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“Big Data is like teenage sex: everyone talks about it, nobody really knows how to do it,
everyone thinks everyone else is doing it, so everyone claims they are doing it.”

Dan Ariely, Duke University
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Thesis

Machine Learning for transient selection in wide-field optical surveys

by Margherita GRESPAN

Modern-time domain astronomical surveys are able to monitor large swaths of sky
registering the variability of celestial sources. I will focus on the search of transients
possibility related to gravitational waves (GW) events. Until recently astronomers
need to visually select promising candidates from surveys containing a large number
of false positives, a procedure that is very time consuming. In a wide-field observa-
tions the number of detections can easily grow to 104 -105 and their visual inspection
would require days of work. In this thesis I will present a transient evaluation thor-
ough a ranking approach used by the INAF Padua GRAWITA group which strongly
reduce the need for visual inspection though it is not yet optimal.
We then explored an alternative approach using a machine learning algorithm (The
Random Forest Classifier) providing an automate probabilistic statement about the
nature of an astrophysical source as a real transient or as an artifact.
I will describe how I prepared the training set, the test set and the cross-check of the
machine learning detection results. With the internal validation the algorithm se-
cured a missed detection rate of 10% that in the best case of the external validation
corresponds to false positives rate of 14%.
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"Machine Learning": selezione di transienti nelle ricerche a grande campo

di Margherita GRESPAN

Le survey astronomiche di ultima generazione sono in grado di monitorare grandi
aree di cielo registrando la variabilitá delle sorgenti celesti. Questa tesi é incentrata
sulle modalitá di ricerca degli oggetti transienti che potrebbero avere delle relazioni
con l’emissione di onde gravitazionali (GW). Fino a poco tempo fa gli astronomi
hanno dovuto classificare visivamente dalle survey, contenenti un grande numero
di falsi positivi, i candidati promettenti. Tale procedura richiede un gran dispendio
di tempo. In un’osservazione a grande campo il numero di rilevazioni puó arrivare
a 104 -105 oggetti e la loro ispezione visuale puó richiedere giorni di lavoro.
In questa tesi presenteró la valutazione degli oggetti transienti attraverso il metodo
del ranking, usato dal gruppo GRAWITA di Padova, che riduce in maniera
sostanziale il bisogno di un’ispezione visiva, nonostante il risultato ottenuto non sia
ancora ottimale.
Allo scopo di velocizzare la valutazione di questi oggetti ho utilizzato un algoritmo
di machine learning (il Random Forest Classifier) che fornisce una classificazione
probabilistica automatica sulla natura delle sorgenti astrofisiche, determinando se
queste siano oggetti reali oppure artefatti.
Descriveró come ho preparato il training set, il test set e il cross check delle
rivelazioni del machine learning. Con la validazione interna l’algoritmo ha
assicurato un numero di candidati non rivelati (MD) del 10% che, nel miglior caso,
nella validazione esterna é corrisposto ad un numero di falsi positivi (FP) del 14%.
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Chapter 1

Introduction

Gravitational waves (GWs) have been predicted by theory of general relativity (Ein-
stein 1916) as a perturbation of space-time metric. In many cases, the events that
produce GWs are expected to produce also electromagnetic radiation. My work is
focused in the search of optical counterparts search of GW signals.
Given the typical size of the GW localization error-box, searching for counterpart re-
quires telescopes with large FoV, yet the new generation telescopes are able to cover
a large span of sky i.e. thousand of square degrees (Singer et al., 2014).The larger is
the sky region, the higher is the number of detected celestial objects and hence the
time taken to find those which are related to GWs.
In this thesis I evaluate the efficiency of the Random Forest method for the selection
of transient objects.

1.1 The Gravitational Waves

This thesis is focused in the detection of transients that are possible EM counterparts
of gravitational waves, exploiting wide-field optical surveys.
Gravitational waves are "ripples" in the space-time caused by some of the most catas-
trophic and energetic processes in the Universe.
Einstein’s general relativity theory showes that massive accelerating objects (such as
neutron stars or black holes orbiting around each other) create "waves" perturbating
the space-time fabric radiating from the source.
GWs can be visualized as waves on the surface of the water moving away from a
stone thrown into a pond. These ripples travel at the speed of light through the
Universe, carrying with them informations about their cataclysmic origins as well

FIGURE 1.1: An artist’s impression of gravitational waves generated
by binary neutron stars. Credits: R. Hurt/Caltech-JPL
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FIGURE 1.2: Two-dimensional illustration of how mass in the Uni-
verse distorts space-time.

