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Chapter 1

Introduction

The graph theoretic side of graphical models provides both an
intuitively appealing interface by which humans can model highly-

interacting sets of variables as well as a data structure that lends
itself naturally to the design of efficient general-purpose

algorithms.

— Michael Jordan, 1998.

The aim of this thesis is to give a brief introduction to the Graphical
Models for Multivariate Time Series and show some of its applications in
order to emphasize the importance of these models.
In the second chapter, we recall some notation relevant to the introduction
of Graphical Models such as the concept of Inverse Covariance Matrix and
Multivariate Power Spectrum.
Fields such as bioinformatics, information retrieval, speech processing and
communications often involve large-scale models in which thousand or mil-
lions of random variables are linked in complex ways. Graphical models
provide a general methodology to approach these problems.
Probabilistic graphical models use a graph-based representation as the ba-
sis for compactly encoding a complex distribution over a high-dimensional
space. In this graphical representation the nodes correspond to the variables
in our domain, and the edges correspond to direct probabilistic interaction
between them.
In Chapter 3, we present Graphical Models in the static case, in which the
characterization of all conditional independence relations is given by a spe-
cific pattern of zeros in the inverse covariance Σ−1.
In Chapter 4, we extend this concept to multivariate time series. Using the
partial spectral coherence between components given the rest of the compo-
nents, we understand that if there is the lack of a connecting link between
two nodes it signifies conditional independence between two processes given
the remaining.
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6 CHAPTER 1. INTRODUCTION

In other words, graphical models give a graph representation of relations
between random variables and processes. The simple example is a Gaus-
sian graphical model in which an undirected graph with n nodes is used to
described conditional independence relations between the components of an
n-dimensional random variable x ∼ N (0, Σ).
The absence of an edge between two nodes of the graph indicates that the
corresponding components of x are conditional independent given the oth-
ers, that corresponds to zero entries in the inverse covariance matrix.
Conditional independence between components of a multivariate stationary
Gaussian process can be characterized in terms of the inverse of the spec-
tral density matrix Φ(eiθ), in which two components xk(t) and xl(t) are
independent of the other components if and only if

[Φ(eiθ)−1]kl = 0.

The problem of estimating the topology in a Gaussian graphical model is
more involved. An approach is to formulate hypothesis testing problems to
decide about the presence or absence of edges between two nodes. Another
possibility is to enumerate different topologies, and use information criteria
to rank the models.
In Chapter 5, we address the extension of estimation methods for Gaussian
graphical models to autoregressive (AR) processes. Conditional indepen-
dence constraints in AR estimation methods are enforced by placing restric-
tions on the sparsity pattern of the inverse spectral density matrix.
We show that AR models can be approximated by a low order ARMA model
and the benefits of this approximation.
In the final Chapter, we present an example of a biomedical application
in intensive care because graphical models provide information on the re-
lationship among physiological variables that are helpful in many medical
problems.



Chapter 2

Notation and Definition

In this chapter, we introduce some definitions in preparation for the concept
of Graphical Models for Gaussian (normal) random variables and for multi-
variate time series.

2.1 Probability Theory

Definition 2.1 (Random Variable). A probability space consists of three
parts: a sample space, Ω, which is the set of all possible outcomes; a set of
collection of all such events is a σ-algebra F ; the assignment of probabilities
to the events, that is, a function from events to probability levels P.
Suppose that (Ω, F , P) is a probability space. A function

X : Ω→ R,

is called a random variable, if for all x ∈ R, {ω ∈ Ω : X(ω) ≤ x} ∈ F .
Random variables can be classified as discrete, namely variables that have
finitely or countably many values, or continuous, namely variables that can
take any value within a continuous range.

Example 2.1.1. Consider an experiment where a coin is tossed three times.
If X represents the number of times that the coin comes up heads, then X
is a discrete random variable that can only have the values 0,1,2,3.

An example of a continuous random variable would be an experiment
that involves measuring the amount of rainfall in a city over a year, or the
average height of a group of 25 people.

Definition 2.2 (Probability Distribution). Suppose that (Ω,F ,P) is a prob-
ability space and X is a random variable X : Ω → R. That the probability
distribution function for X is defined by FX(x) = P (X ≤ x).

