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Introduzione

Molte applicazioni della matematica possono essere viste come situazioni in
cui un utente cerca di raggiungere una situazione “desiderata” intervenendo
su un sistema che evolve disturbato da eventi incontrollabili e imprevedibili. I
modelli di questo tipo sono detti problemi stocastici controllati e sono studiati
da molti anni (si veda, per esempio, [9]).

In generale, un problema stocastico controllato consiste di una data di-
namica di stato e di una funzione obiettivo. La dinamica descrive l’evoluzione
del sistema considerato in termini del controllo scelto dall’utente e dei di-
sturbi, che sono simulati da processi stocastici su qualche spazio di proba-
bilità soggiacente. La funzione costo (o funzione ricavo) è qualche funzionale
(dipendente, in generale, dallo stato del sistema e dalla scelta dei controlli)
che può rappresentare, per esempio, una perdita (o un introito) che l’utente
cerca di minimizzare (o massimizzare); la funzione valore è quindi definita
tramite un opportuno funzionale della funzione costo (o ricavo) in modo da
rispecchiare le priorità dell’utente. L’utente è a questo punto interessato
a determinare la politica ottima, cioè a scegliere i controlli, basandosi sulla
conoscenza dell’evoluzione passata del sistema, in modo da massimizzare (o
minimizzare) la funzione valore rispetto a tutti i controlli possibili.

Tuttavia, è pressoché inevitabile che nella costruzione di un modello
matematico non possano essere presi in considerazione tutte le componenti
del problema. Per esempio, alcuni termini dinamici potrebbero non essere
compresi nel modello, o la distribuzione di probabilità dei disturbi potrebbe
essere conosciuta solo fino a una certa approssimazione, e cos̀ı via. In questi
casi si dice comunemente che si ha un’“informazione incompleta” sul modello.

In letteratura, sono stati proposti molti modi per affrontare la situazione
di informazione incompleta. Per esempio, si potrebbe decidere di scegliere la
politica ottima in modo da ottenere la migliore prestazione possibile contro
quello che si crede possa essere il peggior caso possibile: questo è il cosiddetto
approccio minimax (studiato, per esempio, in [1], [3], [18] o, in forma più ge-
nerale, in [4], [16]). In alternativa, si potrebbe cercare di formulare il modello
in modo da dare agli elementi incerti una struttura di elementi aleatori su
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un opportuno spazio di probabilità, aggiornandone la distribuzione a mano
a mano che con il passare del tempo aumenta la quantità di informazioni sul
loro conto: questo è il cosiddetto approccio bayesiano (si veda, per esempio,
[17]).

Un altro possibile modo per prendere in considerazione l’incertezza è il
cosiddetto approccio robusto (si vedano, per esempio, [2], [10], [11], [12]), che
è quello esaminato nella presente tesi. L’idea è quella di includere il problema
stocastico controllato (P ) con cui si ha a che fare in una classe Q di problemi
e di dimostrare che la politica ottima πQ per un particolare problema (Q)
in questa classe dà, in qualche senso, risultati accettabili quando viene u-
sata per controllare qualsiasi altro sistema in Q e, in particolare, anche il
“vero” sistema (P ) (il problema (Q), in letteratura, è chiamato “problema
nominale” o, talvolta, “approssimante”). In sostanza, si stima per ogni pro-
blema (R) ∈ Q la differenza tra il valore ottimo del problema (R) e il valore
che si ottiene quando (R) è controllato con la strategia πQ; si definisce poi
l’indice di robustezza come l’estremo superiore di tutte queste differenze. Lo
scopo dell’approccio robusto è allora quello di ottenere una disuguaglianza di
robustezza, cioè una quantità superiore all’indice di robustezza calcolabile a
partire dalla proprietà note della classe Q: questa quantità è allora anche un
limite superiore della prestazione che si ottiene usando il controllo πQ nel pro-
blema (P ). Si noti che l’approccio robusto può essere utilizzato anche quando
una formulazione “completa” del modello, cioè una formulazione che prenda
in considerazione tutti gli aspetti del modello stesso, risultasse intrattabile dal
punto di vista teorico o computazionale. In generale, allora (come si osserva,
per esempio, in [2]), questo approccio si può anche usare per approssimare
il controllo ottimo del problema (P ) quando il controllo ottimo stesso non
è esplicitamente calcolabile. Da questo punto di vista, l’approccio robusto
ammette quindi una formulazione “duale”: ci si può, cioè, chiedere quale
sia il livello di precisione che si deve avere nella formulazione del modello
per riuscire a ottenere un “controllo ottimo approssimato” che fornisca la
desiderata precisione nella prestazione.

Il capitolo 1 stabilisce le notazioni che saranno usate nel corso dell’intero
testo. Nella sezione 1.1 si definisce il problema stocastico controllato in en-
trambe le situazioni considerate classicamente, cioè sia quando si considera
il tempo come un parametro continuo sia quando si considera l’evoluzione
del sistema in un insieme discreto di istanti prefissati. Si dà particolare en-
fasi al caso in tempo discreto con orizzonte finito, che è quello studiato nelle
nostre ricerche, e si introduce brevemente l’algoritmo della programmazione
dinamica, uno strumento classico che si può impiegare per ottenere soluzioni
esplicite. La sezione 1.2 richiama gli approcci al caso di informazione incom-
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pleta di cui abbiamo parlato sopra. Si espone anche brevemente il problema
di robustezza in un’accezione generale, e si evidenzia come l’approccio ro-
busto può esserne dedotto.

Il capitolo 2 raccoglie alcuni risultati riguardanti gli approcci suddetti, che
abbiamo tratto dalla letteratura disponibile all’inizio della nostra ricerca. La
sezione 2.1 è una panoramica dell’approccio minimax come è formulato in [3]
e ripreso in [4] e [16]; sono anche brevemente esposti i risultati di [1] e [18], e-
sempi di applicazione dell’approccio minimax a un particolare modello. Nella
sezione 2.2 si riprende l’articolo [17] che, oltre a essere il punto di partenza
dei nostri articoli [5] e [7], contiene anche il risultato dell’applicazione a un
particolare modello dell’approccio bayesiano. Le sezioni 2.3 e 2.4 sono dedi-
cate a alcuni risultati ottenuti attraverso l’approccio robusto: si riportano,
rispettivamente, i risultati di [10] e [2] nel caso a tempo continuo e quelli
di [11] e [12] nel caso a tempo discreto. Queste due sezioni contengono anche
alcune osservazioni che possono essere applicate alle conclusioni ottenute da
noi in [6].

I risultati della nostra ricerca sono raccolti nel capitolo 3. La sezione 3.1
riporta i teoremi di robustezza contenuti in [6]. Supponiamo qui di avere
un’informazione parziale sulla legge di probabilità P dei disturbi del nostro
problema, cioè, in dettaglio, di sapere solamente che P è in qualche modo
una “perturbazione” di una legge Q nota. Suggeriamo quindi due possibili
definizioni per dei problemi “approssimanti” e deduciamo una disuguaglianza
di robustezza per ciascuno di essi. Le due disuguaglianze ottenute sono poi
confrontate tra loro e con i risultati di [11] e [12]. La sezione 3.2 nasce
dall’applicazione dell’approccio robusto di [6] a un caso particolare preso
dalla finanza matematica, cioè alla minimizzazione dello scoperto medio nel
celebre “modello binomiale di mercato” proposto da Cox, Ross e Rubinstein.
L’esame di questo modello ha portato alla scoperta di alcune sue notevoli
proprietà che hanno giustificato un articolo autonomo ([5]) e permesso di
elaborare una strategia “adattativa” nel caso di informazione incompleta.
La sezione 3.3 e [7] raccolgono la ricerca attualmente in evoluzione, mirata
a estendere i risultati di [5] al problema più generale di minimizzazione del
rischio di scoperto nel mercato binomiale.

Gli articoli [6, 5, 7] sono allegati per comodità del lettore.
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Introduction

Many applications of mathematics can be formulated in terms of a user trying
to reach a “desirable” situation by controlling an evolving system which, in
turn, is disturbed by some uncontrollable and unforeseeable events. Models of
this kind are called stochastic control problems and have been widely studied
for many years (see [9] as an example).

In general, a stochastic control problem consists of a given state dynam-
ics and of a value function. The dynamics describes the evolution of the
system we are dealing with in terms of the control chosen by the user and
of the disturbances which are supposed to be stochastic processes on some
underlying probability space. The cost (or gain) function is some functional
(generally depending on the state of the system and of the controls) that may
represent, for instance, a loss (or a gain) that the user wants to minimize (or
maximize). A value function is then defined as some functional of the cost
(gain) function which translates the user preferences. The user is interested
in determining an optimal policy, that is, a choice of the controls based on
the past evolution of the system so as to minimize (or maximize) the value
function with respect to all the possible controls.

When constructing a model it is nevertheless almost inevitable that some
of its aspects cannot be taken into consideration. For example, some dynam-
ics might not be included in the model, or the distribution of the disturbances
might be known only up to a certain degree of accuracy, and so on. This
is what is commonly referred to as an “incomplete information” about the
system.

In the literature, many ways have been studied to approach the situa-
tion when there is incomplete information. For example, one might decide
to choose the optimal policy in such a way as to get the best possible per-
formance against what is believed to be the worst possible case: this is the
so-called minimax approach (applied, e.g., in [1], [3], [18] or, in a more gen-
eral form, in [4], [16]). As an alternative, one might want to formulate the
model in such a way to give the sources of uncertainty a structure of random
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elements on a suitable probability space and to update their distribution as
more information becomes available with time: this is the so-called bayesian
approach (see, e.g., [17]).

Another possible way to take into account the uncertainty is the so-called
robust approach (see, e.g., [2], [10], [11], [12]), which is the setting of our
work. The idea is to include the stochastic control problem (P ) we are
dealing with (and that we call the “real” system) in a whole class Q of
problems, and show that the optimal policy πQ for one chosen problem (Q)
in this class (that in the literature is called the “nominal” or sometimes the
“approximating” problem) gives, in some sense, acceptable results when used
to control every other system in Q and, in particular, also the real system.
For every system (R) ∈ Q one looks at the gap between the optimal value of
the problem (R) and the value obtained when (R) is controlled by means of
πQ, and defines the robustness index as the supremum of all these gaps. The
aim of the robustness approach is then to give a robustness inequality, i.e.,
an upper bound for the robustness index based on the (known) properties of
the class Q, which also measures the performance of πQ when it is applied to
the problem (P ). Note that the robust approach can also be applied to the
case in which a “complete” formulation of the problem, taking into account
all the information, would result intractable either from a computational or
a theoretical point of view. In general, then, (as observed, e.g., in [2]) this
approach can also be seen as a way to approximate the optimal policy of
the problem (P ) when it is not explicitly computable. From this point of
view, then, the robust approach also admits a “dual” formulation, that is,
it allows to know the degree of precision needed in the formulation of the
“approximating” model (Q) in order to obtain an “approximating optimal
control” performing with the desired degree of precision.

Chapter 1 sets the notations that will be used throughout the entire text.
In Section 1.1 the stochastic optimal control problem is defined in both the
continuous time and discrete time settings, with particular emphasis on the
discrete time, finite horizon case which is the setting of our research. In this
situation, the main tool used to obtain explicit solutions is the dynamic pro-
gramming algorithm, which is also introduced. In section 1.2 the mentioned
approaches to the case when there is incomplete information about the model
are recalled. It is also emphasized how the robust approach can be deduced
from the more general robustness problem, which is briefly explained.

