since these are not audible to humans we
aren’t going to dive into them.

According to the ANSI/ASA standard, sound is defined as an "oscillation in pressure, stress, particle
displacement, particle velocity, etc., propagated in a medium with internal forces (e.g., elastic or
viscous), or the superposition of such propagated oscillation" [2].

In musical instruments, it’s the vibrations that create a sound, and in most cases the music is
the result of the combined effect of two or more types of vibrations (mechanical, acoustical, or
electrical)[3].

1.2 The Instrument

Figure 1.1: A close - up of a trumpet.
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1.3. A BRIEF HISTORY OF PHYSICAL MODELLING CHAPTER 1. INTRODUCTION

The trumpet is a brass instrument, in which the vibration is created by the blow of wind from
the lips of a trumpeter. A wave is being created by an embouchure, i.e. by blowing air through
slightly separated lips. They produce a standing wave inside the instrument that is a ’buzz’ like
sound[4]. The first trumpets came in use before 1500 BC and we can recognize them in drawings of
ancient Egyptians, Chinese and Scandinavians, although those instruments back then were rather
different from the modern ones. They were primarily made from animal horns, emptied inside and
opened at the end, without any valves or holes, so the pitch was modulated by the player. Since
then, trumpets went through quite a metamorphosis changing different materials: wood, bamboo,
bark, clay, human bone; and different shapes: long cylindrical body in between a small circular
mouthpiece and a wider sloping horn; ending with the current aspect - a long body bent twice, with
three valves and made of brass. Through history, trumpets had different uses, including military
ones, where they were used to signal attacks or manoeuvres to the soldiers, religious ceremonies,
long distance communications and, last but not least, music[5].

"Lip-driven wind instruments have a very long history, dating back to those made from hollow
plant stems, seashells and animal horns. (Carse, 1939; Baines, 1966); even metal trumpets roughly
similar to those of the present day existed as long ago as Roman times" [3].

1.3 A Brief History of Physical Modelling

The history of physical modeling is a fascinating journey through time, showcasing the evolution of
human understanding and technological advancement in simulating and understanding the physical
world.

Physical modeling has been an integral part of engineering and architectural design since ancient
times. The use of scaled models can be traced back to civilizations such as the Egyptians and Greeks,
who created miniature prototypes to plan and visualize structures like temples and theaters[6].

During the Renaissance, Leonardo da Vinci famously employed physical models to study various
hydraulic problems, demonstrating an early understanding of the importance of scale and material
properties in simulating real-world phenomena[7].

The 17th century saw significant advancements in physical modeling with scientists like Galileo
Galilei, who used models to validate his theories on mechanics and motion. This period marked the
beginning of a more systematic approach to physical modeling, integrating mathematical principles
with empirical observations[6].

In the 19th century, physical models became crucial in explaining new concepts in biology and phys-
iology. Everett Mendelsohn’s work highlights the role of physical models in elucidating physiological
concepts during this era[8].

The early 20th century witnessed a surge in the use of physical models for complex engineering
projects. Notable examples include the models used in the design of the Boulder Dam and the
Conway and Britannia tubular bridges, where models played a pivotal role in testing and refining
design concepts before actual construction[6].

With the advent of digital technology, physical modeling has evolved into a blend of traditional
techniques and computer simulations. The development of physical modeling synthesis in the late
1980s, particularly the Karplus-Strong algorithm and digital waveguide synthesis by Julius O. Smith
III, marked a turning point in the field. These methods allowed for the efficient computation of

4



CHAPTER 1. INTRODUCTION 1.4. MODELLING THE INSTRUMENT

waveforms to simulate musical instruments and other sound sources[9]. Today, physical models con-
tinue to be used alongside numerical simulations to design, test, and validate engineering projects.
They serve as a tangible link between theory and practice, providing insights that are sometimes
difficult to obtain through computational methods alone.

1.4 Modelling the Instrument

In order to be able to model a musical instrument while it produces sound, i.e. to simulate a realistic
music note produced by this instrument, one must recreate the timbre created in the vibrating air-
column[10]. A timbre is sometimes referred to as a tone colour or tone quality. It is one of the
reasons we are able to perceive sounds as different, which gives us a unique character of the sound.
With timbre, we are able to identify or distinguish different instruments when the same note is
played by them. It is created by the excitation of different harmonics or overtones with a sound, in
particular by the high-pitched vibrations that are additionally produced on top of the fundamental
frequency. The strength and distribution of these sounds is what creates the timbre.

The main problem with the creation of a model of a trumpet is its complexity. The amount of
parameters that ought to be controlled create a vast set of configurations of a virtual trumpet.
Therefore many literature sources focus mainly on analysing the behaviour of a simple brass in-
strument and the creation of its model. The main principles of their work can be divided into the
same components for sound creation in every instrument that belongs to the brass family. From a
simplistic point of view, we can divide a brass instrument into three parts: the lips, the air column
and the airflow, that combines the former two.

The lips act as a mechanic resonator and are usually modelled as a mass attached to a spring[11, 12].
It is so because the player puts the lips together and forces them to periodically open and close.
This approximation might not be accurate, sine the lips are much more complex in movement and
build. We have to take into account the soft tissue, the muscles and the control of them by the
player - the tension, the shape in which they are put and their interaction with the rim of the
mouthpiece, the teeth, the other lip and the airflow. The movements are also quite different from
the model - lips can move in all three dimensions, while the model only assumes a two dimensional
movement. However, J.S. Cullen has proved that the horizontal motion of the lips can be neglected,
because it has a rather negligible effect on the air flow. The air flow is determined by the total lip
opening[13]. The air column then acts just as an acoustic resonator.

1.5 Digital Waveguide

Digital waveguide synthesis is a common tool used for the synthesis of audio, particularly in physical
modeling synthesizers. It’s based on efficient computational models that simulate the physical media
through which acoustic waves propagate, which makes digital waveguides a major part of most
modern physical modeling synthesizers.

Digital waveguide synthesis models are based on the principle of sampled acoustic traveling waves.
These models replicate the geometry and physical properties of an acoustic system, such as a violin
string or a flute pipe, to generate sound digitally[14, 15].

A typical digital waveguide consists of:

• Bidirectional delay lines - representing the path along which the waves travel back and forth,
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1.5. DIGITAL WAVEGUIDE CHAPTER 1. INTRODUCTION

much like the vibrations along a string,

• Digital filters - that simulate the frequency-dependent losses and mild dispersion that occur
in the medium.

• Nonlinear elements - sometimes included to model more complex interactions within the
waveguide[14].

The working of a digital waveguide can be divided into four sections:

1. Traveling Waves - the core idea is to use delay lines to simulate the traveling waves that occur
in real-world instruments. For example, in a vibrating string, there are waves moving in both
directions along the string’s length.

2. Reflection and Termination - at the boundaries, such as the ends of a string or the openings of
a tube, these waves reflect back, creating standing waves that produce the sound we hear. In
a digital waveguide, this reflection is simulated by the delay lines looping back on themselves.

3. Wave Impedance and Scattering - changes in wave impedance along the waveguide cause
signal scattering. This is modeled by changes in the delay lines and filters, which alter the
characteristics of the traveling waves.

4. Physical Outputs - while traveling waves are great for simulation, they aren’t directly mea-
surable in the physical world. To get physical variables like force, pressure, or velocity, the
digital waveguide sums the components of the traveling waves[14].

Digital waveguides are a major part of most modern physical modeling synthesizers because they
can efficiently model the behavior of various musical instruments. They are also used in virtual
reality and gaming to simulate realistic sounds in three-dimensional spaces.
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Chapter 2

State of the Art

In order to be able to create a model of a trumpet it’s required to understand the build and working
of such an instrument. Therefore a review of literature was performed. Since the literature does not
focus on a trumpet instrument itself, most of the articles and books were regarding generic brass
instruments.

Figure 2.1: Simplified lip model for trumpet-like instruments[1, 16]. In the figure only the
upper lip oscillation is considered. The lip is a single mass-spring-damper system
with mass m, spring constant k, and damping coefficient r. The bore is approxi-
mated as a straight cylindrical tube with area A. We consider a jet of air below
the lip.