7



8 CHAPTER 2. NOTATION AND DEFINITION

Definition 2.3 (Probability Density). For a random variable taking values
in R, if FX(x) is differentiable, then the derivative with respect to x of
FX(x), denoted with a lowercase letter f

fx(x) =
d

dx
FX(x)

is called the probability density function or simply the probability density of
X. It satisfies the conditions:

f(x) ≥ 0,∫ +∞

−∞
f(x)dx = 1

A random variable has an associated expected value, variance and covari-
ance.

Definition 2.4 (Expected Value). The Expected value of a random variable
indicates its average or central value. It is a useful summary value (a num-
ber) of the variable distribution. The expected value of a random variable
X is symbolized by E(X) or µ.

If X is a discrete random variable with possible values x1, x2, x3, ..., xn,
... and P(X = xi) denotes “the probability that the outcome xi occurs”,
then the expected value of X is defined by:

E(x) = µ =
∞∑
i=1

xiP{X = xi} (2.1)

provided the series converges.

If X is a continuous random variable with probability density function
f(x), then the expected value of X is defined by:

E(x) = µ =

∫ ∞
−∞

xf(x)dx (2.2)

Example 2.1.2. Discrete case : When a die is rolled, each of the possible
faces 1, 2, 3, 4, 5, 6 (the xi’s) has a probability of 1/6 (the p(xi)’s) of
showing. The expected value of the face showing is therefore:
µ = E(X) = (1 x 1/6) + (2 x 1/6) + (3 x 1/6) + (4 x 1/6) + (5 x 1/6) +
(6 x 1/6) = 3.5
Notice that, in this case, E(X) is not a possible value of X.

Definition 2.5 (Variance and Covariance). The Variance of a random vari-
able is a non-negative number that gives an idea of how spread around the
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mean the values of the random variable are likely to be; the larger the vari-
ance, the more scattered the observations on average. It is symbolized by
V(X) or Var(X) or σ2.
The variance of the random variable X is defined to be:

V ar(X) = σ2 = E(X − E(X))2 = E(X2)− E(X)2 (2.3)

where E(X) is the expected value of the random variable X.

If X and Y are two random variables with E(X2) <∞ and E(Y 2) <∞,
then their Covariance is defined by:

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y ). (2.4)

Definition 2.6 (Random Vector). We say that X = (X1, ... ,Xn) is an
n-dimensional random vector if its components are random variables. This
is equivalent to saying that X is a random variable with values in Rn.

X =

X1
...
Xn

 ∈ Rn X : Ω→ X (2.5)

The mathematical expectation of an n-dimensional random vector X is,
by definition, the vector

E(X) = (E(X1), ..., E(Xn))T

The Covariance Matrix (or Variance Matrix ) of an n-dimensional ran-
dom vector X, denoted by Σ, is defined as follows:

Σij = Cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)] (2.6)

where µi = E(Xi) is the expected value of the ith entry in the vector X.

In other words, we have

Σ =


E[(X1 − µ1)(X1 − µ1)] E[(X1 − µ1)(X2 − µ2)] · · · E[(X1 − µ1)(Xn − µn)]
E[(X2 − µ2)(X1 − µ1)] E[(X2 − µ2)(X2 − µ2)] · · · E[(X2 − µ2)(Xn − µn)]

...
...

. . .
...

E[(Xn − µn)(X1 − µ1)] E[(Xn − µn)(X2 − µ2)] · · · E[(Xi − µi)(Xj − µj)]


The inverse of this matrix, Σ−1, is the Inverse Covariance Matrix.
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Definition 2.7 (Discrete Time Stochastic Process and Multivariate Stochas-
tic Process). In statistics, signal processing, econometrics and mathematical
finance, a Time Series or Discrete Time Stochastic Process is a sequence of
data points, measured at successive time instants spaced at uniform time
intervals.
Let (Ω, F , P) be a probability space. A family of random variables {X(t); t ∈
T} defined on Ω is called a Stochastic Process. It is called a continuous-time
process if T = [a, b],−∞ ≤ a < b ≤ +∞. It is called a discrete-time process
if T ⊆ Z.
In the simple case of discrete time, a stochastic process amounts to a se-
quence of random variables known as Time Series.
Thus, such a process is the family of random variables X1, X2 ,... and to
know it, it is necessary to specify the functions of joint probability density
of every subset of them. Formally a process {Xt} is known if the joint dis-
tribution of (Xt1 , Xt2 , ... , Xtk) is known for every k and for every k-tuple
of values (t1 , t2 , ... ,tk).

