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Introduction

Airport delays are at anytime in the history a current problem from both the trav-

elers' and the airport system's sight. For passengers delays are annoying and can

cause troubles to their plans, for the airport organization including the airline com-

panies and the air tra�c controllers instead imbalances between scheduled �ight

plans and actual operations are behind the delays and very often translate into

higher managerial costs. Many authors and researchers focused on this challenging

issue and proposed di�erent valid models, deterministic or stochastic, and feasible

solutions.

What we propose is a stochastic optimization algorithm with the attempt to

model the airport congestion system and work out a solution to minimize delays

and reduce associated costs. Taking inspiration from a past research developed by

Jacquillat and Odoni (2015 and 2017) we built a Finite�Horizon Dynamic Pro-

gramming algorithm able to return the optimal combination of rates between

arrivals and departures at which serve aircraft asking for landing and take�o�

respectively. The airport con�guration is indeed seen as a queuing system where

customers are the aircraft and the server is the runway. Queues are modeled as

k�order Erlang distributions and probabilities of state transitions are de�ned. The

elaborate details how the algorithm works and which parameters it requires to be

run. The estimates of them and the validation of the model have been made pos-

sible through the application of the research to a real dataset forwarded by ENAV

S.p.A, the National Flight Assistance Institution. The work has indeed acquired

concreteness through its application to the case of Marco Polo airport in Venice.

One of the strong points of the model is taking into consideration also the

weather in�uence on the choice of the best service rate to adopt. Up to our knowl-

edge the previous literature on air tra�c management does not directly consider

the weather variability exerted on service rates by building a stochastic model

accounting for the dynamic evolution of the variables in�uencing the possible fu-
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ture changes of the weather state. Actually meteorological factors with no doubts

condition tra�c operations by constraining the airport capacity, the aircraft e�-

ciency and the airlines and systems' on time performance. On the one hand we

thought about the underlying trade�o� between the number of arrivals and depar-

tures served in a same period of time and tried to model this type of relationship

by means of a non parametric shape�constrained B�spline. On the other hand we

proposed an advanced Hidden Markov model that extracts a latent factor repre-

senting the weather variable from the observed data. Thinking about that variable

as a combination of visibility conditions and wind strength and direction, suppos-

ing for the former a Gaussian model and for the latter a Binomial distribution,

we considered a Gaussian�Binary model for the weather variable. With the aim

to succeed in extrapolating information about which state the airport system is

in a given time period we completed the model by means of a Markov chain that

drives the hidden states at each time point. For the parameters' estimation we

made use of the Expectation�Maximization (EM) algorithm (McLachlan and Kr-

ishnan 2007) introducing two missing data structures, one for the unobservable

Markovian states and the other relying to the Pólya�Gamma distribution (Polson,

Scott, and Windle 2013) introduced for the representation of the logistic model

about the parameter of the aforementioned Binomial distribution. More precisely

we will talk about Conditional EM algorithm as, splitting a day of operation into

periods of equal time�length, we formalized one transition probability matrix of

the Markov chain per each time period, conditioning the probability to be in one

of the possible weather states by the time.

To add credit to our study research, after applying the models to data we

compared our results with a hypothetical solution and found out that our optimal

proposal produces a gain in costs up to the 80% in some cases. We �nally advanced

a comparison with what is supposed to be happened in reality by means of the

resulting queue lengths, directly linked to congestion costs.



Chapter 1

Operational Research and Statistics

1.1 The airport system and its management

In the air transportation industry �ights are usually planned several months in

advance, with airlines companies requiring and conquering the slots in the origin

and destination airports. A slot is the permission that an aircraft is given to oper-

ate its arrival or departure using the runway and the necessary infrastructure at

the coordinated airport. The Network Manager (NM) is the central �gure of the

European Air Tra�c Management (ATM) and he looks after the alignment of air

tra�c demand with available slots and airport capacity (Ivanov et al. 2017).

Air tra�c system plans and regulations on which airports base their operations

are di�erent between European and non�European contexts. Indeed thinking about

Europe, eurocontrol is the intergovernmental Supporting European Aviation

organization in charge of building a Single European Sky (SES) that will deliver

the ATM performance. Its role's aim is to help the Member States which form part

of eurocontrol's operational area run safe, cost�e�cient and e�ective air tra�c

operations throughout the European region (https://www.eurocontrol.int/).

eurocontrol has been nominated in July 2011 by the European Commis-

sion as the Network Manager, with a mandate that will last until the end of the

https://www.eurocontrol.int/
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year 2019. The NM's mission is to contribute to address the ATM's performance

in the European network in the safety, environment e�cacy, cost�e�ciency and

capacity areas. The Network Manager covers the whole of Europe, from Ireland

to Armenia and from Morocco to Finland. It handles millions of �ights a year ac-

counting summer peaks resulting inevitably in the creation of bottlenecks, in the

airspace or at some airports during a day of operations. Any disruption, namely

a runway out of action, bad weather conditions or technical failures for example,

can translate into management di�culties. eurocontrol indeed receives �ight

plans for all the commercial �ights in the area it covers and the declared capacity

limits for air tra�c control centers and airports across the continent. Then if a

system disruption occurs, the organization may reduce the rate at which aircraft

can land. This operation is called a regulation.

Contextualizing an airport into the speci�c Operational Research �eld, it is

compared to a queuing system. The service is provided by the runway(s) used to

serve arrivals and take�o�s (referring to movements in general), while the entities

that require for it are the aircraft. These last join the queue when they demand

for the usage of the runway system to land or to depart. Airports contemplate a

service based on a First�Come�First�Served (FCFS) policy, thus equally consider-

ing every single aircraft and airline. On the other side the demand is managed by

giving the aircraft a slot stating when it can take o�, and the corresponding time is

indicated as CTOT (Calculated Take�O� Time). Normally, the aircraft should take

o� within 15 minutes of the time stated in its �ight plan1 otherwise it loses its

chance to use that slot with the consequent need to reapply for another one.

From the on time performance sight, the gap between scheduled and actual

times represents the delay. Most of times delays occur in response to noticeable

imbalances between demand scheduling and airport capacity and these imbalances

pour on the total costs. For example in the United States the total cost was es-

1Normally this is the rule but if a slot is necessary then the 15�time minutes window is shrunk

to within 5 minutes before the CTOT or within 10 minutes after the CTOT.
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timated at over $30 billion in 2007 (Jacquillat and Odoni 2015). The question

of alleviating airport congestion has become in the years a real challenge in air

tra�c management. It can be faced for example through interventions like infras-

tructure expansions thinking about the construction of new extra runways. This

intervention however other than requesting a high money investment needs also the

material space and speci�c conditions to be realized. Because of that it's a hardly

feasible solution to the problem. Other ways could be improving air tra�c con-

trols and technologies or even adopting di�erent demand management measures

like congestion pricing or slot control policies.

1.2 Literature review

Existing approaches even if concerning all about the disruptions in �ight schedules

and aiming all to the related delays' minimization di�erentiate for the objective

of the models and for where they want it to assist the problem. As Baspinar et

al. (2016) point out, cause of the rapid growth of the air transportation industry

and the continuous increase in the number of �ights, the ATM system must see

an operational transformation to face the challenge. Airports are the most frag-

ile components of the air tra�c network system as the most in�uential events to

the tra�c �ow happen there. Hence it's quite common and proper to focus on

the airports on model construction (Baspinar, Koyuncu, and Inalhan 2017). Re-

calling some previous works and researches on airport congestion systems, there

are many and following di�erent approaches as anticipated. For example Bard,

Yu, and Argüello (2001) in their work build a time�band optimization model with

the aim of minimizing costs associated with aircraft schedule disruptions by re-

assigning aircraft to �ights. They take into account the system constraints like

the available resources or the curfews and represent the airport system as a two

dimensional time�space network made of station�time and station�sink nodes and

�ight and termination arcs. Pyrgiotis, Malone, and Odoni as well as computing
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local delays at airports also study how they propagate over the network and elab-

orate a dynamic ad stochastic queuing model, named the Approximate Network

Delays (AND) model (for a detailed description see Pyrgiotis, Malone, and Odoni

2011). Many authors attempted in di�erent ways to mitigate the airport conges-

tion for example improving slot adherence (see Ivanov et al. 2017), or changing

slot allocation with deterministic models (see Baspinar, Koyuncu, and Inalhan

2017), or again intervening in the original �ight schedules, allowing �ights to be

delayed, swapped or canceled if necessary (see Arias et al. 2013). Other works

and models have been developed to solve this problem regarding the Air Tra�c

Flow Management (ATFM) and the ATM. Some examples are the Air Tra�c Net-

work Flow Optimization (ATNFO) and the Multi�objective Air Tra�c Network

Flow Optimization (MATNFO) models whose aims are alleviating airspace con-

gestion and reducing �ight delays globally and simultaneously respectively. There

exist various ATFM actions to rebuild aircraft �ight routes and reaching then the

optimization aim, and these are ground�holding, airborne�holding, rerouting and

speed control. An alternative model considering two e�ective ATFM actions, the

airborne�holding and the speed control, comes from Cai et al. 2017. Their model

is an improvement of the MATNFO model but additionally including these two

possible actions. The approach takes inspiration from a large�scale, non�linear,

discrete and multi�objective model called Multi�objective Evolutionary Algorithm

(MOEA) and results in the Route and Time�slot Assignment (RTA) algorithm.

A di�erent and innovating approach among all has been brought by Jacquillat

and Odoni that in 2014 proposed and published a new approach involving the rep-

resentation and estimation of the airport capacity itself, being directly determining

the discussed imbalances and delays. Their model develops an original approach to-

wards the airport congestion representation. It integrates a subtle characterization

and tactical modeling of capacity utilization into a strategic model of airport con-

gestion, combining a control of arrival and departure service rates into a stochastic

and dynamic queuing process. In the real situation of airports air tra�c managers
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exercise a control over the runway con�guration in use and the balance of arrivals

and departures to make the best use of available capacity over the course of the

day. Hence the attempt of the model is to re�ect the task of air tra�c managers,

making gaining high value to the work. Additionally airport capacity depends on

many operational factors including weather and wind conditions, the service rate

at which landings and take�o�s are performed and the runway con�guration in use.

Given that these factors are varying with the time and cannot be exactly known

before they are really observed, including the stochasticity element in airport con-

gestion models proves to be relevant. Deterministic methods even if they might

be faster and more e�cient from the computational point of view are nevertheless

limited, then the advantage of introducing stochasticity to the models is about

the ability to re�ect the inherent stochasticity in air tra�c networks (Baspinar,

Koyuncu, and Inalhan 2017).

1.3 Model categories and definitions

Models of airport congestion can be classi�ed into three main categories: micro-

scopic, mesoscopic and macroscopic models (Jacquillat and Odoni 2015).

Microscopic models consider individual behaviors of every single aircraft and

focus precisely on the sequencing of movements that determine the operational

day at an airport. Due to their precision and peculiar analysis, microscopic models

provide a high level of detail but require a large amount of data to be run.

Mesoscopic models predict taxi times and runway delays at airports using real

available data, such as the runway con�guration in use, the arriving and departing

�ight schedules, etc. Their contribute might be useful but their requirement of

real operational data represents a limit in their applicability for strategic planning

aims when data are not available.

Macroscopic models instead work on an aggregate level. These models develop

e�cient estimation procedures for the relationship between scheduled and actual
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Table 1.1: Classi�cation of the busiest airports by aircraft movements with reference to

the year 2017 � Airports Council International.

�ight times and airport capacity, thus o�ering support to the strategic planning.

Among many di�erent approaches applied to airport systems and real situa-

tions, we chose to follow the one whose procedure and appliance would have lead

to a chance in �nding an optimal solution in the strategical airport operational

planning. The model we propose can thus be classi�ed into the category of the

macroscopic ones. The idea of studying a model which might be as much as pos-

sible adaptable to the real situation is not for its own sake. Its validation through

the appliance to real circumstances at Marco Polo airport has made concrete the

optimization theory and may contribute to develop a better strategic plan for the

airport management. Already in several past researches, models from less complex

to more elaborated have been applied to real data but the majority of these ap-

plications is with regards to the US airports. The reason is linked to the fact that

they have been the �rst busiest in the world by aircraft movements for at least the

last 12 years, as shown in Table 1.1 referring to the year 2017. The factors that

may cause disruptions in the �ight schedules are many: weather phenomena, cas-

cade propagation delays, hindrances to on time performance from passengers and

also technical problems, low e�ciency of pilots and controllers in their functions,

ground operations and the organization of the service system.

According to the circumstances and the reasons causing a delayed �ight, the
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Airport name Country Sub Region Star Rating

Milan Malpensa Apt Italy Western Europe 3 stars

Catania Italy Western Europe 1 star

Pisa Italy Western Europe 2 stars

Rome Ciampino Apt Italy Western Europe 2 stars

Rome Fiumicino Apt Italy Western Europe 2 stars

Milan Linate Apt Italy Western Europe 4 stars

Florence Peretola Apt Italy Western Europe 3 stars

Palermo Italy Western Europe 4 stars

Venice Marco Polo Apt Italy Western Europe 3 stars

Bologna Guglielmo Marconi Italy Western Europe 2 stars

Milan Bergamo/orio al Serio Apt Italy Western Europe 4 stars

Naples Capodichino Apt Italy Western Europe 3 stars

Table 1.2: Review on the on time performance for Italian airports with reference to the

year 2017. One star is the minimum score, �ve starts the maximum. Results are provided

from the Star Ratings Programme � OAG.

delay can be of two types (Pyrgiotis, Malone, and Odoni 2011): upstream or local.

