
Università degli Studi di Padova

Facoltà di Ingegneria.

Corso di Laurea in Ingegneria delle Telecomunicazioni.

Formal language for data models and
software library for antenna data

exchange

Laureando Relatore

Callegaro Giovanni Prof. Galtarossa Andrea

Co-relatore

Ing. Sabbadini Marco

Anno Accademico 2014/2015

ii

A mio padre.

E a tutti coloro che hanno reso possibile
questa magnifica esperienza.

iv

Abstract

Oggetto di questa tesi è un resoconto delle attività svolte durante uno stage
durato 6 mesi presso la sezione antenne di ESA/ESTEC (Noordwijk, Paesi
Bassi). Scopo dell’attività è stato quello di perfezionare un sistema di scam-
bio per dati di tipo elettromagnetico. EDX (Electromagnetic Data eXchange)
nasce dall’esigenza di scambiare dati tra software di elaborazione diversi
basandosi su modelli ben definiti in un apposito linguaggio chiamato DDL.
In particolare si è lavorato sul ridefinire tale linguaggio e sull’aggiornare lo
strumento di scambio che consiste in una libreria software scritta in C/C++,
con interfacce Python e Fortran, alle versioni più recenti di tale linguag-
gio e all’esigenza di ampliare la varietà di strutture dati che possono essere
immagazzinate, con un occhio alla retrocompatibilità. Questa libreria soft-
ware nota con il nome di EDI (Electromagnetic Data Interface) è usata at-
tualmente da diversi software commerciali di simulazione presso partner ed
università.

Abstract

The subject of this thesis is a review on the activities performed during a six-
month internship in the ESA/ESTEC (Noordwijk, The Netherlands) antenna
section. The goal of the stage was to improve a system for the electromagnetic
data exchange. EDX (Electromagnetic Data eXchange) is the answer to the
need of exchanging data among different elaboration software using well-
defined models. Such models are defined with a certain language called
DDL that has been improved as well. The tool for the actual exchange is a
C/C++ software library with Python and Fortran front-ends. The library
has been drastically improved to support the new version of the language,
to increase the variety of data structures that can be stored and to mantain
the retrocompatibility. This library is known as EDI (Electromagnetic Data
Interface) and it is currently used in several commercial simulation software
by partners and universities.

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Quick overview . 2

2 Background 5
2.1 Dictionaries . 6
2.2 EML . 10
2.3 The EDI library . 13

3 Language 17
3.1 Improvements in the DDL . 18
3.2 Improvements to the existing Dictionaries 22

4 Library 27
4.1 Improvements in EML . 27
4.2 Improvements in the library 30
4.3 Retrocompatibility . 36

5 Conclusions and future developments 39

A BNF and Railroad diagrams for the DDL 41

Bibliography 51

viii CONTENTS

Chapter 1

Introduction

1.1 Motivations

Propagation problems, regardless of their physical dimension, have never
been easy to handle. Tipically, the only approach to face these problems is
by running simulations. Simulation software are usually based on Maxwell’s
equations which are difficult because they are differential equations. Plus, the
number of points in meshes must be quite high as the frequencies are high,
for example in telecommunications problems. In addition to this, if a system
is complicated enough there could be several disturbance elements that sim-
ulations must take into account such as mechanical issues or unconsidered
reflective surfaces.

In satellite transmissions, for example, the problem is really complicated
as temperature excursions, mechanical stress during launches and limited
amount of power available make simulations really hard to be managed in
one go. Therefore, they have to be splitted in parts, with each part solved
by someone competent in his own matter. Sometimes people collaborating
to the common goal are not in strict contact or don’t know much about each
other’s work: they even may work for different companies, they generally use
a different software and work on different physical models.

The software used in these fields of work are usually very specialized and
they generally make use of propietary data formats, even if they are handling
the same physical quantities such as fields, currents, geometry, material prop-
erties, ranges in frequency, meshes and so on.

The day when all the data will be collected together to check if they are
consistent, for being approved and for defining the ultimate solution, a huge
amount of translations among models has to be conducted.

In order to address this problem, a couple of decades ago ESA pushed

2 CHAPTER 1. INTRODUCTION

for creating a language for exchanging electromagnetic data, called EDX.
The Electromagnetic Data Exchange Working Group was founded and it
is composed by the Electromagnetic and Space Division of the European
Space Agency, the Antenna Centre of Excellence and the European Antenna
Modelling Library team.

1.2 Quick overview

The contribution on the EDX language added during the internship period
was based on a strong support. Basically every aspect of the matter has ben
discussed before but at the same time many aspects were not mature. This
thesis does not add much theoretical value to the matter but is limited to
be a short review on changes that have been done on the system during late
2014. The changes are mostly practical as the software behind the system
has been completely renewed.

The EDX system is currently and rapidly evolving, especially in the last
few years. That is why an interested reader should care to look at the most
recent documentation. In any case, chapter 2 is a really short briefing on
what has been done so far and the current usage situation of EDX.

Data models concerning the same data sets are grouped in dictionaries.
We will later explain in detail what the dictionaries are. In section 2.1 we
introduce the main idea and we show some examples of Data Dictionaries.

Tha data sets are stored on files using EML that file format adopted for
the exchange. In section 2.2 we introduce EML and show how the variables
are stored.

In section 2.3 we give a very quick explanation on how EDI works. EDI
is the software library that permits the actual saving/loading of EML files.

After having introduced the starting situation, the rest of the chapters
report the main scores of the trainee period. Chapter 3 is about the changes
in the DDL, the language that describes the dictionaries. This language has
been improved a lot. The output of the parser for dictionaries is now directed
to the EDI library which can now validate the variables stored with a deeper
look at the meaning of the data.

Chapter 4 describes the improvements in the software library that actually
do the work of exchanging data, storing it in several configurations and make
a validation based on the dictionaries specified through the language. The
library has been rewritten from scratch but the API has been mantained quite
similar for retrocompatibility purposes. We will see how the new elements in
the DDL have been transposed to new methods for the library.

1.2. QUICK OVERVIEW 3

In the conclusive chapter 5, we will list what are the next goals for EDX
to be fulfilled in the near future.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The Electromagnetic Data Exchange Language (EDX) is formed by three
main elements: a neutral XML-based Electromagnetic Markup Language
(EML), that is used for the data files, a set of Electromagnetic Data Dic-
tionaries (EDDs) that estabilish the lexicon of the exchange language and
a software library, the Electromagnetic Data Interface (EDI), that simplifies
the access to the data from C++, Fortran and Matlab.

EDX = EDD’s + EML+ EDI

Every one of these three aspects is related to the others. The data ex-
change is basically done with the use of EML files but if they were raw data
files as such, they would be just a mere series of numbers that without con-
text have no meaning at all. The purpose of EDX is to not only provide
the raw data but to put it in its context and provide not only the numerical
data but its location, purposes and reason of existence: has the data been
measured or simulated? If so, what were the measurement conditions or the
simulation tool? And what were the other parameters in game? And more,
can these data be portable to be read on our own software? Contextualize
the data in such a manner is the main reason EDX was created. That is why
just a raw file is not sufficient to our purposes.

The EDDs introduce to the system the meanings that the data can as-
sume. They provide data types introducing differencies among frequencies,
currents, distancies, angles and various objects in general. They instruct the
system on how these quantities are related to each other introducing entities
and objects connected both vertically and horizontally to each other until
they form the entire picture. For example, consider about a basic waveg-
uide. From an electromagnetic point of view it is not a simple object but it

6 CHAPTER 2. BACKGROUND

consists of a certain material with a certain shape that must be described
with its own topology. Along the faces of the waveguide a certain current is
present and so on. The system in consideration have to be decomposed and
described in every single part of it. At that point there is no place for raw
data: numerically storing all these aspects together is out of question. The
system must then recognize the different nature of each object and the role
of the dictionaries is to provide this.

The library is the point of connection among dictionaries and EML. It
writes and reads EML files providing to the user not only the raw data but the
basic elements realizations of dictionaries data sets which are called variables.

2.1 Dictionaries
The Data Dictionaries define the meaning of the data and the conventions
for the exchange. A Data Dictionary include exactly and in detail all the
elements that shall appear in a data set.

An introduction to the Electromagnetic Data Exchange language

the first, while at the next level the ScanRange is declared to be spherical and to have three
elements, two being angles and the third a distance.

The use of multiple levels also introduces flexibility. It is quite easy to imagine changing the
scan range from spherical to rectangular by just pointing to a different definition. Therefore it
is also possible to extend at a later stage the number of possible scan range types by just
adding new ones without compromising existing data sets.

Finally the structure also suggests a layout. Translating the boxes into independent blocks of
data and labelling them with their names produces a very readable layout. Each element can
also be given a name and the link to lover levels can be put next to it.

In the artificial intelligence domain this type of systematic representation of the elements of a
specific domain of knowledge is called ontology. The building rules well known and they are
quite similar to the rules governing human languages and the communication of meaning
between human beings (linguistic and semiotic). These rules together with the practical
objectives of a data exchange facility have been kept well in mind while designing and
implementing EDX.

Field

Frequency

H

ScanRange
Projection

ScanRange:Spherical

Theta
Phi
R

Projection:Spherical

“theta”, “phi”, “r”

Angle

Angle

Distance

Class Subclass Class

Values

Class components

E

Figure 2.1 – The content of a simple data set to exchange field data

 3

Figure 2.1: Example of decomposition for a Field object.

Dictionaries are composed of classes and every class represent a particular
concept or object. It is very simple if we think of dictionaries classes as
OOP classes. They are not concrete objects nor they have values but we
can build instances of them, called variables. Classes are connected each
other through the use of components or domains. For example, in figure
2.1 the ScanRange:Spherical class has three components: two angles and a

2.1. DICTIONARIES 7

distance. The three of them are sufficient to describe a point of the scan
range but the dimension of the scan range is another matter: of course three
values won’t describe a scan range. The ScanRange class should have a few
implicit or explicit dimensions that will follow the components. The most
straightforward way to describe such dimensiones is by the use of domains.
Domains follow their mathematical concept. If we think of a class as a
mathematical function it may have a domain and a codomain. In this case,
the number of elements in the domains affect the number of the outcomes.
According to the example, a projection of an electric Field has a different
value according to its position and Frequency. Everyone of these values will
belong to the projection component. This means that every component store
a multidimensional matrix of values.

Another fundamental aspect of the dictionary is the inheritance and the
abstraction of classes. Realizable or not, a class can have properties that
other classes may inherit. Attributes, sizes, domains and components of a
class will be present in each and every subclass of it. We can think of a generic
measure that has been conducted. Its points of acquisition are described with
some coordinates but in general we don’t know what kind of coordinates we
have (polar, cartesian...).

Anticipating what is a practical issue, we encounter the question of how to
manage multidimensional quantities such as N-matrices in what components
store. The answer is suggested in figure 2.2. We can think of the domains as
independent quantities and the components, which describe the co-domain,
as dependent quantities. The way of representing such a set of values is by
the use of a vector that is formed by consecutive lines. This approach is
really similar to the one that simple languages like C do when accessing to a
multidimensional array on a volatile memory.