A Multivariate Stochastic Process is a n-dimensional stochastic process
{Xt}, such that Xt is a random vector ∀t.

Definition 2.8 (Gaussian Distribution). The Normal or Gaussian distri-
bution is a continuous probability distribution that has a bell-shaped prob-
ability density function, known as the Gaussian function or informally the
bell curve:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.7)

where the parameter µ is the mean and σ2 is the variance. The distribution
with µ = 0 and σ2 = 1 is called the standard normal distribution or the unit
normal distribution. The Normal distribution is important also because it
can be completely specified by two parameters: mean and variance.
This is the reason why we denote a variable with Normal distribution as
X ∼ N (µ, σ2).

While the univariate Gaussian is defined in terms of two parameters, a
mean and a variance, a multivariate Gaussian distribution of X1, ..., Xn is
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characterized by an n-dimensional mean vector µµµ, and a symmetric n × n
covariance matrix Σ, which we assume to be nonsingular. The density
function is defined as:

f(x) =
1

(2π)n/2|Σ|1/2
exp

[
−1

2
(x−µµµ)TΣ−1(x−µµµ)

]
(2.8)

where |Σ| is the determinant of Σ.
We can observe the presence of the inverse of covariance matrix Σ−1 in this
formula.

Definition 2.9 (Autocorrelation Function). The Autocorrelation Function
of a random process X is a function of two real variables, the reference time
t and the delay time (lag) τ . It takes the value of the correlation between
two random variables in the process, one taken at instant t, and the other
at the instant t-τ .

rx(t, t− τ) = E[x(t)x(t− τ)T ] (2.9)

A process is called wide-sense stationary if its mean, variance and au-
tocorrelation function are independent of time, depending only on τ that is
the time lag.

rx(t, t− τ) = rx(t− (t− τ), 0) = rx(τ, 0)

Then the important characteristic of autocorrelation function is that a
time shift of a signal does not change its autocorrelation.

Definition 2.10 (Power Spectrum). The power spectrum is a matrix-valued
function in the frequency domain and it is defined as the Fourier transform
of the auto-correlation function:

Φ(eiθ) =
+∞∑

k=−∞
Rke

−ikθ (2.10)

where Rk = E{x(k)x(0)T } are named “Covariance lags”.

Since Rk has the Hermitian Property:
RT−k = E{x(k − k)x(0− k)T }T = E{x(0)x(k)T }T = E{x(k)x(0)T } = Rk,
we have:

Φ(e−iθ)T =
+∞∑

k=−∞
RTk e

ikθ =
+∞∑

h=−∞
RT−he

−ihθ =
+∞∑

h=−∞
Rhe

−ihθ = Φ(eiθ).

Namely, Φ enjoys the Parahermitian property.
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Definition 2.11 (Independent Random Variables). Formally, the condi-
tional probability of an event B given A is defined as

P (B|A) =
P (A ∩B)

P (A)

if P(A) > 0.

Two random variables X and Y, are said to be independent if the occur-
ring of the value x of X has no influence on the occurring of the values of
Y , and vice versa.
For discrete independent random variables, their probabilities are related
by:

P (X = xi, Y = yj) = P (X = xi)P (Y = yj)

for each pair (xi, yj).

Anyway, two events A and B are conditionally independent given a third
event C precisely if and only if, given knowledge of whether C occurs, knowl-
edge of whether A occurs provides no information on the likelihood of B
occurring, and knowledge of whether B provides no information on the like-
lihood of A occurring.
In the standard notation of probability theory, A and B are conditionally
independent given C if and only if

P (A ∩B|C) = P (A|C)P (B|C).

2.2 Graphs

In this section, we survey some of the basic concepts in graph theory used
in the following chapters.

Definition 2.12 (Nodes and Edges). A graph is a data structure K consist-
ing of a set of nodes and edges. In this thesis, we will assume that the set
of nodes is X = {X1, ..., Xn}. An edge in a graph is a connection between
vertices, a set of edges is usually denoted E.

Definition 2.13 (Directed and Undirected). A pair of nodes Xi, Xj can
be connected by a directed edge if the edge have a direction,Xi → Xj , that
means an edge starting at Xi and going to Xj or an undirected edge if the
edges have no implied direction Xi −Xj , that is the same as Xj −Xi.