The upstream delay is the one propagated and dependent on what has happened

before the delayed �ight, while the local one refers to the delay incurred at each

individual airport during a visit by an aircraft using that runway system. As con-

trolling upstream delays is hard, not to say impossible, once they depend on other

factors than those directly linked to the delayed �ight, the best way of control

focuses on the local delays. Furthermore the decision to center particularly on

the local tardiness is even more reasonable if we want to improve the on time

performance of �ights with regards to a speci�c air�eld. Thus as our analysis is

especially applied to Marco Polo airport in Venice the intention here �nds justi�ca-

tion. According to the On�Time Performance Stars Ratings Programme issued by
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the OAG (O�cial Airline Guide) organization the major Italian airports occupy

in 2017 a middle position. Table 1.2 shows the assigned ratings to them and Marco

Polo received 3 stars, in a range from 1 to 5. The Programme works on an ongoing

accreditation of airlines and airports awarding a star rating twice a year based on

12 months' rolling performance. Airports with the best pro�le receive �ve stars

(https://www.oag.com/) while the poorest performers just one.

https://www.oag.com/


Chapter 2

Stochastic optimization model of airport
congestion

2.1 Theory formulation

Taking inspiration from the study developed by Jacquillat and Odoni (2015 and

2017), whose original approach was applied to airport congestion modeling, the

purpose of the thesis is the optimization of airport e�ciency in terms of costs and

on time performance. The idea was to imitate the air tra�c managers' work to

continuously decide the best service rate during each day of operations at airports.

With service rate, distinguished between arrival and departure, we mean the num-

ber of aircraft given the allowance to land or to take o� respectively. As the airport

has its own capacity �rst of all resulting from the disposable and available to use

runway(s), there is a maximum limit of aircraft which can take part in the service

and there exists a trade�o� between those requiring to land and those asking for

departure. And it is exactly from here that the need arises to wisely allocate de-

parting and arriving �ights in time in order to avoid the formation of long queues

and the increase of congestion costs. Indeed there are some costs associated to the
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queue lengths and usually the ones stemming from the arrivals are higher than

those stemming from the departures. Closely related to the queues, �ight delays

are quanti�ed as the di�erence between the actual and the scheduled time for

the operations, being it either the gate�in/gate�out or the take�o�/landing time.

Flight delays a�ect the on time performance of the airport.

We already introduced the airport system into the queuing theory prospective.

Provided that, the attention must be paid now to the two main processes that take

place in the air�eld: the landing and the take�o�. Arrival and departure queues

can be considered as two distinct but not independent M(t)/Ek(t)/1 queuing sys-

tems, where the demand and the service are respectively modeled as Poisson and

Erlang of order k processes. The value of k can be chosen according to a reasonable

criteria, with the consciousness that the smaller the value is set the more variable

the service process is assumed to be.

For each of the considered systems, both their demand and service processes

are random time�varying and even if they are not independent their stochastic

evolution instead is. On the one hand the arrival and departure queuing systems

are dependent considering that they share the same weather conditions to which

they are subjected to in a same period. Moreover they should result in being nega-

tively correlated: in general an increasing departure throughput is associated with

a decreasing arrival throughput, and conversely. On the other hand the evolutions

of the two queues, stochastic with respect to the dependence on out�of�control and

no deterministic factors, are to be considered independent between each others.

Indeed for example on a given day and for given values of service rates, the ar-

rival queue length might be shorter than expected while the departure one longer

(Jacquillat and Odoni 2015).

The Erlang distribution assumed for the dependent service processes is a wise

choice. Typically in queuing systems formulations the favorite combination is Pois-

son plus Exponential (for further details refer to Gross and Harris 1999), but the

choice of an Erlang distribution brings its advantages. Providing more �exibility



2.1 Theory formulation 27

in modeling than the Exponential family that only has one parameter is the de-

termining one.

If the aim was to quantify and study the evolution of queue lengths in a day

of operations, this model would have been a good proposal. But being the goal

related to the choice of the best service policy that minimizes the congestion at

the airport, it was allowed to use real data information at least for the demand

process. As a matter of fact at the beginning of the day air tra�c managers are

given the plan of the arriving and departing aircraft. Hence instead of complicating

the model introducing a stochastic demand, like the summoned Poisson process,

we decided to use the available information about the scheduled �ight plans for a

selected day. The �ight plan however can reasonably change during the day, just

think about late passengers or bad weather conditions that force departures to be

postponed or delays occurring from late arriving aircraft that change the initial

schedules. Accordingly omitting the stochastic element would lead to miss some

information and most of likely lose accuracy in the model. So if on the one hand

we used the deterministic input for the �ight schedules, on the other hand we ac-

counted for the stochasticity in an fully�developed way.

The innovative framework that our model brings is the integration of an ad-

vanced Markov model for the weather state forecasting to existing approaches.

Up to our knowledge the previous literature on air tra�c management does not

directly consider the weather variability exerted on service rates by building a

stochastic model accounting for the dynamic evolution of the variables in�uencing

the possible future changes of the weather state. Actually meteorological factors

with no doubts condition tra�c operations by constraining the airport capacity,

the aircraft e�ciency and the on time performance of airlines and systems. Start-

ing with the application of an ad hoc model for our case study, we further develop

the aforementioned forecasting model for the weather variable.
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2.1.1 Finite–Horizon Dynamic Programming algorithm

The only way to drain the queues is through the given allowance to land for arriv-

ing aircraft and to take o� for departing ones. To meet our goal, it was necessary

to study then a way to control the service rate dynamically in a day. Following

Jacquillat and Odoni's idea we adapted a Finite�Horizon Dynamic Programming

algorithm, where the objective of the control is to minimize congestion costs. In

their �rst approach, Jacquillat, Odoni, and Webster formulated this control in

its full outline as a function of a �ve�dimensional state variable including weather

and wind conditions, the runway con�guration in use and the arrival and departure

queue lengths. The complexity and high computational e�ort required to solve the

problem, with the related ine�ciency in terms of supporting strategic planning,

however made the authors decide upon a simpli�ed version for the control, reduc-

ing the number of in�uencing variables from �ve to three. In this way, if initially

the idea was to optimize the organization of air tra�c operations choosing the

best combination between runway con�guration to use and arrival and departing

service rates to adopt, �nally the control was restricted to just selecting the latter

under capacity constraints depending on the weather conditions.

What we propose is an algorithm that has the potential to dynamically select

the best combination of arrival and departure service rates for one day of opera-

tions. The selection is optimal as it tests all the possible alternatives and chooses

the one that from that moment in time onwards is the best among all. The choice is

just limited to the service rates and not to the runway con�guration as the Venice

airport only has one.

In traditional approaches the selection of the runway con�guration to use and

the service trade�o� to select between landings and departures is related to the

proportion of the corresponding movements that are scheduled in advance. For ex-

ample, if more arrivals than departures are scheduled, then traditional approaches

might suggest the use of a runway con�guration which gives priority to arrival over
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departures during that period. Dynamic approach plays the role to �adjust� this

priority according to the observed arrival and departing queues. In other words,

a dynamic approach might yield operational bene�ts in the face of queue uncer-

tainty.

To let the decision policy be functional and bearing in mind the dynamic ap-

proach, we considered one day as a sequence of time periods each one of R�minute

of length. For each of these intervals then the algorithm chooses the ideal service

rate which is supposed to be constant over the R minutes of duration of the pe-

riod. The input elements, summarized with regards to each interval, leading to the

decision of the rate are the number of �ights scheduled to land, the corresponding

scheduled to depart, the weather and wind conditions and any delayed aircraft left

to be served from the previous time period. Of course, depending on the criteria we

based the split of the day, di�erent step�to�step results were going to be obtained,

but in an overall vision the �nal result would have been the same, the optimal

one. The �rst element to be de�ned is the state variable at the starting period t.

It clari�es the situation where the airport is supposed to be at the corresponding

index time. Denoted with st it is a three�dimensional variable identi�ed by the ar-

rival a and departure d queue lengths at the end of the previous time interval and

the weather state w at the beginning of the current period t. The mathematical

expression is

st = (at−1, dt−1, wt). (2.1)

The time periods t are the intervals into which one single day is divided. They

can assume values from 1, . . . , T and each one is of length R minutes.

The objective functions are the one�period costs associated with every single

time period and are to be minimized. They are modeled as depending quadratically

on the queue lengths as shown in the expression

cµ
a

t = ρ a2
t−1 + d2

t−1. (2.2)
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The parameter ρ plays the role of weighing the in�uence of the arrival queue on

the cost function. When ρ greater than 1, the associated cost is more a�ected by

the arrival queue length than the correspondent departure.

Once de�ned the state variable and the cost function to be minimized the algo-

rithm needs to choose the control variables which are the arrival and departure

service rates, respectively denoted as µa and µd. Actually the variable that needs

to be chosen is just one, the arrival service rate. For what concerns the correspon-

dent departure service rate, it is deducted from the �rst one. Indeed, as previously

mentioned, there exists a trade�o� between these two variables that is �rst of

all determined by the runway capacity. To better catch the relationship between

the two variables we de�ne a constrained function that links the two and call it

Operational Throughput Envelope (OTE), just to distinguish it from the airport

capacity limit. This function was �rst de�ned by Simaiakis (Simaiakis et al. 2014).

The de�nition and estimation process of such function is detailed in subsection 2.3.

Imagining a temporal line scanning a day of operations starting from t = 1 and

ending with t = T , we can de�ne the so called cost�to�go function that �nalizes

the cost of being in state st at time t. We de�ne one cost�to�go function per each

interval of time and more precisely at the beginning of each time period we settle

the minimum one as

v∗t (st) = min
0 ≤ µat ≤ Awt

{
cµ

a

t (st) + E[v∗t+1(st+1) | st, µat ]
}
. (2.3)

The �rst term cµ
a

t (st) is the actual cost, i.e. the one arising from being in state st

at the beginning of the present interval time t. From the de�nition of the state it

can be derived how this actual cost depends on the queue lengths at the end of the

previous period and on the current weather conditions. The apex µa of the term is

to remind that its value depends on the previous choice of such control variable.

The second term in the formula E[v∗t+1(st+1) | st, µat ] is instead the future cost,

i.e. that deriving from the usage of the chosen control variables µat and µ
d
t for the

period t as service rates, given that the airport was in state st at the beginning
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of the same. Because it is not known, it is accounted as an expectation. With a

general reference it is thus de�ned as follows

E[v∗t+1(st+1) | st, µat ] =
∑
st+1

{[
P (st+1(at, dt, wt+1) | st = (at−1, dt−1, wt)) , µ

a
t

]
× v∗t+1(st+1(at, dt, wt+1))

}
. (2.4)

The minimization is with regards to the choice of the service rate, whose values

can range in the set named Awt , theoretically depending on the weather.

For all apart the last cost�to�go function, it is immediate to realize that they

can't be minimized because of their dependence from the unknown second additive

element in formula 2.3 which is the cost related to the next time period. Therefore

a way to solve the equations is proceeding with a backward approach, thus starting

solving them from the last one in sequence to the �rst one. The last equation indeed

does not contain any unknown values, as it is assumed not to be any existing period

after the last T . In other words, at the end of interval T the day of operations is

supposed to be concluded or at least no more congested. The functions written in

sequence de�ne the system of Bellman equations. We are now going to describe in

detail the way it has been solved. Starting from the last equation

v∗T (sT ) = min
0 ≤ µaT ≤ AwT

{
cµ

a

T (sT ) + E[v∗T+1(sT+1) | sT , µaT ]
}
, (2.5)

we need to solve a problem of optimization expressed in function of µa. Because

the period T+1 is not de�ned (it's considered as not existing), the solution can

be easily obtained by substituting the second additive term E[v∗T+1(sT+1) | sT , µaT ]

with the corresponding cost faced at the end of the period T after having taken

all the decisions before, thus depending on all the previous states. In other words

the problem of minimization becomes

v∗T (sT ) = min
0 ≤ µaT ≤ AwT

{
cµ

a

T (sT ) + E[ρ a2
T + d2

T ]
}
. (2.6)

We point out that depending on the cost function we chose, the arrival and depar-

ture queue lengths related to the last time period are used just once and speci�cally
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in the last equation, i.e. the �rst one in the solution process. If the cost was ex-

pressed in another form or through variables di�erently depending on the time

index, the solution to the last cost�to�go function could have been di�erently ob-

tained. Indicating with v∗T (sT ) the optimal solution to the last cost�to�go function

(the �rst to be solved), we are able to �nd the optimal solution for all the other

functions in cascade, substituting from time to time the correspondent last optimal

value in the second element of the expression 2.3. At the end of the estimation we

expected to dispose of the optimal selection of the arrival and departure service

rates, µa and µd respectively, for each of the time periods t = 1, . . . , T of a chosen

day.

2.2 Inputs for the DP algorithm

The inputs required from the system of Bellman equations to be solved are the

demand rates and the transition probabilities from a state to the successive one.

The demand rates as for the service rates are assumed to be constant over

each R�minute period of time t. They are equal to the expected number of aircraft

asking for landing if arrivals and taking o� if departures for each period. We denote

these rates respectively as λat and λ
d
t .

The transition probabilities are connected to the possibility to change state

during time and they are conditioned to the current state. The state variable st

is three�dimensional and de�ned as combination of the discrete arrival at−1 and

departure queue lengths dt−1 and the factorized weather state wt. When thinking

about the change of state we mean it as an evolution of the queues and/or the

change of weather conditions. Speci�cally we assumed the evolution of one of these

three phenomena to be independent of the others, thus we separately modeled and

studied the systems, making the estimation process less tricky. As a matter of fact

although the two movements are not independent, their evolution can be considered

as such. Besides both are related to the weather conditions but de�ning an OTE
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function per each possible weather state permitted to overcome this conditioning

issue (subsection 2.3).

To better understand the dynamic evolution of the queues we refer to the

schematic representation in Figure 2.1 showing the state transition diagram, which

can be thought equivalently as a discrete�parameter Markov chain continuously

varying in time. The explanation is the same whether we refer to the arrival or

the departure queues. The circles indicate the all possible existing states and the

0 1 ... k k + 1 ... kN

kµt kµt kµt kµt

λt λt

Figure 2.1: State transition diagram of a generic M(t)/Ek(t)/1 queuing system.

arrows connect them in line with the underlying Erlang distribution assumed. On

the one hand the probability to move from a state to its next is regulated by

the rate λt constant over time t. Note that the rate λt connects a state i to its

next correspondent i+k. Indeed once an aircraft demands for the service, the

request translates into the completion of k phases of work. On the other hand the

probability to complete one single stage is given by the rate kµt, where again µt

is assumed to be constant over time t.