I started my thesis research by studying the book Numerical Sound Synthesis: Finite Difference
Schemes and Simulation in Musical Acoustics by Stefan Bilbao[1]. I started from the beginning,
getting familiarized with the sound synthesis and physical modelling, going through additive synthe-
sis, subtractive synthesis, wavetable synthesis, AM and FM synthesis and other methods. Further,
I delved into physical models, especially the lumped mass-spring network (see Figure 2.2), which I
later used to understand the mechanics of the lips. Starting from easy networks, as can be seen on
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CHAPTER 2. STATE OF THE ART

Figure 2.1, I later proceeded towards a more elaborated one with a more detailed representation,
as presented on Figure 2.3.

Figure 2.2: Lumped mass-spring networks: (a) in a linear configuration corresponding to
a model of lossless string; (b) in a 2D configuration corresponding to a model
of a lossless membrane; (c) an unstructured network, without a distributed
interpretation[1].

Figure 2.3: Two dimensional lip vibration model. The lips are modelled as a mass on a spring.
The model simultaneously executes both swinging and stretching motion[17].

Next, I delved into modal synthesis and digital waveguides, which I later used in modelling the
instrument. I proceeded to study physical modelling, starting from abstract synthesis and ending
on complex musical systems. Furthermore, I deepened my knowledge regarding the basics of DSP,
time series and difference operators.

I then proceeded to study the oscillator chapter, with main focus on the simple harmonic oscillator,
finite difference scheme, lumped-mass spring network and sources of oscillation. This chapter intro-
duced programming exercises in MATLAB, which I then proceeded to solve. Some of them required
me to better utilize memory space, therefore splitting the proposed code into smaller chunks of code,
some of them required me to generate outputs according to given schemes; other ones presented me
with the challenge of programming a situation from scratch. Next I skimmed through the chapters

8



CHAPTER 2. STATE OF THE ART 2.1. TRUMPET AND TROMBONES

regarding grid functions and finite difference operators in 1D, 1D wave equation, linear bar and
string vibration, and nonlinear string vibration. Then I proceeded to focus on the chapter about
acoustic tubes. Starting from Webster’s equation and simple tubes, I proceeded to understanding
complex behaviours and different shapes of tubes. The book then proceeded to explain the vocal
tract and speech synthesis, which I also analysed, since some of the mechanics would be similar.
I’ve gone through glottal excitation, formants, wall vibration and loss, scattering methods and fi-
nite difference schemes, finally entering the reed and brass instruments chapters. After solving the
problems and exercises of these chapter, I moved on into searching for a more specialized research
papers connected to modelling a trumpet. The exercises of this chapter focused mainly on the vocal
synthesis and vocal tracts, but they did include parts of the previous chapters, so they were a useful
learning experience of how to implement all the things I have learned before.

2.1 Modelling and Behaviour of Trumpet and Trombones

While performing a vast research of the papers regarding brass instruments or trumpets, I stum-
bled upon a PhD Thesis by Janelle Resch titled "Physical Modelling and the Associated Acoustic
Behaviour of Trumpets and Trombones" [18].

I spent quite a lot of time analysing this thesis, since the MATLAB code was enclosed. First, I
gave a quick look at the contents of the thesis, and then I went straight to the MATLAB code,
since I knew Janelle did a lot more in this thesis than was unrelated to my work. After a brief
analysis of the MATLAB code I realized that without the input data I wouldn’t be able to use the
code, therefore I contacted her thesis supervisors, Professor Lilia Krivodonova and Professor John
Vanderkooy, to obtain Janelle Resch’s contact information in order to obtain the data. Thanks to
them, I managed to contact Janelle and ask her for the data. Due to some problems on her side,
I had to wait a little over a month to receive the data, but in the end I have successfully received
it. In the meantime, I started to analyze her thesis meticulously. Her work gave me hope, since the
abstract said:

"Accurately modelling the production of realistic musical notes in brass instruments is no easy task.
(...) In this thesis, we attempt to accurately model the timbre of musical notes produced on the
trumpet and trombone and study the associated acoustic behaviours of both instruments. (...)."

Unfortunately, in the end it didn’t provide what I expected it to, but it was still useful to dive
into it. It explained a lot of processes and phenomena quite neatly. It talked about the basics of a
trumpet and trombone, its build and sound production in them.

Figure 2.4: An image of a trumpet with labelled the most important parts of it[18].
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2.1. TRUMPET AND TROMBONES CHAPTER 2. STATE OF THE ART

Then the thesis focused on the experiments they have performed. They have measured the sound
pressure with different microphones on the mouthpiece-shank, before the first bend and outside
the bell along the central axis of a trumpet and a trombone, as can be seen in Figure 2.5. Next,
they have measured the sound pressure of a trumpet and a trombone, by placing a single (for some
experiments a couple) accelerometer together with the microphones using beeswax on the outside of
the instrument bell near the rim (in the case with two accelerometers, they were placed orthogonal
to each other - see Figure 2.6).

Figure 2.5: Microphone placement on the trumpet[18].

Figure 2.6: Accelerometer placement on the bell of the trumpet[18]

They have taken these measures for a total of 33 different settings (different volume, notes and
usage of the valves). The results were obtained in form of pressure as a function of time, as shown
in Figure 2.7.

As we can see, the output is in milliseconds, therefore it’s not quite useful in my work. Nonetheless,
I continued to follow the work, as I was hoping the MATLAB code would ease my workload. There
was a lot of research done connected to the accelerometers measurements, but since none of it
concerned my work, I won’t mention it further. Next chapter was connected to mathematical and
numerical fundaments. I got acquainted with them briefly, since I doubted that there would be any

10



CHAPTER 2. STATE OF THE ART 2.1. TRUMPET AND TROMBONES

Figure 2.7: Waveforms of pressure vs time of the B3b note played at mezzo forte without any
valves compressed[18].

need for equations related to the Galerkin method. Next I skidded through the vibroacoustic and
thermoviscous effects and numerical experiments, where it was mentioned that the size and diameter
of the bore is usually neglected in the papers. After a thorough examination, it was proven that the
radius of the trumpet bore, that is located 24 cm away from the radius of the mouthpiece-shank
part is 1,77 times bigger, which actually has a lot of impact on the wave propagation inside the
instrument, as can be seen in Figure 2.8.

Figure 2.8: A diagram of the throat - mouthpiece - bore part of the trumpet (first 10 cm of
the trumpet).

For most of these topics a measurement and a simulation was made, which I will not discuss, since
it’s not relevant for my thesis.

After getting acquainted with the work, I put all my efforts into running the MATLAB code at-
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2.2. LIP MODEL CHAPTER 2. STATE OF THE ART

tached. After I was given the data, I started cleaning up the code and adjusting it. It required
to change some lines of code, change variables put in proper references (i.e. following the code
instructions: Read in pressure wanted, e.g.: let x be column wanted). Unfortunately, after cleaning
up the code I found out I did not have all the data required to run it. Nevertheless, I found a way,
without consulting the author, to obtain this data from the plot figures. Using a very clever online
tool called WebPlotDigitizer I was able to obtain the needed data. Now, with the data at hand I
was able to run the code. Unfortunately, after analysing the exact structure of the code and the
way it works, I realized that the code didn’t actually produce sound, it only merely analyzes the
input data, performs filter operation etc. and outputs plots. I had hopes that it might actually
produce some sound as it was stated in the abstract, but sadly I have been disappointed.

I moved on to look for other papers that mentioned modelling a brass instrument or a trumpet,
preferably in MATLAB, but also mathematical solutions were acceptable, since basing my work on
them I would be able to create the model myself.

2.2 Lip Model

The Trumpet sound simulation using a two-dimensional lip vibration model by Seiji Adachi and
Masa-ski Sato[17] introduced an interesting lip model. It started with comparing a three different
lip vibration configuration models comprising of p0 as pressure in the upstream region of the valve
(blowing pressure), p as the pressure downstream region of the valve (mouthpiece pressure), in
configurations as follows: an inwardly striking valve, which closes in incremented blowing pressure
p0; outwardly striking valve, which opens further as p0 increases; a retracting valve that moves
laterally to the direction of the flow. These configurations are presented in Figure 2.9.

Figure 2.9: Three different configurations of a pressure-controlled valve in an acoustic tube -
(a) an inwardly striking valve; (b) an outwardly striking valve and (c) a retracting
valve that moves laterally to the direction of the flow[17].

The model was further expanded into a more complex two-dimensional scheme shown in Figure
2.10.