Chapter 3

Graphical Models

Graphical models expose the conditional independences between families
of probability distributions in the form of graphs. We now consider that
Gaussian (normal) random variables involve the specification of a structure
on the mean and the covariance matrix Σ.
We put our interest on the structure of Σ−1 in which certain elements are
assumed to be zero and we show how these zeros in Σ−1 correspond to a
conditional independence relation of two random variables given the rest of
the components. Such process can be represented on a graph where the
random variables are nodes and the lack of a connecting link between two
nodes signifies conditional independence.

3.1 Conditional Independence

We consider a random vector X having a Gaussian distribution with mean
0 and positive definite covariance matrix Σ. The components of X will be
indexed by a finite set C and for a ⊂ C, we write Xa for the subset of the
components of X indexed by a, namely (Xγ : γ ∈ a). The covariance matrix
Σ = (Σ(α, β) : α, β ∈ C) on C is defined by Σ(α, β) = E{XαXβ}, where E
denoted expected value and α, β ∈ C.
For subset a, b ⊆ C,Σa,b = {Σ(α, β) : α ∈ a, β ∈ b} denotes the cross co-
variance matrix of Xa and Xb. When a = b we write directly Σa instead of
Σa,a. We abbreviate the set intersection a ∩ b to ab and write a \ b for the
complement of b in a.
The following proposition relates the conditional independence of two com-
ponents of X to the structure of Σ.

13



14 CHAPTER 3. GRAPHICAL MODELS

Proposition 3.1.1. For subsets a, b of C with a ∪ b = C the following
statements are equivalent:

(i) Σa,b = Σa, abΣ
−1
ab Σab, b

(ii) Σa\b,b\a = Σa\b, abΣ
−1
ab Σab, b\a

(iii) (Σ−1)a\b, b\a = 0

(iv) Xa and Xb are conditionally independent given Xab

Proof. We can easily see that if two random variables are independent their
covariance is null. In the same way, we set the standard formula 3.1 for the
conditional covariance matrix null and obtain the connection between (iv)
and (ii).
(i) and (ii) are equivalent by partioning the rows of Σ over a \ b and ab and
the columns over b \ a and ab.
By partitioning over a\b, b\a and ab, a straightforward use of the expression
for the inverse of a partitioned matrix proves that (ii) is equivalent to (iii).

cov(Xa\b,Xb\a|Xab) = Σa\b, b\a − Σa\b, abΣ
−1
ab Σab, b\a (3.1)

More precisely we are interested in the next corollary that follows from 3.1.1
put a = C \ {α}′andb = {β}′, where the set C \ b will be denoted b’:

Corollary 3.1.2. For distinct elements α, β of C, Xα and Xβ are condi-
tionally independent given X{α,β}′ if and only if Σ−1(α, β) = 0

Now, after we have shown that zeros in Σ−1 correspond to conditional
independence relations, we associate an undirected graph to the pattern of
zeros.

3.2 Undirected Graph

An undirected graph will be denoted by G = (V,E(G)) where V is the vertex
set and E(G) the edge set. For any vertex γ we write ∂γ = {α : {α, γ} ∈
E(G)} for the set of neighbours of γ.
The independence model for undirected or bi-directed graphs is described
using the global Markov property defined as follows. Let G be a undirected
graph with vertex set V . We say that set Vi is independent of Vj given Vk
if Vi is separed from Vj by V \(Vi ∪ Vj ∪ Vk).
We denote the independence implied by the global Markov property on a
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undirected graph G by Vi ⊥G Vj |Vk. The characterization of all conditional
independence relations following from a given pattern of zeros in Σ−1 is
presented in 3.2.1.

Proposition 3.2.1. Let G be a simple graph with vertex set V indexing the
Gaussian random variables X. Then the following are equivalent:

(i) Σ−1(α, β) = 0 if {α, β} 6∈ E(G) and α 6= β;

The local Markov property:

(ii) For every γ ∈ V , Xγ and Xγ, are conditionally independent given
X∂γ;

The global Markov property:

(iii) For every a, b and d with d separating a from b in G, Xa and Xb

are conditionally independent given Xd.