Stated that, we needed to estimate the state transition probabilities from a time

period to the immediate successive one, taking into consideration the evolution

of them over that interval of time. We use the notation Pt
i(r) to indicate the

probabilities of being in state i at time r, where r varies from 0 to R, at the end of

time period t given all the possible initial states where the system could be at the

beginning of the same period. Hence we �xed a time period t, starting at time t and

ending at t+1, and studied the evolution of the state probabilities between (t−1)R

and tR, where R is equal to the chosen width for the intervals. In other words

even though we discretized the time splitting a day in periods, we realistically
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studied the evolution of the system under continuous time. To do so we made

use of the Chapman�Kolmogorov system of �rst�order di�erential equations. The

system needed to be solved for each �xed value of µt (as this is the control variable

in the Dynamic Programming algorithm) and for each possible initial condition

of the system. The latter refers to the observed queue length at the beginning of

the corresponding time period t. More precisely we assumed that no aircraft is

in service when a period begins so the system is in state l where l denotes the

number of queuing aircraft q̃ multiplied per the number of required stages for full

service k. To this aim we needed to set a maximum queue length capacity, denoted

with N . The selection had to be for a not too big neither a too small value. In the

�rst case indeed the related high computational cost and time would have been

an useless e�ort. In the second case instead a small value for N could have lead to

underestimate delays. The optimal N value thus might be such as to approximate

an in�nite queue capacity.

2.2.1 Stages of work transition probabilities

The system of di�erential equations along with the initial conditions is described

in detail below ((2.7)).

dP0(r)

dr
= − λtP0(r) + kµtP1(r)

dPi(r)

dr
= − (λt + kµt)Pi(r) + kµtPi+1(r) ∀i ∈ {1, . . . , k},

dPi(r)

dr
= λtPi−k(r)− (λt + kµt)Pi(r) + kµtPi+1(r)

∀i ∈ {k + 1, . . . , k(N − 1)},
dPi(r)

dr
= λtPi−k(r)− kµtPi(r) + kµtPi+1(r),

∀i ∈ {k(N − 1) + 1, . . . , kN − 1},
dPkN(r)

dr
= λtPk(N−1)(r)− kµtPkN(r), (2.7)
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giving as initial conditions:

Pi((t− 1)R) =

1 if i = kq̃ q̃ ∈ {0, . . . , N}

0 otherwise,
(2.8)

where q̃ is the number of queuing aircraft at the end of time period t−1, i.e. at the

beginning of time period t. System (2.8) gives the required starting conditions to

solve system (2.7). It assumes that at the beginning of each time period t there is

no aircraft being served.

2.2.2 Queue length transition probabilities

The state transition probabilities matrices Pt
i, for i = 1, . . . , kN and t = 1, . . . , T

are a necessary information to be able to run the dynamic programming algorithm,

but actually they consider the stages of work for the service process. Having iden-

ti�ed a correspondence with the hypothesized phases and the real steps an aircraft

performs when requiring for the service, as better shown in the next chapter, we

should be able to observe the number of remaining stages of work but, to avoid

complexity in the successive algorithm, we decided to estimate the queue length

transition probabilities deriving them from the state transition ones. Actually,

while observing the number of remaining stages of work for the departure process

can be possible, for the arrival service it's not so easy. Calling the new probabilities

Qt
l,n they are the probability of having n aircraft in queue at the end of time period

t, i.e. in tR, given that at the beginning of the same there were l. Namely,

Qt
l,n = P

{
qt−1 = n | qt = l

}
l, n = 1, . . . N. (2.9)

The advantage of dealing with the matrices Qt =
(
Qt
l,n

)
l,n
, l, n = 1, . . . , N is also

related to the reduced �nal number of states which now is N+1 while before it

was kN+1.
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The relationship between the matrices Pt and Qt is detailed in formula 2.10.

Qt
l,n =

Qt
l,0 = P0(tR) if n = 0∑k
l=1 P(n−1)k+l(tR) if n = 1, . . . , N

(2.10)

2.2.3 Weather transition probabilities

For the last transition probabilities, those with regards to the weather and wind

state, we created a new model able to estimate the probability of being in a weather

state among the possible, by means of a latent structure extracted from the ob-

served data. Section 4.2 is entirely dedicated to the explanation of the aforemen-

tioned Hidden Markov model.

Using the proper terminology adopted by the air tra�c controllers we call

Visual Meteorological Conditions (VMC) and Instrumental Meteorological Condi-

tions (IMC) respectively good and bad weather to which correspond maximum

airport capacity for the former and reduced airport capacity for the latter. Just to

introduce the problem that is going to be further detailed later, we de�ne

Wt =

 pt 1− pt
1− qt qt

 (2.11)

as the matrix for the weather state variable wt, where the values in that mean the

transition probabilities from a situation to the other according to

VMCt+1 IMCt+1

VMCt pt 1− pt
IMCt 1− qt qt

As implied from the subscripts t, there is one matrix de�ned per each time period

in a day and, as it will be further detailed in section 4.2, we will provide a weather

forecasting model accounting also for an expected component of seasonality. Tra-

ditional approaches generally estimate matrix W as not depending on time or
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seasonality.

Another way to de�ne the probability parameters pt and qt is

pt : VMCt → VMCt+1

and

qt : IMCt → IMCt+1.

One of the strong points of the approach is taking into consideration the weather

variability and developing a strategic management policy under di�erent possible

situations a�ected by stochasticity. As it will be cleared later in this thesis, with the

weather state variable we refer to both visibility conditions and wind strength and

direction. As a matter of fact the meteorologic factors determining the capacity

at airports are multiple and although predictable always random elements. From

that the necessity to adopt an advanced stochastic model.

2.3 Operational Throughput Envelope

Operational Throughput Envelope (OTE) is a key word in the analysis we follow.

Its representation characterizes the non�increasing relationship between the aver-

age number of served arrivals (arrival throughput) and the respective average of

served departures (departure throughput) under continuous demand for a given

day and time period. The �rst variable is taken as the independent one, while the

second is meant to be the dependent as determined by the arrival throughput.

The choice to consider the arrival throughput as the independent variable is

justi�ed by the fact that what concerns the arrivals is hardly controllable and

depends on some exogenous out�of�control factors. Moreover the air tra�c man-

agers have more control power on the departing system, while for the arrivals it is

limited as it depends on decisions taken previously in time and from other entities,

namely the connected airports and their congestion, the weather conditions and

other uncontrollable elements. Actually the departure throughput, the dependent
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variable, might be explained and predicted as a function of many independent

factors other than the arrival throughput, such as the �eet mix, the departure

demand, operators e�ciency and passengers delays. Existing approaches exploit

that type of relationship, but without considering the constraints determining the

physics of the system. Indeed the higher the number of landing �ights the lower

the corresponding number of departing �ights should be, cause of the trade�o�

between the two variables. This means that the function should be monotonic and

non�increasing. Additionally, higher values of landing aircraft constrain more the

number of aircraft allowed to depart, thus meaning the function to be concave.

From here the necessity to proper de�ne the relationship between the two cen-

tral elements of our analysis arises. We indeed thought about a combination of

B�spline basis to build a proper function suitable to express this linkage. We will

explain in detail the estimation process in chapter 4.



Chapter 3

Venice Marco Polo airport dataset

This chapter is dedicated to the reality we chose to apply our model and test its

power. After a description of the airport setting with a speci�c reference to the

Marco Polo system in Venice, we will present the dataset, describe the data, detail

what we used for the estimation of the parameters and the criteria driving such

choices. In chapter 2 we gave space to the formulation of the problem and all the

theory basis, introducing parameters that of course need to be estimated. From

the collected data we couldn't dispose of all the required variables for how de�ned.

Hence what we did was building new ones, introduced through this chapter.

3.1 Airport setting

Marco Polo airport in Venice classi�es itself as the third Italian intercontinen-

tal hub with direct line connections to New York, Philadelphia, Atlanta, Dubai,

Doha, Montreal, Toronto and, since April 2014, Tokyo. Its system including both

Venice and Treviso airports is after Roma Fiumicino and Milano Malpensa the

third biggest in Italy since 2012, counting in that year a total of more than 10,5

million of passengers. This position has then been maintained up to now, record-

ing a continuous increase in the number of served passengers and �ights (https:

https://www.grupposave.it/
https://www.grupposave.it/
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Figure 3.1: Representative map of the Marco Polo airport con�guration � ENAV

//www.grupposave.it/).

Generally an airport is structured into internal buildings and an open space

where aircraft are involved. Among the �rst apart from the platforms where ac-

tions like acceptance of passengers and bureaucratic operations are handled, there

are the maintenance workshops, the �re station and the luggage storage properly

called cargo building. As we are interested in the air tra�c �ow we focus more

on detailing the open space area. The terminal is the structure where aircraft

are engaged to let passengers reach the plane from the acceptance internal area.

Each terminal can have more doors and an airport can have more than one termi-

nal. The space where the aircraft is parked and waiting for the landing/boarding

of passengers is called gate. From gates aircraft leave and running across the so

called taxiways (TWY) they reach the assigned holding point, marked in Figure 3.1

(https://www.platinumairways.org/) with capital letters from A to H. Holding

points are the stations where aircraft are ready to depart. From that indeed the

next step is using the runway(s) (RWY) where take�o�s and landings take place.

In an airport there could be one or more runways. Venice has two but only one is

used for its main purpose; the other shorter is kept as junction, scilicet just used

https://www.grupposave.it/
https://www.grupposave.it/
https://www.platinumairways.org/
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as main taxiway.

There exists two types of airports, major and minor. The former hosts sched-

uled national and international �ights while the latter just carries out service in-

formation via radio. An example of minor is the civil airport in Padua. Marco Polo

instead is a major airport and as such it has the Control Tower (TWR) whose task

is to authorize the air tra�c maneuvers. More speci�cally, all the air movements

are controlled and managed from entities at the airport but while the ground ones

from the gate to the holding point are handled by Ground (GND), the ones from

the holding point to the take�o� are handled by the Control Tower. These entities

are part of the national entity for �ight assistance, ENAV (National Flight Assis-

tance Organization) (https://www.enav.it/sites/public/it/Home.html).

Runway system is generally the main bottleneck of operations at congested air-

ports (de Neufville and Odoni 2013). In Marco Polo airport landings and take�o�s

can be managed relying on just one runway, namely the 04R/22L. The name used

internationally for the runways depends on the distance in degrees from the North

point on the compass to which the runway is oriented. As then the calculation

can range from 0◦ to 360◦, conventionally the orientation can be between 00◦ to

36◦. To the runway name a capital letter is then added, R standing for right or L

for left, depending on the side from where the counting of the degrees is started,

always with reference to the North point. For instance, 04R means a runway orien-

tated towards 40 degrees to North on the compass, looking at its right�hand side

(toward East then). Depending on the winds, each runway can be used on both

sides. For this reason one single runway is named with a double acronym. For the

same previous instance, to 04R corresponds 22L, where 22 (220◦ from the North

point) comes out from 04 (40◦) + 18 (180◦), that is the opposite orientation of

the same runway. With regards to Marco Polo airport setting, the used runway is

the 04R/22L, meaning the one in line between South�West and North�East (and

correspondingly between North�East and South�West).

Previous approaches and researches have been applied for the most part to

https://www.enav.it/sites/public/it/Home.html
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American settings, as the most congested in the world. Unlike them (for exam-

ple JFK, EWR and LGA studied by Jacquillat and Odoni (2015) and (2017)) for

which the optimizing management rules could have counted also on di�erent run-

way con�gurations usage, for the Venice case this choice was not feasible. Therefore

the simpli�cation made by the authors on the choice of the control's in�uencing

variables (see 2.1.1) ends up to be as the reality. Indeed, reminding Jacquillat and

Odoni's application, even if their model bases on playing with di�erent usage of

the runways and changing the service rates for arrivals and departures during the

day of operations, at the end only the latter played the signi�cant role, while the

runway to be used was exogenously chosen in advance.

3.2 Data availability

To give reason and validity to the model the requirement was disposing of real data

where to extract information. Most of the time data are very sensitive or likely in

this speci�c context those required for the analysis could be not disposable or even

not existing as no recorded. To our aim the most signi�cant information was with

regards to the times of the maneuvers and movements, both the scheduled and the

actual ones. As a matter of fact the measure of the delay can be obtained through

a comparison of the two. Thus a delay occurs when the di�erence between actual

and expected time for an action is positive.

In order to comprehend the needed data for the real application, we recall

the inputs required by the model, which are the schedules of landings and take�

o�s and the estimates of the airport capacity. As already mentioned the dynamic

control advanced through the model is related to the determination of the best

combination of arrival and departure service rates to be applied in each period

aiming to maximize the airport e�ciency and minimize the congestion costs. The

speci�c sequence of decisions to be applied ends to be a function of the schedule

of �ights and the evolution of arrival and departure queue lengths.
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To get the dataset we got in touch with the two Groups ENAV S.p.A. and

SAVE S.p.A., the latter being the company managing the Venice airport (https:

//www.enav.it/sites/public/it/Home.html and https://www.grupposave.it/).

From the �rst entity we got itemized data about scheduled and actual times of

the movements performed at Marco Polo airport, with particular details regarding

the departures. The second company instead could forward to us just summary

data about scheduled and actual movements executed at the airport. The last set of

data was however less informative to our purpose cause less detailing variables. For

example, with reference to this one, while the actual movements are exactly in line

with what was actually performed at the airport in the corresponding time period

and day, the scheduled ones are those planned months in advance and subjected

in the meantime (until the day of operations) to amendments, switches or even

cancellations. As a consequence the reliability of the last piece of data could have

been a little bit low for our aim. For this reason we preferred keeping them to

create some essential and summarizing on time performance graphics or just in

case we didn't have any better information.

What we need to make the model work is related to the times, scheduled and

e�ective, of the following check points:

i) O��Block Time

TOBT for the scheduled, AOBT for the actual.

It's the time when the aircraft is put in motion, technically when its heel

(the block piece) is removed or again when the aircraft leaves the gate to

reach the holding point where ready to take o�. We can refer to it also using

the term Gate�Out time.

The O��Block time is relative to departures.

ii) In�Block Time

TIBT for the scheduled, AIBT for the actual.

It's the time when the aircraft is stopped and its engine is switched o�,

https://www.enav.it/sites/public/it/Home.html
https://www.enav.it/sites/public/it/Home.html
https://www.grupposave.it/
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technically when its heel is put on, or again when it reaches the gate after

the landing. Another equivalent term for it is Gate�In Time.