Chapter 2 gathers some results, which were available in literature when
our research began, about all the approaches mentioned above to the incom-
plete information case. Section 2.1 is an overwiew of the minimax approach
as formulated in [3] and extended in [4] and [16]. As an application of the
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minimax approach to a particular model, [1] and [18] are also briefly sum-
marized here. Section 2.2 introduces the setting of [17] which, besides being
a starting point for our papers [5] and [7], features also the application of
the bayesian approach to a particular model. Sections 2.3 and 2.4 are ded-
icated to some results obtained by means of the robust approach reporting,
respectively, results of [10] and [2] for the continuous time setting and results
of [11] and [12] for the discrete time setting. These two sections also feature
some remarks that can be applied to the conclusions we obtain in [6].

Our results are reported in chapter 3. In section 3.1 the robustness the-
orems gathered in [6] are reported. We suppose to have partial information
about the probability law P of the disturbances of our problem, namely, that
we know P to be in some sense a “perturbation” of a known probability law
Q. We then suggest two possible definitions for an “approximating” prob-
lem, and deduce a robustness inequality for each of them. The inequalities
obtained are then compared to each other and to the results of [11] and [12].
Section 3.2 arises from the application of the robust approach of [6] to a
particular case taken from mathematical finance, namely, the mean shortfall
minimization problem in the well-known Cox, Ross and Rubinstein “bino-
mial market model”. The investigations about this model led to the discovery
of some noteworthy properties of the model itself that deserved a paper on
its own (namely, [5]), and also allowed to formulate an “adaptive” strategy
for the incomplete information case. Section 3.3 and [7] gather the research
currently in progress, aimed at the extension of the results of [5] to the more
general setting of the shortfall risk minimization problem.

Papers [6, 5, 7] are also included for the convenience of the reader.
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Chapter 1

Notations and generalities

This chapter is intended to be a reference for all the sequel and is divided into
two parts. In 1.1 the standard notations for the stochastic control problem
are described, with particular emphasis on the discrete time, finite horizon
case which is the setting of our work. The so-called “robust approach” is
specified in 1.2, where the key concepts of robustness index and robustness
inequality are also defined.

1.1 The stochastic optimal control problem

Suppose that we are dealing with a system whose state can be described as
an element of a suitable space X (typically, X is some subset of the standard
d-dimensional real space Rd). We shall write the state of the system as
xt ∈ X, t ∈ R+ to stress the dependence on time, and we want to imagine
that the evolution of the state of this system, defined by a suitable dynamics,
can be affected by two components: a control πt chosen by the user and some
disturbance ξt with stochastic nature. The control and the disturbances are
supposed to take values in sets A and Ξ respectively, which can also be
supposed to be subsets of some standard multi-dimension real spaces with
suitable dimensions d′ and d′′ (possibly different from each other and from
d). In general, the sets A and Ξ can be supposed to be dependent on time
or on the current state but, for simplicity, we shall suppose them to be given
and the same for all states and times.

Two different settings are now possible, namely, in continuous time or in
discrete time, depending on whether one supposes the evolution of the in-
volved processes to be observed continuously or only at particular moments.
Moreover, both of these families are divided into the two subclasses of “in-
finite horizon” and “finite horizon” problems, depending on whether one is
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interested in monitoring the evolution of the system forever or just until a
final time T , which is indeed called the horizon of the problem.

Continuous time problems

In the setting of infinite horizon, continuous time control problems, the un-
derlying probability space is a filtered space (Ω,F , (Ft)t>0, P ) whose filtration
(Ft)t is supposed to satisfy some standard conditions (typically, it is increas-
ing and right continuous). A d-dimensional function f : R+ × X × A → X
and a matrix function σ : R+×X×A →Md×d′′ , both measurable, are given,
called the drift and the volatility function respectively. The dynamics is
written, in its general form, as

dxt = ft(xt, πt)dt + σt(xt, πt)dξt, (1.1)

where the differential notation is to be suitably interpreted depending on
the context (e.g., as an integral with respect to a jump process, or as an Itô
stochastic integral if ξt is a martingale with continuous paths).

Typically, the user is supposed to decide the control πt at time t before
knowing the value xt taken by the state at time t. To reflect this situation,
the disturbance process is supposed to be adapted to the filtration (Ft)t,
and the control process is supposed to be predictable, i.e., measurable with
respect to the σ-algebra generated on Ω × R+ by all the left-continuous
adapted processes. Since every predictable process is adapted, then, the state
process x also turns out to be adapted. In the case when xt has continuous
paths, indeed, the distinction between adapted and predictable controls is not
strictly necessary, and one can suppose all processes to be simply adapted to
the filtration. We suppose the initial state x0 to be given and well determined,
but it could also be considered a random variable with respect to F0 with
known distribution.

A control π will be called admissible if it induces a solution of (1.1) unique
in distribution, and Π will indicate the class of all admissible controls.

A measurable function c : R+ ×X × A → R bounded from below, called
the instantaneous cost function (here in general form), is given. The aim of
the problem is then to minimize, with respect to all the admissible controls
π ∈ Π, the value function, that is defined starting from the instantaneous
cost function according to the user’s preferences.

As an example of a choice for the value function, one may define a cost
function C(x, π) (depending on the path x = (xt)t and on the choice of the
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control π = (πt)t) as

C(x, π) :=

∫ +∞

0

αtct(xt, πt)dt

where α ∈ (0, 1] is a constant, called the discount factor, possibly cho-
sen to ensure integral convergence and/or take into account, e.g., price in-
flation. The aim of the problem is then to minimize the value function
Φx0(π) := E{C(x, π) | x0}. In this situation, we shall write the expected
value conditioned to the initial state x0 with the notation Ex0{C(x, π)}. We
shall also sometimes write ΦP

x0
(π) = EP

x0
{C(x, π)} to stress the fact that the

expected value is computed according to the probability law P .
This is just one of the several possible ways to define the value function

for an infinite horizon, continuous time stochastic control problem. Another
criterion widely studied in literature is, e.g., the so-called long-run expected
average cost (see [12] for a definition in the discrete time setting). Moreover,
a variation of the given example can be defined, e.g., by considering the
expected value of some convex function of the cost function to take into
consideration also higher order moments: one might thus aim at minimizing
Ex0{C(x, π) + λC2(x, π)} for some λ > 0 (in literature, this is sometimes
called the “mean-variance approach”) or Ex0{exp C(x, π)}. In some other
cases, as we shall see again in the following section and chapter, instead of
considering the expected value with respect to the probability law of the
disturbance, one may want to be prepared for the “worst” possible case and
define the value function sup{C(x, π)}, where the supremum is taken over
all possible disturbance processes.

Since we are just interested in giving some basic notations, in the following
part of this chapter we shall always refer to the case in which the value
function is defined as the expected value of the (discounted) cost function.
The reader should nevertheless keep in mind that everything written below
can be adapted to the various choices of the value function.

When the system has to be monitored until a given finite horizon T > 0,
only a few changes to the previous notations have to be made. In this case,
the underlying filtered space will be (Ω,F , (Ft)t∈[0,T ], P ) and similarly the
functions f , σ and c are defined on the time interval [0, T ] instead of the
whole half-line R+. A major difference is that here also a so-called terminal
cost can be taken into account under the form of a measurable function on
the final state b : X → R, bounded from below. Thus, the cost function in
this situation is defined as

C(x, π) :=

∫ T

0

ct(xt, πt)dt + b(xT )
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(and there’s no longer the need to take into account any discount factor).

The solution of a continuous time stochastic control problem is a pair
(π∗x0

, Φ∗
x0

) called, respectively, optimal control and optimal value, such that
Φ∗

x0
= ΦP

x0
(π∗x0

) = infπ ΦP
x0

(π). The notation π∗x0
is used to stress the fact

that the optimal control depends on the initial state x0, since it is reasonable
to expect that different initial states induce, in general, different optimal
controls. For the purposes of this text, no hypotheses about the dependence
of the optimal control/value on the initial state are needed.

Discrete time problems

An infinite horizon, discrete time stochastic control problem describes the
situation when the user is interested in the state process xt only at the
discrete times t = 0, 1, . . . . The underlying probability space is a filtered
space (Ω,F , (Ft)t=0,1,..., P ), and usually (unlike the continuous time case) no
particular conditions have to be satisfied by the increasing filtration (Ft)t.
The control disturbance process ξ, just as in the continuous time case, is
supposed to be adapted to the filtration.

The control at time t is supposed to be chosen on the basis of the infor-
mation gathered up to and including time t, but in literature one can find
two possible notations for this situation. One possibility is indeed to consider
πt as the choice made by the user at time t (t = 0, 1, . . . ), and thus imagine
the control πt to “hold” in the time interval [t, t + 1). In this setting, the
control process is naturally required to be adapted to the filtration. On the
other hand, one might interpret πt as the control applied in the t’th time
period (t = 1, 2, . . . ), that is, [t− 1, t). In this case πt is chosen at time t− 1,
and thus the control process must be predictable (which, in the discrete time
case, has the meaning of “adapted to the shifted filtration (Ft−1)t”).

Given a d-dimensional measurable function F : N×X ×A×Ξ → X, the
dynamics of a discrete time stochastic control problem is defined recursively
as

xt+1 = Ft(xt, πt, ξt+1), t = 0, 1, . . . , (1.2)

so that also x is an adapted process. We suppose the initial state x0 to be
given, but (as we observed when dealing with the continuous case) it might
be a random variable ∈ F0 with known distribution, for instance x0 = ξ0.

We want to remark that it is possible to formulate the discrete time
problems without using filtered probability spaces and stochastic processes.
Indeed, one might simply consider a given sequence ξ of random variables
and define the same dynamics (1.2) as before, with the condition that the
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control π is chosen in such a way that πt = πt(x0, . . . , xt) be a function of the
states up to and including time t. This formulation can be actually verified
to be equivalent to the previous one, and in the sequel we shall often refer to
the one of the two that will allow for simpler notations.

If the ξt are independent random variables, it can be verified that (1.2)
allows to consider xn as a controlled Markov process with transition kernel
p(xn+1 | xn, πn). Usually, this formulation is quite common to Operations
Research and Management settings.

The cost function is (like in the continuous time case) a measurable func-
tion of the state and of the control processes. In its general form, given a
measurable function c : N×X×A → R bounded from below, and a discount
factor α ∈ (0, 1], it is defined as

C(x, π) :=
∞∑

t=0

αtct(xt, πt).

The aim of a discrete time control problem is the same of the continuous
time one, that is, to minimize with respect to all possible choices of the
control π some value function defined on the basis of the cost function. For
our purposes, as explained above, we shall consider the value function to be
defined as Φx0(π) := Ex0{C(x, π)}.

The differences between an infinite horizon and a finite horizon discrete
time problem are quite similar to the differences between the correspond-
ing problems in continuous time. Namely, if the system is monitored until
the given horizon T > 0, the dynamics is defined only until time T , no dis-
count factor need to be considered and a measurable “terminal cost” function
b : X → R (bounded from below) can be taken into account. Since this is
the problem which our work is concerned with, we want to summarize here
all its features for future reference.

