UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE Department of Civil, Environmental and Architectural Engineering Corso di Laurea Magistrale in Environmental Engineering

TESI DI LAUREA

TESTING THE PLANT UPTAKE OF CHEMICALS IN FERTILIZERS

Laureando:

UMAR FAROOQ [1215994] Relatore

Prof. ALBERTO PIVATO Correlatore: Dott. Ing. GIOVANNI BEGGIO

ANNO ACCADEMICO 2021-2022 ACADEMIC YEAR 2021/2022 This page is left blank intentionally.

Acknowledgments

To begin, I would want to show my gratitude to Prof. Pivato Alberto, who has encouraged me in class and identified me as a possible candidate to supervise this research.

My heartfelt appreciation goes to my mentor, Dr. Ing. Giovanni Beggio, who has welcomed me without hesitation and has supported me during my research period as well as my time at Padova University. I would want to express my gratitude to him for all of his valuable guidelines, which have been an enormous help in my research. Apart from my advisers, I would like to express my gratitude to the personnel and colleagues at the SESA laboratory, particularly Director Tiziano Bonato and laboratory colleague Andrea, for their invaluable assistance in carrying out this work at the laboratory and provided all the necessary apparatus for the experiment. Additionally, I would want to express my gratitude to my family and friends who have aided me in one way or another or simply by providing moral support.

A Special thanks go out to Daniele, my husband, for his unlimited love and support, without which this would not have been possible. Finally, I want to express my heartfelt gratitude to everyone who, while I may not have named them by name, has stood by my side morally or in any other way.

A	cknow	ledgments	ii
C	ontent	5	iii
F	igures		iv
Т	ables		v
P	art-I T	neoretical Background	1
1	Gene	eral Introduction	2
	1.1 V	Vhat is uptake?	2
	1.2 U	ptake of chemicals by Plants	4
	1.3 V	Vhy is plant uptake crucial for fertilizers?	4
	1.4 H	low to assess plant uptake and bioaccumulation	5
	1.5 F	ertilizers	23
	1.5.1	Fertilizer Regulations concerning Digestate and compost	23
	1.5.2	Criteria for Product function category 1 and 3	26
	1.5.3	Process Requirements for CMC 3 and CMC 5	
P	art -II S	cientific Article	
A	bstrac		
R	iassun	to	
2	Intro	oduction	
3	Mate	erial and Methods	
	3.1 E	xperimental Design	
	3.1.1	Treatment and Replicates	
	3.1.2	Nutrient Solutions	
	3.1.3	Control Soil and Test soil	
	3.1.4	Plant specie	40
	3.2 F	HIZOtest Bioassay	41
	3.2.1	Preculture Period	41

	3.2	2.2	Test Culture Period	ł3				
	3.2	2.3	Harvests of plants	14				
	3.3	Pla	nt and soil analysis4	ł5				
	3.3	3.1	Concentration and fluxes in plants	ł5				
	3.3	3.2	Statistical analysis	 17				
4	Re	sult	s and Discussion4	ŀ9				
4.1 Plant Biomass								
	4.2	Tra	ace Element Concentrations	51				
4.3 Net Uptake Flux								
	4.4	Bio	-concentration Factor and Translocation Factor	54				
	4.5	Cor	nclusion	55				
P	art-I	II Da	ıta5	56				
A	pper	ndice	2S	I				
A	Ex	peri	mental Design	I				
B	Со	ncer	ntration Values Before Exposure	IV				
С	Со	ncer	ntration Values After Exposure	.v				
D	Flu	ux, B	io-accumulation and Translocation FactorV	ΊΙ				
E	Sta	atist	ical AnalysisVl	II				
B	iblio	grap	0hy	.X				

Figures

Figure 4.3	- Net uptake flux	$(ng m^{-2} s^{-1})$	for trace elements in	the RHIZOtest plants	53
0	1			L L	

Tables

Table 1.1 - Reporting pertinent research findings from the scientific literature	6
Table 1.2 - Limit values of contaminants (metals, pathogens) in organic fertilizer	26
Table 1.3 - Criteria requirements for the nutrients for organic fertilizer	27
Table 1.4 - Criteria requirements for soil improvers	27
Table 1.5 - Process criteria for compost and digestate	28
Table 1.6 - Environmental and safety criteria for a component material category	29
Table 3.1 - Nutrient solution employed at various steps of the bioassay.phases	39
Table 4.1 - Concentrations of TEs in Tomato plant shoots and roots	51
Table 4.2 - Bioconcentration(shoots, roots) and Translocation factor for trace elements	54

Part-I Theoretical Background

This part provides background information on absorption/uptake in plants, why it is critical for fertilizers, and how we may assess and analyze it. Additionally, a concise description of the new fertilizing product Regulation (EU) (2019)/1009, with a focus on organic fertilizers such as digestate other than fresh crop digestate and compost, is provided. Besides, this section also highlights the procedure criteria and requirements for the product function category PFC 1, as well as the component material categories CMC 3 and CMC5.

1 General Introduction

The quality of life has been endangered due to countless technological advances, industrialization and human activities. As industrialization and urbanization accelerate, anthropogenic waste detritus such as industrial wastes, mining wastes, biosolids, manure application, pesticides, fertilizers, toxic chemicals, and wastewater rise, eventually penetrating the soil ecosystem (Rehman *et al.*, 2021). Furthermore, the use of various chemicals for a variety of purposes, including plant protection, has increased. Most chemicals and their derivatives, on the other hand, end up in soil and water, where they interact with the surrounding environment and living species, eventually disrupting the natural equilibrium of the elements in different compartments, including soil.

Emerging contaminants, also known as Contaminants of Emerging Concern (CEC), can include a wide range of chemicals, such as agricultural products, engineered nanomaterials, pharmaceuticals, personal care or household cleaning products and lawn care products, to name a few. These contaminants produced by wastes find their way into rivers, lakes or soil environments, potentially bioaccumulating up the food chain, putting animals and humans in danger if they consume contaminated food (Pullagurala *et al.*, 2018).

1.1 What is uptake?

Uptake refers to the passage of a contaminant into an organism (e.g., plants), which may occur via numerous pathways and involve one or more parts of the organism. The process begins with contact with cell surfaces and tissues (Newman, 2014).

Translocation refers to the transport of chemicals from the point of uptake to other plant components. This ability of the chemical of translocating can be expressed as **Translocation Factor** (TF) (Liu *et al.*, 2021). According to

Bioaccumulation refers to the net accumulation of a pollutant in an organism from multiple environmental sources, including water, air, and solid phases. Food, soil, sediment, or fine particles suspended in air or water are examples of solid phases (Newman, 2014). In another definition **Bioaccumulation Factor** (BAF) is defined mathematically as the ratio of the chemical concentration in the organism to that in the surrounding medium (e.g., soil, sediment) (Arnot & Gobas, 2006; Newman, 2014).

$$BAF = \frac{\text{the concentration of chemical equilibrium in an organism (wet weight)}}{\text{mean concentration of a chemical in the reference source (soil or sediment)}}$$

Bioconcentration Factor (BCF) is the net accumulation of a pollutant from water alone. Under controlled conditions, it is measured in laboratory tests (Arnot & Gobas, 2006; Newman, 2014). Bioconcentration Factor (BCF) can evaluate the content of contaminants in organisms, while the translocation factor can measure the concentration of contaminants transferred from one component to another (e.g., from roots to shoots). According to

1.2 Uptake of chemicals by Plants

Plants are found at the bottom of various food chains and are the primary producers of food. In addition, plants are used as a source of food by humans. Thus, they supply vital nutrients for a well-balanced diet, but they can be toxic if they absorb and accumulate harmful pollutants in the soil. These harmful contaminants can build up in their roots, shoots, or both. Since soil is one of the primary sinks for waste chemicals, these contaminants may deliberately or accidentally enter the food chain via different paths, e.g., using pesticides in crop farming, or may transfer into plants from sewage sludge and manure amended soils used as fertilizer in agricultural activity.

Given that plants are an essential component of both animal and human diets, assessing the uptake and accumulation of potentially dangerous organic pollutants in plants is critical for risk assessment. In addition, although pesticides have been used on plants for a long time in agricultural production, other chemicals have just recently gained attention. As a result, plant accumulation is essential for monitoring contaminants spread through a food chain.

1.3 Why is plant uptake crucial for fertilizers?

Plant uptake is essential in assessing how the chemical pollutants present in various fertilizers can be transferred to the food chain. Different organic or inorganic pollutants found in fertilizers, such as salts, Persistent Organic Pollutants (POPs), CEC, and HM, as well as their breakdown products, are taken up by plants, limiting their translocation, runoff, and volatilization. The process of plant uptake is important for bioremediation of contaminated sites and for residues present in food crops that are potentially bioaccumulating up the food chain, putting animals and humans in danger if they consume contaminated food.

Understanding how these pollutants are taken up and translocated by plants (primarily in food crops) is also crucial for building robust models to estimate their accumulation in agricultural products and possible human exposure (Liu *et al.*, 2021). Particular investigation demonstrates that phytotechnology may be uniquely designed for effective exposure avoidance in many applications where plants may be deployed as sensors to identify environmental contamination and possible hazards. Moreover, contaminant transport and fate in various media, such as groundwater, sediment and air, play an essential role in understanding bioavailability and bioaccessibility (Henry *et al.*, 2013).

1.4 How to assess plant uptake and bioaccumulation

Agricultural soils (or all soils) act as a repository for a variety of organic and inorganic contaminants, depending on their source. Soil contamination occurs as a result of both intentional uses of fertilizers containing various agrochemicals and incidental contamination from industrial waste release, irrigation with wastewater or grey water, amendments containing heavy metals and other pollutants-laden sludge (soil conditioning to simulate plant growth), or as a result of atmospheric fallout. Concerns about these pollutants interacting with plants pose two issues: first, are these pollutants absorbed by plants? Second, if they are absorbed, do they stay inside the tissues of the plants? The movement of elements inside the plants is described substantially by two processes, in particular, uptake which is root acquisition of soil components and transport which is the translocation of roots to above-ground tissues. While the magnitude of contaminant translocated by plants is generally species-neutral, not all elements taken up by the roots reach the plant's upper tissues (Su & Liang, 2011).

Predictions regarding the bioaccumulation of these contaminants in fertilizers have prompted the scientific community to investigate their potential impacts on soil-grown plants as well as hydroponic plants. Although plants absorb elements and other nutrients from the soil solution, the subject of root absorption and translocation of these chemical contaminants remains unresolved. Numerous research published since 2009 has documented the absorption and transfer of contaminants from agricultural fertilizer sources. This section discusses current research on the processes of uptake and translocation of various chemical pollutants. *Table 1.1* provides the literature review on the related topic. Table 1.1 - Reporting pertinent research findings from the scientific literature. (Missing or not reported information is indicated by n/a)

	PLANTS TESTED	FERTILIZERS		EXPERIMENTAL DESIGN							
REFERENCE		TESTED	CHEMICALS TESTED		Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Liu <i>et al.,</i> 2021)	Wheat (Triticum	n/a	 Imidacloprid 	Typology: Hydroponic	Seeds were	PVC box containing 6	■ Duration: 14	Duration: 2 to 144	One plant sample (6	Pesticide concentrations in	 Uptake kinetics of
	aestivum L.)		 Dimethoate 	■ Scale: Growth	sterilized with a	L of Hoagland solution	days	h	individuals) was	sampled shoots, roots and	pesticides in plant
			 Fosthiazate 	chamber	solution of 5%	spiked with 100 ng/L	Procedure:	Procedure: 60	taken out of the	hydroponic solutions.	$C_{tissue(t)} = C_{tissue,eq}(1-e^{-kt})$
			 Pirimicarb 	■ Nr. of controls: 2 (1	sodium	of each tested	Transfer the	seedlings (root length	hydroponic solution	Pesticides extraction by a	$C_{tissue(t)}$ = concentration in
			 Atrazine 	plant-free control -spiked	hypochlorite	chemical;	seedlings to a PVC	of 15 ± 1 cm; shoot	from each replicate	modified QuECHERS	sample at time t
			 Chlorantraniliprole 	solution only- and	solution for 10		box with 6 L of	height of 20 ± 1 cm)	at time intervals of	method and quantification	C _{tissue,eq} = equilibrium
			 Ethoprophos 	pesticide-free control -	min and then	Two control	half-strength	were transferred into	2, 6, 12, 24, 48, 72,	by an LC-MS/MS system.	concentration
			 Triadimefon 	only plant on Hoagland	rinsed with	treatments were	Hoagland solution.	each replicate.	96, 120 and 144 h.	Water, lipids and	k = uptake rate constant (per
			 Tebuconazole 	solution-).	deionized water.	prepared including a	The pH of the	• Condition: Same as	A shoot and a root	carbohydrates contents of	hour).
			 Flusilazole 	Nr. of tested dosages:	After imbibing in	wheat-free control	hydroponic	those in Pre-growth	sample were	root samples.	RCF and TF
			 Difenoconazole 	1 (100 ng/L)	deionized water	(spiked so- lution	solution was 6.5.		derived from each		RCF = C _{root} /C _{water} ; TF =
				Nr. of replicates per	for 16 h, the seeds	only) to monitor the	Condition: The		plant sample.		Cshoot/Croot
				dosage: 3	were germinated	loss of pesticides and	container was put		The hydroponic		Where Croot, Cshoot, and
				Nr. of individuals per	in polyvinyl	a pesticide-free	in a temperature-		solutions (test		Cwater are the concentrations
				replicate: 60 seedlings	chloride (PVC)	control (wheat only).	controlled growth		replicates and		of each pesticide in the root,
				 Size of 	seedling tray for 4	To avoid potential	chamber at 25/20		controls) were also		shoot and solution samples.
				reactor/container	days	pesticide photolysis	°C (day/night) with		sampled at the		 Quasi-equilibrium factor
				replicate: 6 L		and minimize algal	60% humidity. A		same time interval.		$(\alpha_{pt.})$ to explore the
				(30cmX24cmX10cm)		growth, the boxes	16:8 h daily light		All the samples		relationships between the
				Nr. of plants in one		were wrapped with	cycle was used		were stored at -		levels of pesticides in wheat
				analyzed sample: 6		aluminum foil and the	with 250 mmol/		20°C before		plants and external water as a
				Direct Measures:		gap between the lid	m ² s fluorescent		analysis.		function of time:
				Six plants were taken out		and the wheat	light.				$\alpha_{\rm pt} = (C_{\rm pt}/C_{\rm w})/(f_{\rm pw}+f_{\rm ch}*K_{\rm ch}+$
				of the solution as one		seedlings was filled					f _{lip} * K _{lip0}
				sample and three		with a sponge.					f _{pw} , f _{ch} , and f _{lip} =%wt of water,
				replicates were							carbohydrates and lipids in
				performed at time							the root on the basis of fresh
				intervals of 2, 6, 12, 24,							weight; K _{ch} and K _{lip} = the
				48, 72, 96, 120 and 144 h							carbohydrate-water partition
											coefficient and the lipid-water
											partition coefficient of each
											compound.

	PLANTS TESTED	FERTILIZERS	FERTILIZERS TESTED CHEMICALS TESTED								
REFERENCE		TESTED		EXPERIMENTAL DESIGN	Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Dal Ferro <i>et al.</i> ,	 Lettuce (Lactuca 	Alternative	Perfluoroalkyl acids	Typology:	n/a	Every solution was	■ Duration: 3	Duration: 45 days	After harvesting,	Twelve shoots and roots	Quantification
2021)	sativa L., var. redial)	fertilizers:	Perfluoroalkyl carboxylic	Hydrophonic		stored in a 350 L	weeks	for lettuce; 55 days for	plants were split	per treatment were	Bioconcentration Factor
	 Spinach (Spinacia 	Municipal	acids (PFCAs):	 Scale: Greenhouse 		plastic tank. Solutions	Procedure:	Spinach	into shoots and	randomly selected for	
	oleracea L., var.	wastewater	■ PFBA,	Nr. of controls: 1		were enriched with	Condition: No	Procedure: Plants	roots. The spinach	chemical analysis. Eleven	 Roots concentration factor
	hunter F1)	treatment plant	■ PFPeA,	(Solution without PFFAS)		the fertilizers	information on the	were pre-grown in	rosette was	perfluoroalkyl carboxylic	RCF =
		(WWTP) effluents	■ PFHxA,	Nr. of tested dosages:		required by crops	procedure	soil, then transferred	sampled without	acids and three	C(PFAA)roots/C(PFAA)solution
			■ PFHpA,	3 (1st with PFAAs-spiked		according to regional	provided.	to hydroponics and	separating the	perfluoroalkyl sulfonic	
			■ PFOA,	drinking water solution		guidelines for soilless		replanted into mesh	leaves of the lettuce.	acids were determined	 Shoots concentration factor
			■ PFNA,	of 500 ng L-1-worst case		cultivation to keep		pots with expanded	Samples were	weekly in the hydroponic	(LCF)
			■ PFDA,	scenario; 2nd and 3rd		macronutrients and		clay Leca.	cleaned with	solution, sampled before	LCF =
			■ PFUnA,	from two WWTPs with		micronutrients		The test solutions	deionized water,	entering the PVC pipe, as	C(PFAA)shoots/C(PFAA)solution
			■ PFDoA,	the presence of PFAAs		homogeneous among		flowed through PVC	dried briefly,	well as quantified at the	
			■ PFTrA,	concentration of 100 and		tested treatments.		pipes from an	weighed separately	end of the growing cycle in	 Root-shoot translocation
			■ PFTeA	600 ng/L)		The flow rate of the		accumulation tank.	to assess fresh	crop roots and shoots. The	factor (TF)
			Perfluoroalkyl sulfonic acids	Nr. of replicates per		solutions was		Each tested water	biomass, deposited	selection of compounds	TF =
			(PFSAs):	dosage: 12 as growing		constant at 0.6 L min-		solution was	in polypropylene	was due to their frequent	C(PFFA) _{shoots} /C(PFFA) _{roots}
			■ PFBS,	PVC pipes (6 for each		1.t		recirculated from an	containers, and	presence in groundwater	
			■ PFHxS,	specie i.e., 6 for lettuce				accumulation tank	heated to 65°C in a	and surface waters by	Crop PFAAs concentrations
			■ PFOS	and 6 for spinach)				back to the tank	UF260 type oven	local authorities.	were expressed on a dry
				Nr. of individuals per				through a 12 V water	with forced air		weight basis. No loss of PFAAs
				replicate: 10				pump. With the	circulation. Later,		degradation or volatilization
				 Size of 				spiked nutrient	the dry biomass		was considered
				reactor/container				solution and those	was weighed		
				replicate 4 modules;				from the WWTPs, the	individually.		
				each module consisted of				plastic tanks were			
				12 growing PVC pipes				refilled twice for a			
				(2m long, 1 m above				total of 100 L.			
				ground level; Pipes				■ Condition: The			
				diameter = 10cm, water				greenhouse			
				depth = 5 cm) and				temperature was 12°C			
				contained 120 pots each.				(minmax = 5-30°C)			
				Nr. of plants in one				and relative humidity			
				analyzed sample: 60				was 70% (minmax =			
								40-90%) during the			
								experiment.			

