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Abstract

In this thesis, we first review and discuss the problem of con-
vergence to consensus for a model that represents a network of
individual agents interacting through time-dependent communi-
cation links. This model properly describes many situations in
cooperative control, where real-world communication topologies
are usually not fully connected and are dinamically changing over
time.

The convergence to consensus problem, namely the search of
conditions that ensure the agents will reach “agreement” on a
common state, is presented emphasizing the two major aspects on
which constraints must be imposed: the individual behavior and
the global network connectivity.

We next analyze two approaches to the study of convergence to
consensus: leaving out the most technical parts of the proofs, we
focus on the fundamental results and differences about them. The
first one is based upon set-valued Lyapunov theory, with a notion
of (local) convexity playing a central role, while the second one
relies on a theorem by Birkhoff on the contraction properties for
positive maps on cones.

Finally, we proceed to a thorough comparison of these approaches,
highlighting their similarities, differences and applicability to limit
cases with the aid of numerous simple examples.
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1
Introduction to Consensus

1.1 Practical Applications

The present work can be collocated in the field of cooperative control, which
studies dynamical systems composed of many different individuals (agents)
that can communicate with each other, respecting some constraints.
In this framework, global results about the multi-agent system are closely
linked to the individual behavior and to particular communication features.

In particular, we focus on the problem of proving the convergence to
consensus, i.e.

determining a set of conditions that allow the system agents to reach, at
least asymptotically, a common state.

This can be interpreted as the single systems reaching a common point of
interest, or agreeing on some quantitative statement. Intuitively, we can
expect these conditions to regard the communication features on the one
hand, and the individual dynamical behavior on the other.

Consensus problems arise in many type of systems: in particular it is
of key interest in understanding how natural groups coordinate themselves,
like in swarming, a cooperative behaviors observed for a variety of living
beings such as birds, fish or bacteria.
Of course, it could be hard to determine exact mathematical models to de-
scribe those dynamics, however the research work about it can be useful to
find methods which can be applied in control systems. Another interest-
ing field regards human behavior: in a theoretical way, if people opinions
could be synthesized in a certain “state”, it would be possible to apply the
consensus theory in order to study those dynamics which allow to achieve

1



unanimous opinions and common point of views.
Even if this could appear as science fiction, because of the impossibility of
containing human behaviors in mathematical terms, it is still conceivable
to find simplified quantitative models that could illustrate the basic mech-
anisms causing aggregated behaviors to emerge, e.g. in economic or social
sciences.

We refer to [4] for a thorough discussion of the key aspects of the prob-
lem from a control-theoretic perspective. Cooperative control of multiple-
vehicle systems has potential impact in numerous civilian, homeland secu-
rity, and military applications where communication bandwidth and power
constraints will preclude centralized command and control. The interest
is typically in information consensus, where a team of vehicles must com-
municate with its neighbors in order to agree on key pieces of information
that enable them to work together in a coordinated fashion. The problem
is particularly challenging because real-world communication topologies are
usually not fully connected: in many cases, they depend on the relative po-
sitions of the vehicles and on other environmental factors and are therefore
dynamically changing in time. In addition, wireless communication chan-
nels are subject to multipath, fading and drop-out. Such principles can
be used in a robotic context to help enable a large group of autonomously
functioning vehicles in the air (UAV), on land or sea or underwater, to col-
lectively accomplish, in a safe and coordinated manner, useful tasks such
as distributed, adaptive scientific data gathering, search and rescue, and re-
connaissance.

Consensus is reached when the system achieves agreement among agents.
It is customary to associate to the system a communication network, based
on the real communication links existing between the agents.
To achieve consensus, there must be a shared variable of interest, called the
information state, as well as appropriate algorithmic methods for negotiat-
ing to reach consensus on the value of that variable, called the consensus
algorithms; agents update the value of their information states based on the
information states of their neighbors, i.e. the agents which can communicate
with them.

The topology of the communication network can change continuously, and
algorithms need to be robust against those changes, because the information
states of all the agents in the network converge to a common value.
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1.2 An Introductory Example

We start introducing the object of our analysis with an informal example,
before proceeding with a formal mathematical description.
Let us suppose we have two programmable robots, and each of them can
store a real number; let us take for example the initial values 8 and 2.

Let us suppose we can program the robots
at the moment they are created, and then
they will act autonomously, without any
supervision. We want the two robots to
reach autonomously the same number, in-
dipendently from the initial values.

Of course, sharing information is a nec-
essary step for this cooperation, and so
the robots should be able to comunicate.
For example, provided a robot can broad-
cast its value, it is sufficient program them
saying: “when you receive a number, store
it”, and so the target will be reached.

However, in general we may have no
knowledge about which robot will trans-
mit; if the second robot is able to broad-
cast its value too, the effect will be a num-
ber exchanging and the target will not be
reached.

Let us change our strategy, and pro-
gram the robots saying: “when you receive
a number, compute the average between
that and the number you have in memory,
and store the result”. With this algorithm
the target will be reached.
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We could object that returning to the
unidirectional transmition consensus will
not be reached using the mean method:
(8 + 2)/2 = 5

But let us observe that if the connec-
tion link is stable in time, and if the robot
continues to compute the mean...

(8 + 2)/2 = 5
(8 + 5)/2 = 6.5
(8 + 6.5)/2 = 7.25
...
...
...
... agreement will be reached asymptoti-
cally.

The second method (“compute the mean”) appears more general than the
first one (“copy the number”).

In this simple example, the consensus problem can be traduced with:
make the robots reach the same number, or the same “state”. We are not
interested in how much time will be employed: we are looking for criteria
that permit to verificate sufficient conditions to consensus.

From this first example, we observe the dipendence from:
1) communication settings
2) consensus algorithm

and so the criteria we are looking for will be based upon these aspects.

Let us try to generalize the problem: let us suppose we have n robots,
and each of them can store a number. Let us suppose we have no infor-
mation about the evolution of the connection links between these robots in
time: the links can modificate time by time. In other words, if in instant t
there is a certain link between robots i and j, it is not necessarily true that
this link will exist in instant t+ 1.
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Which hypotesis, about communication settings and consensus algorithm,
consensus will be reached under?

In order to model this problem, we set the n robots on the nodes of a graph:
the i-th node corresponds to the i-th robot. Then for each instant we as-
sociate an arc of the graph to each communication link ; having supposed
time-varying links, the arc set will be time-varying too, and so we will have
a sequence of arc sets.

In this way, our model is a sequence of graphs:

G(t) = (N ,A(t))

N = {1, 2, ..., n} the set of nodes/robots
A(t) ⊆ N ×N the set of arcs/links, t ∈ N

Henceforward, we will call the robots agents, and we will generalize the
problem saying that they have a state that is not necessarily a number, but
an element of an Euclidean space X.

Our goal is to study consensus criteria for multiagent systems with
time-dependent communication links.

1.3 The Multiagent System

The starting point is a system of n interacting agents; this is a dynamic
model in state form with state spaceX, that is Euclidean and finite-dimensional
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x1(t+ 1) = f1(t, x1(t), x2(t), ..., xn(t))
x2(t+ 1) = f2(t, x1(t), x2(t), ..., xn(t))
...
xn(t+ 1) = fn(t, x1(t), x2(t), ..., xn(t))

In a more compact form, we define the discrete-time system on Xn:

x(t+ 1) = f(t, x(t)) (1.1)

where x(t) = [x1(t), x2(t), ..., xn(t)]T ∈ Xn is the state vector of the n agents,
and f : N×Xn → Xn is the continuous update function.