Proof. (i) is equivalent to (ii) put a = ¯{γ} and b = {γ}′ and Σ−1(γ, ¯{γ}′) =
0 proves the result. The equivalence between (i) and (iii) is proved put
”a” = a ∪ d and ”b” = b ∪ d with a ⊆ a∗, b ⊆ b∗, a∗ ∪ b∗ ∪ d = V and a∗ is
separated from b∗ by d, now the integration to obtain the marginal density
of Xa∪b∪d shows that (i) implies (iii).
At last if (α, β) 6∈ E(G) then α, β are separated by {α, β}′, hence by (iii)
Xα and Xβ are conditionally independent given X{α,β}′ and Corollary 3.1.2
shows that Σ−1(α, β) = 0.

Example 3.2.1. Suppose Σ−1 has the following pattern with ? denoting a
nonzero element:

1 2 3 4 5

1
2
3
4
5


? ? 0 0 0
? ? ? 0 ?
0 ? ? ? ?
0 0 ? ? ?
0 ? ? ? ?


The corresponding graph G would be as shown in the Figure 3.1. If

we put γ = {2}, ∂γ = {1, 3, 5}, and use (ii) we deduce that X2 and X4 are
conditionally independent given X{1,3,5}. In the same way with a = {1}, b =
{4} and d = {2}, the property (iii) asserts that X1 and X4 are conditionally
independent given X2.
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Figure 3.1: Example

3.3 Static Application

Consider a very simple medical diagnosis setting, where we focus on two
diseases, flu and hayfever; these are not mutually exclusive, as a patient can
have either, both, or none. Thus, we might have two binary-valued random
variables, Flu and Hayfever. We also have a 4-valued random variable Sea-
son, which is correlated both with Flu and Hayfever. We may also have two
symptoms, Congestion and Muscle Pain, each of which is also binary-valued.
Overall, our probability space has 2 2 4 2 2 = 64 values, corresponding
to the possible assignments to these five variables.
When we consider the fact that a typical medical-diagnosis problem has
dozens or even hundreds of relevant attributes, the problem appears com-
pletely intractable. Graphical models provide a mechanism for exploiting
structure in complex distributions to describe this problems compactly and
allow them to be constructed and utilized effectively.

Figure 3.2: Probabilistic graphical model of Flu
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Independencies
(F ⊥ H | S)

(C ⊥ S | F,H)

(M ⊥ H,C | F )

(M ⊥ C | F )

S F H M C

S
F
H
M
C


? ? ? 0 0
? ? 0 ? ?
? 0 ? 0 ?
0 ? 0 ? 0
0 ? ? 0 ?


In this graph, we see that there is no direct interaction between Muscle Pain
and Season, but both interact directly with Flu.
The graph is a compact represantation of a set of independencies that hold
in the distribution.
The distribution encoding our beliefs about this particular situation may
satisfy the conditional independence (Congestion ⊥ Season | Flu, Hayfever).
Note that this assertion implies only that all of the information we may
obtain from the season on the chances of having congestion we already obtain
by knowing whether the patient has the flu and has hayfever.
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Chapter 4

Graphical Models for
Multivariate Time Series

Now we extend the concept of Graphical Models for multivariate data to
multivariate time series. We use the partial spectral coherence between two
components given the remaining components to define a partial correlation
graph for time series.
The edges of a conditional independence graph show the conditional depen-
dence structure between several variables and give an idea of the interaction
structure of the observed variables.
In regard of the concept of graphical models for multivariate time series, the
vertex set will consist of the components of the series while the edge will
reflect the partial correlation structure of the components given the others.
In order to identify the graph we show a property of the inverse of the spec-
tral matrix.

4.1 Graphical models for time series

We define a graph G = (V,E) that consists of a set of vertices V , say
V = {1, ...,m} and a set of edges E ⊂ {(a, b) ∈ V × V }. We only consider
undirected graphs, i.e. we assume (a, b) ∈ E whenever (b, a) ∈ E.
The core idea is that an edge (a, b) is missing if the components Xa(·) and
Xb(·) are uncorrelated given the other components of the series, in the same
way as in the static case.
Now consider an m-dimensional, zero-mean, Gaussian, stationary stochastic
process {x(t)}t∈Z with the property that designated pairs of components are
conditionally independent given the rest of the components. In fact, such
processes can be represented on a graph where the components are nodes

19
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and the lack of a connecting link between two nodes signifies conditional
independence.
This is manifested by a sparsity pattern in the inverse of the m×m matrix-
valued spectral density