The In�Block time is related to arrivals.

iii) Taxi�Out Time

It's the needed time for the aircraft to reach the holding point from the gate,

once its heels are removed. The holding point is the area where the aircraft

is ready to depart, i.e. to take the runway to take o�.

The acronym used for the Taxi�Out Time is TOT.

iv) Take�O� Time

TTOT for the scheduled, ATOT for the actual.

It's the time when the aircraft detaches the wheels from the ground, i.e. takes

o�, or again it's the runway release time.

It can also be called Wheels�O� Time.

v) Landing Time

TLDT for the scheduled, ALDT for the actual.

It's the time when the aircraft places the wheels on the ground, i.e. lands,

or again it's the runway arrival time.

The Landing Time is also called Wheels�On Time.

To distinguish between scheduled, meaning the last estimated, and the e�ective

time, the air tra�c managers and controllers use respectively the words target

(T) and actual (A). In reality, there are not only these two types of labels. In-

deed, especially for the departures, more than the target and the actual times are

recorded for some check points. We are referring indeed to the further attributes

scheduled (S), which di�erently from the target they refer to the planned times

set months in advance, and the expected (E) which instead are the ones set when

building the �ight plans, updated up to three hours before the time they indicate.

Incidentally the Expected O��Block time (EOBT) is particularly meaningful for
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the A�CDM (Airport � Collaborative Decision Making) procedure incorporated

in the European Air Tra�c Flow and Capacity Management (ATFCM). It coor-

dinates the turn�round and pre�departure sequencing processes and reveals the

check points, so called milestones, starting three hours before the indicated EOBT.

A�CDM is a way useful and e�cient system, quite recently adopted by the Venice

airport. Indeed after the signature of the MoU (Memorandum of Understanding)

on September 17th, 2012, the Marco Polo's operations management started bene-

�ting from a full A�CDM procedure from January 20th, 2015.

The split of the day in time periods was though to make the situation man-

ageable. The split base is arbitrary, just it must be borne in mind that the width

has not to be too big otherwise the model loses precision and e�ciency. With

regards to the American airports, the operations' rhythm and the magnitude of

the performed movements usually drive researches to consider 15 minutes as time

period's length. Instead for the Venice airport, that compared to the American air-

ports registers a lower a�uence, it has been decided to lengthen the time period

from 15 to 30 minutes. In this way we avoided the rate ending to be too much low

and were able to manage and e�ciently control the service rate during a day of

operations. As a result each day has been divided into 48 intervals of time, each of

30 minutes�length. Cause the operations at the airport are gathered between 5.30

a.m. and 12 p.m., as it will be proved in chapter 5, we decided to refer to T = 37

intervals, skipping the earliest rarely operative hours. The encoding used for time

periods is wholly decrypted in Appendix B.

One of the strength points of the proposed model is its capacity to focus on the

stochastic element regarding the weather state. Additional information required

as inputs concern thus the winds and the visibility conditions per period. Winds

typically constrain the runway/s usable at any time and with reference to the op-

erations in Venice they rule the usage of the 04R/22L or the 22L/04R runway (the

same one but towards the two opposite poles). The runway used as far as possible

is the 04R/22L oriented, as it gives the maximum achievable service rate, which is
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RVR Service rate per hour Landing Rate per hour

[1500, 800) mt 32 movements 19 arrivals

[800, 550) mt 18 movements 7�10 arrivals

[550, 400) mt 14 movements 6�8 arrivals

[400, 125) mt 12 movements 6�8 arrivals

≤ 125 mt 6 movements 3�6 arrivals

Table 3.1: Service rates between arrivals and departures allowed under di�erent visibility

conditions, i.e. RVR values

32 movements, allowing a maximum of 19 arrivals, per hour. If the wind exceeds 10

knots of strength, then the runway to use has to be the 22L/04R. The latter allows

a maximum of 22 movements per hour. From here it can be understood that the

change of runway usage is only determined by the wind directions and strength

and it doesn't depend on any strategic intervention. Hence again our attempt to

optimize the airport e�ciency and minimize congestion costs will be only through

the best choice of the service rates for arrivals and departures per time period.

Visibility conditions instead limit the e�ciency of airport operations. Table 3.1

shows the constrained movements allowed. The RVR acronym stays for Runway

Visual Range and is expressed as distance in meters. It is the range over which the

pilot of an aircraft on the center line of a runway can recognize the central line,

the delimiting lights or the surface markings of the runway.

By the ENAV air tra�c management, the priority is given to the departures

while with regards to the arrivals once aircraft land and free the runway their

detailed movements and check times on ground are no more recorded from the

Group operators' side. Hence for the estimation of arrival and departure queue

lengths at the beginning of each time period we were able to collect only a part

of the necessary data, which were those for the estimation of the departure queue

lengths. In fact estimating the arrival queue length from the available records of
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operations is really hard and almost impossible (Jacquillat and Odoni 2015) as

there is no record of when arriving aircraft demand for the usage of the runway.

3.3 Variables: selection and creation

As anticipated, while the actual times are registered in correspondence to what

has actually been performed at that instant during the day of operations, those

times we refer to as scheduled could be named di�erently depending on when and

from whom they were communicated. Hence the selection of the latter among more

than one possibility is followed by a brief justi�cation.

If not otherwise speci�ed, the data used for the analysis are those provided by ENAV

S.p.A.

a) Number of scheduled departures per time period1

The estimation of this variable is made by means of the Expected O��Block

Time (EOBT), which is technically the time assigned and registered in the

�ight plan to put the aircraft in motion.

Even if it's not the time when the aircraft takes o�, it is used to indicate

the named variable because when the aircraft starts moving it represents an

entity to be monitored on its movements until it takes o�. We chose EOBT

to obtain the estimates because it's the most precise, as the last modi�ed in

planning, scheduled time.

b) Number of scheduled arrivals per time period

The estimation of this quantity would have properly been the corresponding

Expected In�Block Time (EIBT) registered in the �ight plan. Nevertheless

from the ENAV data we weren't able to extract this type of information as

from their side, as already announced, for the arrivals only the actual Land-

ing and In�Block times are recorded.

1When referring to time periods, we mean the decided time period length of 30 minutes
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Actually also the EOBT is registered but it is with regards to the estimated

time the aircraft would commence the movement associated with its depar-

ture from the origin airport. One idea would have been to calculate the EIBT

adding to the corresponding EOBT the taxi�out�times and the airborne time,

which is that spent on air by the aircraft. While the latter can be obtained

quite precisely knowing the distance from the origin to the destination air-

ports and the aircraft type, the taxi times in both the airports are more

di�cult to calculate. Indeed they depend on the airport setting and on the

gate where the aircraft is going to be stopped.

Avoiding introducing manual errors building the EIBT, we decided to use the

best scheduled times we could have which are those provided by the SAVE

Group. We felt free to use them for our estimates, but reminding that they

refer to the Scheduled In�Block Time (SIBT), i.e. the time that the aircraft

is scheduled to arrive at its �rst parking position, and they could have been

subjected to amendments from when they were planned till the day of oper-

ations.

c) Departure throughput

With this locution adopted from Simaiakis' terminology we refer to the num-

ber of aircraft that take o� during a de�ned period of time.

It is indicated as DT and is expressed per each interval as

DT (t) =
∑
i

| i ∈ F st tR ≤ ATOTi < (t+ 1)R | .

d) Arrival throughput

This works as the same of the previous indicator but for the arrivals, hence it

quanti�es the number of aircraft that land per each considered time period.

It is indicated with AT and is expressed per each interval as

AT (t) =
∑
i

| i ∈ F st tR ≤ ALDTi < (t+ 1)R | ,



3.3 Variables: selection and creation 49

where ALDT stands for Actual Landing Time.

Sometimes it can happen that records for some of the arrivals ALDT are miss-

ing and among them some of the Actual In�Block Times (AIBT) are missing

as well. The reasons might be cancellation of the corresponding �ights or

not recorded information from the air tra�c management operators. This

behavior, if so, will be coherent with the low importance given to arrivals

in comparison with landings. For these missing records, we just decided to

ignore them.

e) Departure queue length dt at the end of each time period

This variable, like the corresponding arrival queue length, is particularly

relevant as it is a proxy variable quantifying the congestion at the airport.

They properly indicate the length of the relative queue at the end of the

period t. The estimation process involves the already de�ned Actual O��

Block Time (AOBT) and Actual Take�O� Time (ATOT) plus the Taxi�Out�

Time (TOT), as the formula below shows:

d̂t =
∑
i

∣∣ i ∈ F st AOBTi + TOT Pi ≤ (t+ 1)R & ATOTi > (t+ 1)R
∣∣ .

The apex P added to the TOT stands for predicted and indeed refers to the

expected calculated Taxi�Out Time.

f ) Arrival queue length at at the end of each time period

The estimation of this other relevant variable is again really hard to obtain.

Indeed there are no records about the exact time when an aircraft demands

for the usage of the runway to land. As a consequence, we needed to �nd

an alternative way to estimate it. If we had the EIBT that would have been

a reasonable record where to extract information about the arrival queue

length. As again we had no access to it, we used the ALDT as source where

trying to extrapolate a for sure erratic but at least tolerable estimate. Hence

we used accordingly the actual number of landings whose related times are
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included in the range whose upper bound is tR plus 7 minutes (arbitrarily

chosen) and the lower is equal to tR. The interval's upper bound choice

comes from a rough approximation about the time when aircraft ask for the

landing allowance. On the one hand, the inclusion of the actual Landing

Time is to count the aircraft that ask for landing in a range of time close

to the "boundaries" (00 and 30 minutes of each hour of the day). On the

other hand it would have been more correct to include also the scheduled In�

Block Time in the estimation of the variable. It would have been meaningful

because we are supposed to take into account also those aircraft that are

demanding for landing but as no service is available they are constrained to

wait and queue in the airspace. Indeed in a situation of congestion, where

the demand at the airport is higher than the available capacity, aircraft can

be made queuing already before taking o�, so queuing at the ground (if a

Ground Delay Program (GDP) is applied) or in the airspace, inducting to

higher related congestion costs though.

Due to the impossibility to extrapolate such information, we preferred being

less accurate in the estimate but proposing a still valid one. A further attempt

might have been adding a random value to the arrival queue estimate as

de�ned here, in order to catch the waiting aircraft queued in the airspace.

The next formula speci�es mathematically the rough adopted estimate:

ât =
∑
i

| i ∈ F st tR ≤ ALDTi ≤ (tR + 7) | .

g) Airport Capacity

Along with the scheduled �ights, the other input that the strategic model

requires is the estimate of the airport capacity. It is worth to dwell on one

term largely used as relevant in this research �eld, namely the Operational

Throughput Envelope (OTE).

Following the Simaiakis de�nition (see details in Simaiakis 2012) we use the



3.3 Variables: selection and creation 51

OTE term to indicate the airport capacity characterizing the combination of

the arrival and the departure throughputs.

The OTE upholds the non�increasing relationship between the average num-

ber of landings and the average number of take�o�s that can be served per

each 30�minute period under continuous demand. It depends on many fac-

tors, mainly on the weather conditions, the proportions of landings and take�

o�s performed and the runway con�guration in use (in our case the side from

which the only runway is caught). To build the OTE we plotted the sched-

uled number of arrivals and the corresponding of departures per each time

period and traced the broken line showing the maximum reachable trade�o�

between serviceable landings and take�o�s under di�erent weather condi-

tions.

h) Weather state variable

We explained the importance of considering the weather state w in our anal-

ysis. This dichotomous variable w is de�ned as a mixture of more variables,

like wind force, wind direction and visibility conditions of the runway and

of the distances related to the movements in the airport space. A summary

index considering all the named elements does not exist and in the reality air

tra�c managers dispose of real time information about winds and weather

and their decisions about service control are based on choices made at the

moment.

What we managed to get was a detailed dataset registering every �ve minutes

the visibility measures (RVR values). That was the only recorded variable

determining the weather state. About the winds, we had no such histori-

cal data but we extrapolated information from the runway used. Indeed the

wind strength and direction constrain the usage of the more e�cient runway

and in case of strong winds they even prevent the use of it forcing to serve

aircraft with the 22L/04R one. Knowing then which runway has been used

from aircraft to land or take o� we could deduct additional signi�cant infor-
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mation to better de�ne the weather variable. In this the dichotomous wt is

to be considered as a combination of the RVR value and the runway used,

proxy for the wind strength.



Chapter 4

Statistical modeling

This chapter is devoted to the statistical approach towards the estimation of two

elements of relevancy in the thesis. In the �rst section we focus on the process esti-

mation of the already introduced OTE function (2.3) by means of a non parametric

shape�constrained B�spline. The second section instead we propose an advanced

forecasting Hidden Markov model that extracts a latent factor representing the

weather variable from the observed data. In this chapter we will formalize the

problem and provide the estimates of the models, while for their application to

real data and the presentation of the results we refer to the next chapter, 5.

4.1 Model for Operational Throughput Envelope estima-

tion

In chapter 2 we de�ned the OTE as the function describing the relationship be-

tween arrival and departure throughputs and we know that there is a trade�o�

between the two. As we did not have any further information about the behavior

of the underlying function, we thought about splines.