Summarizing, the classes of the dictionaries can present these kind of
elements:

• Attributes, describing quality aspects

• Domains

• Sizes, about the class itself

• Components

8 CHAPTER 2. BACKGROUND

An introduction to the Electromagnetic Data Exchange language

For instance if sampling is used there is need to provide the sample coordinates and the
related reference system. Mathematically the initial quantity is a dependent variable, as its
values are a function of the others, while the sampling coordinates are a set of independent
variables defining the support on which the dependent one is defined. All these need to be
packaged in a single whole to convey the complete meaning of data.

Whenever a physical quantity is multi-dimensional there is also need to specify how each
element of the corresponding tensor is to be interpreted. For example, in a 3D vector the first
element could be the x component of a Cartesian projection or the U component of a spherical
projection or anything else. Therefore one more quantity is needed. The rule adopted in EDX
is that this quantity is a string vector holding the names of the axes on which the quantity is
projected, e.g. {“x”, “y”, “z”}. The resulting overall logical structure is depicted in figure 4.1.

i

j k

Dependent quantity

Independent quantities

Components index

Figure 4.1 – Logical structure of a multidimensional quantity

Containers are used in EDX to keep all these quantities. In many cases, e.g. for spatial
coordinates, some of the independent ones are related to a single physical entity, e.g. 3D
space, therefore other containers may be used on lower levels to collect them reflecting the
logical relations among data items.

Using the approach described so far, all quantities belonging to a data set can be kept jointly
together in a hierarchical structure. Beyond making sure that logical relations are maintained
and put in evidence , thus making data easier to understand, such approach has a another
fundamental advantage: it offers a great deal of flexibility. Imagine that in a dictionary for
electromagnetic fields it is chosen initially to use space sampling in Cartesian coordinates and
that the three quantities X, Y and Z are used directly in the field container (figure 4.2).

E = {e1, e2, e3, …}

Z = {z1, z2, z3, …}

Y = {y1, y2, y3, …}

X = {x1, x2, x3, …}

Field

Figure 4.2 – Field data container with fixed sampling axes

 11

Figure 2.2: Dependent quantities

Six dictionaries have been initially identified to be included in the EDX
project. Namely:

1. Fields (near, far and spherical wave expansion)

2. Induced currents on various geometries

3. Green’s function for layered structures

4. Circuit parameters - [S], [Y] and [Z]

5. Modal expansions

6. Geometry (Structures).

As of today, the Field and the Currents Data Dictionaries are considered
almost complete. For the moment, the Field DD is the only one being used
by the partners while the Structure DD has been recently consolidated and
is being experimentally applied in research activities.

An overview of the Structures (and Geometry) Data Dictionary can be
found in figure 2.3. The dictionary is composed by 7 folders. Each one of
them contain inherent classes and all together they can fully describe even
complex objects linking the topology with the geometry and providing an
objectification for CSG (Constructive Solid Geometry) operations.

A study on the Structures DD has been recently conducted in [1]. Its true
potential has been demonstrated after representing difficult geometries, from
reflector antennas to more complicated figures such as satellites. An example

2.1. DICTIONARIES 9

Page 18/76
Final Report
Date 20/12/2013 Issue Rev

ESA UNCLASSIFIED – For Official Use

Figure 5.1: Structure Data Dictionary: overview.

• Solid lines with closed white arrows indicate child-parent relations in the class trees. Note
that this implies not only the inheritance of attributes and components, but also the fact
that a link to a parent abstract class (dasched line) will actually become a reference or
pointer to an instance of one of its non-abstract children.

The Objects layer is the starting point for the entire system and outlines the logical hierarchical
structure of the whole data set. The RootElements class has a list of links to Elements,
which are supposed to be the entry points of a hierarchy of other elements composing in more and
more detail the structure. It reflects the spontaneous high-level way to describe a complex object
starting from the general structure down to the smallest parts constituting the selected element.

Figure 2.3: Structures Dictionary overview

of a BRep representation of a reflector antenna is shown in figure 2.4. This
and others objects have been successfully decomposed in a recent work using
the Structure Data Dictionary and, as such, memorized with EDX.

In order to define the dictionaries, a specific language had to be created.
This language is called DDL and it will be later discussed in chapter 3. The
dictionaries are described in text files and have to be compiled for being used
as an input for the EDI library, therefore a lexer and a parser have to be
defined for this purpose. The previous version of the DDL was more of a
draft and will not be reported in order to avoid confusion.

10 CHAPTER 2. BACKGROUND

Figure 2.4: Reflector antenna with CAD and with an

2.2 EML
An extension of XML

EML (Electromagnetic mark-up language) is an extension of XML. Basically,
in XML the data is stored in a plain text file and the characters in the text
file can be distinguished into markup and content. A markup construct
beginning with "<" symbol and ending with the ">" symbol is called a tag.
Tags come in three flavors: start-tags, end-tags and empty-element tags. An
XML element begins at one start-tag and ends at one end-tag of the same
type. Among these two tags there is the content of the element. The content
can also contain other markup including other elements, which are called
child elements. An element can have attributes. Attributes are specified in
a start-tag or an empty-element tag. Attributes have a name and a value.
More details on the basics of XML can be found in [2].

For a quick understanding of the XML, in figure 2.5 a part of an EML
file is reported as an example.

As a specialization EML defines specific tags. In particolar, 4 sections of
the document are individuated:

• the header

• the declaration

• the raw data

• the application data section.

2.2. EML 11

31

The information contained in this document should be used only for the scope of the contract for which this document is prepared.

Appendix B - Overview of the in-file data format
The description provided by this appendix is very basic, for additional details please refer to
RD[1].
EDX data are written to file using the Electromagnetic Markup Language (EML), which has
been devised has a specialisation of XML (eXtendable Mark-up Language). The basic
elements of XML are tags, elements and attributes as shown in figure B-1 where one of the
EML elements are used as example:

Figure B-1 - Basic XML concepts

The EML data sets (e.g. files) include four main sections. These four sections are
x the header
x the declarations
x the raw data
x the application data section.

The <Header> collects information about the origin and the standard to which the data set
complies as well as any number of text lines that a tool or the user might find adequate.
The data i.e. all the various numbers and strings that describe physical and mathematical
entities in an electromagnetic data set such as a set of currents are managed in the two
elements <Declarations> and <Data>. Each data item is described in a <Variable> element
in <Declarations> whereas the corresponding numbers or characters (the raw data) appear in
the <Data>. An exception of this rule is made for variables containing just one or a few
values, which are stored in the variable declaration itself.

<?xml version="1.0" encoding="UTF-8"?>
<EDIFile ………… >
…………

<Declarations>
<Folder Name="sph_1.cut" ID="0">

…………
<Variable Name="SC_Phi" Class="Phi" ID="3">

<Sizes> 2</Sizes>
<Component Type="double">

<Value> 0 90</Value>
</Component>

</Variable>
…………

</Folder>
<Declarations>

Attribute

Root element opening tag

Root element closing tag

Element opening tag

Element closing tag

Attribute value XML declaration

<?xml version="1.0" encoding="UTF-8"?>
<EDIFile ………… >
…………

<Declarations>
<Folder Name="sph_1.cut" ID="0">

…………
<Variable Name="SC_Phi" Class="Phi" ID="3">

<Sizes> 2</Sizes>
<Component Type="double">

<Value> 0 90</Value>
</Component>

</Variable>
…………

</Folder>
<Declarations>

Attribute

Root element opening tag

Root element closing tag

Element opening tag

Element closing tag

Attribute value XML declaration

Figure 2.5: EML file in short.

The Header specifies the version of EDI, the user and association of the
user, the timestamp and the tool used to call the EDI methods.

The Declaration section is the place where all the variables go. Vari-
ables are grouped in one single folder and are distinguished by ID. They
can present Attribute tags, with a name and a value, Domain tags with the
name of the variable used as a domain and Component tags. In a similar
way components are distinguished by ID, they have a type and they contain
values. Variables and components contain a certain number of sizes. Sizes
are used to determine the dimension of the domain/codomain. The domains
of a variables have in fact their sizes listed in the Sizes tag, along with the
variable’s native sizes. In order to mantain an easily readable declaration
section only a few part of the data, if any, is stored there. If the number
of values satisfy certain criterions than every value for the entire variable is
stored in the raw Data section. The Application Data is an useful space
which contains additional information for the tools that use the file, under a
list of Application tags, with a name and a content.

For multi-dimensional matrixes of values to be rapresented in a line a
convention has to be chosen: the rows of the matrix are listed one after the
other within the Value tag.

12 CHAPTER 2. BACKGROUND

An example of an EMLv1 file is reported below. Take note that, for
reasons of space, it is not reported any value at all as long as the type of the
components is void.

<?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
<EDIFile xmlns="http ://www. edi−forum . org "

xmlns : x s i="http ://www.w3 . org /2001/XMLSchema−i n s t anc e "
x s i : schemaLocation="http ://www. edi−forum . org ␣ ed i . xsd">

<!−− ======================== Header s e c t i on ======================== −−>
<Header>

<Stamps>
<Vers ion>EDI Vers ion 1 . 0 0 . 0 0</Vers ion>
<Format>XML</Format>
<DateTime>2011−06−14T00 : 2 8 : 5 5Z</DateTime>

</Stamps>
<Orig in>

<Tool><Name></Name><Vers ion></Vers ion></Tool>
<Pro j ec t></Pro j e c t>
<User>

<Name></Name>
<A f f i l i a t i o n></ A f f i l i a t i o n>

</User>
</Orig in>
<UserText></UserText>

</Header>
<!−− ===================== Dec lara t ions s e c t i on ===================== −−>
<Dec l a ra t i on s>

<Folder Name="EDI_testf i le_n2 . xml" ID="0">
<Var iab le Name="Horn" Class="FarFie ld " ID="1">

<S i z e s> 25 23 21</ S i z e s>
<Domain Reference="phi_scan"/>
<Domain Reference="domain_2"/>
<Domain Reference=" frequency "/>
<Domain Reference="domain_4"/>
<Component Type="void ">
</Component>

</Var iab le>
<Var iab le Name="domain_2" ID="3">

<S i z e s> 23</ S i z e s>
<Component Type="void ">
</Component>

</Var iab le>
<Var iab le Name=" f r e q " ID="2">

<S i z e s> 21</ S i z e s>
<Component Type="void ">
</Component>

</Var iab le>
<Var iab le Name="phi_scan" ID="4">

<S i z e s> 25</ S i z e s>
<Component Type="void ">
</Component>

</Var iab le>
<Var iab le Name="theta_scan" ID="5">

<S i z e s> 27</ S i z e s>
<Component Type="void ">
</Component>

</Var iab le>
</Folder>

</Dec l a ra t i on s>
<!−− ======================== Data s e c t i on ========================== −−>

2.3. THE EDI LIBRARY 13

<Data>
<Var iab le Name="Horn" RefID="1">

<Component Type="void ">
</Component>

</Var iab le>
</Data>
<!−− ================== App l i ca t ion Data s e c t i on ==================== −−>
<Appl icat ionData>
</Appl icat ionData>
</EDIFile>

Listing 2.1: EMLv1 example

More on EML can be found in previous works [3, 4].