	PLANTS TESTED	FERTILIZERS		EXPERIMENTAL DESIGN							
REFERENCE		TESTED	CHEMICALS TESTED		Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Akenga et al.,	Lettuce (Lactuca	n/a	Antivirals and	Typology: Hydroponic	n/a	Standards and	■ Duration: 10	Duration: 21 days	After the	Potential physiological	The bioconcentration factor
2021)	sativa)		Antiretrovirals (ARVDs):	■ Scale: Greenhouse		stock solutions:	days	Procedure: Each	examination, the	effects on the plant were	(BCF), root concentration
			 Lamivudine (LVD) 	Nr. of controls: 1		Stock solutions and	Procedure:	seedling received 400	plant samples were	assessed by comparing the	factor (RCF), leaf
			 Nevirapine (NVP) 	Nr. of tested dosages:		standards were	Analora seedlings	mL of the four ARVD	promptly washed	biomass of the control	concentration factor (LCF),
			 Efavirenz (EFV) 	3 (in total 4 including		prepared and stored	(10 days old) were	mix standard nutrient	with HPW and dried	(root and leaves) with the	and translocation factor (TF)
			 Oseltamivir (OSV) 	control with unspiked		following	purchased from	solution (water and	thoroughly. The	biomass ARVD exposed	were used to characterize
			 Phosphate. 	nutrient solution)		SANTE/11813/2017	Defland Nurseries	commercial fertilizer)	roots and leaves of	samples.	ARVD uptake in this report.
				Nr. of replicates per		(2018) guidelines of	in the UK.	(Flora Gro, NPK 3:1:6	lettuce were	Plant uptake and	The organic analyte's
				dosage: 6 per exposure		the European	Preparing the	at a concentration of	weighed	translocation test were	movement from the root to
				(24 in total)		Commission. All stock	plants for the	0.5 mL L-1). The	individually. The	conducted according to	above-ground tissues is
				Nr. of individuals per		solutions were	exposure test	nutritional solution	samples were then	OCSPPC 850.4800.	quantified by TF.
				replicate: n/a		prepared in a 50:50	required seven	only reached the roots	freeze-dried before		
				■ Size of		(v/v) MeOH:HPLC	days of soaking in a	since the sample	extraction and		BCF = C _{plant} / C _{exposure solution}
				reactor/container		water mixture. MeOH	diluted water-	containers (glass)	analysis.		RCF = Croot / Cexposure solution
				replicate: Glass		was used to make	fertilizer solution	were lined with			LCF = Cleaf / Cexposure solution
				container filled with		NVP and EFV stock	(hydroponic).	aluminum foil and			TF = C _{leaf} / C _{root}
				aluminum foil		solutions. The four		sealed. 10 minutes of			where C_{leaf} C_{root} , C_{plant} , and
				Nr. of plants in one		ARVD combinations		aeration per hour. Day			Cexposure solution is the API
				analyzed sample: n/a		were diluted from 0.1		7 and 14 exposure			concentration in the leaf, root,
						to 100 g L^{-1} in water.		solution replacement			plant and nutrient solution,
								• Condition: Relative			respectively.
								humidity = 70/90% ±			
								5% (day/night)			
								Fluorescent Light			
								intensity 350± 50			
								mol/m2/sec,			
								photoperiod 16:8.			

	PLANTS TESTED	FERTILIZERS		EXPERIMENTAL DESIGN							
REFERENCE		TESTED	CHEMICALS TESTED		Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Mousavi et al.,	Valerian (Valeriana	 Phosphate (PO4) 	Cadmium (Cd)	■ Typology: Hydroponic	The seeds were	The nutrient solutions	Duration: 3	Duration: 4 days	After 4 days of	Dried powder samples	They investigated the effects
2021)	officinalis L.)	 Methionine 	■ Zinc (Zn)	■ Scale: Greenhouse	surface-sterilized	were prepared with	weeks + 2 weeks	Procedure: After	exposure to the	were burned in a muffle	of exogenous methionine
		(Met)		Nr. of controls:	with 1% H ₂ O ₂ for	greenhouse tap water	(in Cd-free	development in the	treatment solutions,	furnace at 500 °C for 6 h	(Met) and different phosphate
				Nr. of tested dosages:	30 min and then	having a pH of 6.9 and	nutrient solution)	cd-free nutrient	the seedlings were	and then digested with 2	(PO ₄) concentrations on Cd
				2	rinsed three times	an EC of 0.74 dS m- 1.	 Procedure: The 	solution, 72 seedlings	harvested by	mL of 20% HCl (6 N) for 5	uptake.
				Nr. of replicates per	in sterile water.		seedlings were	were randomly	cutting with the	min at 60 °C on a heating	The root-to-shoot
				dosage: 3	The seeds were		transplanted into	chosen for Cd	stainless-steel razor	block. The extract was	translocation factor was
				Nr. of individuals per	soaked in distilled		small pots with	absorption studies. 4	blade at the stem	cooled, filtered and finally	determined as the ratio
				replicate: 4	water for 24 h,		phosphate	plants per replication	point leveled to the	diluted to a volume of 25	between the Cd content of the
				■ Size of	then germinated		solutions (900,	were moved to a 5-L	upper surface of	mL with distilled	shoot to that of the EDTA-
				reactor/container	in wet filter		1200, and 1500	plastic beaker and	plant supporting	deionized water and	washed roots.
				replicate: 5L	papers in Petri		μМ).	grown for 4 days in	plates to separate	stored in plastic vials until	TF = C(Cd) _{shoots} / C(Cd) _{root}
				Nr. of plants in one	dishes (within 3		The nutritional	the same nutrient	roots from shoots.	analyzed for Cd and Zn	Similarly;
				analyzed sample:	days) at 25 °C, and		solutions in the	solutions as	The shoots were	were by atomic absorption	TF = C(Zn) _{shoots /} C(Zn) _{root}
					thereafter		growing containers	previously, but with	rinsed in tap water	spectroscopy (AAS).	
					transferred to a		were aerated and	400 M or no	and then washed		
					sand culture		replaced twice a	methionine (Met) and	three times with	Each root system was	
					moistened with		week. These	10 M Cd (NO3)2,	pure water and	divided into two parts.	
					deionized water.		solutions were	resulting in a Met: Cd	blotted dry with	One was directly oven	
							kept between 5.8	molar ratio of 40:1. To	tissue paper,	dried just like the shoots,	
							and 6.0 by adding	reduce positional non-	weighed and oven-	while the other was first	
							0.1 M HCL or KOH	uniformity, container	dried at 65°C for 72	washed with an EDTA	
							as required.	placements were	h. After	solution to remove	
							Then they were	changed randomly	determination of	apoplastic Cd. The Cd	
							cultivated for two	every 24 hours. The	dry mass, the plant	remaining in the EDTA-	
							weeks in a Cd-free	containers were pre-	samples were	washed roots was	
							nutrient solution.	sterilized with 5%	ground using a	considered to be	
							■ Condition: 12	NaClO to prevent fast	stainless-steel mill	symplastic Cd, the	
							hours of daylight,	Met breakdown in	for elemental	removed Cd as apoplastic	
							26/30°C Day/night	solution. Every two	analysis.	Cd. The amount of the	
							temperature, and	days, the solutions		latter was calculated as the	
							75/85% humidity.	changed.		difference between Cd in	
								• Condition: Same as		the root samples without	
								in pre-growth of		and with EDTA-washing.	
								plants			

	PLANTS TESTED	FERTILIZERS		HEMICALS TESTED EXPERIMENTAL DESIGN		OUTPUTC					
REFERENCE		TESTED	CHEMICALS TESTED		Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Wajid et al.,	Pearl millet variety	Soil amender	Trace Metals:	Typology: Soil	Seeds were	15 plastic bags were	n/a	Duration: 3	Harvesting was	The digestion of soil and	Bioaccumulation factor
2021)	(YBS-98)	(Synthetic	■ Pb	Scale: Botanical	germinated but no	taken and filled with a		months	done in the first	plant samples was done by	(BAF):
		fertilizers and	∎ Ni	Garden	further details on	mixture of soil and		Procedure:	week of October	the wet digestion method.	BAF = Concentration of
		organic manure):	■ Cd	■ Nr. of controls: 1	the germination	different types of		The sowing was done	2017. At harvest,	Metal content in soil and	metals in grains /
		 Poultry manure, 	■ Mn	Nr. of tested dosages:	process are	organic manure at 3:1		in the 1st week of July	pearl millet plants	pearl millet samples was	Concentration of metals in
		Cow manure	■ Zn	4 (NPK, poultry manure,	reported.	(7.5 kg soil and 2.5 kg		2017. Eight seeds of	were separated into	analyzed by atomic	soil
		 NPK 	∎ Fe	cow manure, mix		manure) and let		pearl were grown in	roots, shoots,	absorption	
			■ Cu	fertilizer respectively)		mineralize for 2		each plastic bag. A full	panicles, and grains.	spectrophotometer.	Translocation factor (TF):
				 Nr. of replicates per 		weeks and bags		dose of phosphorus	The grains were	Precision and accuracy of	TF = Concentration of
				dosage:		without manure		and potash and half of	separated by hand	analyses were guaranteed	metals in shoot /
				 Nr. of individuals per 		treatments were filled		the nitrogen was	shelling. The root,	through repetitive samples	Concentration of metals in
				replicate: 3		with 10 kg soil.		applied at the time of	shoot, and grains of	against the National	root
				■ Size of		Two types of organic		sowing, while the	plants were put in a	Institute of Standard	
				reactor/container		manure (poultry		remaining half N was	brown paper	Technology, Standard	TF = Concentration of
				replicate: 15 plastic		manure and cow		applied at the panicle	envelope and dried	reference material (SRM	metals in grains /
				(internal diameter of 42		manure) and chemical		development stage.	in an oven at 72 $^{\circ}\mathrm{C}$	2709 for soil, CRM-NIST	Concentration of metals in
				cm and the height of 68		fertilizers (urea 0.55 g		Plants of all	for 2 days.	1567a for cereals) for all	shoot
				cm)		N/kg, superphosphate		treatments were	Collection of Post-	metals.	
				Nr. of plants in one		0.51 g P/kg and		watered equally.	harvest Soil		The pollution load index
				analyzed sample: 8		sulfate of potash 0.26		Some plants at the	Samples:	The glasswares were	(PLI):
						g K/kg) were used in		end of germination	The soil sample was	placed in 10% nitric acid	PLI = Concentration of
				Collection of Soil and		different		were removed from	collected from each	overnight and rinsed	metals (mg/kg) in
				Livestock Manure: The		combinations:		each plastic bag for	plastic bag with the	several times with distilled	examined soil /
				soil was taken from the		■ T ₀ : Control		the proper growth of	help of the auger. 15	water before using them	Concentration of metals
				plant nursery. Soil		(Without chemical		the remaining plants.	soil samples were	to prevent them from	(mg/kg) in reference soil
				samples were air-dried		fertilizers/organic		Condition:	taken from 0-30 cm	contamination.	
				and grounded fine. Later		manure)			of the soil profile.		Daily intake of metals (DIM)
				it was sieved to 2 mm and		■ T1: Chemical			Soil samples were		and health risk index:
				analyzed for physio-		fertilizer (NPK @			air-dried for several		DIM = (Concentration of
				chemical parameters. The		0.66 + 0.51 + 0.26			days and crushed		metal in grains ×
				poultry manure and cow		g/kg)			with mortar and		Conversion factor × Daily
				manure were taken from		 T2: Poultry manure 			pestle and passed		intake of millet) / Average
				a poultry farm and dairy		(PM @ 2.5 kg/pot)			through a 2 mm		body weight
				farm respectively. They		 T3: Cow manure 			sieve. The sieved		
				were air-dried and kept		(CM @ 2.5 kg/pot)			samples of soil were		Health risk index:
				in shadow at room		 T4: Mix fertilizer 			stored in polythene		HRI = Daily intake of metal
				temperature for		[MF (PM @ 1.25			bags and oven-dried		/ Oral reference dose
				subsequent chemical		kg/pot, CM @ 1.25			at 72 °C for 2 days.		,
				analysis. After drving		kg/pot, NPK @					
				they were also passed		0.66 + 0.51 + 0.26					
				through a 2mm sieve		g/kg)].					
				before analysis							
				corore analysis.							

		FERTILIZERS	FERTILIZERS	EXPERIMENTAL DESIGN							
REFERENCE	PLANTS TESTED	TESTED	CHEMICALS TESTED		Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	- OUTPUTS
(Beltrán <i>et al.,</i>	■ Lettuce (Lactuca	n/a	 Atenolol 	Typology: Soil and	For hydroponic	Radish seeds: 9;	n/a	Duration: 2	Soil setup: Soil	The ECs, (ATN, CBZ and	Bioaccumulation factors
2021)	sativa L.)	'	 Carbamazepine 	Hydroponic	setup: The radish,	lettuce seeds: 2;		months	samples from each	TCS) were extracted from	(BAFs) for the three plant
	 Radish 	'	 Triclosan alone and 	Scale: Farm field for	lettuce, and	tomato seeds: 3. Every		Procedure: [soil	pot were collected	soils by an ultrasonic	species (soil & soilless):
	(Raphanus sativus	'	combined with	soil; Chamber for	tomato seeds	single one of them		setup] The minerals	with a tubular soil	solvent extraction method.	
	L.)		perfluorooctanesulfonic acid	hydroponic	were germinated	was sown and grown		nutrients are added to	sampler. All soil	The supernatants were	BCF (roots, leaves, fruits) =
	Tomato (Solanum)		(PFOS)	Nr. of controls: 1 for	in a hotbed for 7–	in a 25 L pot that had		each pot every two	samples were	collected and evaporated	Concentration of ECs in
	lycopersicum L)			every 3 treatments for	10 days.	20 kg of soil inside.		months. Individual	stored at - 20 $^{\circ}\mathrm{C}$	to dryness at 40 and later	plant organs (roots, leaves,
		'		soil setup; 1 for each		Soil:		pots were irrigated	until chemical	analyzed by LC-MS/MS.	fruits) / Respective
	1			treatment for hydroponic	[Soiless Setup]: A	The soil comprised		every week to keep	analysis. The radish,		Concentration in Nutrient
				setup	system called	50% topsoil, 30%		the soil moist, but not	lettuce and tomato	Quantification of ATN, CBZ	Solution and/or soil
				Nr. of tested dosages:	AeroFlo-10 was	mulch, and 20% river		so much that	plants from the	and TCS was carried out	
	1			3 per specie for soil	used to grow	sand, sieved to 6 mm		contaminants would	three treatment	by liquid chromatography-	The translocation factor (TF)
	1			experiment	plants. When the	and air-dried. Mineral		run off into the field.	groups in the soil	tandem mass	values in both experimental
				Nr. of replicates per	plants had two	nutrients with an NP-		One group was	experimental set	spectrometry. The limits of	sets were calculated:
	1			dosage: 2 for every 3	cotyledons and	K ratio of 15-15-15		irrigated with tap	were collected after	detection and	TF = Concentration of each
	1			treatments for soil setup;	roots were 2 cm	(i.e., 3.5 g for radish,		water; a second group	48, 50 and 150	quantification for each EC	EC in aerial plant parts
	1			9 for each treatment for	long, they were	10 g for lettuce and 6		was irrigated with TW	days, respectively.	and were calculated as the	(leaves -L- or fruit -F-) /
				hydroponic setup	moved to their	g for tomato)		fortified; a third group	■ Soilless Set: The	concentration that gave a	Concentration in roots (R)
				 Nr. of individuals per 	growing	Tap water: ATN, CBZ		was irrigated with TW	collection was done	peak with a signal-to-noise	
				replicate:	chambers. Plants	and TCS were not		fortified and PFOS (10	on day 21. No	ratio of 3–10.	The human health risks
				Size of	were left in each	found in the tap water		g/L) added (TWF-	tomato fruits were		associated with the presence
				reactor/container	chamber, and	for the first group.		PFOS group). All the	collected here due		of ATN, CBZ or TCS in the
	1			replicate: 25 L capacity	perforated foam	The second and third		pots of the same crop	to the insufficient		edible plant organs were
	1			pots (35 cm diameter, 30	was used as a	groups had their tap		got the same amount	time for the plants		assessed for both
	1			cm deep); AeroFlo-10	medium to	water fortified with		of water.	to develop any		experimental sets. The daily
	1			system for hydroponic	support them. 50	ATN, CBZ, and TCS.		Conditions:	fruits and to the		human exposure of the three
	1			with 50L of nutrient Sol.	L of nutrient	The third group had		(soilless growing	inherent limitations		ECs quantified in the edible
	1			in a reservoir tank	solution (renewed	their tap water		chamber) 17-27°C	of the culture		parts of the three plant
	1			Nr. of plants in one	weekly) was put	fortified with PFOS. In		and 20-80% humidity.	system to grow		species was calculated as:
	1			analyzed sample: 9 for	in the reservoir	a third group, the		To get the right	plants with large		
	1			radish, 2 for lettuce and 3	tank to pump to	same. The PFOS		amount of light for the	fruits. The different		$HE = C10^{-3} * I$
				for tomato (for soil setup)	the growing	concentration was		plants, LED lights	parts of the plants		Where;
					chambers by a	chosen based on		(360 W, 13,000-	were rinsed with		HE is human exposure
					pump.	surveys of urban		20,000 lx, Orion 10)	Milli-Q water,		(mg/day),
						areas and surface		were used that were	patted dry with a		C the average concentration
						water bodies.		placed 85 cm above	paper towel, the		in the edible plant part (ng/g,
								the ground.	biomass recorded,		w.w.,
									ground, lyophilized		I was taken as daily intake
									and stored at - 20 $^{\circ}\mathrm{C}$		(g/day)
									for later chemical		
		1							analysis.		