A spline is a mathematical tool de�ned as a combination of piecewise linear
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functions of a given order associated with a sequence τ of knots. It's particularly

useful in statistics when we need to approximate a function expressing the rela-

tionship between two variables for which we only know a set of observations (for

further details see Hastie, Tibshirani, and Friedman 2001, Azzalini and Scarpa

2012 and Wood 2006). In our speci�c case, we used this class of functions to ap-

proximate the OTE. Precisely we sought to estimate such function under shape

constraints of non�increasing monotonicity and concavity. In other words denoting

the function by f̄ : R→ R the estimate was for the mean DT (t) = f̄(AT (t)). Thus

we made use of a non parametric shape�constrained spline, built as combination

of a set of B�splines. According to de Boor (2001), given x ∈ R a B�spline basis

function of order r de�ned on the set of knots τ = (τ1, . . . , τr+1) is given by

Br(x|τ ) =
x− τ1

τr − τ1

Br−1(x|τ−(r+1)) +
τr+1 − x
τr+1 − τ2

Br−1(x|τ−1), (4.1)

where B1(x|(a, b)) = I(a ≤ x ≤ b) and τ−j is the vector τ without the j�th el-

ement. For how it is built, function (4.1) is always positive between τ1 and τr+1

and null outside, and it is unimodal for r > 1. For these reasons, it can be seen as

an unnormalized density function with vector of parameters τ . Depending on the

distances between the values of τ , (4.1) can be symmetric or not. These character-

istics make the B�splines a suitable tool for modeling irregular or low�information

content data, such as in our case. In this way the information from data has been

used rather in an e�cient way not to understand the shape of the function, but

to estimate the trade�o� between arrival throughput, the independent variable,

and the respective departure, the dependent one. The shape is instead imposed by

means of constraints. The f̄ function has been approximated then as follows

ui = f̄(xi) ≈
g+r∑
k=1

ϑkBk(xi), (4.2)

where Bk is the (non�negative) k
th B�spline of order r, ϑk ∈ R its coe�cient and

g the number of breaks.

To give the desired shape to the function, as already stated, we needed to constrain
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the coe�cients ϑk through linear combinations of the same, as follows

ϑk − ϑk−1 ≤ 0, k = 2, . . . , K, (4.3)

ϑk − 2ϑk−1 + ϑk−2 ≤ 0, k = 3, . . . , K. (4.4)

The two conditions are equivalent to constraints on the derivatives of the f̄ func-

tion. The �rst one for the non�increasing monotonicity indeed requires a non�

positive �rst derivative,
(
f̄ ′(x;ϑ) ≤ 0

)
, while the second one for the concavity a

non�positive second derivative
(
f̄ ′′(x;ϑ) ≤ 0

)
. If we express them in matrix terms

that means

D1 =


−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1


as the �rst di�erence matrix, and

D2 =


1 −2 1 · · · 0 0

0 1 −2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −2 1


as the second di�erence matrix. Then the constraints become

f̄ ′(x;ϑ) ≤ 0 and f̄ ′′(x;ϑ) ≤ 0 ⇒
[
−DT

1 DT
2

]T
ϑ ≥ 0, (4.5)

for the sought monotonically non�increasing and concave function.

Given n pairs of observations of the type (xi, ui), i = 1, . . . , n, we can formalize

the problem as

arg min
ϑ

1

n

n∑
i=1

[
ui −

g+r∑
k=1

ϑkBk(xi)

]2

, (4.6)

subjected to constraints (4.3) and (4.4), where u = (u1, . . . , un), x = (x1, . . . , xn)

and ϑ = (ϑ1, . . . , ϑg+r). As the reachable service rate depends on the weather
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conditions, we divided the dataset into two, to distinguish the VMC from IMC

observed cases. The estimation process was then done twice, one for each partial

dataset.

The solution is obtainable with any quadratic programming solver, like the

software R.

4.2 Hidden Markov model for weather forecasting

4.2.1 Introduction

In this section we �rst introduce the basic MSM framework and we extend it to ac-

count for the dynamic evolution of the weather variable state wt de�ned in chapter

2. Then, we detail the estimation methodology of the models parameters. For an

up to date review of MSMs see, e.g., Cappé, Moulines, and Rydén 2005, Zucchini

and MacDonald 2009 and Dymarski 2011.

Let {Yt, t = 1, 2, . . . , T} denote a sequence of multivariate observations, where
Yt = {Y1,t, Y2,t, . . . , Yp,t} ∈ Rp, while

{
S̄t, t = 1, 2, . . . , T

}
is a Markov chain de-

�ned on the state space {1, 2, . . . , L}. A MSM is a stochastic process consisting of

two parts: the underlying unobserved process
{
S̄t
}
, ful�lling the Markov property,

i.e.

P
(
S̄t = s̄t | S̄1:t−1 = s̄1:t−1

)
= P

(
S̄t = s̄t | S̄t−1 = s̄t−1

)
,

where S̄1:t−1 =
(
S̄1, S̄2, . . . , S̄t−1

)
and s̄1:t−1 = (s̄1, s̄2, . . . , s̄t−1) and the state�

dependent observation process {Yt} for which the conditional independence prop-

erty, i.e.

f
(
Yt = yt | Y1:t−1 = y1:t−1, S̄1:t = s̄1:t

)
= f

(
Yt = yt | S̄t = s̄t,y1:t−1

)
,

holds, where f (·) denotes a generic probability density function.
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4.2.2 Model specification

Let y1 = (y1,1, y1,2, . . . , y1,T ) be a random sample of T Gaussian observations, y2 =

(y2,1, y2,2, . . . , y2,T ) be a random sample of T binary observations, h = (h1, . . . , hT )

is a vector of exogenous regressors accounting for the expected seasonal pattern in

the meteorological conditions, with

ht =



1 if t = 1

2 if t = 2

...

37 if t = 37.

(4.7)

We consider the following Gaussian�binary model:

y1,t | S̄t = s̄t ∼ N
(
µ̄s̄t + γs̄tht, σ

2
s̄t

)
(4.8)

y2,t | S̄t = s̄t ∼ Bin (1, ψs̄t) (4.9)

ψs̄t = FLo (ηs̄t + αs̄tht) =
eηs̄t+αs̄tht

1 + eηs̄t+αs̄tht
, (4.10)

for t = 1, 2, . . . , T , where µ̄s̄t is the constant and γs̄tht the regression part of

the mean for the Gaussian distribution, σ2
s̄t its variance, ψs̄t is the probability

parameter for the Binomial distribution, ηs̄t + αs̄tht = log
ψs̄t

1+ψs̄t
is the log�odds

ratio with αs̄t the parameter that controls the seasonal behavior of the transition

matrix Wht , ht = 1, . . . , T and FLo(·) denotes the logistic�link function.

For the purpose of developing the inferential procedures in the next Section, we

remind that the logistic model can be expressed as a scale mixture of Pólya�Gamma

distribution, see Polson, Scott, and Windle 2013. Speci�cally, the fundamental

integral identity at the heart of the Pólya�Gamma representation of the logistic

model is that, for b > 0,(
eψ
)a

(1 + eψ)b
= 2−beψκ

∫ ∞
0

e−ωψ
2

p (ω) dω, (4.11)
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where κ = a− b
2
and ω ∼ PG (b, 0).

The model is completed by the speci�cation of the Markov chain that drives the

hidden states at each time point t. To this purpose let ql,k = P
(
S̄t = k | S̄t−1 = l

)
,

∀l, k ∈ {1, 2, . . . , L} denote the probability that state k is visited at time t given

that at time t−1 the chain was visiting state l. We indicate with δl = P
(
S̄1 = l

)
the

initial probability of being in state l = {1, 2, . . . , L} at time 1, the corresponding

vector with δ = (δ1, . . . , δL) and we refer toW = {ql,k}l,k=1,2,...,L as the transition

probability matrix of the Markov chain.

4.2.3 Estimation and inference

The MSM parameters are generally estimated using the maximum�likelihood method,

see, for example, McLachlan and Peel 2000 and Cappé, Moulines, and Rydén 2005.

Let ϑ =
(
{µ̄l, σ2

l , ηl}
L
l=1 ,W , δ,

)
be the set of all model parameters and let f (yt)

be a diagonal matrix with conditional probabilities f
(
Yt = yt | S̄t = s̄t,y1:t−1

)
on

the main diagonal, then, the likelihood of a MSM can be written as

L (ϑ) = δf (y1)Wf (y2)W × · · · × f (yT−1)Wf(yT )1′. (4.12)

Finding the values of the parameters ϑ that maximize the log�transformation of

equation (4.12) under the constraints
∑L

l=1 δl = 1 and
∑L

k=1 ql,k = 1, is not an easy

problem. Instead, it is straightforward to �nd solutions of equation (4.12) using

the Expectation�Maximization (EM) algorithm of Dempster, Laird, and Rubin

1977. Hereafter, we focus on the EM algorithm which has been previously applied

to the case of �nite mixtures of univariate Student�t distributions by Peel and

McLachlan 2000.

For the purpose of application of the EM algorithm the vector of observa-

tions yt, t = 1, 2, . . . , T is regarded as being incomplete. Following the imple-

mentation described in Peel and McLachlan 2000 in a �nite mixture context,

two missing data structures are consequently introduced. The �rst one is related

to the unobservable Markovian states, i.e., zt = (zt,1, zt,2, . . . , zt,L) and zzt =
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(zzt,1,1, zzt,1,2, . . . , zzt,l,k, . . . , zzt,L,L) de�ned as

zt,l =

 1 if S̄t = l

0 otherwise

zzt,l,k =

 1 if S̄t−1 = l, S̄t = k

0 otherwise.

The second type of missing data structure is ωt ∼ PG(1, 0), ∀t = 1, 2, . . . , T

relies to the Pólya�Gamma representation of the logistic model in equation (4.11)

which are assumed to be conditionally independent given the component labels

zt,l, zt,l,k, l, k = 1, 2, . . . , L, ∀t = 1, 2, . . . , T .

Augmenting the observations {yt, t = 1, 2, . . . , T} with the latent variables

{ωt, zt,l, zzt,l,k, t = 1, 2, . . . , T ; l, k = 1, 2, . . . , L}

gives the following complete�data log�likelihood:

logLc (ϑ) ∝
L∑
l=1

z1,l log (δl) +
L∑
l=1

L∑
k=1

T∑
t=1

zzt,l,k log (ql,k)

− 1

2

L∑
l=1

T∑
t=1

zt,l
(
log (2π) + log

(
σ2
l

))
− 1

2

L∑
l=1

T∑
t=1

zt,l (y1,t − µ̄l − γlht)2

σ2
l

+
L∑
l=1

T∑
t=1

zt,lỹ2,t (ηl + αlht)−
1

2

L∑
l=1

T∑
t=1

zt,lωt (ηl + αlht)
2 , (4.13)

where ỹ2,t = y2,t − 1
2
and ω = (ω1, ω2, . . . , ωt).

The EM algorithm consists of two major steps, one for expectation (E�step)

and one for maximization (M�step), see McLachlan and Krishnan 2007. At the

(m+ 1)�th iteration the EM algorithm proceeds as follows:

(i) E�step: computes the conditional expectation of the complete�data log�

likelihood (4.13) given the observed data {yt}Tt and the m�th iteration pa-
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rameters updates ϑ(m)

Q
(
ϑ,ϑ(m)

)
= Ez,ω

[
logLc (ϑ) | {yt}Tt=1

]
= Eω|zEz

[
logLc (ϑ) | {yt}Tt=1

]
, (4.14)

where the expected value of the latent factor ω taken with respect to the con-

ditional distribution of ω|z, y, i.e., Eω|z (ω | y, z), where ω | y, z ∼ PG (1, ηz)

and the expectation of the Pólya�Gamma distribution can be calculated as

E (ω) =
b

2c
tanh

( c
2

)
=

b

2c

(
ec − 1

1 + ec

)
, (4.15)

with ω ∼ PG (b, c).

(ii) M�step: choose ϑ(m+1) by maximizing (4.14) with respect to ϑ

ϑ(m+1) = arg max
ϑ
Q
(
ϑ,ϑ(m)

)
. (4.16)

One nice feature of the EM algorithm is that the solution of the M�step exists

analytically for example for Gaussian and Student�t HMMs, for all the parame-

ters with the only exception of the degrees�of�freedom νl, l = 1, 2, . . . , L. For the

proposed model we provide in the next subsection a Conditional Expectation�

Maximization algorithm (see, e.g., McLachlan and Krishnan 2007 and Frühwirth-

Schnatter 2006).

4.2.4 Conditional Expectation–Maximization algorithm

E�step: at iteration (m+ 1), the E�step requires the computation of the so�called

Q�function, which calculates the conditional expectation of the complete�

data log�likelihood given the observations and the current parameter esti-
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mates ϑ(m)

Q (ϑ) ∝
L∑
l=1

ẑ
(m)
1,l log (δl) +

L∑
l=1

L∑
k=1

T∑
t=1

ẑz
(m)
t,l,k log (ql,k)

− 1

2

L∑
l=1

T∑
t=1

ẑ
(m)
t,l

(
log (2π) + log

(
σ2
l

))
− 1

2

L∑
l=1

T∑
t=1

ẑ
(m)
t,l (y1,t − µ̄l − γlht)2

σ2
l

+
L∑
l=1

T∑
t=1

ẑ
(m)
t,l ỹ2,t (ηl + αlht)−

1

2

L∑
l=1

T∑
t=1

ẑ
(m)
t,l ω̂

(m)
t,l (ηl + αlht)

2 ,

(4.17)

where the conditional expectations ẑ
(m)
t,l = E (zt,l | y1, . . . ,yT ) and ẑz

(m)
t,l,k =

E (zzt,l | y1, . . . ,yT ), ∀t = 1, 2, . . . , T and ∀l, k = 1, 2, . . . , L are computed via

the well�known Forward�Filtering Backward�Smoothing (FFBS) recursive

algorithm (see Baum et al. 1970). For an introduction to the FFBS algorithm

we refer the reader to the book of Frühwirth-Schnatter 2006.

M�step: at iteration (m+ 1), the M�step maximizes the function Q
(
ϑ,ϑ(m)

)
with respect to ϑ to determine the next set of parameters ϑ(m+1). The up-

dated estimates of the hidden parameters, the mean vector µ̄l, and the scale
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matrix Σl are given by the following expressions:

δ
(m+1)
l = ẑ

(m)
1,l

q̂
(m+1)
l,k =

∑T
t=2 ẑz

(m)
t,l,k∑L

k=1

∑T
t=2 ẑz

(m)
t,l,k

̂̄µ(m+1)

l =

∑T
t=1 ẑ

(m)
t,l y1,t∑T

t=1 ẑ
(m)
t,l

γ̂
(m+1)
l =

∑T
t=1 ẑ

(m)
t,l hty1,t∑T

t=1 ω̂
(m)
t,l htẑ

(m)
t,l

α̂
(m+1)
l =

∑T
t=1 ẑ

(m)
t,l htỹ2,t∑T

t=1 ω̂
(m)
t,l htẑ

(m)
t,l

σ̂2
l

(m+1)
=

∑T
t=1 ẑ

(m)
t,l

(
y1,t − ̂̄µ(m+1)

l − γ̂(m+1)
l ht

)2

∑T
t=1 ẑ

(m)
t,l

η̂
(m+1)
l =

∑T
t=1 ẑ

(m)
t,l ỹ2,t∑T

t=1 ω̂
(m)
t,l ẑ

(m)
t,l

,

∀l = 1, 2, . . . , L, where ω̂
(m)
t,l denotes the current estimate of the conditional

expectation of ωt given the observation at time t, yt, and zt,l = 1

ω̂
(m)
t,l = Eω|z (ω | y, z) =

1

2ηl

(
eη̂

(m)
l − 1

1 + eη̂
(m)
l

)
, (4.18)

∀t = 1, 2, . . . , T and ∀l = 1, 2, . . . , L.