(P )


xt+1 = Ft(xt, πt, ξt+1), t = 0, 1, . . . , T − 1

C(x, π) :=
∑T−1

t=0 ct(xt, πt) + b(xT )

Φ(x0, π) := Ex0{C(x, π)}
infπ Φ(x0, π)

. (1.3)

The solution of a discrete time stochastic control problem is, just like in
the continuous time case, a pair (π∗x0

, Φ∗
x0

) called optimal control and optimal
value, such that Φ∗

x0
= ΦP

x0
(π∗x0

) = infπ ΦP
x0

(π). We want to point out that
sometimes, in the literature, a control is defined as a measurable function



18 Notations and generalities

π : N × X → A of the time and of the state with the meaning that, at
each time t = 0, . . . , T − 1, the system is controlled by πt := πt(xt) (in the
“adapted” notation, or πt = πt(xt−1), for t = 1, . . . , T in the “predictable”
notation). In this setting, e.g., the existence of π∗x0

= argmin ΦP
x0

(π) for
every initial state x0 might not be sufficient for the existence of an optimal
control, unless the set of all the possible initial states is countable or π∗x0

satisfies some “uniformity” condition with respect to x0 (see, e.g., [13]). The
proposed notation has been chosen because, as already mentioned, for our
purposes the dependence of the optimal control/value on the initial state
need not be considered.

In the finite horizon case, the discrete version of the dynamic programming
principle can be applied, which is defined as follows. Suppose that (Jt(x))T

t=0

is a sequence of functions which satisfy the following backwards recursions:
JT (x) = b(x)

Jt(x) = inf
a

{
ct(x, a) + E{Jt+1(xt+1) | xt = x, πt = a}

}
= inf

a

{
ct(x, a) + E{Jt+1(f(x, a, ξt+1))}

}
for t < T.

, (1.4)

Then, for every t = 0, . . . , T − 1, Jt is the optimal cost-to-go defined as

Jt(x) := inf
πt,...,πT−1

E
{ T−1∑

s=t

cs(xs, πs) + b(xT )
∣∣∣ xt = x

}
and, in particular, Φ∗

x0
= J0(x0). Moreover, if there exists a π∗ = π∗t (x) that

realizes the inf in (1.4), then π∗ is an optimal control.
Note that from (1.4) it follows that the optimal control π∗, when it exists,

only depends on the current value x = xt of the state.

We want to remark that, in the finite horizon case, the assumption that
the functions c and b are bounded from below also implies that both the cost
function and its expected value are bounded from below. As a consequence,
it is not restrictive to suppose that the value function always assumes positive
values, and we shall always use this assumption in the sequel.

1.2 Model uncertainty

There are many reasons to suppose that a stochastic optimal control problem
cannot be solved explicitly. When this happens, one is naturally led to
simplify or to approximate or to change the model in such a way as to avoid
the problems that may be caused from a rigorous formulation.
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For instance, it could happen that our problem does not admit a solution,
or maybe that its solution is too burdensome to obtain from a computational
point of view. In other cases, which are the ones we are interested in, one
could have only an approximate idea of the true dynamics of the system or
of the actual costs that will be faced or of the probability law of the distur-
bances. This situation is referred to as “model uncertainty” or “incomplete
information”, and causes what by some authors is referred to as “model risk”
to stress the fact that an uncertain model necessarily generates some errors
in the computation of the optimal control and value.

There are many ways to face the problem of incomplete information. For
example, one might consider the unknown elements of the problem as ran-
dom variables on a suitable probability space. Then, the observation of the
system evolution will allow the user to get more and more information as
time increases, and this will be taken into account by updating the distri-
bution of these random variables. This is the so-called Bayesian approach,
which is used, e.g., in [17] (see also 2.2).

Another possible way is to consider the whole set of values that the un-
known quantities can assume and try to optimize the worst possible case. In
such a way one will have, for instance, a set of possible cost functions and
will try to minimize over all controls the supremum of all the possible costs.
This kind of approaches will lead to minimax problems similar to the one
considered in [3] (also summarized in 2.1).

A third way, which is the one that we want to study, is called the robust
approach and is exposed below for the discrete time, finite horizon case.

The robust approach

We call “robust approach” to the incomplete information case an interpreta-
tion of the so-called robustness problem, which can be summarized as follows.

A family R of stochastic optimal control problems is given, and each
problem (R) ∈ R admits an optimal control πR

x0
and an optimal value ΦR,∗

x0
.

Having chosen a particular problem (Q) ∈ R, called the nominal problem,
one wants to investigate how the optimal control πQ

x0
behaves when used

to control systems evolving according to the dynamics of other problems
(R) ∈ R. Of course ΦR

x0
(πQ) − ΦR,∗

x0
> 0, because πQ

x0
cannot induce in

the problem (R) a better performance than the optimal control πR
x0

itself.
Moreover, in general, πQ

x0
is not optimal for the problem (R), so that the

inequality above is verified in the strict sense. The quantity

∆R,Q
x0

:= sup
(R)∈R

ΦR
x0

(πQ)− ΦR,∗
x0
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measures this “sub-optimality” of the control πQ
x0

, and is called the robustness
index of πQ

x0
with respect to the problems of the class R. Sometimes the

robustness index is not easily determinable, and in this case one may aim at
giving a robustness inequality, i.e., an upper bound for the robustness index
that can be calculated from known properties of R.

This setting can be adapted to the incomplete information case as follows.
Suppose that we are dealing with the problem (P ) described in (1.3), but
that we cannot determine exactly the dynamics F or the cost function C or
the probability law P . In this case, we may formulate a new problem (Q)
using a dynamics FQ, a cost function CQ and a probability measure Q, and
interpret the problem

(Q)


xt+1 = FQ

t (xt, πt, ξ
Q
t+1), t = 0, 1, . . . , T − 1

infπ ΦQ
x0

(π)

ΦQ
x0

(π) := EQ
x0
{CQ(x, π)}

CQ(x, π) =
∑T−1

t=0 cQ
t (xt, πt) + bQ(xT )

, (1.5)

which we suppose to be able to solve, as the nominal problem of a suitable
class R containing also the problem (P ). We shall also say that (Q) is an
approximating problem of (P ), as its solution allows to explicitly compute
a control for the problem (P ), which we suppose not to be solvable. For
what we have seen above, the performance of the optimal control πQ

x0
in the

problem (P ) is measured by the robustness index

∆x0(P, Q) := ΦP (x0, π
Q
x0

)− Φ∗
x0

> 0, (1.6)

which, in turn, is bounded from above by any robustness inequality we can
give for any class R containing both (P ) and (Q).

Of course the robust approach, here defined for finite horizon, discrete
time problems, can be applied to any other stochastic control problem as
well. Indeed, once the approximating problem is suitably constructed, the
robustness index can be defined exactly as in (1.6) also for continuous time
and/or infinite horizon problems.

Note also that the robustness problem can be approached from differ-
ent viewpoints. As an example, we may want to consider controls πR that
need not be optimal for any of the problems (R) ∈ R but, in exchange,
give “equally good” performance in all problems of the class. This will lead
us to solve a problem such as infπ sup(R)∈R{ΦR

x0
(π)}, or, in other words, to

study the robustness of a minimax control. In other cases, the robustness
problem can be “mixed” with a bayesian approach, in the sense that, e.g.,
we could look for a way to progressively “shrink”, on the basis of the suc-
cessively accumulated information, the class containing the nominal and the
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real problems (possibly choosing different nominal problems as time goes by)
and thus hopefully improve the robustness inequality we can obtain.

Problems analogous to this one have been recently investigated, for exam-
ple, by Dupuis, James and Petersen ([2]), by Gordienko and Lemus-Rodŕıguez
([10]) and by Gordienko and Salem ([11, 12]). In [10] (see also 2.3) the authors
deal with the case of a continuous time control problem “approximated” by
another problem on the same underlying probability space (i.e., only dynam-
ics and target function are different in the two problems). In [11] and [12]
(see 2.4) the authors investigate the case when the state process is a Markov
control process and the control problem is approximated by another problem
with different transition kernels and target function. In [2] the authors use
the robust approach for a particular class of continuous time control prob-
lems coming from an engineering setting. They consider the “real” problem
as a parametric “perturbation” of the nominal problem, and the behaviour
of the robustness inequality with respect to the perturbating parameter is
investigated.

The aim of our work is to investigate the case when the dynamics F and
the target function C are supposed to be completely determined, and the
only source of uncertainty in the model is the underlying probability measure
P . In other words, we want to determine ∆x0(P, Q) as defined above when
FQ = F , possibly defining in a suitable form the cost functional CQ. It
turns out (see [6] and 3.1) that a “good” robustness inequality is very hard
to obtain, as the model is in general very sensitive to even small changes in
the underlying probability measure.
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Chapter 2

An overview of literature

In this chapter some results are gathered which were available in literature
when our research began.

Papers [10] and [11, 12] (summarized in 2.3 and 2.4 respectively) are
examples of applications of the robust approach, and allow to understand the
typical results and problems that this approach implies. Indeed, examining
the results of these papers will generate some remarks that can be applied
also to the general results of our paper [6].

On the other hand, papers [3, 16] and [17] (see 2.1 and 2.2) are examples
of other approaches to incompleteness of information, i.e., the minimax and
the Bayesian approach respectively. Moreover, [17] gave us the idea of a
particular model to apply the robust approach to, and has thus been the
starting point for papers [5] and [7].

2.1 The minimax approach

In [3], Dai Pra et al. use the following approach to uncertainty in stochastic
control problems. Given a discrete time, finite horizon problem whose dy-
namics is like in problem (P ), the authors suppose that at time t our only
knowledge of the disturbance ξt is its support Ξt(xt, πt) (possibly dependent
on the state and the control). In particular, no hypothesis is made on the
probability law of the disturbances, so that probability theory plays no role
in this approach. Instead of the expectation of the target function C, the
following value function is considered:

Φ(x0, π) := sup
ξt∈Ξt(xt,πt)

{C(x, π)}.

In other words, instead of optimizing the “average” of all the possible out-
comes of the system, the user wants to prepare for the worst of them.
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The key result of the paper is that this problem can be solved via a
modified version of the dynamic programming algorithm, which in this case
takes the following form. If the target function is given in the general form
C(x, π) :=

∑T−1
t=0 ct(xt, πt) + b(xT ) as in (1.3) and one defines inductively

JT (xT ) := b(xT ),

Jt(xt) := inf
πt

sup
ξt∈Ξt(xt,πt)

{ct(xt, πt, ξt) + Jt+1(Ft(xt, πt, ξt))},

then (if Φ∗
x0

is the optimal value of the problem as in chapter 1) Φ∗
x0

=
J0(x0). This way, the optimization problem becomes a “minimax” problem
and explicit solutions can be achieved.

Another more general way to take into account the uncertainty of the
disturbances ξt is described by Runggaldier in [16, Section 6] (see also [4]).
Here, one is supposed to know that at time t the disturbances belong to
random sets with known distributions, i.e., ξt ∈ Ξt(ω) where ω is the generic
element of a suitable underlying probability space.

In this setting, there are many possible ways to define the value function.
Two of the most natural ones, for instance, are

Φ†(x0, π) := E sup
ξ0

. . . E sup
ξT−1

{C(x, π)},

Φ‡(x0, π) := E sup
{ξt}
{C(x, π)}.

It turns out (see [4]) that the dynamic programming algorithm can be applied
to the optimization of Φ†(x0, π), but that in general it is not possible to
approach in the same way the optimization of Φ‡(x0, π).