2.3 The EDI library
The EDI library is the tool that permits the actual data exchange. It is a
software with the role of an IO tool and it can be used as an alternative for
proprietary systems. The main software typically is a simulator, a viewer or a
data acquisition system and it makes use of the library through an interface.

Using EDI, the software can istantiate variables from the classes defined
in the dictionaries and do the actual writing/reading of the EML files. The
available back-ends for EDI are a C and a Fortran ones.

EDI has changed radically during the internship period, that’s why we
will refer to the new version as EDIv2 and to the previous version as EDIv1.

For a better understanding on how it works we can think of EDI as divided
in different layers.

• The toolkit level is responsable for the I/O operations, it calls the
I/O library whenever it is necessary and it constructs and reads well-
formatted EML files. EDIv1 make use of an external library for the
XML parsing, Expat.

• Level 0 is responsible for the managing of the variables with their do-
mains and codomains. It contains the functions for changing the header
settings and save/load unique files. It permits to modify every property
of a variable such as its attributes or the class the variable belong.

• Level 1 adds utilities such as data slicing and sorting. It also furnishes
iterators and adds features for incremental I/O.

• Level 2 furnishes already-made aggregates that define currents, fields,
geometry elements and so on. From this level, the low-level I/O system
is completely transparent.

14 CHAPTER 2. BACKGROUND

An introduction to the Electromagnetic Data Exchange language

blocks, one for each of variable. Finally, the Application Data section is available for tools
that need to save private data.

3.3 The handling of data – the EDI

The third element of EDX is a software library providing all functions required to access
data. The Electromagnetic Data Interface is a relatively small library (a few thousands lines)
written in C++ and equipped with application programming interfaces in C++, FORTRAN90
and MATLAB® (only Level 2 at the moment).

The library has a layered structure with each layer offering more advanced features compared
to the lower one.

Application (Antenna/EM software)

EDI Level 2: Defined aggregates: Currents, Far Fields, etc.

EDI Level 1: Data Selection Services: Slicing, Sorting,

EDI Level 0: Basic structuring, Multi-Dimensional Variables,
File and Header Management

EDI ToolKit: Atomic Features, Low-level IO

I/O File Format Switch

XML Library NetCDF/HDF

EML File File

..........

File

Figure 3.1 – The overall structure of the Electromagnetic Data Interface (EDI)

The main purpose of EDI is to simplify writing computer programmes using EDX, the
highest level offers a single call access to complete data sets (although with very limited
functionality) and more and more detailed access is available working at lower levels. The
EDI Toolkit is a foundation layer and it is not accessible through the application
programming interface.

As clearly shown in figure 3.1 all functions offered by the library are independent from the
actual format in which the data file is written, so that different ones can be used with no
changes in the modelling tool.

 8

Figure 2.6: The overall structure of the Electromagnetic Data Interface (EDI)

Improvements on the library will focus on the toolkit level and level 0.
From now on when talking about EDI, we will refer to just these two levels.

We will now report a short list of methods from the the Fortran interface
to show how it looks like. The original manual for the EDI Fortran interface
can be found in [5, 6].

2.3. THE EDI LIBRARY 15

EDI_FILE_OPEN(file_id, file_name, status) Open a specified file and load ev-
ery section into memory.

EDI_FILE_CLOSE(file_id) Close the istance of the library
and save everything in EML.

EDI_HEAD_QUERY_ORIG_TOOL(file_id,
name, name_len, vers, vers_len)

Retrieve the name and version of
the tool who used EDI to write
the EML file.

EDI_VAR_PUT(file_id, name, rank, sizes) Insert a new variable.

EDI_VAR_PUT_DOMAINS(file_id, name, rank,
sizes, dom_n, doms, dom_len)

Insert the domains of a given vari-
able.

EDI_VAR_REMOVE_ATTRS(file_id, name,
count, attr_name, attr_len)

Remove some attributes from a
given variable.

EDI_VAR_PUT_COMPONENTS(file_id, name,
count, comp_names, comp_len, types)

Insert some components in a
given variable.

EDI_VAR_PUT_COMPONENT_SIZES(file_id,
name, comp, add_rank, add_sizes)

Set the sizes of a given compo-
nent.

EDI_VAR_GET_INTS(file_id, name, comp,
rank, vstart, vcount, vals)

Retrieve the values of an integer
component.

EDI_VAR_SET_STRINGS(file_id, name, comp,
rank, vstart, vcount, vals, vlen)

Set the values of a string compo-
nent.

EDI_APPDATA_PUT(file_id, tool, data) Add an entry to the application
data list.

Each one of these methods returns an integer value which states if the
operation has been completed successfully or not. Each Fortran method is
strictly binded to a C method but, considering the differences among the two
languages such as the lack of pointers in Fortran, some of them tend to be
quite verbose on the parameter list.

EDIv1, including or not its upper levels, is actually used by TICRA for
its famous application GRASP [7], which makes use of the FORTRAN in-
terface. ADFEMS, from IDS, another antenna design tool dedicate to space
applications, makes instead use of the native C bindings. A MATLAB tool,
called EDIFun, has been also built on the latter interface to allow access to
EDX files from within this powerful environment. The Fortran interface is
also used by a certain number of universities across Europe.

16 CHAPTER 2. BACKGROUND

Chapter 3

Language

The best way to define data dictionaries for EDX was by creating an ad-hoc
language. This language is called DDL (Dictionary Definition Language) and
has been created about ten years ago, as an abstraction to the EML itself.

With the adoption of this language, creating data dictionaries has never
been so simple, as the examples will show later.

After the language has been more or less defined, what is left to do is to
create the compiler. The quickest way to create one was making use of PLY
(Python Lex-Yacc, see [8] for the documentation) witch is an implementation
of the lex and yacc parsing tools for Python. Lex and Yacc are a lexical
analyzer and a compiler-compiler. They both are open-source freeware [9].

By using these tools we first check the lexicon of the dictionaries and later
we check the sintax. The accepted lexicon must be described with the use of
a Python dictionary for the reserved tokens and with regular expressions for
any general word, number, symbol or a mix of them.

The sintax must be defined by a BNF (Backus-Naur Form) grammar.
Every rule of the grammar must be specified within the triple quote, which is
usually adopted for the Python documentation, in the first line of a dedicated
function for each rule. When the grammar is not ambigous and the parser
ends then these functions are executed in the respective order. That means,
every time a specific situation has been identified in the input (a new class
declaration, a new domain...) the function containing the respective rule will
be executed. That function can access to the elements of the lexicon found
for the rule and act as a consequence. In our case the parser will produce an
output file with extension .dy that will be read by EDI.

17

18 CHAPTER 3. LANGUAGE

3.1 Improvements in the DDL
The DDL has drastically changed from the previous versions. The main
features introduced consist in the fact that:

• It permits the inclusion of other dictionaries. Now the variables stored
in EML files can have references to elements in other dictionaries or
folders. This is very important: consider for example of a Surface
(topology element) that wants to relate to a geometry element such as a
Face, or a Material from the Materials dictionary. Another application
is for a reference system that has the origin connected to a physical
point.

• It permits the creation of folders and subfolders. Folders are an useful
way to organize the classes. It is a self-explanatory concept. Every
dictionary will be related to a folder. The EML file will then contain
a concealed root folder that will contain every dictionary and every
dictionary’s subfolder. It is important to notice that, at the moment,
it is not permitted for a folder to contain both other folders and classes.

• It introduced subclasses and abstract classes. The inheritance concept
is pretty straightforward nowdays and it perfectly matches the defini-
tion of classes describing entities. An abstract class cannot be used to
create variables but can serve as a base for other classes to be built.
Consider a general ScanRange. It can be a 2D or a 3D scan range. Both
of them can have different realizations (cartesian, spherical, cylindrical,
uv mapping...).

• It introduced prototype versions for folders and classes to preserve their
names for a future use.

• It permits to define, along with classes, members which are already-
made istances of classes ready to be later stored in EDI. Members
are unique classes realizations and it is useful to specify some of them
along with the dictionaries. For instance, to give predefined names and
characteristics for a few typical materials within a Materials class, like
PerfectConductor, FreeSpace and so on.

• There are now two types of domains: domain reference and domain
index. The first one uses as dimension of the domain the entire co-
domain of another variable. The second one uses the total dimension
of the domains and basic sizes of another variable. Variables belonging
to a different folder can still be used as a domain.

3.1. IMPROVEMENTS IN THE DDL 19

• The sizes of a variable or a component can be fully or partially specified
with a costraint in the number of dimensions or can be completely free
of costraints.

• Components can now be nested. Parent components will then assume
the type structure and can have zero or more children. For example, if
a variable has in its codomain 3 electric field components, it can use a
single, structured, component which contains the x, y and z axis values.

• For every type of value it is now possible to list a set of choices they
can assume and in this way, forbid arbitrary values. Moreover it is
possible to define more complex rules to constrain the values also in
relation to other components or variables. For the moment, only first
order disequations are permitted.

• There are now two special types of components. They are called com-
ponent references and component indices : the first ones, given a class,
contain pointers to other variables which must belong to that class.
The second one, given the name of another variable, contain positions
on the domains for that variable. This is basically used to provide a
navigation system among variables. Using entire other variables or a
position in them as a co-domain grants the user the possibility to relate
the variables to each other.

• For every class, a set of rules has be introduced concerning instantia-
tion, presence of elements, and integrity of the data. The instantiation
rules basically define how many object of the class can exist at the same
time; the presence rules define if a domain/component may be o may
be not present in general or according to the presence of other domain-
s/components. In addiction, they specify if there must be at least or at
most one domain/component given a set of them. The integrity rules
define the ranges for numerical values e.g. strictly positive values.

20 CHAPTER 3. LANGUAGE

An example of how the python code is written can be found in the fol-
lowing lines.
def p_ClassDeclarat ion (t) :

’ ’ ’ C la s sDec la ra t i on :
CLASS name PROTOTYPE ENDClassPrototype END

| CLASS name ADDClass NewClassBodyDeclaration Clas sRu le sDec la ra t ion ClassMembersDeclaration END
| CLASS name GETClassName SubClassBodyDeclaration Clas sRu le sDec la ra t ion ClassMembersDeclaration END
| CLASS name GETClassName AbsClassBodyDeclaration Clas sRu le sDec la ra t i on END
| CLASS name ALIAS Quali f iedClassName ADDAliasClass END ’ ’ ’
g l oba l current_class_name
current_class_name = ’ ’
g l oba l am_i_in_variable
am_i_in_variable = False

Listing 3.1: Use of yacc for the ClassDeclaration rule.

The code is divided in two parts: the part within the documentation quotes
defines the grammar rules to be followed, expressed in a BNF notation; the
rest of the function is the code that must be executed in case the rule has
been recognized during the parsing. Capital letter words are keywords that
were defined in the lexer part. For example, the keyword class is translated
with the token CLASS.

In figure 3.1 is reported the equivalent railroad diagram for the rule.