12



CHAPTER 2. STATE OF THE ART 2.2. LIP MODEL

The lips were assumed to work like a simple mechanic oscillator that consists of one mass, stiffness
and damping. The mass m is assumed to be localised at the centre of the lip with two springs -
one for swinging motion and one for the stretching motion. The lip motion equations are given in
Equations 2.1, 2.2, 2.3 and 2.4.

Figure 2.10: A two-dimensional lip vibration model with the assumption of upper and lower
lips being symmetrical[17].

1

2
m
d2ξ

dt2
= −

1

2

√

m

k

dξ

dt
+ Fstore + Fd + FBernoulli (2.1)

where:

• m - mass,

• ξ - two-dimensional vector that assigns the position of the tip of the lip,

• k - stiffness factor,

• Q - quality factor,

and

Frestore = −
1

2
k(ξ − ξequil) (2.2)

Fap =
δp

δx
P (ξ − ξjoint)

⊥ (2.3)

FBernoulli = b d ptip ey (2.4)

where:

• ξequil - position of the lips at rest,

13



2.2. LIP MODEL CHAPTER 2. STATE OF THE ART

• b - lip width,

• ey - unit vector along the y axis.

Further on, the paper suggested an algorithmic time-domain simulation, that went as follows:

1. Suppose the variables ξ, p, plip, Uacoust, Ulip, and Slip are all known at all times earlier than
the present, solve the equation of the lip motion (2.1), and find the new ξ at the time one
step ahead.

2. Calculate the new Slip and Ulip defined by Eqs. 2.5 and 2.6, respectively.

3. With the new Slip, Ulip, and past data of p and U = Uacoust + Ulip, solve the flow equation
[i.e., sum of Eqs. 2.7 and 2.8] and the feedback equation 2.9 simultaneously, and obtain the
new p and Uacoust.

4. Solve Eq. 2.8 to obtain the new plip.

5. Update time by one step, and then return to 2.1.

Slip = max{2bξy, 0}, (2.5)

Ulip =

{

(b(ξ − ξjoint)×
dξ

dt

}

· ez = b

{

(ξX − ξjointx)
dξy
dt

− (ξy − ξjointy)
dξx
dt

)

}

(2.6)

p0 − plip =
1

2
ρ

(

Uacoust

Slip

)2

+
ρd

Slip

∂Uacoust

∂t
(2.7)

plip − p = −ρU2
acoust

(

1

ScupSlip
−

1

S2
cup

)

(2.8)

p(t) = ZcU(t) +

∫

∞

0
ds r(s){ZcU(t− s) + p(t− s)} (2.9)

where:

• ξ - a 2D vector stating the position of C,

• k - stiffness factor,

• Q - quality factor,

• Fbernoulli - external force generated by the Bernoulli pressure or the pressure at the lip opening
plip,

• ez - unit vector parallel to the axis of swinging motion,

• r(t) - reflection function, Zc = ρc/Scup.
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CHAPTER 2. STATE OF THE ART 2.3. TROMBONE MODEL

With this step by step solution I decided to put my efforts into creating a code of my own based
on the step by step solution shown before. I started by analyzing each equation and trying to solve
it. Unfortunately, I got stuck on Equation 2.1. Lacking knowledge of finite-differential equations
forced me to step back and dive more into this topic. I started with basic DSP and moved forward
to differential equations with the use of[19]. With the knowledge I now possessed I tried once again
to solve Equation 2.1. Unfortunately, I wasn’t able to find the boundary conditions, and even with
help from different sources I was still unable to solve it.

2.3 Trombone Model

Figure 2.11: The lip mechanism according to[20].

"A Physical Model of the Trombone Using Dynamic Grids for Finite-Difference Schemes" by Silvin
Willemsen, Stefan Bilbao, Michele Ducceschi and Stefania Serafin[20] was showing a complete sim-
ulation of a trombone using FDTD method. It introduced in details the digital waveguide approach
to modelling a tube. It started by explaining a 1D model approximation of wave propagation in an
acoustic tube, by using a system of first order PDEs, that were to describe the wave propagation
by Equations 2.10 and 2.11.

S

ρ0c2
∂tp = −∂x(Sv) (2.10)

ρ0∂tv = −∂xp (2.11)

where:

• p = p(x, t) - acoustic pressure,

• v = v(x, t) - particle velocity,
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2.3. TROMBONE MODEL CHAPTER 2. STATE OF THE ART

• S(x) - cross-sectional area,

• ρ0 - density of air,

• c - speed of sound in air.

According to the paper, in order for the system to be excited, a lip reed could be modelled as a
mass-spring damper system, that includes two nonlinearities due to flow and the collision of the lip
against the mouthpiece (Figure 2.11). The model is seen as a movement of the upper lip where the
lower lip is static.

Pseudocode 1 Pseudocode showing the calculations used in the code[20].

Furthermore, they have assumed that the volume flow velocity is conserved. Based on that, they
managed to define the total air volume entering the system as per Equations 2.12, 2.13 and 2.14.

S(0)v(0, t) = UB(t) + Ur(t) (2.12)

UB = wr[−η]+sgn(∆p)

√

2|∆p|

ρ0
(2.13)
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Ur = Sr
dy

dt
(2.14)

where:

• ω - effective lip-reed width,

• Kr = Kr(t) - stiffness,

• η = η(t)△− y −H0 - inverted distance between the lips,

• y - displacement from the equilibrium.

Next, they started to define the dynamic grid, which I sidestepped, since I had no need for it in
a trumpet - while it was necessary for them to add, since the basics of trombone pitch change are
due to the difference in tube length, but the trumpet stays the same length all the time. They then
proceeded to explain the implementation of the code they have made in order to create a working
model of a trumpet. Unfortunately, the code was done in C++ using the JUCE framework. The
code works as reported in Pseudocode 1.

They have also made an graphical user interface (GUI) where the geometry of the tube is being
plotted along with the paths showing the pressure states in blue and the velocity in green (see
Figure 2.12). The real-time application is controlled by the usage and movement of the mouse in
the bottom panel.

Figure 2.12: Screenshot of the GUI showing the geometry of the tube (in orange), the state
pressure (in blue) and the velocity (green). The start and end of the slide are
marked as an dashed line[20].
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I have tried to port the code into the MATLAB environment, but unfortunately translating it from
C++ to MATLAB code was quite hard. I chose another approach, which consisted of creating the
code from scratch using the steps shown in Pseudocode 1. Unfortunately, computational obstacles
stopped me in doing so.

2.4 Matlab Modelling of Articulated Brass Instruments

Figure 2.13: The interface of Sound Loom using the brass environment: instrument
interface[21].

Figure 2.14: (a) Grid arrangement and representation of the lossy pressure. (b) Bore profile
on interleaved spacial grid[21].

I then found a paper titled "An Environment for Physical Modelling of Articulated Brass Instru-
ments" by Reginald Langford Harrison, Stefan Bilbao, James Perry and Trevor Wishart[21]. They
have described the lip dynamics of a brass player as an outward striking reed, that can be mod-
elled as a damped mass-spring system (Equation 2.15) driven by the pressure difference between
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the player’s mouth and the instrument’s mouthpiece[17] with the assumption of Bernoulli-type
nonlinear flow.

ÿ + σẏ + 4π2f2
lipy = Sr∆p/µ (2.15)

where:

• y - is the lip displacement from its equilibrium position,

• σ and flip - the lips damping and natural resonance frequency,

• µ - lip mass,

• Sr - surface area of the lip.

Next, they have used the finite-difference time-domain methods, in order to make the simulation
more flexible for the time-varying systems. They have created an FDTD scheme in terms of time
step and grid spacing[22]. The arrangement of the discrete pressure and velocity fields and the
sampling of the instrument bore is shown on Figure 2.14.

The authors did create a working model of a tube (Figure 2.13) in MATLAB using the finite
difference time domain methods and Webster’s equations, but unfortunately the code could not
be shared with me by them yet. Nevertheless, I have tried to reproduce their work. The authors
created an FDTD scheme that consisted of the definition of grids and bore surface areas. Following
this they created the finite-difference approximations. That gave me an idea on how to create my
own code in order to be able to model the tube.
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Chapter 3

The Code

3.1 Digital Waveguide

I started by borrowing the code from prof. Bilbao called: "1D Wave Equation: Finite Difference
Digital Waveguide Synthesis". In the code, a simple digital waveguide is being presented.