It is noteworthy that this model is in some sense a “combination” of the
stochastic approach (P ) and the pure minimax approach of [3]: indeed, the
problem (P ) is recovered in the particular case when the random sets collapse
to a single point, and the situation of [3] is recovered when the sets Ξt(ω) are
constant with respect to ω.

A similar approach has been followed also, e.g., by Cvitanić and Karatzas
in [1], and by Talay and Zheng in [18]. In [1], the authors consider the incom-
plete information case for a particular continuous time stochastic problem
arising from an economic application, namely the analogous of the “mean
shortfall minimization problem” defined in 2.2 and 3.2. They approach the
problem with a minimax technique, as they aim at finding an optimal control
that minimizes the supremum of the value function over a family of probabil-
ity measures. Moreover, Talay and Zheng show in [18] that it is possible to
apply in a suitable way the continuous version of the dynamic programming
principle to the minimax approach of [1].
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2.2 The bayesian approach for the binomial

market model

In [17], Runggaldier et al. study a well-known market model, that is, the
binomial one. The model is quickly summarized here, but for a more precise
definition of the model, see 3.2.

Suppose that two assets are tradable on a discrete time market, namely
a bond B (that without loss of generality – see also 3.2 – can be supposed
to be constant and equal to one and represents, e.g., some cash account)
and a stock S whose starting value S0 is given. The stock is supposed to
evolve stochastically, at each time t, either going “up” or “down” by fixed
and known percentages u and d (with 0 < d < 1 < u). The probability p of
the stock going up at time t is also supposed to be fixed and the same for
all t = 0, . . . , T − 1 (with T a known finite horizon), so that the dynamics of
the stock can be written as

St+1 = Stξt+1, t = 0, . . . , T − 1, P{ξt = u} = 1− P{ξt = d} = p.

A function H of the final state ST is given, and the user (called, to reflect
the economic setting, the investor) wants to determine a portfolio (that is, a
control π = (α, β) corresponding to the decision to hold, at each time t, αt

units of the stock and βt units of the bond) so as to possibly possess, at time
T , exactly H(ST ) units of money whatever the evolution of the stock is. If this
happens, one says that the user has succeeded in hedging, or replicating, the
function H by means of the portfolio π. The portfolio is moreover supposed
(as it is customary to do in economic models) to be self-financing, i.e., once
the initial capital V0 is decided, no money can be added or withdrawn until
the final time T . This way, once the control is chosen, the only gains or losses
come from the evolution of the stock, and indeed if V π

t is the value of our
portfolio at time t when the control π is used, then Vt evolves according to
the following dynamics:

V π
t+1(Vt, St, αt, ξt+1) = V π

t + αtSt(ξt+1 − 1), V π
0 := V0.

It is a classical result that there exists a “critical” initial capital V ∗
0 such

that the function H(ST ) can be replicated by a suitable portfolio if and only
if V0 > V ∗

0 . As a consequence, if V0 < V ∗
0 some loss will have to be taken into

account. This way the problem can be seen as a dynamic stochastic control
problem whose aim is to minimize the expected shortfall, that is, the positive
part of the difference between H(ST ) and the final value VT of our portfolio:

inf
π

ES0,V0

{
(H(ST )− V π

T )+
}
.
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The optimal control and the optimal value for this problem can be obtained
explicitly by using the dynamic programming algorithm, and turn out to
depend on the probability p.

The authors face then the problem of incomplete information in the
model, that is, the case in which p is not known by the investor. The Bayesian
approach, that they follow, can be explained as follows.

Consider p as a random variable on a suitable probability space, and let
h0(p) ∝ pλ0(1 − p)µ0 be an “a-priori” Beta distribution obtained by fixing
arbitrarily two parameters λ0, µ0 > −1. Let then, for each time t, ut :=
#{s < t | ξs = u} be the total number of “up-movements” of the stock
cumulated up to time t and define λt := λ0 + ut, µt := µ0 + t − ut. The
“posterior” distribution of p at time t thus becomes ht(p) ∝ pλt(1 − p)µt .
This way, at each time t it will be possible to calculate, according to the
distribution ht, pt := E{p} = λt+1

λt+µt+2
.

Now, the dynamic programming technique can still be applied, and it
turns out at each time t the probability pt replaces the (unknown) probability
p. In general, this approach would be very heavy from a computational point
of view (as the dynamic programming requires to solve T − t recursive steps
to determine the optimal control at time t). In this particular case, however,
it turns out that one can use the explicit form of the control for the complete
information case (see 3.2 for the details). Thus, the bayesian way proves to
be a quite efficient approach to the incomplete information in the binomial
case.

2.3 Robustness for diffusion processes

As an example of the robust approach applied to a continuous time problem,
one can consider [10]. Here, Gordienko and Lemus-Rodŕıguez suppose to
deal with a continuous time, finite horizon stochastic control problem{

dxt = ft(xt, πt)dt + σt(xt, πt)dξt

infπ Ex0{
∫ T

0
ct(xt, πt)dt}

and to build an approximating problem choosing a different drift fQ, a volatil-
ity σQ and an istantaneous cost cQ. The disturbance process ξt is supposed
to be a standard brownian motion, and the same for both the “real” and the
approximating problems.

As explained in 1.2, the optimal control πQ of the approximating problem
is applied to the original problem thus yelding a value Φx0(π

Q) greater than
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the optimal Φ∗
x0

. The robustness index is now defined in the same way as
in (1.6), namely ∆x0 := Φx0(π

Q)−Φ∗
x0

, and some upper bound on its value is
investigated. The results of Gordienko and Lemus-Rodŕıguez can be gathered
as follows.

2.3.1 Theorem. Suppose that f and σ are continuous in the state and in
the control and both lipschitz and sub-linear in the state, in the sense that
there exist constants K1, K2, K

′ > 0 such that

|ft(x, π)− ft(y, π)| 6 K1|x− y|,
‖σt(x, π)− σt(y, π)‖ 6 K2|x− y|,
|ft(x, π)|+ ‖σ(t, x, π)‖ 6 K ′(1 + |x|)

uniformly for all times t and controls π. Suppose also c to be lipschitz in the
state, i.e., there exists C > 0 such that

|ct(x, π)− ct(y, π)| 6 C|x− y|

uniformly for all times and controls.
Define ϑ := 2(K2

1T + K2
2) and

∆f := sup
t∈[0,T ]

{
e−

ϑt
2

∫ t

0

sup
x,a
|fs(x, a)− fQ

s (x, a)|ds
}

,

∆σ := sup
t∈[0,T ]

{
e−ϑt

∫ t

0

sup
x,a
‖σs(x, a)− σQ

s (x, a)‖ds
}

,

∆c :=

∫ T

0

sup
x,a
|cs(x, a)− cQ

s (x, a)|ds.

(2.1)

Define also

R :=
C
√

2T (eϑT −1)√
ϑ[1−

√
1− e−ϑT ]

.

Then

∆x0 6 2
[
∆c + R

√
∆2

f + ∆σ

]
. (2.2)

Even if these results themselves are not particularly interesting for our
work, they are cited here because they lead to some important considerations.
It is noteworthy, for example, how strong the conditions on the coefficients
f , σ and c have to be in order to get some robustness result.

To get an idea of what the given upper bound can be, consider the (rather
natural) case in which, to calculate (2.1), the functions |fs(x, a) − fQ

s (x, a)|
and ||σs(x, a) − σQ

s (x, a)|| have to be replaced by some uniform majorants.
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Then ∆f and ∆σ are the supremum of functions proportional to t e−
ϑt
2 , so that

it can be verified by a straightforward calculation that they are proportional
to 1

ϑ
. On the other hand, R can be checked to be asymptotically equivalent

to e
3
2
ϑT
√

T/ϑ and ϑ is linearly increasing with respect to the horizon T . So,
the upper bound given in (2.2) is exponentially increasing in the horizon.

These considerations lead to the conclusion that, even under these quite
strong assumptions, the given upper bound for the robustness index turns out
to be very sensitive to the distance between the “real” and the approximating
problems. This is not limited to the continuous time setting, as we are going
to see below.

2.4 Robustness for Markov control processes

In [11], Gordienko and Salem deal with a particular case of robustness prob-
lem, very close to the one we study in [6]. Namely, they deduce a robustness
inequality in the same sense of (1.6) in the setting of a Markov control process
with infinite horizon and “one-stage” cost function as explained below.

Roughly speaking, as already mentioned in the definition of the discrete
time problems in section 1.1, the state xt of the problem (P ) is a Markov
process if the disturbances ξt are independent. Actually, Gordienko and
Salem suppose a stronger condition, namely that the transition kernel does
not depend on time t: this is the situation, for instance, of a dynamics F
independent of t and ξt (independent and) identically distributed. Moreover,
the cost function is said to be “one-stage” if the target function C is given
in the particular form

C(x, π) :=
∞∑

t=0

αtc(xt, πt),

where c(x, a) is a given function depending only on the state and the control
(and in particular independent of t) and α is a given discount factor. Also,
the set of feasible actions is supposed to depend only on the state of the
system and not on the time, i.e., to every state x one associates a set A(x)
such that at time t the control πt has to be chosen in the set A(xt).

The problem (P ) is approximated by a problem (Q) which differs in the
cost function and in the transition probability, i.e., in the underlying proba-
bility law. Using our notations, the authors construct an optimal control πQ

x0

for the approximating problem (Q) and derive an upper bound for the ro-
bustness index ∆x0(P, Q) defined in (1.6). The results obtained by Gordienko
and Salem can be summarized as follows.
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2.4.1 Theorem. Let (P ) be a discrete time, infinite horizon Markov control
problem with one-stage cost function. Consider the approximating problem
(Q) obtained from the problem (P ) by taking another probability law Q and
another cost function cQ(x, a).

If there exist a measurable function w : X → R+ and a constant 0 6 β < 1
such that for all x ∈ X, a ∈ A(x) one has

c(x, a) 6 w(x), EP{w(xt+1) | xt = x} 6
β

α
w(x), (2.3)

then
∆x0(P, Q) 6 2w(x0)(1− β)−1[δ1 + δ2α(1− β)−1] (2.4)

where

δ1 := sup
x,a

[w(x)]−1|c(x, a)− cQ(x, a)|

δ2 := sup
x,a

[w(x)]−1 EQ
{

w(xt+1) ·
∣∣1− dP

dQ
(xt+1)

∣∣ ∣∣∣ xt = x, πt = a
}

.
(2.5)

Note that in the case when cQ(x, a) = c(x, a), namely, when the only
difference between the real and the approximating problems is the underlying
probability law, the robustness inequality of the above theorem reduces to

∆x0(P, Q) 6 2α(1− β)−2w(x0)δ2.

In [12], the same authors consider this case together with the “long-run
expected average cost” and show that, under strong recurrence and ergodicity
assumptions, this O((1−β)−2 bound can be improved to O((1−β)−1). While
for more details and the proof of the theorems we refer to [11] and [12], we
want now to discuss some of the major problems that arise when dealing with
robust approximations as those that can be deduced from the cited results.