DataDictionaryDeclaration:

DataDictionaryNaming IncludeList FolderDeclaration END

no references

DataDictionaryNaming:

DATA_DICTIONARY name

referenced by:

DataDictionaryDeclaration

IncludeList:

INCLUDES name

,

referenced by:

DataDictionaryDeclaration

FolderDeclaration:

FOLDER name PROTOTYPE

ClassDeclaration

FolderDeclaration

END

referenced by:

DataDictionaryDeclaration
FolderDeclaration

ClassDeclaration:

CLASS name NewClassBodyDeclaration

SubClassBodyDeclaration

ClassRulesDeclaration ClassMembersDeclaration

AbsClassBodyDeclaration ClassRulesDeclaration

ALIAS QualifiedClassName

PROTOTYPE

END

referenced by:

FolderDeclaration

NewClassBodyDeclaration:

Figure 3.1: Class Declaration railroad diagram.

The actual python code can access the tokens i.e. strings of the rule by
using the parameter t which is a Python list. That’s not the case of the
example because it just delays the analysis to other functions.

3.1. IMPROVEMENTS IN THE DDL 21

The code part of the functions step by step gathers together every aspect
of the dictionaries and produce a certain output. The output must summarize
the dictionary in a more compact and friendly way to read for the EDI
library.

At the moment the behaviour of the output is far from a final form. For
the sake of simplicity for now it is just a plain-text file with extension .dy.
Every line of the dictionary is described by its first characters that will form
a tag.

DATADICT| mydict
FOLDER| mydict | f o l d e r 1
CLASS| f o l d e r 1 | classname
_CLASS_ATTRIBUTE_| f o l d e r 1 | classname | weather=sun , rain , snow
_CLASS_SIZES_| f o l d e r 1 | classname |2 , − ,4
_SUB_CLASS_| f o l d e r 1 | classname : subc l a s s 1
_CLASS_SIZES_| f o l d e r 1 | classname : subc l a s s1 | 2 , 3 , 4

Listing 3.2: Example lines of the .dy output file

In the part of the file listed above we can see how the lines are composed.
They are separated by the pipe character and the various parts indicate the
folder, the class or list of subclasses and relevant informations for the rule.
For example, the fourth line indicates that the attribute weather of class
classname can assume only the values sun, rain and snow. The sixth line
states that the sizes of the subclass subclass must strictly be 2, 3 and 4 as
dimensions. This introduces a new constraint from the superclass where the
second dimension can assume an arbitrary value.

_CLASS_COMPONENT_UNITS_| f o l d e r 2 : i n n e r f o l d e r | s imp l e c l a s s | simplecomp | aa5^(3−2)/ggg
_CLASS_VALUES_| f o l d e r 2 : i n n e r f o l d e r | s imp l e c l a s s | simplecomp =1.5 , −788.2 ,0 ,9 ,5
INSTANTIATION| f o l d e r 2 : i n n e r f o l d e r | s imp l e c l a s s | s i n g l e i s t a n c e
_PRESENCE_COMPONENT_| f o l d e r 2 : i n n e r f o l d e r | s imp l e c l a s s |MANDATORY| simplecomp
_PRESENCE_COMPONENT_| f o l d e r 2 : i n n e r f o l d e r | s imp l e c l a s s |ATLEASTONE| simplecomp , simplecomp2
_PRESENCE_COMPONENT_| f o l d e r 2 : i n n e r f o l d e r | s imp l e c l a s s |MANDATORY| simplecomp | IF | attrname=blue
_PRESENCE_DOMAIN_| f o l d e r 2 : i n n e r f o l d e r | s imp l e c l a s s |ATLEASTONE|dom, otherdom
_PRESENCE_DOMAIN_| f o l d e r 2 : i n n e r f o l d e r | s imp l e c l a s s |MANDATORY|dom| IF | attrname=blue
_PRESENCE_COMPONENT_| f o l d e r 2 : i n n e r f o l d e r | s imp l e c l a s s |MANDATORY| simplecomp |WITH|DOMAIN=dom
_PRESENCE_DOMAIN_| f o l d e r 2 : i n n e r f o l d e r | s imp l e c l a s s |MANDATORY|dom|WITH|COMPONENT=simplecomp
BOUNDS| f o l d e r 2 : i n n e r f o l d e r | s imp l e c l a s s | simplecomp | [4 , 6 . 5] ; [− 1 , 1] ;

Listing 3.3: Example lines of the .dy output file

In the example of code 3.3, the first line specifies the units for a certain
component and the second line present the limited amount of values it can
assume. The third line introduce the fact that the class can only be instan-
tiatiated once. In the rest of the lines we can see how the policies for the
presence of an element can vary from mandatory to conditional ones.

In the last line we can see how bounds are described. In this case
the values of the component simplecomp can only be contained in intervals
[4, 6.5] ∪ [−1, 1].

22 CHAPTER 3. LANGUAGE

3.2 Improvements to the existing Dictionaries
In this section parts of the existing Fields data dictionary, omitting the rules,
are reported. This is the most simple dictionary to show as the Structures
data dictionary is far more complicated and it is actually being revisioned,
nonetheless it has been treated more in details in other places [1].

This dictionary is meant to define three main classes:

• Near field

• Far field

• SWE (Spherical Wave Expansion)

A theorethical approach and decomposition for this dictionary can be
found in [10]. At the end of this section, In figure 3.2, is reported the main
design of the Fields DD.

In this first piece of the dictionary we can see how every main component
that a near field can assume is listed. Some of them may be optional and
some mandatory.

For the moment, the dictionary did not make use of the import instruc-
tion to include other dictionaries but we can assume that in the future the
coordinates will be linked to physical points.
data_dict ionary F i e l d s

f o l d e r F i e l d s

c l a s s F i e ld
abs t ra c t
s i z e s −

end

c l a s s Near extends F i e ld
a t t r i bu t e TimeTypeAxis : Time Frequency
a t t r i bu t e SpaceTypeAxis : Space Wavenumber
a t t r i bu t e TimeDependency : +j \omegat
s i z e s 1
component Frequency s i z e s 1 type r e f e r e n c e c l a s s Frequency end
component Time s i z e s 1 type r e f e r e n c e c l a s s Time end
component ScanRange s i z e s 1 type r e f e r e n c e c l a s s ScanRange end
component BeamPointing s i z e s 1 type r e f e r e n c e c l a s s BeamPointing end
component Pro j e c t i on s i z e s 1 type r e f e r e n c e c l a s s ProjectionComponents : 3D end
component EE s i z e s 1 type r e f e r e n c e c l a s s FieldComponents :E end
component HH s i z e s 1 type r e f e r e n c e c l a s s FieldComponents :H end
component dEdXi s i z e s 1 type r e f e r e n c e c l a s s F i e l dDe r i v a t i v e s : dEdXi end
component dEdt s i z e s 1 type r e f e r e n c e c l a s s F i e l dDe r i va t i v e s : dEdt end
component dEdOmega s i z e s 1 type r e f e r e n c e c l a s s F i e l dDe r i va t i v e s : dEdOmega end
component dHdXi s i z e s 1 type r e f e r e n c e c l a s s F i e l dDe r i va t i v e s : dHdXi end
component dHdt s i z e s 1 type r e f e r e n c e c l a s s F i e l dDe r i va t i v e s : dHdt end
component dHdOmega s i z e s 1 type r e f e r e n c e c l a s s F i e l dDe r i va t i v e s : dHdOmega end
component PowerNormalisation s i z e s 1 type r e f e r e n c e c l a s s PowerReference end
component PhaseReference s i z e s 1 type r e f e r e n c e c l a s s PhaseReferencePoint end
component Re la t iveGa inOf f s e t s i z e s 1 type r e f e r e n c e

c l a s s Re la t iveGainNormal i zat ionOf f se t end
component E l l i p t i c a lPo l a r i z a t i o nPa r ame t e r s s i z e s 1 type r e f e r e n c e

c l a s s E l l i p t i c a lPo l a r i z a t i o nPa r ame t e r s end

end #c l a s s
. . .

Listing 3.4: Part of the Fields data dictionary.

3.2. IMPROVEMENTS TO THE EXISTING DICTIONARIES 23

In this second piece of dictionary we can see how the field derivatives can
be specified all together in a FieldDerivatives class listing every necessary
domain. Each one of them has a different measurement unit, that is the
reason why the components are specified in subclasses. That is true for both
electric and magnetic fields components.
c l a s s F i e l dDe r i v a t i v e s

ab s t r a c t
domain Frequency r e f e r e n c e Frequency
domain Time r e f e r e n c e Time
domain ScanRange r e f e r e n c e ScanRange
domain BeamPointing r e f e r e n c e BeamPointing
domain ProjectComponents r e f e r e n c e ProjectComponents
s i z e s 1

end #c l a s s
c l a s s dE_dXi extends F i e l dDe r i v a t i v e s

component dE_dXi s i z e s 1 type dcomplex un i t s V/m^2 end
end #c l a s s
c l a s s dE_dt extends F i e l dDe r i v a t i v e s

component dE_dt s i z e s 1 type dcomplex un i t s V/(ms) end
end #c l a s s
c l a s s dE_dOmega extends F i e l dDe r i v a t i v e s

component dE_dOmega s i z e s 1 type dcomplex un i t s Vs/m end
end #c l a s s
c l a s s dH_dXi extends F i e l dDe r i v a t i v e s

component dH_dXi s i z e s 1 type dcomplex un i t s A/m^2 end
end #c l a s s
c l a s s dH_dt extends F i e l dDe r i v a t i v e s

component dH_dt s i z e s 1 type dcomplex un i t s A/(ms) end
end #c l a s s
c l a s s dH_dOmega extends F i e l dDe r i v a t i v e s

component dH_dOmega s i z e s 1 type dcomplex un i t s As/m end
end #c l a s s

Listing 3.5: Part of the Fields data dictionary.

In this third part of the dictionary we can see the inheritance applied to
the ScanRange classes. Scan ranges can be both bidimensional or tridimen-
sional. Here we see severals coordinate systems applied to the 3D represen-
tation. It is now easy to specify in a component reference only a certain 3D
scan range class in such a way that the variable or variables it refers to is/are
coherent with the rest of the data.
c l a s s ScanRange

abs t r a c t
s i z e s −

end #c l a s s

c l a s s _3D abs t r a c t extends ScanRange end

c l a s s Cartes ian extends ScanRange :_3D
component x s i z e s 1 type double un i t s m end
component y s i z e s 1 type double un i t s m end
component z s i z e s 1 type double un i t s m end

24 CHAPTER 3. LANGUAGE

end #c l a s s

c l a s s Sphe r i c a l extends ScanRange :_3D
component theta s i z e s 1 type double un i t s deg end
component phi s i z e s 1 type double un i t s deg end
component r s i z e s 1 type double un i t s m end

end #c l a s s

c l a s s Cy l i nd r i c a l extends ScanRange :_3D
component phi s i z e s 1 type double un i t s deg end
component z s i z e s 1 type double un i t s m end
component ro s i z e s 1 type double un i t s m end

end #c l a s s

c l a s s AzimuthElevation extends ScanRange :_3D
component Az s i z e s 1 type double un i t s deg end
component El s i z e s 1 type double un i t s deg end
component r s i z e s 1 type double un i t s m end

end #c l a s s

c l a s s ElevationAzimuth extends ScanRange :_3D
component alpha s i z e s 1 type double un i t s deg end
component ep s i l o n s i z e s 1 type double un i t s deg end
component r s i z e s 1 type double un i t s m end

end #c l a s s

c l a s s uv extends ScanRange :_3D
component u s i z e s 1 type double end
component v s i z e s 1 type double end
component v s i z e s 1 type double un i t s m end

end #c l a s s

c l a s s CartesianWavenumber extends ScanRange :_3D
component kx s i z e s 1 type dcomplex un i t s rad∗m̂ −1 end
component ky s i z e s 1 type dcomplex un i t s rad∗m̂ −1 end
component kz s i z e s 1 type dcomplex un i t s rad∗m̂ −1 end

end #c l a s s

Listing 3.6: Part of the Fields data dictionary.