1 % matlab script waveeq1ddw.m

2 % digital waveguide method for the 1D wave equation

3 % fixed boundary conditions

4 % raised cosine initial conditions

5
6 %%%%%% begin global parameters

7
8 SR = 44100; % sample rate (Hz)

9 f0 = 441; % fundamental frequency (Hz)

10 TF = 1; % duration of simulation (s)

11 ctr = 0.7; wid = 0.1; % center location/width of

excitation

12 u0 = 1; v0 = 0; % maximum initial displacement/

velocity

13 rp = 0.3; % position of readout (0-1)

14
15 %%%%%% end global parameters

16
17 % begin derived parameters

18
19 k = 1/SR; % time step

20 NF = floor(SR*TF); % duration of simulation (

samples)

21 N = floor (0.5*SR/f0); % length of delay lines

22 rp_int = 1+floor(N*rp); % rounded grid index for readout

23 rp_frac = 1+rp*N-rp_int; % fractional part of readout

location
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24
25 % initialize delay lines and output

26
27 wleft = zeros(N,1); wright = zeros(N,1);

28 out = zeros(NF ,1);

29
30 % create raised cosine and integral

31
32 xax = ([1:N]'-1/2)/N;

33 ind = sign(max(-(xax -ctr -wid/2).*(xax -ctr+wid/2) ,0));

34 rc = 0.5* ind .*(1+ cos(2*pi*(xax -ctr)/wid));

35 rcint = zeros(N,1);

36 for qq=2:N

37 rcint(qq) = rcint(qq -1)+rc(qq)/N;

38 end

39
40 % set initial conditions

41
42 wleft = 0.5*(u0*rc+v0*rcint /(2*f0));

43 wright = 0.5*(u0*rc-v0*rcint /(2*f0));

44
45 %%%%%% start main loop

46
47 for n=3:NF

48 temp1 = wright(N); temp2 = wleft (1);

49 wright (2:N) = wright (1:N-1); wleft (1:N-1) = wleft (2:N);

50 wright (1) = -temp2; wleft(N) = -temp1;

51 % readout

52 out(n) = (1-rp_frac)*(wleft(rp_int)+wright(rp_int))...

53 +rp_frac *(wleft(rp_int +1)+wright(rp_int +1));

54 end

55
56 %%%%%% end main loop

57
58 % plot output waveform

59
60 plot ([0:NF -1]*k, out , 'k');

61 xlabel('t'); ylabel('u'); title('1D Wave Equation: Digital

Waveguide Synthesis Output');

62 axis tight

63
64 % play sound

65
66 soundsc(out ,SR);

Code snippet 3.1: "1D Wave Equation: Finite Difference Digital Waveguide Synthesis" by
Prof. Stefan Bilbao.
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I further developed the code into a working one. I started by understanding the code and the basic
working principles of waveguides. I delved into the book by Stefan Bilbao[1], especially focusing on
the chapter called "Acoustic tubes". With help from my supervisors, I managed to understand the
working of a digital waveguide. With that, I was able to manipulate the variables and learn even
more.

A waveguide is a structure that guides waves inside it by restricting their dispersion into one
direction. Without such a restriction, usually the waves would disperse into all directions. When it
comes to acoustics, waveguides focus mostly on sound waves.

Looking at the system presented by professor Bilbao, we may notice the waveguide is build with
fixed boundary conditions and raised cosine initial conditions. With the delay lines being updated
in the main loop, we can actually see the working of the waveguide.

First, the delay lines are initialized and a raised cosine integral is created. Then, with each step,
the delay lines are being updated. With the loop executing for as long as the duration time set for
the simulation, and with the readout location set to 0.3 of the total tube length, we can see the
behaviour of the wave inside the waveguide.

3.2 Reflection Parameters

I then proceeded to modify the base code in a way that would allow me more freedom of choice
for the parameters and better understanding of a step-by-step synthesis. Firstly, I added reflection
parameters db (diffusion of the backward wave) and df (diffusion of the forward wave), which allow
me to set if the wave is being reflected, reflected and inversed, or if it is going to disperse. I imple-
mented these parameters in the main loop. Then, I changed the cosine initial wave into a constant
array of value 1, so I could see how the system works. As we can see in the code, we are inputting
ones on the first position of the forward wave (wright) (assuming that the tube begins from the left
side and ends on the right side, the position in the wave is numbered from left to right, meaning
that the first position of the wave is on the left side of the tube (at the beginning) while the N-th
position is on the right (at the end)).

1 %%%%%% Main Loop: Simulate Wave Propagation %%%%%%

2 for n = 1:NF

3 temp1 = wright(N);

4 temp2 = wleft (1);

5 wright (2:N) = wright (1:N-1);

6 wright (1) = 1;

7 wleft (1:N-1) = wleft (2:N);

8 wright (1) = wright (1)+df*temp2;

9 wleft(N) = db*temp1;

10
11 % Readout

12 out(n) = (1 - rp_frac) * (wleft(rp_int) + wright(rp_int)) ...

13 + rp_frac * (wleft(rp_int +1) + wright(rp_int +1));

14 end

Code snippet 3.2: Creation of a wave inside a waveguide with reflection parameters on both
ends.
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By running this code and using the plot function, we can see the sound propagation output at the
end of the tube in time. I carried out simulations of the tube with following states:

1. open at both ends (df = 0; db = 0 ) (Figure 3.1),

2. open at the right end, closed on the left (df = 1; db = 0 ) (Figure 3.2),

3. open on the left end, closed on the right (df = 0; db = 1 ) (Figure 3.3),

4. closed on both ends (df = 1; db = 1) (Figure 3.4).

As it can be seen on the plots marked next to it’s state, the model was working. The simulations
were run on a 2 seconds timespan.

Figure 3.1: Sound propagation in a tube - displacement values in time with both ends open
(df = 0; db = 0).
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Figure 3.2: Sound propagation in a tube - displacement values in time with left end closed
and right end open (df = 1; db = 0).

Then I inversed the closed ends that so df = 0 and db = 1.

Figure 3.3: Sound propagation in a tube - displacement values in time with left end open and
right end closed (df = 0; db = 1).
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Figure 3.4: Sound propagation in a tube - displacement values in time with both ends closed
(df = 1; db = 1).

I had overcome the lack of the mouthpiece model element by creating a .wav file of the mouthpiece
sound. The input .wav file can be seen on Figure 3.5.

Figure 3.5: Mouthpiece input .wav file as a displacement in time plot.
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3.3 The Mouthpiece Sound

Next, I introduced the mouthpiece in the code as input data and changed the input for the forward
wave from a constant array to the values of the .wav sound .

1 wright (1) = input_data(mod(n-1,cut_value)+1);

Code snippet 3.3: Changed input of the right wave from ones to the values of the .wav file.

I ran the simulation again with different end closure configurations:

1. open at both ends (df = 0; db = 0) (Figure 3.6),

2. open at the right end, closed on the left (df = 1; db = 0) (Figure 3.7),

3. open on the left end, closed on the right (df = 0; db = 1) (Figure 3.8),

4. closed on both ends (df = 1; db = 1) (Figure 3.9).

Each simulation has been run for 3 seconds. The output can be seen on the figures marked below
according to it’s state.

Figure 3.6: Mouthpiece sound propagation in a tube - displacement in time with both ends
open (db = 0; df = 0).
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Figure 3.7: Mouthpiece sound propagation in a tube - displacement in time with left end
closed and right end open (df = 1; db = 0).

Then I inverted the closed ends that so df = 0 and db = 1.

Figure 3.8: Mouthpiece sound propagation in a tube - displacement in time with left end open
and right end close (df = 0; db = 1).
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Figure 3.9: Mouthpiece sound propagation in a tube - displacement in time with both ends
closed (df = 1; db = 1).

I have also added an if loop, that would display step by step the wave propagation inside the tube,
creating a "movie" of the wave propagation. Figure 3.10 shows snippets of the standing wave that
was created in the tube with both ends closed (df = 1; db = 0). The X axis shows the tube length,
the plot is of the mouthpiece .wav file input.

As we can see in Figure 3.10, a standing wave is slowly appearing in time.

Since I now had a working segment of the tube, I moved forward creating two segments, firstly
both with the same diameter and next with different diameters. In order to do that, I needed to
figure out how both the forward and backwards waves propagate through the interface between two
segments.