This formulation is very general, and does not consider the constraints
imposed by the agents’ communication links. The communication topology
can be represented each instant t by a communication graph, where the
nodes correspond to the agents, and where the arc (i, j) exists whenever
there is a communication link from agent i to agent j.
We suppose time-dependent communications, therefore the communication
graph changes over time.
Considering these aspects, we can introduce the sequence of graphs

G(t) = (N ,A(t))

where every node in N = {1, 2, ..., n} corresponds to an agent and each arc
(i, j) ∈ A(t) ⊆ N ×N represents a communication channel, from agent i to
agent j, existing in a given instant t ∈ N.
The communication graph (N ,A(t)) determines what information is avail-
able for which agent in instant t.

Definition 1 (Neighbors) Consider a node i ∈ N ; we define Neighbors(i, t)
as the set of those nodes j ∈ N for which (j, i) ∈ A(t), with t ∈ N.
In the consensus context, Neighbors(i, t) is the set of agents which could
influence i (because of the existence of a link starting from them).

It is important to emphasize the difference between directional and bidirec-
tional graphs:

if the graphs are considered symmetric, i.e. (i, j) ∈ A(t)⇔ (j, i) ∈ A(t),
then when i is a neighbor of j, j is a neighbor of i;

if the graphs are considered asymmetric, then when i is a neighbor of j,
j is not necessarily a neighbor of i.

Furthermore, using the definition about neighbors, the time-dependence
of the links means that Neighbors(i, t) can change over time.
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Moreover, in order to give a connection between the system 1.1 and the
graph sequence G(t), we informally detail the update function components
above as:

x1(t+ 1) = f1(t, {xj(t) : j ∈ Neighbors(1, t)})
x2(t+ 1) = f2(t, {xj(t) : j ∈ Neighbors(2, t)})
...
xn(t+ 1) = fn(t, {xj(t) : j ∈ Neighbors(n, t)})

It means that agents update the value of their states based on the states
of their neighbors.

1.4 Asymptotic Consensus and Fundamental As-
sumptions

When multiple agents agree on the value of a variable of interest (the state),
they are said to have reached consensus.
Considering the vector state [x1(t), x2(t), ..., xn(t)]T ∈ Xn, consensus will be
reached whenever

[x1(t), x2(t), ..., xn(t)]T → [α, α, ..., α]T with α ∈ X

Definition 2 (Asymptotic Consensus) The update function f guaran-
tees asymptotic consensus in system 1.1 if for every initial vector state
x(0) ∈ Xn and for every associated sequence of graphs G(t), there exists
some α ∈ X such that

lim
t→∞

xi(t) = α ∀i ∈ N

To achieve consensus, there must be an appropriate algorithmic method,
called consensus algorithm. Typically, in order to model situations of in-
terest, consensus algorithms are designed to be distributed, assuming only
neighbor-to-neighbor interaction between agents. The goal is to design an
update law so that the states of all the agents in the network converge to a
common value.

Another notion is necessary for the following definitions:

Definition 3 (Convex Hull) In an Euclidean space X, a set is convex
if for every pair of points within the set, every point on the straight line
segment that joins them is also within the set.
Given a finite set of points P = {α1, α2, ...αn} of Xn, the convex hull of
P is the smallest convex set containing P , namely the intersection of all
convex sets containing P .
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Let us anticipate that there are three fundamental assumptions necessary to
reach consensus in system 1.1; many variations of them can be found in the
literature: we choose the following formulation.

Local Convexity Assumption The next state of i, xi(t + 1), is strictly
contained in the convex hull of the states of agent i at time t and of
agents in Neighbors(i, t).
Let us emphasize with the following example the local nature of this
property, showing that the convex hull can take different forms con-
sidering symmetric or asymmetric graphs.

. Example Let us consider a system composed of two agents; each of
them has a certain state in the real line.

• Let us suppose A(t) = {(1, 2)}, namely the graph is directional.
Considering agent 1, Neighbors(1, t) = {1} and so the relative
convex hull is x1(t); considering agent 2, Neighbors(2, t) = {1, 2},
and so the relative convex hull is the set (x1(t), x2(t)).

• Let us suppose A(t) = {(1, 2); (2, 1)}, namely the graph is bidi-
rectional.
In this case, Neighbors(1, t) = Neighbors(2, t) = {1, 2} and so
the relative convex hull is the set (x1(t), x2(t)) for both agents.
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Local convexity represents a “good behavior” of each individual agent,
which updates its state approaching the states of its neighbors (when-
ever it has some neighbors).

Global Asymptotic Connectivity In order to avoid a lack of communi-
cation, it is necessary to suppose that the graph G(t,∞) = (N ,

⋃
τ≥tA(τ))

is connected ∀t ∈ N, which means that exists a node in N that can
reach every other nodes of N through paths of G(t,∞).

Bounded Intercommunication Intervals If i communicates to j an in-
finite number of times, then there is some T ≥ 0 such that (i, j) ∈
A(t) ∪ A(t+ 1) ∪ ... ∪ A(t+ T − 1) ∀t ∈ N.
Although the previous assumption assures the necessary communica-
tion, the dynamics of the sequence of graphs could avoid consensus
yet. Let us suppose that the global connection switches on infinite
times with increasing size intervals between them; asymptotically, it
is similar to absence of connection. In order to avoid this situation, it
is necessary to force the connectivity to repeat itself in finite intervals.
Let us show that with the following formal example.

. Example The agreement algorithm can generate nonconvergent dynam-
ics when the communication intervals become unbounded. Let us con-
sider a real-values system with three agents, with initially vector state
x(0) = (0, 1, 1) ∈ R3.
Let us consider the sequence of arc sets
Aa = {(1, 2)}
Ab = {(1, 2), (2, 1)}
Ac = {(3, 2)}
Ad = {(2, 3), (3, 2)}

Defining the concatenation

Bk = Aa, ...,Aa︸ ︷︷ ︸
2k times

,Ab,Ac, ...,Ac︸ ︷︷ ︸
2k+1 times

,Ad k ∈ {0} ∪ N

let us consider as arc sets sequence (A(t)) for the system 1.1 the concatena-
tion

B0, B1, B2, B3, ...

and let us consider the sequence of time instants t1, t2, t3, ...→∞ determined
by {

tp+1 − tp = p+ 1 ∀p > 1

t1 = 2
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Let us observe that the union of the arc sets A(t) over any interval of
the form [t0,∞) is given by N ×N , and then the assumption about global
asymptotic connectivity is respected.

Let us suppose the system uses the consensus algorithm informally ex-
plained in the Introductory Example 1.2 (“do the mean”); it is easy to
prove that the local convexity assumption is respected too (see Subsection
2.2).

Instead, the assumption about bounded intercommunication intervals is
not respected: it is impossible to find such a T ≥ 0, because of the increasing
of intervals tp+1 − tp.

Let us show that the three components of x do not converge to a common
value when t→∞.
In order to show that, let us evaluate the difference d(p) = x3(tp) − x1(tp)
at the time-instants t1, t2, t3, ...→∞. It can be proven that:{

d(p+ 1) = d(p)− 1
2p+1d(p) = 2p+1−1

2p+1 d(p) ∀p > 1

d(1) = 1
2

Thus, 0 < d(p) < 1 and d(p) is decreasing with p (convergence as p → ∞).
The total accumulative decrease of d satisfies

∞∑
p=1

(d(p)− d(p+ 1)) =
∞∑
1=1

1

2p+1
d(p) <

∞∑
p=1

1

2p+1
=

1

2

Since d(1) = 1
2 , we conclude that

lim
p→∞

sup(x3(tp)− x1(tp)) ≥ lim
p→∞

d(p) = d(1)−
∞∑
p=1

(d(p)− d(p+ 1)) > 0

On the other hand, if there is simmetry, the bounded intercommunication
interval assumption is unnecessary and can be relaxed.