3.2. IMPROVEMENTS TO THE EXISTING DICTIONARIES 25

Figure 3.2: Fields Data Dictionary basic design.

26 CHAPTER 3. LANGUAGE

Chapter 4

Library

The library for the actual exchange of EDX files is called EDI which is
an acronymous that stands for Electromagnetic Data Interface. As said in
the previous chapters, there is an existing EDI library which is now being
replaced with a new version, main focus of the internship activity. Again,
to avoid confusion we will refer to the old version as EDIv1 and let the new
version be EDIv2. EDIv2 was born for mainly two reasons: to update the
type of structures that can be stored and fix a certain amount of bugs present
in the old version. In addiction to this, it has been added a new part with the
role of checking if the meaning of stored variables respect the rules defined in
their dictionaries. Retrocompatibility with the C and FORTRAN interfaces
has been maintened altough a few differences are present. In version 2 a
Python interface has been introduced that make use of the C interface using
ctypes, a Python library that provides C compatible data types, and allows
calling functions in DLLs or shared libraries [11].

4.1 Improvements in EML

The changes in the DLL described in the previous chapters must reflect to
the EML. The previous version wasn’t sufficient to describe every new aspect.
That is the reason why even EML has been updated to a new version.

In the Header section, at the same level as Version, Format and Date-
Time tags, a new tag called Capacity has been introduced. This tag has two
attributes that define two thresholds. The first one is the limit to the amount
of values that a variable can mantain in the declaration section. After such a
limit is reached, every value of the variable is then stored in the Data section.
That is because the shorter and easily readable the Declaration section sec-
tion is, the better. The second one is the limit to the amount of values that

27

28 CHAPTER 4. LIBRARY

a variable can mantain in the Data section. After that threshold, the values
are supposed to be store in binary files. This has not been implemented yet
in EDIv2 and will be discussed in the future developments chapter.

The Usertext tag can no more contain different lines but just an indefinite
long string. This feature has been removed because it was never used so far
and seemed therefore redundant, as all mainstream programming languages
allow embedding of end-of-line characters within a string.

The declaration section can now host multiple folders. Folders can even
be nested and have an optional attribute Dictionary which relates them to
the dictionaries. Folders have an unique global ID that goes in [0-99] and
folders at the same level are granted to have consecutive IDs. The IDs of
the variables are dependent from the folder they belong. Every folder can
contain at most ten thousand variables and their unique and global IDs go
from [0-99][0001-9999] where the leftmost digits are their folder’s ID. For
example, the variables in a folder with ID 3 can assume IDs from 30001 to
39999. The Class attribute of each variable is now mandatory. Anyway, for
a first period this checking, along with the checking of the class rules, can be
disabled.

In the previous version the sizes of the domains were listed together with
the ones of the variable. Now there is no more the need to explicitly store
the sizes of dependent variables, as EDI quickly computes them avoiding
potential size conflicts. What is left are just addictional dimensions for the
variable.

As stated in the previous chapter two types of domain now exist. Their
tag is the same, what changes is that they have an unique Name attribute
that fully identify them and they present a Reference attribute or an Index
attribute. These two assume the full path of another variable. A full path
of a variable is the string containing the path to the folder/subfolder they
belong, separated with a double colon symbol, and the name of the variable
itself. An example of these two types of domain can be found in the following
code.
<Domain Name=" f r " Reference=" Fie ld : : Frequency"/>
<Domain Name="phi " Index="Fie ld : : Phi"/>

Listing 4.1: Example of the new domains in EMLv2.

The type of the components is now stated as an attribute of the Compo-
nent tag along with the name and the ID. Components do not have global IDs
but are univocally identified by a variable ID and their own ID (unique in the
variable). Components at the same level within a variable have consecutive
IDs.

4.1. IMPROVEMENTS IN EML 29

New types for the components have been introduced, according to the
changes in the DDL. The Type attribute when describing a component refer-
ence is the same as a simple string but, if it is the case of a reference, a new
attribute called Range will appear. The same happens for the component
index case where the type is an integer. The two cases are infact a collection
of strings and a collection of indices.

This solves several issues with the management of references in the old
version and most of all permits to save more than one of them. Of course,
the strings representing every class or variable in the Range attribute must
be full paths. They can be given to the API as pure names of local variables
or classes (i.e. in the same folder) but they will be converted to full paths
when stored.

Sizes for the variables and the components must now always appear. Even
if they are not adding dimensions. In that case they’ll be a vector of just one
element with value 1.

The Value tag for complex numbers can now present an optional at-
tribute, Format, with options Plane and Nice. Plane is the classic method
for storing complex numbers: it is just the listing of the real and the imag-
inary part one after the other. Nice is a more estetic and more simple to
read for certain parsers way of saving the values using parenthesis and com-
mas. For EDIv2 files the second version is the default value of the format
attribute.
<Value>(0 ,2) (3 , 4) (1 , 0)</Value>
<Value format="plane ">0 2 3 4 1 0</Value>

Listing 4.2: Examples of the format attribute.

About IDs, every time EDIv2 reads an EML file it will reassign them
(possibly mantaining the same values when last closing the file).

The last changes regard the Data section. Variables are now divided in
folders as well. The only folders they belong in this section, anyway, are the
children of the root folder i.e. the dictionary folders. We will explain later
the reason of this behaviour.

Folders in the Data section contain as attribute only their ID. Inside the
folders every variable of any subfolder is listed. In the old version of EML
their attributes were the variable’s name and the variable’s ID in a RefID
attribute. Everything that remains now is just their ID in an attribute simply
called ID. This also applies to their components and nested components.

30 CHAPTER 4. LIBRARY

4.2 Improvements in the library

The EDI library is the most complicated part of EDX. The main features of
the new version are:

• Reading and writing EML files. Since version 2, EML files are well-
defined but, in order to maintain retrocompatibility, EDIv2 is also able
to read and write old versions.

• Keeping in memory the overall structure. Everything that has been
read from the file or has to be written must be kept in memory all at
once.

• Furnish a complete and documented interface to interact with the data.
EDIv2 presents an updated C interface, a mantained Fortran interface
and a brand new Python interface. During the internship period a
Python interface has been created for EDIv1 as well.

• Perform the checking on the meaning of the data. A new module of the
library, given a compiled dictionary, validates every variable for that
dictionary before writing the EML file.

The EDI library has been written in C/C++ version 11 and is perfectly
compilable under GCC and Visual Studio 12. It has been tested under the
most common operating systems such as the most recent versions of Win-
dows, GNU/Linux and Mac OS X under both 32 and 64 bits architectures.

The reason why using C++ instead of other languages is because of the
performances, the modernity and the popularity of the language and of its
standard libraries. There are two reasons why using C in some parts. The
first is because the library that handles the XML uses a C approach: C
pointers, characters basic types and so on. The second is because of the
interface that EDI is going to furnish. Infact, C can interact far better than
C++ with other languages, for example with ctypes used in Python.

The exception system has not really been defined. For the moment EDI
uses assertions in a restrict set of critical cases. Generally, when an error
occurs the return parameter of the C functions is used as a flag. The list of
errors is documented and a function called edi_error() also exists to retrieve
the error string description from the flag value.

The library is structured in classes as we can see from figure 4.1.

4.2. IMPROVEMENTS IN THE LIBRARY 31

EDIFile

Folder

Variable

Component

Attributes VarDomains

Values

ClassRules

IOXMLv1IOXMLRead
IOXMLWrite

IOInterface

libxml2

Misc Common

Figure 4.1: Basic structure of EDIv2

The most important class is EDIFile. A major difference with the pre-
vious version is that the library can now be instantiated more than once.
In the past just one process had to be open and this process did manage
more than one file at the same time using different ID namespaces. Now,
different processes are created and are identified with an ID usually called in
the documentation as file_id. EDIFile contains a map with the IDs of every
Folder, Variable or Component to provide a quick access. As the hierarchy
suggests, it also contain one folder, called Root. The root folder behaviour
is completly transparent to the absolute paths of the variables and it is used
just for management simplicity. Every Folder object will contain a vector
of other folders and a vector of other variables. As for the variables it has
been decided to separate their contents among other C++ classes such as
Attributes that is self-explanatory and VarDomains. This last one contains
several methods to find other variables used as domains and correctly update

32 CHAPTER 4. LIBRARY

the sizes of the variable they belong. This is true for both domain references
and domain indexes.

It is very important to notice that if a variable used as a domain does not
exist yet the dependent variable is disabled. In the case a variable is disabled
it is not possible to use its values or to save the EML file. The only way to
enable again a variable is to solve every one of the domains or remove them.
It is not necessary for the user to indicate to EDI that a new variable inserted
should resolve a pendent domain because it automatically and periodically
looks for the domains resolution.

Every Variable contain a vector of Components objects with all their
properties. A Values class has been created to make transparent some of
their aspects such as the checks for the indicization with the dimensions of
the component. Every Component inherits the sizes from its parent and
in the case of a top component it will inherit from the variable sizes. The
updating of every sizes vector is automatic and it can delete some data. This
issue will be faced in future releases. For example, if we want to restrict
the lenght of a physical object a domain size will change. Consequently the
components of the dependent variable will change their inherited sizes as well
but we may want to delete just a slice of the data and not it all.

Another branch that comes from the main class is the one for the IO. The
IO can now be performed in both EML v1 and v2. The version of existing
files is recognized automatically and it can be changed at will. Obviously an
error will occurr in case new features of EDIv2 are going to be saved in the
old EML version.

The new IO can now save the output to different files. The most impor-
tant difference among the IO performed in EDiv1 and the new version one
is the library they make use for XML. The old version uses the Expat XML
parser for reading and as for the writing it writes directly on the file. This
behaviour is really dangerous for a security and integrity point of view. For
version 2 a completely different library has been decided to be used. Libxml2
is a software library used in a lot of opensource projects. It is written in C
and is highly portable since it depends on standard ANSI C libraries only
and it is released under the MIT license. With Libxml, EDIv2 can perform
the reading and the writing for both the EML versions. Libxml provides two
types of parsing: SAX and DOM. SAX is a bit faster for the reading because
it is event-based. At the end, for the sake of simplicity it has been decided to
use DOM. More details on Expat and Libxml can be found in [12] and [13].

The Misc class contains several useful methods for the library to use
such as the conversion from strings of characters to vectors of numbers. The
Common class contains the definition of the error codes, the enumerators for
the types, for the tags and policies and so on.

4.2. IMPROVEMENTS IN THE LIBRARY 33

Finally, the checking is performed inside the ClassRules class. It happens
whenever the user wants to save the output file. The idea of a rule is generally
identified with the Rule interface as we can see in figure 4.2. The interface has
its own general properties such as the folder associated with the dictionary,
the tag identifying the rule and a boolean method that states if the rule is
satisfied or not.

