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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Let G be a finite group and M 6 G a maximal subgroup of G. Define

M̃ :=
[

g2G

Mg

and suppose that there exist two maximal subgroups M1 and M2 of G such that
M̃1 = M̃2. The question is to determine if this implies that M1 and M2 are
conjugated in G.

In this work we investigate this problem in some types of groups. First,
we prove that the answer is affermative if G is either the alternating or the
symmetric group and the maximal subgroups considered are either intransitive
or imprimitive. Secondly, we deal with soluble groups and we prove that the
answer in this case is always affirmative. Then we prove that if G is the special
linear group of degree 2 over a field of characteristic 2 then the answer is negative
by showing a pair of non-conjugated maximal subgroups for which M̃1 = M̃2

holds. Finally, we provide a complete answer for sporadic groups obtained
computationally.

The first chapter contains the necessary definitions and some preliminary
results which, although not directly connected to the problem, turn out to be
useful in the proofs present in the following chapters.

Before moving on to our work, we state the problem in two equivalent ways.
The first one justifies the title of this work.

Observation 1.0.1. A group G has two non-conjugated maximal subgroups
M1,M2 with M̃1 = M̃2 if and only if it has two non-equivalent primitive actions
with the same set of derangements.

A proof of this equivalence will be given later.
The second one is a convenient way to see the problem. We have this in

mind throughout this work, except for the case of soluble groups.

Observation 1.0.2. Let M1,M2 be maximal subgroups of a finite group G. Let
KG be the set of conjugacy classes of G and for each H 6 G define KH

G
:= {K 2

KG | K \H 6= ;}. With the above notation, M̃1 = M̃2 () KM1
G

= KM2
G

.
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CHAPTER 1. INTRODUCTION

Proof. )) We only prove the inclusion ” ✓ ”, the opposite can be done similarly.
Let K 2 KM1

G
and let k be an element of K \M1: since clearly M1 ✓ M̃1, k is

contained in M̃1 = M̃2 = {mg | m 2 M2, g 2 G}. Hence there exist m, g in M2

and G respectively such that mg = k. Conjugation on both sides by g�1 gives
m = kg

�1 2 K: hence K \M2 6= ; and this implies that K 2 KM2
G

.
()Again we only prove the inclusion ” ✓ ”. Let k 2 M̃1 = {mg | m 2

M1, g 2 G} and let K be the conjugacy class of k. There exist m, g in M1 and G

respectively such that mg = k =) m = kg
�1 2 K, hence M1 \ K 6= ; and this

implies that K 2 KM1
G

= KM2
G

. Now let n be in K\M2: since k and n are in the
same conjugacy class there exists h 2 G such that k = nh. Hence k 2 Mh

2 ✓ M̃2

and we are done.
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CHAPTER 2. PRELIMINARY RESULTS

Chapter 2

Preliminary results

2.1 Permutation groups

Definition 1 (Permutation group). A permutation group is a subgroup of a
symmetric group.

Let G be a finite group and define an action of G on a set ⌦; denote ! · g
the image of ! 2 ⌦ under the action of g 2 G. We can associate in a natural
way to each g of G a map 'g : ⌦ ! ⌦ according to the action: 'g(!) = ! · g
for each ! 2 ⌦. 'g can be seen as a element of the symmetric group on |⌦|
elements, which we will denote as S|⌦|, and g 7! 'g is a homomorphism from G
to S|⌦|. If the action of G on ⌦ is faithful, namely if 1G is the unique element
which stabilizes every element of ⌦, then this homomorphism is actually an
isomorphism and thus G can be seen as a permutation group.

Observation 2.1.1 (Cayley representation). For each group G consider the set
⌦ = G and the operation of right multiplication. This is a faithful action, hence
every group is isomorphic to a permutation group.

Definition 2 (Regular group). A transitive permutation group G acting on a
set ⌦ is regular if only the action 1G fixes any point.

Definition 3 (Primitive group). Let G be a permutation group acting tran-
sitively on a set ⌦ and denote !g the image of the action of g on the ele-
ment ! 2 ⌦. For each nonempty subset � of ⌦ and for each g 2 G denote
�g = {�g | � 2 �}. We call � a block for G if for each g 2 G either �g = �
or �g \� = ; and in particular if � = {x} for a certain x 2 ⌦ or � = ⌦ we
call it a trivial block.

We say that the group G has a primitive group action if it has no nontrivial
blocks and imprimitive otherwise.

Definition 4 (Proper primitive group). A primitive subgroup H of Sn, n > 2,
is said to be improper if An ✓ H and proper otherwise.

Definition 5 (Degree). The degree of a permutation group G acting on a set
⌦ is |⌦|.

Non-equivalent primitive permutation representations of finite groups
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CHAPTER 2. PRELIMINARY RESULTS

Definition 6 (Pointwise and setwise stabilizer). Let G be a group acting on a
set ⌦ and let � be a subgroup of ⌦. Then G(�) and G{�} denote respectively
the pointwise and the setwise stabilizer of �, that is to say:

G(�) = {g 2 G | �g = � 8� 2 �} , G{�} = {g 2 G | �g = �}

It is possible to connect this notion of primitivity to the action of G on
the right cosets of a certain subgroup of G by right multiplication. This is the
purpose of the following two lemmas.

Lemma 2.1.2. Every transitive action of a group G is equivalent to an action
of G on the right cosets of a subgroup H of G by right multiplication.

Proof. Checking that for every H 6 G G acts on the right cosets of H by right
multiplication is immediate. Let ⌦ be the set on which G acts transitively, fix
an element ! 2 ⌦ and consider the stabilizer H!, which is clearly a subgroup.
Consider the map ':

' : ⌦ ! {H!g, g 2 G}
# = !x 7! H!x 8x 2 G

This map is well defined: indeed, for each # 2 ⌦ there exists x 2 G such that
!x = # because G acts transitively; moreover, if x, y 2 G are two distinct
element for which !x = !y = # then !yx

�1

= !, hence H!x = H!y.
We prove that this map is bijective. It is surjective because, for each right

coset H!x, !x 2 ⌦ and '(!x) = H!x and it is injective because if '(#) =
'(⌘) = H!x for a certain x 2 G then # = !x = ⌘.

Finally we prove that ' is an equivalence of actions. For each # = !x 2 ⌦
and g 2 G we have

'(#)g = H!xg = '(!xg) = '(#g)

Before stating the second lemma, we recall the definition of core:

Definition 7 (Core). Let G be a group and H 6 G. The core CoreG(H) of H
in G is

CoreG(H) :=
\

g2G

Hg

If CoreG(H) = 1G we say that H is corefree.

Lemma 2.1.3. Consider the action of a finite group G on the right cosets of
M 6 G by right multiplication. Then G has a primitive action () M is
maximal and corefree.

Proof. )) Suppose by contradiction that there exists a subgroup H with M <
H < G and let H = {Mh | h 2 H}. We prove that H is a block for G. For
a fixed g 2 G, if H \ Hg 6= ; then Mh = Mh0g for some h, h0 2 H which
implies g 2 h0�1Mh ✓ H. Hence 8h 2 H we have Mh = M(hg�1)g and
this implies H = Hg. Since the action of G is primitive, either H = {M} or
H = {Mg | g 2 G}: the first implies H = M , which is a contradiction, while

Non-equivalent primitive permutation representations of finite groups
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CHAPTER 2. PRELIMINARY RESULTS

the second implies H = G, which is again a contradiction. This proves the
maximality of M . Moreover:

CoreG(M) = {g 2 G | g 2 x�1Mx 8x 2 G} = {g 2 G | (Mx)g = Mx 8x 2 G}
(2.1)

and since G is a permutation group we can conclude that CoreG(M) = 1G.

()Let � ✓ {Mg | g 2 G} be the block containing M and consider L = {l 2
G | �l = �}, which is clearly a subgroup of G. Now for each m 2 M we have
�m = � since �m \ � 6= ; as it contains M , thus M 6 L. Since the action
must be transitive on the elements of �, if � 6= {M} then M 6= L.This implies
L = G because M is a maximal subgroup of G and thus the action has only one
block.

The kernel of this action is the most right element in equation 2.1, hence it
is equal to CoreG(M) = 1G, thus this action is faithful.

Now we are ready to prove the initial observation.

Proof of Observation 1.0.1. Let M 6 G be a maximal subgroup and consider
the action of G on the right cosets of M . We have:

M̃ = {g 2 G | g = x�1Mx 9x 2 G} = {g 2 G | (Mx)g = Mx 9x 2 G}

which means that M̃ is the subset of G which contains the elements whose action
fixes at least one element of {Mx, x 2 G} and G\M̃ is the set of derangements.

Moreover, let M1,M2 be maximal subgroups of G and suppose that the
actions of G on their right cosets are equivalent with equivalence map ' :
{M1x, x 2 G} ! {M2y, y 2 G} such that '((M1x)g) = '(M1x)g for all g 2 G.
If '(M1) = M2ȳ and x 2 M1 then:

M2ȳ = '(M1) = '(M1x) = (M2ȳ)x =) x 2 ȳ�1M2ȳ = M ȳ

2

and since ' is a bijection |M1| = |M2|, thus M1 = M ȳ

2 .

2.2 Definitions for O’Nan-Scott Theorem

The following definitions are useful only in order to be able to give a precise
statement of the O’Nan-Scott Theorem, which will be necessary in the case of
symmetric groups.

Definition 8 (Socle). Let G be a finite group. The socle of G is the subgroup
generated by the set of all minimal normal subgroups of G, that is to say by the
nontrivial normal subgroups that are minimal in the set of nontrivial normal
subgroups of G with the order of the inclusion. It is denoted by Soc(G).

Definition 9 (Affine group). The affine group AGLm(p) is the group of affine
matrices of order m on a finite field of order p.

Definition 10 (Wreath product). Let K and H be groups and � be the set on
which H acts. Let Fun(�,K) be the group whose elements are the functions
from � to K with the operation

(fg)(�) = f(�)g(�) 8f, g 2 Fun(�,K), � 2 �

Non-equivalent primitive permutation representations of finite groups
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The wreath product of K by H with respect is K o�H := Fun(�,K)oH defined
by the action:

fh(�) = f(�h
�1

) 8f 2 Fun(�,K), h 2 H, � 2 �

If � = H and the action of H on itself is regular we can just write K oH and
call it standard wreath product.

Observation 2.2.1. If |�| = m < 1 then it is immediate to see that ' :
Fun(�,K) ! Km defined as '(f) = (f(�1), . . . , f(�m)) is a homomorhpism
and  : Km ! Fun(�,K) such that  (k1, . . . , km)(�i) = ki 8i = 1, . . . ,m is its
inverse homomorphism. Hence Fun(�,K) ⇠= Km.