Φ(eiθ) =
+∞∑

k=−∞
Rke

−ikθ (4.1)

where

Rk = E{x(k)x(0)T }

and where we assume that Φ(eiθ) > 0 for all θ ∈ [−π, π].
As it is demonstrated in [1], we have

[Φ(eiθ)−1]kl = 0, −π ≤ θ ≤ π (4.2)

for pairs (k, l) such that xk and xj are conditionally independent give the
rest of the components of the process x.
More precisely, given V = {1, 2, ...,m} and

XI = span{xj(t) : j ∈ I, t ∈ Z}

for an arbitrary set I ⊂ V , the (4.2) holds for all pairs (k, l) such that X{k}
and X{l} are conditionally independent given XV \{k,l}, which we write as

X{k}⊥X{l}|XV \{k,l}.

The set of all such conditional independence relation constitutes a graph
G = (V,E) where V , defined as before, is the set of vertices and E ⊆ V ×V
is a set of edge defined in the following way

(k, l) /∈ E ⇐⇒ k 6= l, X{k}⊥X{l}|XV \{k,l}.

An example is depicted in the following Figure:
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where the lack of an arc between nodes k and l signifies conditional in-
dependence between the process {xk(t)}Z and {xl(t)}Z given the rest of the
components processes.

A model of the process x which takes conditional independence relations
into consideration is commonly referred to as a graphical model.
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Chapter 5

Arma and Graphical Models

5.1 Models

Models for time series data can have many forms and represent different
stochastic processes. When modeling variations at the level of a process,
two broad classes of practical importance are the autoregressive (AR) mod-
els and the moving average (MA) models. Combinations of the two produce
autoregressive moving average (ARMA).

Definition 5.1 (Autoregressive Model). the AR(p) model is written

X(t) = c +

p∑
j=1

AjX(t− j)− e(t) (5.1)

where A1, ..., Ap are the autoregression coefficients of the model, c is a con-
stant and e(t) is white noise. The constant term is omitted by many authors
for simplicity.
An autoregressive model is essentially a model which depends only on the
previous outputs of the system X(t − 1), X(t − 2), .... In other words, the
current term of the series can be estimate by a linear weighted sum of pre-
vious terms in the series. The weights are the autoregression coefficients.
By convention the series Xt is assumed to be zero mean, if not this is simply
another term A0 in front of the summation in the equation above.

Definition 5.2 (Moving-Average Model). The notation MA(q) refers to
the moving average model of order q :

X(t) = µ+ e(t) +

q∑
j=1

Bje(t− j) (5.2)

where B1, ..., Bq are the parameters of the model, µ is the expectation of
X(t) (often assumed to equal 0), and the e(t−1), e(t−2), ... are again, white

23
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noise error terms.

Definition 5.3 (ARMA Models). Combining AR and MA models, we can
define Autoregressive Moving-Average Models or ARMA(p,q) models as:

X(t) = c+ e(t) +

p∑
j=1

AjX(t− j) +

q∑
j=1

Bje(t− j) (5.3)

with p the order of the AR part, and q the order of the MA part.

5.2 ARMA Identification of Graphical Models

Gaussian graphical models represent a way to handle the conditional inde-
pendence relations of a set of stochastic variables or processes. Such models
induce a sparsity pattern in the spectrum inverse.
In order to apply this result to AR processes, we need to express the inverse
spectrum in terms of the model parameters, but the problem of estimating
the model parameters A from an observed sequence X(t− 1), ..., X(t− p) is
not always simple.
There are problems to fit an autoregressive (AR) model to such a process
as a mean for assessing conditional independence.
The basic idea is to use a maximum likelihood and ask for consistency of the
AR model with the data together with conditional independence between
particular nodes. In particular, given the (estimates of) autocovariances
R0, R1, ..., Rn, the problem is to find a multivariate autoregressive model

n∑
j=0

AjX(t− j) = e(t)

that satisfies the sparsity condition seen in Chapter 4:

[Φ(eiθ)−1]kl = 0, −π ≤ θ ≤ π

Here {e(t)}t∈Z is a white noise process and A0, A1, ..., An are m×m ma-
trices such that the determinant of the matrix polynomial have no zeros in
the closed unit disc and det A0 > 0.
In any case, there are examples where AR models are insufficient. Further-
more, an AR model of exceedingly high order can be approximated by a low
order ARMA model. Now we bring this problem to an advanced level, that
is to fit an autoregressive moving-average (ARMA) model, while respecting
the sparsity constraint, to the same data. We follow [3, 69-72].
By allowing for ARMA models, we may choose from a continuum of infinitely
many solutions, one of which might satisfy the required graph topology bet-
ter.
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The ARMA models that we shall consider here take the form

n∑
j=0

AjX(t− j) =
n∑
j=0

Bje(t− j). (5.4)