1.5 The Linear Case

Let us define a particular case regarding consensus, where each agent i has
a scalar value xi(t) ∈ R as state, ∀t ∈ N, so that the state vector satisfies
[x1(t), x2(t), ..., xn(t)]T ∈ Rn ∀t ∈ N.
In the linear case of the consensus problem, considering again system 1.1,
the consensus algorithm updates the state vector in this way:

x(t+ 1) = W (t)x(t) (1.2)
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where x(t) = [x1(t), x2(t), ..., xn(t)]T ∈ Rn is the state vector of the n agents
and W (t) is an n× n real matrix.
In detail,

xi(t+ 1) =
n∑
k=1

wik(t)xk(t)

where wij(t) are entries of W (t).

For compatibility motivation with the previous graph interpretation, when-
ever wij(t) 6= 0 agent j communicates its current value xj(t) to agent i,
and so j ∈ Neighbors(i, t); instead, whenever wij(t) = 0 two situations are
possible:

• agent j does not communicate its current value xj(t) to agent i, and
so j 6∈ Neighbors(i, t)

• agent j communicates its current value xj(t) to agent i, and so j ∈
Neighbors(i, t), but i does not take account about it

This treatment corresponds to consider a sequence of weighted graphs

Gw(t) = (N ,A(t),W (t))
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2
Two Different Approaches
to Consensus

2.1 Approach Based on Set-Valued Lyapunov The-
ory

The first approach we consider is based on [1]. This paper is centered around
the notion of convexity, and gives a stability analysis based upon the exis-
tence of a Lyapunov set-valued function.

In the first subsection we will give notions and theory fundaments of set-
valued Lyapunov characterization; in the second subsection we will see how
to use Lyapunov Theory in consensus.

2.1.1 Set-Valued Lyapunov Theory

We consider the discrete-time system (1.1) x(t + 1) = f(t, x(t)) introduced
in the previous chapter, with f : N×Xn → Xn a continuous map and X a
finite-dimensional Euclidean space. We refer to Chapter 1 for an introduc-
tion and for examples to the systems that this class of models can describe.

We are interesting in studying the agents’ states converging to a common
constant value, and we expect this value to depend on the initial states: we
are thus considering a continuum of equilibrium points.

Hence, a stability theory focusing only on isolated equilibria is not suitable
for our setting, and the stability of the set of equilibria should be considered
instead. Beside the need for stability of sets of equilibria, there is another
aspect worth emphasizing: while these techniques may be used to assert
that the individual agents’ converge towards a common value, this value is
not guaranteed to be constant in time.
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. Example Consider the discrete-time real system

x1(t) =
x1(t)√

1 + x21(t)
x2(t) = x1(t) + x2(t)

There is a continuum of equilibrium points {(x1, x2) ∈ R2 : x1 = 0} and this
invariant set is stable and attracts the system solutions. Nevertheless, the
solution of this system starting in (x1, x2) = (1, 0) is given by

x1(t) =
1√
t

x2(t) =
t−1∑
s=1

1√
s
∀t > 1

The second component diverges to infinity as t → ∞, and this is not the
convergence property we are aiming at.

In order to exclude situations with a drift along the set of equilibrium
points we need to give a suitable definition of stability and attractivity.

Consider a continuous map

f : N×X → X

with X a finite-dimensional Euclidean space, and the discrete-time system:

x(t+ 1) = f(t, x(t)) (2.1)

Consider now a collection of equilibrium solutions of the system (2.1).

Definition 4 With respect to a collection of equilibrium solutions Φ , the
system (2.1) is called globally asymptotically stable if:

1) is stable, namely
∀φ1 ∈ Φ, ∀c2 > 0, ∀t0 ∈ N , ∃ c1 > 0 :
∀ solution ξ of (2.1) if |ξ(t0)−φ1| < c1 then ∃ φ2 ∈ Φ : |ξ(t)−φ2| < c2

∀t ≥ t0
2) is bounded, namely
∀φ1 ∈ Φ, ∀c1 > 0, ∀t0 ∈ N , ∃ c2 > 0 :
∀ solution ξ of (2.1) if |ξ(t0)−φ1| < c1 then ∃ φ2 ∈ Φ : |ξ(t)−φ2| < c2

∀t ≥ t0
3) is globally attractive, namely
∀φ1 ∈ Φ, ∀c1, c2 > 0, ∀t0 ∈ N , ∃ T ≥ 0 :
∀ solution ξ of (2.1) if |ξ(t0)−φ1| < c1 then ∃ φ2 ∈ Φ : |ξ(t)−φ2| < c2

∀t ≥ t0 + T

14



If the number c1 (respectively c2 and T ) can be chosen independently of
t0, than the system is called uniformly globally asymptotically stable
with respect to the considered collection of equilibrium solutions.
The previous definition may be interpreted as follows:

1) stability means that considering an equilibrium φ1 and a certain con-
stant c2, exists a constant c1 such that any solution of 2.1 remains at a
distance smaller than c2 from φ2 provided it initially was at a distance
smaller than c1 from φ1.

There is stability if there is assurance to remain arbitrary close to φ2
starting close enough to φ1.

2) boundedness means that considering an equilibrium φ1 and a certain
constant c1, exists a constant c2 such that any solution of 2.1 which is ini-
tially at a distance smaller than c1 from φ1 will remain at a distance smaller
than c2 from φ2.

There is boundedness if there is assurance to remain close enough to φ2
starting arbitrary close to φ1.

3) attractivity means that considering an equilibrium φ1 and two certain
constants c1 and c2, exists a period T such that any solution of 2.1 which is
initially at a distance smaller than c1 from φ1 will necessarilly remain at a
distance smaller than c2 from φ2 after T steps.

There is attractivity if there is assurance to remain arbitrary close to φ2
starting arbitrary close to φ1, after a certain number T of steps.
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Subsequentially, stability and boundedness require that any solution ini-
tially close to Φ remains close to one of the equilibria in Φ, and this excludes
the possibility of drift along the set Φ; attractivity implies that every solu-
tion converges to one of the equilibria in Φ.

After having precisely defined these notions, we can now enunciate a theorem
regarding Lyapunov Characterization, which provides sufficient conditions
for uniform global asymptotic stability in terms of the existence of a set-
valued Lyapunov function.

We need a definition about set-valued functions, functions which maps an
element of a set A to a subset of the set B.

Definition 5 A set-valued function f : A⇒ B is a map f : A→ P(B),
where P(B) = {β ⊆ B} is the power set of B, namely the set of all the
subsets made of elements of B.

Another necessary notion for the theorem is the next:

Definition 6 Consider two finite-dimensional Euclidean spaces A and B.
A set-valued function f : A⇒ B is called upper semicontinuous if ∀a ∈ A
and ∀ε > 0 ∃δ > 0 such that f(x) ∈ B(f(a), ε) whenever x ∈ B(a, δ).

If K is a subset of a finite-dimensional Euclidean space A, then B(K, c)
(c > 0) is defined as the set of points in A whose distance to K is strictly
smaller than c.

Moreover, a set valued function f : A⇒ B with A and B finite-dimensional
Euclidean spaces, is said bounded if exists a compact set β ⊂ B such that
f(a) ∈ β ∀a ∈ A .