InstantiationRule

Rule
• dictTag tag;
• Folder * folder;
• std::string classname;
• bool respected();

GeneralPropertiesIntegrityRulePresenceRule

Figure 4.2: Rules inheritance in EDIv2

Every concrete rule class extends the Rule interface and, when instanti-
ated, knows exactly the folder and class it must check. When the checking
is performed a simple function retrieves the variables belonging to the class
and a series of conditions concerning the presence of elements, the content
of the elements, the allowed intervals for the values and so on start to be
valuated. At the end, if one of the rules returns a negative feedback the user
is notified of the error and the saving of the file is not performed.

The reading of the dictionary files associated with the folders goes in
the EDIFile class but the analysis of their lines is done in the ClassRules
object. If an include rule for the dictionary is found the library will look for
a homonymous .dy file in the same filesystem’s folder to add.

The dictionaries to look for are a property of the folders but, for the
moment, single rules or entire dictionaries can also be added manually from
the interface.

In a first trial period the entire checking system of EDI can be disabled
from the interface using the method edi_ignore_rules().

It is important to notice that the C++ realization of the methods for the
C and Fortran bindings are slightly different and for this reason are placed
in different folders of the project. That is because of a simple but tricky
aspect: Fortran does not support pointers. Every vector used as parameter

34 CHAPTER 4. LIBRARY

by Fortran must be pre-allocated and there will be additive parameters that
serve as flags to signal when the buffers are too small. Using the C binding,
on the other side, implies to free the pointers from outside EDI. Fortunately,
the Python layer does it automatically but in any case EDI furnish a pair of
methods to free different kind of vectors.

Along with the new features, a set of new methods for the interface have
been added. The most significative ones are reported below.
/∗ Save the changes to a s p e c i f i e d EML f i l e and c l o s e the s e s s i on . ∗/
int ed i_ f i l e_c l o s e_othe r_ f i l e (edi_id f i l e_ id , char const ∗ const o th e r_ f i l e) ;
/∗ Load a d i c t i ona ry g iven i t s f i l ename . ∗/
int edi_load_dict ionary (edi_id f i l e_ id , char const ∗ const d i c t) ;
/∗ Add a s i n g l e ru l e . ∗/
int edi_class_add_rule (edi_id f i l e_ id , char const ∗ const r u l e) ;
/∗ Ignore the c l a s s r u l e s f o r the current s e s s i on . ∗/
int ed i_ignore_rules (edi_id f i l e_ i d) ;
/∗ Get the capac i t y t h r e s ho l d s f o r the de c l a ra t i on and data s e c t i on . ∗/
int edi_head_get_capacity (edi_id f i l e_ id , int ∗ const dec , int ∗ const data) ;
/∗ Set the capac i t y t h r e s ho l d s f o r the de c l a ra t i on and data s e c t i on . ∗/
int edi_head_set_capacity (edi_id f i l e_ id , int dec , int data) ;
/∗ Get a l i s t o f IDs and names fo r the s u b f o l d e r s o f a g iven f o l d e r . ∗/
int ed i_ f o l d e r_ l i s t (edi_id f i l e_ id , edi_id fo lder_id , s i ze_t ∗ const

l i s t_ s i z e , edi_id ∗∗ const ids , char ∗∗∗ const folder_names) ;
/∗ Remove a su b f o l d e r g iven i t s name and the parent f o l d e r . ∗/
int edi_folder_remove (edi_id f i l e_ id , edi_id fo lder_id ,

char const ∗ const folder_name) ;
/∗ Get the ID of a s u b f o l d e r g iven i t s name and the parent_fo lder . ∗/
int edi_folder_query (edi_id f i l e_ id , edi_id fo lder_id , char const ∗

const folder_name , edi_id ∗ const sub_folder_id) ;
/∗ Add a su b f o l d e r g iven i t s name and r e t r i e v e the ID . ∗/
int edi_folder_put (edi_id f i l e_ id , edi_id fo lder_id , char const ∗

const folder_name , edi_id ∗ const newid) ;
/∗ Set the data d i c t i ona ry o f a g iven f o l d e r . ∗/
int edi_fo lder_set_data_dict ionary (edi_id f i l e_ id , edi_id fo lder_id ,

char const ∗ const data_dict ionary) ;
/∗ Add a v a r i a b l e g iven i t s name and c l a s s . Retr i eve the v a r i a b l e ’ s ID . ∗/
int edi_var_insert (edi_id f i l e_ id , edi_id fo lder_id , char const ∗

const var_name , char const ∗ const class_name , edi_id ∗ const
newid , int rank , int const ∗ const s i z e s) ;

/∗ Add a new domain re f e r ence . ∗/
int edi_var_add_domain_ref (edi_id f i l e_ id , edi_id var_id ,

char const ∗ const dom_name, char const ∗ const dom_ref) ;
/∗ Add a new domain index . ∗/
int edi_var_add_domain_index (edi_id f i l e_ id , edi_id var_id , char const ∗

const dom_name, char const ∗ const dom_index) ;
/∗ Return a l i s t o f the domain re f e r ence s f o r a g iven v a r i a b l e . ∗/
int edi_var_list_domain_refs (edi_id f i l e_ id , edi_id var_id ,

char ∗∗ const names , char ∗∗ const doms) ;
/∗ Add a new component r e f e r ence g iven the parent v a r i a b l e or component . ∗/
int edi_var_add_component_reference (edi_id f i l e_ id , edi_id var_id ,

edi_id parent_comp_id , char const ∗ const name ,
char const ∗ const classname , int ∗ const id) ;

/∗ Add a new component index g iven the parent v a r i a b l e or component . ∗/
int edi_var_add_component_index (edi_id f i l e_ id , edi_id var_id ,

edi_id parent_comp_id , char const ∗ const name ,
char const ∗ const index , int ∗ const id) ;

Listing 4.3: Some of the new methods added to the C interface.

4.2. IMPROVEMENTS IN THE LIBRARY 35

The Python interface is really close to an 1 on 1 to the C interface. As
said before, it has been realized with ctypes. There are a lot of advantages of
using Python but the main one is its simpleness. As an interpreted language
it does not need to be compiled and can provide a really fast testing for
the entire library. Nonetheless its data structures are well known for being
handy. We will now show a simple example of how to use the Python binding
for creating a variable dependent from another one.
ed i = EDIwrapper () #open an i s t ance o f EDI
err , s t a tu s = ed i . ed i_f i l e_open (" f i l e_ i n . edx") # choose an empty f i l e
ed i . ed i_load_dict ionary (" F i e l d s . dy")
func t i ons are as easy to use as they look
ed i . edi_head_set_capacity (25 , 2000)
ed i . edi_head_set_orig_tool (’ python␣ t e s t i n g ␣ t o o l ’ , ’− ’)
ed i . edi_head_set_usertext (’my␣ text ’)
ed i . ed i_ignore_rules () # ju s t f o r t e s t i n g purposes
#crea t e two f o l d e r s
err , f 1 = ed i . edi_folder_put (0 , " f i r s t ␣ f o l d e r ")
err , f 2 = ed i . edi_folder_put (0 , " second␣ f o l d e r ")
#crea te a frequency v a r i a b l e in the f i r s t f o l d e r
err , v1 = ed i . ed i_var_insert (f1 , " f requency " , "Frequency" , [1 0])
err , c1 = ed i . edi_var_add_component (v1 , −1, " f r e q " , " double " , "MHz")
ed i . edi_var_set_doubles (v1 , c1 , [0 , 0] , [1 0 , 1] ,
[2 . 4 0 0 , 2 . 405 , 2 . 410 , 2 . 415 , 2 . 420 , 2 . 425 , 2 . 430 , 2 . 435 , 2 . 440 , 2 . 4 4 5])
#crea te a power v a r i a b l e in the second f o l d e r
err , v2 = ed i . ed i_var_insert (f2 , "power" , "PowerReference " , [1])
the frequency v a r i a b l e i s a domain o f the power v a r i a b l e .
ed i . edi_var_add_domain_reference (v2 , " f requency " , " f i r s t ␣ f o l d e r : : f r equency ")
err , c2 = ed i . edi_var_add_component (v2 , −1, "Radiated" , " double " , "W")
the dimension o f the components are d i c t a t e d by the frequency domain .
ed i . edi_var_set_doubles (v2 , c2 , [0 , 0 , 0] , [1 0 , 1 , 1] ,
[5 . 4 8 2 , 5 . 483 , 5 . 497 , 5 . 495 , 5 . 502 , 5 . 493 , 5 . 493 , 5 . 495 , 5 . 486 , 5 . 4 8 3])
save the output in another f i l e and c l o s e the ins tance o f EDI
ed i . ed i_ f i l e_c l o s e_othe r_ f i l e (" f i l e_ou t . edx")

Listing 4.4: Python usage of EDI.

As the library was increasing and becoming more populated of methods
and layers the tests started to become more difficult as well. At some point
fixing a problem could easily cause creating a new one. That is why an
automatic test for the most basic actions has been created. The automatic
test makes use of Python and consists in a set of checks that will have a
positive or negative result. If any problem is found it is consequently being
reported along with some details. The output of the automated test is a
simple html page with a table in it describing the attempts and the results.

An example of the table is reported in figure 4.3 where the failure was
introduced on purpose.

Of the entire EDIv2 code a documentation has been generated using Doxi-
gen. Doxigen is a free GNU software that builds website-like or LATEXdocumentation

36 CHAPTER 4. LIBRARY
EDIv2 automated testing report

TEST RESULT DETAILS
File opening Correct
Different sessions Correct
Duplicate folders insertion Correct
Not-existing folders removal Correct
Folder insertion in deleted folder Correct
Variable insertion in deleted folder Correct
Duplicate variables insertion Correct
Not-existing variables removal Correct
Attributes editing Correct
Attributes removal Correct

Insertion of domains that still don't exist Wrong The domain has not been
solved

Propagation of a change in sizes for a domain Correct
Propagation of a change in the component sizes for a domain
reference Correct

Propagation of a variable removal for a domain Correct
Duplicate component insertion Correct
Not-existing component removal Correct
Component insertion in not-existing variables Correct
Component insertion in not-existing components Correct
Removal of a parent component remove the nested components
too Correct

Editing of an application data entry Correct
Not-existing application data removal Correct
File closing Correct

Figure 4.3: Output table for the automated test.

for projects written in several languages.

4.3 Retrocompatibility

In order to mantain an high level of retrocompatibility two main issues had
to be faced.

The first one is the EML. The previous version was quite mature but never
well-defined. As new features had been added to the DDL, the structure of
the EML file was not able to describe them. Nonetheless, it was too soon
for the old EML version to be declared obsolete. That is why it has been
decided to mantain the possibility not only to read old versions of the files
but to write them as well. This is now transparent to the user of EDI, apart
from the fact that the checking for classes and variables cannot be performed.

4.3. RETROCOMPATIBILITY 37

Infact, the classes for the variables were not mandatory and there was only
one folder. A certain number of tests were conducted to see if every old
file could be read and converted to the new version. The conversion worked
successfully for every example case used as a meter.