Definition 11 (Product action of the wreath product). Let H and K be groups
acting on sets � and � respectively (to fix ideas, suppose that these objects are
finite and in particular |�| = m < 1) and define ⌦ = Fun(�,�). Using these
actions we define the product action of K o� H on ⌦ as the action

!(f,h)(�) = (!(�h
�1

))f(�
h
�1

) 8(f, h) 2 K o� H,! 2 ⌦, � 2 �

Proof. Recall that for the construction of the outer semidirect product we have
(f, h)(g, y) = (fgh

�1

, hy) and gh
�1

(�) = g(�h). For each ! 2 ⌦, (f, h), (g, y) 2
Fun(�,K)oH, � 2 � we have:

(!(f,h))(g,y)(�) = (!(f,h)(�y
�1

))g(�
y
�1

)

= ((!((�y
�1

)h
�1

))f((�
y
�1

)h
�1

))g(�
y
�1

)

= (!(�(hy)
�1

))f(�
(hy)�1

)g(�(hy)�1
h)

= (!(fgh
�1

,hy))(�)

Moreover the identity element of the semidirect product is (1Fun(�,K), 1H) and

!(1Fun(�,K),1H)(�) = !(�)1K = !(�) 8! 2 ⌦, � 2 �

Hence we have proved that the product action defined is indeed an action.

Definition 12 (Diagonal action, diagonal type). Let T be a simple, non-
abelian, regular subgroup of the symmetric group S|�| acting on a certain set
�, CS|�|(T ) 6 S|�| its centralizer and � = {1, . . . ,m} for a fixed m 2 N. By
extension of the action of CS|�|(T ) on � we can define an action of CS|�|(T )
on �m as

(�1 . . . , �m)x = (�x1 , . . . , �
x

m
) 8(�1 . . . , �m) 2 �m, x 2 CS|�|(T )

It can be proved that the set ⌦ of (CS|�|(T ))-orbits under this action constitutes
a system of blocks for the product action of T o� Sm on �m ⇠= Fun(�,�). The
action of the subgroup Tm = {(t, 1S|�|), t 2 T} on ⌦ is called the diagonal action
of Tm.

In addition, let NS|⌦|(T
m) be the normalizer of Tm (seen as a subgroup of

S|⌦|). A group G such that Tm 6 G 6 NS|⌦|(T
m) is said to be of diagonal type.

Definition 13 (Almost simple group). A group G is said to be almost simple
if T 6 G 6 Aut(T ) where T is a simple and nonabelian group.

Non-equivalent primitive permutation representations of finite groups
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CHAPTER 2. PRELIMINARY RESULTS

2.3 Soluble groups

Definition 14 (Soluble group). A group G is said to be soluble if it has a
subnormal series 1 = G0 /G1 /G2 / . . . /Gn = G such that Gi+1�Gi

is abelian
8 0  i  n� 1.

Definition 15 (Characteristic subgroup). A subgroup H 6 G is characteristic
in G if the image of H under every automorphism of G is H itself.

Lemma 2.3.1. Let N E G be a normal subgroup of G and K 6 N be a
characteristic subgroup of N . Then K E G.

Proof. For each g 2 G, let 'g : G ! G the conjugacy map, namely 'g(x) = xg.
Cleary 'g is an automorphism of G and since N E G its restriction on N 'g|N
remains an automorphism. Thus 'g|N (x) 2 K for each x 2 K and it follows
that K E G.

Definition 16 (Commutator). Let G be a group and x, y 2 G. We define the
commutator of x and y as [x, y] := x�1y�1xy.

Let G be a group and L,N be two subgroups of G. The commutator of L
and N is the subgroup [L,N ] generated by the set {[l, n] | l 2 L, n 2 N}. If
L = N = G we denote [G,G] as G0 and call it the commutator subgroup of G.

The following observation lists some properties of the commutator that will
be used in some proofs.

Observation 2.3.2. • G0 = 1G () xy = yx 8 x, y 2 G () G is
abelian;

• [L,N ] = 1G () ln = nl 8 l 2 L, n 2 N () L and N commute;

• G0 is a normal subgroup of G. Indeed, for each x 2 G0, g 2 G we have
that gxg�1x�1 = y 2 G0, hence gxg�1 = yx 2 G0;

• G0 is a characteristic subgroup of G. Indeed for each automorphism ' of G
and for each x, y 2 G we have that '(x�1y�1xy) = '(x�1)'(y�1)'(x)'(y) =
'(x)�1'(y)�1'(x)'(y).

Definition 17. (Commutator series) Given a group G, denote G(n) its nth
commutator subgroup, namely G(1) = G0 and G(n) = (G(n�1))0 and define com-
mutator series the series

G D G(1) D G(2) D . . .

We provide an alternative characterization of soluble groups, based on the
commutator series.

Lemma 2.3.3. A group G is soluble () there exists n � 0 such that G(n) =
1G.

Proof. (() Let
1 = G0 /G1 /G2 / . . . /Gn = G

be a subnormal series for G with abelian quotients. For each 0  i  n� 1 and
each x, y 2 Gi+1, xyGi = yxGi, hence [x, y] 2 Gi, consequently (Gi+1)0 ✓ Gi.

Non-equivalent primitive permutation representations of finite groups
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CHAPTER 2. PRELIMINARY RESULTS

It is easy to see that H ✓ G =) H 0 ✓ G0, hence G(2) = (G0
n
)0 ✓ G0

n�1 and by
induction G(n) ✓ G(n) ✓ G0 = 1G.

()) Let n be the first index for which G(n) = 1G. The series

1G = G(n) E G(n�1) E . . . E G(1) E G(0) = G

is a normal series (G(i) is normal in G for each 0  i  n) and with the same
calculations as in the first part we see that the quotients are abelian, hence G
is solvable.

Definition 18 (Chief series). Given a group G, a normal series for G is a finite
series of normal subgroups Ni of G, i = 1, . . . , k, such that N0 = 1G, Nk = G
and Ni ✓ Ni+1 for i = 1, . . . , k � 1. If Ni + 1/Ni is minimal normal in G/Ni for
each i 2 {1, . . . , k � 1}, the series is called a chief series and Ni + 1/Ni is called
a chief factor.

Non-equivalent primitive permutation representations of finite groups
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Chapter 3

Symmetric and Alternating
groups

As first strep in this chapter, we prove that the alternating group An and the
symmetric group Sn are primitive for each n. Clearly this is true for n = 2 and
n = 3 and for n � 4 both An and Sn are at least 2�transitive. The conclusion
follows from the following lemma:

Lemma 3.0.1. If a permutation group G is 2-transitive, then it is primitive.

Proof. Let ⌦ be the set on which G acts and � ⇢ ⌦ be a proper nonempty
subset with at least two elements. Fix �1, �2 2 � and � 2 ⌦ \� and let g 2 G
be an element of G such that (�1, �)g = (�1, �2). For this g, � \�g is neither
empty nor �, hence it can not be a block.

3.1 Symmetric groups

Now we want to classify all imprimitive maximal subgroups of Sn. The follow-
ing two lemmas deal respectively with intransitive and transitive imprimitive
subgroups. Both proofs use the well known fact that Sn is generated by the set
S = {(1, k)|k = 2, . . . , n}.

Lemma 3.1.1. The subgroup S{�} of Sn stabilizer of a subset � ⇢ ⌦ =
{1, . . . , n}, with n > 2 and 1  |�| < n/2, is maximal in Sn.

Proof. For n = 3, 4, |�| must be one and the stabilizers of a point are maximal
in a primitive group. Now consider the case n � 5. Let K 6 Sn be a subgroup
of Sn properly containing S{�} and take h 2 K \ S{�}: there exists x 2 ⌦ \�
such that its image under h is x0 2 � and since |�| < |⌦ \ �| there exists
y 2 ⌦ \ � such that its image under h is y0 2 ⌦ \ �, Since (x, y) 2 S{�}, K
contains (x, y)h = (x0, y0). Now S{�} contains (x0, x00) 8x00 2 � and (y0, y00)
8y00 2 ⌦ \�, hence K contains (x0, z)8z 2 ⌦ and this implies K = Sn.

Lemma 3.1.2. The subgroup S⇧ of Snconsisting of all permutations which
preserve a partition ⇧ = {�1, . . .�m} of ⌦ = {1, . . . , n}, where m is a proper
divisor of n, is maximal in Sn.

Non-equivalent primitive permutation representations of finite groups
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CHAPTER 3. SYMMETRIC AND ALTERNATING GROUPS

Proof. It is easy to see that S⇧ is transitive: for each x 2 �i = {x = �i,1, . . . , �i,n/m}
and y 2 �j = {y = �j,1, . . . , �j,n/m}, the permutation � = (x, y)

Qn/m

l=2 (�i,l, �j,l)
is in S⇧.

Now let K 6 Sn be a subgroup of Sn properly containing S⇧. First we
prove that if K contains the transposition (�i,1, �j,1) with �i,1 2 �i, �j,1 2 �j

for some i 6= j, 1  i, j  m and for an appropriate enumeration of the elements
of �i and �j , then K = Sn. Fix an element �1,a of �1 and choose an element
�t,b 2 �t. If t = 1 clearly (�1,a, �1,b) 2 S⇧. Otherwise, up to renumbering,
take a = b = 1; then h = (�1,1, �i,1)(�t,1, �j,1)

Qn/m

l=2 (�1,l, �i,l)
Q

n/m

s=2 (�t,s, �j,s)
is in S⇧ and the images of �1,1 and �t,1 are �i,1 and �j,1 respectively. Hence
(�i,1, �j,1) = (�1,1, �t,1)h, thus (�1,1, �t,1) is an element of K. The conclusion
follows from the arbitrariness of �t,b.

Now we prove that the case above is actually the general case. Consider g 2
K \S⇧: there exist two different indices i, j 2 {1, . . . ,m} for which (�i)g \ (�j)
is neither empty nor �j . Up to renumbering, we can suppose that �i,1, �i,2
are two elements of �i whose images are �j,1 2 �j and �t,q for a certain �t,
possibly t = i. Since (�i,1, �i,2) 2 S⇧, K contains (�i,1, �i,2)g = (�j,1, �t,q) which
is a transposition between two elements in different subsets of the partition, and
thus we are done.

Observation 3.1.3. If n is even, the stabilizer S{�} of � ( ⌦ with |�| = n/2
is contained in the imprimitive subgroup S⇧ with ⇧ = {�,⌦ \�}, consequently
it is not maximal in Sn. For this reason in the statement of Lemma 3.1.1 we
have added the hypotesis that |�| is strictly less than half of |⌦|.

Now let K < Sn be a proper intransitive subgroup and let �1, . . .�i, i > 2,
be its orbits. Then K is a proper subgroup of S{�1} ⇥ S{⌦\�1}, hence K is not
maximal.

Moreover, let K < Sn be a proper transitive imprimitive subgroup and let
⇧ be the partition of ⌦ on which it acts. Is it clear that K 6 S⇧ as defined
in Lemma 3.1.2, and that Lemma proves that S⇧ are maximal, hence we have
described all transitive imprimitive maximal subgroups of Sn.

In conclusion we have proved the following:

Theorem 3.1.4. Each maximal subgroup of the symmetric group Sn of finite
degree n is either:

• a primitive subgroup;

• an intranstive S{�} for � ( ⌦, 1  |�| < n/2;

• an imprimitive subgroup S⇧ consisting of all permutations which preserve
a partition ⇧ of ⌦ into subsets of size m, m|n.