3.4 Segmentation

3.4.1 Segments

Once again, I turned into professor’s Bilbao book "Numerical Sound Synthesis: Finite Difference
Schemes and Simulation in Musical Acoustics"[1], especially looking at chapter no 9.2. Although
the chapter is focused around vocal tract and speech synthesis, professor Bilbao does explain that
the vocal tract synthesis is quite similar to a tube synthesis together with its digital waveguide.

In the beginning, I wanted to create just two segments in order to get acquainted with the creation
of segments and the usage of the scattering methods. I did however had to familiarize myself with
the whole methodology to do so. A typical scattering structure may be described as a tube profile
divided into approximated segments in the shape of a cylinder with length h, such that N = 1/h,
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(a) after 0.033 s (b) after 0.433 s

(c) after 1.066 s (d) after 1.9 s

(e) after 2.666 s

Figure 3.10: Sound propagation in a tube - a simulation of 3 s.
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with the assumption that the tube length equals 1 (see Figure 3.11). The left and right ends of the
l -th tube are located at x = l ∗ h and x = (l + 1) ∗ h, for l = 0, ..., N − 1[1].

Figure 3.11: (a) an acoustic tube before and (b) after division into a cylindrical-shaped seg-
ments (with the length of each segment being h = 1/N)[1].

Each segment is described by a constant surface area of [S]l+1/2 which is an approximation of the
surface area of the centre of a segment. Such approximation can lead us to reduce the system into
a 1D wave equation, with its solution provided by Equation 3.1

p(x, t) = p(+) + p(−) (3.1)

where the subscripts (+) and (-) indicate the solution travelling to the right (forward) and left
(backward) respectively[1].

3.4.2 Junctions Between Segments

We can therefore label the solutions on the junction (l) between the segments (n) as in Equation 3.2.

p
(+),n
l,left , p

(−),n
l,left , p

(+),n
l,right, p

(−),n
l,right (3.2)

Figure 3.12: A sequence of cylindrical tube sections with mark of the position of the
solution[1].
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Considering Figure 3.12, we can write the wave propagation as in Equation 3.3.

p
(+),n+1
l,left = p

(+),n
l−1,right p

(−),n+1
l,right = p

(+),n
l+1,left (3.3)

When applying the scattering operation, we can derive Equations 3.4 and 3.5

p
(+),n
l,left + p

(−),n
l,left = p

(+),n
l,right + p

(−),n
l,right (3.4)

[S]l− 1

2

(

p
(+),n
l,left − p

(−),n
l,left

)

= [S]l+ 1

2

(

p
(+),n
l,right − p

(−),n
l,right

)

(3.5)

which can then be rewritten in a scattering form using a 2x2 matrix multiplication. In order for it
to work, we have to use the reflection parameter rl, which can be derived from Equations 3.6 and
3.7.

rl =
[S]l+ 1

2

− [S]l− 1

2

[S]l+ 1

2

+ [S]l− 1

2

(3.6)

[

p
(−),n
l,left

p
(+),n
l,right

]

=

[

−rl 1 + rl
1− rl rl

]

[

p
(+),n
l,left

p
(−),n
l,right

]

(3.7)

3.4.3 Two - Segment Code

The first problem I encountered was the wave propagation evaluation at the interface between the
first and the second segment. As part of the wave would be bouncing back, but part of it would be
going forward to the next segment, I had to derive the reflection and transmission parameters. As
I was just implementing 2 segments of the same diameter, I have assigned values instead of making
the program derive it from the equations. Having the same diameter the value or rl equals to zero,
where:

• [M11] -rl = 0,

• [M12] 1 + rl = 1,

• [M21] 1 - rl = 1,

• [M22] rl = 0.

In the brackets, we can see the denominations of the variables used in the code. Applying this to
the code, we get:

1 wright = zeros(N,1);

2 wleft = zeros(N,1);

3 df = 1;

4 M11 = 0;
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5
6 wright2 = zeros(N,1);

7 wleft2 = zeros(N,1);

8 M12 = 1+M11;

9 db2 = 1;

10
11 M21 = 2-M12;

12 M22 = -M11;

13
14 %%%%%% Main Loop: Simulate Wave Propagation %%%%%%

15 for n = 1:NF

16 temp1 = wright(N);

17 temp2 = wleft (1);

18
19 temp11 = wright2(N);

20 temp22 = wleft2 (1);

21
22 wright (2:N) = wright (1:N-1);

23 wright (1) = 1;

24 wleft (1:N-1) = wleft (2:N);

25 wright (1) = wright (1)+df*temp2;

26 wleft(N) = M11 * temp1 + M12 * temp22;

27
28 wright2 (2:N) = wright2 (1:N-1);

29 wright2 (1) = M21 * temp1;

30 wleft2 (1:N-1) = wleft2 (2:N);

31 wright2 (1) = wright2 (1) + M22 * temp22;

32 wleft2(N) = db2 * temp11;

Code snippet 3.4: Modified code including the implementation of the scattering matrix for
two segments of a tube.

When we run the code, we can notice on Figure 3.13 that the connection between two segments
works fine.

3.4.4 Multi - Segment Code

With this method working, I was able to build a more complex system of multiple segments. It
did require expanding the code a lot, since the difference between the first and second segment, the
middle segments and the second-to-last and last segments were too big to be able to put it in one
code. It required me to use classes, methods and functions, that were still hard for me to move
around. Fortunately, after studying, I was able to get used to their implementation in the code and
I was able to use them.

I had to divide the code into three methodologies:

1. The first segment and it’s connection to the second segment, where I had to implement a
reflection parameter df instead of using the scattering matrix (code snippet 3.7),
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2. the connection between the middle segments, where the scattering matrix was the main way
of deriving the parameters (code snippet 3.8),

3. the second-to-last and last segments, where the reflection parameter db was implemented
(code snippet 3.9).

Figure 3.13: Sound propagation of constant array in tube with two segments of the same
diameter marking the working of the system.

I set df and db at the beginning, imported a .txt file with saved profiles of shapes I would like to
implement, and initialized a tube object:

1 classdef Tube

2 properties

3 wright

4 wleft

5 M11

6 M12

7 M21

8 M22

9 temp1

10 temp2

11 end

12 methods

13 function obj = Tube(N, rl, Wl, Wr)

14 obj.wleft = Wl;
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15 obj.wright = Wr;

16 obj.temp1 = obj.wright(N);

17 obj.temp2 = obj.wleft (1);

18 obj.M11 = - rl;

19 obj.M12 = 1 - rl;

20 obj.M21 = 1 + rl;

21 obj.M22 = rl;

22 end

23 end

24 end

Code snippet 3.5: Definition od a class used in the code listed later.

Next, I initialized each segment object:

1 %%%%% Initialize Each Segment Object %%%%%%

2 for i = 1: numSegments

3 Sn = data(i, 1);

4 Sn1 = data(i, 2);

5 rl = (Sn1 -Sn)/(Sn1+Sn);

6 Wr = zeros(N,1);

7 Wl = zeros(N,1);

8 tube{i} = Tube(N, rl, Wr, Wl); % Pass N, rl, Wr, Wl to the

Tube constructor

9 end

Code snippet 3.6: Initialization of each segment object passed to the Tube constructor.

and created the main loop taking under consideration the three methodologies listed above.

1 %%%%%% Main Loop: Simulate Wave Propagation %%%%%%

2
3 for i = 1:NF

4 for l = 1: numSegments

5 if l == 1

6 tube{l}.temp1 = tube{l}. wright(N);

7 tube{l}.temp2 = tube{l}.wleft (1);

8 tube{l}. wright (2:N) = tube{l}. wright (1:N-1);

9 %tube{l}. wright (1) = input_data(mod(i-1,cut_value)+1);

10 tube{l}. wright (1) = 1;

11 tube{l}.wleft (1:N-1) = tube{l}.wleft (2:N);

12 tube{l}. wright (1) = tube{l}. wright (1) + df * tube{l}.

temp2;

13 tube{l}.wleft(N) = tube{l}.M11 * tube{l}.temp1 + tube{

l}.M12 * tube{l+1}. temp2;

Code snippet 3.7: First methodology listed above - the fist tube segment using df of the left
end and scatterng matrix on the right.
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1 elseif l == numSegments

2 tube{l}.temp1 = tube{l}. wright(N);

3 tube{l}.temp2 = tube{l}.wleft (1);

4 tube{l}. wright (2:N) = tube{l}. wright (1:N-1);

5 tube{l}. wright (1) = tube{l-1}. M21 * tube{l-1}. temp1;

6 tube{l}.wleft (1:N-1) = tube{l}.wleft (2:N);

7 tube{l}. wright (1) = tube{l}. wright (1) + tube{l-1}. M22

* tube{l}.temp2;

8 tube{l}.wleft(N) = db * tube{l}.temp1;

Code snippet 3.8: Second methodology listed above - with the usage of the scattering matrix
on both ends.