It can be easily seen how the space time is represented as a stretched
sheet of rubber deformed by the mass of the body.

Credits: NASA

as invaluable clues to the nature of gravity itself (What are Gravitational Waves?).

GWs are produced by a large variety of astrophysical phenomena. For example
from coalescence of Binary systems of compact objects like two Neutron Stars (BNS),
of a Neutron Star and a stellar-mass Black Hole (NSBH) or two black holes (BBH).
Also can originate from the slightly wobbly rotation of neutron stars that are not per-
fect spheres but also from the same event that created the Universe (the Big Bang)
create GWs that in future it may be possible to detect.
Current detectors are indeed most sensitive to GWs from nearby compact object co-
alescence.

1.1.1 Importance of GWs

Gravitational radiation has been detected indirectly since the seventies in the context
of binary systems. Only one century after Einstein’s theoretical prediction an inter-
national collaboration of scientists (LIGO Scientific Collaboration and Virgo Collab-
oration) reported the first direct observation of gravitational waves.
GWs are detected by the two most sensitive interferometers: Laser Interferometer
Gravitational Wave Observatory LIGO (Aasi et al., 2015) and european advanced
VIRGO (Acernese et al., 2014).

Gravitational waves carry information about their dramatic origin and about the
nature of gravity that cannot otherwise be obtained.
In the LIGO observations (Abbott et al., 2016) the ripples detected were occouring
from the fraction of second when two black holes collided into each other at nearly
one-half of the speed of light and formed a single more massive black hole, convert-
ing a portion of the combined black holes’ mass to energy. This energy was emitted
as a final strong burst of gravitational waves1.
Detecting this type of events allows us to observe the Universe in a way never be-
fore possible. It gives us a deeper understanding of cataclysmic events. They give us
information about objects like black holes otherwise invisible in the EM range (Why
Detect Them?).

1https://www.jpl.nasa.gov/news/news.php?feature=5137
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1.2 The working group — GRAWITA

For my work I used the data of the GRAvitational Wave INAF TeAm (GRAWITA2),
an Istituto Nazionale di Astrofisica (INAF) collaboration. The team is performing
photometric and spectroscopic follow-up in the EM domain of the GW trigger, in
particular in the optical/near infrared (NIR).
GRAWITA has the access to conspicuous ground-based facilities like VST, VLT, LBT,
TNG, REM (Fig. 1.3.)
The GRAWITA team based in Padova developed a transients identification pipeline
(SUDARE Cappellaro et al., 2015) based on images difference method that rely on
different astronomical tools e.g. Hotpants, Sextractor, astropy, pyraf, Mysql,
etc.
The candidates list is extracted from the subtracted images (using the SExtractor
tool, Bertin and Arnouts, 1996). A ranking algorithm instead help astronomers to
decrease the number of candidates that needs visually check (see Chapter 2).

1.3 The new generation surveys and transients

Depending on the process of compact object merging, GWs event can be accompa-
nied by EM radiation emission. GWs observations would help to know a lot more
about the cosmos. After the first detection in 2015 by the LIGO interferometer (Ab-
bott et al., 2016)
The potential gain of detecting the EM counterparts of GWs motivated a world-wide
effort of the whole astronomical community, employing many telescopes and instru-
ments, ground and space-based, ranging from high energy through optical to radio
wavelengths, each contributing the monitoring of a portion of the sky localization
area with different depth and cadence3 (Brocato et al., 2017). In GWs follow-up the
optical counterparts are transient sources.