Moreover each subgroups of the last two types is maximal in Sn.

At this point we are ready to provide a partial result to our problem.

Theorem 3.1.5. If M1,M2 are maximal subgroups of Sn that are either in-
transitive or imprimitive then M̃1 = M̃2 () M1 and M2 are conjugated.

Proof. Since (() is obvious, it is sufficient to prove ()).

Non-equivalent primitive permutation representations of finite groups
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CHAPTER 3. SYMMETRIC AND ALTERNATING GROUPS

Define ⌦ = {1, . . . , n} and, for each K 6 Sn, let l(K) be the set of lengths
of the cyclic permutations in K. If M̃1 = M̃2, then M1 and M2 intersect the
same conjugacy classes and in particular l(M1) = l(M2). From Theorem 3.1.4,
an intransitive maximal subgroup M consists of all permutations preserving a
partition of ⌦ into � and ⌦\� with |�| < |⌦\�|, hence l(M) = {1, . . . , |⌦\�|}.
If otherwise M is an imprimitive maximal subgroup and ⇧ = {�1, . . .�m}
is the partition of ⌦ preserved by M , then M contains all the cycles in the
stabilizer of �i, which have lengths from 1 to n/m, and all the cycles of the
type (i1, j1, . . . k1, i2, j2 . . . , kn/m) where a1, . . . an/m are the elements of �a,
hence l(M) = {1, . . . , n/m, 2n/m, . . . , n}. Hence l(M1) = l(M2) only if :

• M1,M2 are both intransitive and preserve respectively a partition in �1,⌦\
�1 and �2,⌦ \ �2 with |�1| = |�2|. In this case 9g 2 Sn such that
�g

1 = �2 which implies Mg

1 = M2;

• M1,M2 are both imprimitive and preserve a partition with the same num-
ber of subsets, respectively ⇧1 = {�1

1, . . . ,�
1
m
} and ⇧2 = {�2

1, . . . ,�
2
m
}.

In this case 9g 2 Sn such that (�1
i
)g = �2

i
8i 2 {1, . . . ,m} which again

implies Mg

1 = M2.

Observation 3.1.6. It is immediate to see that both imprimitive and intran-
sitive maximal subgroups of Sn contains a single transposition, hence they can
not intersect the same conjugacy classes as An.

From the observation above we can conclude that, if there are no proper
primitive groups of degree n, then two maximal subgroups of Sn intersect the
same conjugacy classes of Sn if and only if they are conjugated.

In order to say something about the existence of proper primitive groups of
a fixed degree n, consider the following, very important theorem, in the form
presented in (6):

Theorem 3.1.7 (O’Nan-Scott). Let G be a finite primitive group of degree n,
and let H be the socle of G. Then either:

1. H is a regular elementary abelian p-group for some prime p, n = pm = |H|,
and G is isomorphic to a subgroup of the affine group AGLm(p);

2. H is isomorphic to a direct power Tm of a nonabelian simple group T and
one of the following holds:

(a) m = 1 and G is isomorphic to a subgroup of Aut(T );
(b) m � 2 and G is a group of diagonal type with n = |T |m�1;
(c) m � 2 and for some proper divisor d of m, m = dt, and some

primitive group U with a socle isomorphic to T d, G is isomorphic to
a subgroup of the wreath product U o{1,...,t}St with the product action,
and n = lt where l is the degree of U ;

(d) m � 6, H is regular and n = |T |m.

From the O’Nan-Scott theorem we see that every finite primitive group is
either almost simple or its degree is of the form ab, where a is the order of

Non-equivalent primitive permutation representations of finite groups
with the same set of derangements
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CHAPTER 3. SYMMETRIC AND ALTERNATING GROUPS

a finite simple group (cases 2b and 2d) or of a primitive group (cases 1 and
2c). The numbers of this form are "few" in the set of natural numbers. Define
E = {n 2 N|9 a proper primitive group of degree n}: it can be proven (see (4))
that

|E \ {1, . . . , n}| ⇠ 2n

logn

Mathieu proved that {5, 6, . . . , 33} 2 E. Using GAP, I have checked for
n = 5, . . . , 33 whether there exist a primitive maximal subgroup of Sn which
has the same exponent of another maximal subgroup. The answer was negative
except for n = 6, 10, 25.

• for n = 6 the subgroup isomorphic to A6 and two isomorphic to S5, one
intransitive and one primitive, have the same exponent. The two maximal
subgroups isomorphic to S5 have elements of order 6, while A6 do not,
but they intersect different conjugacy classes of elements of order 2.

• for n = 10 there is a primitive maximal subgroup isomorphic to (A6 ⇥
C2)⇥C2 which has the same exponent of two other imprimitive maximal
subgroups. However these two subgroups have elements of order 12, while
the primitive maximal subgroups do not.

• for n = 25 there are two primitive maximal subgroups with the same
exponent, but one has elements of order 24 and the other do not.

3.2 Alternating groups

Now we consider alternating groups.

Lemma 3.2.1. Let M be a maximal subgroup of An, n > 4. Then

• if M is intransitive, then M = (Sa ⇥ Sn�a) \An where 1  a < n/2;

• if M is imprimitive, then M = (Sa o{1,...,b} Sb) \An where ab = n, b > 1.

Proof. Let K < An be a proper intransitive subgroup and let �1, . . .�i, i � 2
be its orbits. Considering An as a subgroup of Sn, K is a proper subgroup of
S{�1} ⇥ S{⌦\�1} and (S{�1} ⇥ S{⌦\�1} \ An) < An. Indeed � = (�, x)(y, z),
� 2 �1, x, y, z 2 ⌦\�1 exists since |⌦\�1| � 3 for n > 4 and � 2 An \S{⌦\�1}.
Now we have

K 6 (S{�1} ⇥ S{⌦\�1}) \An < An

hence if K is maximal ” 6 ” must be a equality.
On the other hand, we give an idea of proof of the maximality of J = (S�1 ⇥

S⌦\�1
)\An in the case in which all the elements that will be mentioned can be

chosen one different from each other. Let W 6 An properly containing J and
consider h in W \J : since h does not stabilize �1, there exist x 2 ⌦ \�1 whose
image under h is x0 2 �1 and since |⌦\�1| > |�1|, there exists another element
y 2 ⌦ \�1 whose image under h is y0 2 ⌦ \�1. Moreover, let z be the image of
y0 under h. Since (x, y, y0) is an element of J , h̄ = (x, y, y0)h = (x0, y0, z) 2 W .
Now we have two cases:

• z 2 �1. Let u be an element of ⌦: if u 2 �1, (u, x0, z) 2 J , other-
wise we can pick another element a 2 ⌦ \�1 and obtain by conjugation
(h̄2)(u,a,y

0) = (n, x0, z);

Non-equivalent primitive permutation representations of finite groups
with the same set of derangements
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• z 2 ⌦ \ �1. Let u be an element of ⌦: if u 2 ⌦ \ �1, (u, y0, z) 2 J ,
otherwise we can pick another element a 2 �1 and obtain by conjugation
(h̄)(u,a,x

0) = (n, y0, z).

Hence in both cases A = {(u, ·, z)|u 2 ⌦ \ {·, z}} where · is either x0 or y0,
depending on the case; since A generates An this concludes the proof.

Let K < An be a proper transitive imprimitive subgroup and let ⇧ the
partition of ⌦ on which it acts. Considering An as a subgroup of Sn, K is a
subgroup of S⇧ as defined in Lemma 3.1.2, and S⇧ \An < An. Indeed:

• if there are at least three blocks �1,�2,�3, hence � = (x1, x2)(y2, y3),
where x1 2 �1, {x2, y2} ✓ �2 and x2 6= y2, y3 2 �3, is in An but not in
S⇧;

• if there are exactly two blocks �1 and �2, then they have at least 3
elements, hence � = (�, x)(y, z), where � 2 �1 and x, y, z are distinct
elements of �2, is again in An but not in S⇧.

Now
K 6 (S⇧ \An) < An

hence if K is maximal ” 6 ” must be a equality. We omit the proof of the
maximality of groups of these form.

We are ready to give a partial answer to our question in the case of alter-
nating groups.

Theorem 3.2.2. If M1,M2 are maximal subgroups of An, n > 5 and odd, that
are either intransitive or imprimitive then M̃1 = M̃2 () M1 and M2 are
conjugated.

Proof. As in Theorem 3.1.5, we only need to prove ()).
Let M be a maximal intransitive or imprimitive maximal subgroup of An.

First, observe that n 2 l(M), where l is defined as above, if and only if M
is imprimitive, hence in order to have M̃1 = M̃2 it is necessary that are both
imprimitive or intransitive.

If they are both imprimitive, 9 1 < a, b, c, d < n such that a  c, ab = cd = n,
M1 = (Sa o{1,...,b} Sb)\An and M2 = (Sc o{1,...,d} Sd)\An. Suppose that a < c.
Since a and c must be odd by the oddness of n, l(M1) = {1, . . . , a, 2a, . . . , ba}\
{2m + 1,m 2 N} contains in increasing order all odd numbers from 1 to a
with a included and then 3a, while l(M2) contains, again in increasing order,
all odd numbers from 1 to c, hence it contains a + 2  c and this implies
a + 2 = 3a =) a = 1, which is a contradiction. Hence in this case we must
have a = c, b = d.

Let g 2 Sn be a permutation whose action send a partition ⇧1 = {�1,1, . . . ,�1,b}
into ⇧2 = {�2,1 . . . ,�2,b}. If g is even, then ḡ = g 2 An; otherwise, let x, y be
two elements in �2,1: then ḡ = g(x, y) 2 An send again ⇧1 in ⇧2. In both cases
M ḡ

1 = M2.
It they are both intransitive, there exist b, d 2 N, n/2 < b  d < n, such that

M1 = (Sn�b ⇥Sb)\An and M2 = (Sn�d ⇥Sd)\An. Suppose that b < d. Since
l(M1) = {1, . . . , b} \ {2j + 1, j 2 N} has b as largest value if b is odd and b� 1
otherwise and similarly M2 has d as largest value if d is odd and d�1 otherwise,

Non-equivalent primitive permutation representations of finite groups
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l(M1) = l(M2) implies b = d� 1 and odd. Hence d is even and if d < n� 1 then
� = (d + 1, d + 2)(1, . . . , d) is a even permutation, consequently � 2 M̃2 /2 M̃1

because b < d and this contradicts our hypotesis. We conclude that d = n � 1
and b = n� 2. Now consider ⇢ = (1, . . . , n�1

2 )(n+1
2 , . . . , (n� 1)): ⇢ 2 M̃2 since

it is a even permutation and it is contained in S{1,...,n�1}. However ⇢ can not
be contained in M̃1. Indeed each permutation in M̃1 permutes a subset of n� 2
elements and the remaining 2 separately; hence the two disjoint cycles whose
product is ⇢ can neither act on the same subset, since they move n� 1 distinct
points, nor one on a subset an the other on the other one, since (n � 1)/2 > 2
by hypotesis. Hence ⇢ /2 M̃1 and we obtain again a contradiction. We conclude
that b = d. Moreover we see that we can turn a partition of {1, . . . , n} into two
subset of d and n � d elements into another partition with the same structure
with d or n � d transpositions and at least one of this two numbers is even
(otherwise n would be even), hence there is a permutation g 2 An such that
Mg

1 = M2 and we are done.