Let us enunciate the theorem:

Theorem 1 (Lyapunov Characterization) Consider the system (2.1).
If it is possible to individuate an upper semicontinuous set-valued func-
tion V : X ⇒ X satisfying:

1) x ∈ V (x), ∀x ∈ X
2) V (f(t, x)) ⊆ V (x), ∀t ∈ N, x ∈ X

then we have uniform stability if V (φ) = {φ} ∀φ ∈ Φ
and we have uniform boundedness if V (x) is bounded ∀x ∈ X .

16



In addition, if it is possible to individuate a function µ : Image(V )→ R≥0,
and a function ∆ : X → R≥0 satisfying:

3) µ ◦ V : X → R≥0, x 7→ µ(V (x)) is bounded on bounded subsets of X
4) ∆ is positive definite with respect to Φ, (∆(φ) = 0 ∀φ ∈ Φ

∆(x) > 0 otherwise)
5) µ(V (f(t, x)))− µ(V (x)) ≤ −∆(x), ∀t ∈ N, x ∈ X

then we have uniform global attractivity, and so the system (2.1) is
uniformly globally asymptotically stable.

Instead of give a mathematical proof of these statements, with the relative
heavy notations, let us give an informal interpretation of the functions men-
tioned, to understand in a better way the meaning of the theorem.

The set-valued function V is the Lyapunov function, which is decreasing
along the solutions of (2.1).

The function µ serves as a measure for the size of the values of V : it maps
V (x) ⊂ X to a real positive number, and we can imagine µ(V (x)) as the
diameter of the set V (x).

The function ∆ characterizes the decrease of V along the solutions of (2.1)
as measured in terms of µ: the two functions µ and ∆ give a more quanti-
tative aspect to the decreasing of V .

Let us consider conditions 1) and 2) and an equilibrium solution ξ such
that ξ(t0) = x0 ∈ X .

• From 1), ξ(t) ∈ V (ξ(t)) because ξ(t) ∈ X .

• From 2), V (ξ(t)) ⊆ V (x0).

• By upper semicontinuity of V , given an equilibrium φ1:

– if V (φ) = {φ}, ∀c1 > 0 ∃ c2 > 0 such that we can have
V (ξ(t)) ⊆ B(φ1, c1)∀t > t0 provided that V (ξ(t0)) ⊆ B(φ1, c2);

– if V (x) is bounded, ∀c2 > 0 ∃ c1 > 0 such that we can have
V (ξ(t)) ⊆ B(φ1, c1)∀t > t0 provided that V (ξ(t0)) ⊆ B(φ1, c2).

The conclusion in the previous two cases, regarding V (φ) = {φ} or V (x)
bounded, is the same:

ξ(t) ∈ V (ξ(t)) ⊆ V (x0) ⊂ B(φ1, c2)

and this means stability in the first case (we have proved the existence of
c2) and boundedness in the second one (we have proved the existence of c1).
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Let us briefly see the attractivity aspect:

• boundedness implies that ∀φ1 ∈ Φ and c1 > 0, a solution in B(φ1, c1)
remains in a certain compact set K ⊃ B(φ1, c1);

• stability implies that ∀c2 > 0 exists φ2 ∈ Φ and c3 > 0 such that a
solution in B(Φ ∩K, c3) remains in B(φ2, c2).

In order to prove attractivity (and so asymptotic stability), it can be
proved that necessarily from 3) – 5) a solution in K falls in B(Φ ∩ K, c3)
after T steps: obviously to prove the existence of such a T , the quantitative
aspect of the decreasing of V introducted by µ and ∆ is fundamental (see
Appendix I of [1], for details).

2.1.2 Results

Now, we can connect the consensus system 1.1 with the system 2.1 studied
in the previous section just replacing X with Xn.
We have already seen in Section 1.4 the assumption about local convexity.
In this context, we can give the next formulation about the system (1.1):

Convexity Assumption: Associated to each graph (N ,A), with A ⊆
N ×N , each agent i and each state x ∈ Xn there is a compact set ei(x) ⊂ X
satisfying:

1) fi(t, x) ∈ ei(x) ∀t ∈ N, x ∈ Xn

2) If the state of agent xi and its neighbors are all equals, ei(x) = {xi}
3) If the state of agent xi and its neighbors are not all equals, ei(x) is

contained in the relative interior of the convex hull of the states of agents i
and its neighbors

4) The set-valued function ei(x) : Xn → X is continuous
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The following result is very important:

Lemma: Consider the sequence of graphs (N ,A(t)) associated to the sys-
tem (1.1), satisfying the previous Convexity Assumption.
The convex hull of the individual agents’ states, H(x) = conv{x1, ..., xn} ⊂
X, does not grow along the solution of the discrete-time system (1.1):

H(f(t, x)) ⊆ H(x) ∀t ∈ N, x ∈ Xn

. Example For example, let X be R2, that is an Euclidean space. Let us
suppose that the system is composed of seven agents, and that in instant t
the situation is shown by the next figure:

where the convex hull is the grey area. Necessarily, from Convexity As-
sumption, at step t + 1 the agents’ states will still be in the grey area too,
and this is a noncreasing situation which suggests to take the convex hull as
Lyapunov set-valued function.

It is interesting to observe that the convex hull of the individual agents’
states serves as a measure of disagreement ; the previous Lemma states that,
in terms of this measure, the level of disagreement cannot increase with time.

Under the Convexity Assumption, the system is uniformly stable and
bounded with respect to the collection of equilibrium solutions
x1(t) = x2(t) = ... = xn(t) = constant .

19



This is a direct consequence of the Lemma and the Lyapunov Charac-
terization Theorem: the convex hull is a decreasing Lyapunov set-valued
function whose existence we are looking for, because it respects conditions
1) and 2) of the theorem, and the Convexity Assumption ensures the prop-
erties which implies stability and boundedness.

A little technical precisation is in order: in the proof, the Lyapunov set-
valued function V : Xn ⇒ Xn

V (x1, ..., xn) = (conv{x1, ..., xn})n

is considered, instead of the convex hull H(x) = conv{x1, ..., xn}. Nev-
erthless, the decreasing of V derives from the decreasing of H given by the
Lemma.

. Example Let us suppose X = R. Let us suppose there are four agents,
with x1(t) = 10, x2(t) = 20, x3(t) = 30, x4(t) = 40. Let the communication
graph topology at t ∈ N be:

where the arcs are bidirectionals, and then

A(t) = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (3, 1), (3, 2), (4, 1)}

Then, the convex hull of x(t) = [x1(t), x2(t), x3(t), x4(t)] is
H(x(t)) = [10, 40] ⊂ R, while V (x(t)) = [10, 40]× [10, 30]× [10, 30]× [10, 40]

Evidently, agreement is reached when the disagreement is nulled, namely
the convex hull reduces to a singleton (that implies a common state value
for all agents).

In order for this to happen, additional assumptions need to be imposed
ensuring that the convex hull approaches a singleton.
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Theorem 2 (Uniform Global Attractivity) The discrete-time system
(1.1), where the sequence of graphs G(t) has unidirectional communication,
satisfying the Convexity Assumption is uniformly globally attractive
with respect to the collection of equilibrium solutions x1(t) = x2(t) =
. . . = xn(t) = constant if and only if
there is T ≥ 0 such that ∀t0 ∈ N there is a node connected to all other nodes
across [t0, t0 + T ] .

This is the major theorem about asymptotic consensus, a necessary and
sufficient condition which not surprisingly involves a connectivity require-
ment on the sequence of graphs.

The Only-If part is intuitive: if consensus will be reached, we guess the
existence of such a node and such a connectivity for all initial instant t0.

The If part applies the second part of the Lyapunov Theorem, consid-
ering the Lyapunov set-valued function V (x1, ..., xn) = (conv{x1, ..., xn})n
and showing that from the existence of such a connectivity node, the func-
tions µ and ∆ can be found.