		FERTILIZERS									
REFERENCE	PLANTS TESTED	TESTED	CHEMICALS TESTED	EXPERIMENTAL DESIGN	Seeds preparation and	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Di Carlo at al	 Lolium poronno 	 Pauvito Pociduo 	Trace elements	- Tunology Soil	p/a	PD camples were	- Duration ?	- Duration 21 days	At the end of the	Trace elements in both	Two indices were calculated
(DI Cal lo et al.,	 Lonum perenne (noronnial rwagrase) 	 Bauxite Residue (PP) amondod with 	- Aluminum (Al)	Scale Crowth	II/a	obtained from the		 Duration: 21 days Procedure: Test 	At the end of the	roots and shoots at the	to ostimate the risk of
2020)	(perenniar ryegrass)		 Arconic (Ac) 	shamber		field to oveluate	- Drogodyroy The	• Flocedule: lest	exposure periou,	and of an avpocure period	elements transfer in the food
		gypsull	 Al sellic (AS) Chromium (Cr) 	- Nr. of controls: 1 (6		various restoration	• Flocennie: The	with the plant's planar	harvostod	were also measured. The	chain as well as the
			 Vanadium (V) 	nots)		stratogies The	gorminated and	root mat which was	thoroughly ringed	not uptake of trace	nhytoromodiation potential of
				• Nr of tested dosages:		treatments comprised	the seedlings were	grown on a polyamide	with deionized	elements in the whole	L perenne The transfer
				■ M. of tested dosages.		uncontaminated soil	grown in an	mesh The planar root	water roots	plants during that time	coefficient (TC) was
				• Nr of replicates per		and unrehabilitated	perated nutrient	mat was connected to	separated from the	was also calculated	calculated as the ratio of the
				dosage: 8		BR The control soil	solution The seeds	a nutrient solution jar	shoots oven-dried	was also calculated.	element concentration in the
				 Nr of individuals per 		was locally available	density per plant	(with three filter	(3 days at 50 °C)		plant over the element
				renlicate: 20		tonsoil that did not	not was	naner wicks)	weighed and		concentration in the soil
				Size of		have the normal BR	augmented (from	There were two glass	digested in		$TC = C_{\text{plant}} / C_{\text{coll}}$
				reactor/container		features Field BR	40 to 500 seeds) to	microfiber filters	ultranure nitric acid		The translocation factor (TF)
				renlicate: 6L		samples (0–10 cm or	increase roots	nlaced between the	hefore elements		was calculated as the ratio
				 Nr. of plants in one 		10-20 cm) were air-	hiomass as	soil and roots (along	analysis by ICP-OES.		between the element
				analyzed sample: 500		dried, sieved to less	preliminary	with the 30-mm	A certified		concentration in shoots over
				seeds		than 2 mm. manually	experiments had	polyamide mesh) to	reference material		the element concentration in
						homogenized, and	small root biomass	avoid root	(ERM®-CD281, rve-		roots.
						chemically	(approximately 0.4	contamination while	grass) was analyzed		$TF = C_{shoot}/C_{Root}$
						characterized.	g), insufficient for	still letting water flow	as well to ensure a		where:
						pH and EC were	trace element	between soils and	satisfactory		C _{Root} is the concentration of
						measured in a 1:5	analysis. The	roots. The preliminary	percentage of		an HM in the roots,
						aqueous extract. Ca,	RHIZOtest was	experiments had the	elements recovery.		C _{shoot} is its concentration in
						Cr, K, Mg, Na and V	carried out	migration of BR			the leaves (mg/ kg), and
						concentrations were	according to the	particles through the			C _{soil} is its concentration in the
						measured by ICP-OES	ISO protocol (ISO	30-µm polyamide			soil (mg/kg).
						following pseudo-	16198: 2015).	mesh.			
						total aqua-regia		■ Condition: 25 ± 3			Correlation analysis between
						digestion and		°C temperature; 75 ±			the chemical properties of the
						extraction with		5% relative humidity;			treatments and the endpoints
						ammonium acetate		200–400 µmol			of the bioassays were
						(for Ca, Cr, K, Mg, Na)		photons m ⁻² s ⁻¹			computed by Pearson
						or magnesium		photosynthetically			correlation coefficients or
						chloride (for V)		active radiation,			Spearman correlation
						(extractable fraction).		except for the light			coefficients for normally and
						The exchangeable		hours: 12 h instead of			not normally distributed
						sodium percentage		16 h to avoid any			variables, respectively
						(ESP) is the ratio of		sunburn.			
						extractable Na to					
						extractable bases (Na,					
						Са, Мg, К).					

		FERTILIZERS									
REFERENCE	PLANTS TESTED	TESTED	CHEMICALS TESTED	EXPERIMENTAL DESIGN	Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Eid <i>et al.</i> , 2020)	Arugula (Eruca	Sewage sludge	Ten heavy metals (HMs)	Typology: Soil	n/a	Samples of soil and		Duration: 40 days	After harvesting,	The organic matter (OM)	The bioconcentration factor
	sativa Mill.)	(From WWTP)(The	 Cadmium (Cd) 	■ Scale: Green house		sludge were air-dried		■ Procedure: 20 E.	the individual	content was estimated in	(BCF) estimates the capacity
		sludge was mixed	 Cobalt (Co) 	■ Nr. of controls: 1 (6		for 2 weeks and then		Sativa seeds were	plants were	the soil-sludge mixtures by	of a plant to accumulate an
		with the soil at the	 Chromium (Cr) 	pots)		ground and sieved		sown on 2 January	separated into their	loss-on-ignition at 550°C	HM (Heavy metal) in its roots,
		rates of 0, 10, 20,	 Copper (Cu) 	Nr. of tested dosages:		through a 2-mm sieve.		2018 in each pot and	root and leaf	for 2 h. The digested plant	while the translocation factor
		30, 40 and 50 g kg [.]	 Iron (Fe) 	5		The sludge was mixed		left to grow for 40	components, oven-	and soil samples were	(TF) was used to determine
		1)	 Manganese (Mn) 	Nr. of replicates per		with the soil at the		days in the	dried (at 60°C), and	filtered and diluted with	the ability of a plant to
			 Molybdenum (Mo) 	dosage: 6 per treatment		rates of 0, 10, 20, 30,		greenhouse. Periodic	homogenized by	double deionized water to	translocate an HM from its
			 Nickel (Ni) 	Nr. of individuals per		40 and 50 g kg ⁻¹ . Each		watering (using tap	grinding in a metal-	25 ml. Blank samples were	roots to its leaves:BCF =
			 Lead (Pb) 	replicate: 20		plastic pot was filled		water) was carried	free plastic mill.The	used to demonstrate the	C _{Root} /C _{soil} , while TF =
			■ Zinc (Zn)	 Size of 		with 4 kg of a certain		out to maintain a	soil-sludge mixtures	accuracy of the digestion	$C_{\text{Leaf}}/C_{\text{Root}}$, where; C_{Root} is the
				reactor/container		treatment.		similar moisture level	were air-dried after	process and subsequent	concentration of an HM in the
				replicate: 6L				in each pot.	plant harvesting	analyses.Inductively	roots, $C_{\mbox{\tiny Leaf}}$ is its concentration
				Nr. of plants in one				Condition: Natural	and sieved through	coupled plasma optical	in the leaves (mg/ kg), and
				analyzed sample: n/a				light conditions.	a 2-mm sieve in	emission spectrometry	C_{Soil} is its concentration in the
									preparation for	(ICP-OES) was used to	soil (mg/kg). The correlation
									analysis.	measure the ten HMs in	coefficients (r) were
										both the plant and soil	calculated between the BCF
										samples. The HM detection	and each of the soil pH and
										limits (μ g/l) were as	soil OM, between the HMs in
										follows: 6.0 for Ni; 2.0 for	the plant tissues and the HMs
										Co, Cr and Cu; 1.0 for Fe	in the soil, as well as the soil
										and Zn; 0.3 for Mn and Mo;	pH and OM.
										and 0.1 for Cd and Pb.	

		FERTILIZERS			TAL DESIGN Seeds Preparation of test Pre-growth of Plants exposure Plant harvest Analysis						
REFERENCE	PLANTS TESTED	TESTED	CHEMICALS TESTED	EXPERIMENTAL DESIGN	Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Margenat et al.,	Lettuce (Lactuca	Organic	Trace elements:	 Typology: Soil 	n/a	2.3 kg of soil sieved to	n/a	Duration:	After the	Trace elements (TE) from	Human health risk associated
2020)	sativa)	amendments:	Cu; Zn; B; Co; Sr; Mn; Cd;	Scale: Glass		2 mm was deposited		57 days total	experiment, each	soil, antibiotics (AB) from	with the consumption of
		 Sewage sludge 	Ba; Cr; Mo; Hg; As; Ni; Pb	greenhouse		in 60 2.5L amber glass		(duration of	mesocosm's lettuce	soil and organic fertilizers,	lettuces is amended with the
		(SS) from a		Nr. of controls: 1 with		pots (15 cm diameter,		greenhouse	leaf length and	and AB from lettuce were	aforementioned organic
		wastewater	Antibiotics:	chemical fertilization		20 cm height) with an		cultivation from	number were	isolated using UPLC-	fertilizers.
		treatment plant	8-hydroxyquinoline	(with 5 repetitions each		inverted bottle shape		October 8 until	measured.	MS/MS.	The potential risk to human
		(WWTP).	 Azithromycin 	control)		bottom outlet linked		harvesting on		After the experiment, each	health associated with the
			 Chlortetracycline 	Nr. of tested dosages:		to drainage tubing		December 4, 2018.)		mesocosm's lettuce leaf	consumption of Trace
		 The organic 	 Ciprofloxacin 	3 (Dose 1- half the		(0.5 cm diameter).		Procedure:		length and number were	elements in vegetables was
		fraction of	 Enrofloxacin 	optimal N dose, dose 2-		All treatments		A variety of Batavia		measured.	assessed using the hazard
		municipal solid	 Lincomycin 	optimal N dose as the		received the same		lettuce (Lactuca sativa		-In situ measurements of	quotient (HQ)
		waste (OFMSW)	 Ofloxacin 	reference nitrogen dose,		amount of organic		L.) was sown in the		chlorophyll and leaf	
		from a composting	 Oxytetracycline 	and dose 3- twice the		fertilizer supplied in		pots. Drip irrigation		weight A chlorophyll	HQ = EDI / RfD
		plant.	 Sulfacetamide 	optimal N dose)		each pot (100 kg of N		with a reservoir of		meter measured it. The	
		(a mixture of	 Sulfadiazine 	Nr. of replicates per		per ha).		primary rainwater		lipid extraction was done	Where RfD is the reference
		pruning waste	 Sulfamethazine 	dosage: 3 (with 5		This experiment used		mixed with		in the lab.	dose, i.e., the maximum
		from the nearby	 Sulfamethizole 	repetitions each		dirt from a farm in the		groundwater was			tolerable daily intake (g/kg
		area and organic	 Sulfamethoxazole 	replicate)		Llobregat River Delta.		employed.			bw/day) of a given metal
		waste from the	 Sulfapyridine 	Nr. of individuals per		The soil had a pH of		NH4N03, P205, and			without causing significant
		Hospital	 Sulfathiazole 	replicate: n/a		8.5, a texture of loam-		K20 are reagent grade			damage, and EDI is the
		Universitari Vall	 Tetracycline 	 Size of 		clay, and an electrical		compounds, thus no			estimated daily intake (g/kg
		d'Hebron kitchen.)		reactor/container		conductivity of 0.24		trace elements such as			bw/day), determined as
			[The ABs were selected	replicate: 2.5 L amber		dS/m. The total		heavy metals are			follows:
		 Swine manure 	based on their occurrence in	glass pots (15 cm		organic carbon		foreseen.			
		(SM)	organic fertilizers and	diameter, 20 cm high)		content was 1.27		Condition:			$EDI = DI. C_M / BW$
			wastewater.]	Nr. of plants in one		percent and the					
				analyzed sample: n/a		nitrogen level was					
						0.09 percent					
						(Kjeldahl). On					
						average, 33 mg/kg					
						Olsen phosphorus					
						was found in the soil,					
						with 344 mg/kg K,					
						7014 mg Ca2, Mg2,					
						and Na cations.					

		FERTILIZERS			AL DESIGN						
REFERENCE	PLANTS TESTED	TESTED	CHEMICALS TESTED	EXPERIMENTAL DESIGN	Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Gredelj <i>et al.,</i>	Radicchio (Red	n/a	Per- and polyfluoroalkyl	Typology: Soil	n/a	Plastic pots were	Duration: 4	Duration: The	3 fully mature	The symmetrical halves of	The Bioconcentration Factor
2020)	chicory plants		substances (seven carboxylic	■ Scale: Greenhouse		filled with spiked soil	weeks	growth period lasted	chicory plants were	each box were used to	(BCF) is the ratio of each
	(Cichorium inybus		and two sulfonic acids)	■ Nr. of controls: 6 (5		and left to settle for	Procedure	87 days (from	harvested per each	construct PFAA	PFAA's concentration in
	L. var. foliosum			plant pots and 1 blank		10 days. Nine PFAAs	Plants were grown	transplanting)	treatment and split	concentration samples.	chicory roots, leaves, heads
	Hegi), Chioggia type		Short-chain PFAAS:	(no-plant) with loam		were spiked into	from seeds in the	Procedure: Water	into roots, leaves	Weighing samples and	(and shoots) to the
			 Perfluorobutanoic acid 	agricultural soil and clean		agricultural soil at	soil in peat nursing	was only watered on	and heads. Leaves	drying them at 65°C for 72	concentration in soil.
			 Perfluoropentanoic acid 	tap water)		nominal	pots. The most	the top soil to avoid	and heads were	hours yielded the dry	■ BCF = PFAA concentration
			 Perfluorobutane sulfonic 	Nr. of tested dosages:		concentrations of 100	uniform-looking	direct contact with	washed with	matter content. Before	in plant compartment / PFAA
			acid	2 (100 ng/gdw - 200		or 200 ng/gdw, and	transplants were	plants. The bottom	distilled water and	extraction, a whole-pot	concentration in soil.
			 Perfluorohexanoic acid; 	ng/gdw)		spiked irrigation	transferred to pots	pot holes were sealed	stored in sealed	composite sample was	
			 Perfluoroheptanoic acid. 	 Nr. of replicates per 		water at nominal	after they had	with PFAS-free duct	plastic bags at -20	collected and stored at	 Roots concentration factor
				dosage: 6		quantities of 1, 10,	formed 3-4 true	tape to prevent	°C until the	4°C. A cylindrical plastic	(RCF)
			Long-chain PFAAS:	Nr. of individuals per		and 80 mg/L in each	leaves.	leaching. During the	extraction. Roots	sediment corer was	RCF = C _{root} / C _{soil}
			 Perfluorooctanoic acid; 	replicate: n/a		of twelve treatments.		experiment, nutrient	were thoroughly	utilized to collect vertical	
			 Perfluorononanoic acid; 	Size of				solution (Hoagland's	washed under a	PFAA samples from	 Leaves concentration factor
			 Perfluorooctane sulfonic 	reactor/container		Soil spiking was done		solution) was	water spray for 5	agricultural soil. Three	(LCF)
			acid;	replicate: Round plastic		in phases, one for		provided three times	min each to remove	PFAA-rich water and/or	LCF = C _{leaves} / C _{soil}
			 Perfluorodecanoic acid; 	pots (Φ = 25 cm) of 10 L		each treatment, with 8		with irrigation water.	all remaining soil	soil treatments were	
				nominal volume		cycles of PFAA matrix		The health of chicory	and were air-dried	chosen (i.e., with only	 Heads concentration factor
				Nr. of plants in one		spike followed by 4		plants was maintained	before the	contaminated irrigation	(HCF)
				analyzed sample:n/a		cycles of carrier		by periodic insect and	extraction (water	water and clean soil, only	HCF = Cheads / Csoil
						solution solely for the		fungal infection	loss was accounted	spiked soil and clean	
						control soil		treatments. 6 mL each	for by weighing).	irrigation water, and their	 Shoots concentration factor
						treatments.		of solutions A and B		combination). To fit the	(SCF)
								and 1 mL of 45		pot's top and bottom, each	SCF = C _{shoots} / C _{soil}
						Each treatment		percent phosphoric		soil core was cut into two	
						combines PFAA		acid were added as		10 cm sections. Each	 Shoots concentrations
						exposure from		nutrients.		treatment comprised three	Cshoots = mhead * c(PFFA)head +
						irrigation water and		Condition: The soil		pots, two with chicory and	mleaves * c(PFFA)leaves / mhead
						pre-contaminated,		temperature ranged		one without.	+ m _{leaves}
l l						spiked soil.		from 12.9°C to 34.3°C			m _{head} , m _{leaves} is mass of head
l l								(average 22.3°C) and			and leaves respectively.
l l								the greenhouse air			
l l		1	1	1	1	1	1		1	1	1
								temperature from			
								temperature from 10.6°C to 57.5°C			

		FFRTII 17FRS			EXPERIMENTAL STEPS						
REFERENCE	PLANTS TESTED	TESTED	CHEMICALS TESTED	EXPERIMENTAL DESIGN	Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Turull et al.,	Lettuces (Lactuca	Amended	Mercury (Hg)	Typology: Soil	n/a	The soil sample used	n/a	Duration: 48 days	After 48 days of	DGT manufactured in-	Bioconcentration factor (BCF)
2019)	sativa L. cv. Batavia)	agricultural peri-		■ Scale: Greenhouse		was taken from an		Procedure:	growth, when	house devices with	
		urban soils:		■ Nr. of controls: 1		agricultural site		Seedlings were	lettuce reached	polyacrylamide gel using	BCF = Concentration (Hg) in
		■ wood-based		Nr. of tested dosages:		located in the peri-		planted in each pot	commercial size, the	both open and restricted	roots / Concentration $_{(Hg)}$ in
		biochar at two		3		urban area of		filled with air-dried	leaves and roots	diffusive layers (ODL and	soil
		rates (3% and 6%,		Nr. of replicates per		Barcelona (Spain).		soil. Plants were	were harvested	RDL, respectively) were	
		w/w);		dosage: 5		The sample was		irrigated manually	separately, and the	used to determine organic	
		 Compost at one 		Nr. of individuals per		obtained from a		every day with	fresh weight (fw)	and inorganic Hg labile	
		rate (30% w/w).		replicate: n/a		mixture of 5 × 10 sub-		Tarssan nutritive	was determined	species in soils. All the Hg	
				Size of		samples taken from		solution (50–75 mL	along with the	analyses were performed	
				reactor/container		an area of 100 m2		per pot, depending on	length of both.	using an Advanced	
				replicate: 2.5L (17 × 15.5		with a depth soil		the humidity).	Then, leaves and	Mercury Analyzer, model	
				cm) cylindrical pot		horizon of 0-25 cm.		■ Condition:	roots were washed	AMA-254. Water/soil mass	
				Nr. of plants in one		Air-dried soil was		During plant growth,	off with deionized	phase ratio was calculated	
				analyzed sample: 1		sieved (<2 mm) to		the temperature and	water to remove	for Agriculture soil (AS),	
				seedling per pot		homogenize the		the amount of light	any surface	AS with 3% w/w of	
						sample. Afterward,		was controlled.	contamination and	biochar (BC3), AS with 6%	
						the soil sample was		Temperature: 18-23	were dried in an	of biochar (BC6) and AS	
						mixed with wood-		°C	oven at 55 °C	with 30% of biochar	
						based biochar at two		Light: 16h light and 8-		(BC30).	
						rates and compost at		hour dark			
						one rate.					
						Pots filled with 2 kg of					
						air-dried soil. The					
						time of incorporation					
						of the amendments in					
						soil was 72 h before					
						planting the seedlings.					