Optical transients, our objects of interest, are the astronomical sources showing
a significant change in brightness variation, either raising or declining flux, that can
be associated to extra-galactic events.
The most common detection procedure is based on subtracting images. The field of
view is observed in different epochs and then every image is compared with a refer-
ence one that could be the older or more recent that those to be searched. In an ideal
case the template image is taken before the actual search epochs. Data acquisition is
described in Ch.2.
This procedure creates a difference image that in the ideal case is just a pure noise
image but for real transients such as a supernovaw, asteroids or variable stars. In a
real case we find instead a large number of spurious sources (bogus) due to defects
in the detectors, poorly removed cosmic rays contamination, faint residual of bright
star subtraction, small misalignment of the images, etc.
In a wide-field observations the number of detections can easily grow to 104 -105.
That leads the astronomer to search for quick methods of transients classification.
The GRAWITA team (see subsection 1.2) uses Ranking approach (described in 3).
This approach however leaves a large fraction of events still requiring visual inspec-
tion. It is interesting to test a different approach to object classification based on

2https://www.grawita.inaf.it/ gwpadova/home.php
3LIGO-VIRGO observing plans at https://www.ligo.org/scientists/GWEMalerts.php
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FIGURE 1.3: Ground-based facilities available for GRAWITA. Credits:
Brocato

Machine Learning.
There is also interesting in view of the next-generation surveys, such as GAIA, the
Dark Energy Source (DES), LSST and SKA will lead to an era of exascale astron-
omy requiring new machine learning and statistical interference tools (Buisson et
al., 2015).
Machine Learning needs a training set from which learn to how to make transients
classification, the preparation of the training set is explained in Chapter 3. Finally in
Chapter 4 I summarize the Random Forest approach results and I draw my conclu-
sions.
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Chapter 2

The GRAWITA Data Processing

In this work I used the observations of GW151226 already reduced, calibrated and
the extracted stamps for each candidate. Hereafter I will briefly describe the image
acquisition and reduction method made by the GRAWITA team.

2.1 Observations

The VLT Survey Telescope (VST; Capaccioli and Schipani, 2011) is located at Cerro
Paranal Observatory; it is a joint venture between the European Southern Obser-
vatory (ESO) and the INAF-Osservatorio Astronomico di Capodimonte (OAC) in
Napoli (Cicco et al., 2015). The telescope has a size of 2.6 m. Tha camera (Omega-
cam) has a field of view of 1 sq deg with a pixel size of 0.21 arcsec /pixel. In 40
second exposure time (we use a short exposure time to be able to monitor a large
area) we can reach mag ∼ 22 with S/N ∼ 3.

2.1.1 VSTTube

After acquisition, the raw images are mirrored to ESO data archive, then transferred
through an automatic procedure from ESO Headquarters to the VST Data Center in
Naples (Brocato et al., 2017).
The first part of the data reduction is performed using the VSTTube pipeline (Grado
et al., 2012), developed exclusively for the VST-OmegaCAM data. It performs in
mainly tree steps: prereduction, astrometric and photometric calibration, mosaic
production.
First VSTTube reduces individuals exposure and then combines single epochs im-
ages to produce the final mosaic.VST tube implements the instrumental signature re-
moval: overscan, bias, flat-field correction, CCD gain harmonization of the 32 CCDs,
illumination correction and, for the i band, defringing (Wright et al., 2015).
The dithered images for one epoch are median averaged, producing one stacked im-
age for each pointing. The pipeline also creates a weight pixel mask tracking, for
each pixel, the number of dithered exposures contributing to the combined image
after accounting for CCD gaps, bad pixels and cosmic rays rejection.
The pipeline can also create a stacked image by combining exposures taken at dif-
ferent time, in a given filter, with the best image quality (Cappellaro et al., 2015).

The diff-pipe pipeline

The GRAWITA team usually uses two independent but equivalent procedures for
transient detection:
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VSTTube pipeline
produces a bad pixels
and spurious residual

mask.

Computed the
difference of images
taken at different

epochs.

SExtractor detect
transient candidates.

Filtering out spurious
candidates with the
Ranking method.

The catalog of transient
sources is now created.
We include only the
candidates with
Ranking>30.

Cross check with the
SIMBAD  catalog with

the database. 
Known sources are useful
to detect the pipeline

performance. 

Creation of a stamp for
each candidate for
visual inspection

FIGURE 2.1: Scheme of the images analysis.

FIGURE 2.2: Example of negative source. The reference image is the
one on the right and the difference is in the middle.

1. the photometric pipeline ph-pipe (for further information see (Brocato et al.,
2017))

2. the images difference pipeline diff-pipe whose results I used for the ensemble
learning method Random Forest implementation.