The study of global attractivity is considerably simplified when bidirectional
communication is assumed:

Theorem 3 (Global Attractivity - Bidirectional case) The discrete-
time system (1.1), where the sequence of graphs G(t) has bidirectional com-
munication, satisfying the Convexity Assumption is globally attractive
with respect to the collection of equilibrium solutions x1(t) = x2(t) =
. . . = xn(t) = constant if and only if
∀t0 ∈ N there is a node connected to all other nodes across [t0,∞) .

This specific case, does not require the special kind of “periodicity” about
connectivity, and that assumption can be relaxed.
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2.2 Asymptotic Consensus in the Linear Case

In Section 1.5 we have introduced the linear system 1.2 as a particular case
of the formulation 1.1, where

xi(t+1) = fi(t, x1(t), x2(t), ..., xn(t)) = wi1(t)x1(t)+wi2(t)x2(t)+...+win(t)xn(t)

The assumption regarding global connectivity and the assumption of bounded
intercommunication intervals can be imposed in the same manner in the lin-
ear case too, but we need to particularize the assumption regarding local
convexity of the consensus algorithm.
Let us first introduce the following algebraic definition

Definition 7 (Row-Stochastic Matrix) A square-matrix W (t), n × n,
with nonnegative entries wij(t), is said to be row-stochastic if

• wij(t) ≥ 0 ∀i, j ∈ N

•
∑n

k=1wik(t) = 1 ∀i ∈ N ∀t ∈ N

Local Convexity in Linear Case The matrix W (t) associated to the
linear system 1.2 is row-stochastic, and wii(t) 6= 0 ∀i ∈ N (an agent always
keeps some memory of its previous state).
Furthermore, there exist real numbers εmin, εmax, 0 < εmin ≤ εmax ≤ 1, such
that

εmin ≤ wij(t) ≤ εmax ∀t ∈ N, ∀(i, j) ∈ A(t)

This means that, for each time t ∈ N, each agent i updates its own value,
by forming an average value of its own value and the values of its neighbors,
weighted on a certain matrix W (t).
Let us observe that it is implicitly assumed that (i, i) ∈ A(t) ∀i ∈ N , t ∈ N

It is very important to emphasize the last condition of the previous as-
sumption: it says that

whenever the arc (j, i) exists, the entry wij(t) > 0;

we can interpret this statement saying that each agent takes account of its
neighbors’ states, moving in the relative interior of the convex hull of them.

This implies that if in a certain time an agent has no neighbors, neces-
sarilly it must mantain its own state; in fact it can be considered the only
neighbor of itself, so the convex hull of its neighbors’ states is its state yet.

Local convexity does not regard the whole system, and the assumption
does not imply directly a strictly decreasing of the convex hull of all agents’
states; it only assures that whenever there is communication between two
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agents, they tend to bring closer their states. The next step, about neces-
sary communications, is provided by the other assumptions.

Thus we have the next formulation about the fundamental consensus the-
orem

Theorem 4 (Consensus Criteria in Linear Case) Under the Local Con-
vexity Assumption in the Linear Case the system 1.2 is guaranteed to reach
asymptotic consensus if and only if there is T ≥ 0 such that for each t0 ∈ N
there is a node connected to all other nodes across [t0, t0 + T ].

Let us briefly see the correspondence between the Convexity Assumption
in the linear case and the Convexity Assumption in the general case: let us
consider the agent i ∈ N , with t ∈ N

xi(t+ 1) =

n∑
k=1

wik(t)xk(t) with

n∑
k=1

wik(t) = 1

Let r, s ∈ N be two nodes such that

xr(t) = min
j∈N

(xj(t)) = m xs(t) = max
j∈N

(xj(t)) = M

with wir(t), wis(t) 6= 0, namely (i, r), (i, s) ∈ A(t).
The convex hull of the states of agent i and its neighbors is the set

CH = [m,M ]

Excluding the trivial case wii(t) = 1, we have

xi(t+ 1) =
n∑
k=1

wik(t)xk(t) <
n∑
k=1

wik(t)M = M
n∑
k=1

wik(t) = M

and

xi(t+ 1) =
n∑
k=1

wik(t)xk(t) >
n∑
k=1

wik(t)m = m
n∑
k=1

wik(t) = m

Then, it is verified the Convexity Assumption, and

xi(t+ 1) ∈ CH

Finally, let us observe that in the symmetric case, asymptotical consensus
will be reached if and only if for all t0 ∈ N there is a node connected to all
other nodes across [t0,∞).
we can observe that since the graphs are assumed to be bidirectional, the
statement “there is a node connected to all other nodes across [t0,∞)” means
that all nodes are connected to all other nodes across [t0,∞).
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2.3 Approach Based on Birkhoff Theorem

This approach comes from [2]; the Lyapunov function is shown to be the
Hilbert distance to consensus in log coordinates, and Birkhoff theorem,
which proves contraction of the Hilbert metric for any positive homogeneous
monotone map, provides us a general convergence result for the consensus
algorithms. Let us anticipate how.

Birkhoff theorem provides an important result for homogeneous mono-
tone positive maps defined on closed cones of Banach spaces; the key idea
is to use a metric introduced by Hilbert as contraction measure: in the pos-
itive orthant, Hilberts distance between two vectors x and y is dH(x, y) =
max log(xi/yi)−min log(xi/yi), with xi and yi components of x and y, and
this is invariant by scaling (Hilbert’s metric is projective indeed).

We will observe that taking y = 1 = [1, 1, 1, , 1]T , dH(x,1) is a natural
distance to consensus.

Considering row-stochastic matrices (associated to consensus algorithms,
as we saw in Section 2.2) and observing that they define linear positive maps
in the positive orthant, we conclude that Birkhoff theorem can be applied
and so it gives a convergence result for consensus algorithms.

2.3.1 Birkhoff Theorem

In this section we will see what Birkhoff theorem states.
The application of this theorem falls into Banach spaces: these are defined
as complete normed vector spaces.

We are therefore considering a vector space with a norm, and an associ-
ated distance d and topology induced by that metric; completeness means
that every Cauchy sequence (with respect to d) in the space has a limit in
the space (with respect to the topology induced).
Easily, Rn is a Banach space.

We need the following definition:

Definition 8 Let X be a real Banach space, and K be a closed subset of X .
K is a closed solid cone in X if:
1) intK 6= ∅;
2) K +K ⊂ K;
3) λK ⊂ K ∀λ ≥ 0;
4) K ∩ (−K) = {0}.

The partial order induced x � y means y − x ∈ K.
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We also need to define the Hilbert metric in K0 = K − {0}:

Definition 9 Given x, y ∈ K0, define:

M(x, y) = inf{λ : x− λy � 0}
m(x, y) = sup{λ : x− λy � 0}

Hilbert metric d is defined in K0 as

d(x, y) = log
M(x, y)

m(x, y)

Hilbert metric is projective because of the invariance property:

d(αx, βy) = d(x, y) ∀α, β > 0

that is a distance between the equivalence classes [x] = {αx : α > 0} and
[y] = {βy : β > 0}.

In this sense, it is similar to a measure of the angle between the vectors
x and y.

The last definition we need to enunciate the Birkhoff theorem is about
maps on K:

Definition 10 A map A : K → K is said to be non-negative;
a map A : intK → intK is said to be positive.

Given A positive map, we define:
the projective diameter of A:

∆(A) = sup{d(A(x), A(y)) : x, y ∈ intK}

the contraction ratio of A:

k(A) = inf{λ : d(A(x), A(y)) ≤ λd(x, y) ∀x, y ∈ intK}

Finally, we can give the theorem:

Theorem 5 (Birkhoff Theorem) Let A be a map in K satisfying:
1) A is positive;
2) A is homogeneous of degree p in intK (A(λx) = λpA(x) ∀λ > 0);
3) A is monotone (x � y ⇒ A(x) � A(y)).