		FERTILIZERS			AL DESIGN						
REFERENCE	PLANTS TESTED	TESTED	CHEMICALS TESTED	EXPERIMENTAL DESIGN	Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Neu <i>et al.,</i> 2018)	 Winter wheat 	Water treatment	Trace elements:	Typology: Soil	n/a	The soil was	Duration:	Duration:	When the flag leaf	After the amendments	TE (Trace elements)
	(Triticum aestivum	residues (WTR),	 Cadmium (Cd) 	Scale: Pot based		homogenized, sieved	Procedure: An	Procedure: In	was fully developed,	were digested with aqua	bioavailability in soil, TE
	L. cv. Tiger)	are based on	Lead (Pb)	Nr. of controls: 1		to 4 mm, and steam-	initial number of	early spring, the	six leaves per pot	regia, the element	tissue concentration, and
		(hydroxides of Fe,	■ Zinc (Zn)	Nr. of tested dosages:		treated before use in	22 seeds per pot	number of seedlings	were sampled	concentrations of each one	biomass of plants
		and Mn.	 Arsenic (As) 	3 (in total 4 including		the pot experiment. In	were sown in	was reduced to 16	across subjacent	were determined Using	
		■ WTR _A :		control with unspiked		the soil, WTR was	October 2013. No	plants per pot,	leaf levels to assess	aqua regia (DIN ISO	Treatment effects on element
		Carbonate-		nutrient solution)		administered at 0.5	further details are	corresponding to	TE and nutrient	11466: 1997) and	concentrations and plant
		enriched sludge		Nr. of replicates per		and 1.0% by dry	provided.	plant densities in the	status of the plants.	NH4NO3 standard	biomass production were
		(from Fe rich		dosage: 6 per exposure		weight. WTRA	Condition:	field. Pots were	During harvest,	techniques, the pseudo-	evaluated using one-way
		groundwater		(24 in total)		treatments were	During wintertime,	randomly set up in	biomass was	total and plant-available	analysis of variance (ANOVA),
		treatment) from		Nr. of individuals per		referred to as A-0.5	pots were	greenhouses with	separated into	element fractions of Con	followed by pairwise
		Wittkoppenberg		replicate: 16∎ Size of		(0.5%) and A-1 (1%).	arranged outside	filtered ambient air.	grain, straw, and	and Ref were analyzed	comparison using the
		waterworks in		reactor/container		(B-0.5 and B-1).	in a sand bed for	The soils were	roots (captured by	(DIN ISO 19730: 2008).	Bonferroni post hoc test for
		Germany		replicate: Glass		The field trial rate of	vernalization.	fertilized with	sieving). Fresh soil	Before and after harvest,	adjustment of probabilities.
		■ WTR _B : Mn-rich		container filled with		0.4 kg m-2 lime marl		amounts	samples were	the soil's pH was analyzed	Statistical analyses were
		sludge from		aluminum foil		was used. All		corresponding to 90	sieved to < 2 mm as	(DIN ISO 10390: 2005).	performed using PASW
		Oborniki, Poland		Nr. of plants in one		additives were sieved		kg ha-1 N (CH4N2O),	required by German	The remaining fresh soil	Statistics 21 (SPSS, Inc.,
		 LM amendment 		analyzed sample: 16		to 63 mm and		18 kg ha-1 P (P	legislation	samples were analyzed	Somers, NY, USA).
		tested in parallel		Soil: TE-contaminated		carefully mixed with		fertilizer with 40%	(BBodSchV 1999).	with DGT in separate steps	
		(in		agricultural topsoil (0-20		the soil. The		P205), and 100 kg ha-	Aliquots were air-	for metals (chelex gel) and	The dimensionless indicator
		phytoremediation		cm) Phytoremediation		substrates were put in		1 K (K fertilizer with	dried for use in the	As (Fe oxide gel). To	for the extent of TE resupply
		field) to Pot		soil (Cont) from Freiberg,		13-l white		60% K20). A second N	earthworm	access the TE in soil	from labile pools of the solid
		experiment.		Saxony. Uncontaminated		polyethylene vessels		fertilization was done	experiment and	solution (Csoln), the	phase to the soil solution R
				topsoil (Ref) from a		in four duplicates and		with (NH4)2SO4	chemical analyses	water-saturated soils were	was calculated as the ratio
				nearby farm had TE		irrigated with DI		corresponding to 42	of soil other than	centrifuged and the	between CDGT and Csoln.
				concentrations within the		water to 70% field		kg ha-1 N during	DGT (diffusive	filtered supernatant was	
				region's background. An		capacity for 7 days.		bolting. Water content	gradients in a thin	analyzed by ICP-MS.	
				elemental comparison				was maintained close	film).	Plant material was	
				was made using this soil.				to field capacity by		washed with DI (de-	
				These samples were				daily watering with		ionized) water and	
				taken at 420m elevation,				(de-ionized (DI))		subsequently dried at 60	
				630mm annual				water.		°C to constant weight.	
				precipitation and 8°C						Samples were finely	
				temperature.						ground.	

		FERTILIZERS									
REFERENCE	PLANTS TESTED	TESTED	CHEMICALS TESTED	EXPERIMENTAL DESIGN	Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Namiki et al.,	 Hayadori-2 	n/a	 Dinotefuran 	Typology: Soil	Seeds of 16	The organic chemicals	Duration: 7	Duration: 21 days	21 days after	Analyzing organic	Two kinds of BCFs to
2018)	(Hordeum		 Imidacloprid Clothianidin 	■ Scale: Greenhouse	species were	were dissolved and	days	Procedure: The	transplanting,	chemicals in soil and the	compare the uptake and
	distinction L.),		 Thiacloprid 	Nr. of controls:	germinated in a	mixed to a	Procedure:	seedlings were	shoots and roots	soil solution required two	translocation of plants, root
	 Gold dent (Zea 		 Fosthiazate 	Nr. of tested dosages:	growth chamber	concentration of 50	Plants of 16	transplanted into pots	were harvested. The	types of testing: liquid	concentration factor (RCF),
	mays L.)		 Metalaxyl 	Nr. of replicates per	(Koito Kogyo,	mg/L in acetone. One	species seeds were	and raised in the same	roots were washed	chromatography-tandem	shoot concentration factor
	 Fukuyutak 		 Fenobucarb 	dosage: 4	Tokyo, Japan)	liter of the mixture	sown in nursery	Condition for 21 days.	in running tap	mass spectrometry (LC-	(SCF).
	(Glycine max Merrill		 Procymidone 	Nr. of individuals per		was mixed with 278 g	soil.	Growth periods and	water and sonicated	MS/MS) for the	
	and Phaseolus		 Flutolanil 	replicate: n/a		of Celite® powder,	Condition:	plant densities were	in distilled water for	dinotefuran and	RCF = C _{root} / C _{soil solution}
	vulgaris L.)		∎ β-НСН	Size of		and the acetone was	20°C under a 14:	chosen to obtain	5 min to remove	clothianidin, and gas	LCF = Cleaf / Csoil solution
	 Irodori (Brassica 		 Tolclofos-methyl 	reactor/container		allowed to evaporate	10 hr. light: dark	approximately equal	soil particles. For	chromatography-mass	where $C_{\text{shoot}}, C_{\text{root}}, \text{and } C_{\text{soil}}$
	oleracea L. var.		 Dieldrin 	replicate: 600 mL		for 4 hours at room	cycle. 7–28 days,	amounts of biomass	each sample, the	spectrometry (GC-MS/MS)	$_{\mbox{solution}}$ is the concentration in
	capitata)			Nr. of plants in one		temperature in a draft	the seedlings were	so that the root dry	fresh weight of	for the fenobucarb	the shoot, root, soil solution,
	 Yokattana 			analyzed sample:		chamber. Since	transplanted into	weights were 1–2 g	shoots and roots	procymidone, flutolanil,	respectively.
	(Brassica rapa L.					compounds became	pots and raised in	per species. The soil	was measured, and	and tolclofos-methyl in the	Data of log KOW of the
	var. peruviridis)					volatilized when the	the same Condition	moisture was	then cut finely,	purified samples. The ß-	chemicals against the RCF or
	 Satoyutak 					acetone evaporated.	for 21 days.	maintained at 50–	mixed, and divided	HCH and dieldrin in the	SCF were plotted to examine
	(Chrysanthemum					These organic		70% water holding	into two	purified extracts were	the relationships between the
	coronarium L.)					chemicals were		capacity (WHC)	subsamples. One	measured by GC-high	chemical properties and BCFs.
	 Sun valley 					applied to a clean		Condition: Same as	subsample was	resolution MS.	
	(Lactuca sativa L.)					Andosol (soil		in pre-growth	dried at 70°C to	The assess the content of	
	 Jakkoh gold 					composition, loam; pH			measure the	dinotefuran, imidacloprid,	
	(Allium wakegi					[H ₂ O], 5.5; cation			moisture content,	clothianidin, and	
	Araki)					exchange capacity,			and the other was	thiacloprid as well as	
	 Top seller (Apium 					33.8 cmol/kg; organic			used to measure	Fosthiazate, metalaxyl,	
	graveolens L. var.					carbon, 52.1 g/kg; and			organic chemical	fenobucarb, and flutolanil	
	dulce)					water-holding			contents.	in the purified samples LC-	
	 Magnet (Solanum) 					capacity [WHC], 747.1				MS/MS was employed.	
	lycopersicum Mill.					mL/kg soil).				Procymidone was	
	and Capsicum					Plastic pots were				quantified by GC-ECD and	
	grossum L.					filled with prepared				GC-FPD measured	
	 Sharp-1 (Cucumis 					soil (450 g of				tolclofos-methyl. The ß-	
	sativus L.)					uncontaminated soil				HCH and dieldrin extracts	
	Ebisu (Cucurbita					mixed with 5 g of				were measured similarly	
	maxima Duch.)					Celite®)				to soil extracts. tested	
	Summers										
	(Spinacia oleracea L.										
	and Beta vulgaris L.										
	var. cicla)										

		FERTILIZERS									
REFERENCE	PLANTS TESTED	TESTED	CHEMICALS TESTED	EXPERIMENTAL DESIGN	Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	. OUTPUTS
(Puschenreiter et	Common wheat	Four soils	Phytosiderophores (PS)	Typology: Soil	■ Duration: 3d	Four soils were used.	■ Duration: 7d	■ Duration: 10 days	Plants were	5 replicates of each	Release rates of total Carbon
al., 2017)	(Triticum aestivum	originating from		■ Scale: Greenhouse	The seeds were	All soils were air-	Procedure:	Procedure:	separated from the	treatment were collected	and DMA were determined in
	cv. Tamaro)	different locations		Nr. of controls:	surface sterilized	dried, passed through	Plants were grown	The plant containers	soil after exposure.	after two weeks of	the roots and shoots of the
		namely;		Nr. of tested dosages:	with 6% (v/v)	a 2-mm sieve and	in different	were transferred onto	Before the	hydroponic growth to	plants.
		From Arnoldstein		Nr. of replicates per	H_2O_2 for 10 min.	stored under dry and	conditions: Parts	soil discs (3–4 mm	hydroponic and soil	measure exudation rates	
		ARN A		dosage: 5	seeds germinated	dark conditions until	were grown in a	thick, 40.5 mm	stages,	and plant nutritional	
		ARN D		Nr. of individuals per	in a nutrient sol.	further use.	complete nutrition	diameter) loaded with	deoxymugineic acid	status before soil contact.	
		From Banská		replicate:	containing 600	Soils were incubated	solution (sufficient	4.5 g soil (dw). During	(DMA) release rates	One-fifth of the collected	
		Štiavnica (SK),		■ Size of	μM CaCl_2 and 2	for 24 h in darkness at	Fe supply; +Fe)	the soil stage, a filter	were calculated.	hydroponic solution was	
		Slovakia.		reactor/container	μM H ₃ BO ₃ .	20 °C with the soil	and the other half	paper wick was used	Plants were	combined with 0.5 mL of	
		■ SK		replicate: 6L; 34(inner	The floating tub	contact solution for	was grown in the	to apply the following	harvested after 4	an internal standard	
		From Redlschlag		diameter of plant pot)	filled with the	equilibration at 70%	same solution	nutrient solution: 50	hours and the	solution that contained 10	
		(REDL), Austria		Nr. of plants in one	aerated solution	of MWHC.	(deficient Fe	μM KH2PO4, 2000 μM	hydroponic solution	μМ 13-С DMA.	
		■ REDL		analyzed sample: n/a	of 600 μ M CaCl ₂		supply; -Fe).	KNO3, 2000 μM Ca	was filtered via 0.45	The DMA measurement	
					and 2 $\mu M~H_3BO_3$		The nutrient	(NO ₃) ₂ , and 1000 μM	mm syringe filters	was conducted by liquid	
					contained the		solutions were	MgSO ₄ . This solution		chromatography-	
					cylindrical pots		renewed every	was changed every		electrospray ionization	
					closed with a		third day.	two days		tandem mass	
					nylon mesh size of		Condition:	Condition:		spectrometer (LC-ESI-	
					30um at the		Temperature:	Same as for pre-		MS/MS). The remaining	
					bottom.		27°C/20°C	growth		hydroponic solution was	
							day/night			frozen (-20C) before DOC	
							Light: 16 h			was measured using a TOC	
							photoperiod at 500 µmol m ⁻² s ⁻¹			analyzer.	

		EEDTII IZEDC			EXPERIMENTAL STEPS						
REFERENCE	PLANTS TESTED	TESTED	CHEMICALS TESTED	EXPERIMENTAL DESIGN	Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	- OUTPUTS
(Vittori Antisari	Tomato	n/a	Metal oxide nanoparticles:	■ Typology: Soil	n/a	The spiked solutions	n/a	Duration: 130 days	Plant sample	Vegetal tissue analysis:	Translocation Index:
et al., 2015)	(Lycopersicon		■ Cer-oxid (CeO ₂)	■ Scale: Greenhouse		contained 20 g/ml Ag-		(March 26 to August	After the growing	Using a modified US	The translocation index (TI)
	esculentum Mill.)		 Iron (II, III) oxide (Fe₃O₄) 	■ Nr. of controls: 1		, CeO2-, Co-, Fe3O4-,		4, 2012). This period	cycle (130 days),	Environmental Protection	was calculated to synthesize
			 Tin (IV) oxide (SnO₂) 	Nr. of tested dosages:		Ni-, SnO2-, and TiO2-		corresponds to the	each tomato plant	Agency approach, dry	the capability of the species to
			 Titanium dioxide (TiO₂) 	7		NP solutions. For all		vegetative cycle of	was divided into	tissues of various tomato	translocate nutrients and
				 Nr. of replicates per 		NPs except silver,		tomato	shoots and roots	organs were crushed and	pollutants from roots to
			Metallic nanoparticles:	dosage: 6 (pots)		ultrasonic vibration		■ Procedure: The	The above-ground	digested in a microwave	shoots:
			 Silver (Ag) 	Nr. of individuals per		(100 W, 40 kHz) was		seedlings (about 10	plant was washed	using nitric acid and	
			Cobalt (Co)	replicate: n/a		utilized for 30		cm high) were placed	with deionized	oxygen peroxide (USEPA	TI =DML / (DMR + DMS +
			 Nickel (Ni) 	Size of		minutes to disperse		in pots. A total of 48	water and oven-	2009). Inductively coupled	DML) *100
				reactor/container		them in deionized		pots (6 pots for each	dried at 60 °C until	plasma spectrometry was	and
				replicate: 5L		water. Then, before		NPs) were placed in a	constant weight to	used to determine the	
				 Nr. of plants in one 		watering the plant, 20		randomized block;	determine the dry	nutritional and metal	TI =DMS / (DMR + DMS +
				analyzed sample: n/a		g/ml of NP elements		after 2 weeks of	mass and water	content of leaves, stems,	DML) *100
						were put into the soil		adaptation, the	content. The fruits	fruits, and roots. It was	
						near the root. The		seedlings were spiked	were also collected,	tested on reagent blanks	where DMR, DML and DMS
						experiment did not		with spiked solutions	washed, frozen at -	and international	are the element
						employ fertilizer.		once per week, twice	80 °C and	reference materials (BCR-	concentrations as a function
						Pots were filled with		from the 13th week,	lyophilized.	CRM 062) before use.	of dry matters of roots, leaves
						(5Kg of soil)		to simulate a chronic	Soil sample: Three	Every ten samples of	and stem, respectively.
						containing model soil		exposure to NPs	tomato plants' soil	standard solutions (0.5	
						made of natural soil		supplied with	was sampled: A 12	mg/L Ag) were also	
						and peat $(1:4 v/v)$.To		irrigation. For the	cm column of soil	examined for quality	
						ensure drainage, a 4		control test, only	was sampled using	control/assurance.	
						cm layer of quartz and		water was supplied.	a Plexiglas cylinder.	Soil analysis: Three	
						feldspar sand was		■ Conditions:	The soil column had	tomato plants' soil was	
						added to the pot.		Photoperiod 11.5/13	4 lavers, each 3 cm	tested. A 12 cm column of	
								h winter/summer.	deen, with sand at	soil was sampled using a	
								The maximum	the bottom. The	Plexiglas® cylinder. The	
								temperature in the	rhizosphere soil	soil column had four	
								greenhouse was set at	samples were	strata each 3 cm deen	
								28 °C	acquired by shaking	with sand at the bottom	
								20 0.	the roots after soil	The rhizosphere soil	
									drying and carefully	samples were air-dried	
									collecting the	ICP-OES determined the	
									aggregate	metal content	
									remaining adhering		
									to the roote Tho		
									roots wore dried in		
									the over		
								1	the oven.		