Observation 3.2.3. For n = 5, A5 has two maximal intransitive subgrups,
M1

⇠= S3 and M2
⇠= A4, which intersect the same conjugacy classes but are not

conjugated. In this case M1 = (S2 ⇥ S3) \ A5 and M2 = S4 \ A5 and, with the
notation of Theorem 3.2.2 ⇢ = (1, 2)(3, 4) has a conjugate element both in S4

and in S2 ⇥ S3.

Theorem 3.2.4. If M1,M2 are maximal subgroups of An with n even, that
are either intransitive or imprimitive then M̃1 = M̃2 () M1 and M2 are
conjugated.

Proof. As in Theorem 3.1.5, we only need to prove ()).
Let M be a maximal intransitive or imprimitve maximal subgroup of An.

First, observe that if M = (Sa o{1,...b} Sb) \ An for some 1 < a, b < n, ab = n
is imprimitive then Sa o{1,...b} Sb contains a n-cycle � and M contains �2; this
permutation has two orbits of size n/2, hence it can not be in the intransitive
maximal subgroup N = (Sc ⇥ Sn�c) \An for any 1 < c < n/2. Hence, in order
to have M̃1 = M̃2, it is necessary that are both imprimitive or intransitive.

If they are both imprimitive, 9 1 < a, b, c, d < n such that a  c, ab = cd = n,
M1 = (Sa o{1,...,b}Sb)\An and M2 = (Sc o{1,...,d}Sd)\An. Suppose that a < c. If
a, c are both odd we can proceed as in Theorem 3.2.2 and find a contradiction;
if they are both even the largest value in l(M1) is a � 1 while the largest in
l(M2) is c � 1, hence a = c. If a is even and c is odd, then the largest value
in l(M1) is a � 1 while l(M2) contains c > a � 1 and we get a contradiction.
Finally suppose that a is odd and c is even. In l(M1) we find in increasing order
a followed by 3a if 3a < n and nothing otherwise, while in l(M2) we find a is
followed by a + 2 if a < c � 1 and nothing otherwise; the case a < c � 1 gives
a + 2 = 3a =) a = 1 which is not a valid value for a, thus a = c � 1 and
n < 3a =) n = 2a. But this implies c = a + 1|2a, which has no solution for
a > 1. Hence in this case we must have a = c, b = d. The proof that M1,M2

are conjugated is the same as in Theorem 3.2.2.
It they are both intransitive, 9 n/2 < b  d < n, b, d 2 N such that M1 =

(Sn�b ⇥ Sb) \ An and M2 = (Sn�d ⇥ Sd) \ An. If we suppose b < d, as in
Theorem 3.2.2 we have b = d�1 and odd. Hence d is even and since n is even and
stricly greater than d, then d < n�1 and consequently � = (d+1, d+2)(1, . . . , d)

Non-equivalent primitive permutation representations of finite groups
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is a even permutation, � 2 M̃2 /2 M̃1 because b < d and this contradicts the
hypotesis. We conclude that b = d.

Let g 2 Sn be a permutation for which the partition of {1, . . . , n} into two
subset of d and n � d elements has as image another partition with the same
structure. If g is even then g 2 An and Mg

1 = M2, otherwise let x, y be two
elements in the same subset of the second partition: then ḡ = g(x, y) 2 An,
M ḡ

1 = M2 and we are done.

We conclude this section with an observation about the case in which there
exists a proper primitive group of degree n. We state a result due to Jordan
(see (9), chapter 8):

Theorem 3.2.5. Let G be a group with a primitive action on a set ⌦, and let
⇤ ✓ ⌦ with |⇤| � |⌦|�2. Suppose that G(�) (the pointwise stabilizer of �) acts
primitively on ⌦ \�. Then the action of G on ⌦ is (|�|+ 1)�transitive.

As a consequence of this theorem we can proof the following:

Lemma 3.2.6. Let G be a primitive permutation group acting on a set ⌦ with
cardinality n. If G contains a 3-cycle, then G is either Sn or An.

In order to prove this lemma we need the following preliminary result:

Lemma 3.2.7. Let G be a group acting on the set ⌦ = {1, . . . , n}. If G is
(n� 2)�transitive, then G is either Sn or An

Proof. Let On�2(⌦) be the set of all (n � 2)-uples of distinct elements in ⌦.
Clearly |On�2(⌦)| = n!/2 and G is transitive on On�2(⌦) in his componentwise
action, hence (n!/2) divides |G|. If |G| = n! then G = Sn and we are done,
otherwise G has index 2 in Sn and in particular it contains the set of all 3-
cycles, which is well known to be a set of generators for An.

Now we are ready for the proof.

Proof of Lemma 3.2.6. Let h = (x, y, z) be the transposition contained in G and
consider ⇥ = {x, y, z},� = ⌦ \ ⇥. Then G(�) contains h and it is easy to see
G(�) has a primitive action ⇥. Hence by Theorem 3.2.5 G is (n� 2)�transitive
on ⌦ and thanks to Lemma 3.2.7 we can conclude that G is either Sn or An.

Moreover the analogous result can be proven for n > 9 and G containing a
double transposition (see example 3.3.1 in (6)).

It is easy to see that for n > 4 every maximal subgroup of An which is either
intransitive or imprimitive contains at least one double transposition or 3-cycle,
thus, from the previous results, we can conclude the following:

Observation 3.2.8. For n > 9, if M1 and M2 are two maximal subgroups of
An for which M̃1 = M̃2 holds and that are not conjugated, then they must be
both primitive.

Non-equivalent primitive permutation representations of finite groups
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Chapter 4

Soluble groups

Let G be a soluble group and M1, M2 two maximal subgroups of G. In this
section we prove that M̃1 = M̃2 () M1 and M2 are conjugated.

As first step we prove the following:

Lemma 4.0.1. Let G be a finite group, M1,M2 6 G maximal subgroups for
which M̃1 = M̃2 holds and N E G. Then N 6 M1 () N 6 M2.

In order to prove Lemma 4.0.1 we need a preparatory result:

Lemma 4.0.2. Let H be a finite group and K a proper subgroup of H. Then
the union of conjugates of K can not be the whole H.

Proof. Suppose that there exists a proper subgroup K of H for which [h2HKh =
H holds. If |K| = k and |H| = kn, for a certain n > 1, let {x1, . . . , xn} be a
left transversal for K in H. For each h 2 H, h 2 xiK for a certain i 2 [1, . . . n],
hence hKh�1 = xiKx�1

i
and so there are at most n distinct conjugates of K in

H. Since each of them contains 1H , we have:
��
[

h2H

Kh
��  (k � 1)n+ 1 < kn = |G|

which gives a contradiction.

Now we are ready for the proof:

Proof of Lemma 4.0.1. We prove the result by contradiction. First, observe that
the statement is symmetric, hence it is sufficient to prove ” ) ”. If N ⌦ M2,
then G = M2N because of the maximality of M2 in G. Since N 6 M1 we have
that N ✓ M̃1 = M̃2 = [g2GM

g

2 = [n2NMn

2 , thus

N = N \ (
[

n2N

Mn

2 ) =
[

n2N

(N \Mn

2 )
1
=

[

n2N

(N \M2)
n

where 1 comes from the fact that N E G. This equality contradicts Lemma 4.0.2,
hence N 6 M2.

Non-equivalent primitive permutation representations of finite groups
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From Lemma 4.0.1 we can conclude in particular that coreG(M1) = coreG(M2).
Now define:

Ḡ := G�coreG(M1), M̄1 := M1�coreG(M1), M̄2 := M2�coreG(M1)

.
Now Ḡ is a quotient of a solvable group and hence it is solvable itself, and

it has a maximal core-free subgroup M̄1, hence Ḡ is primitive in its action on
the right cosets of M̄1.

The following lemma proves that we can restrict our analysis to Ḡ:

Lemma 4.0.3. Let G be a group and let M,L and N be respectively two maximal
subgroups and a normal subgroup of G contained both in M and L. If M/N and
L/N are conjugated in G/N, then L and M are conjugated in G.

Proof. Let gN 2 G/N be the element of G/N for which M/N = (L/N)gN holds.
For each m 2 M there exists l 2 L such that mN = (lN)gN = g�1lgN in G/N,
hence m�1(g�1lg) = n 2 N . This implies m = g�1(n0l)g for some n0 = gn�1g�1

and since N ✓ L we are done.

In addition, the following two lemmas can be applied to Ḡ.

Lemma 4.0.4. If G is a primitive permutation group on ⌦, the action of a
nontrivial normal subgroup N E G on ⌦ is transitive.

Proof. Fix an element � 2 ⌦ and an element g 2 G and for each x 2 G denote
�x the image of � under the action of x. Consider � = {�n|n 2 N}. Since
N E G, for each n 2 N there exists m 2 N such that �ng = �gm. Thus

�g = {(�n)g|n 2 N} = {(�g)m|m 2 N}

is a N -orbit and this implies that � \ �g is either ; or �. Since G is primitive,
it follows that either � = ⌦ and N is transitive or � = {�} and N = 1G.

Lemma 4.0.5. A finite soluble and primitive group G has a unique minimal
normal subgroup.

Proof. Let N be a minimal normal subgroup of G and N 0 its commutator sub-
group. N is a normal subgroup of a soluble group and thus it is soluble itself,
which implies N 0 � N . Moreover N 0 is characteristic in N and thus N 0 / G;
since N is minimal normal in G, N 0 = 1G and it follows that N is abelian.

Let M be a maximal corefree subgroup of G: M \N E M since N E G and
M \N E N since N is abelian, hence M \N E MN = G and this implies that
M \N = 1G because M is corefree.

Now we prove that CG(N) = N . Since N is abelian we have CG(N) =
CM (N)N . Let m 2 CM (N) and n 2 N : with the action of the group G on the
right cosets of M by right multiplication we have Mn = M(mn) = M(nm) =
(Mn)m. Since N is normal, by Lemma 4.0.4 its action is transitive, hence m
fixes every right coset. In addition, since the action is faithful, m = 1G and
consequently CG(N) = N .

Finally, suppose that there exists another minimal normal subgroup L 6= N
of G. Then [L,N ] 6 L \ N = 1G and hence L and N commute. This implies
L ✓ CG(N) = N and N ✓ CG(L) = L, consequently L = N , which is a
contradiction.

Non-equivalent primitive permutation representations of finite groups
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Given a group G and a normal subgroup N of G, we say that G is represented
in N by the subgroup S if G = SCG(N). Clearly, for each N E G, G is
represented in N by G itself, hence there is at least one such subgroup.