The conditions (2.3) can be interpreted as follows. The first one, as
it is straightforward to see, means that the one-stage cost function has to
be bounded by some positive measurable function w(x) uniformly in the
control. The second one implies that the expected discounted cost has to be
exponentially decreasing in time, because the existence of a β behaving like
in (2.3) implies that

EP{w(xt)} = EP
{

EP{w(xt) | xt−1}
}

= . . . 6
βt

αt
w(x0),

i.e., that the average discounted cost of one step, dominated by αt EP{w(xt)},
tends exponentially to 0 uniformly in the control as t → +∞. It is clear,
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then, that these conditions are actually very strong, even if they seem quite
reasonable.

In spite of this strong condition, however, the given upper bound of the
robustness index is strongly sensitive to the rate β of convergence to zero of
the discounted cost — indeed, the right hand side of (2.4) goes to infinity as
β → 1.

Another problem, that is quite evident, arises when considering the ex-
pressions involved in determining the upper bound. Consider, e.g., the com-
putation of δ2 in (2.5). The more dP

dQ
is close to 1 in correspondence to the

x’s where w(x) is “big”, the smaller δ2 will be. This is quite reasonable,
because the more precisely we shall estimate the probability of “high” costs,
the more accurate our approximation will be. Similar considerations can be
made about the role that β plays, because of course less accuracy is needed in
the approximation when the discounted cost quickly decreases to zero. This
stresses the importance to have some insight into the probability P to get
the best possible values for β and δ2, and makes clear that the robustness
index is in general very sensitive to the degree of knowledge of the real world
probability measure P . On the other hand, there seems to be no general
method to be able either to estimate the P -expected value of (2.3) or to
know the distribution of high values of w(x) better than the distribution of
its low values.

We shall see in 3.1 that these considerations can be applied unchanged
to the general result of [6].
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Chapter 3

Our results

This chapter synthesizes our research.

Our starting point was to determine a robustness inequality for discrete
time, finite horizon stochastic control problem under assumptions as general
as possible. This investigation has led to [6], summarized in 3.1, whose results
in some sense reflect those of [10] and [11] cited in 2.3 and 2.4.

Inspired by [17], then, we decided to choose the binomial market model
as a particular case for an application of the robust approach. This study
quickly led to the discovery of some interesting properties of the binomial
model that deserved a paper on its own, namely [5] (summarized in 3.2),
and also lead us to look for going deeper into this investigation. The work
currently in progress is gathered in [7] and summarized in 3.3.

3.1 General robustness results for stochastic

control

We suppose a discrete time, finite horizon stochastic control problem to be
given in the form (P ) defined in (1.3). We want to investigate the case in
which the probability P is unknown, and so we have to build an approx-
imating problem (Q) based on an hypothetical measure Q. Our aim, in
particular, is to give a robustness inequality (see 1.2 for the definition) based
only upon the Radon-Nikodym derivative dP

dQ
, which is supposed to exist (i.e.,

P is supposed to be absolutely continuous with respect to Q).

If the problem (Q) is defined simply by substituting the measure Q for
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the measure P , the following problem is obtained:

(Q′)


xt+1 = Ft(xt, πt, ξ

Q
t+1), t = 0, 1, . . . , T − 1

infπ ΦQ(x0, π)

ΦQ(x0, π) := EQ
x0
{C(x, π)}

. (3.1)

Suppose that that Q is such that
∣∣1− dP

dQ

∣∣ 6 γ̃. Since, as already said at the

end of chapter 1, we can always suppose C(x, π) > 0, from a straightforward
calculation one has∣∣EQ

x0
{C(x, π)} − EP

x0
{C(x, π)}

∣∣ =
∣∣EQ

x0

{
C(x, π)

(
1− dP

dQ

)}∣∣ 6 γ̃Mx0 (3.2)

with Mx0 := supπ ΦQ(x0, π). As a consequence, one gets the robustness
inequality

∆x0(P, Q) 6 2γ̃Mx0 . (3.3)

It is clear that this approximation is unsatisfactory from many points of
view. First of all, since both γ̃ and Mx0 are upper bounds for the Radon-Niko-
dym derivative and the value function respectively, the right hand side of (3.2)
is in general much greater than both the optimal values Φ∗

x0
and ΦQ

x0
them-

selves, and thus uninformative. There is not even any information on whether
the optimal value ΦQ

x0
is actually greater or smaller than the real optimal

value Φ∗
x0

.
A way to improve the bounds seems then to redefine suitably the cost

function C in such a way to obtain what we call lower and upper approximat-
ing problems. A problem (Ql) is said to be a lower approximating problem of
(P ) if for every initial state x0 and control π one has ΦQl(x0, π) 6 Φ(x0, π);
analogously, a problem (Qu) is called an upper approximating problem if
ΦQu(x0, π) > Φ(x0, π).

By (3.2) one can define the following cost functions for two approximating
problems, respectively, lower and upper:

ΦQl(x0, π) := (1− γ̃)ΦQ(x0, π) 6 Φ(x0, π)

ΦQu(x0, π) := (1 + γ̃)ΦQ(x0, π) > Φ(x0, π).

Note that ΦQu is always positive, while for ΦQl there are two possibilities. If
γ̃ > 1, then ΦQl 6 0 and it may even be unbounded from below, so that the
lower approximating problem that has ΦQl as value function does not give
any information. On the other hand, in the interesting case γ̃ < 1 (i.e., when
P and Q are next to each other) one has ΦQl > 0 and, if π∗x0

is the P -optimal
control, then

(1− γ̃)ΦQ(x0, π
∗
x0

) 6 Φ(x0, π
∗
x0

) 6 Φ(x0, π
Q) 6 (1 + γ̃)ΦQ(x0, π

Q).
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So, in this situation, π∗x0
must belong to the class

Π∗ := {π ∈ Π | (1− γ̃)ΦQ(x0, π) 6 (1 + γ̃)ΦQ(x0, π
Q
x0

)} ⊆ Π

and we can restrict the computation of Mx0 := supπ ΦQ(x0, π) to the subclass
Π∗, where we get Mx0 = 1+γ̃

1−γ̃
ΦQ(x0, π

Q
x0

). This way, in the case γ̃ < 1, one

can improve the robustness inequality obtained in (3.3) to

∆x0(P, Q) 6 2
γ̃(1 + γ̃)

1− γ̃
ΦQ(x0, π

Q
x0

), (3.4)

whose right hand side, being based upon the Q-optimal value ΦQ(x0, π
Q
x0

)
and no longer upon a sup, is in general much smaller than the right hand
side of (3.3).

As an alternative approach, one can try to treat the Radon-Nikodym
derivative dQ

dP
by using exponentiation together with the linearity of the ex-

pected value. In this situation, we suppose the knowledge of the measure P
to be limited to an upper bound γ for the random variable log

(
dP
dQ

)
. Note

that if such a γ exists, necessarily the support sets for the measures P and
Q coincide, i.e., P and Q are equivalent.

Define Γ(x, π) := log
(
C(x, π)

)
+ log

(
dP
dQ

)
and write

Φ(x0, π) = EP
x0
{C(x, π)} = EQ

x0
{eΓ(x,π)}. (3.5)

To switch the exponential function and the expected value, one may want
to use Jensen’s inequality E{eX} > eE{X}. Unfortunately, this might lead to
estimates too “loose”, because in general such an inequality is quite far from
being an equality.

The idea is then to “partition” the variability domain of the r.v. Γ(x, π)
in order to get the sum of (conditional) expected values of r.v.’s with “small”
variation, which can be estimated more precisely. To do this, we need the
further hypotheses that C(x, π) be bounded, namely, that there are M > m
such that

em 6 C(x, π) 6 eM for every π.

Define now m := m − γ, M := M + γ and consider a partition m = m1 <
M1 = m2 < · · · < Mn−1 = mn < Mn = M of [m, M ]. Writing Ii(x0, π) :=
{mi 6 Γ(x, π) 6 Mi | x0} and Q′

i(x0, π) := Q(Ii(x0, π)) (i = 1, . . . , n),
equation (3.5) becomes

Φ(x0, π) =
N∑

i=1

Q′
i(x0, π) EQ{eΓ(x,π) |Ii(x0, π)}.
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It is now clear that the problems with cost functionals

LQ(x0, π) :=
∑

i Q
′
i(x0, π) emi

UQ(x0, π) :=
∑

i Q
′
i(x0, π) eMi

are, respectively, a lower and an upper approximating problem for (P ). They,
however, still depend on the probability P which enters Γ(x, π) and thus also
the probabilities Q′

i(x0, π).
To eliminate this dependence on P , define

Q′′
i (x0, π) := Q{mi + γ 6 log(C(x, π)) 6 Mi − γ | x0}

Qi(x0, π) := Q{mi − γ 6 log(C(x, π)) 6 Mi + γ | x0}

for every i. Clearly, Q′′
i (x0, π) 6 Q′

i(x0, π) 6 Qi(x0, π) and both Q and Q′′

only depend on P via γ, which is supposed to be known. A lower and an
upper approximating problem “independent” of P can then be defined as

ΦQl(x0, π) :=
∑

i Q
′′
i (x0, π) emi

ΦQu(x0, π) :=
∑

i Qi(x0, π) eMi .

To estimate the distance between the “real” problem (P ) and the upper
approximating problem just defined, calculate

ΦQu(x0, π)− Φ(x0, π) 6

6 ΦQu(x0, π)− ΦQl(x0, π)

=
∑

i Qi(x0, π)(eMi − emi) +
∑

i(Qi(x0, π)−Q′′
i (x0, π)) emi .

Choose now a δ > 0 and fix the partition m = m1 < M1 = m2 < · · · <
Mn−1 = mn < Mn = M in such a way that eMi − emi = δ for all i = 1, . . . , n.
Suppose furthermore that the r.v. log C(x, π) has a probability density func-
tion pQ

log C(x,π) under the measure Q such that, given x0, pQ
log C(x,π) 6 Kx0 for

all π. Then, from the above expression, one gets

ΦQu(x0, π)− Φ(x0, π) 6 δ + 4Kx0γ
∑

i(e
m +iδ)

= δ + 4Kx0γn
(

em +
n− 1

2
δ
)

< δ + 2(eM + em)Kx0nγ

= δ + 2(e2M − e2m)Kx0

γ

δ
.

Now, we want to choose δ in such a way as to minimize the expression
just obtained. It is immediate to verify that δ + 2(e2M − e2m)Kx0

γ
δ

is a
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convex function which for δ(γ) :=
√

2(e2M − e2m)Kx0γ attains its absolute
minimum of 2δ(γ). In the end, then, this “exponential” approach leads to
the robustness inequality

∆x0(P, Q) 6 4
√

2(e2M − e2m)Kx0γ. (3.6)

Note that, in general, there is no exact partition m = m1 < M1 = m2 < · · · <
Mn−1 = mn < Mn = M such that eMi − emi = δ(γ), because eM − em

δ(γ)
might

not be an integer. The above argument makes nevertheless clear that the
optimal partition is the one with n :=

⌈
eM − em

δ(γ)

⌉
points, obtained by setting

m1 := m, Mi = mi+1 := log(em +iδ(γ)) (i = 1, . . . , n− 1) and Mn := M .

The two approaches considered, called respectively the “direct” and the
“exponential” approach, are quite hard to compare with each other.

Carrying out some calculations, it is possible to bound from both sides
the ratio ε

ε̃
, where ε̃ and ε indicate, respectively, the right hand sides of (3.3)

and (3.6). The bounds obtained are, roughly speaking, the product of three
terms depending, respectively, on the Radon-Nykodim derivative dP

dQ
, on the

upper bound Kx0 for the Q-density of the r.v. log(C(x, π)) and on the support
[em, eM ] of the target function. A joint minimization (see [6] for the details)
shows then that the minimum value for ε

ε̃
is approximately 8.14.