Proof. The M�step of the EM algorithm requires the maximization of the Q func-

tion with respect to the parameters ηl. Observe that, conditional to the latent

factors (ω, z, zz), the objective function is proportional to

Q (ηl) ∝ −
1

2

L∑
l=1

T∑
t=1

ω̂
(m)
t,l ẑ

(m)
t,l

(
ỹ2,t

ω̂
(m)
l,t

− ηl − αlht

)2

(4.19)

which completes the proof.



Chapter 5

Application to real data

After presenting the airport organization, detecting the congestion problem and

developing a possible model to solve it, we now show the results of the Finite�

Horizon Dynamic Programming algorithm along with a summary of the probability

matrices estimates. The last section of this chapter was thought to highlight the

power of the algorithm and our success in optimizing a real congestion problem.

Indeed we will show the results of a comparison between what we could have

obtained using our solution and what instead happened in reality. Finding a utility

and being able to gain some pro�ts by using the model is for sure a good review

for it.

Before going into that, we give a summarizing descriptive overview about the

performances of the airport for the year 2017.

5.1 Measures of Marco Polo airport on time performance

In a day of operations generally delays start creating in the morning until reaching

peak congestion hours in the half part of the day when typically more demands

are scheduled.

Figure 5.1 plots the number of planned arrivals and departures giving a time se-
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Figure 5.1: Distribution of scheduled �ights at Marco Polo airport in Venice for the year

2017. Scheduled arrivals are marked with the red line, scheduled departures with the blue.

ries for the year 2017. Particularly we segment it to show the results divided per

month. Indeed reasonably air tra�c changes from month to month and even more

from to season to season. As shown in graphic 5.1, we notice how total demand

starts increasing in spring, reaches the highest peaks in summer and drastically

falls from the end of October. Cause we are observing just one year of data we

can't properly de�ne it as a trend, but most of likely this behavior is typical in

years. We also notice that in general departures and arrivals follow the same �ow,

but always the former are higher than the latter, especially in those periods of

large total demand.

To test the model, our analysis will focus particularly on two speci�c months,

April and December. We chose them as representative special months. In fact as

we are focusing on queues and associated costs and we are taking into consider-

ation also the variability from weather conditions, our application needed to �nd

particularly congested days and di�erently a�ected by the weather. So we chose

spring and winter as seasons and April and December as representing congested
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months thinking that in April 2017 bank holidays like Easter (16th day for the

year 2017) and respectively in December Christmas (25th day) and special new

year holidays occurred.

To resume the statement made at the beginning of this section, about the

scheduled plans, we report more in detail the ones for April (5.2) and December

(5.3). Di�erently from the overview in Figure 5.1 where for each day the scheduled

Figure 5.2: Distribution of scheduled �ights for April 2017 distinguished for type of move-

ment. Arrivals are marked with the red line, departures with the blue. Representation is

detailed for each day of the month, with reference to each 30�minute length time interval.

The dotted vertical line is in correspondence to the time period t = 1, i.e. between 5.30

a.m. and 6.00 a.m.



66 CHAPTER 5. APPLICATION TO REAL DATA

Figure 5.3: Distribution of the scheduled �ights for December 2017 distinguished for type

of movement. Arrivals are marked with the red line, departures with the blue. Represen-

tation is detailed for each day of the month, with reference to each 30�minute length

time interval. The dotted vertical line is in correspondence to the time period t = 1, i.e.

between 5.30 a.m. and 6.00 a.m.
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movements are the sum of those planned for that day, in Figures 5.2 and 5.3 the

details are for each time period of the day. Interpreting the x�axis as the time

interval, namely the �rst ranging from 00.00 to 00.30 till the last one from 23.30

to 24.00, we can con�rm that generally the majority of �ights is planned starting

from mid morning, especially if we focus on the arrivals. These indeed reach their

peaks in the half part of the day and in the last hours they are always higher than

the planned departures. The days are disposed as in a calendar, from the �rst

column showing all the Mondays till the last one showing all the Sundays. In this

way it's even better understandable how the planning �ows during the weekdays.

Figures 5.4 and 5.5 show instead the formation and propagation of the ob-

served queues distinctly from arrivals and departures. The vertical dotted line

traces the �rst signi�cant time period t = 1, between 5.30 and 6.00, from the

series t = 1, . . . , T = 37 chosen for the model application. The images con�rm

the formation of considerable queues is not before the early morning, thus giving

reason to our split�of�the�day choice (for details see chapter 3). All considered we

need to bear in mind that while for the departures the estimation of queue lengths

has been made with a reasonable criteria thanks to large available information, for

the arrivals we used a more approximate formula (see details in section 3.3).

5.2 Estimates and results

All the estimates were obtained using the software R, a free open�source environ-

ment for statistical computing and graphics. For codes and packages used for our

application we refer to Appendix C.

Assuming an order k = 2 for the Erlang distribution of the service process, a

practical queue capacity limit N = 10 and a demand rate λt equal to the scheduled

movements request, we programmed the estimates as detailed in chapter 2, testing

all the possible combinations between arrival and departure service rates. For the

parameter ρ we set it equal to 1.2, that implying for arrival queues costs 20%
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Figure 5.4: Distribution of the observed arrival and departure queues lengths for April

2017. Arrivals are marked with the red line, departures with the blue. Representation is

detailed for each day of the month, with reference to each 30�minute length time interval.

The dotted vertical line is in correspondence to the time period t = 1, i.e. between 5.30

a.m. and 6.00 a.m.
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Figure 5.5: Distribution of the observed arrival and departure queues lengths for December

2017. Arrivals are marked with the red line, departures with the blue. Representation is

detailed for each day of the month, with reference to each 30�minute length time interval.

The dotted vertical line is in correspondence to the time period t = 1, i.e. between 5.30

a.m. and 6.00 a.m.
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higher than for the departure ones. Actually that sounds reasonable as keeping an

aircraft waiting on air usually means more fuel wasting if compared to wait on the

ground.

With regards to the set of possible service rates, Awt , it was chosen to be

di�erent whether referring to good or poor weather conditions:

Awt =

{0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10}, if wt = VMC

{0; 1; 2; 3; 4; 5}, if wt = IMC.

The choice to set as maximum service rate 10 and 5 respectively under VMC and

IMC has been suggested by the limits as reported in Table 3.1. The set was only

necessary for the arrival service rate because the corresponding for departures was

determined by the OTE and what has been reached in reality.

The Erlang distribution's order is to be interpreted as the number of phases

that a customer, an aircraft in our case, requires to be completed for a full service.

From the departure's side, we decided to set k = 2 as once the aircraft leaves the

gate, so when its service starts, it might join another queue when reaching the

holding point. In fact here the plane is considered ready to depart but this time

can di�er from the moment when it actually takes o�. We decided to set the same

order's value also for the arrivals.

The manual choice of N was dictated from the maximum possible service rate

of 32 movements per hour, with a maximum of 19 arrivals, which was roughly

converted into 16 and 10 movements per each 30�minute time period respectively.

For a seek of simplicity and coherency we set the same practical queue capacity

value of N = 10 both for arrivals and for departures. We could have set the

practical queue capacity bigger than 10 but it would have meant more complexity

into the model and a bigger computational cost.

The imputation to λt of a deterministic value sounded reasonable as seeking for

an optimal service policy considering one speci�c day for which we know in advance

its complete �ight plan. Furthermore we remind that the �ight plan we took as
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input is not the one planned months in advance, but the last updated up to three

hours before the actual performance, at least for departures. All considered however

in the real world such scheduled �ights may be a�ected by unpredictable changes

for example cause of unexpected events from the connecting airports or unforeseen

delays from the passengers or again low e�ciency by the �ight operators.

Finally with regards to the weather variable we used the approach detailed in

section 4.2.1, where for our application the number of possible states (L) was 2,

VMC or IMC, good or bad weather conditions respectively.

5.2.1 Probabilities matrices

Figure 5.6: Example of P matrix estimate for arrival queues. Separately for the num-

ber of aircraft waiting to be served at the beginning of the period, each plot shows the

state probability of the airport system with regards to the number of stages of work to be

completed at the end of the time period, which is t = 16 (13.00�13.30).

Figures 5.6 and 5.7 are an example of the estimates for the Chapman�Kolmogorov

system of �rst�order di�erential equations, detailed in 2.2.1.

The results from each running of the algorithm were graphs showing the evo-
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Figure 5.7: Example of P matrix estimate for departure queues. Separately for the num-

ber of aircraft waiting to be served at the beginning of the period, each plot shows the

state probability of the airport system with regards to the number of stages of work to be

completed at the end of the time period, which is t = 16 (13.00�13.30).

lution of the state probabilities over time period t. For our purpose we just needed

to store in a look�up table the values referring to the beginning (the initial condi-

tions) and the end of the time period (the one we were looking for). The estimation

process took about 5 minutes to run in a laptop computer, as much for the arrival

as for the departure rates. It is worth to note that the computational e�ort was

higher depending on the values of k and N . In our case we obtained a total of

(N+1) × |Aµ| × T = 4477 stages of work transition probabilities matrices P of

dimension (kN+1)× (kN+1) which is for us (21×21) for arrivals and as many for

departures1. The examples are with reference to time period t = 16, i.e. between

13.00 and 13.30, for the chosen day December 10th, 2017. Figures 5.6 and 5.7, the

former for arrival and the latter for departure, depict the possible state at which

1We computed the matrices for all the possible queues lengths and service rates, even if some

of them, for example the highest departure service rates, were never reached or proposed to be

adopted as solution to the congestion.
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Figure 5.8: Example of Q matrix estimate for arrival queues. Separately for the number

of aircraft waiting to be served at the beginning of the period, each plot shows the state

probability of the airport system with regards to the number of aircraft remaining to be

fully served at the end of the time period, which is t = 16 (13.00�13.30).

the airport system could be at the end of the time period, i.e. at 13.30, given that

at the beginning of the same there were a known number of aircraft in queue asking

to be served. The initial condition which translates into this number is indicated

at the top of the each box, the x�axis is the total stages of work remaining to be

completed at the end of the period, with probability reported in the y�axis. The

dynamic realistically changes depending on the corresponding service rate adopted

in the considered interval of time. We chose 0, 3 and 6 as representative for the

example. Figures 5.8 and 5.9 show in the same way as the stages of work transition

probabilities matrices P an example of the queue length transition probabilities

Q, detailed in 2.2.2. The total number of states for them is reduced to 11, while

for the matrices P it was 21.

About the estimation of the weather state transition probabilities (matrices

Wt, t = 1, . . . , T = 37), an example of the results is shown in Table 5.1, where the

instance is for ht = 16 (for details about de�nitions see subsection 4.2.2). Figure
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Figure 5.9: Example of Q matrix estimate for departure queues. Separately for the number

of aircraft waiting to be served at the beginning of the period, each plot shows the state

probability of the airport system with regards to the number of aircraft remaining to be

fully served at the end of the time period, which is t = 16 (13.00�13.30).

5.10 instead shows the �ltered probabilities for the estimated HMM, introduced

in section 4.2, for the good weather state s̄t = VMC, i.e. P (s̄t = 1|y1:t,h1:t). The

estimates are obtained using the FFBS algorithm described in Appendix A.1.

5.2.2 OTE functions estimates

Reminding that the OTE function estimates the average number of allowed take�

o�s in correspondence to the allowed landings for a time period, we show below

the estimated functions, whose formulation is detailed in chapter 4. We present the

estimates for the two selected months but we add that they can be valid in general

for spring and winter seasons respectively. Indeed the related probabilities have

been obtained using aggregated data from months similar in weather to April

in the �rst case and to December in the second. Figures 5.11 and 5.12 report

such estimated functions. With reference to them, lines are the estimated OTE
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Figure 5.10: Filtered probabilities for the estimated Hidden Markov model for the good

weather state s̄t = VMC.

Figure 5.11: Operational throughput envelope estimate for April. The blue function is to

be considered when under VMC state, the red one under IMC. The dots whose size is

proportional to the frequency are the scheduled �ights planned for one time period in a

day. They summarize the schedules for an hypothetical spring month, taking as example

April 2017.
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Figure 5.12: Operational throughput envelope estimate for December. The blue function

is to be considered when under VMC state, the red one under IMC. The dots whose size

is proportional to the frequency are the scheduled �ights planned for one time period in a

day. They summarize the schedules for an hypothetical winter month, taking as example

December 2017.
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p̂ht q̂ht

h = 16
0.995 0.890

(0.0472) (0.0826)

Table 5.1: Estimation of the probabilities of transition from a weather state to another,

conditioned on seasonality. p̂t is the probability to be in VMC at the beginning of time

period t+1 given that the state was in VMC at the beginning of t. q̂t is the probability

to be in IMC at the beginning of time period t+1 given that the state was in IMC at the

beginning of t.

functions, the blue ones show the trade�o� between the two variables under VMC,

i.e. good weather conditions, and the red ones the same under IMC, i.e. bad weather

conditions. It's clearly noticeable the restriction inferred by the meteorologic state

on the achievable service rates. Under VMC as well as allowing more departures

on average for the same chosen rate for arrivals, it can be reached the maximum

possible arrival service rate. With regards to the function in spring, we see that

the departure service rates are almost constant and equal to 5 and 4 movements,

respectively under VMC and IMC conditions, up to the correspondent maximum

arrival service rates of 10 and 5, where there they fall to 0, according to the airport

capacity. The reason why the estimates result in a constant line can be due to lack

of information from data. Indeed in spring and equivalently in summer there are

only a few occasions of bad weather or windy conditions, especially if compared to

those of good ones. We also decided to plot in the same graphic some points which

represent the pairs of scheduled arrivals and departures in a 30�minute time period

for a hypothetical day. The size of such dots is proportional to the frequency of the

observed variables' pairs, indeed we summarized data for the same daily interval

from the whole month of April (5.11) and December (5.12) of the year 2017. We

can notice in this way that the �ight schedules per day laying above the OTE lines
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are index of a congestion problem. As a matter of fact their position above the

service limit line means there were more aircraft planned to be served than those

the airport system was really able to serve. This is an example of how queues arise.