We state a result from (1):

Theorem 4.0.6. If N is a minimal normal subgroup of G such that G/CG(N)

contains a normal subgroup different from 1G, whose order is prime to the order
of N , then:

• Every minimal subgroup S representing G in N satisfies S \N = 1G;

• The two minimal subgroups H and K representing G in N satisfy NH =
NK if and only if there exists an element x 2 N such that H = x�1Kx.

Consider the group Ḡ. It is a primitive soluble group, thus by Lemma 4.0.5
it has a unique minimal normal subgroup N̄ and CḠ(N̄) = N̄ . Now Ḡ/N̄ is a
quotient of a soluble group and hence soluble itself, thus again in (1) is proved
that it contains a normal subgroup different from 1Ḡ, whose order is prime to
the order of N̄ . Hence the hypothesis of Theorem 4.0.6 are satisfied.

Now we are ready to answer our question:

Theorem 4.0.7. M̃1 = M̃2 () M2 = Mg

1 .

Proof. Since (() is obvious, it is sufficient to prove ()).
In the proof of Lemma 4.0.5 we have already proved that both M̄1 and

M̄2 are complements of N̄ since they are corefree and maximal. Hence from
Theorem 4.0.6 M̄2 = M̄g

1 for some g 2 N̄ and the conclusion follows from
Lemma 4.0.3.

Non-equivalent primitive permutation representations of finite groups
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Chapter 5

An example in SL2(2
f )

In this chapter we find two non-conjugated maximal subgroups of the special
linear group SL2(2f ), f 2 N⇤, which intersect the same conjugacy classes.

We begin by recalling the definition of special linar group:

Definition 19. Let Fq be a finite field of order q. The special linear group
SLn(q) is the group of all invertible n⇥n matrices over Fq with determinant 1.

Consider the following two subgroups of SL2(2f ):

M1 = {
✓
a 0
0 b

◆
| a, b 2 Fq, ab = 1} [ {

✓
0 a
b 0

◆
| a, b 2 Fq, ab = 1}

M2 = {
✓
a c
0 b

◆
| a, b, c 2 Fq, ab = 1}

In order to prove the maximality of M2, we need the following:

Lemma 5.0.1. The action of SL2(q) on the projective line P1(Fq) is 2-transitive.

Proof. Let (A,B), (P,Q) be two pairs of points of the projective line with A 6=
B,C 6= D. We can choose an appropriate coordinate system in which A = [1 : 0],
B = [0 : 1], P = [p0 : p1] and Q = [q0, q1]. Now the matrix

C =

✓
kp0 q0
kp1 q1

◆
, k = (p0q1 � q0p1)

�1

send A and B to P and Q respectively and has determinant 1, hence C 2
SL2(q).

Now it is immediate to prove the maximality of M2:

Lemma 5.0.2. M2 is a maximal subgroup of SL2(q).

Proof. From the previous Lemma and Lemma 3.0.1 we obtain that SL2(q) with
its action on the projective line is primitive. From Lemma 2.1.2 we see that
this action is equivalent to the action on the right cosets of the stabilizer of a
point, and from Lemma 2.1.3 we can conclude that this stabilizer is a maximal
subgroup of SL2(q). Since M2 is the stabilizer of [1 : 0], the conclusion follows.

Non-equivalent primitive permutation representations of finite groups
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We omit the proof of the maximality of M1, see (8). The following lemma
summarizes the necessary informations for M1, M2:

Lemma 5.0.3. M1 and M2 are maximal subgroups of SLn(q) of order 2(q� 1)
and q(q � 1) respectively.

Proof. The maximality has already been proved or stated, hence we focus only
on the orders. For each of the two sets which consitute M1 we can choose a 2 F⇤

q

in q � 1 different ways and each of them determines a unique b 2 Fq. Hence
|M1| = 2(q � 1). Regarding to M2, each choice of a 2 F⇤

q
determines a unique

b 2 Fq and for each pair a, b we are free to chose c 2 Fq (c can also be 0) and
all these matrices are distinct, thus |M2| = q(q � 1).

Our purpose now is to find all the conjugacy classes of SL2(q) in order to
determine which are instersected by M1 and M2 respectively. Recall that SL2(q)
is a group of size q(q2 � 1).

The elements of SL2(q) can be divided into four types:

1. Elements that are diagonalizable over Fq with 2 distinct eigenvalues;

2. Elements that are diagonalizable over Fq with only one eigenvalue;

3. Elements that are not diagonalizable over Fq but have eingenvalues in Fq;

4. Elements that have eigenvalues in Fq2 .

Elements of two different type cannot be in the same conjugacy class because
eigenvalues are preserved by conjugation, hence we can deal separately with each
type.

Elements of type 1 These elements can be written in an appropriate basis
as

�
a 0
0 a

�1

�
, a 6= 0, 1 and the centralizer is composed by the matrices which are

diagonal in that basis, hence has cardinality q � 1. This implies that each of
these classes has order q(q + 1). Since we can choose a 2 Fq \ {0, 1}, which
has q � 2 elements, and that choosing either a or a�1 gives the same element,
there are at most q�2

2 conjugacy classes of this type. Since the trace is invariant
by change of basis, if A =

�
a 0
0 a

�1

�
and B =

�
b 0
0 b

�1

�
, a, b 6= 0, are in the same

conjugacy class, we have

a+a�1 = b+b�1 =) a2b+b = b2a+a =) (a�b)(ab�1) = 0 =) a = b or a = b�1

hence there are exactly q�2
2 conjugacy classes of type 1. Finally, observe that

there are no elements of order 2 of this type, since a2 = 1 implies a = a�1 = 1
in F2f .

Elements of type 2 Since the eigenvalue in this case bust be an element
a 2 F2f such that a2 = 1, the only possibility is a = 1. Hence this class is
constituted only by the identity matrix.

Elements of type 3 These elements have only one eigenvalue a 2 F2f for
which a2 = 1, hence again the only possibility is a = 1 and they can be written
in an appropriate basis as

�
1 1
0 1

�
. Hence there is only one conjugacy classes and

by simple calculation it is possible to prove that an element of this form has as
centralizer {

�
1 b

0 1

�
, b 2 Fq} which has q elements. Thus the class has size q2 � 1.

Non-equivalent primitive permutation representations of finite groups
with the same set of derangements
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CHAPTER 5. AN EXAMPLE IN SL2(2F )

Elements of type 4 The eigenvalues in this case are the zeros ⇠, ⇠0 2 Fq2 of
a irreducible polynomial x2+ax+1 = 0, a 2 Fq (⇠⇠0 must be 1 because it is the
determinant of the diagonalized matrix, which is invariant under conjugation
in SL2(q)). Since there are q polynomials of this form over the field Fq and
1 + q�2

2 are reducible, there are at most q/2 conjugacy classes of this type and,
with analogous calculations done in the case of type 1, we see that there are
actually q/2 conjugacy classes.

We are ready to determine which conjugacy classes are intersected by M1

and M2.
First consider the subgroup M1 = K [H, where K,H are respectively the

subset of diagonal and antidiagonal matrices. The elements of K are clearly
of type 1 and 2 and each conjugacy class of elements of this type contains a
diagonal matrix, hence K intersects all and only these conjugacy classes. The
elements of H have characteristic polynomial x2 + 1 = 0, hence they have 1 as
unique eigenvalue. Moreover they have order 2, hence cannot be of type 1 or 2.
Consequently, these elements are all of type 3. In conclusion M1 intersect all
and only the conjugacy classes of elements of type 1, 2 and 3.

Now consider the subgroup M2. Since K ✓ M2, M2 intersects all conjugacy
classes of elements of type 1 and 2. Moreover M2 contains

�
1 1
0 1

�
, hence it

intersects the conjugacy class of elements of type 3. Finally, clearly each matrix
in M2 has its eigenvalues in Fq, hence we can conclude that also M2 intersects
all and only the conjugacy classes of elements of type 1, 2 and 3.

This proves that M̃1 = M̃2.

Non-equivalent primitive permutation representations of finite groups
with the same set of derangements
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CHAPTER 6. SPORADIC GROUPS

Chapter 6

Sporadic groups

This chapter contains a complete answer to the question for sporadic groups.
The first table summarizes the results, while each sporadic group, except Fi024,
is discussed in detail in one of the following tables.

The approach in this case was the one presented in the Observation 1.0.2,
namely to check whether there are non-conjugated maximal subgroups which
intersect the same conjugacy classes. All the calculations were made using GAP

(7).
For each group, I have taken the list of its maximal subgroups from the

ATLAS (5) and divided them on the basis of the prime factors of their orders.
The fist cell of each row indicates the position in the list in the ATLAS of the
maximal subgroup. When a maximal subgroup shares its set of prime factors
with no other, the corresponding row in the table is gray, while when the orders
of two maximal subgroups have the same prime factors, then the corresponding
rows of the table are adjacent and have the same color, blue or green. When
the calculation was not excessively expensive in terms of memory, I have made
a further division according to the exponent of the maximal subgroups; this
division is shown in the table by shades of the same color. It was then sufficient
to consider maximal subgroups kept together by these divisions. The most
frequent way to prove that they intersect different conjugacy classes was to find
an order such that there are elements of this order in a subgroup and not in
another; this was checked either with GAP or looking at the character tables.
For the Monster group also Table 14 in (2) turned out to be useful. When
two or more maximal subgroups intersect the same conjugacy classes their rows
are adjacent and colored in yellow or, when there are two subsets of maximal
subgroups which intersect the same conjugacy classes, in orange.

For the group Fi240 the approach was different: since fusion maps between
the character tables of the maximal subgroups of Fi240 and the character table
of the group itself is available in GAP, it was sufficient to compare them. The
result is that the pairs of maximal subgroups which intersect the same conjugacy
classes are the non-conjugated subgroups U3(3).2 and the two non-conjugated
subgroups L2(13).2, while the two non-conjugated subgroups He : 2 intersect
different conjugacy classes of elements of order 12.

Non-equivalent primitive permutation representations of finite groups
with the same set of derangements
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Table 6.1: Summary table

Group Maximal subgroups intersecting the same conjugacy classes
M11 M9 : 2 and 2S4

M12 None
M22 The two copies of A7; 24 : A6 and 24 : S5

M23 L3(4) : 22 and 24 : A7

M24 None
J2 None
Suz The two copies of L3(3) : 2
HS The two copies of U3(5) : 2
McL The two copies of M22; the two copies of 24 : A7 and L3(4) : 2
Co3 None
Co2 None
Co1 None
He The two copies of 26 : 3.S6

Fi22 The two copies of S10; the two copies of O7(3)
Fi23 None
Fi024 The two copies of U3(3).2 ; the two copies of L2(13).2.
HN The two copies of M12 : 2
Th None
B None
M None
J1 23 : 7 : 3 and 7 : 6
O0N The two copies of A7

J3 The two copies of L2(19)
Ly None
Ru None
J4 None

Non-equivalent primitive permutation representations of finite groups
with the same set of derangements
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Table 6.2: M11

M11 Subgroup Factors Exponent Other informations
3 M9 : 2 [2 , 3] 24 They have elements of or-

ders [ 1 , 2 , 3 , 4 , 6 , 8] and
for each of these except 8
there is only one conjugacy
class in M11. There are two
classes of elements of order 8
and both are intersected by
both subgroups.