This allows to conclude that the direct approach (even in its coarser
form (3.3)) gives much more precise results than the exponential one. Note
also that, as already mentioned, log

(
dP
dQ

)
can be bounded only if P and Q are

equivalent, while this condition is not necessary for the existence of an upper
bound for

∣∣1 − dP
dQ

∣∣. As a consequence, the direct approach can be applied
to a wider class of approximations. Moreover, the direct approach does not
need any hypotheses either on the distribution or on the variability domain
of the r.v. log(C(x, π)), so that it can be applied to atomic or discrete models
or even to unbounded value functions, unlike the exponential one.

On the other hand, the exponential approach features a value function
whose form is different from the original one, and this might be an advantage
from a computational point of view when C(x, π) has a complicated structure.
Indeed, the exponential approach gives both quite good results and very
simple value functions in the case when P and Q are very near, and the idea
of partitioning the variability domain of C gives nontrivial simplifications
even in the case Q = P .

Note that the robustness inequality (3.3) is from many points of view
similar to the one obtained by Gordienko and Salem in [11] (see 2.4). In
particular, if there is a random variable w(x) (depending on all the path x =
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(xt)t) such that C(x, π) 6 w(x) for all π and we can calculate (or estimate)
δx0 := EQ

x0

{
w(x)

∣∣1− dP
dQ

∣∣}, then (3.3) can be improved to ∆x0(P, Q) 6 2δx0 .

In general, however, these results resemble those of [11] and [10] in show-
ing that the approximation of a problem by means of one based upon a
different probability measure is, in general, very sensitive to the distance
between the “real” and the approximating measure.

3.2 Robust and adaptive approaches for the

binomial model

The binomial market model, first introduced by Cox, Ross and Rubinstein, is
one of the most popular discrete-time models in mathematical finance. The
market under consideration is monitored at the discrete times t = 0, . . . , T
and is composed of two assets: a riskless bond B = (Bt)

T
t=0 (that represents,

e.g., a bank account) and a risky stock S = (St)
T
t=0.

The bond is a real valued, positive deterministic process. As it is custom-
ary to do, the bond will be chosen as a “numéraire”, that is, all processes at
time t are discounted with respect to the value Bt of the process B at time
t. In other words, this means that it is not restrictive to suppose the process
B to be constant, and indeed in the sequel we shall suppose Bt ≡ 1.

The stock is a real valued, positive stochastic process on a suitable prob-
ability space (Ω,F , (Ft)

T
t=0, P ) that evolves as follows. Fix two positive real

numbers u > d and let (ξt)
T
t=1 be a sequence of independent and identically

distributed random variables that take values in the set {d, u} with law

p := P{ξ1 = u} = 1− P{ξ1 = d}.

Then, given the initial value S0 for the stock, the binomial model supposes
its dynamics to be written as

St+1 = Stξt+1 t = 0, . . . , T − 1.

This way, the evolution of the stock can be represented as an element of
the set {d, u}T , and its final state assumes the values S0u

kdT−k with law
P{ST = S0u

kdT−k} =
(

T
k

)
pk(1−p)T−k. This is where the name of the model

comes from. Note that a natural definition for the underlying probability
space is

Ω := {d, u}T

F := P(Ω), Ft :=
{
P({d, u}t)× {d, u}T−t

}
P (ω) := pλ(1− p)T−λ where λ := #{t | ωt = u}.
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An investor is supposed to trade in this market according to the following
conditions. The investor can either deposit or borrow any amount of money
from the bank account, that is, there is no limit on the number of units of
bond B that can be traded at each step t. Note that, in the “non discounted”
setting, this also means that we want the interest rate paid for a bank account
to be the same as asked for a bank loan, without limits on their entity.
Analogously, the investor can buy or sell any amount (positive or negative)
of stock S at each time t. In particular, the so-called “short selling” is
allowed, that is, it is possible to own a negative amount of stock. It is useful
to mention the fact that we allow any real value for the amounts of both
stock and bond owned by the investor. Finally, no costs are charged to the
investor for the transactions, that is, any amount of money can be transferred
to the bond from the stock or viceversa without any bank commissions. This
is what is commonly referred to as a “frictionless” market.

We call investment strategy a sequence π = (πt)
T−1
t=0 =

(
(αt, βt)

T−1
t=0

)
which

represents the decision to hold, in each time interval [t, t + 1) up to the last
[T − 1, T ), αt units of the stock S and βt units of the bond B. (In partic-
ular, by analogy with [17], we choose the first of the two possible notations
described in section 1, namely, the control is adapted to the filtration). The
portfolio is defined as the set of the assets owned by the investor, and its
value at time t is thus naturally defined by

Vt := αtSt + βtBt = αtSt + βt

(recall that we consider α to be an adapted process). We want the investment
strategies to be self-financing, that is, once the initial capital V0 is fixed, the
investor is not allowed to add nor to withdraw any amount of capital from the
portfolio. This implies that any loss or gain is determined by the evolution
of the assets (i.e., of the stock), and that at each time t the investor can only
decide to redistribute the wealth he/she owns in such a way that

αtSt + βt = αt−1St + βt−1.

As a consequence, the value of the portfolio can be expressed as a stochastic
process that follows the dynamics

V α
t+1 = Vt + αtSt(ξt − 1), (3.7)

where we use the notation V α
t+1 to stress the fact that under the self-financing

conditions only the first first component of the strategy π affects explicitly
the evolution of the portfolio.

A financial market is said to feature an arbitrage opportunity if there
exists a self-financing investment strategy starting from V α

0 = 0 such that
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V α
T > 0 almost surely and P{V α

T > 0} > 0. Roughly speaking, this means
that an investor can invest in such a way as to be sure not to “lose” anything
and to have a positive probability to “gain” something. We want the market
to be arbitrage-free, that is, there cannot be such an opportunity or, in other
words, any investor willing to gain must take the risk of losing something. It
is a classical result that the absence of arbitrage is equivalent to the existence
of an equivalent martingale measure, that is, a measure P ∗ equivalent to P
such that S is a martingale under the law P ∗. In the binomial case, the
market is arbitrage-free if and only if 0 < p < 1, 0 < d < 1 < u, and the
unique equivalent martingale measure is defined by

p∗ := P ∗{ξ1 = u} =
1− d

u− d
, 1− p∗ = P ∗{ξ1 = d} =

u− 1

u− d
. (3.8)

A simple european contingent claim is a real valued function of the final
state H : R+ → R. As an example, the function H(ST ) := (ST − K)+

represents the payoff of an european call option with strike price K, that is,
a contract between an investor and (say) a bank that gives the bearer the
right (but not the obligation) to buy, at time T , one unit of stock at the fixed
price K. The problem studied and solved by Cox, Ross and Rubinstein is
that of pricing and hedging these claims in the binomial market, and can be
explained as follows.

Consider an investor buying an european call option with strike price K.
If the investor is paying nothing for this contract, then at time T he can
realize an arbitrage by buying one unit of stock at price min{ST , K} and
immediately selling it at the price ST . The user has then to pay a fair price
C∗

t (St) for buying at time t the contract from the bank in such a way that
neither the investor nor the bank can realize an arbitrage by means of the
contingent claim. To price an option means exactly to determine the fair
price (or the set of fair prices) of that option.

The bank selling, say, an european call option with strike price K is in
a risky position, in the sense that the contract is going to cost the bank
H(ST ) = (ST −K)+ at time T . To avoid this risk, the bank wants to find a
self-financing investment strategy αH = (αH

s )T−1
s=t that, starting from a value

V ∗
t (St) (as low as possible) at time t, yields V αH

T = H(ST ) almost surely. If
such a strategy exists, it is called hedging or replicating strategy.

A classical result is that the arbitrage-free price of an european contingent
claim coincides with the optimal initial capital for the hedging strategy and
is given by the Cox, Ross and Rubinstein valuation formula

C∗
t (St) := E∗{H(ST ) | St}, (3.9)
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where E∗{·} denotes the expectation with respect to the equivalent martin-
gale measure P ∗ defined in (3.8). The hedging strategy is given as a function
of the current time and the current value of the underlying stock as

αH
t (St) :=

C∗
t+1(Stu)− C∗

t+1(Std)

St(u− d)
, (3.10)

and indeed, using the formula E∗ {E∗{H(ST ) | St+1}
∣∣ St

}
= E∗{H(ST ) | St}

it is straightforward to check that, if Vt = C∗
t (St), then V αH

t+1 = C∗
t+1(St+1)

with probability 1.

Sometimes it may happen that the arbitrage-free price of a claim is be-
lieved to be too high to make investors willing to pay it. In other situations,
it may happen that the financial institution which sells the claim does not
want to endow the whole sell price of the claim for the hedging strategy. In
both cases, one is led to start an investment strategy with an initial capital
V0 < V ∗

0 (S0).
The results of Cox, Ross and Rubinstein together with the absence of

arbitrage in the binomial market model ensure that no hedging strategy
starting with capital V0 can exist. More in detail, any self-financing strategy
α starting with capital V0 leads to a final value V α

T that is smaller that
H(ST ) with positive probability. In financial terms, one says that the shortfall
(H(ST )− V α

T )+ is greater than zero with positive probability.
A quite natural approach to this situation is the following. The user

who aims at hedging the claim H will define a loss function ` : R+ → R+

to express his/her preferences about “negative” positions. In detail, the loss
function will be increasing, such that `(0) = 0, and respectively concave or
convex depending on the propension or aversion of the user to get into “risky”
positions (i.e., situations such that H(ST ) − V α

T � 0). Once the function `
is fixed, the user will look for the strategy that minimizes the shortfall risk

J0(S0, V0) := ES0,V0{`
(
[H(ST )− V α

T ]+
)
}. (3.11)

The notion of shortfall risk has been known for quite some time. In the more
economically oriented literature, it was also known under the name of “lower
partial moments”. It is present in the financial mathematics literature mainly
since the fundamental paper [8] by Föllmer and Leukert has appeared.

More specifically, we aim at solving the discrete time stochastic optimal
control problem 

(
St+1

V α
t+1

)
=

(
Stξt+1

Vt + αtSt(ξt − 1)

)
infα ES0,V0

{
`
(
[H(ST )− V α

T ]+
)} .
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As a particular case, e.g., one might define the function `(x) := 1(0,+∞)(x):
in this case, the problem of minimizing the shortfall risk is the problem of
minimizing the probability of positive shortfall.

As already mentioned in 2.2, Runggaldier et al. have solved the short-
fall risk minimization problem for the binomial model in the case `(x) = x
(that we shall sometimes call the “mean shortfall minimization problem”).
By explicitly solving the dynamic programming algorithm (see (1.4) for the
definition), they have shown that the optimal control is computed according
to the formula

α∗
t =


C∗

t+1(Std)− Vt

St(d− 1)
if p < p∗

C∗
t+1(Stu)− Vt

St(u− 1)
if p > p∗

(3.12)

and that the optimal value is

J∗
0 (S0, V0) = min

{
p
p∗

, 1−p
1−p∗

}T
(C∗

0(S0)− V0)
+

(the case p = p∗ is not considered, as both the stock and the portfolio are
martingales under the probability P , and so the optimal control is no longer
unique).