Then, the contraction ratio k(A) does not exceed p.
If A is linear, k(A) = tanh 1

4∆(A).
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2.3.2 Graphical Visualizations of Projective Concepts

Let us give a graphical representation and interpretation about the notions
introduced in the previous subsection.

First of all, we can think a close solid cone simply as an “infinite geomet-
ric cone”, where the vertix corresponds to the zero element. We are looking
for a distance from span{1}, that can be represented as the cone bisector,
an axis that corresponds to identity vectors.
Considering the projective distance, the distance from the origin does not
matter, and only the distance from the bisector matters: it is like to consider
the angle; in the figure below, d1 ≡ d2 ≡ d3.

Another pictorial way of interpreting the concept of projective distance is
that looking at the (infinite) cone base from an hole applied in the vertex,
every ray can be projected to a single point.
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If A is positive then it maps the cone interior to the cone interior; the image
of A can be figuratively observed from an hole in the vertex too. In this
sense, the projective diameter ∆(A) of A is the size of the sphere in which
the infinite base of the cone interior is mapped, while the contraction ratio
k of A is the axis which allows the smaller contraction of the sphere.

In order to better illustrate this idea, let us consider the positive quad-
rant in the plane. In this case, intK = {(x, y) ∈ R>0

2}, and the vectors are
projected in the interior of the real line.

For example, if the map A has Image(intK) = {(x, y) ∈ R>0
2 : x2 < y < 2x}

In this case, the projective diameter ∆(A) is finite; for example, this corre-
sponds to consider the linear system

A

([
x
y

])
= A ·

[
x
y

]
=

[
1
3

2
3

2
3

1
3

]
·
[
x
y

]
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On the other hand, if Image(intK) = {(x, y) ∈ R>0
2 : 0 ≤ y < 3x} the

diameter is infinite:

In order to represent the contraction ratio k(A), let us consider two different
vectors x, y ∈ R>0

2 mapped inA(x) andA(y). Then, let us consider the ratio
between the projective distances d(A(x), A(y)) and d(x, y); the contraction
ratio is the inferior of that ratio varying x and y.

Finally, let us try to understand better the appearance of the Hilbert metric
d; observing that d(x, y) = log[M(x, y)/m(x, y)] we can focalize our atten-
tion to the ratio M(x, y)/m(x, y)
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We can easily obtain

M(x, y) = inf{λ : x− λy � 0} = inf{λ : λy − x ∈ K} =

= inf{λ : λy1 − x1 ≥ 0 λy2 − x2 ≥ 0} =

= inf{λ : λ ≥ x1/y1 λ ≥ x2/y2} = max{x1/y1, x2/y2}

and analogously

m(x, y) = inf{λ : λ ≤ x1/y1 λ ≤ x2/y2} = min{x1/y1, x2/y2}

These concepts can be represented in the following manner:

In this representation, x1/y1 < x2/y2, and so M = x2/y2 while m = x1/y1.
Furthermore,

M

m
=
x2/y2
x1/y1

=
x2/x1
y2/y1

=
tan γx
tan γy

where γx and γy are the angles pictorially defined above, and so

d(x, y) = | log tan γx − log tan γy|

This expression emphasizes a correspondence with the angles, and in par-
ticular the projective nature of this distance:

d(αx, βy) = log tan γαx − log tan γβy = log tan γx − log tan γy = d(x, y)

29



2.3.3 Results

To apply the previous Birkhoff Theorem in consensus, consider the positive
orthant as K.
In this case, X = Rn and K = {(x1, ..., xn) : xi ≥ 0, 1 ≤ i ≤ n}. So,

M(x, y) = inf{λ : (x1, ..., xn)− (λy1, ..., λyn) � 0} = max
i

(xi/yi)

m(x, y) = sup{λ : (x1, ..., xn)− (λy1, ..., λyn) � 0} = min
i

(xi/yi)

Stochastic matrices A(t), as we have introduced them in Definition 7, define
positive monotone maps in K, and by linearity they are also homogeneous
of degree p = 1.

We observe that 1 = [1, 1, 1, ..., 1]T is a fixed point for all A(t): A(t)·1 = 1.
Birkhoff Theorem implies that k(A(t)) = tanh 1

4∆(A(t)), and being
k(A) = inf{λ : d(Ax,Ay) ≤ λd(x, y)}, taking y = 1,
d(Ax,1) ≤ k(A)d(x,1) and so:

d
(
A(t)x,1

)
≤
(

tanh
1

4
∆(A(t))

)
d
(
x,1

)
∀t ∈ N

Let us notice that this implies that the distance from consensus is not in-
creasing, because 0 < tanh(a) ≤ 1 ∀a ∈ R>0. The fundamental observa-
tion is that when the diameter is finite, the contraction coefficient
is strictly smaller than one.

However, if A(t) has not finite diameter, it is possible to aggregate a
number of subsequent matrices A(t)A(t + 1)...A(t + T ) requiring that this
finite product has a finite diameter.

Let us formalize this argumentation:

Theorem 6 (Consensus Criteria on the Positive Orthant) Consider
the linear system 1.2 :

x(t+ 1) = W (t)x(t)

with W (t) sequence of row-stochastic n× n matrices.
If exists T ≥ 0 such that the finite product W (t + T )...W (t + 1)W (t) has a
finite diameter for all t ∈ N, then the n components ξi(t) of any solution ξ
of the system converges to a common value as t→∞.
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We can express the diameter like:

∆(A(t)) = sup
{

log
aij(t)apq(t)

aiq(t)apj(t)
: 1 ≤ i, j, p, q ≤ n

}

A(t) =



...
...

· · · aij(t) · · · aiq(t) · · ·
...

...
...

...

· · · apj(t) · · · apq(t) · · ·
...

...


Infact,

Ax =


∑n

j=1 a1jxj∑n
j=1 a2jxj

...∑n
j=1 anjxj

 Ay =


∑n

q=1 a1qyq∑n
q=1 a2qyq

...∑n
q=1 anqyq


and so

M(Ax,Ay) = max
i

∑n
j=1 aijxj∑n
q=1 aiqyq

m(Ax,Ay) = min
i

∑n
j=1 aijxj∑n
q=1 aiqyq

∆(A) = sup

(
log

M(Ax,Ay)

m(Ax,Ay)

)
= log

sup
ip

n∑
j,q=1

aijxj · apqyq
apjxj · aiqyq


By choosing x and y to be suitable unit vectors xj = 1 and yq = 1 we can
obtain the limit

∆(A) = log

(
sup
i,p,j,q

aijapq
apjaiq

)
which cannot be exceeded since averaging (by positive weight factors xjyq)
always makes ratios less extreme.

For each x ∈ intK, Birkhoff Theorem provides the Lyapunov function

V (x) = d(x,1) = log
maxi(xi)

mini(xi)
= max log(xi)−min log(xi)

namely the projective distance from [x] to [1]: this is a link with the previous
approach, and in this sense the distance between x(t+ 1) and span{1} can
be seen as the Lyapunov function of Section 2.1 in logarithmic coordinates.

Let us anticipate that there are cases where, despite a uniform conver-
gence to consensus, the diameter is infinite over any finite horizon. It will
be shown in the Limit Cases studied in Chapter 3.
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2.3.4 Generalization to Non-Commutative Consensus

The intent of [2] was not only an application of Birkhoff Theorem on lin-
ear consensus; infact, as we will illustrate with an example, sometimes this
approach is less general then the first one, because the matrix diameter is
required to be finite.