5 2S4 [2 , 3] 24
1 M10 [2 , 3 , 5] 120
4 S5 [2 , 3 , 5] 60
2 L2(11) [2 , 3 , 5 , 11]

Table 6.3: M12

M12 Subgroup Factors Exponent Other informations
6 32 : 2S4 [2 , 3] 24 There are two conjugacy

classes of elements of order 8
in M12: the 6th and the 7th
maximal subgroups inter-
sect just one of this and not
the same one, the 9th and
10th maximal subgroups in-
tersect both but they inter-
sect different classes of ele-
ments of order 6.

7 32 : 2S4 [2 , 3] 24
9 21+4 : S3 [2 , 3] 24
10 42 : D12 [2 , 3] 24
11 A4 ⇥ S3 [2 , 3] 6
3 A6.22 [2 , 3 , 5] 120 Intersect different classes of

elements of order 8
4 A6.22 [2 , 3 , 5] 120
8 2⇥ S5 [2 , 3 , 5] 60
1 M11 [2 , 3 , 5 , 11] 1320 Intersect different classes of

elements of order 8
2 M11 [2 , 3 , 5 , 11] 1320
5 L2(11) [2 , 3 , 5 , 11] 330

Non-equivalent primitive permutation representations of finite groups
with the same set of derangements
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Table 6.4: M22

M22 Subgroup Factors Exponent Other informations
6 23 : L3(2) [2 , 3 , 7]
2 24 : A6 [2 , 3 , 5] 120 It has elements of order 6
5 24 : S5 [2 , 3 , 5] 120 It has elements of order 6
7 M10 [2 , 3 , 5] 120 It has no elements of order

6
1 L3(4) [2 , 3 , 5 , 7] 420 It has no elements of order

6
3 A7 [2 , 3 , 5 , 7] 420 It has elements of order 6
4 A7 [2 , 3 , 5 , 7] It has elements of order 6
8 L2(11) [2 , 3 , 5 , 11]

Table 6.5: M23

M23 Subgroup Factors Exponent Other informa-
tions

6 24 : (3⇥A5) : 2 [2 , 3 , 5]
2 L3(4) : 22 [2 , 3 , 5 , 7] 840 For orders 7 and

14 they intersect
the same conju-
gacy classes, for
orders 2, 3, 4,
5, 6 and 8 there
is only one conju-
gacy class.

3 24 : A7 [2 , 3 , 5 , 7] 840
4 A8 [2 , 3 , 5 , 7] 420
1 M22 [2 , 3 , 5 , 7 , 11]
5 M11 [2 , 3 , 5 , 11]
7 23 : 11 [11 , 23]

Non-equivalent primitive permutation representations of finite groups
with the same set of derangements
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Table 6.6: M24

M24 Subgroup Factors Exponent Other infor-
mations

7 26 : (L3(2)⇥ S3) [2 , 3 , 7] 168
9 L2(7) [2 , 3 , 7] 84
5 26 : 3.S6 [2 , 3 , 5]
3 24 : A8 [2 , 3 , 5 , 7] 840 It has no el-

ements of or-
der 21

6 L3(4) : S3 [2 , 3 , 5 , 7] 840 It has ele-
ments of or-
der 21

2 M22 : 2 [2 , 3 , 5 , 7 , 11]
1 M23 [2 , 3 , 5 , 7 , 11 , 23]
4 M12 : 2 [2 , 3 , 5 , 11]
8 L2(23) [2 , 3 , 11 , 23]

Table 6.7: J2

J2 Subgroup Factors Exponent Other informations
4 22+4 : (3⇥ S3) [2 , 3]
1 U3(3) [2 , 3 , 7] 168 It has elements of order 12
7 L3(2) : 2 [2 , 3 , 7] 168 It has no elements of order 12
2 3.A6.2 [2 , 3 , 5] 120 It has elements of order 15
3 21+4 : A5 [2 , 3, 5] 120 It has no elements of order 15
5 A4 ⇥A5 [2 , 3 , 5] 30 It has elements of order 15
6 A5 ⇥D10 [2 , 3 , 5] 30 It has elements of order 15

and one element of order 5 of
the 6th maximal subgroup is
in a different conjugacy class
with respect to the two con-
jugacy classes containing the
elements of order 5 of the 5th
maximal subgroup.

8 52 : D12 [2 , 3 , 5] 30 It has elements of order 10
and it has no elements of or-
der 15

9 A5 [2 , 3 , 5] 30 It has no elements of order 10
and it has no elements of or-
der 15

Non-equivalent primitive permutation representations of finite groups
with the same set of derangements

27



TABLES

Table 6.8: Suz

Suz Subgroup Factors Exponent Other informa-
tions

11 32+4 : 2.(A422)2 [2 , 3] 72
4 21+6.U4(2) ,[2 , 3 , 5] 360
7 24+6 : 3A6 [2 , 3 , 5] 120 It has no elements

of order 20
9 22+8 : (A5 ⇥ S3) [2 , 3 , 5] 120 It has elements

of order 20 and
intersect different
classes of elements
of order 15

12 (A6 ⇥A5).2 [2 , 3 , 5] 120 It has elements of
order 20

13 (A6 ⇥ 32 : 4).2 [2 , 3 , 5] 60
2 32U4(3).230 [2 , 3 , 5 , 7] 2520
6 J2 : 2 [2 , 3 , 5 , 7] 840 It has no elements

of order 21
8 (A4 ⇥ L3(4)) : 2 [2 , 3 , 5 , 7] 840 It has elements of

order 21
17 A7 [2 , 3 , 5 , 7] 420
1 G2(4) [2 , 3 , 5 , 7 , 13] 10920
16 L2(25) [2 , 3 , 5 , 13] 780
3 U5(2) [2 , 3 , 5 , 11] 3960 Intersect different

classes of elements
of order 12

5 35 : M11 [2 , 3 , 5 , 11] 3960
10 M12 : 2 [2 , 3 , 5 , 11] 1320
14 L3(3) : 2 [2 , 3 , 13] 312
15 L3(3) : 2 [2 , 3 , 13] 312

Non-equivalent primitive permutation representations of finite groups
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Table 6.9: HS

HS Subgroup Factors Exponent Other informations
7 43 : L3(2) [2 , 3 , 7] 168
6 24.S6 [2 , 3 , 5] 120 It has no elements of or-

der 20 and it has ele-
ments of order 12

10 4.24.S5 [2 , 3 , 5] 120 It has elements of order
20

11 2⇥A6.22 [2 , 3 , 5] 120 It has elements neither of
order 20 nor of order 12

12 5 : 4⇥A5 [2 , 3 , 5] 60
2 U3(5) : 2 [2 , 3 , 5 , 7] 840 It has no elements of or-

der 15 and it has ele-
ments of order 20

3 U3(5) : 2 [2 , 3 , 5 , 7] 840
4 L3(4) : 21 [2 , 3 , 5 , 7] 840 It has elements neither of

order 15 nor of order 15
5 S8 [2 , 3 , 5 , 7] 840 It has elements of order

15
1 M22 [2 , 3 , 5 , 7 , 11]
8 M11 [2 , 3 , 5 , 11] 1320 They intersect different

conjugacy classes of ele-
ments of order 8

9 M11 [2 , 3 , 5 , 11] 1320

Non-equivalent primitive permutation representations of finite groups
with the same set of derangements
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Table 6.10: McL

McL Subgroup Factors Exponent Other informations
5 31+4 : 2.S5 [2 , 3 , 5] 360 It has elements of or-

der 15
6 34 : M10 [2 , 3 , 5] 360 It has no elements of

order 15
12 51+2 : 3 : 8 [2 , 3 , 5] 120
1 U4(3) [2 , 3 , 5 , 7] 2520
4 U3(5) [2 , 3 , 5 , 7] 840 It has no elements of

order 14
8 2.A8 [2 , 3 , 5 , 7] 840 It has elements of or-

der 14 and of order 15
7 L3(4) : 2 [2 , 3 , 5 , 7] 840 It has elements of or-

der 14 and it has no el-
ements of order 15

9 24 : A7 [2 , 3 , 5 , 7] 840 It has elements of or-
der 14 and it has no el-
ements of order 15

10 24 : A7 [2 , 3 , 5 , 7] 840
2 M22 [2 , 3 , 5 , 7 , 11]
3 M22 [2 , 3 , 5 , 7 , 11]
11 M11 [2 , 3 , 5 , 11]

Non-equivalent primitive permutation representations of finite groups
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Table 6.11: Co3

Co3 Subgroup Factors Exponent Other informa-
tions

12 [210.33] [2 , 3]
13 S3 ⇥ L2(8) : 3 [2 , 3 , 7]
8 31+4 : 4S6 [2 , 3 , 5] 360
14 A4 ⇥ S5 [2 , 3 , 5] 60
3 U4(3).(22)133 [2 , 3 , 5 , 7] 2520 It has no ele-

ments of order
30

6 2.S6(2) [2 , 3 , 5 , 7] 2520 It has elements
of order 30

7 U3(5) : S3 [2 , 3 , 5 , 7] 840 It has elements
of order 30

9 24.A8 [2 , 3 , 5 , 7] 840 It has elements
neither of order
30 nor of order
21

10 L3(4) : D12 [2 , 3 , 5 , 7] 840 It has no ele-
ments of order
30
and it has ele-
ments of order
21

1 McL : 2 [2 , 3 , 5 , 7 , 11] 27720
2 HS [2 , 3 , 5 , 7 , 11] 9240
4 M23 [2 , 3 , 5 , 7 , 11 , 23]
5 35 : (2⇥M11) [2 , 3 , 5 , 11] 3960
11 2⇥M12 [2 , 3 , 5 , 11] 1320

Table 6.12: Co2

Co2 Subgroup Factors Esponenente
8 24+10.(S5S3) [2 , 3 , 5] 240
10 31+4.21+4.S5 [2 , 3 , 5] 360
11 51+2 : 4S4 [2 , 3 , 5] 120
4 21+8 : S6(2) [2 , 3 , 5 , 7] 5040
6 (24 ⇥ 21+6).A8 [2 , 3 , 5 , 7] 840
7 U4(3) : D8 [2 , 3 , 5 , 7] 2520
1 U6(2) : 2 [2 , 3 , 5 , 7 , 11] 55440
2 210 : M22 : 2 [2 , 3 , 5 , 7 , 11] 18480
3 McL [2 , 3 , 5 , 7 , 11] 27720
5 HS : 2 [2 , 3 , 5 , 7 , 11] 9240
9 M23 [2 , 3 , 5 , 7 , 11 , 23]

Non-equivalent primitive permutation representations of finite groups
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Table 6.13: Co1

Co1 Subgroup Factors Exponent Other
infor-
ma-
tions

15 33+4 : 2.(S4 ⇥ S4) [2 , 3]
21 72 : (3⇥ 2.S4) [2 , 3 , 7]
9 24 + 12.(S3 ⇥ 3.S6) [2 , 3 , 5] 240
13 31+4 : 2.S4(3).2 [2 , 3 , 5] 360
19 51+2 : GL2(5) [2 , 3 , 5] 120
18 (D10 ⇥ (A5 ⇥A5).2).2 [2 , 3 , 5] 60
20 53 : (4⇥A5).2 [2 , 3 , 5] 60 It in-

tersect
only
one
conju-
gacy
class
of ele-
ments
of order
30 and
there
is an
element
of order
30 in
18th
max-
imal
sub-
group
which
is not
in this
class.