This result has two noteworthy features. First of all, it is quite remark-
able that the mean shortfall is exponentially decreasing to 0 in the horizon.
Indeed, this apparently implies that an “almost perfect” hedging could be
achieved with any initial capital, provided that the expiration date of the
contract is “far” enough. The second feature is that, unlike the replicating
strategy of Cox, Ross and Rubinstein seen in (3.10), the optimal strategy
and the optimal value depend on the probability p.

As already mentioned in 2.2, the authors also explore the bayesian ap-
proach to the case of incomplete information, that is, the case in which p is
unknown to the investor. Their result is that, if the prior distribution for p
is proportional to pλ0(1 − p)µ0 and one sets λt := λ0 + #{s < t | ωs = u},
µt := µ0 + #{s < t | ωs = d}, then the bayesian optimal control is

αb
t =



C∗
t+1(Std)− Vt

St(d− 1)
if λt+T−t+1

λt+µt+T−t+2
< p∗[

C∗
t+1(Std)−Vt

St(d−1)
,

C∗
t+1(Stu)−Vt

St(u−1)

]
if λt+1

λt+µt+T−t+2
< p∗ < λt+T−t+1

λt+µt+T−t+2

C∗
t+1(Stu)− Vt

St(u− 1)
if λt+1

λt+µt+T−t+2
> p∗

(see [17] for the details of the proof), where the “interval” notation means
that, in the “undecided” case λt+1

λt+µt+T−t+2
< p∗ < λt+T−t+1

λt+µt+T−t+2
, any value in
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the interval is an optimal choice for αt. Note that, even if the bayesian ap-
proach would theoretically require to recalculate the dynamic programming
algorithm at each t, the formula obtained allows the investor to calculate
the optimal control on the basis of known values at each time t. This way,
the bayesian approach is very efficient from a computational point of view.
Indeed, its only flaw is the fact that, for a typical evolution of the portfolio,
the choice of the optimal policy is “undecided” (i.e., λt+1

λt+µt+T−t+2
< p∗ <

λt+T−t+1
λt+µt+T−t+2

) until a few steps from the final date T .

The dependence upon p of the optimal control (3.12) led us to try to apply
the robust approach studied in [6] (see 3.1) to the mean shortfall minimization
problem in the binomial case. To do this, we suppose not to know the
probability p and we solve the problem for an hypothetical measure Q with
law q := Q{ξ1 = u}. We want then to use the results of [6] (see 3.1) to give a
robustness inequality (as defined in 1.2) based only on the Radon-Nikodym
derivative of Q with respect to P .

Since the final state in this model is a discrete random variable, the
“exponential” approach of [6] is not applicable. To estimate the robustness
inequality (3.3) given by the “direct” approach, then, we have to calculate

γ̃ := sup
∣∣∣1− dP

dQ

∣∣∣, MS0,V0 := sup
α

ES0,V0

{
[H(ST )− V α

T ]+
}
.

The sup of
∣∣1 − dP

dQ

∣∣ can be immediately calculated by considering that the

Radon-Nikodym derivative is concentrated at the points S0u
kdT−k and that

dP

dQ

(
S0u

kdT−k
)

=
(p

q

)k(1− p

1− q

)T−k

=
(1− p

1− q

)T(p(1− q)

q(1− p)

)k

is either increasing or decreasing in k depending on whether p(1−q)
q(1−p)

is greater

or less than 1. As a consequence,
∣∣1− dP

dQ

∣∣ is bounded from above by

γ̃ := max

{∣∣∣∣1− (p

q

)T
∣∣∣∣ , ∣∣∣∣1− (1− p

1− q

)T
∣∣∣∣} .

To determine MS0,V0 is a more complicated matter, as in general the ex-
pression ES0,V0{[H(ST ) − V α

T ]+} is not bounded from above if we consider
all the admissible choices for the control α. To get an upper bound on
this quantity, then, we need to redefine the class of “admissible” controls,
and this can be achieved by examining the proof of [17, Theorem 4.1]. In-
deed, this proof makes clear that at each step t the argument of the inf
in the dynamic programming algorithm is a piecewise linear function of αt
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which is strictly decreasing for αt 6
C∗

t+1(Std)−Vt

St(d−1)
and strictly increasing for

αt >
C∗

t+1(Stu)−Vt

St(u−1)
. So, the optimal control necessarily has to assume, at each

time t, either the value
C∗

t+1(Std)−Vt

St(d−1)
or

C∗
t+1(Stu)−Vt

St(u−1)
depending on whether, re-

spectively, the function to be minimized is increasing or decreasing in the

interval
[C∗

t+1(Std)−Vt

St(d−1)
,

C∗
t+1(Stu)−Vt

St(u−1)

]
. This way, we can define

α
(1)
t (St, Vt) :=

C∗
t+1(Std)− Vt

St(d− 1)
, α

(2)
t (St, Vt) :=

C∗
t+1(Stu)− Vt

St(u− 1)
, (3.13)

and consider only the investment strategies belonging to the class

Π :=
{
(αt)t | αt ∈ {α(1)

t (St, Vt), α
(2)
t (St, Vt)} for every t

}
. (3.14)

A slight modification of the cited proof allows indeed to see that if a control
α ∈ Π is chosen, one has

ESt,Vt

{
[H(ST )− V α

T ]+
}

=
( p

p∗

)λt
( 1− p

1− p∗

)T−t−λt

(C∗
t (St)− Vt)

+ (3.15)

where λt := #{s > t | αt = α
(1)
t (St, Vt)}. (From now on, when there will be

no ambiguity, we shall not make explicit the dependence of α
(i)
t on the current

values of the stock and the portfolio, and write α
(i)
t instead of α

(i)
t (St, Vt).)

In particular, then,

MS0,V0 := sup
α

ES0,V0

{
[H(ST )− V α

T ]+
}

= max
{ p

p∗
,

1− p

1− p∗

}T

(C∗
0(S0)− V0)

+,

and the right hand side of the robustness inequality (3.3) can be calculated.
Note that the upper bound obtained this way can be dramatically big.

Indeed, both γ̃ and MS0,V0 are exponentially increasing in the horizon T , and
this seems to suggest that the optimal strategy for the nominal/approximat-
ing problem (Q) could lead to great errors when used to control (P ). This
impression is supported by observing that, by (3.15) and the expression for
the optimal control found by Runggaldier et al. as reported in (3.12), if p
and q lie on opposite sides of p∗ then the Q-optimal control is indeed the
“P -worst” control, i.e., the one that realizes the sup in the calculation of
MS0,V0 .

This allows also to better understand the results of the bayesian ap-
proach reported above. It is indeed clear that, when the investor is not
sure on whether p is greater or less than p∗, choosing either α = α(1) or
α = α(2) could mean choosing the “worst” control in the sense explained
above. This explains the “undecidedness” of the bayesian control in the
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case λt+1
λt+µt+T−t+2

< p∗ < λt+T−t+1
λt+µt+T−t+2

. On the other hand, it seems that the
bayesian approach, being based on the dynamic programming algorithm with
an unknown value for p, could lead to big errors in the average.

These considerations seem to suggest that one should look for an adaptive
control that minimizes the shortfall risk on a “step-by-step” basis, instead
of relying on the DP algorithm. A way to formulate such a control comes
from (3.14) and (3.15). From (3.15) comes indeed that, at each time t,

the effect of choosing αt = α
(1)
t (respectively, αt = α

(2)
t ) is to multiply the

shortfall risk by p
p∗

(respectively, 1−p
1−p∗

). As a consequence, one is led to

choose, respectively, αt = α
(1)
t or αt = α

(2)
t depending on whether, given

the information gathered up to time t, he/she believes “more likely” to be
p
p∗

< 1−p
1−p∗

(i.e., p < p∗) or p
p∗

> 1−p
1−p∗

(i.e., p > p∗). So, defining FS
t := σ{Ss |

s 6 t} the σ-algebra that represents the information gathered up to time t
and supposing that at each time t we can estimate rn := P{p 6 p∗ | FS

t },
we have proved that the best adaptive choice in the class Π to minimize the
shortfall risk is the control

α†
t =

{
α(1) if rn > 1/2

α(2) if rn > 1/2
.

To investigate the behaviour of the strategies seen so far (namely: the
“deterministic” strategy α∗ defined in (3.12) for the complete information
case, the “robust” strategy αQ defined as α∗ for an hypothetical value q used
instead of p, the bayesian strategy αb of [17] and the adaptive strategy α†

just defined), a computer program written by the author has been used. In
the case of an european call option, the program randomly determines a
possible evolution of the stock and computes the evolution of the portfolio
according to the four investment strategies taken into consideration. When
the bayesian strategy is “undecided”, the program uses as a value for the
optimal control the middle point of the interval of possible choices.

The typical output of the program is shown in [5, Figure 1], and the
outcomes were, at first, hard to interpret. In most of the simulation runs,
indeed, all controls gave coincident portfolio evolutions and yielded perfect
hedging of the claim, even in the case (q − p∗)(p − p∗) < 0 where πQ is the
P -worst control. The only exception to this situation is the bayesian strategy,
which also leads to perfect hedging but coincides with the others only from
some t on.

Trying to understand how the “best” and the “worst” controls could yield
the same results led to a property of the strategy α∗ defined in (3.12) that
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was not stressed in [17]. One starts by showing, by using straightforward

calculation, that α
(1)
t (s, v) = α

(2)
t (s, v) if and only if v = C∗

t (s) (see (3.9)),
and that in this case they both coincide with the replicating control αH

t (s) =
C∗

t+1(su)−C∗
t+1(sd)

s(u−d)
of Cox, Ross and Rubinstein (see (3.10)). Hence it follows

that if Vt = C∗
t (St) for some t, then choosing either αs = α

(1)
s or αs = α

(2)
s

for t 6 s 6 T is the same as following the CRR hedging strategy, and thus
leads to perfect hedging. Another straightforward calculation shows that if
αt = α

(1)
t and ξt+1 = d then Vt+1 = C∗

t+1(St+1), and analogously if αt = α
(2)
t

and ξt+1 = u then Vt+1 = C∗
t+1(St+1).

These results show that the controls belonging to the class Π of (3.14)
are “quasi-replicating” in the following sense. Given a control α ∈ Π, define
ω(α) by (

ω(α)
)

n
:=

{
u if αn = α

(1)
n

d if αn = α
(2)
n

. (3.16)

Then any strategy α ∈ Π gives perfect hedging on all events ω 6= ω(α). In

particular, if one defines λα
T := #{t | αt = α

(1)
t }, any strategy α ∈ Π leads to

perfect hedging with probability 1− pλα
T (1− p)T−λα

T , which is next to 1 when
T is big. Moreover, it is straightforward to derive from this result and (3.15)
that in the “critical” event ω(α) one has

H(ST (ω(α)))− V α
T (ω(α)) =

( 1

p∗

)λT
( 1

1− p∗

)T−λT

[C∗
0(S0)− V0]

+.

This explains why the deterministic strategy α∗ and the robust strategy αQ

behave the same way in most events (namely, on all ω /∈ {ω(α∗), ω(αQ)}),
and supports the decision to restrict the class of admissible controls to Π. On
the other hand, it is noteworthy that in the “critical” event, the final shortfall
is exponentially increasing in the horizon. As we shall see in the next section,
this is typical of the so-called “risk prone” situation, which classically refers
to the case in which the function ` in (3.11) is concave. In other words, the
results of [5] together with those of [7] also show that the case `(x) = x can
be considered a particular case of the case in which ` is concave.