		FERTILIZERS			ERIMENTAL DESIGN							
REFERENCE	PLANTS TESTED	TESTED	CHEMICALS TESTED	EXPERIMENTAL DESIGN	Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS	
(Shtangeeva et al., 2014)	Wheat (Triticum aestivum L.)	Chicken manure Energen (natural stimulator)	Antimony (Sb)	 Typology: Soil Scale: Greenhouse Nr. of controls: 1 Nr. of tested dosages: 5 Nr. of replicates per dosage: 3 (randomized) Nr. of individuals per replicate: Size of reactor/container replicate: Ceramic pots (20 cm top diameter) Nr. of plants in one analyzed sample: 20 seedlings per pot 	Seeds of wheat Triticum aestivum L. were germinated on wet filter paper for 5 days, and then uniformed germinated.	Ceramic pots were filled with soil (7 kg of soil in a pot). The soil was classified as Ferric Podzol with a sandy loam texture.Half of the plants were grown in Sb-free soil, and the other half was grown in soil spiked with 15 mg kg-1 of Sb as Sb (OH)2NO3Sb-free and Sb-spiked soils were divided into three parts. To the first part of pots, 100 mg kg-1 of dry chicken manure was added, and to the second part of pots, 20 mg kg-1 of Energen was added. The doses are recommended by the fertilizer's producers for this type of soil and this plant species.	n/a	 Duration: 17 days Procedure: Uniformed germinated seedlings were transferred to ceramic pots. There were ~20 seedlings in a pot.During the experiment, the soil pH value was 6.3±0.2. Soil water content was measured at the beginning of the experiment by soil moisture sensor 10HS. During the experiment, the soil water content was checked every day. To maintain the mean level of soil moisture (25%), the pots were water per pot. Before seedlings were transferred to pots, soil samples (initial soil) were taken from all pots. Condition: Information on light and temperature conditions not 	Plants (together with the rhizosphere soil) were collected within 1, 6, 12, and 17 days after the transfer of seedlings to the soil.At the end of the experiment, the soil was also taken from the bottom of the pots to check for possible leaching of Sb to deeper soil layers. After sampling, the soil was air-dried up to constant weight. Plants were carefully washed with deionized water just after sampling, separated into roots and leaves, and also dried under room temperature to constant weight.	The ICP-OES and ICP-MS techniques were applied to determine the concentrations of macro- and trace elements in the plant and soil material. The accuracy of the measured concentrations was verified by determining the same elements in the certified reference materials (CRMs), tomato leaves 1573 and 1573a (National Institute for Science and Technology, USA), and marine sediment reference material PACS-2 (National Research Council, Canada). The results of the analysis of the CRMs showed a good agreement with certificated values (differences did not exceed 5-7%)	Bioaccumulation through correlation and cluster analysis statistically	
								reported				

		FERTILIZERS									
REFERENCE	PLANTS TESTED	TESTED	CHEMICALS TESTED	EXPERIMENTAL DESIGN	Seeds preparation and germination	Preparation of test replicates	Pre-growth of plants	Plants exposure	Plant harvest	Analysis	OUTPUTS
(Macherius et al.,	 Barley (Hordeum 	Sewage sludge	 Galaxolide, HHCB 	Typology: Soil	Seeds were	Soil: The sandy soil	n/a	Duration: 119 days	Plant components	1 l of each extract was	Bioconcentration Factor
2012)	vulgare)∎ Meadow		(Polycyclic musk compounds	Scale: Greenhouse	germinated and	used in the trials was		(entire cultivation	were harvested	injected into a 6890GC-	BCF= concentration in dry
	Fescue (Festuca		1,3,4,6,7,8 hexahydro-	Nr. of controls: n/a	all pots were kept	air-dried and sieved		period)	over two months	5973MSD-system for GC-	plant tissue / concentration in
	pratense)∎ Carrot		4,6,6,7,8-	Nr. of tested dosages:	at 14 °C during	to 4 mm before being		Procedure: After	depending on seed	MS analysis. Analyses of 3	dry soil
	(Daucus carota ssp.		hexamethylcyclopenta-[g]-2-	3	germination.	mixed with a		spiked, the pots were	freshness and	parallel extractions were	
	sativus) [4 cultivars		benzopyran);∎ Tonalide,	Nr. of replicates per		commercial slow-		seeded. The	carrot and meadow	averaged and quantified	
	of carrots: Napoli,		AHTN (7-acetyl-1,1,3,4,4,6-	dosage: n/a		release fertilizer (3 g		incubation	fescue growth. The	using external standards.	
	Amager Rothild,		hexamethyl-1,2,3,4-	Nr. of individuals per		kg1 soil). The actual		temperature was	same pot supplied	The soil concentration of	
	Nutri-Red]		tetrahydronaphthalene);∎	replicate: n/a		mineral composition		14°C. It was then	root and leaf	target substances was	
			Triclosan, Antibacterial	 Size of 		was unknown. All		irrigated with water	samples. The roots	measured before sowing,	
			compound (5- chloro-2-(2,4-	reactor/container		chemicals were 95%		to maintain a water	were washed with	49 and 119 days later. The	
			dichlorophenoxy) phenol)	replicates Each plant pot		pure and utilized for		content of around	tap water. Carrots	total root xenobiotic	
				with 175 mm inner		soil spiking and as		70% of the soil's	were peeled (depth	concentrations were	
				diameter and 210 mm		reference compounds		water retention	of 2 mm). The	estimated as the sum of	
				high.		for analytical		capacity, which was	plants were dried in	root peel and root core	
				Nr. of plants in one		analyses.		around 11%. Between	an oven for 3 days,	concentrations.	
				analyzed sample: 5-6 in		Spiking Procedure:		the spiked pots were	at 40°C -50°C.		
				the case of all carrot		The test substances		non-spiked carrot	Control and		
				types, 10 for barley, and		from a stock solution		(cultivar Napoli) and	exposed plant		
				20 for meadow fescue		made in acetone were		barley plants to see if	materials were		
				 Direct Measures: The 		spiked into 50 mL of		significant amounts of	dried separately to		
				concentration of the		acetone and added to		the examined	avoid cross-		
				target substances in the		the soil of each pot		xenobiotics were	contamination. For		
				soils was examined		filled with 4 kg (dry		transmitted directly	two weeks at room		
				before seeding (day 0)		weight) of soil. All was		from the soil to leaf	temperature, the		
				and after 49 and 119 days		mixed thoroughly		tissue. Most exposed	dried plant samples		
				of plant cultivation.		manually to adjust		plants developed	were wrapped in		
						concentrations of 10		slower than non-	paper bags and the		
						mg kg-1(dry weight)		spiked controls, but	soil in glass jars.		
						for HHCB, AHTN, and		they made up for it	Ultracentrifuge		
						triclosan.		during cultivation.	milling coarsely		
						Condition: Three		■ Condition: A 16-	chopped and		
						days were required		hour day with 20°C	crushed dry		
						after spiking to allow		Day and 14°C night	samples A modified		
						leftover acetone to		temperature was set	QuEChERS		
						evaporate from the		after germination The	extraction		
						soil. The xenobiotic		lighting was 350	technique was used		
						amounts used were		mol/m2/day PPF with	to obtain these		
						based on calculated		SON-T lamps equal to	samples for GC-MS		
						worst-case		30 mol/m2/day.	analysis. Ethyl		
						concentrations.					
								1			

1.5 Fertilizers

Fertilizers are in the broadest context any substance, natural or manmade, that is applied to soil or plants tissues to deliver nutrients to the plants or to increase the chemical and physical qualities of the soil to help plant growth, and production and quantity directly or indirectly. There are several sources of fertilizer, both natural and man-made (Scherer *et al.*, 2009).

Chemically fertilizers can be classified into mineral fertilizers, organic fertilizers and synthetic soil conditioners. Mineral fertilizers are composed of inorganic or synthetic organic compounds. Organic fertilizers are animal waste products (stable manure, slurry manure), plant decomposition products (compost, peat), or waste treatment materials (composted garbage, sewage sludge). Synthetic soil conditioners are substances whose primary purpose is to enhance the physical qualities of soils, such as friability and air movement. Whereas categories classified based on their nutritional content include conventional fertilizers containing a single main nutrient, compound fertilizers made up of a combination of main and micronutrients and micronutrient fertilizers which in comparison to macronutrient fertilizers include nutrients that plants require in trace amounts, dosages ranging from 1 to 500 g ha⁻¹ a⁻¹. Finally, fertilizers can be classed as solid or liquid fertilizers, as well as soil or foliage fertilizers, the latter of which is supplied solely by spraying on an existing plant population (Kiiski *et al.*, 2016).

1.5.1 Fertilizer Regulations concerning Digestate and compost

The European Parliament Regulation (EC) No 2003/(2003), which almost entirely covers fertilizers derived from mined or chemically synthesized inorganic materials, has partly harmonized the internal market for fertilizers. However, not all fertilizing products are covered by this legalization. It does not recognize a clear framework to address the new concerns including environmental and material safety in organic fertilizer. Cadmium, uranium, and other potentially harmful elements are components of phosphorites, which means that mined mineral phosphate fertilizers may include potentially dangerous materials. Contaminants in EU fertilizers, such as cadmium, may pose a risk to human, animal, and plant health, as well as to the environment due to their accumulation in the environment and entry into the food chain. Concerning the preceding, the New EU 1009/2019 regulation will replace (EC) No 2003/2003 and will take effect on 16 July 2022. It will be fully binding and immediately applicable to member states including Italy. The present EU regulations do not apply to so-called "national

General Introduction

fertilizers" which are placed on the market by member states in conformity with their national law. Certain member states have comprehensive national legalization, whereas some others do not. The following summarizes the important elements of the new EU Regulation (2019)/1009:

- Opening the single market for bio-based fertilizers: The agreement on the regulation of the fertilizing product will facilitate the entry of new and innovative organic fertilizers into the EU single market by establishing the prerequisites for their entry.
- Safety and quality standards: The new legalization will establish rigorous standards for the safety, quality and labeling of all fertilizers to be traded across the EU. Before applying the CE mark, manufacturers must demonstrate that their products satisfy those standards.
- EU fertilizing products are classified into distinct product function categories (PFC), each of which should have its own set of safety criteria tailored to its intended purpose
- Component materials for EU fertilizing products are classified into distinct categories, each of which should have its processing criteria and control procedures. It should be allowed to sell an EU fertilizing product made of several component materials from several component material categories (CMC), provided that each component material conforms with the standards of the component material category to which it belongs.
- Introducing new contaminants limits values in fertilizers.

Compost is classified as CMC3 in Annex II of the new regulation, whereas non-energy crop digestate is classified as CMC5.

Figure 1.1 - Component material category (CMC); CMC3 and CMC5

PFCs are also subject to specific labeling criteria, which include fertilizers, soil improvers, growth medium, liming products, and bio-stimulants. Although the new fertilizer regulation specifies seven PFCs and eleven CMCs, only PFC1, PFC3, CMC3 and CMC5 are relevant to this study. Only a summary and crucial facts are provided for each of these categories for the reader's convenience. (*Figure 1.2*).

Figure 1.2 -. PFC1 as fertilizer and PFC3 as a soil improver

1.5.2 Criteria for Product function category 1 and 3

In the new regulation, the annexes define the quality standards for certain raw materials used in the production of fertilizers, soil improvers, and growing media. The specific requirements and criteria for compost and digestate products are based on technical guidelines (Saveyn *et al.*, 2014)(End of Waste Criteria for Biodegradable Waste Subjected to Biological Treatment).

Criteria	PFC1(A) (I)/(II)	PFC 3(A)
	Organic fertilizer	Organic soil improver
Cd (mg kg ⁻¹ dm)	1,5	2
Cr VI / Cr (mg kg ⁻¹ dm)	2	2
Hg (mg kg ⁻¹ dm)	1	1
Ni (mg kg ⁻¹ dm)	50	50
Pb (mg kg ⁻¹ dm)	120	120
Cu (mg kg ⁻¹ dm)	300	300
Zn (mg kg ⁻¹ dm)	800	800
As (mg kg ⁻¹ dm)	40	40
C2H5N3O2 (g kg ⁻¹ dm)	absent	-
Salmonella spp.	absent	absent
E. Coli / Enterococcaceae (CFU g ⁻¹)	< 1000	< 1000

Table 1.2 - Limit values of contaminants (metals, pathogens) in organic fertilizer PFC 1(A) and PFC 3(A)

Along with standards for the manufacturing process and product quality, only separately collected organic waste is authorized as input material for composting and anaerobic digestion. An overview criterion of contaminants such as metals and pathogens is given in *Table 1.2* and is applicable for both PFC1 (Organic fertilizer category) and PFC3 (Organic soil improver).

General Introduction

The nutrient content in solid (category-I), as well as liquid (category-II) organic fertilizer for PFC 1(A), may contain only one declared primary nutrient. *Table 1.3* describes the required criteria for these nutrients.

	PFC1(A) (I)	PFC1(A) (II)
Criteria	Solid	Liquid
Corg	≥ 15 %	≥ 5 %
Nitrogen (N)	≥ 2,5 % [*]	≥ 2 %
Phosphorus (P2O5)	≥ 2 %*	≥ 1%
Potassium (K ₂ O ₄)	≥ 2 % *	≥ 2 %
SUM (NPK)	$(1/1/1) \ge 4\%$	(1/1/1) ≥ 3%

Table 1.3 - Criteria requirements for the nutrients for organic fertilizer

* As a minimum, if only one of the basic nutrients is present (NPK)

Similarly, the content of dry matter and composition in the soil improver PFC 1(A) are listed in *Table 1.4*.

PFC3(A)				
Criteria	value			
Dry matter	≥ 20 %			
Corg	≥ 7,5 %			
Composition	 An organic soil improver shall consist of 95% of material solely 			
	biological origin			
	 including peat, leonardite, lignite and humic substances obtained 			
	from them			
	 but excluding other materials which are fossilized or embedded in 			
	geological formations.			

Table 1.4 - Criteria requirements for soil improvers

1.5.3 Process Requirements for CMC 3 and CMC 5

Only certain input materials are allowed for the CMC3 "compost" and CMC5 "digestate,". Separated bio-waste, including animal by-product (ABP) category 2 and 3 materials and residues from the food processing industry, can be used as appropriate input materials. Sewage sludge and mixed municipal garbage are excluded as input materials. However, to use the ABP as input material for composting and anaerobic digestion (AD) the requirements of Regulation (EC) No 1069/(2009) have to be fulfilled. The precise process criteria for composting and anaerobic digestion are described in annex II of the legalization.

Input material	Bio-waste, source-separated, ABP cat 2 and 3, excluding		
	sewage sludge and mixed municipal waste		
	Plus, a liquid or non-liquid microbial or non-microbial extract		
	made out of compost; and		
	Unprocessed and mechanically processed residues from food		
	production industries, except ABPR materials		
Process criteria for	a) Thermophilic at 55 °C/24 h/hydraulic retention time of 20		
digestate	days		
	b) Thermophilic at 55 °C incl. pasteurization step 70 °C-1h		
	c) Thermophilic at 55 °C followed by composting		
	d) Mesophilic at 37-40 °C incl. pasteurization step 70 °C-1 h		
	e) Mesophilic at 37-40 °C followed by composting		
Process criteria for	70 °C ≥ 3 days		
compost	65 °C ≥ 5 days		
	60 °C ≥ 7 days		
	55 °C ≥ 14 days		

Table 1.5 - Process criteria for compost and digestate

In addition to process criteria, specific safety and environmental criteria concerning organic pollutants, impurities (glass, metals, and plastics) and stability are also required for the compost and digestate and are listed in *Table 1.6*.

Criteria	Compost (CMC 3)	Digestate (CMC 5)
PAH ₁₆ (mg kg ⁻¹ dm)	6	6
Weed seeds (Seed L ⁻¹)	-	-
Impurities (% dm)	≤ 0,5ª	≤ 0,5ª
Stability	-	-
O2 uptake rate	25	25
(OUR) (mmol $O_2 OM^{-1} * h$)		
Residual Gas potential (liter biogas g ⁻¹ volatile	III/-/-	-/≤0,25/-
solids) / organic acids (mg l-1)/Rotting degree		

^a Not more than 3 g Kg⁻¹ dry matter of macroscopic impurities above 2 mm in any of the following forms: glass, metal or plastics.
Part -II Scientific Article

This part is named "scientific article" since it contains the abstract of the scientific study, a brief introduction, the materials and methods, and finally the results of the research experiment (RHIZOtest Bioassay) and conclusion.

Abstract

A graphic abstract illustrating the RHIZOtest Bioassay scheme.

This study investigates the uptake and transport of pollutants in tomato plants exposed to organic fertilizer (digestate). The new EU Regulation No. 1009/2019 will replace EU Regulation (EC) No. 2003/2003 on July 16, 2022, and will allow the incorporation of new and innovative organic fertilizers, including liming materials such as organic soil improvers and digestates derived from resources other than fresh crops. Thus, this research investigation examined the environmental bioavailability of trace elements (TEs), notably metals, to tomato plants using the RHIZOtest bioassay, in which plants were exposed to control and test the soil. The test soil was a combination of ordinary soil and digestate from the Organic Fraction of Municipal Solid Waste (OFMSW). The results suggested that when exposed plants were compared to control plants, their root biomass increased significantly (p < 0.05). The amounts of Cd (0.3 mg kg⁻¹ d.w.), Cr, Cu, Ni, and Pb (5 mg kg⁻¹ d.w.) in the control and treatment groups were equivalent to or less than the limit of quantification (LOQ). Despite the fact that the concentrations in the shoots were greater, there was a statistically significant difference (p < 0.05) in the mean Zn

concentrations in the roots of the plants. This indicates that the accumulation of Zn in shoots was facilitated. The decreased flux value (ng m⁻² s⁻¹) also demonstrated that zinc was deposited in the plants' shoots. This was not true, however, for the remaining trace elements. While the results indicate that the risk of increased zinc accumulation in tomato shoots is quite low, additional studies with a greater number of replicates may be required to substantiate this observation and conduct efficient analysis, thereby improving standards and providing efficient modeling for uptake in plants.

Keywords: Plant uptake; Contaminants; Fertilizers; RHIZOtest; Rhizosphere; Translocation; Trace elements; Bioavailability.

Riassunto

Questo studio indaga l'assorbimento e il trasporto di inquinanti nelle piante di pomodoro esposte al fertilizzante organico (digestato). Il nuovo Regolamento UE n. 1009/2019 sostituirà il Regolamento UE (CE) n. 2003/2003 il 16 luglio 2022 e consentirà l'incorporazione di fertilizzanti organici nuovi e innovativi, compresi materiali calcificanti come ammendanti organici e digestati derivati da risorse diverse dalle colture fresche. Pertanto, questa ricerca ha esaminato la biodisponibilità ambientale di oligoelementi (TE), in particolare metalli, alle piante di pomodoro utilizzando il biotest RHIZOtest, durante il quale le piante sono state esposte al controllo e al terreno di prova. Il terreno di prova era una combinazione di terreno ordinario e digestato dalla frazione organica dei rifiuti solidi urbani (OFMSW). I risultati hanno evidenziato che la biomassa radicale delle piante esposte è aumentata in modo significativo (p < 0,05) rispetto a quanto rilevato sulle piane di controllo. Le quantità di Cd (0,3 mg kg⁻¹ s.s.), Cr, Cu, Ni e Pb (5 mg kg⁻¹ s.s.) nei gruppi di controllo e di trattamento erano equivalenti o inferiori al limite di quantificazione (LOQ). Nonostante il fatto che le concentrazioni nei germogli fossero maggiori, c'era una differenza statisticamente significativa (p < 0,05) nelle concentrazioni medie di Zn nelle radici delle piante. Ciò indica che l'accumulo di Zn nei germogli è stato facilitato. La diminuzione del valore di flusso (ng m⁻² s⁻¹) ha anche dimostrato che lo zinco si è depositato nei germogli delle piante. Questo fenomeno non si è, tuttavia, verificato per gli oligoelementi rimanenti. Mentre i risultati indicano che il rischio di aumento dell'accumulo di zinco nei germogli di pomodoro è piuttosto basso, potrebbero essere necessari ulteriori studi con un numero maggiore di repliche per convalidare questa osservazione e condurre analisi efficienti, migliorando così gli standard e fornendo una modellazione efficiente per l'assorbimento nelle piante.

Parole chiave: Assorbimento delle piante; Contaminanti; Fertilizzanti, RHIZOtest; Rizosfera, Traslocazione; Oligoelementi; Biodisponibilità.