22 52 : 2A5 [2 , 3 , 5] 60 It has
no ele-
ments
of order
30

5 21+8.O8+(2) [2 , 3 , 5 , 7] 5040
8 22+12 : (A8 ⇥ S3) [2 , 3 , 5 , 7] 1680
10 32.U4(3).D8 [2 , 3 , 5 , 7] 2520

Non-equivalent primitive permutation representations of finite groups
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12 (A5 ⇥ J2) : 2 [2 , 3 , 5 , 7] 840 It has
ele-
ments
of order
42 and
of order
60

14 (A6 ⇥ U3(3)).2 [2 , 3 , 5 , 7] 840 It has
no ele-
ments
of order
42 and
it has
ele-
ments
of order
60

17 (A7 ⇥ L2(7)) : 2 [2 , 3 , 5 , 7] 840 It has
ele-
ments
of order
42 and
it has
no ele-
ments
of order
60

16 A9 ⇥ S3 [2 , 3 , 5 , 7] 1260
7 (A4 ⇥G2(4)) : 2 [2 , 3 , 5 , 7 , 13]
6 U6(2) : S3 [2 , 3 , 5 , 7 , 11]
1 Co2 [2 , 3 , 5 , 7 , 11 , 23] 1275120
3 211 : M24 [2 , 3 , 5 , 7 , 11 , 23] 425040
4 Co3 [2 , 3 , 5 , 7 , 11 , 23] 637560
2 3.Suz : 2 [2 , 3 , 5 , 7 , 11 , 13]
11 36 : 2.M12 [2 , 3 , 5 , 11]

Non-equivalent primitive permutation representations of finite groups
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Table 6.14: He

He Subgroup Factors Exponent Other informations
5 21+6.L3(2) [2 , 3 , 7] 168 It has elements of order

12
6 72 : 2.L2(7) [2 , 3 , 7] 168 It has no elements of or-

der 12
8 71+2 : (3⇥ S3) [2 , 3 , 7] 42
9 S4 ⇥ L3(2) [2 , 3 , 7] 84 They intersect different

classes of elements of or-
der 4

10 7 : 3⇥ L3(2) [2 , 3 , 7] 84
3 26 : 3.S6 [2 ,3 , 5] 120
4 26 : 3.S6 [2 , 3 , 5] 120
11 52 : 4A4 [2 , 3 , 5] 60
2 22.L3(4).S3 [2 , 3 , 5 , 7] 840
7 3.S7 [2 , 3 , 5 , 7] 420
1 S4(4) : 2 [2 , 3 , 5 , 17]

Non-equivalent primitive permutation representations of finite groups
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Table 6.15: Fi22

Fi22 Subgroup Factors Exponent Other in-
formations

11 31+6 : 23+4 : 32 : 2 [2 , 3]
7 (2⇥ 21+8) : (U4(2) : 2) [2 , 3 , 5] 720
10 25+8 : (S3 ⇥A6) [2 , 3 , 5] 240
4 O+

8 (2) : S3 [2 , 3 , 5 , 7] 2520 It has
elements
of order
18 and of
order 20

6 26 : S6(2) [2 , 3 , 5 , 7] 2520 It has ele-
ments nei-
ther of or-
der 18 nor
of order 14

8 U4(3) : 2⇥ S3 [2 , 3 , 5 , 7] 2520 It has
elements
of order
18 and
it has no
elements of
order 20

12 S10 [2 , 3 , 5 , 7] 2520 It has no
elements
of order 18
and Iit has
elements of
order 14

13 S10 [2 , 3 , 5 , 7]
2 O7(3) [2 , 3 , 5 , 7 , 13]
3 O7(3) [2 , 3 , 5 , 7 , 13]
1 2.U6(2) [2 , 3 , 5 , 7 , 11] 27720
5 210 : M22 [2 , 3 , 5 , 7 , 11] 18480
9 2F4(2)0 [2 , 3 , 5 , 13]
14 M12 [2 , 3 , 5 , 11]
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Table 6.16: Fi23

Fi23 Subgroup Factors Exponent
7 31+8.21+6.31+2.2S4 [2 , 3]
10 (22 ⇥ 21+8).(3 ⇥

U4(2)).2
[2 , 3 , 5]

11 26+8 : (A7 ⇥ S3) [2 , 3 , 5 , 7] 1680
12 S6(2)⇥ S4 [2 , 3 , 5 , 7] 2520
4 S8(2) [2 , 3 , 5 , 7 , 17]
2 O+

8 (3) : S3 [2 , 3 , 5 , 7 , 13] 98280
5 O7(3)⇥ S3 [2 , 3 , 5 , 7 , 13] 32760
3 22.U6(2).2 [2 , 3 , 5 , 7 , 11] 55440
9 S12 [2 , 3 , 5 , 7 , 11] 27720
6 211.M23 [2 , 3 , 5 , 7 , 11 , 23] 425040
1 2.F i22 [2 , 3 , 5 , 7 , 11 , 13] 720720
13 S4(4) : 4 [2 , 3 , 5 , 17]
8 [310].(L3(3)⇥ 2) [2 , 3 , 13]
14 L2(23) [2 , 3 , 11 , 23]

Table 6.17: HN

HN Subgroup Factors Exponent Other informa-
tions

6 51+4.21+4.5.4 [2 , 5]
13 34 : 2.(A4 ⇥A4).4 [2 , 3]
9 23+2+6.(3⇥ L3(2)) [2 , 3 , 7]
3 U3(8) : 3 [2 , 3 , 7 , 19]
4 21+8.(A5 ⇥A5).2 [2 , 3, 5] 120 It has no ele-

ments of order
40

8 (A6 ⇥A6).D8 [2 , 3 , 5] 120 It has elements
of order 40

7 26.U4(2) [2 , 3 , 5] 360
10 52+1+2.4.A5 [2 , 3 , 5] 300
14 31+4 : 4.A5 [2 , 3 , 5] 180
5 (D10 ⇥ U3(5)).2 [2 , 3 , 5 , 7]
1 A12 [2 , 3 , 5 , 7 , 11] 27720
2 2.HS.2 [2 , 3 , 5 , 7 , 11] 9240
11 M12 : 2 [2 , 3 , 5 , 11]
12 M12 : 2 [2 , 3 , 5 , 11]

Non-equivalent primitive permutation representations of finite groups
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Table 6.18: Th

Th Subgroup Factors Exponent Other infor-
mations

15 31 : 15 [3 , 5 , 31]
6 3.32.3.(3⇥ 32).32 : 2S4 [2 , 3] 216 It has ele-

ments of or-
der 36

7 32.33.32.32 : 2S4 [2 , 3] 216 It has no el-
ements of or-
der 36

11 72 : (3⇥ 2S4) [2 , 3 , 7]
4 U3(8) : 6 [2 , 3 , 7 , 19]
1 3D4(2) : 3 [2 , 3 , 7 , 13] It has ele-

ments of or-
der 28

5 (3⇥G2(3)) : 2 [2 , 3 , 7 , 13] It has no el-
ements of or-
der 28

8 35 : 2.S6 [2 , 3 , 5] 120 It has no el-
ements of or-
der 20 and it
has elements
of order 12

9 51+2 : 4S4 [2 , 3 , 5] 120 It has ele-
ments of or-
der 20 and it
has no ele-
ments of or-
der 24

10 52 : GL2(5) [2 , 3 , 5] 120 It has ele-
ments of or-
der 20 and of
order 24

14 M10 [2 , 3 , 5] 120 It has el-
ements
neither of
order 20 nor
of order 12

16 S5 [2 , 3 , 5] 60
3 21+8.A9 [2 , 3 , 5 , 7]
2 25.L5(2) [2 , 3 , 5 , 7 , 31]
12 L2(19) : 2 [2 , 3 , 5 , 19]
13 L3(3) [2 , 3 , 13]

Non-equivalent primitive permutation representations of finite groups
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Table 6.19: B

B Subgroup Factors Other informations
30 47 : 23 [23 , 47]
17 [311].(S4 ⇥ 2S4) [2 , 3]
13 31+8.21+6.U4(2).2 [2 , 3 , 5] It has elements of or-

der 9
21 51+4.21+4.A5.4 [2 , 3 , 5] It has no elements of

order 9 and it has
elements of order 60
and 25

22 (S6 ⇥ S6).4 [2 , 3 , 5] It has elements nei-
ther of order 9 nor of
order 60

23 52 : 4S4 ⇥ S5 [2 , 3 , 5] It has elements nei-
ther of order 9 nor of
order 25 and it has
elements of order 60

10 [235].(S5 ⇥ L3(2)) [2 , 3 , 5 , 7] It has no elements of
order 9 and it has
elements of order 15
and 60

14 (32 : D8 ⇥ U4(3).2.2).2 [2 , 3 , 5 , 7] It has elements of or-
der 9

19 (S6 ⇥ L3(4) : 2).2 [2 , 3 , 5 , 7] It has elements nei-
ther of order 9 nor of
order 60 and it has
elements of order 15

24 L2(49).23 [2 , 3 , 5 , 7] It has elements nei-
ther of order 9 nor of
order 15

8 [230].L5(2) [2 , 3 , 5 , 7 , 31]
4 29+16.S8(2) [2 , 3 , 5 , 7 , 17]
12 O+

8 (3) : S4 [2 , 3 , 5 , 7 , 13]
5 Th [2 , 3 , 5 , 7 , 13 , 19

, 31]
6 (22 ⇥ F4(2)) : 2 [2 , 3 , 5 , 7 , 13 , 17]
7 22+10+20.(M22 : 2⇥ S3) [2 , 3 , 5 , 7 , 11] It has elements of or-

der 21 and It has no
elements of order 35

15 5 : 4⇥HS : 2 [2 , 3 , 5 , 7 , 11] It has no elements of
order 21

18 S5 ⇥M22 : 2 [2 , 3 , 5 , 7 , 11] It has elements of or-
der 21 and 35

2 21+22.Co2 [2 , 3 , 5 , 7 , 11 , 23]
11 HN : 2 [2 , 3 , 5 , 7 , 11 , 19]
9 S3 ⇥ Fi22 : 2 [2 , 3 , 5 , 7 , 11 , 13]
3 Fi23 [2 , 3 , 5 , 7 , 11 , 13

, 17 , 23]

Non-equivalent primitive permutation representations of finite groups
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1 2.2E6(2) : 2 [2 , 3 , 5 , 7 , 11 , 13
, 17 , 19]