1 else

2 tube{l}.temp1 = tube{l}. wright(N);

3 tube{l}.temp2 = tube{l}.wleft (1);

4 tube{l}. wright (2:N) = tube{l}. wright (1:N-1);

5 tube{l}. wright (1) = tube{l-1}. M21 * tube{l-1}. temp1;

6 tube{l}.wleft (1:N-1) = tube{l}.wleft (2:N);

7 tube{l}. wright (1) = tube{l}. wright (1) + tube{l-1}. M22

* tube{l}.temp2;

8 tube{l}.wleft(N) = tube{l}.M11 * tube{l}.temp1 + tube{

l}.M12 * tube{l+1}. temp2;

9 end

10 end

Code snippet 3.9: Third methodology listed above - with the usage of scattering matrix on
the left end and the db parameter on the right end.

As we can see, each time the code iterates, it refers to a cell referring to a segment. For each one
of these cells all the operations, like creation of a forward and backward wave taking into account
the reflection parameters from the scattering matrix, are being performed. Each time the operation
on a segment is done, the output is being saved and in the end a plot of the sound propagation is
being shown.

3.5 Shaping

Now, with a working digital waveguide, I started shaping it in order to see the wave propagation
and how the shapes affect the output of the waves. I have therefore created a list of various shapes
to test. I’ve started with an easy straight tube with one end shaped like a cone. Then I moved
to create a more brass-like bell with different bore length, After testing that, I began to check the
working of more imaginary-like shapes.

3.5.1 Short Bore and Cone-Like Bell Shape

The first shape I have uploaded, was a short bore and cone-like bell shape (Figure 3.14). The input
data had to be created as two columns, with the first column signalling the first segment, while the
second column signalling the next segment. You can see there are the same numbers in the n row
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Figure 3.14: Shape of a short bore and cone-like bell input data.

in the second column as there are in the n + 1 row in the first column. This is because the row is
showing the situation at the junction of two segments on each junction.

left right

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1.1
1.1 1.2
1.2 1.3
1.3 1.4
1.4 1.5
1.5 1.6
1.6 1.7
1.7 1.8
1.8 1.9
1.9 2

Table 3.1: Table of input data of a short bore and cone-like bell shape.

The output of testing this type of shape with input of zeros and with different configurations are
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as follows (the simulations were run for 3 seconds):

1. open at both ends (df = 0; db = 0 ) (Figure 3.15),

2. open at the right end, closed on the left (df = 1; db = 0 ) (Figure 3.16),

3. open on the left end, closed on the right (df = 0; db = 1 ) (Figure 3.17),

4. closed on both ends (df = 1; db = 1) (Figure 3.18).

Additionally, I have made a test with the input.wav file of a mouthpiece sound with the left end
completely closed and the right end half closed df = 1; db = 0.5 (Figure 3.19).

Figure 3.15: The short bore and cone-like bell shape with both ends open df = 0; db = 0 with
input of zeros.
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Figure 3.16: The short bore and cone-like bell shape with left end closed and right open
df = 1; db = 0 with input of zeros.

Figure 3.17: The short bore and cone-like bell shape with left end open and right end closed
df = 0; db = 1 with input of zeros.
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Figure 3.18: The short bore and cone-like bell shape with both ends closed df = 1; db = 1
with input of zeros.

Figure 3.19: The short bore and cone-like bell shape with input as .wav file and left end closed
and right end partially open df = 1; db = 0.5.

40



CHAPTER 3. THE CODE 3.5. SHAPING

3.5.2 Short Bore and Brass Bell Shape

The same process was done for another shape - short bore and brass bell (Figure 3.20).

Figure 3.20: Shape of a short bore and brass bell input data.

left right

5 5 6.670 7.139
5 5 7.139 7.680
... ... 7.680 8.297
5 5 8.297 9.000
5 5.025 9.000 9.801
5.025 5.100 9.801 10.717
5.100 5.226 10.717 11.771
5.226 5.404 11.771 13.000
5.404 5.635 13.000 14.464
5.635 5.921 14.464 16.282
5.921 6.265 16.282 18.755
6.265 6.670 18.755 25.000

Table 3.2: Table of input data of a short bore and brass bell shape.

In the Table 3.2 the first column signalling the first segment, while the second column signals the
next segment. You can see there are the same numbers in the n row in the second column as there
are in the n + 1 row in the first column. This is because the row is showing the situation at the
junction of two segments on each junction.

The output of testing this type of shape with input of zeros and with different configurations are
as follows (the simulations were run for 3 seconds):

1. open at both ends (df = 0; db = 0 ) (Figure 3.21),

2. open at the right end, closed on the left (df = 1; db = 0 ) (Figure 3.22),
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3. open on the left end, closed on the right (df = 0; db = 1 ) (Figure 3.24),

4. closed on both ends (df = 1; db = 1 ) (Figure 3.25).

Figure 3.21: The short bore and brass bell shape with both ends open df = 0; db = 0 with
input of zeros.

Figure 3.22: The short bore and brass bell shape with left end closed and right open df =
1; db = 0 with input of zeros.
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Figure 3.23: The short bore and brass bell shape with left end open and right end closed
df = 0; db = 1 with input of zeros.

Figure 3.24: The short bore and brass bell shape with both ends closed df = 1; db = 1 with
input of zeros.

Next I tested it with the sound of the .wav file and left end closed and right side partially open
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df = 1; db = 0.5, see Figure 3.25.

Figure 3.25: The short bore and brass bell shape with input as .wav file and left end closed
and right end partially open df = 1; db = 0.5.

3.5.3 Long Bore an Brass Bell Shape

The same process as before was done for another shape - long bore and brass bell (Figure 3.26).

Figure 3.26: Shape of a long bore and brass bell input data.
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The first column signalling the first segment, while the second column signals the next segment.
You can see there are the same numbers in the n row in the second column as there are in the n+1
row in the first column. This is because the row is showing the situation at the junction of two
segments on each junction.

left right

5 5
5 5
... ...
5 5.025
5.025 5.100
5.100 5.226
5.226 5.404
5.404 5.635
5.635 5.921
5.921 6.265
6.265 6.670
6.670 7.139
7.139 7.680
7.680 8.297
8.297 9.000
9.000 9.801
9.801 10.717
10.717 11.771
11.771 13.000
13.000 14.464
14.464 16.282
16.282 18.755
18.755 25.000

Table 3.3: Table of input data of a long bore and brass bell shape.

The output of testing this type of shape with input of zeros and with different configurations are
as follows (the simulations were run for 3 seconds):

1. open at both ends (df = 0; db = 0 ) (Figure 3.27),

2. open at the right end, closed on the left (df = 1; db = 0 ) (Figure 3.28),

3. open on the left end, closed on the right (df = 0; db = 1 ) (Figure 3.29),

4. closed on both ends (df = 1; db = 1) (Figure 3.30).

Next I tested it with the sound of the .wav file and left end closed and right side partially open
df = 1; db = 0.5 (Figure 3.31).
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Figure 3.27: The long bore and brass bell shape with both ends open df = 0; db = 0 with
input of zeros.

Figure 3.28: The long bore and brass bell shape with left end closed and right open df =
1; db = 0 with input of zeros.
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Figure 3.29: The long bore and brass bell shape with left end open and right end closed
df = 0; db = 1 with input of zeros.

Figure 3.30: The long bore and brass bell shape with both ends closed df = 1; db = 1 with
input of zeros.
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Figure 3.31: The long bore and brass bell shape with input as .wav file and left end closed
and right end partially open df = 1; db = 0.5.

3.5.4 Round Shape

The same process as before was done for another shape - a round one (Figure 3.32).