2 Introduction

Biological impacts are not proportional to the overall concentration of a pollutant in the soil, as established by laboratory and field research. Rather than that, an organism (in this case, referring to plants and/or crops) reacts solely to the percentage that is physiologically available to it (bioavailable). This is especially true in soils when contaminants interact with the soil matrix in such a way that the uptake and thus the accumulation is no longer obtainable by the organism or are present in an inaccessible form. The bioavailable portions of pollutants are determined by soil qualities and a variety of time-dependent processes, as well as by the biological receptors. The conservative method of exposure assessment, as it is often presented in regulatory contexts, assumes that the complete concentration of a contaminant in a soil or soil material is available for accumulation by organisms, including humans, and hence overestimates the risks. As a result, risk assessment may be optimized by employing a technique that is based on estimated exposure, which represents the accessible, effective concentration of the contaminants, and on existing underlying toxicity data (ISO 17402, 2011). Innovative methodologies for evaluating the uptake and bioavailability of contaminants in soils to plants cultivated on agricultural land fertilized with different fertilizing products, which may show the presence of pollutants, must be developed and verified. Plant Uptake and bioavailability of contaminants are required for the assessment of food chain contamination and phytotoxicity, i.e. toxicological bioavailability. (Peijnenburg et al., 1997).

Fertilizers, as reported in several publications, were a critical component of the green revolution, resulting in a large rise in fertilizer output and use. While they supply crops with macronutrients and micronutrients are also high in heavy metals, radioactive compounds, and other pollutants, and so constitute a significant source of toxins in the soil and environment over time. For example, inorganic fertilizer application can have a detrimental effect on soil health by hardening the soil surface, lowering the pH of the soil, inhibiting microbial activities, adversely changing the physical and chemical characteristics of the soil, and therefore indirectly harming crop output. Several of the most frequently encountered problems as a result of widespread fertilizer use, such as soil acidification, salinization, groundwater contamination, eutrophication, crop yield reduction, greenhouse gas emissions, and air pollution, resulting in the degradation of natural resources, impeding sustainable food production (Ju et al., 2009). Generally, three key nutrients nitrogen (N), phosphorus (P), and potassium (K) account for the majority of the fertilizer sector, as these nutrients are required for crop yield. Nitrogen and phosphorus are regarded as the building blocks of any agricultural production system. In comparison to nitrogen fertilizer, which is produced chemically by reacting nitrogen from the atmosphere with hydrogen via natural gas, phosphate and potassium fertilizers are mostly produced through digestion and mining thus depleting the natural sources. Excessive nitrogenous fertilizer application frequently leads to a variety of losses, including leaching and volatilization, which not only affects nutrient use efficiency but also poses an environmental hazard. Nitrate is the primary pollutant found in water bodies where nitrogen fertilizers are applied in excess. In another study, the author reported that phosphorus is the second most abundant major nutrient taken up by plants via fertilizers. The primary issue with P fertilizers is their extremely poor usage efficiency, with a small amount of about 10 to 15% of applied fertilizer being used by the crop plant, while the rest stays in the soil or finds its way into water bodies, generating a variety of environmental concerns (Lun et *al.*, 2018). Furthermore, cadmium (Cd) is prevalent in phosphate fertilizers made from rock phosphate, and increased Cd accumulation has a detrimental effect on soil health. These pollutants may undergo chemical transformations, resulting in the formation of new compounds that may be harmful to the environment. In this framework, heavy metals (HMs) are readily absorbed by crops and tend to accumulate in the bodies of plants and animals. Furthermore, soil characteristics and management influence the fate of pollutants in determining the uptake by living organisms. The uptake of pollutants and their transport in the soil-water system is influenced by soil parameters such as texture, pH, organic matter, moisture content, temperature, and heavy metals.

The negative environmental effects posed by the use of conventional fossil-fuel-derived fertilizers may be mitigated by the extended use of organic or organic-based fertilizers. Organic fertilizers include animal excreta such as liquid manure, and slurry (farmyard manure). Green manures, mulch, as well as organic residual fertilizers and growing media such as composted biowaste, sewage sludge, growing media (peat), and fermentation residues (digestate), are also organic fertilizers. Among them, digestate has been recognized for its unique fertilizing properties due to its high nutrient content (N, P, K) and their availability, as well as its potential as a soil amendment and long-term significance in sustaining the economy.

Digestate is the by-product of anaerobic digestion (decomposition under low oxygen conditions) of a biodegradable feedstock. Anaerobic digestion (AD) yields two major by-products: digestate and biogas. Digestate is produced by both acidogenesis and methanogenesis, and each has distinct properties. These properties are a result of both the initial feedstock source and the procedures themselves (Peng & Pivato, 2019).

The agronomic use of digestate from OFMSW is allowed in compliance with the new European regulation of 2019 applicable in July 2019. Numerous studies have been performed in connection with the operation of Aerobic digestion (AD) plants to validate the digestate appropriateness for agricultural usage. One of the related studies evaluated the legal status of digestate from OFMSW with the help of statistical analysis for the quality assessment of the feedstock to the AD plant. The study determined the differences between the two digestate typologies (OFMSW versus AGRO) through statistical analysis. Upper confidence limits for the means (level of significance $\alpha = 0.05$) were found to be compliant with the legal requirements Furthermore the authors of the study concluded that digestate can be a good substitute for inorganic fertilizers (Beggio *et al.*, 2019).

Nonetheless, organic fertilizers such as manure, agricultural residues, digestate from the organic fraction of municipal solid waste (OFMSW), and the food processing sector, among others, can act as a sink for various heavy metals, disease-causing pathogens, and other contaminants, wreaking havoc on soil and water resources. If used on agricultural land, these contaminants may enter the food chain and be consumed by humans and animals, posing a risk to both humans and the environment.

Numerous studies have been undertaken to investigate the uptake of contaminants in soil from the source of fertilizing chemicals to plants under diverse exposure conditions (hydroponics, semi-soil, standardized sand, and natural soils) employing different test species (including cucumber, tomato, soybean, radish as some to mention). These methodologies, however, are not standardized, which hinders the scientific community from using the same approach for diverse plant species, jeopardizing previously established aims, findings, and outcomes. Therefore, the experimental technique used in this study is based on the standardized procedure as described in the iso standard (ISO 16198, 2015). The fundamental advantage of this approach is that it allows assessment of the environmental bioavailability of trace elements to plants, either as concentrations in shoots and roots or, more comprehensively, as net uptake flux in plants.

The primary aim of this preliminary study is to analyze the uptake of metals (Cd, Cu, Ni, Pb and Zn) to tomato plants (cultivar Lycopersicon esculentum) under standard soil and test soil exposure (i.e., soil + digestate).

3 Material and Methods

3.1 Experimental Design

The entire experimental activity was carried out consistently by the standard ISO-16198:2015. The RHIZOtest consisted of two phases: a first hydroponic phase during which seeds were germinated in an aerated nutrient solution and a second exposure (or contact) phase during which the seedlings were placed in contact with the test soil. The root mat developed was not directly in contact with the soil but mediated by a polyamide mesh. A list of apparatus used in this bioassay is provided in the appendix table (See **Appendix A** *Table A- 1*).

3.1.1 Treatment and Replicates

Due to the time frame and limited availability of the apparatus necessary for the experiment, the number of treatments (i.e., dose) was kept to one treatment only, in addition to the control. The total number of experimental units (i.e., plant pots) to be prepared was estimated using Equation. *3.1* as indicated by the standard ISO-16198:2015(E).

$$n_p = \left[(n_s * n_r) + n_c \right] * f \tag{3.1}$$

Where:

- n_p is the total number of plant pots that must be prepared for each plant species;
- *n_s* is the number of soil or soil material tested;
- n_r is the number of replicates (minimum 5)
- n_c is the number of plant pots that serve as a control of the preculture period (minimum 5);
- *f* is the security factor (minimum 1,2).

A total of five replicates were performed for the hydroponic phase (hydroponic controls) and a total of five replicates were for the test phase (control soil: n=2, treated soil: n=3). The number of replicates adhered to the standard criterion for the minimum number of replicates (ISO 16198, 2015)

Two extra plant pots were added to replace the ones which may have been damaged or sick plants. This resulted in the preparation of 12 plant pots following the standard procedure for one treatment.

3.1.2 Nutrient Solutions

Three distinct nutrient solutions were prepared for both phases of the bioassay (i.e., preculture period, test culture period). *Table 3.1* shows how three nutritional solutions were used at various steps of the experiment. The pre-culture phase consisted of seed germination and hydroponic seedling pre-growth, whereas the test culture phase comprised plant growth. The nutrient solution's composition is listed in the appendix table. (See *Appendix A Table A-2*). To minimize needless over-preparation of the nutrient solution, the required amount of solution was estimated in mg L⁻¹. The appendix table reports the determined quantity in mg L⁻¹ for each nutrient solution (See *Appendix A Table A-3*).

The calculated amount of chemicals for the preparation of nutrient solutions was measured through analytical balance (Sartorius BP210S) and was poured into the flask with 1L of demineralized water each and stirred using a hot plate magnetic stirrer (IKA RCT Classic) at room temperature of 25°C.

	Seed germination	Seedling pre-growth in hydroponics	Plant growth period
0 – 7 days	Nutrient Sol. 1	-	-
7 – 14 days	-	Nutrient Sol. 2	-
14 – 22 days	-	-	Nutrient Sol. 3

Table 3.1 - Nutrient solution employed at various steps of the bioassay.phases

3.1.3 Control Soil and Test soil

A laboratory-prepared standard soil was utilized in the experiment as control soil. The control soil was prepared according to the protocol indicated in section 7.2.3.2 of ISO 11269-2 (ISO 11269-2, 2013). In contrast, the test soil was a mix of standard soil and substrate (i.e., digestate). Before application to the soil and subsequent mixing, the digestate was dried at 40°C. The digestate dosage (i.e., concentration) per pot was 0.06g per 14 g of soil. This dosage was determined using the yearly digestate application rate (i.e., 0.4 kg TS m⁻¹). This application rate was derived from the maximum nitrogen application rate of 340 KgN ha⁻¹ y⁻¹ in non-vulnerable areas and the average of the mean nitrogen concentrations reported for OFMSW, i.e., 110 gN kg⁻¹ TS. Additionally, soil mixing processes based on "good practices" result in a soil-digestate mixing layer of 0.2m and a soil bulk density of 1.25 kg dm⁻³ (Beggio *et al.*, 2021).

Digestate is a nutrient-rich substance produced by anaerobic digestion (AD) of food waste or the organic fraction of municipal solid waste (OFMSW) and it may be used as a fertilizer (Peng & Pivato, 2019). The input feedstock to AD producing the used digestate is also referred to as *"Frazione Organica Rifiuti Solidi Urbani"* (FORSU) in the Italian language.

The digestate was collected from the output of four anaerobic digesters operating in parallel under wet thermophilic conditions (TS 10%, 55 °C) with a hydraulic retention time of 21 days, treating 120,000 tons of biowaste collected each year from various municipalities in the Veneto region North-East Italy. The information on the characteristics of the feedstock used for the production of digestate can be found in the appendix table (see *Appendix A Table A-4*)

3.1.4 Plant specie

The experimental plant was a tomato (Cultivar Lycopersicon esculentum Mill.). The seeds were purchased from an Italian seed company and were not treated with herbicides or pesticides. The tomato plant seeds complied with European Union (EU) seed commercialization requirements and regulations, and they are registered in the EU plant variety database.

3.2 RHIZOtest Bioassay

The RHIZOtest was carried out in November 2021 in the laboratory of the local waste management agency, *Società Estense Servizi Ambientali* (SESA), Monselice, Padua, Italy, at geographical coordinates 45.2235° North and 11.7496° East. The RHIZOtest was performed by the ISO standard (ISO 16198, 2015). There were two endpoints of the bioassay, a) the concentration of trace elements in shoots and roots at the end of the test culture period and b) the net uptake flux of trace elements in the whole plants during the test culture period. *Figure 3.1* illustrates the experiment's flow in a graphical form.

Figure 3.1 - RHIZOtest short procedureaccording to ISO 16198:2015. Retrieved from ("The RHIZOtest - (http://www.metrhizlab.com/),")

3.2.1 Preculture Period (Seed Germination and Seedlings pre-growth)

The preculture stage, which lasted 14 days, included seed germination and seedlings pregrowth under hydroponics to achieve adequate plant biomass and a dense, planar root mat. Throughout the two weeks, the bubbling device was used to aerate the nutritional solutions

Material and Methods

with an air diffuser placed in the solution holding container. The plant assembly was assembled before seeding as illustrated on the left side of *Figure 3.2*. The plant pot assembly is designed to support the entire plant for the whole duration of the experiment. The plant pots allowed for the development of a planar and thick root mat while physically separating the plants from the nutrient solution in the container during exposure. The plant pots are made out of a cylinder that is connected to an upper plate at the top and closed at the bottom with a polyamide mesh secured with an adjustable clamp. The mash with the pore size of 30 μ m was fixed tightly.

After assembling the pots, 40 seeds were placed on the polyamide mesh surface of each of the five plant pots that served as controls for the preculture phase. Following sowing, the plant pots are passed via the floating platform (12 plant pots) that has been set on top of the 6L of nutrition solution 1 in the tank as shown in the graphical illustration on the right side of *Figure 3.2*.

Figure 3.2 - Pot assembly for preculture phase. plant pot (left), floating platform (right), retrieved from (ISO 16198, 2015)

Nutrient solution 1 was composed of 600 µmol·dm⁻³ CaCl₂ and 2 µmol·dm⁻³ H₃BO₃. The entire assembly of the plant pots on the floating platform in the nutrient solution tank was placed inside the incubator by covering the tank with an aluminum sheet to create a dark environment for the first 4 days of germination. The aluminum foil was removed when the functional photosynthetic organ, for example, green pigmentation on cotyledons or leaves, developed. Seedlings are then grown over nutrient solution 1 until the end of the first week.

After 7 days seedlings are grown for one additional week at the top surface of 6L of the nutrient solution 2. the nutrient solution 2 was prepared by adding the nutrients in the following order and concentration: 500 μmol·dm⁻³ KH₂PO₄; 2000 μmol·dm⁻³ KNO₃; 2000 μmol·dm⁻³ Ca(NO₃)₂;

1000 μmol·dm⁻³ MgSO₄; 0,2 μmol·dm⁻³ CuCl₂; 10 μmol·dm⁻³ H₃BO₃; 2 μmol·dm⁻³ MnCl₂; 1 μmol·dm⁻³ ZnSO₄; 0,05 μmol·dm⁻³ Na₂MoO₄ and 100 μmol·dm⁻³ NaFe(III)EDTA. Every third day, the nutrition solution 2 was renewed. The position of the plant pots on the floating platform was randomized at each renewal. Throughout these 14 days in hydroponics, nutrient solutions were aerated using in-tank air diffusers.

3.2.2 Test Culture Period

After the pre-culture period was carried out in hydroponic solution, the pre-culture phase was completed, and five plant pots with homogenous plant biomasses were selected and rinsed under a stream of demineralized water to serve as control and test plants during the test culture phase (2 replicates exposed to control soil and 3 to control soil amended with digestate).

Figure 3.3 - Assembly Setup for Test culture phase ; individual components (left) full fitted plant pot (right), retrieved from (ISO 16198, 2015)

Each plant container was put in contact with the soil layer placed on the top of the soil-receiving plate for 8 days. The amount of soil put on each soil-receiving plate deviated from the quantity specified in the standard. Thus, instead of 9 g of fresh control soil or test soil (i.e., control soil amended with digestate), the mass of the soil was modified to 6 g placed down on each soil-receiving plate to achieve a soil layer thickness of approximately 6 mm and a soil density of approximately 1.2 g cm⁻³. *Figure 3.3* illustrates the schematic of the assembly setup for the test culture period. It consists of two modules and three paper wicks wedged in between; a) contact assembly that uses fastenings (i.e., screws and screws nut) to firmly hold the plant pot over the

soil layer and a 0,5 dm³ screw-top jar filled with the nutrient solution 3. This assembly is designed to enable close contact between the root mat and the entire surface area of the soil layer and it allows the filter paper wicks to stay fully soaked throughout the test culture period. The root mat in contact with the soil has a surface area of 12.6cm². Nutrient solution 3 was prepared by adding the nutrients in the following order and concentration: 50 µmol·dm⁻³ KH₂PO₄; 2000 µmol·dm⁻³ KNO₃; 2000 µmol·dm₋₃ Ca (NO₃)₂, and 1000 µmol·dm⁻³ MgSO₄. The nutrient solution was changed every other day, except on the last day of the test culture period. Each renewal included randomization of the soil-plant contact assembly. The wicks were inserted through the screw top in such a way that they remained damp at all times, allowing the soil layer to remain at 100% water holding capacity (WHC) during the test. No wick replacement was required during the test because it remained undamaged. The complete RHIZOtest experiment was performed under the regulated climatic conditions (16 h day, 200–400 µmol of photons·m⁻²·s⁻¹, 75% relative humidity and a temperature of 25 °C; 8 h night, 70% relative humidity and a temperature of 20 °C). The screw-top jars were washed in hot water, then in a volume fraction of 10% HNO₃, followed by thorough rinsing with demineralized water before and at the end of the test.

3.2.3 Harvests of plants

At the end of the Test Culture period, the plants of each replicate were harvested. One following the pre-culture phase, and another following the test culture phase. The soil-receiving systems were isolated from the plant containers. The polyamide sheet was removed from the bottom of the plant pots, and the plants were washed under a stream of demineralized water (shoots and roots included). Additionally, the root mat was properly washed and cleaned to minimize contamination with dirt particles less than 30µm (i.e., smaller than the pore diameter of the polyamide mesh). Finally, the plants were taken from their containers with care. Shoots were separated from roots by cutting, and seed husks were removed to the extent feasible, however owing to the dense root mat, seed husks were not entirely removed to prevent damaging the roots, and the small amount that remained attached was pooled with the root sample. Each replicate's roots and shoots were put in a separate sample container, which was labeled appropriately in advance to avoid sample mixing. After that, the plant samples were placed in an incubator and dried at 40°C for four days to obtain a stable mass. Following that, plant samples were weighed to a precision of 1 mg. Additionally, the plants were preserved in the incubator until grinding. To minimize contamination during the harvest, laboratory gloves were worn and separate zirconium oxide scissors and blades were employed.