For technical motivations, we shall here assume that the matrix coefficients
of the moving-average part has the form

Bj = bjI, j = 0, 1, ..., n, b0 = 1.

where the scalar polynomial

b(z) = zn + b1zn−1 + ...+ bn

has no zeros in the closed unit disc.
Then the spectral density of the stationary vector process X becomes Φ(z) =
W (z)W (z−1)T , where W (z) = b(z)A(z)−1.
Hence, our basic problem is to determine a spectral density of the form

Φ(z) = ψ(z)Q(z)−1 (5.5)

satisfying the sparsity constraint and the moment conditions∫ π

−π
eikθΦ(eiθ)

dθ

2π
= Rk, k = 0, 1, ..., n

where ψ is a scalar pseudo-polynomial of degree at most n and Q is a sym-
metric m ×m matrix-valued pseudo-polynomial of degree n. Then the co-
efficients in the corresponding ARMA model 5.3 can be obtained by deter-
mining the minimum-phase spectral factors A(z) and b(z) from

A(z)A(z−1)T = Q(z) and b(z)b(z−1) = ψ(z) (5.6)

respectively.

In applied problems, we are just given a string of measured data

x0, x1, ..., xN ∈ Rn

from the ARMA model 5.3, and we want to estimate the parameters A0, A2,
..., An, b1, ..., bn without prior knowledge of the topology of the graph. Hence
we also need to estimate a suitable graphical structure E from the data. In
fact, in many applications, determining the topology of the graph is the
main task.

For some applications, the interaction graphs have been determined by
nonparametric methods. The ARMA approach also produce a dynamical
model which can be used for prediction.
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In other word, correlation data provide moment constraints on the ma-
tricial power spectrum of a graphical model. When the topology of the
graph has been estimated [1], the conditional independence features impose
certain zeros in the inverse of the spectral density. Present work suggests
the use of autoregressive models for assessing conditional independence. It
is possible using a maximum likelihood, or a maximum entropy formalism,
and ask for consistency of the AR model with the data together with con-
ditional independence between certain nodes.
However, since AR models of exceedingly high order can be approximated
by a low order ARMA model, the potential benefit of analyzing the finite-
dimensional manifold of solutions to moment problems instead is evident,
as there are examples where AR models are insufficient. There is the possi-
bility of fitting a low order ARMA model starting from the graph topology
and correlation data.



Chapter 6

Biomedical applications

In intensive care, detection of critical states and of intervention effects is
of great importance for suitable bedside decision support. Intelligent alarm
systems are needed to provide suitable bedside decision support. Graphical
models provide information on the relationships among physiological vari-
ables that are helpful, [6], [8, 340-344].
Distinct clinical states are characterized by distinct partial correlation struc-
tures. Hence, this technique can provide new insights into physiological
mechanisms.

Clinical information systems can acquire and store physiological vari-
ables and device parameters online at least every minute.
In view of the high dimension of the data, severe problems arise from the
natural limitations of human beings because it is difficult to develop a sys-
tematic response to problems involving more than seven variables, and hu-
man beings are not able to judge the degree of relatedness between more
than two variables. Thus, besides the aim of detecting clinical states, reduc-
ing the number of variables is an added task.
We need information on the relationships between the variables. Graphical
interaction models are an important tool for investigating and modeling re-
lationships within multivariate data, as seen in the previous chapters. These
models allow a simple and helpful graphical visualization, where the vari-
ables are represented by vertices and the relationships between the variables
are illustrated by edges.

6.1 Data set

In the analysis of intensive care physiological variables of critically ill, we
concentrate on the variables heart rate (HR), arterial diastolic pressure
(APD), arterial systolic pressure (APS), arterial mean pressure (APM), pul-
monary artery diastolic pressure (PAPD), pulmonary artery systolic pres-

27
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sure (PAPS), pulmonary artery mean pressure (PAPM), central venous pres-
sure (CVP), blood temperature (Temp) and pulsoximetry (SpO2).
These variables are important for the detection of critical, possibly life-
threatening situations and they provide information on the clinical status of
the patient.