Figure 3.32: A round shape input data.
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left right

-6.25 -8.72 -20 -19.98
-8.72 -10.54 -19.98 -19.9
-10.54 -12 -19.9 -19.77
-12 -13.23 -19.77 -19.6
-13.23 -14.28 -19.6 -19.36
-14.28 -15.2 -19.36 -19.08
-15.2 -16 -19.08 -18.74
-16 -16.7 -18.74 -18.33
-16.7 -17.32 -18.33 -17.86
-17.32 -17.86 -17.86 -17.32
-17.86 -18.33 -17.32 -16.7
-18.33 -18.74 -16.7 -16
-18.74 -19.08 -16 -15.2
-19.08 -19.36 -15.2 -14.28
-19.36 -19.6 -14.28 -13.23
-19.6 -19.77 -13.23 -12
-19.77 -19.9 -12 -10.54
-19.9 -19.98 -10.54 -8.72
-19.98 -20 -8.72 -6.25

Table 3.4: Table of input data of a small round shape.

The first column signalling the first segment, while the second column signals the next segment.
You can see there are the same numbers in the n row in the second column as there are in the n+1
row in the first column. This is because the row is showing the situation at the junction of two
segments on each junction.

The output of testing this type of shape with input of zeros and with different configurations are
as follows (the simulations were run for 1 second):

1. open at both ends (df = 0; db = 0 ) (Figure 3.33),

2. open at the right end, closed on the left (df = 1; db = 0 ) (Figure 3.34),

3. open on the left end, closed on the right (df = 0; db = 1 ) (Figure 3.35),

4. closed on both ends (df = 1; db = 1) (Figure 3.36 and Figure 3.37).

Next I tested it with the sound of the .wav file and left end closed and right side partially open
df = 1; db = 0.5 (Figures 3.38 and 3.39).
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Figure 3.33: The round shape with both ends open df = 0; db = 0 with input of zeros.

Figure 3.34: The round shape with left end closed and right open df = 1; db = 0 with input
of zeros.
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Figure 3.35: The round shape with left end open and right end closed df = 0; db = 1 with
input of zeros.

Figure 3.36: The round shape with both ends closed df = 1; db = 1 with input of zeros.

When we run the simulation for 0.1 second, the output is shown on Figure 3.37.
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Figure 3.37: The round shape with both ends closed df = 1; db = 1 with input of zeros and
simulation time of 0.1 s.

Figure 3.38: The round shape with input as .wav file and left end closed and right end partially
open df = 1; db = 0.5.

When we run the simulation for 0.1 second, the output is shown on Figure 3.39.
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Figure 3.39: The round shape with input as .wav file and left end closed and right end partially
open df = 1; db = 0.5 with the simulation time of 0.1 s.

3.5.5 Half-Triangular Shape

The same process as before was done for another shape - a half-triangular one (Figure 3.40).

Figure 3.40: A half-triangular shape input data.
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left right

0.5 1
1 1.5
1.5 2
2 2.5
2.5 3
3 3.5
3.5 4
4 4.5
4.5 5
5 5.5
5.5 6
6 6.5
6.5 7
7 7.5
7.5 8
8 8.5
8.5 9
9 9.5
9.5 10
10 10.5
10.5 11
11 11.5
11.5 12
12 12.5
12.5 13
13 13.5
13.5 14
14 14.5
14.5 15

Table 3.5: Table of input data of a half-triangular shape.

The first column signalling the first segment, while the second column signals the next segment.
You can see there are the same numbers in the n row in the second column as there are in the n+1
row in the first column. This is because the row is showing the situation at the junction of two
segments on each junction.

The output of testing this type of shape with input of zeros and with different configurations are
as follows (with the simulation running time of 1 s):

1. open at both ends (df = 0; db = 0 ) (Figure 3.41),

2. open at the right end, closed on the left (df = 1; db = 0 ) (Figure 3.42),

3. open on the left end, closed on the right (df = 0; db = 1 ) (Figures 3.43 and 3.44),

4. closed on both ends (df = 1; db = 1) (Figure 3.45).
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Figure 3.41: The half-triangular shape with both ends open df = 0; db = 0 with input of zeros
and the simulation time of 0.1 s.

Figure 3.42: The half-triangular shape with left end closed and right open df = 1; db = 0 with
input of zeros and the simulation time of 0.1 s.
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Figure 3.43: The half-triangular shape with left end open and right end closed df = 0; db = 1
with input of zeros.

When we run the simulation for 0.1 second, the output is shown on Figure 3.44.

Figure 3.44: The half-triangular shape with left end open and right end closed df = 0; db = 1
with input of zeros and simulation time of 0.1 s.
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Figure 3.45: The half-triangular shape with both ends closed df = 1; db = 1 with input of
zeros with the simulation time of 0.1 s.

Next I tested it with the sound of the .wav file and left end closed and right side partially open
df = 1; db = 0.5 (Figures 3.46 and 3.47).

Figure 3.46: The half-triangular shape with input as .wav file and left end closed and right
end partially open df = 1; db = 0.5.
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When we run the simulation for 0.1 second, the output is shown on Figure 3.47.

Figure 3.47: The half-triangular shape with input as .wav file and left end closed and right
end partially open df = 1; db = 0.5 and simulation time of 0.1 s.

3.5.6 Small Triangular Shape

The same process as before was done for another shape - small triangular (Figure 3.48).

Figure 3.48: A small triangular shape input data.
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left right

0.1 0.2 3 2.9
0.2 0.3 2.9 2.8
0.3 0.4 2.8 2.7
0.4 0.5 2.7 2.6
0.5 0.6 2.6 2.5
0.6 0.7 2.5 2.4
0.7 0.8 2.4 2.3
0.8 0.9 2.3 2.2
0.9 1 2.2 2.1
1 1.1 2.1 2
1.1 1.2 2 1.9
1.2 1.3 1.9 1.8
1.3 1.4 1.8 1.7
1.4 1.5 1.7 1.6
1.5 1.6 1.6 1.5
1.6 1.7 1.5 1.4
1.7 1.8 1.4 1.3
1.8 1.9 1.3 1.2
1.9 2 1.2 1.1
2 2.1 1.1 1
2.1 2.2 1 0.9
2.2 2.3 0.9 0.8
2.3 2.4 0.8 0.7
2.4 2.5 0.7 0.6
2.5 2.6 0.6 0.5
2.6 2.7 0.5 0.4
2.7 2.8 0.4 0.3
2.8 2.9 0.3 0.2
2.9 3 0.2 0.1

Table 3.6: Table of input data of a small triangular shape.

The first column signalling the first segment, while the second column signals the next segment.
You can see there are the same numbers in the n row in the second column as there are in the n+1
row in the first column. This is because the row is showing the situation at the junction of two
segments on each junction.

The output of testing this type of shape with input of zeros and with different configurations are
as follows (the simulations were run for 1 second):

1. open at both ends (df = 0; db = 0 ) (Figures 3.49 and 3.50),

2. open at the right end, closed on the left (df = 1; db = 0 ) (Figures 3.51 and 3.52),

3. open on the left end, closed on the right (df = 0; db = 1 ) (Figures 3.53 and 3.54),

4. closed on both ends (df = 1; db = 1) (Figure 3.55).
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Figure 3.49: The small triangular shape with both ends open df = 0; db = 0 with input of
zeros.

When we run the simulation for 0.1 second, the output is shown on Figure 3.50.

Figure 3.50: The small triangular shape with both ends open df = 0; db = 0 with input of
zeros with the simulation running for 0.1 s.
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Figure 3.51: The small triangular shape with left end closed and right open df = 1; db = 0
with input of zeros.

When we run the simulation for 0.1 second, the output is shown on Figure 3.52.

Figure 3.52: The small triangular shape with left end closed and right open df = 1; db = 0
with input of zeros and th simulation running for 0.1 s.
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Figure 3.53: The small triangular shape with left end open and right end closed df = 0; db = 1
with input of zeros.

When we run the simulation for 0.1 second, the output is shown on Figue 3.54.

Figure 3.54: The small triangular shape with left end open and right end closed df = 0; db = 1
with input of zeros and the simulation run for 0.1 s.
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Figure 3.55: The small triangular shape with both ends closed df = 1; db = 1 with input of
zeros.

Next I tested it with the sound of the .wav file and left end closed and right side partially open
df = 1; db = 0.5 (Figure 3.56).