3.3 Extensions of the previous results

As seen in the previous section, the results of [5] (and those of [17], upon
which [5] is based) refer to the “mean shortfall minimization problem”, i.e.,
the particular case `(x) = x for the shortfall risk minimization problem as
defined in 3.11. A natural question is whether some similar properties hold
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for a more general choice of the function `, and the work currently in progress
(see [7]) is an investigation into this question. This section is written in the
same setting and with the same notations of the previous one.

The dynamic programming algorithm proved to be a master tool in solv-
ing the mean shortfall minimization problem. Also, many of the results of [5]
(e.g., the “quasi-replicating” property of the controls belonging to the class
Π defined in (3.14)) come in a more or less direct way from the DP algorithm
itself. It is then reasonable that the investigation about the general shortfall
risk minimization problem starts from understanding which properties of the
optimal cost-to-go can be deduced from the DP approach. The research is
then conducted separately in the “concave” (i.e., risk prone investor) and in
the “convex” (i.e., risk averse investor) case, as it is reasonable to suppose
that investors with opposite attitudes towards the possibility of getting into
risky positions will choose strategies with different behaviours.

The final goal of our study is to show that, as it is reasonable to expect,
some continuity properties of optimal values and optimal strategies with
respect to the form of the loss function hold. Moreover, we also want to
investigate the robustness (in the classical sense of the robustness problem
defined in section 1.2) of the optimal strategies with respect to different
loss functions. This part of the work, together with the investigation about
the properties of the optimal strategies/values in the convex case, is still in
progress.

The dynamic programming algorithm

The dynamic programming algorithm in the shortfall risk minimization prob-
lem takes the form

JT (s, v) : = `
(
[H(s)− v]+

)
Jt(s, v) : = inf

α
E{Jt+1(St+1, V

α
t+1) | St = s, V α

t = v}, n = 0, . . . , N − 1,

and the recursive step can be written more explicitly as

Jt(s, v) = inf
α
{pJt+1(su, v + αs(u− 1)) + (1− p)Jt+1(sd, v + αs(d− 1))}.

For simplicity of notation, we use the intermediate recursive definition

ju
t (s, v, α) := pJt(su, v + αs(u− 1))

jd
t (s, v, α) := (1− p)Jt(sd, v + αs(d− 1)),

(3.17)

so that Jt(s, v) := infα{ju
t+1(s, v, α) + jd

t+1(s, v, α)}.



46 Our results

From the assumption that ` is increasing, it is straightforward to prove by
backwards induction that ju

t (s, v, α) and jd
t (s, v, α) are decreasing in v and,

respectively, increasing and decreasing in α for every t = 1, . . . , T . Hence
one obtains the immediate conclusion that also Jt(s, v) is decreasing in α
for every t. Moreover, since JT (s, v) = 0 for v > H(s) = C∗

T (s) (where
C∗

t (·) is the CRR valuation formula as defined in (3.9)), carrying out some
calculations it can be shown that for every t = 0, . . . , T it is

ju
t+1(s, v, α) = 0 for α 6 α

(2)
t (s, v),

jd
t+1(s, v, α) = 0 for α > α

(1)
t (s, v)

(3.18)

where

α
(1)
t (s, v) :=

C∗
t+1(sd)− v

s(d− 1)
, α

(2)
t (s, v) :=

C∗
t+1(su)− v

s(u− 1)

are defined analogously to (3.13). Since a straightforward calculation shows

that α
(1)
t (s, v) < α

(2)
t (s, v) if and only if v < C∗

t (s), from this result it follows
that Jt(s, v) = 0 for v > C∗

t (s), because in this case it can be checked that

ju
t+1(s, v, α) = jd

t+1(s, v, α) = 0 for any α ∈ [α
(2)
t (s, v), α

(1)
t (s, v)].

Equation (3.18), together with the monotonicity of ju
t and jd

t with respect

to α, also shows that ju
t (s, v, α)+jd

t (s, v, α) is increasing in α for α > α
(1)
t (s, v)

and decreasing in α for α 6 α
(2)
t (s, v). This implies that, when v < C∗

t (s),
Jt(s, v) can be calculated according to the formula

Jt(s, v) = inf
α∈[α

(1)
t (s,v),α

(2)
t (s,v)]

{ju
t+1(s, v, α) + jd

t+1(s, v, α)}. (3.19)

In particular, since we shall prove that ju
t and jd

t are continuous in α for every
t both in the concave and in the convex cases, the inf is realized as a min
for some α ∈ [α

(1)
t (s, v), α

(2)
t (s, v)], so that this result has as an immediate

consequence the existence of an optimal strategy.

Risk prone investor, ` concave

Since the expected value is a linear functional and the minimum of linear
functions is a concave function, it is straightforward to prove that when `(x)
is a concave function on R+, then Jt(s, v) is also concave in v on the half-line
(−∞, C∗

t (s)] for every t = 0, ·, N . Hence it follows that when v < C∗
t (s),

then ju
t+1(s, v, α) + jd

t+1(s, v, α) is concave with respect to α on the interval

[α
(1)
t (s, v), α

(2)
t (s, v)].
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It is well known that a concave function on an interval can attain its
minimum value only at the extremal points, so that formula (3.19) allows
us to conclude that we can restrict the class of admissible controls to the
class Π defined in (3.14). In particular, analogously to the case `(x) = x, the
admissible controls for this problem are “quasi-replicating” as shown at the
end of the previous section.

To determine the optimal strategy in the concave case is a more compli-
cated matter than in the case of the mean shortfall minimization. Indeed,
the condition to choose between α∗

t = α
(1)
t and α∗

t = α
(2)
t is no longer as

simple as it is in the case `(x) = x. (see (3.12)). By backwards induction
based on the DP algorithm, it is still possible to determine the shortfall risk
associated to every admissible strategy α ∈ Π as

ESt,Vt

{
`
(
[H(ST )− V α

T ]+
)}

= pλt(1− p)T−t−λt`

(
C∗

t (St)− Vt

(p∗)λt(1− p∗)T−t−λt

)
where, as in previous section, λt := #{s > t | αs = α

(1)
s . (As in the pre-

vious section, we still use the convention to write for short α
(i)
t instead of

α
(i)
t (St, Vt).)

A straightforward consequence is that the optimal value for every t =
0, . . . , T is

Jt(St, Vt) = min
k=t,...,T

pk−t(1− p)T−k`

(
C∗

t (St)− Vt

(p∗)k−t(1− p∗)T−k

)
.

Hence it might seem that to determine the optimal strategy it is necessary to
find, at each time t, the minimum of all the possible T−t+1 “outcomes” and
to choose a strategy accordingly. Unfortunately, if kt realizes the min in the
above formula, any strategy α ∈ Π such that #{s > t | αs = α

(1)
s } = kt − t

is optimal, and then, since there are
(

T−t
kt−t

)
such strategies, this result is

still insufficient to give an algorithm to determine the choice of the optimal
strategy. (Indeed, as it is shown with an example, it might happen that the
minimizer kt is different both from t and T . This was not the case in the
mean shortfall minimization, because – as it can be deduced from (3.12) –

the optimal strategy is to choose either α∗
t = α

(1)
t for every t or α∗

t = α
(2)
t

for every t, which respectively correspond to the cases in which, for every t,
either kt = t or kt = T .)

As a possible solution to determine an optimal control, we propose an
algorithm based on a “branch and bound” like procedure, and show that the
optimal control can be computed by the formula

α∗
t =

α
(1)
t (St, Vt) if pT−t`

(
C∗

t (St)−Vt

(p∗)T−t

)
6 (1− p)T−t`

(
C∗

t (St)−Vt

(1−p∗)T−t

)
α

(2)
t (St, Vt) if pT−t`

(
C∗

t (St)−Vt

(p∗)T−t

)
> (1− p)T−t`

(
C∗

t (St)−Vt

(1−p∗)T−t

) .
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Since this algorithm yields the optimal control in linear time with respect to
the horizon, it is also optimal from a computational point of view. For the
exact definition of the algorithm and details about the proof that it actually
leads to the optimal value, we refer to [7].

Risk averse investor, ` convex

It is reasonable to expect that, by analogy with the concave case, Jt(s, v) is
convex in v for every t when ` is convex. This property is nevertheless not
as straightforward to obtain as its concave counterpart, because (as already
observed) the minimum is a strictly concave operator.

To prove the convexity of the optimal cost-to-go, we start by considering
that, since ` is convex, it is possible to show that the functions ju

T and jd
T

defined as in (3.17) are convex in v and α in the sense that for every s and
for every convex combination (v, α) = λ1(v1, α1) + λ2(v2, α2), it is

j†T (s, v, α) 6 λ1j
†
T (s, v1, α1) + λ2j

†
T (s, v2, α2)

(with † = u, d). In particular, then, this ensures that the inf in the recursion
to determine JT−1 according to the dynamic programming is realized as a min
for some α. Take now every convex combination v = λ′v′ + λ′′v′′, and choose
α, α′ and α′′ so as to minimize, respectively, [ju

T + jd
T ](s, v, ·), [ju

T + jd
T ](s, v′, ·)

and [ju
T + jd

T ](s, v′′, ·). By exploiting the proved convexity of ju
T and jd

T and
the minimality of α, one then has

λ′JT−1(s, v
′) + λ′′JT−1(s, v

′′) = λ′[ju
T + jd

T ](s, v′, α′) + λ′[ju
T + jd

T ](s, v′′, α′′)

> [ju
T + jd

T ](s, v, λ′α′ + λ′′α′′)

> [ju
T + jd

T ](s, v, α) = JT−1(s, v),

which proves the convexity of JT−1 as desired. The convexity of Jt(s, v) with
respect to v for every t is proved by backwards induction in a similar way.

As already noticed, this has as an immediate consequence the existence
of an optimal solution for the shortfall risk minimization problem in the
convex case. Moreover, if ` is strictly convex, Jt is also strictly convex for
every t, and this allows to conclude that the optimal strategy is unique. The
investigation about the properties of these optimal strategies is, as already
mentioned at the beginning of this section, still in progress.
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[1] J. Cvitanić, I. Karatzas, On dynamic measures of risk, Finance &
Stochastics 3(4), 451-482 (1999).

[2] P. Dupuis, M. R. James, I. Petersen, Robust properties of risk-sensitive
control, Math. Control, Systems & Signals 13, 318-332 (2000).

[3] P. Dai Pra, L. Meneghini, W. J. Runggaldier, Explicit Solutions for
multivariate, discrete-time control problems under model uncertainty,
Systems & Control Letters 34, 169-176 (1998).

[4] P. Dai Pra, C. Rudari, W. J. Runggaldier, On dynamic programming for
sequential decision problems under a general form of uncertainty, Math.
Meth. Oper. Res. 45, 81-107 (1997).

[5] G. Favero, Shortfall risk minimization under model uncertainty in the
binomial case: adaptive and robust approaches, Math. Meth. Oper. Res.
53, 493-503 (2001).

[6] G. Favero, W. J. Runggaldier, A Robustness Result for Stochastic Con-
trol, 39th IEEE Conference on Decision and Control proceedings, “short
paper” n. 1024 (vol. 1, 3349-3350), Sydney (2000). Also Università di
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