5.2.3 Solution of the DP algorithm

Taking as inputs all the necessary estimated parameters, we succeeded in running

the Dynamic Programming algorithm. In a desktop PC the e�ective time to run

the dynamic part was roughly 15 minutes per day. To gain a feedback on which

draw some consistent conclusions we decided to solve the algorithm per each day

of the two selected months. At the end of the running for one day we had one

matrix for every time period with (N + 1) × (N + 1) × 2 = 242 rows, one for

each possible three�dimensional state. Every matrix, taking generally the one for

period t, suggests the optimal service rate to adopt in the next 30 minutes of time

starting from tR, given that we are in the state we are observing (for the state

variable de�nition, see chapter 2, expression (2.1)). The forwarded solution from

the algorithm is to be read as the best service to be applied to reach the minimum

cost at the end of the day, so from clock time tR on.

Figure 5.13 reports a piece of solution, taking as example one day of April and

speci�cally for the time period t = 16. Each �gure is conditioned to the number of

aircraft queuing for departing (we only report some of the most relevant examples),

while each of their plots is conditioned on the arrival queue length. Depending on

both the arrival and departure queue lengths and the expected number of aircraft

demanding for service in that time period indeed the rate chosen as optimal from

the DP algorithm can be di�erent. Furthermore for the way it has been built the

model choses that service rate that is expected to be the best one to adopt since

then in view of what is going to happen in the future, i.e. until the end of the day.

Also, considering that under bad weather conditions the service could be limited,

the optimal choice depends on that as well. For this reason each box in Figure 5.13

contains two points, the blue one associated to VMC and the red one to IMC
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(a) 0 aircraft queuing for departing

(b) 2 aircraft queueing for departing

(c) 5 aircraft queueing for departing

(d) 8 aircraft queueing for departing

(e) 10 aircraft queueing for departing

Figure 5.13: Example of the optimal selection for arrival (x�axis) and departure (y�axis) service

rates from the DP algorithm. The sample is taken from the solution for the time period t = 16, i.e.

between 13.00 and 13.30, of one day of April 2017. Each �gure is conditioned on the departure

queue length at the beginning of the period (13.00) and each box shows the best combination

to choose as service rate depending on the corresponding arrival queue length (indicated with

numbers from 0 to 10). Blue dots are the optimal choice under VMC weather conditions, red dots

under IMC.



80 CHAPTER 5. APPLICATION TO REAL DATA

conditions, as observed at the beginning of the time period, that is in the example

at 13.00.

5.3 Comparison

Last step in this analysis is about the comparison between optimal situation and

reality. When saying optimal solution we refer to the selection of the best control

variables, arrival and departure service rates, for a determined time period. Such

selection is again depending on the current state in which the airport system is at

the beginning of the interval. The solution is disposable at any time and before the

day of operations and its power is just that. Being indeed known, once the situation

is observed, it suggests the optimal management of the tra�c, in anticipation of

what is expected to happen until the end of the day of operation and considering

also the weather in�uence on the airport capacity and operations' e�ciency.

To build a proper comparison between model proposal and real decisions, we

should know what the service policy criteria adopted by air tra�c managers is.

From the dataset we disposed of information about arrival and departure service

rates, but they are the ones chosen in real time, thus not provided before the rela-

tive operation. For this lack of information we were not able to de�ne a comparable

service policy from real data, but instead we built a hypothetical one. We �xed

thus for each day its selected service rates equal to the scheduled demand rates.

After that we run again the DP algorithm with the same backward approach,

knowing this time the service rates to be adopted. In this way we had for each

day of April and December two possible strategies to follow: the optimal one com-

ing from our model and the naïve one, chosen as a hypothetical adopted policy.

The comparison was made by means of the resulting costs quanti�ed as shown in

expression 2.2, choosing for our application ρ = 1.2. We just compared the total

costs related to the �rst time period t estimated in both cases by the algorithm.

As a matter of fact, the �rst time period is the resume of the whole day once it
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takes into consideration through the probability estimates all the possible dynamic

evolutions of the system during each day and all the combinations of choices that

can be taken.

Barplots in Figures 5.14 and 5.15 draw the gain in cost in percentage scale, where

Figure 5.14: Barplots for the resulting cost comparison between model suggestion and

naïve control service policy. Bars quantify the gain from the model in percentage scale.

X�axis indicates the days of April 2017 and for each the two bars stay for the gain in

cost if the relative day began under VMC weather conditions (dark bar), the gain in cost

if the relative day began under IMC (light bar).

a positive value means that the model performed better than the naïve solution.

Two bars are assigned to each day, which is the x�axis. The dark bar is the per-

centage gain in cost if the day begins under VMC conditions, while the light bar if

under IMC condition. Always, even if sometimes only slightly, in the example the

gain when the day begins under good weather is higher than when in bad weather

state. This can �nd explanation in the fact that under bad weather condition the
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Figure 5.15: Barplots for the resulting cost comparison between model suggestion and

naïve control service policy. Bars quantify the gain from the model in percentage scale.

X�axis indicates the days of December 2017 and for each the two bars stay for the gain

in cost if the relative day began under VMC weather conditions (dark bar), the gain in

cost if the relative day began under IMC (light bar).
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services are limited, thus also the attempt to do better is constrained. Anyway as

barplots show, it seems that our solution performs better than the naïve one up

to gain in costs of the 80%.

For a comparable service rate from reality instead it was not possible to extract

one as we said, but at least we could study a way to compare model solution to

reality by means of queues lengths. Indeed although conscious about the approx-

imation and the ignorance of any unpredictable events that might have occurred,

we took as real service rates the actual arrival and departure throughputs (for def-

initions see section 3.3) and used them for a comparison with the optimal service

policy from the model by measuring the �nal queues lengths. Assuming there were

no queues in t = 1 which means for our analysis the beginning of the day, the

comparison took shape by calculating at the end of each time period the arrival

and departure queues lengths as the sum of the respective queue length at the

beginning of the period and the number of movements planned to serve, minus

the chosen service rate. Given that the queues lengths at the beginning of a time

period correspond to those at the end of the previous one, the only element to de-

�ne was the number of �ights planned to serve. Here we had two chances: �rst one

was using the �ight plan disposable at the beginning of the day, which is the same

used to de�ne the rates λt in the probability matrices' de�nition, see chapter 2.

The second alternative was considering as �ight plan the actual demand arisen in

that speci�c day, which might be di�erent from the previous proposal. Again from

data we were not able to reach su�cient information about the second alternative,

even if it would have been more reliable and motivating the service rates' choice

adopted by air tra�c managers. Anyway, �ight plan is still a good choice given

that it is the last updated up to three hours before the corresponding movement,

at least for departures.

To show the evolution of arrival and departure queues when adopting the two

di�erent service policies we refer to Figures 5.16 and 5.18 and Figures 5.17 and 5.19

respectively. Each plot is for one day comparison. Red dots are with reference to
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Figure 5.16: Arrival queue lengths comparison between model solution and actually per-

formed service. Red dots refer to the model, black crosses to reality. The comparison takes

as schedules the last updated �ight plan. Each plot is with reference to the days of April

2017.
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Figure 5.17: Departure queue lengths comparison between model solution and actually

performed service. Red dots refer to the model, black crosses to reality. The comparison

takes as schedules the last updated �ight plan. Each plot is with reference to the days of

April 2017.
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Figure 5.18: Arrival queue lengths comparison between model solution and actually per-

formed service. Red dots refer to the model, black crosses to reality. The comparison

takes as schedules the last updated �ight plan. Each plot is with reference to the days of

December 2017.
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Figure 5.19: Departure queue lengths comparison between model solution and actually

performed service. Red dots refer to the model, black crosses to reality. The comparison

takes as schedules the last updated �ight plan. Each plot is with reference to the days of

December 2017.
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the service rates we would have adopted if using the model optimal solution, while

black crosses to the actual arrival and departure aircraft served in the indicated

days. The di�erence between arrival and departure queues is evident. The former,

apart from few occasions, result in low values from the model solution appliance

(red dots) and values lower than the reached in reality (black crosses). For the

latter instead, lengths are taller and sometimes model queues are even longer than

the real ones. Reminding that this remains an approximation given that we can't

know what really drove the air tra�c managers' choice for service, we can justify

the di�erence as follows. Considering that the model gives priority to serve arrivals

(the meaning of ρ > 1), arrival queues are likely to be disposed of as �rst, conse-

quently increasing departure queues length. However a solution to this congestion

can be proposed. An idea could be reorganizing the departure exits from the gates

in order to avoid congestion at holding points or runway.
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Estimates for the EM algorithm

A.1 The FFBS algorithm

In the E�step of the EM algorithm, we need to compute the following conditional

expectations

ẑtl = E(ztj | y1, . . . ,yT )

and

ẑztlk = E(zztj | y1, . . . ,yT )

The above quantities can be computed via the well�known forward�backward re-

cursive algorithm (Baum et al. 1970). Let us de�ne the forward variable

αtl = f(y1, . . . ,yt, S̄t = l)

which represents the probability of seeing the partial sequence ending up in state

l at time t, and the backward variable

βtl = f(yt+1, . . . ,yT | S̄t = l).

It is worth noting that the computation of the forward and backward probabilities

is susceptible to under� or over��ow error. In applying EM as described here, a
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scaling procedure is adopted in order to prevent, or at least reduce the risk of, such

error. It will be convenient to work on the log�scale. In order to do so, we exploit

a simple computational device which is based on the following general equality

log(a+ b) = log(a) + log(1 + exp(log(b)− log(a))).

Hence, if one has the log of two quantities log(a) and log(b), only their di�erence

must be exponentiated in order to obtain log(a+ b), drastically reducing the risk

of under�ow. By iterating this reasoning, one can sum a vector of quantities on

the log�scale. We call this operation ⊕. The forward recursion, on the log�scale,

is then given by

log(α1l) = log(f(y1 | S̄1 = l)) + log(δl).

Then, for t = 2, . . . , T we compute

log(αtk) = log(f(yt | S̄t = k)) +
L⊕
l=1

log(αt−1,l) + log(qlk).

Similarly, it is possible to implement the following backward recursion.

log(βT l) = 0.

Then, for t = T − 1, . . . , 1, we have

log(βtl) =
L⊕
k=1

log(f(yt+1 | S̄t+1 = k)) + log(βt+1,k) + log(qlk).

The expected values of the quantities involved in the E�step can be computed as

follows

ẑtl =
αtlβtl∑L
l=1 αtlβtl

and

ẑztlk =
qlkαtlf(yt+1 | S̄t+1 = k)βt+1,k∑L

l=1 αT l
.
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A.2 The observed information matrix

Under standard regularity conditions, the score vector ∇t (φ,yt) evaluate at the

true parameter vector φ0 has the martingale di�erence property, therefore the

maximum likelihood estimator will be consistent and asymptotically normally dis-

tributed with asymptotic variance�covariance matrix which is the inverse of the

information matrix

I (φ0) = p lim
T→∞

1

T

T∑
t=1

∇t (φ0,yt)∇t (φ0,yt)
′

= E
(
∇t (φ0,yt)∇t (φ0,yt)

′) , (A.1)

which is not available in closed form (see Fiorentini, Sentana, and Calzolari 2003)

and can be consistently estimated as

Î
(
φ̂
)

=
1

T

T∑
t=1

∇t

(
φ̂,yt

)
∇t

(
φ̂,yt

)′
,

where ∇t

(
φ̂,yt

)
is the observed score at time t evaluated at φ̂, the maximum

likelihood estimate of φ.
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Appendix B

Encoding

Each interval is codi�ed with a number, that corresponds to the t label in formulas,

pos = 1, . . . , T = 37. Table B.1 encodes the symbols:
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t from to

1 05:30 06:00

2 06:00 06:30

3 06:30 07:00

4 07:00 07:30

5 07:30 08:00

6 08:00 08:30

7 08:30 09:00

8 09:00 09:30

9 09:30 10:00

10 10:00 10:30

11 10:30 11:00

12 11:00 11:30

13 11:30 12:00

14 12:00 12:30

15 12:30 13:00

t from to

16 13:00 13:30

17 13:30 14:00

18 14:00 14:30

19 14:30 15:00

20 15:00 15:30

21 15:30 16:00

22 16:00 16:30

23 16:30 17:00

24 17:00 17:30

25 17:30 18:00

26 18:00 18:30

27 18:30 19:00

28 19:00 19:30

29 19:30 20:00

30 20:00 20:30

t from to

31 20:30 21:00

32 21:00 21:30

33 21:30 22:00

34 22:00 22:30

35 22:30 23:00

36 23:00 23:30

37 23:30 24:00

Table B.1: Encoding of the representative T = 37 periods of time t in which days have

been split.
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Codes

###

# Chapman-Kolmogorov equations

# Example for arrivals

###

f.equations.arr <- function(time, P, parms)

{

lam <- lambda.arr[floor(time[1])]

mu <- parms

P0 <- P[1]; P1 <- P[2]; P2 <- P[3]; P3 <- P[4]; P4 <- P[5]; P5 <- P[6];

P6 <- P[7];

P7 <- P[8]; P8 <- P[9]; P9 <- P[10]; P10 <- P[11]; P11 <- P[12]; P12 <-

P[13]; P13 <- P[14];

P14 <- P[15]; P15 <- P[16]; P16 <- P[17]; P17 <- P[18]; P18 <- P[19];