The authors of [2] have pursued an interesting generalization to the non-
commutative case: instead of the positive orthant, they consider the cone of
positive definite matrices, taking

• X = {X = X ∈ Cn×n} instead of X = Rn

• K = {X � 0 : X ∈ X} instead of K = {(x1, ..., xn) : xi ≥ 0, 1 ≤ i ≤ n}

Here, an analog of stochastic maps is given by the dual maps of Kraus maps
describing quantum channels.

Definition 11 The map Ψ is called Kraus map if admits the form

Ψ(Z) =
∑
i

ViZVi ∀Z ∈ K

with
∑

i ViVi = I; these maps are positive and trace-preserving, mapping
positive matrices to positive matrices, and in quantum applications they op-
erate on states (positive symmetric marices X with tr(X) = 1).

The map Φ is called dual map of Ψ if admits the form

Φ(X) =
∑
i

ViXVi ∀X ∈ K

These maps are positive and unital, mapping Φ(I) = I.

In particular, let us observe that the unital property of Φ is the analog of
A(t)1 = 1 for stochastic matrices.
This suggest the following non-commutative extension of consensus algo-
rithm:

X(t+ 1) = Φt(X(t)), X(0) ∈ intK

The details regarding this interesting generalization, however, are not in-
cluded in the present work: we refer the reader to the original contribution
[2], Section [VI] .
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3
Analysis of Limit Cases

3.1 Similarities between the two Approaches

Let us summarize the previous analysis to give the correspondences between
the two approaches we have seen.

The first approach (Section 2.1) uses in a direct way the Lyapunov theory,
with set-valued functions. Lyapunov theory says that given a discrete-time
system x(t + 1) = f(t, x(t)) t ∈ N, defined on an Euclidean finite space,
this system is convergent respect to a collection of equilibrium solutions
Φ if there exists a set-valued function V such that V (f(t, x(t)) is strictly
decreasing for f(t, x(t)) 6∈ Φ.
In the consensus linear case, with n agents and x(t) ∈ Rn, the collection of
equilibrium solutions we are interested in is

Φ = span{1} = {(α, α, ..., α) ∈ Rn}

Taking the convex hull of x1(t), x2(t), ..., xn(t) as Lyapunov function, in gen-
eral nothing can be said about its increase, or decrease, after the application
of Φ. The Convexity Assumption is sufficient to ensure that it is not increas-
ing, but it is still not sufficient to prove convergence. Finally, imposing the
existence of an agent which enables a sort of global connection, there is strict
decreasing of V .
In this sense V is a sort of representation of disagreement, which is strictly
decreasing respect to consensus under these assumptions; we can think it
as a time-varying compact set that contains the system dynamics, whose
convergence to Φ implies the system convergence to an element of Φ.
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The second approach (Section 2.2) is an application of Birkhoff theorem.
Birkhoff theorem says that, given a function A, defined on a closed solid
cone (as we have definied it), if it is (1) positive, (2) homogeneous of degree
p, (3) monotone, then the contractio ratio of A is limited. Applying the
theorem to the discrete-time linear system x(t + 1) = A(x(t)) t ∈ N, the
contraction ratio at time t is defined as the ratio of the distance between
x(t + 1) and span{1} and the distance between x(t) and span{1}. If the
map A(t) satisfies (1)-(3) this ratio is smaller than one if the diameter of
A(t) is finite, and this means there is a strict decreasing of the distance from
span{1}.
The distance from span{1} can be interpreted again as a measure of dis-
agreement ; as already observed if the diameter of A(t) is not finite, it is suffi-
cient the existence of T ∈ N such that the diameter of A(t)A(t+1)...A(t+T )
is finite to have asymptotic consensus.

The distance between x(t + 1) and span{1} of Section 2.3 can be seen as
the Lyapunov function of Section 2.1 in logarithmic coordinates: so, in both
approaches, we require a strict decreasing of an opportune Lyapunov func-
tion.

3.2 Differences between the two Approaches

Let us analyze the differences regarding the consensus criteria formulations.
In both cases the update algorithm must have a convex nature. The main

difference regards topology and connectivity.

• The first approach requires the existence of a node connected to all
other nodes across a certain interval, that can be [t0,∞) or [t0, t0 +T ]
based on the context.

• The second approach requires that the diameter of the concatenation
of matrices W (t0)W (t0 + 1)... is <∞.

We need to analyze better what a finite diameter implies to the row-stochastic
matrix. Let us observe again the expression

∆(W (t)) = sup
{

log
wij(t)wpq(t)

wiq(t)wpj(t)
: 1 ≤ i, j, p, q ≤ n

}
Obviously, ∆(W (t)) is infinite whenever the logarithm argument is infinite
too.
If W (t) has infinite diameter, then it has at least a zero entry, otherwise
that ratio could not be ∞. Let us suppose wiq(t) = 0; if it is the only zero
entry, then the diameter is infinite; instead, the diameter could be finite if
one of following conditions is verified:
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1. wij(t) = 0 and wpj(t) 6= 0

2. wpq(t) = 0 and wpj(t) 6= 0

3. wij(t) = 0, wpq(t) = 0 and wpj(t) = 0

Taking into account the constraints on the dynamical matrix W , we have
that condition 1. cannot be verified, because if wiq(t) = 0 from row-
stochasticity exists at least a not zero entry on the same row i; condition
3. cannot be verified, because W (t) is no empty and we can always find at
least a quartet wiq(t), wpq(t), wij(t), wpj(t) with a not zero entry; condition
2. could be verified only if there is at least an empty column q; the number
of those columns must be less then n in order to preserve row-stochasticity.

An important conclusion is that the projective diameter of a row-stochastic
matrix is finite if and only if every zero entry belongs to a zero column.

. Example Consider the row-stochastic matrix

W =

[
1 0
1 0

]
Considering two generic vectors x = [x1, x2]

T , y = [y1, y2]
T , we obtain:

Wx =

[
x1
x1

]
Wy =

[
y1
y1

]
Computing the distance from these vectors, we obtain:

∆(W ) = log

M

([
x1
x1

]
,

[
y1
y1

])
m

([
x1
x1

]
,

[
y1
y1

]) = log
max {x1/y1, x1/y1}
min {x1/y1, x1/y1}

= log 1 = 0

The diameter becomes 0 because the vectors move to the same radius:
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Let us observe that Convexity Assumption is not completely respected if
we allow the existence of an empty column: in this case, exists i ∈ N such
that wii = 0. The interpretation of the empty column is: “each agent j does
not take account of agent i”; for i 6= j it can be due to a lack of communi-
cation, and it does not directly avoid Convexity. The unusual aspect is that
agent i does not take account of itself too.

The second approach seems to be more general in this case, because does
not require a strict local convexity property. If we consider the previous
example and a linear system with W (t) = W ∀t ∈ N, of course asymptotic
consensus is guaranteed.

Let us observe that when wii(t) = 0, agent i becomes a beholder: it only
“watches” other agents without any contribution to the system dynamics.
So, this case could be reported to an (n−1)× (n−1) system where the first
approach can be applied again.
A first conclusion is that:

Conclusion 1 Whenever the Local Convexity Assumption does not hold,
the second approach is more general than the first one.
However, if that assumption does not hold because of a “beholder agent”, the
situation could be reported to the first approach ignoring that agent.

If we impose wii 6= 0 ∀i ∈ N , as in Section 2.2, then also condition 2.
above cannot be verified (because there are not empty columns); so if the
Local Convexity Assumption holds,

a row-stochastic matrix has finite diameter if and only if it is full
i.e. has no zero elements.
We can show with an example that in the following situation the first ap-
proach can be applied while the second one cannot.