Figure 3.56: The small triangular shape with input as .wav file and left end closed and right
end partially open df = 1; db = 0.5.
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3.5.7 Big Triangular Shape

The same process as before was done for another shape - a big triangular one (Figure 3.57).

Figure 3.57: A big triangular shape input data.

Figure 3.58: The big triangular shape with both ends open df = 0; db = 0 with input of zeros
and simulation time of 0.3 s.
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left right

1 2 30 29
2 3 29 28
3 4 28 27
4 5 27 26
5 6 26 25
6 7 25 24
7 8 24 23
8 9 23 22
9 10 22 21
10 11 21 20
11 12 20 19
12 13 19 18
... ... ... ...
19 20 12 11
20 21 11 10
21 22 10 9
22 23 9 8
23 24 8 7
24 25 7 6
25 26 6 5
26 27 5 4
27 28 4 3
28 29 3 2
29 30 2 1

Table 3.7: Table of input data of a big triangular shape.

The first column signalling the first segment, while the second column signals the next segment.
You can see there are the same numbers in the n row in the second column as there are in the n+1
row in the first column. This is because the row is showing the situation at the junction of two
segments on each junction.

The output of testing this type of shape with input of zeros and with different configurations are
as follows (with the simulation running time of 1 s):

1. open at both ends (df = 0; db = 0 ) (Figure 3.58),

2. open at the right end, closed on the left (df = 1; db = 0 ) (Figure 3.60),

3. open on the left end, closed on the right (df = 0; db = 1 ) (Figures 3.61 and 3.62),

4. closed on both ends (df = 1; db = 1) (Figure 3.63).

Next I tested it with the sound of the .wav file and left end closed and right side partially open
df = 1; db = 0.5 (Figure 3.64).
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Figure 3.59: The big triangular shape with both ends open df = 0; db = 0 with input of zeros
and simulation time of 0.3 s.

Figure 3.60: The big triangular shape with left end closed and right open df = 1; db = 0 with
input of zeros.
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Figure 3.61: The big triangular shape with left end open and right end closed df = 0; db = 1
with input of zeros.

When we run the simulation for 0.1 second, the output is as in Figure 3.62.

Figure 3.62: The big triangular shape with left end open and right end closed df = 0; db = 1
with input of zeros and the simulation time of 0.1 s.
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Figure 3.63: The big triangular shape with both ends closed df = 1; db = 1 with input of
zeros.

Figure 3.64: The big triangular shape with input as .wav file and left end closed and right
end partially open df = 1; db = 0.5.
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3.5.8 Round With a Long Tube Shape

The same process as before was done for another shape - a round with a long tube one (Figure
3.65).

Figure 3.65: A round with a long tube shape input data.

left right

-6.25 -8.72 -19.9 -19.77
-8.72 -10.54 -19.77 -19.6
-10.54 -12 -19.6 -19.36
-12 -13.23 -19.36 -19.08
-13.23 -14.28 -19.08 -18.74
-14.28 -15.2 -18.74 -18.33
-15.2 -16 -18.33 -17.86
-16 -16.7 -17.86 -17.32
-16.7 -17.32 -17.32 -16.7
-17.32 -17.86 -16.7 -16
-17.86 -18.33 -16 -15.2
-18.33 -18.74 -15.2 -14.28
-18.74 -19.08 -14.28 -13.23
-19.08 -19.36 -13.23 -12
-19.36 -19.6 -12 -10.54
-19.6 -19.77 -10.54 -8.72
-19.77 -19.9 -8.72 -6.25
-19.9 -19.98 -6.25 -6.25
-19.98 -20 -6.25 -6.25
-20 -19.98 ... ...
-19.98 -19.9 -6.25 -6.25

Table 3.8: Table of input data of a round with a long tube shape.
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The first column signalling the first segment, while the second column signals the next segment.
You can see there are the same numbers in the n row in the second column as there are in the n+1
row in the first column. This is because the row is showing the situation at the junction of two
segments on each junction.

The output of testing this type of shape with input of zeros and with different configurations are
as follows (with the simulation running time of 1 s):

1. open at both ends (df = 0; db = 0 ) (Figure 3.66),

2. open at the right end, closed on the left (df = 1; db = 0 ) (Figure 3.67),

3. open on the left end, closed on the right (df = 0; db = 1 ) (Figure 3.68),

4. closed on both ends (df = 1; db = 1) (Figure 3.69).

Next I tested it with the sound of the .wav file and left end closed and right side partially open
df = 1; db = 0.5 (Figure 3.70).

Figure 3.66: The round with a long tube shape with both ends open df = 0; db = 0 with
input of zeros.
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Figure 3.67: The round with a long tube shape with left end closed and right open df =
1; db = 0 with input of zeros.

Figure 3.68: The round with a long tube shape with left end open and right end closed
df = 0; db = 1 with input of zeros.
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Figure 3.69: The round with a long tube shape with both ends closed df = 1; db = 1 with
input of zeros.

Figure 3.70: The round with a long tube shape with input as .wav file and left end closed
and right end partially open df = 1; db = 0.5.
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Conclusions

The code produced models a working digital waveguide with the possibility to implement any
intended shape. Based on that, we can develop any brass instrument further. With the proper
conditions, implementations and few additions we can create a working model of a trumpet or
trombone.

4.1 Results

As we can see, the shapes have a major impact on the output of the tube. Comparing the cone-like
and the brass bell we can see that it has an impact on the number of reflections of the wave, with
the brass bell shape multiplying them. We can also see some odd behaviours with both ends closed
with the brass bell, that are not like any other shape.

Comparing the brass bells with different bore lengths, we can notice a funny, almost ’step-like’,
behaviour of the wave, where the length of the bore is so big, that the forward wave doesn’t manage
to merge with the backward wave, therefore creating a ’step-like’ output.

The round shape and the round one with a long bore added on the right tend to create particular
outputs. With both ends closed the wave reinforcement is so big, that the scale of the displacement
had to be changed to 1011.

With the half-triangular shape, we can see the output behaving step-like, with a strong similarity
to a megaphone output. A very interesting thing is happening in Figure 3.45, where we can see a
small displacement from the beginning, at around 0.04 s and around 0.85 s. We can also see the
magnitude of the amplification of the output data in Figure 3.46 with the displacement reaching
the 1029 magnitude.

There is not much difference between the size of the triangular shape, with the exclusion of Figure
3.58, where the output shape is quite odd and more round-shape-like. As for the half-triangular
and differently sized triangular shapes, there aren’t any major differences.

In the round with a long bore on the right side shape an interference at the interface between the
circle and a the bore shapes can be observed in the output. We can also see the step-like behaviour
which is characteristic of the circle shape.
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4.2 Further Developments

Based on the works of [21] and [20] we can further develop the code by adding a mouthpiece part, in
which the sound is going to be created, and the mouthpiece sound will be passed to the tube model.
Furthermore, we can develop a graphic interface, with a proper wave visualisation and output
visualisation in real time. Using a proper mouthpiece model, as developed in [11, 13, 16, 17, 20, 21]
we can easily create a whole working model of a trumpet that, with the proper shape, can be
implemented into any brass instrument.

We can also further develop the gridding and the delay lines in the model, so that the sound
generation would be more flexible.

Additionally, after creating the mouthpiece model, the reflection between the mouthpiece and the
lips could be studied more. According to [23] the studies show that the lips have a reflection
magnitude of less than one, absorbing up to 6% of the incident amplitude at low frequencies. But
as the authors have noticed, this matter should be studied deeper.

Furthermore, the reflection parameters between the instrument and the air around the instrument
ought to be studied further, as to develop a more suitable parameter that reflects real life situations.
Since this parameter might be dynamic according to the conditions around, this should be taken
into account.

Same goes for the parameters of the conditions around the instrument, since they might have a
major impact on the sound that is heard. According to [24]:

"[. . . ] musician, instrument and room form a closed feedback loop that continuously shapes the
generated sound."

After the authors studied a set of 11 trumpet players that were recorded while performing several
pieces with multiple auralized versions of real spaces, the results indicate a moderate effect on
temporal and energy room acoustic parameters on performance level and timbre. Additionally, in
an environment with considerably stronger energy, players tended to decrease the overall tempo
of the performance. The results revealed that listeners are able to consistently perceive level and
timbre variations induced by stage acoustic conditions.
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