The second aspect was about the interface. In respect to that, not only
a set of new methods were added, but some had to change. We’ll not be
listing every little change in every method but we can at least identify the
common changes. The thing that changed the most is the use of the IDs.
As stated before, EDIv2 now creates one instance of the library for every file
being open. It is then fundamental to gain access to the correct instance of
EDI with the file_id. The methods of the interface that didn’t have it before
were the ones regarding the declaration and data section. That is because
the IDs of the variables were unique among every file. This is not true
anymore so the integer value of the file_id, furnished during the creation of
the instance, has to always be passed as the first parameter. A second main
change that regarded only the C interface, but not the Fortran one, is the use
of C structures as parameters. For example, when returning the list of the
variables, the return type was a pointer to a C structure containing an array
of strings, an array of dimensions and the number of strings. Everything in
one single structure. Even if ctypes could handle easily C structures, it has
been decided that such a complication wasn’t necessary at all.

38 CHAPTER 4. LIBRARY

Chapter 5

Conclusions and future
developments

As a conclusion, we can state that rewriting the library from scratch was
worth the effort. Many new features have been added quickly as the library
was being redesigned. Especially the Python part has introduced a really
powerful and dynamic testing system.

The language part is now under revision and has already been subjected
to a few changes due to the recent work of Step Over Srl on the Structures
Data Dictionary. It is now more clear and engaging.

In any case, several other improvements are yet to be done. First of all,
the transaction for existing software to adopt the new version of EDI. It is
a matter of changing the function calls but some issues may still come up.
Another tool that is going to pass to the new version is the EDIFun tool
for MATLAB but, fortunately, it is based on the Fortran interface so the
problems to be faced are quite the same.

A part from the usual assessments for when a new software is created
(speed, stability, consistency), a few other points to focus will be:

• The slicing system. As discussed before, components that are redimen-
sioned lose their values even if their domains decrease in length. It can
be useful to avoid this and mantain the values instead of reinitialize
them.

• The dimensions system. For an external user it may be difficult to un-
derstand how many sizes are concatenated. That is why sizes with just
one dimension with value 1 should have the possibility to be omitted
during the usage.

• The .dy dictionaries format. There are far better formats for the dic-

39

40 CHAPTER 5. CONCLUSIONS AND FUTURE DEVELOPMENTS

tionaries instead of lines on a text file. After having decided the format
to use, the validation methods in EDI have to change as a consequence.
The output of the Python parser must change accordingly.

In addiction, by the fact that the total number of dictionaries is not
high, they can be included within the library itself avoiding the neces-
sity for the user to compile them with Python.

• The last and most important change is the introduction of binary files
for the storing. Basically XML files are text files and, because of that, a
conversion has to always be performed for numerical values. The worst
aspect is that they occupy a lot of space in the hard drive. It is not
reasonable to mantain billions of values in a unique XML file. That is
why a new system for storing the data is taking place. In the future
three approaches will be available: to use just plain EML, to use a
zipped EML file thanks to a contribution of an archive manager and to
use again an archive approach but with binary files. The last method
consists in mantaining the EML file but all the variables whose values
exceed the second threshold stated in the Capacity tag will not be saved
in the data section but in a different, binary, file making use of HDF5.
There will be one HDF5 file for each dictionary. HDF5 is a file format
designed to store and organize large amounts of numerical data [14]. It
has a hierarchical structure which applies well with the EML system.
The EML file and the HDF5 files will be zipped together in a unique
.edx file. The University of Aachen developed a first experimental
HDF5 I/O interface for EDIv1, showing very good compression and
access speed [15]. It needs to be consolidated and integrated into the
new version of EDI.

During the period of the internship a lot of things concerning EDX have
changed drastically and a lot of others have been put under discussion. The
DDL is starting to be more valuable and is now sensed by the users thanks
to the introduction of the validation system. The Data Dictionaries are con-
stantly being refined by the means of frequent confrontations among partners
and new ideas coming up. The source code of EDI has been modernized, doc-
umented and is now more approachable from an external point of view.

Appendix A

BNF and Railroad diagrams for
the DDL

41

42 APPENDIX A. BNF AND RAILROAD DIAGRAMS FOR THE DDL

D
a
ta

D
ic
ti
o
n
a
ry

D
ec

la
ra

ti
o
n

::
=

D
at

aD
ic
ti
on

ar
y
N
am

in
g

In
cl

u
d
eL

is
t

(
F
o
ld

er
D
ec

la
ra

ti
o
n

)+
EN

D
D
at

aD
ic
ti
on

ar
y
N
am

in
g

::
=

D
A
T
A
_
D
IC
T
IO
N
A
R
Y

na
m
e

In
cl

u
d
eL

is
t

::
=

(I
N
C
LU

D
E
S

na
m
e

(
’,

’
na

m
e)

∗
|)

F
o
ld

er
D
ec

la
ra

ti
o
n

::
=

FO
LD

ER
na

m
e

(P
R
O
T
O
T
Y
PE

|
(
C
la

ss
D
ec

la
ra

ti
o
n

)+
|

(
F
o
ld

er
D
ec

la
ra

ti
o
n

)+
)
EN

D
C
la

ss
D
ec

la
ra

ti
o
n

::
=

C
LA

SS
na

m
e

((
N
ew

C
la
ss
B
o
d
y
D
ec

la
ra

ti
o
n

|
S
u
b
C
la
ss
B
o
d
y
D
ec

la
ra

ti
o
n

)
>

(
C
la

ss
R
u
le
sD

ec
la

ra
ti
o
n
|)

(
C
la
ss
M

em
b
er

sD
ec

la
ra

ti
o
n
|)

|
A
b
sC

la
ss
B
o
d
y
D
ec

la
ra

ti
o
n

>
(
C
la

ss
R
u
le
sD

ec
la

ra
ti
o
n
|)

|
A
L
IA

S
Q
u
a
li
fi
ed

C
la
ss
N
a
m
e

|
PR

O
T
O
T
Y
PE

)
EN

D
N
ew

C
la
ss
B
o
d
y
D
ec

la
ra

ti
o
n

::
=

(O
V
E
R
R
ID
E

na
m
e

|
NE

W
|

)
P
ro

p
er

ti
es

D
ec

la
ra

ti
o
n

(C
o
m
p
o
n
en

ts
D
ec

la
ra

ti
o
n

|
)

S
u
b
C
la
ss
B
o
d
y
D
ec

la
ra

ti
o
n

::
=

E
X
T
E
N
D
S

Q
u
a
li
fi
ed

C
la
ss

N
a
m
e

(
P
ro

p
er

ti
es

D
ec

la
ra

ti
o
n

|)
(C

o
m
p
o
n
en

ts
D
ec

la
ra

ti
o
n

|)
A
b
sC

la
ss
B
o
d
y
D
ec

la
ra

ti
o
n

::
=

A
B
ST

R
A
C
T

(E
X
T
E
N
D
S

Q
u
a
li
fi
ed

C
la
ss

N
a
m
e

|)
(
P
ro

p
er

ti
es

D
ec

la
ra

ti
o
n

|)
(C

o
m
p
o
n
en

ts
D
ec

la
ra

ti
o
n

|)
P
ro

p
er

ti
es

D
ec

la
ra

ti
o
n

::
=

A
tt

ri
b
u
te

D
ec

la
ra

ti
o
n

∗
D
o
m
a
in

D
ec

la
ra

ti
o
n

∗
(
S
tr

u
ct

u
re

D
ec

la
ra

ti
o
n

|)
S
iz

eD
ec

la
ra

ti
o
n

A
tt

ri
b
u
te

D
ec

la
ra

ti
o
n

::
=

A
T
T
R
IB
U
T
E

na
m
e

’:
’

na
m
e

(
’,

’
na

m
e)

∗
D
o
m
a
in

D
ec

la
ra

ti
o
n

::
=

D
O
M
A
IN

(n
am

e
|)

(R
EF

ER
EN

C
E

|
IN

D
E
X
)

Q
u
a
li
fi
ed

C
la
ss

N
a
m
e

S
tr

u
ct

u
re

D
ec

la
ra

ti
o
n

::
=

ST
R
U
C
T
U
R
E

(C
A
R
T
ES

IA
N
PR

O
D
U
C
T

|
LI
ST

O
F
T
U
P
LE

S
)

S
iz

eD
ec

la
ra

ti
o
n

::
=

S
IZ

E
S

(N
O
N
E

|
(n

u
m
b
er

|
’−

’)
+

)
C
o
m
p
o
n
en

ts
D
ec

la
ra

ti
o
n

::
=

(U
n
n
am

ed
C
om

p
on

en
tD

ec
la
ra

ti
on

|
M

u
lt
ip

le
C
o
m
p
o
n
en

tD
ec

la
ra

ti
o
n
)

U
n
n
am

ed
C
om

p
on

en
tD

ec
la
ra

ti
on

::
=

CO
M
PO

N
EN

T
C
om

p
on

en
tC

on
te

n
tD

ec
la
ra

ti
on

EN
D

M
u
lt
ip

le
C
o
m
p
o
n
en

tD
ec

la
ra

ti
o
n

::
=

(C
O
M
PO

N
EN

T
na

m
e

(C
om

p
on

en
tC

on
te

n
tD

ec
la
ra

ti
on

|
PR

O
T
O
T
Y
PE

)
EN

D
)+

C
om

p
on

en
tC

on
te

n
tD

ec
la
ra

ti
on

::
=

(
S
iz

eD
ec

la
ra

ti
o
n

|
)

(
T
y
p
eD

ec
la
ra

ti
o
n

(
U
n
it
sD

ec
la

ra
ti
o
n

|)
>

(
V
a
lu

eO
p
ti
o
n
sD

ec
la

ra
ti
o
n

|)
|
T
Y
P
E

(
ST

R
IN

G
(
V
a
lu

eO
p
ti
o
n
sD

ec
la

ra
ti
o
n

|)
|
ST

R
U
C
T
U
R
E

>
C
o
m
p
o
n
en

ts
D
ec

la
ra

ti
o
n

|
(R

EF
ER

EN
C
E

|
IN

D
E
X
)C

LA
SS

Q
u
a
li
fi
ed

C
la
ss

N
a
m
e

(
V
a
lu

eO
p
ti
o
n
sD

ec
la

ra
ti
o
n

|)
))

U
n
it
sD

ec
la

ra
ti
o
n

::
=

U
N
IT

S
IS

O
U
n
it
sD

ef
in

it
io

n
IS

O
U
n
it
sD

ef
in

it
io

n
::
=

(n
am

e
|

n
u
m
b
er

|s
y
m
b
ol

)∗
T
y
p
eD

ec
la
ra

ti
o
n

::
=

T
Y
P
E

(V
O
ID

|
B
O
O
L

|
C
H
A
R

|
IN

T
|
FL

O
A
T

|
D
O
U
B
LE

|
C
O
M
PL

EX
_
T
Y
PE

|
D
C
O
M
PL

EX
)

V
a
lu

eO
p
ti
o
n
sD

ec
la

ra
ti
o
n

::
=

V
A
LU

E
S

((
n
u
m
b
er
)+

|
(n

am
e)
+
)

Q
u
a
li
fi
ed

C
la
ss

N
a
m
e

::
=

na
m
e

(
’:
:
’

na
m
e)