6.2 Graphical interaction models

Between multiple variables usually a multitude of relationships exist, but
many of them are indirect, i.e. they are induced by others. Statistical anal-
ysis in form of graphical models helps to reveal the essential relationships
with no information loss.
We compare “empirical relationships” found by statistical analysis to ”phys-
iological relationships” based on medical knowledge.
Physiological relationships mean that a change in one physiological vari-
able leads to a change in another physiological variable, e.g. an increase of
systolic blood pressure close to always leads to an increase in mean blood
pressure.
From a statistical point of view, measurements of physiological variables
observed in short time intervals form multivariate time series as there may
be interactions not only between the measurements observed at the same
time point, but at short time lags, too. We use partial correlation graphs
for multivariate time series, where linear relationships between every pair
of variables at all time lags are investigated controlling for the linear effects
of the other variables at all time lags. This allows to detect relationships
between the variables of a multivariate time series.

6.3 Results

A first step for online monitoring is to find representative variables, in order
to get reliable and interpretable results without substantial loss of informa-
tion we need to understand the relationship between the variables. For this
task, we analyze the relationships between all vital signs mentioned above.
Figure 6.1 shows a typical example of a partial correlation graph for the
hemodynamic system resulting from the analysis of the data measured for
one patient, where different line types depict different strength of partial
correlation.

For all patients strong relationships could be identified between the ar-
terial pressures (APS, APD and APM), between the pulmonary artery pres-
sures (PAPS, PAPD, PAPM) as well as between heart rate and pulse. Hence,
we can identify groups of strongly related variables from an analysis of the
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Figure 6.1: Partial correlation graph, one step selec-
tion. Different line types depict different strength of
partial correlation.

full data sets. Further relationships could be identified for some patients,
e.g. between arterial pressures and heart rate, and between pulmonary
artery pressures and central venous pressure.

A partitioning of the variables into strongly related subgroups as given
above can be used to reduce the number of variables which have to be consid-
ered for online monitoring. The absence of a relation between two variables
VI and V2 means that the observations of V2 do not add anything to explain
the course of variable VI (and vice versa) given the measurements of the re-
maining variables. On the other hand, if a variable has strong relationships
to several other variables it provides a lot of information on these variables.

In the previous analysis we inspected the relationships using all vari-
ables. This may hide some relationships when there are groups of variables
which are only slightly different representations of the same physiological
process. When analyzing whether there is a relationship between PAPM
and APM, we subtract the linear influences of all other variables including
APD, APS, PAPD and PAPS. As a consequence, systolic and diastolic pres-
sures are dropped in the following. In this way, a set of ‘important variables’
consisting of HR, APM, PAPM, CVP, SP02 and Temp is retained.

Distinct clinical states such as pulmonary hypertension, congestive heart
failure and vasopressor support are accompanied by different pathophysio-
logical responses of the circulatory system and we can see in Figure 6.2 that
correspond to dictinct graphical models. These changes may be supposed
to result in differences in the interactions between the vital signs, too.
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Figure 6.2:

For instance,pulmonary hypertension can be characterized by an elevated
PAPM. Due to the increased right ventricular pressures we expect strong
interactions between CVP and PAPM, but may attenuate the interactions
between PAPM and APM as changes in PAPM will have a less than normal
effect on left ventricular preload. The expected associations of vital signs
show a different graph for the state of pulmonary hypertension than the
relationships under normal physiological conditions.
For the clinical status of congestive heart failure, we find high correlation
between APM and PAPM. This can be explained by a failure of the left
ventricle, that leads to a decrease in APM, and the concurrent backward
failure to an increase in PAPM.
For the status of vasopressor support there are strong correlations between
APM and PAPM, too. But there are also higher partial correlations be-
tween HR and APM. This is due to the therapy which inhibits the normal
autoregulation of the circulatory system. Hence, there are strong positive
interactions between APM and PAPM, while the influence of CVP on the
other variables is reduced.
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In conclusion, we find that graphical models can detect physiological re-
lationships between hemodynamic variables and the insights gained by this
method are useful to improve online monitoring of vital signs.
In view of the high sampling rates of modern equipment this method is use-
ful to identify these complications online in time critical situations on the
intensive care unit.
Graphical analysis support the analysis of correlations in multivariate phys-
iological time series.
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