. Example Consider the matrix

W =

 1 0 0
1
2

1
2 0

1
3

1
3

1
3


This is a row-stochastic matrix which respects the Convexity Assumption.
Consider the system 1.2 having W (t) = W ∀t ∈ N as sequence of (constant)
arc sets. Looking at W , there exists a node connected to all other nodes:
this is the node 1, because the first column is nonempty; furthermore, the
diameter of W is infinite, because

∆(W ) = sup
{

log
wij(t)wpq(t)

wiq(t)wpj(t)
: 1 ≤ i, j, p, q ≤ 3

}
→∞
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Observe W is lower-triangular, and any finite power W k is a lower-triangular
row-stochastic matrix too, and has also an infinite diameter and the first col-
umn is nonempty.
On the other hand, the first approach can be applied, and in particular we
can guess a convergence to (x1, x2, x3) → (x1(0), x1(0), x1(0)); the second
one cannot be applied.

The second approach requires that the matrices are full (in certain inter-
vals); in those cases, the first approach can be applied too. In this way, we
obtain the following conclusion:

Conclusion 2 Whenever the Local Convexity Assumption holds, the first
approach is more general than the second one.
Furthermore, when the second approach can be applied, the first one can be
applied too.

This conclusion could be guessed observing that Theorem 2–4 have an “if-
and-only-if” formulation, while Theorem 6 is only a sufficient criteria.

Finally, let us observe that there are cases where the first approach can-
not be applied directly, but we can reduce those problems to it; this will be
shown in the next example

. Example Consider again the matrix

W =

 1 0 0
1
2

1
2 0

1
3

1
3

1
3


In the previous example, we have observed that it should respect the Con-
vexity Assumption; we had implicitally assumed that the network topology
of the multiagent system was
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Suppose now that the network topology of the multiagent system is

the Convexity Assumption is not respected, because agent 1 updates its
value without taking account of agent 3 although exists a link from 3 to 1.
In other words, agent 1 does not update its value moving in the relative
interior of the convex hull of its state and its neighbors states, but mantains
itself on the border of the convex hull.

Although the first approach cannot be formally applied, the (constant)
sequence of matrices is the same of the previous example, and so consensus
will be reached.

The previous example shows that cutting all the useless arcs, the first ap-
proach could be applied again although the Convexity Assumption does not
hold.
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3.3 A Limit Case: the Headstrong Node

As limit case, let us see what happens when there is a headstrong agent,
namely an agent which mantains its state in time. Obviously, if consensus
will be reached all the agents will have the same state of the headstrong agent,
because it does not change its state. Furthermore, we can observe that if
there were two or more headstrong agents with different states, consensus
would never been reached.

Without loss of generality, let the agent 1 be the headstrong one (the
agents’ order is irrelevant). The row-stochastic matrix relative to the system
at instant t ∈ N has the next form:

A(t) =


1 0 0 · · · 0

a21(t) a22(t) a23(t) · · · a2n(t)
a31(t) a32(t) a33(t) · · · a3n(t)

...
...

...
. . .

...
an1(t) an2(t) an3(t) · · · ann(t)


with

∑n
j=1 aij(t) = 1 ∀i ∈ [2, n].

Case n=2
Consider the case of two only agents, and let the first of them be head-

strong. Let the initial state at time t = 0 be x(0) = [x1, x2]
T . At every

instant t ∈ N, the row-stochastic matrix associated to the system has the
form:

A(t) =

[
1 0
α(t) 1− α(t)

]
=

[
1 0
α(t) β(t)

]
so, applying A(0), A(1), A(2),... to x(0) we have

x(1) =

[
x1(1)
x2(1)

]
=

[
1 0

α(0) β(0)

]
·
[
x1
x2

]
=

[
x1

α(0)x1 + β(0)x2

]
and then applying A(1) to x(1):

x(2) =

[
1 0

α(1) β(1)

]
·
[

x1
α(0)x1 + β(0)x2

]
=

[
x1

[α(0) + α(1)β(0)]x1 + β(0)β(1)x2

]
and so on

x(3) =

[
x1

[α(0) + α(1)β(0) + α(2)β(0)β(1)]x1 + β(0)β(1)β(2)x2

]
With a simple induction, we observe that

x(n+ 1) = A(0)A(1)...A(n)x(0) = Anx(0)
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and

An =

[
1 0
a21 a22

]
=

[
1 0∑n

i=0 α(i)
∏i−1
j=0 β(j)

∏n
k=0 β(k)

]
There is asymptotic consensus if and only if

An →
[

1 0
1 0

]
for n→∞

It is necessary that

lim
n→∞

n∏
k=0

β(k) = 0

We cannot ask that β(k) = 0 for a certain k, because in the consensus
algorithm the second agent always considers its own value; so

0 < β(k) ≤ 1 ∀k

On the other hand, if β(k) = 1 ∀k, the limit will not be verified, and
consensus will not be reached; however, when β(k) = 1 the row-stochastic
matrix is equal to the identity matrix, and it does not matter in the product.

Thus, the condition that allows the limit to be verified is that 0 < β(k) < 1
an infinite number of times. Infact, under this assumption, exists 0 < σ < 1
such that β(k) < σ ∀k | β(k) 6= 1;

lim
n→∞

n∏
k=0

β(k) = 0⇐⇒ log(
∞∏
k=0

β(k)) =
∞∑
k=0

log β(k) = −
∞∑
k=0

log
1

β(k)
→ −∞

Operating the majorization

∞∑
k=0

log
1

β(k)
>

∞∑
k=0

log
1

σ
→∞

it is proved.

Interpretation
We can observe a correspondence with the first approach, which requires
the existence of T ≥ 0 such that in every interval of length T , a node (agent
1) is connected to all other nodes (agent 2).
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The second approach, instead, cannot be applied because the system matrix
has infinite diameter in each instant, as explained in the Example of Sub-
section 3.2.

Let us suppose that the network configuration were

The previous analysis remains unchanged, but the Local Convexity Assump-
tion does not hold because agent 1 does not move into the interior of the
convex hull. The first approach cannot be directly applied, but cutting the
useless arc (2, 1) we can do that (as we have seen in the previous subsection).
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Conclusion

After introducing a dynamical model for n agents which communicate
through time-dependent links and recalling what convergence to consensus
means in this context, we have analyzed some results emerging from two
different approaches to the consensus problem.

The first one employs set-valued Lyapunov theory, by exploiting the de-
creasing of a certain set-valued function under proper convexity assump-
tions, while the second one relies on geometric concepts, in particular the
conclusions of a theorem by Birkhoff on positive maps onto cones.

We have compared these results in the linear case, where agents have a
real-valued state and the system dynamics are associated to row-stochastic
matrices.
The main difference is that the first approach requires a sort of local convexity
(each agent updates its state according to a strict convex combination of
its neighbors’ states) while the second approach requires a finite projective
diameter (i.e. a geometric condition on the systems matrices).

When the convexity assumption does not hold, the first approach cannot
be directly applied; however, if the second approach can be applied, we have
shown that we could resort to the first one by cutting some nodes that do
not actually contribute to the dynamics.
When the convexity assumption holds, the first approach can be applied and
is more general than the second one.
In some cases where convexity assumption does not formally hold, the first
approach can be applied yet cutting some useless arcs.

The main result is that in the linear case the first approach is more general
than the second one, although as it does not immediately provides for useful
generalizations as the second one does, e.g. to study consensus on the non-
commutative spaces of interest in the study of quantum channels.
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