∗
’:
:
’

na
m
e

(
’:

’
na

m
e)

∗
C
la

ss
R
u
le
sD

ec
la

ra
ti
o
n

::
=

R
U
LE

S
(
In

st
a
n
ti
a
ti
o
n
R
u
le

|)
(
P
re

se
n
ce

R
u
le
s
|)

(
In

te
g
ri
ty

R
u
le

s
|)

EN
D

In
st

a
n
ti
a
ti
o
n
R
u
le

::
=

IN
ST

A
N
T
IA

T
IO

N
SI
N
G
LE

IS
T
A
N
C
E

P
re

se
n
ce

R
u
le
s

::
=

P
R
E
SE

N
C
E

P
re

se
n
ce

R
u
le
D
ec

l
+

EN
D

P
re

se
n
ce

R
u
le
D
ec

l
::
=

(D
O
M
A
IN

|
CO

M
PO

N
EN

T
)

((
M
A
N
D
A
TO

RY
|
O
P
T
IO
N
A
L
)

(n
am

e
|

C
o
n
d
it
io

n
D
ec

la
ra

ti
o
n
)

|
>

FO
R
B
ID
D
E
N

C
o
n
d
it
io

n
sD

ec
la

ra
ti
o
n

|
(A

T
LE

A
ST

O
N
E

|
O
N
LY

O
N
E
)

na
m
e

(
’,

’
na

m
e)

∗
)

C
o
n
d
it
io

n
sD

ec
la

ra
ti
o
n

::
=

na
m
e

(W
IT
H

(D
O
M
A
IN

|
CO

M
PO

N
EN

T
|

IF
na

m
e

IS
)

na
m
e)

EN
D

In
te

g
ri
ty

R
u
le

s
::
=

IN
T
E
G
R
IT
Y

In
te

g
ri
ty

R
u
le
D
ec

l
+

EN
D

In
te

g
ri
ty

R
u
le
D
ec

l
::
=

CO
M
PO

N
EN

T
na

m
e

(B
O
U
N
D
S

B
ou

nd
(
’;

’
B
ou

nd
)∗

|
R
E
LA

T
IO

N
R
el
a
ti
o
n
a
lE

x
p
re

ss
io

n
)
EN

D
B
ou

nd
::
=

(
’(

’
|

’[
’)

n
u
m
b
er

’,
’

n
u
m
b
er

(
’)

’
|

’]
’)

R
el
a
ti
o
n
a
lE

x
p
re

ss
io

n
::
=

(
’<

’
|

’>
’)
(
’=

’
|)

n
u
m
b
er

C
la
ss
M

em
b
er

sD
ec

la
ra

ti
o
n

::
=

M
EM

BE
R
S

(V
A
R
IA
B
LE

na
m
e

V
a
ri
a
b
le
B
o
d
y
D
ec

la
ra

ti
o
n

EN
D
)+

EN
D

V
a
ri
a
b
le
B
o
d
y
D
ec

la
ra

ti
o
n

::
=

A
tt

ri
b
u
te

D
ec

la
ra

ti
o
n

∗
D
o
m
a
in

D
ec

la
ra

ti
o
n

∗
>

S
tr

u
ct

u
re

D
ec

la
ra

ti
o
n

S
iz

eD
ec

la
ra

ti
o
n

(C
o
m
p
o
n
en

ts
D
ec

la
ra

ti
o
n

|)

43

DataDictionaryDeclaration:

DataDictionaryNaming IncludeList FolderDeclaration END

no references

DataDictionaryNaming:

DATA_DICTIONARY name

referenced by:

DataDictionaryDeclaration

IncludeList:

INCLUDES name

,

referenced by:

DataDictionaryDeclaration

FolderDeclaration:

FOLDER name PROTOTYPE

ClassDeclaration

FolderDeclaration

END

referenced by:

DataDictionaryDeclaration
FolderDeclaration

ClassDeclaration:

CLASS name NewClassBodyDeclaration

SubClassBodyDeclaration

ClassRulesDeclaration ClassMembersDeclaration

AbsClassBodyDeclaration ClassRulesDeclaration

ALIAS QualifiedClassName

PROTOTYPE

END

referenced by:

FolderDeclaration

NewClassBodyDeclaration:

44 APPENDIX A. BNF AND RAILROAD DIAGRAMS FOR THE DDL

OVERRIDE name

NEW

PropertiesDeclaration ComponentsDeclaration

referenced by:

ClassDeclaration

SubClassBodyDeclaration:

EXTENDS QualifiedClassName PropertiesDeclaration ComponentsDeclaration

referenced by:

ClassDeclaration

AbsClassBodyDeclaration:

ABSTRACT EXTENDS QualifiedClassName PropertiesDeclaration ComponentsDeclaration

referenced by:

ClassDeclaration

PropertiesDeclaration:

AttributeDeclaration DomainDeclaration

StructureDeclaration SizeDeclaration

referenced by:

AbsClassBodyDeclaration
NewClassBodyDeclaration
SubClassBodyDeclaration

AttributeDeclaration:

ATTRIBUTE name : name

,

referenced by:

PropertiesDeclaration
VariableBodyDeclaration

DomainDeclaration:

DOMAIN name REFERENCE

INDEX

QualifiedClassName

referenced by:

PropertiesDeclaration
VariableBodyDeclaration

StructureDeclaration:

STRUCTURE CARTESIANPRODUCT

LISTOFTUPLES

45

referenced by:

PropertiesDeclaration
VariableBodyDeclaration

SizeDeclaration:

SIZES NONE

number

-

referenced by:

ComponentContentDeclaration
PropertiesDeclaration
VariableBodyDeclaration

ComponentsDeclaration:

UnnamedComponentDeclaration

MultipleComponentDeclaration

referenced by:

AbsClassBodyDeclaration
ComponentContentDeclaration
NewClassBodyDeclaration
SubClassBodyDeclaration
VariableBodyDeclaration

UnnamedComponentDeclaration:

COMPONENT ComponentContentDeclaration END

referenced by:

ComponentsDeclaration

MultipleComponentDeclaration:

COMPONENT name ComponentContentDeclaration

PROTOTYPE

END

referenced by:

ComponentsDeclaration

ComponentContentDeclaration:

46 APPENDIX A. BNF AND RAILROAD DIAGRAMS FOR THE DDL

SizeDeclaration

TypeDeclaration UnitsDeclaration ValueOptionsDeclaration

TYPE STRING ValueOptionsDeclaration

STRUCTURE ComponentsDeclaration

REFERENCE

INDEX

CLASS QualifiedClassName ValueOptionsDeclaration

referenced by:

MultipleComponentDeclaration
UnnamedComponentDeclaration

UnitsDeclaration:

UNITS ISOUnitsDefinition

referenced by:

ComponentContentDeclaration

ISOUnitsDefinition:

name

number

symbol

referenced by:

UnitsDeclaration

TypeDeclaration:

TYPE VOID

BOOL

CHAR

INT

FLOAT

DOUBLE

COMPLEX_TYPE

DCOMPLEX

referenced by:

ComponentContentDeclaration

47

ValueOptionsDeclaration:

VALUES number

name

referenced by:

ComponentContentDeclaration

QualifiedClassName:

name

::

:: name

:

referenced by:

AbsClassBodyDeclaration
ClassDeclaration
ComponentContentDeclaration
DomainDeclaration
SubClassBodyDeclaration

ClassRulesDeclaration:

RULES InstantiationRule PresenceRules IntegrityRules END

referenced by:

ClassDeclaration

InstantiationRule:

INSTANTIATION SINGLEISTANCE

referenced by:

ClassRulesDeclaration

PresenceRules:

PRESENCE PresenceRuleDecl END

referenced by:

ClassRulesDeclaration

PresenceRuleDecl:

DOMAIN

COMPONENT

MANDATORY

OPTIONAL

name

ConditionDeclaration

FORBIDDEN ConditionsDeclaration

ATLEASTONE

ONLYONE

name

,

referenced by:

48 APPENDIX A. BNF AND RAILROAD DIAGRAMS FOR THE DDL

PresenceRules

ConditionsDeclaration:

name WITH DOMAIN

COMPONENT

IF name IS

name END

referenced by:

PresenceRuleDecl

IntegrityRules:

INTEGRITY IntegrityRuleDecl END

referenced by:

ClassRulesDeclaration

IntegrityRuleDecl:

COMPONENT name BOUNDS Bound

;

RELATION RelationalExpression

END

referenced by:

IntegrityRules

Bound:

(

[

number , number)

]

referenced by:

IntegrityRuleDecl

RelationalExpression:

<

>

= number

referenced by:

IntegrityRuleDecl

ClassMembersDeclaration:

MEMBERS VARIABLE name VariableBodyDeclaration END END

referenced by:

ClassDeclaration

VariableBodyDeclaration:

49

AttributeDeclaration DomainDeclaration

StructureDeclaration SizeDeclaration ComponentsDeclaration

referenced by:

ClassMembersDeclaration

 ... generated by Railroad Diagram Generator R R

50 APPENDIX A. BNF AND RAILROAD DIAGRAMS FOR THE DDL

Bibliography

[1] F. Rossi, “Data model and software prototype for antenna geometrical
information.” University of Padua, 2015.

[2] http://www.w3.org/XML/.

[3] P. E. Frandsen and M. Sabbadini, “An introduction to the Electromag-
netic Data Exchange language.”

[4] M. Sabbadini, “System Analysis and Requirements for an Electromag-
netic Data Exchange Standard,” October 2005. ESA Ref.: EWP-2300,
Issue 1.

[5] F. Silvestri and M. Ghilardi, “Electromagnetic Data Interface, FOR-
TRAN User Manual - EDI Level 0 and Level 1,” 2007.

[6] F. Silvestri and M. Ghilardi, “Electromagnetic Data Interface, FOR-
TRAN User Manual - EDI Level 2,” 2007.

[7] http://www.ticra.com/products/software/grasp.

[8] http://www.dabeaz.com/ply/.

[9] J. R. Levine, T. Mason, and D. Brown, lex & yacc (2 ed.). O’Reilly,
1992.

[10] F. Mioc and M. Sabbadini, “EDX. Field Data Dictionary definition,”
October 2008. ESA Ref.:EWP-2344, Issue 1.

[11] https://docs.python.org/2/library/ctypes.html.

[12] http://www.xmlsoft.org/.

[13] http://expat.sourceforge.net/.

[14] https://www.hdfgroup.org/HDF5/.

[15] M. Dirix, “Intermediate Report EAML VII,” 2014.

51

http://www.w3.org/XML/
http://www.ticra.com/products/software/grasp
http://www.dabeaz.com/ply/
https://docs.python.org/2/library/ctypes.html
http://www.xmlsoft.org/
http://expat.sourceforge.net/
https://www.hdfgroup.org/HDF5/

	Introduction
	Motivations
	Quick overview

	Background
	Dictionaries
	EML
	The EDI library

	Language
	Improvements in the DDL
	Improvements to the existing Dictionaries

	Library
	Improvements in EML
	Improvements in the library
	Retrocompatibility

	Conclusions and future developments
	BNF and Railroad diagrams for the DDL
	Bibliography