P19 <- P[20]; P20 <- P[21]

dP0 <- -lam*P0 + 2*mu*P1

dP1 <- -(lam+2*mu)*P1+2*mu*P2

dP2 <- lam*P0 -(lam+2*mu)*P2+2*mu*P3
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dP3 <- lam*P1 - (lam+2*mu)*P3 + 2*mu*P4

dP4 <- lam*P2 - (lam+2*mu)*P4 + 2*mu*P5

dP5 <- lam*P3 - (lam+2*mu)*P5 + 2*mu*P6

dP6 <- lam*P4 - (lam+2*mu)*P6 + 2*mu*P7

dP7 <- lam*P5 - (lam+2*mu)*P7 + 2*mu*P8

dP8 <- lam*P6 - (lam+2*mu)*P8 + 2*mu*P9

dP9 <- lam*P7- (lam+2*mu)*P9 + 2*mu*P10

dP10 <- lam*P8 - (lam+2*mu)*P10 + 2*mu*P11

dP11 <- lam*P9 - (lam+2*mu)*P11 + 2*mu*P12

dP12 <- lam*P10 - (lam+2*mu)*P12 + 2*mu*P13

dP13 <- lam*P11 - (lam+2*mu)*P13 + 2*mu*P14

dP14 <- lam*P12 - (lam+2*mu)*P14 + 2*mu*P15

dP15 <- lam*P13 - (lam+2*mu)*P15 + 2*mu*P16

dP16 <- lam*P14 - (lam+2*mu)*P16 + 2*mu*P17

dP17 <- lam*P15 - (lam+2*mu)*P17 + 2*mu*P18

dP18 <- lam*P16 - (lam+2*mu)*P18 + 2*mu*P19

dP19 <- lam*P17 - 2*mu*P19 + 2*mu*P20

dP20 <- lam*P18 - 2*mu*P20

list(c(dP0,dP1,dP2,dP3,dP4,dP5,dP6,dP7,dP8,dP9,dP10,dP11,dP12,dP13,dP14

,dP15,dP16,dP17,dP18,dP19,dP20))

}

t1 <- seq(from=1,to=2, by=1/60)

time.period <- matrix(NA, nrow=37,ncol=61)

for(h in 1:37)

{

time.period[h,] <- seq(from=h,to=h+1,by=1/60)

}
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library(deSolve)

for(w in 0:10) # w is the queue length

{

P.init <- rep(0,21)

boom <- (2*w)+1

P.init[boom] <- 1

for(k in seq(0,10,by=1)) # k is the service rate for arrivals

{

for(h in 1:37) # h is the time period

{

out <- ode(times=time.period[h,], y=P.init, func=f.equations.arr, parms

=k)

keep <- out[which(out[,1]%in%seq(1,38,by=1)),]

rm(out)

save(keep,file=paste("P",paste(h,paste(".m",paste(w,paste(".a",k,sep=""

),sep=""),sep=""),sep=""),sep=""))

}

}

}

###

# Queue length Transition probabilites matrices

# Example for arrivals

###

mu.arr <- c(0:10)

now <- timestamp()

for(t in 1:36)

{

for(a in mu.arr)

{



98 APPENDIX C. CODES

Q <- matrix(NA,11,11)

rownames(Q) <- c("m0","m1","m2","m3","m4","m5","m6","m7","m8","m9","m10

")

colnames(Q) <- c("n0","n1","n2","n3","n4","n5","n6","n7","n8","n9","n10

")

for(m in 0:10)

{

for(n in 0:10)

{

load(paste("P",paste(t,paste(".m",paste(m,paste(".a",a,sep=""),sep=""),

sep=""),sep=""),sep=""))

if(n==0){

foo <- keep[,-1][2,1]

} else {

foo <- keep[,-1][2,2*n]+keep[,-1][2,(2*n)+1]

}

Q[m+1,n+1] <- foo

}

}

save(Q, file=paste("Q",paste(t,paste(".a",a,sep=""),sep=""),sep=""))

}

}

###

# OTE estimation B-spline construction

###

library(splines)

kn <- c(0,4,6)

bspline.imc <- bs(xi,knots=kn,degree=3)

lm1 <- lm(yi~0+bspline.imc)
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betasi <- lm1$coefficients

betasi

xxi <-seq(min(xi),max(xi),1/50)

library(quadprog)

n <- length(betasi)

Dmat <- diag(n)

dvec <- betasi

D1 <- matrix(0,nrow=n-1,ncol=n)

D2 <- matrix(0,nrow=n-2,ncol=n)

D1[cbind(1:(n-1),1:(n-1))] <- -1

D1[cbind(1:(n-1),2:n)] <- 1

D1

D2[cbind(1:(n-2),1:(n-2))] <- 1

D2[cbind(1:(n-2),2:(n-1))] <- -2

D2[cbind(1:(n-2),3:n)] <- 1

Amat <- matrix(0,nrow=nrow(D1)+nrow(D2),ncol=ncol(D1))

Amat[1:nrow(D1),] <- -D1

Amat[(nrow(D1)+1):nrow(Amat),] <- -D2

Amat <- t(Amat)

bvec <- rep(0,ncol(Amat))

ri <- solve.QP(Dmat,dvec,Amat,bvec)

# verify constraints

soli <- ri$solution

for(i in 2:length(soli))

{



100 APPENDIX C. CODES

print(isTRUE(soli[i] <= soli[i-1]))

}

for(i in 3:(length(soli)))

{

print(isTRUE(soli[i] -2*soli[i-1] + soli[i-2] <= 0))

}

ri$solution

bspline.test.imc <- bs(xxi,knots=kn,degree=3) # nuova matrice disegno

fun.imc=bspline.test.imc%*%ri$solution

# Definition of cost-to-go functions

CTG.last <- as.data.frame(matrix(cbind(rep(seq(0,10,by=1),11),rep(seq

(0,10,1),each=11),rep(NA,11*11)),ncol=3))

names(CTG.last) <- c("a","d","v")

rho <- 1.2

for(i in 1:nrow(CTG.last))

{

CTG.last$v[i] <- rho*(CTG.last$a[i]^2) + CTG.last$d[i]^2

}

CTG <- as.data.frame(matrix(NA,nrow=11*11*2, ncol=17))

colnames(CTG)[1:4] <- c("a.prev","d.prev","w.now","cost .now")

j <- 0



101

for(r in 5:15)

{

colnames(CTG)[r] <- paste("ExpCost.a",j,sep="")

j <- j+1

}

colnames(CTG)[16:17] <- c("MinCost","mustar.a")

CTG[,1] <- rep(seq(0,10,by=1),length.out=nrow(CTG))

CTG[,2] <- rep(seq(0,10,by=1),each=11,length.out=nrow(CTG))

CTG[,3] <- c(rep(0,121),rep(1,121)) # w=0 => VMC w=1 => IMC

for(i in 1:nrow(CTG))

{

CTG$cost.now[i] <- rho*(CTG$a.prev[i]^2) + CTG$d.prev[i]^2

}

V_37 <- as.data.frame(matrix(NA,nrow=11*11*2, ncol=15))

colnames(V_37)[1:4] <- c("a.36","d.36","w.37","cost.37")

j <- 0

for(r in 5:15)

{

colnames(V_37)[r] <- paste("ExpCost.a",j,sep="")

j <- j+1

}

V_37[,1] <- rep(seq(0,10,by=1),length.out=nrow(V_37))

V_37[,2] <- rep(seq(0,10,by=1),each=11,length.out=nrow(V_37))

V_37[,3] <- c(rep(0,121),rep(1,121))
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for(i in 1:nrow(V_37))

{

V_37$cost.37[i] <- rho*(V_37$a.36[i]^2) + V_37$d.36[i]^2

}

V_37 <- rbind(V_37,c(rep(NA,4),seq(0,10,1)))

rate <- 1

for(k in 5:15)

{

for(i in 1:(nrow(V_37)-1))

{

a.37 <- max(0,V_37$a.36[i] + lambda.arr[37] - mu.arr[rate])

if(V_37$w.37[i]==0) {

mu.dep <- OTE.vmc(mu.arr[rate])

} else {

mu.dep <- OTE.imc(mu.arr[rate])

}

if(is.na(mu.dep)| a.37 > 10) { # 10=N

V_37[i,k] <- NA

} else {

d.37 <- max(0,V_37$d.36[i] + lambda.dep[37] - mu.dep)

V_37[i,k] <- CTG.last$v[which(CTG.last$a==a.37&CTG.last$d==d.37)] + V_

37$cost.37[i]

}

}

rate <- rate+1

}
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# lim0 is the maximum reachable arrival service rate under VMC

# lim1 is the maximum reachable arrival service rate under IMC

for(i in 1:121)

{

abc <- which.min(V_37[i,c(5:(lim +5))])

ex <- attr(abc,"names")

V_37$MinCost[i] <- V_37[i,ex]

V_37$mustar.a[i] <- V_37[nrow(V_37),ex]

if(V_37$w.37[i]==0) {

V_37$mustar.d[i] <- OTE.vmc(V_37$mustar.a[i])

} else {

V_37$mustar.d[i] <- OTE.imc(V_37$mustar.a[i])

}

}

for(i in 122:242)

{

abc <- which.min(V_37[i,c(5:(lim1+5))])

ex <- attr(abc,"names")

V_37$MinCost[i] <- V_37[i,ex]

V_37$mustar.a[i] <- V_37[nrow(V_37),ex]

if(V_37$w.37[i]==0) {

V_37$mustar.d[i] <- OTE.vmc(V_37$mustar.a[i])

} else {

V_37$mustar.d[i] <- OTE.imc(V_37$mustar.a[i])

}

}

t <- 36
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rate <- 1

future <- V_37

now <- timestamp()

for(k in 5:15)

{

for(i in 1:(nrow(CTG)-1))

{

if(CTG$w.now[i]==0) {

mu.dep <- OTE.vmc(mu.arr[rate])

} else {

mu.dep <- OTE.imc(mu.arr[rate])

}

if(is.na(mu.dep)) {mu.dep <- 0}

load(paste("Q",paste(t,paste(".a",mu.arr[rate],sep=""),sep=""),sep=""))

row.a <- CTG$a.prev[i]+1

arr <- Q[row.a,]

load(paste("Q",paste(t,paste(".d",mu.dep,sep=""),sep=""),sep=""))

row.d <- CTG$d.prev[i]+1

dep <- Q[row.d,]

load(paste("Weather. trans . t",t,sep=""))

if(CTG$w.now[i]==0) {W <- Weath.trans[1,]} else {W <- Weath.trans[2,]}

vstar <- c(NA, length=242)

go <- 1

# h <- 1 # for weather VMC -> VMC or IMC -> VMC

# h <- 2 # for weather VMC -> IMC or IMC -> IMC
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for(h in 1:2)

{

for(g in 1:11) # g for departure queue length

{

for(m in 1:11) # i for arrival queue length

{

P <- c(NA, length=11)

P[m] <- arr[m]*dep[g]*W[h]

vstar[go] <- P[m]*future$MinCost[go]

go <- go+1

}

}

}

exit <- sum(vstar)

CTG[i,k] <- exit

}

rate <- rate+1

}

for(i in 1:121)

{

abc <- which.min(CTG[i,c(5:(lim0+5))])

ex <- attr(abc,"names")

CTG$MinCost[i] <- CTG[i,ex] + CTG$cost.now[i]

CTG$mustar.a[i] <- CTG[nrow(CTG),ex]

if(CTG$w.now[i]==0) {

CTG$mustar.d[i] <- OTE.vmc(CTG$mustar.a[i])

} else {

CTG$mustar.d[i] <- OTE.imc(CTG$mustar.a[i])

}

}
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for(i in 122:242)

{

abc <- which.min(CTG[i,c(5:(lim1+5))])

ex <- attr(abc,"names")

CTG$MinCost[i] <- CTG[i,ex] + CTG$cost.now[i]

CTG$mustar.a[i] <- CTG[nrow(CTG),ex]

if(CTG$w.now[i]==0) {

CTG$mustar.d[i] <- OTE.vmc(CTG$mustar.a[i])

} else {

CTG$mustar.d[i] <- OTE.imc(CTG$mustar.a[i])

}

}

for(t in seq(35,1,by=-1))

{

rate <- 1

for(k in 5:15)

{

for(i in 1:(nrow(CTG)-1))

{

if(CTG$w.now[i]==0) {

mu.dep <- OTE.vmc(mu.arr[rate])

} else {

mu.dep <- OTE.imc(mu.arr[rate])

}

if(is.na(mu.dep)) {mu.dep <- 0}

load(paste("Q",paste(t,paste(".a",mu.arr[rate],sep=""),sep=""),sep=""))

row.a <- CTG$a.prev[i]+1
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arr <- Q[row.a,]

load(paste("Q",paste(t,paste(".d",mu.dep,sep=""),sep=""),sep=""))

row.d <- CTG$d.prev[i]+1

dep <- Q[row.d,]

load(paste("Weather. trans . t",t,sep=""))

if(CTG$w.now[i]==0) {W <- Weath.trans[1,]} else {W <- Weath.trans[2,]}

vstar <- c(NA, length=242)

go <- 1

for(h in 1:2)

{

for(g in 1:11)

{

for(m in 1:11)

{

P <- c(NA, length=11)

P[m] <- arr[m]*dep[g]*W[h]

vstar[go] <- P[m]*future$MinCost[go]

go <- go+1

}

}

}

exit <- sum(vstar)

CTG[i,k] <- exit

}

rate <- rate+1

}

for(i in 1:121)
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{

abc <- which.min(CTG[i,c(5:(lim0+10))])

ex <- attr(abc,"names")

CTG$MinCost[i] <- CTG[i,ex] + CTG$cost.now[i]

CTG$mustar.a[i] <- CTG[nrow(CTG),ex]

if(CTG$w.now[i]==0) {

CTG$mustar.d[i] <- OTE.vmc(CTG$mustar.a[i])

} else {

CTG$mustar.d[i] <- OTE.imc(CTG$mustar.a[i])

}

}

for(i in 122:242)

{

abc <- which.min(CTG[i,c(5:(lim1+10))])

ex <- attr(abc,"names")

CTG$MinCost[i] <- CTG[i,ex] + CTG$cost.now[i]

CTG$mustar.a[i] <- CTG[nrow(CTG),ex]

if(CTG$w.now[i]==0) {

CTG$mustar.d[i] <- OTE.vmc(CTG$mustar.a[i])

} else {

CTG$mustar.d[i] <- OTE.imc(CTG$mustar.a[i])

}

}

}
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