3.3 Plant and soil analysis

3.3.1 Concentration and fluxes in plants

For the analysis of plant biomass, and concentration in its parts (i.e., Shoots and roots) an inductively coupled plasma spectroscopy (ICP-MS) was used. The amounts of trace elements in the shoots and roots of the samples were analyzed (first endpoint of bioassay). The flux of contaminants such as trace elements (Cd, Cr, Cu, Ni, Pb, and Zn) taken up by plants (roots and shoots pooled together) throughout the test culture period was determined using *Equation. 3.2* (second endpoint of bioassay).

$$F_p = \frac{Q_p}{S * t}$$

$$Q_P = \left[(C_{t,s} * m_{t,s} - C_{c,s} * m_{c,s}) + (C_{t,r} * m_{t,r} - C_{c,r} * m_{c,r}) \right]$$
3.3

Where:

- F_p is the flux of trace elements to the plants during the test culture period (ng m⁻² s⁻¹);
- *Q_p* is the quantity of trace elements accumulated by plants during the test culture period, in (ng);
- *S* is the surface area of the root mat in contact with soil (0,0126 m²);
- *t* is the duration of the test culture period (s);
- C_{t,s} is the trace element concentration in shoots at the end of the test culture period (μg g⁻¹) (dry biomass);
- $m_{t,s}$ is the dry biomass of shoots at the end of the test culture period (g);

- *C*_{c,s} is the mean trace element concentration in shoots of control plant pots at the end of the pre-culture period (μg g⁻¹) (dry biomass);
- *m*_{c,s} is the mean dry biomass of shoots of control plant pots at the end of the preculture period (g);
- *C*_{*t,r*} is the trace element concentration in roots at the end of the test culture period (μg g⁻¹) (dry biomass);
- $m_{t,r}$ is the dry biomass of roots at the end of the test culture period (g);
- *C_{c,r}* is the mean trace element concentration in roots of control plant pots at the end of the pre-culture period (μg g⁻¹) (dry biomass);
- *m_{c,r}* is the mean dry biomass of roots of control plant pots at the end of the preculture period
 (g).

3.3.2 Statistical analysis

Statistical analysis and consequent graphical representation were performed in Microsoft excel 2019 to compare and evaluate the mean of the control samples with the treatment samples (i.e., control roots, shoots vs root and shoots exposed to treated soil and similarly control soil vs test soil). Student's t-Test for two-sample ANOVA was used by assuming the equal variances of the two compared samples to determine whether there is enough statistical evidence to claim the calculated parameters mean is equal at the population level. The 95% confidence interval (α = 0.05) was calculated for two datasets (i.e., control and treatment) to accept or reject the null hypothesis.

Additionally, two types of bioconcentration factors were defined in this study: a) shoot concentration factor (SCF) and b) root concentration factor (RCF). These factors were used to analyze the results and characterize the uptake. SCF and RCF values were determined for control and treatment samples, respectively.

SCF was defined as the ratio between the mean TE concentration in shoots C_{shoots} (mg Kg⁻¹ d.w.) and mean TE concentration in soil C_{soil} (mgKg⁻¹ d.w.).

$$SCF = \frac{C_{shoots}}{C_{soil}}$$
3.4

Whereas RCF was calculated as the ratio between the mean TE concentration in roots C_{roots} (mg Kg⁻¹ d.w.) and mean TE concentration in soil C_{soil} (mg Kg⁻¹ d.w.).

$$RCF = \frac{C_{roots}}{C_{soil}}$$
3.5

Shoot-roots concentration was defined as translocation factor (TF), which describes the translocation of contaminants (metals) from roots to shoots of the plant. It was calculated as the ratio between mean TE concentration in shoots C_{shoots} (mg Kg⁻¹ d.w.) and mean TE concentration in roots C_{roots} (mg Kg⁻¹ d.w.).

$$TF = \frac{C_{shoots}}{C_{roots}}$$
 3.6

Concentrations values below the limit of quantification (<LOQ) were considered equal to the LOQ, which represents the safest option for the evaluation of the risk.

4 Results and Discussion

The data output following the chemical analysis and statistical analysis are depicted graphically as well as presented in the table to better interpret and comprehend it. The results are described and discussed in the following sections of this chapter.

4.1 Plant Biomass

Although variation in root and shoot biomass is not an endpoint of the RHIZOtest, the current experiment demonstrates that using soil enriched with digestate from OFMSW has a significant impact on root Lycopersicon esculentum Mill plants, despite adequate macronutrient availability (i.e., Ca, K, Mg, N, P, S) through nutrient solutions throughout the experiment. Since the validity of the bioassay notably depends on a significant increase in shoot and root biomasses between the end of the preculture period and the end of the test culture period. Therefore, the biomass of the plants at the end of the preculture period was also analyzed and the average dry weight of shoots (0.38 ± 0.03) and roots (0.8 ± 0.06) were compared to those after exposure. It was found that there was an increase in the biomass of the shoots n roots after the test culture period, proving the bioassay test valid.

Figure 4.1 - Mean dry weight (g) of roots and shoots of RHIZOtest plants after exposure. Error bars represent the standard error (SE) of the mean (n = 2 for control; n=3 for treatment). Samples followed by the same letters do not show significant differences (p>0.05) from the control

Figure 4.1 depicts the average root and shoot weights along with their standard errors (dry weight (g) \pm SE). The average dry weight of control shoots (0,64g \pm 0,03) was marginally greater than the average dry weight of shoots exposed to amended soil (0,63g \pm 0,04). In contrast, the average dry weight of the roots of plants exposed to amended soil (2,18g \pm 0,09) was greater than that of the roots of control plants (1,74g \pm 0,07). This was further confirmed by statistical analysis, which revealed a significant difference (p < 0,05) in root biomass between plants exposed to amended soil and control plants. This can be justified by the usage of digestate as a fertilizer and by the fact that digestate includes numerous vital nutrients, including nitrogen (N), phosphorus (P), and potassium (K); all of which are required for the development and growth of plants. Therefore, the digestate has a positive effect on the growth of the plants.

The conducted t-Test did not demonstrate significant differences in shoots of exposed plants (p > 0,05). Although neither control nor treated plants revealed evidence of stress, except for one or two plants that had mildly evident stress symptoms (notably, chlorosis).

4.2 Trace Element Concentrations

Table 4.1 summarizes the mean concentrations of trace elements (TEs) in the rhizosphere of tomato plants (roots, shoots, and soil). Asterisk (*) denotes a difference from the control that is statistically significant.

Table 4.1 - Concentrations of TEs in Tomato plant shoots and roots. of control (mean \pm standard error; n=2) and treatment afterexposure (mean \pm standard error; n=3). Values indicated with * are statistically significant (p < 0.05)</td>

		Shoots		Roots		Soil	
TEs	Unit	Control	Treatment	Control	Treatment	Control	Treatment
Cd	mg kg ⁻¹ d.w.	< LOQ	< LOQ	< LOQ	<loq< th=""><th>< LOQ</th><th>< LOQ</th></loq<>	< LOQ	< LOQ
Cr	mg kg ⁻¹ d.w.	< LOQ	< LOQ	<loq< th=""><th><loq< th=""><th>$14{,}50\pm1{,}50$</th><th>$13{,}67\pm0{,}67$</th></loq<></th></loq<>	<loq< th=""><th>$14{,}50\pm1{,}50$</th><th>$13{,}67\pm0{,}67$</th></loq<>	$14{,}50\pm1{,}50$	$13{,}67\pm0{,}67$
Cu	mg kg ⁻¹ d.w.	< LOQ	5,00	< LOQ	<loq< th=""><th>$\textbf{26,00} \pm \textbf{1,00}$</th><th>$\textbf{22,}\textbf{67} \pm \textbf{1,}\textbf{67}$</th></loq<>	$\textbf{26,00} \pm \textbf{1,00}$	$\textbf{22,}\textbf{67} \pm \textbf{1,}\textbf{67}$
Ni	mg kg ⁻¹ d.w.	< LOQ	< LOQ	< LOQ	< LOQ	$20{,}50\pm0{,}50$	19,33 ± 0,88
Pb	mg kg ⁻¹ d.w.	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ
Zn	mg kg ⁻¹ d.w.	$12{,}50\pm0{,}50$	$14{,}00\pm0{,}50$	$\textbf{21,00} \pm \textbf{1,00*}$	$14,\!67\pm0,\!50^*$	$\textbf{27,00} \pm \textbf{6,00}$	$19{,}67\pm0{,}88$

The elemental content of Cd in the shoots of both control and treated plants was less than LOQ (0.3 mg kg⁻¹ d.w.). Additionally, Cr, Cu, Ni, and Pb concentrations were discovered to be equivalent to or less than LOQ (5 mg kg⁻¹ d.w.). Thus, because no degree of variation was achieved, these data for the extracted concentrations were not subjected to statistical analysis.

The Zn content in the shoots of treated plants (i.e., exposed to control soil amended with digestate) was greater than in the shoots of control plants. However, since the p-value exceeds the predefined significance interval ($\alpha = 0,05$), the concentration of Zn in the shoots is not statistically significant. In contrast to shoots, the statistical analysis showed a significant difference (p < 0,05) at the 95% confidence level ($\alpha = 0,05$) between the mean of the Zn concentration in the roots of control and treatment plants.

In comparison, only Zn concentrations were found higher in plants than other trace elements, which may also be due to the nature of the digestate, which contains a higher amount of Zn (82 mg Kg⁻¹ d.w. Zn). Additionally, the soil was also analyzed for the TEs concentrations after exposure for both the control and testing soil (i.e. control soil with digestate).

The outcomes are reported graphically in *Figure 4.2*. Cd and Pb were not included in the bar charts as they were found less than LOQ, hence t-Test for these values was not possible.

Figure 4.2 - (Trace) elements extractible concentration (mg kg⁻¹ d.w.) of soil matrix Error bars indicate the standard error (SE) of the mean (n = 2 for control; n=3 for treatment). Samples followed by the same letter do not indicate significant differences (p>0.05). Cd and Pb were not included since under LOQ

The extracted concentrations were also evaluated statistically with a two-sample t-Test assuming the same variance. The results were not statistically significant (p > 0,05) for Cr, Cu, Ni, and Zn concentrations in control soil and test soil.

As shown by the results in *Table 4.1*, Zn concentrations were higher in control roots than in treated root samples, which may imply that Zn is less bioavailable in soils amended with digestate than in control soil. This could indicate that the digestate reduced the bioavailability of Zn, possibly due to organic matter complexation or potentially due to higher transfer from roots to shoots.

Bioavailability is reliant on the speciation of contaminants (here heavy metals). Thus, a higher concentration of an ionic form (dissolved in the liquid phase) results in increased uptake. By adding digestate, we introduce organic matter that has the tendency to complicate the ionic fraction of Zn (i.e., Zn with complex organic matter molecules), because these organic matter molecules are characterized by lower uptake potential. Nevertheless, increasing the number of replicates as well as digestate dosages will aid in a better understanding of the outcomes, and hence of uptake and bioavailability.

Higher Zn concentrations in control roots and lower concentrations in treated root samples may imply that Zn is less bioavailable in soils amended with digestate than in control soil as shown by the results in. This could indicate that the digestate reduced the bioavailability of Zn, possibly due to organic matter complexation or potentially due to higher transfer from roots to shoots Bioavailability is reliant on the element's speciation (contaminants). Thus, a higher concentration of an ionic form (dissolved in the liquid phase) results in increased uptake. By adding digestate, we introduce organic matter that has the tendency to complicate the ionic fraction of Zn (i.e., Zn with complex organic matter molecules), since organic matter molecules are characterized by lower uptake potential. Regardless more analysis need to be done by increasing the number of replicates and the dosages of digestate

4.3 Net Uptake Flux

The uptake flux was computed for both control and digestate-exposed plants following the exposure period. *Figure 4.3* displays the trace element net uptake fluxes in the RHIZOtest plants.

Figure 4.3 - Net uptake flux (ng $m^{-2} s^{-1}$) for trace elements in the RHIZOtest plants

The net uptake flux of trace elements Cd and Cu was moderately higher in digestate-treated plants than in control plants, but not of Cr, Ni, or Pb. In the case of Zn, the net uptake flux in digestate-treated RHIZOtest plants was lower than in control plants, corresponding to a decrease in bioavailability. As a result, decreased net Zn uptake flux confirms lower bioavailability.

4.4 Bio-concentration Factor and Translocation Factor

Two types of bioconcentration factor (BCF) were calculated, shoots concentration factor (SCF) and roots concentration factor (RCF), Furthermore, the translocation factor (TF) is also calculated and reported in *Table 4.2.* No such indices were calculated for macronutrients (Ca, Mg, K) which are essential elements for plants and animals, not known to pose an ecotoxicological risk.

	SCF		R	CF	TF	
TEs	Control	Treatment	Control	Treatment	Control	Treatment
Cd						
Cr	0,34	0,37	0,34	0,37		
Cu	0,19	0,22	0,19	0,22		
Ni	0,24	0,26	0,24	0,26		
Pb						
Zn	0,46	0,71	0,78	0,36	0,60	0,95

 Table 4.2 - Bioconcentration(shoots, roots) and Translocation factor for trace elements in the RHIZOtest plants (control and exposed to treatment)

The TF of plants grown in control soil and plants are grown in digestate-treated soil was calculated.TF > 1 means that the element has high mobility and translocate from the roots to the shoots. Since the shoot and root concentrations value for the elements was less than LOQ, it was treated as equal to LOQ for the computation. As a result, Cd, Cr, Cu, Ni, and Pb were assigned TF = 1. However, it was ruled invalid since the concentrations of these components in both the shoots and the roots were equal.

Since we are interested in the risk related to the translocation of HMs from soil to other edible parts of the plants. The trend for the bioconcentration factor in the case of Zn was observed and it was found out that digestate amendment leaded to the higher SCF, lower RCF and higher TF (SCF=0.71; RCF= 0,36; TF = 0,95) with respect to the control (SCF=0,46; RCF=0,78; TF=0.60). As it is a relative measure, thus by looking at SCF and RCF values, we may expect a higher occurrence of Zn in the shoots and lower in roots of treated plant samples.

However all the values are < 1, this could be due to the fact that dosage of digestate was very low and hence resulted in low uptake of Zinc.

4.5 Conclusion

Our extraction test results revealed that the competitive metal was Zn, which accumulated in the shoots of the plants exposed to treatment. Other contaminants, such as Cd, Cr, Ni, and Pb, were hardly affected in the plant experiment, and there was no concentration increase in the shoots of the tomato plant, implying that increased transfer of these potentially toxic elements to the food chain is apparently not enhanced in plants exposed to digestate from OFMSW. Long-term experiments and a larger number of replicates, however, may be necessary to corroborate this finding. Furthermore, further treatments may improve the effectiveness of the bioassay for pollutant uptake comparison purposes. Additionally, there is a need to investigate similar behavior for uptake and transport using this test in the field. Among the key determinants of their uptake and bioaccumulation in some or all sections of crop plants are soil type and its composition. Increasing the number of replicates will also help reduce standard errors in the bioassay's output data, hence improving standards and enabling more effective modeling of plant uptake.

Part-III Data

Part III contains all supporting material and raw data that were generated as a result of the bioassay and are used for computational and statistical analysis. Additionally, it includes images of the laboratory experiment.

Appendices

A Experimental Design

Pre-culture							
Equipment	Quantity	Remarks					
Plant part	12	Composed of 1 cylinder + 1 upper plate					
Tank	2	x2 for nutrient solution replacements					
Floating platform	2	x2 for nutrient solution replacements					
Air pump	1						
Ceramic diffusor	2						
Airpipo	1	Lenght according to the growth chamber					
All pipe		space (from 50 cm to 1 m)					
Slip collar pliers	1						
	•	Tes culture					
Equipment	Quantity	Remarks					
Soil part	5	Composed of 1 lid + 1 lower plate + 2					
Son part	5	screws + 4 screw nuts + 2 wing nuts + jar					
Extra jar	10	x2 for nutrient solution replacements					
Consumables	Quantity						
Mesh	12						
Slip collar	12						
Paper wick	15	3 wicks per device					

Table A-1 - Apparatus used in the Bioassay

Nutrients	Nutrient Sol. 1	Nutrient Sol. 2	Nutrient Sol. 3
	[µmol dm ⁻³]	[µmol dm ⁻³]	[µmol dm ⁻³]
CaCl ₂	600	-	-
H ₃ BO ₃	2	10	-
KH ₂ PO ₄	-	500	50
KNO ₃	-	2000	2000
Ca (NO ₃)	-	2000	2000
MG (SO ₄)	-	1000	1000
CuCl ₂	-	0.2	-
MnCl ₂	-	2	-
ZnSO ₄	-	1	-
Na2MoO4	-	0.05	-
NaFe (III)EDTA	-	1000	-

Table A-2 - Composition of nutrient solutions

Table A-3 - Determined quantity for each nutrient solution for preparation

Nutrients	Nutrient Sol. 1	Nutrient Sol. 2	Nutrient Sol. 3
	[mg L ⁻¹]	[mg L ⁻¹]	[mg L ⁻¹]
CaCl ₂	66		-
H ₃ BO ₃	0.12	0.62	-
KH ₂ PO ₄	-	68.05	6.80
KNO ₃	-	202.20	202.20
Ca (NO ₃)	-	328.18	328.18
MG (SO ₄)	-	10.37	120
CuCl ₂	-	0.03	-
MnCl ₂	-	0.25	-
ZnSO ₄	-	0.18	-
Na2MoO4	-	0.01	-
NaFe (III)EDTA	-	367.71	-

Description	Method	Value	Unit
Residual Moisture	UNI 10780:1998 app. C.2.	4.6	[%]
Residual at 105° C	CNR IRSA 2 Q64 Vol 2 1984	30.8	[%]
Organic Substance	UNI 10780:1998 app. E	68	[s.s.]
(from calculation)			
Total Nitrogen	UNI 10780:1998 app. J.1	2.3	[s.s. N]
Phosphorus	UNI EN 16173 2012 + UNI EN 16170 2016	1.03	[% s.s. P]
Potassium	UNI EN 16173 2012 + UNI EN 16170 2016	1.41	[% s.s. K]
Cadmium	UNI EN 16173 2012 + UNI EN 16170 2016	<0.3	[mg/kg s.s. Cd]
Mercury	UNI EN 16173 + UNI EN 16175-2	< 0.05	[mg/kg s.s. Hg]
Nickel	UNI EN 16173 2012 + UNI EN 16170 2016	<5	[mg/kg s.s. Ni]
Lead	UNI EN 16173 2012 + UNI EN 16170 2016	<5	[mg/kg s.s. Pb]
Copper	UNI EN 16173 2012 + UNI EN 16170 2016	18	[mg/kg s.s. Cu]
Zinc	UNI EN 16173 2012 + UNI EN 16170 2016	82	[mg/kg s.s. Zn]
Chromium VI	UNI 10780:1998 app. B CrVI	<0.2	[mg/kg s.s. Cr VI]

Table A-4 - Characteristics of the feedstock (digestate) used for test soil

B Concentration Values Before Exposure

	Cd	Cr	Cu	Ni	Pb	Zn	TQ	TS (g)	TS
Unit			(mg/k	g d.w.)			(٤	g)	%
CS1	< 0,3	< 5	12	< 5	< 5	30	5,66	0,50	9%
CS2	< 0,3	< 5	13	< 5	< 5	33	5,72	0,38	7%
CS3	< 0,3	< 5	14	< 5	< 5	36	4,93	0,37	7%
CS4	< 0,3	< 5	14	< 5	< 5	36	4,97	0,34	7%
CS5	< 0,3	< 5	15	< 5	< 5	39	5,42	0,33	6%