20 53.L3(5) [2 , 3 , 5 , 31] It has elements of or-
der 20

25 L2(31) [2 , 3 , 5 , 31] It has no elements of
order 20

16 S4 ⇥ 2F4(2) [2 , 3 , 5 , 13]
26 M11 [2 , 3 , 5 , 11] It has no elements of

order 10
29 L2(11) : 2 [2 , 3 , 5 , 11] It has elements of or-

der 10
28 L2(17) : 2 [2 , 3 , 17]
27 L3(3) [2 , 3 , 13]

Table 6.20: M

M Subgroup Factors Other informations
43 41 : 40 [2 , 5 , 41]
29 72+1+2 : GL2(7) [2 , 3 , 7] Ha elementi sia di

ordine 21 sia di or-
dine 48

34 (72 : (3⇥ 2A4)⇥ L2(7)).2 [2 , 3 , 7] It has elements of
order 21 and It has
no elements of or-
der 48

41 72 : SL2(7) [2 , 3 , 7] It has no elements
of order 21

33 132 : 2L2(13).4 [2 , 3 , 7 , 13]
20 (A6 ⇥A6 ⇥A6).(2⇥ S4) [2 , 3 , 5] It has no elements

of order 18 and It
has elements of or-
der 40

22 52+2+4 : (S3 ⇥GL2(5)) [2 , 3 , 5] Non ha elementi
nor of order 18 nor
of order 40

31 (S5 ⇥ S5 ⇥ S5) : S3 [2 , 3 , 5] It has elements of
order 18

10 23+6+12+18.(L3(2)⇥ 3S6) [2 , 3 , 5 , 7] It has elements of
order 56 and 105

16 51+6 : 2J2 : 4 [2 , 3 , 5 , 7] It has elements of
order 56 , it has ele-
ments neither of or-
der 105 nor of order
42

Non-equivalent primitive permutation representations of finite groups
with the same set of derangements
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24 71+4 : (3⇥ 2S7) [2 , 3 , 5 , 7] It has elements of
order 56 and 42, it
has no elements of
order 105

25 (52 : [24]⇥ U3(5)).S3 [2 , 3 , 5 , 7] It has elements nei-
ther of order 56 nor
of order 105

27 (A7 ⇥ (A5 ⇥A5) : 22) : 2 [2 , 3 , 5 , 7] It has no elements
of order 56 and it
has elements of or-
der 105

37 L2(71) [2 , 3 , 5 , 7 , 71]
8 25+10+20.(S3 ⇥ L5(2)) [2 , 3 , 5 , 7 , 31]
40 L2(29) : 2 [2 , 3 , 5 , 7 , 29]
21 (A5 ⇥ U3(8) : 31) : 2 [2 , 3 , 5 , 7 , 19]
17 (7 : 3⇥He) : 2 [2 , 3 , 5 , 7 , 17] It has no elements

of order 34
23 (L3(2)⇥ S4(4) : 2).2 [2 , 3 , 5 , 7 , 17] It has elements of

order 34
5 210+16.O+

10(2) [2 , 3 , 5 , 7 , 17 ,
31]

13 (32 : 2⇥O+
8 (3)).S4 [2 , 3 , 5 , 7 , 13]

11 38.O8�(3).23 [2 , 3 , 5 , 7 , 13 ,
41]

9 S3 ⇥ Th [2 , 3 , 5 , 7 , 13 ,
19 , 31]

18 (A5 ⇥A12) : 2 [2 , 3 , 5 , 7 , 11]
6 22+11+22.(M24 ⇥ S3) [2 , 3 , 5 , 7 , 11 ,

23]
12 (D10 ⇥HN).2 [2 , 3 , 5 , 7 , 11 ,

19]
7 31+12.2Suz.2 [2 , 3 , 5 , 7 , 11 ,

13]
2 21+24.Co1 [2 , 3 , 5 , 7 , 11 ,

13 , 23]
3 3.F i24 [2 , 3 , 5 , 7 , 11 ,

13 , 17 , 23 , 29]
4 22.2E6 : S3 [2 , 3 , 5 , 7 , 11 ,

13 , 17 , 19]
1 2.B [2 , 3 , 5 , 7 , 11 ,

13 , 17 , 19 , 23 , 31
, 47]

19 53+3.(2⇥ L3(5)) [2 , 3 , 5 , 31]
38 L2(59) [2 , 3 , 5 , 29 , 59]
42 L2(19) : 2 [2 , 3 , 5 , 19]
28 54 : (3⇥ 2L2(25)) : 22 [2 , 3 , 5 , 13]
14 32+5+10.(M11 ⇥ 2S4) [2 , 3 , 5 , 11] It has elements of

order 27

Non-equivalent primitive permutation representations of finite groups
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26 (L2(11)⇥M12) : 2 [2 , 3 , 5 , 11] It has no elements
of order 27, it has
elements of order
60 and of order 88

30 M11 ⇥A6.22 [2 , 3 , 5 , 11] It has elements nei-
ther of order 27 nor
of order 60 and it
has elements of or-
der 40

32 (L2(11)⇥ L2(11)) : 4 [2 , 3 , 5 , 11] It has elements nei-
ther of order 27 nor
of order 88, it has
elements of order
60

39 112 : (5⇥ 2A5)4 [2 , 3 , 5 , 11] It has elements nei-
ther of order 27 nor
of order 60 nor of
order 40

15 33+2+6+6 : (L3(3)⇥ SD16) [2 , 3 , 13] The subgroup 36 :
(L3(3)⇥SD16) has
elements of order 9

35 (13 : 6⇥ L3(3)).2 [2 , 3 , 13] It has no elements
of order 9 and it
has elements of or-
der 104

36 131+2 : (3⇥ 4S4) [2 , 3 , 13] It has elements nei-
ther of order 9 nor
of order 104

Table 6.21: J1

J1 Subgroup Factors Other informations
5 11:10 [2 , 5 , 11]
2 23 : 7 : 3 [2 , 3 , 7] The 2nd and the 7th maximal subgroups

have elements of orders [1 , 2 , 3 , 6 , 7]
and for each of these there is only one con-
jugacy class of elements in J1

7 7:6 [2 , 3 , 7]
3 2⇥A5 [2 , 3 , 5] It has no elements of order 15
6 D6 ⇥D10 [2 , 3 , 5] It has elements of order 15
1 PSL2(11) [2 , 3 , 5 , 11]
4 19:6 [2 , 3 , 19]

Non-equivalent primitive permutation representations of finite groups
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Table 6.22: O0N

O0N Subgroup Factors Other informations
9 43.L3(2) [2 , 3 , 7]
1 L3(7) : 2 [2 , 3 , 7 , 19] They intersect differ-

ent conjugacy classes of
elements of order 8

2 L3(7) : 2 [2 , 3 , 7 , 19]
5 (32 : 4⇥A6).2 [2 , 3 , 5] It has elements of order 20
6 34 : 21+4.D10 [2 , 3 , 5] It has no elements of order

20
4 42.L3(4) : 21 [2 , 3 , 5 , 7]
12 A7 [2 , 3 , 5 , 7] They intersect the same

conjugacy classes of ele-
ments of orders 4 and 7 and
there is only one conjugacy
class of elements of order
2,3,5 and 6

13 A7 [2 , 3 , 5 , 7]
3 J1 [2 , 3 , 5 , 7 , 11 , 19]
7 L2(31) [2 , 3 , 5 , 31] They intersect differ-

ent conjugacy classes of
elements of order 8

8 L2(31) [2 , 3 , 5 , 31]
10 M11 [2 , 3 , 5 , 11] They intersect differ-

ent conjugacy classes of
elements of order 8

11 M11 [2 , 3 , 5 , 11]

Table 6.23: J3

J3 Subgroup Factors Exponent Other informations
7 32+1+2 : 8 [2 , 3] 72
9 22+4 : (3⇥ S3) [2 , 3] 24
4 24 : (3A5) [2 , 3 , 5] 60
6 (3A6) : 22 [2 , 3 , 5] 120 It has elements of order

15
8 21+4 : A5 [2 , 3 , 5] 120 It has no elements of or-

der 15
2 L2(19) [2 , 3 , 5 , 19]
3 L2(19) [2 , 3 , 5 , 19]
1 L2(16) : 2 [2 , 3 , 5 , 17]
5 L2(17) [2 , 3 , 17]
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Table 6.24: Ly

Ly Subgroup Factors Exponent Other informations
5 51+4 : 4.S6 [2 , 3 , 5] It has an element of

order 25
7 32+4 : 2.A5.D8 [2 , 3 , 5] 360
1 G2(5) [2 , 3 , 5 , 7 , 31]
2 3.McL : 2 [2 , 3 , 5 , 7 , 11] It has elements of or-

der 33
4 2.A11 [2 , 3 , 5 , 7 , 11] It has no elements of

order 33
3 53.L3(5) [2 , 3 , 5 , 31]
6 35 : (2⇥M11) [2 , 3 , 5 , 11]
9 37 : 18 [2 , 3 , 37]
8 67 : 22 [2 , 11 , 67]

Table 6.25: Ru

Ru Subgroup Factors Exponent Other informations
12 51+2 : [25] [2 , 5]
4 23+8 : L3(2) [2 , 3 , 7] 336
2 26.U3(3).2 [2 , 3 , 7] 168
13 L2(13) : 2 [2 , 3 , 7 , 13]
15 5 : 4A5 [2 , 3 , 5] 60
14 A6.22 [2 , 3 , 5] 120 It has no elements of

order 12
11 3.A6.22 [2 , 3 , 5] 120 It has elements of or-

der 15 and of order 12
10 52 : 4.S5 [2 , 3 , 5] 120 It has elements of or-

der 12 and it has no el-
ements of order 15

6 21+4+6.S5 [2 , 3 , 5] 240
8 A8 [2 , 3 , 5 , 7] 420
5 U3(5) : 2 [2 , 3 , 5 , 7] 840
9 L2(29) [2 , 3 , 5 , 7 , 29]
3 (22Sz(8)) : 3 [2 , 3 , 5 , 7 , 13]
7 L2(25).22 [2 , 3 , 5 , 13] 1560
1 2F4(2) [2, 3 , 5 , 13] 3120
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Table 6.26: J4

J4 Subgroup Factors Other informations
12 43 : 14 [2 , 7 , 43]
11 29 : 28 [2 , 7 , 29]
10 U3(3) [2 , 3 , 7]
4 23+12.(S5⇥ L3(2)) [2 , 3 , 5 , 7]
3 210 : L5(2) [2 , 3 , 5 , 7 , 31]
2 21+12.3.M22 : 2 [2 , 3 , 5 , 7 , 11] It has elements of order 44
6 M22 : 2 [2 , 3 , 5 , 7 , 11] It has no elements of order

44
1 211 : M24 [2 , 3 , 5 , 7 , 11, 23]
7 111+2 : (5⇥ 2S4) [2 , 3 , 5 , 11]
5 U3(11) : 2 [2 , 3 , 5 , 11 , 37]
8 L2(32) : 5 [2 , 3 , 5 , 11 , 31]
13 37:12 = F444 [2 , 3 , 37]
9 L2(32) : 2 [2 , 3 , 11 , 23]
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