Table B-1 – Concentration, wet weight (TQ), dry weight (TS) and percentage mass of shoots after hydroponic growth

Table B-2 – Concentration, wet weight (TQ), dry weight (TS) and percentage mass of roots after hydroponic growth

	Cd	Cr	Cu	Ni	Pb	Zn	TQ	TS	TS
Unit			(mg/kg	g d.w.)			(g)		%
CR1	< 0,3	< 5	14	< 5	< 5	49	0,86	0,24	28%
CR2	< 0,3	< 5	25	< 5	< 5	72	0,70	0,19	27%
CR3	< 0,3	< 5	18	< 5	< 5	54	0,80	0,50	62%
CR4	< 0,3	< 5	25	< 5	< 5	64	0,56	0,17	31%
CR5	< 0,3	< 5	14	< 5	< 5	38	0,76	0,32	43%

Table B-3 - TEs concentrations in standard soil (Experiment control)

	Cd	Cr	Cu	Ni	Pb	Zn		
		(mg/kg d.w.)						
S1	< 0,3	< 5	14	< 5	< 5	49		
S2	< 0,3	< 5	25	< 5	< 5	72		

C Concentration Values After Exposure

	Cd	Cr	Cu	Ni	Pb	Zn		
	(mg/kg d.w.)							
SD1	< 0,3	< 5	18	< 5	< 5	54		
SD2	< 0,3	< 5	25	< 5	< 5	64		
SD3	< 0,3	< 5	14	< 5	< 5	38		

Table C-1 - TEs concentrations in test soil after exposure

Table C-2 - Concentration, wet weight (TQ), dry weight (TS) and percentage mass of shoots after exposure to test soil

	Cd	Cr	Cu	Ni	Pb	Zn	TQ	TS	TS
	(mg/kg d.w.)							g)	%
T1S	< 0,3	< 5	5	< 5	< 5	14	9,10	0,62	
T2S	< 0,3	< 5	5	< 5	< 5	13	8,36	0,57	7
T3S	< 0,3	< 5	5	< 5	< 5	15	10,20	0,69	

Table C-3 - Concentration, wet weight (TQ), dry weight (TS) and percentage mass of roots after exposure to test soil

	Cd	Cr	Cu	Ni	Pb	Zn	TQ	TS	TS
			(mg/k	g d.w.)			(g)	%
T1R	< 0,3	< 5	< 5	< 5	< 5	16	6,51	2,00	
T2R	< 0,3	< 5	< 5	< 5	< 5	14	7,27	2,23	31
T3R	< 0,3	< 5	5	< 5	< 5	14	7,48	2,30	

Table C-4 - Concentration, wet weight (TQ), dry weight (TS) and percentage mass of shoots after exposure to control soil

	Cd	Cr	Cu	Ni	Pb	Zn	TQ	TS	TS
			(mg/k	g d.w.)			(g)	%
C1S	< 0,3	< 5	< 5	< 5	< 5	12	9,84	0,67	7
C2S	< 0,3	< 5	< 5	< 5	< 5	13	9,10	0,62	

	Cd	Cr	Cu	Ni	Pb	Zn	TQ	TS	TS
			(mg/k	g d.w.)			(§	g)	%
C1R	< 0,3	< 5	< 5	< 5	< 5	22	5,46	1,68	31
C2R	< 0,3	< 5	5	< 5	< 5	20	5,90	1,81	01

Table C-5 - Concentration, wet weight (TQ), dry weight (TS) and percentage mass of roots after exposure to control soil

D Flux, Bio-accumulation and Translocation Factor

Table D-1 - The flux of trace elements taken up in plants during the test culture (both control and plant exposed to treatment)

Net-flux uptake (ng m ⁻² s ⁻¹)					
TEs	Control	Treatment			
Cd	0,059	0,074			
Cr	0,199	0,204			
Cu	0,145	0,384			
Ni	0,199	0,204			
Pb	0,199	0,204			
Zn	1,789	1,332			

Table D-2 - Bioconcentration factor and Translocation factor for control plants

TEs	SCF	RCF	TF
Cd	1,00	1,00	1,00
Cr	0,34	0,34	1,00
Cu	0,19	0,19	1,00
Ni	0,24	0,24	1,00
Pb	1,00	1,00	1,00
Zn	0,46	0,78	0,60

Table D-3 - Bioconcentration factor and Translocation factor for Treatment (Plants exposed to soil with digestate)

TEs	SCF	RCF	TF
Cd	1,00	1,00	1,00
Cr	0,37	0,37	1,00
Cu	0,22	0,22	1,00
Ni	0,26	0,26	1,00
Pb	1,00	1,00	1,00
Zn	0,71	0,36	0,95

E Statistical Analysis.

	Control shoots	Treatment Shoots
Mean	12,50	14
Variance	0,50	1
Observations	2,00	3
Pooled variance	0,83	
Hypothesized mean difference	0,00	
Degree of freedom	3,00	
t Stat	-1,80	
P(T<=t) one-tail	0,08	
t Critical one-tail	2,35	
P(T<=t) two-tail	0,17	
t Critical two-tail	3,18	

Table E-1 - t-Test: Two-sample assuming equal variances for the concentration of Zn

in control shoos and treatment shoots

Table E-2 - t-Test: Two-sample assuming equal variances for the concentration of Zn

|--|

	Control roots	Treatment
		roots
Mean	21,00	14,67
Variance	2,00	1,33
Observations	2,00	3
Pooled variance	1,56	
Hypothesized mean difference	0,00	
Degree of freedom	3,00	
t Stat	5,56	
P(T<=t) one-tail	0,01	
t Critical one-tail	2,35	
P(T<=t) two-tail	0,01	
t Critical two-tail	3,18	

	Control Soil	Treatment Soil
Mean	27,00	19,67
Variance	72,00	2,33
Observations	2,00	3,00
Hypothesized mean difference	0,00	
Degree of freedom	1,00	
t Stat	1,21	
P(T<=t) one-tail	0,22	
t Critical one-tail	6,31	
P(T<=t) two-tail	0,44	
t Critical two-tail	12,71	

Table E-3 - Two-sample t-test assuming different variances for the concentration of Zn

in control soil and treatment soil
Bibliography

- Akenga, P., Gachanja, A., Fitzsimons, M.F., Tappin, A. & Comber, S. 2021. Uptake, accumulation and impact of antiretroviral and antiviral pharmaceutical compounds in lettuce. *Science of The Total Environment*, **766**, 144499, (At: https://www.sciencedirect.com/science/article/pii/S004896972038030X. Accessed: 13/5/2021).
- Arnot, J.A. & Gobas, F.A. 2006. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. *Environmental Reviews*, 14, 257–297, (At: http://www.nrcresearchpress.com/doi/10.1139/a06-005. Accessed: 9/11/2021).
- Beggio, G., Bonato, T., Schievano, A., Garbo, F., Ciavatta, C. & Pivato, A. 2021. Agricultural application of digestates derived from agricultural and municipal organic wastes: a health risk-assessment for heavy metals. *Journal of Environmental Science and Health, Part A*, **56**, 1409–1419, (At: https://www.tandfonline.com/doi/full/10.1080/10934529.2021.2002628. Accessed: 1/4/2022).
- Beggio, G., Schievano, A., Bonato, T., Hennebert, P. & Pivato, A. 2019. Statistical analysis for the quality assessment of digestates from separately collected organic fraction of municipal solid waste (OFMSW) and agro-industrial feedstock. Should input feedstock to anaerobic digestion determine the legal status of digestate? *Waste Management*, **87**, 546–558, (At: https://linkinghub.elsevier.com/retrieve/pii/S0956053X19301114. Accessed: 1/4/2022).
- Beltrán, E.M., Fernández-Torija, C., Pablos, M.V., Porcel, M.Á., García-Hortigüela, P. & González-Doncel, M. 2021. The effect of PFOs on the uptake and translocation of emerging contaminants by crops cultivated under soil and soilless conditions. *Ecotoxicology and Environmental Safety*, **215**, 112103, (At: https://www.sciencedirect.com/science/article/pii/S0147651321002141. Accessed: 6/5/2021).
- Dal Ferro, N., Pellizzaro, A., Fant, M., Zerlottin, M. & Borin, M. 2021. Uptake and translocation of perfluoroalkyl acids by hydroponically grown lettuce and spinach exposed to spiked solution and treated wastewaters. *Science of The Total Environment*, **772**, 145523, (At: https://www.sciencedirect.com/science/article/pii/S004896972100591X. Accessed: 7/5/2021).
- Di Carlo, E., Boullemant, A. & Courtney, R. 2020. Ecotoxicological risk assessment of revegetated bauxite residue: Implications for future rehabilitation programmes. *Science of The Total Environment*, **698**, 134344, (At: https://linkinghub.elsevier.com/retrieve/pii/S0048969719343359. Accessed: 21/2/2022).
- Eid, E.M., Shaltout, K.H., Abdallah, S.M., Galal, T.M., El-Bebany, A.F. & Sewelam, N.A. 2020. Uptake Prediction of Ten Heavy Metals by Eruca sativa Mill. Cultivated in Soils Amended with Sewage Sludge. *Bulletin of Environmental Contamination and Toxicology*, **104**, 134–143, (At: http://link.springer.com/10.1007/s00128-019-02746-3. Accessed: 5/5/2021).

- Gredelj, A., Nicoletto, C., Valsecchi, S., Ferrario, C., Polesello, S., Lava, R., Zanon, F., Barausse, A., Palmeri, L., Guidolin, L. & Bonato, M. 2020. Uptake and translocation of perfluoroalkyl acids (PFAA) in red chicory (Cichorium intybus L.) under various treatments with precontaminated soil and irrigation water. *Science of The Total Environment*, **708**, 134766, (At: https://linkinghub.elsevier.com/retrieve/pii/S0048969719347576. Accessed: 5/5/2021).
- Henry, H.F., Burken, J.G., Maier, R.M., Newman, L.A., Rock, S., Schnoor, J.L. & Suk, W.A. 2013. Phytotechnologies – Preventing Exposures, Improving Public Health. *International journal of phytoremediation*, **15**, 889–899, (At: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954606/. Accessed: 9/11/2021).
- ISO 11269-2. 2013. Soil quality Determination of the effects of pollutants on soil flora. Effects of contaminated soil on the emergence and early growth of higher plants. BSI. (At: https://doi.org/10.3403/30197451U.).
- ISO 16198. 2015. Soil quality Plant-based test to assess the environmental bioavailability of trace elements to plants. BSI. (At: https://doi.org/10.3403/30234130U.).
- ISO 17402. 2011. Soil quality Requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. BSI. (At: https://doi.org/10.3403/30236055U.).
- Ju, X.-T., Xing, G.-X., Chen, X.-P., Zhang, S.-L., Zhang, L.-J., Liu, X.-J., Cui, Z.-L., Yin, B., Christie, P., Zhu, Z.-L. & Zhang, F.-S. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. *Proceedings of the National Academy of Sciences*, **106**, 3041–3046, (At: https://pnas.org/doi/full/10.1073/pnas.0813417106. Accessed: 5/4/2022).
- Kiiski, H., Dittmar, H., Drach, M., Vosskamp, R., Trenkel, M.E., Gutser, R. & Steffens, G. 2016. Fertilizers, 2. Types. In: *Ullmann's Encyclopedia of Industrial Chemistry* (ed. Wiley-VCH Verlag GmbH & Co. KGaA), pp. 1–53. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
- Liu, Q., Liu, Y., Dong, F., Sallach, J.B., Wu, X., Liu, X., Xu, J., Zheng, Y. & Li, Y. 2021. Uptake kinetics and accumulation of pesticides in wheat (Triticum aestivum L.): Impact of chemical and plant properties. *Environmental Pollution*, **275**, 116637, (At: https://www.sciencedirect.com/science/article/pii/S0269749121002153. Accessed: 13/5/2021).
- Lun, F., Liu, J., Ciais, P., Nesme, T., Chang, J., Wang, R., Goll, D., Sardans, J., Peñuelas, J. & Obersteiner, M. 2018. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. 18.
- Macherius, A., Eggen, T., Lorenz, W.G., Reemtsma, T., Winkler, U. & Moeder, M. 2012. Uptake of Galaxolide, Tonalide, and Triclosan by Carrot, Barley, and Meadow Fescue Plants. *Journal of Agricultural and Food Chemistry*, 60, 7785–7791, (At: https://doi.org/10.1021/jf301917q. Accessed: 10/5/2021).
- Margenat, A., You, R., Cañameras, N., Carazo, N., Díez, S., Bayona, J.M. & Matamoros, V. 2020. Occurrence and human health risk assessment of antibiotics and trace elements in Lactuca sativa amended with different organic fertilizers. *Environmental Research*, **190**, 109946, (At:

https://www.sciencedirect.com/science/article/pii/S0013935120308410. Accessed: 10/5/2021).

- Mousavi, S.A., Dalir, N., Rahnemaie, R. & Schulin, R. 2021. Phosphate and methionine affect cadmium uptake in valerian (Valeriana officinalis L.). *Plant Physiology and Biochemistry*, **158**, 466–474, (At: https://www.sciencedirect.com/science/article/pii/S0981942820305830. Accessed: 14/5/2021).
- Namiki, S., Otani, T., Motoki, Y., Seike, N. & Iwafune, T. 2018. Differential uptake and translocation of organic chemicals by several plant species from soil. *Journal of Pesticide Science*, **43**, 96–107, (At: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140680/. Accessed: 7/5/2021).
- Neu, S., Müller, I., Brackhage, C., Gałązka, R., Siebielec, G., Puschenreiter, M. & Dudel, E.G. 2018. Trace elements bioavailability to Triticum aestivum and Dendrobaena veneta in a multielement-contaminated agricultural soil amended with drinking water treatment residues. *Journal of Soils and Sediments*, **18**, 2259–2270, (At: https://doi.org/10.1007/s11368-017-1741-1. Accessed: 10/5/2021).
- Newman, M.C. 2014. *Fundamentals of Ecotoxicology*. 4th ed. CRC Press, Boca Raton. (At: https://doi.org/10.1201/b17658.).
- Peijnenburg, W.J.G.M., Posthuma, L., Eijsackers, H.J.P. & Allen, H.E. 1997. A Conceptual Framework for Implementation of Bioavailability of Metals for Environmental Management Purposes. *Ecotoxicology and Environmental Safety*, **37**, 163–172, (At: https://linkinghub.elsevier.com/retrieve/pii/S0147651397915396. Accessed: 24/2/2022).
- Peng, W. & Pivato, A. 2019. Sustainable Management of Digestate from the Organic Fraction of Municipal Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy. *Waste and Biomass Valorization*, **10**, 465–481, (At: http://link.springer.com/10.1007/s12649-017-0071-2. Accessed: 25/2/2022).
- Pullagurala, V.L.R., Rawat, S., Adisa, I.O., Hernandez-Viezcas, J.A., Peralta-Videa, J.R. & Gardea-Torresdey, J.L. 2018. Plant uptake and translocation of contaminants of emerging concern in soil. *Science of The Total Environment*, **636**, 1585–1596, (At: https://linkinghub.elsevier.com/retrieve/pii/S0048969718315602. Accessed: 5/5/2021).
- Puschenreiter, M., Gruber, B., Wenzel, W.W., Schindlegger, Y., Hann, S., Spangl, B., Schenkeveld, W.D.C., Kraemer, S.M. & Oburger, E. 2017. Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metal-enriched soils. *Environmental and Experimental Botany*, **138**, 67–76, (At: https://linkinghub.elsevier.com/retrieve/pii/S0098847217300795. Accessed: 21/2/2022).
- Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No 1774/2002 (Animal by-products Regulation). 2009.

- Regulation (EC) No 2003/2003 of 13 October 2003 relating to fertilizers. 2003. (At: http://data.europa.eu/eli/reg/2003/2003/oj.).
- Regulation (EU) 2019/1009 of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. 2019. (At: http://data.europa.eu/eli/reg/2019/1009/oj.).
- Rehman, A., Arif, M.S., Tufail, M.A., Shahzad, S.M., Farooq, T.H., Ahmed, W., Mehmood, T., Farooq, M.R., Javed, Z. & Shakoor, A. 2021. Biochar potential to relegate metal toxicity effects is more soil driven than plant system: A global meta-analysis. *Journal of Cleaner Production*, 316, 128276, (At: https://linkinghub.elsevier.com/retrieve/pii/S0959652621024914. Accessed: 13/10/2021).
- Saveyn, H., Eder, P., & Institute for Prospective Technological Studies. 2014. *End-of-waste* criteria for biodegradable waste subjected to biological treatment (compost & digestate): technical proposals. Publications Office, Luxembourg. (At: http://dx.publications.europa.eu/10.2788/6295. Accessed: 17/3/2022).
- Scherer, H.W., Mengel, K., Kluge, G. & Severin, K. 2009. Fertilizers, 1. General. In: Ullmann's Encyclopedia of Industrial Chemistry (ed. Wiley-VCH Verlag GmbH & Co. KGaA), p. a10_323.pub3. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
- Shtangeeva, I., Niemelä, M. & Perämäki, P. 2014. Effects of soil amendments on antimony uptake by wheat. *Journal of Soils and Sediments*, **14**, 679–686, (At: http://link.springer.com/10.1007/s11368-013-0761-8. Accessed: 27/5/2021).
- Su, Y.H. & Liang, Y.C. 2011. Transport via xylem of atrazine, 2,4-dinitrotoluene, and 1,2,3trichlorobenzene in tomato and wheat seedlings. *Pesticide Biochemistry and Physiology*, **100**, 284–288, (At: https://linkinghub.elsevier.com/retrieve/pii/S0048357511000915. Accessed: 24/2/2022).
- The RHIZOtest (http://www.metrhizlab.com/). (At: https://rhizotest.cirad.fr/en/the-rhizotest/methodology. Accessed: 8/4/2022).
- Turull, M., Fontàs, C. & Díez, S. 2019. Conventional and novel techniques for the determination of Hg uptake by lettuce in amended agricultural peri-urban soils. *Science of The Total Environment*, 668, 40–46, (At: https://linkinghub.elsevier.com/retrieve/pii/S0048969719307429. Accessed: 5/5/2021).
- Vittori Antisari, L., Carbone, S., Gatti, A., Vianello, G. & Nannipieri, P. 2015. Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. *Environmental Science and Pollution Research*, **22**, 1841–1853, (At: https://doi.org/10.1007/s11356-014-3509-0. Accessed: 26/5/2021).
- Wajid, K., Ahmad, K., Khan, Z.I. & Nadeem, M. 2021. Pattern of Trace Metal Uptake in Pearl Millet as a Result of Application of Organic and Synthetic Fertilizers. *International Journal of Environmental Research*, **15**, 33–44, (At: https://doi.org/10.1007/s41742-020-00287w. Accessed: 6/5/2021).