The diff-pipe is based on the analysis of the images subtraction using the approach
of the supernova search program (Botticella et al., 2016), (Cappellaro et al., 2015).
Basically the pipeline includes Python scripts with specialized tools for the data anal-
ysis e.g. SExtractor1 (Bertin and Arnouts, 1996) and topcat2/stilts3. The first one
is dedicated to sources extraction and the latter to catalogs handling.
Fig.2.1 shows a simple scheme of what diff-pipe does.
I will highlight the main points in the following paragraphs.

The difference of images

Having observations at the different epochs, the most intuitive way of proceeding
for transient search is images subtraction.
In this first step different epochs observations are compared with a reference one
usually taken before the actual search epochs. Not always a template image is avail-
able so is left to the user the decision to took the last or the first observed epoch as
reference.
I used for this thesis the GW151226 survey where the reference image was the last.
We searched both for positive sources (sources that at the latest epoch disappeared or
are fainter than in the previous epochs) or negative ones (objects that where brighter
at the latest epoch, ex. fig. 2.2) (Brocato et al., 2017).

1https://www.astromatic.net/software/sextractor
2http://www.star.bris.ac.uk/ mbt/topcat/
3http://www.star.bris.ac.uk/ mbt/stilts/
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SExtractor

SExtractor is a software for sources extraction, that we use to detect sources in the
difference images. It is able to work very rapidly in large images.
The complete analysis of an image is done in six steps: estimation of the sky back-
ground, thresholding, deblending, filtering of the detections, photometry, and star/-
galaxy separation (Bertin and Arnouts, 1996).

2.1.2 The Ranking approach

As mentioned before the list of objects produced by the SExtractor algorithm con-
tains a large number of spurious objects due to different factors related to the im-
ages creation: improper flux-scalings, incorrect PSF convolution, mis-alignment of
the images etc.
In order to filter out bogus from the candidates list GRAWITA currently uses a rank-
ing approach (Cappellaro et al., 2015) which assigns a score to every candidate and
based on the value of that score an object is classified. The score is increased/de-
creased from an initial value (equal for all the candidates) on the basis of different
measured parameters4 (described in Brocato et al., 2017) in particular:

• FWHM

• ISOAREA

• FLUX_RADIUS

• CLASS_STAR

• Proximity to bright sources (penalized)

• Proximity to galaxies (promoted)

• Ratio positive/negative pixels in the defined aperture (penalized if it’s below
a specific threshold)

In the end of the ranking selection a threshold is chosen above which the candidates
are visually inspected. Usually under score 30 all the objects are bogus i.e. non tran-
sient object but artefacts.
In my case I used as threshold a score=30.
The use of the Ranking reduces the order of candidates to manually classify. For
example in the GW151226 the number of objects selected with a score greater than
30 is about 6300; with a score greater than -60 are 190042 and without score selection
are 352268.
Those numbers help to understand how much this approach reduces the quantity of
candidates but still a manual classification of 6000 objects requires a lot of time (we
can estimate that the time needed for visual inspection is about 5 sec per object ) to
astronomers and does not permit a real time classification and a quick response to
GW triggers.
In the following paragraph I will describe in details how manual classification works.

4for further explanation see the complete guide: https://www.astromatic.net/pubsvn/software/sextractor/trunk/doc/sextractor.pdf
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FIGURE 2.3: Example of difference images.

2.1.3 Stamps

Once we have the list of transient candidates it is possible to visualize every object
in a stamp i.e. a cropped square containing the transient. In order to make the
classification easier the GRAWITA group created an interface like Fig.2.3.
For every candidate it is showed the search and the subtracted image for every epoch
and the reference one.
Now is possible to start the eyeballing process. The user based on experience or on
some measured parameters (see. following chapters) has to decide if the represented
object is real or bogus. Here is where my effort starts.

2.2 The visual classification

In the GRAWITA site 5 there is an interactive interface that permits the astronomer
to visual inspect candidates displaying all useful information.
Fig.?? shows the interface otuput.

5https://www.grawita.inaf.it/g̃wpadova/
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FIGURE 2.4: Screen of the GRAWITA site.

2.2.1 Candidates informations

Panel 2.6 description

In the upper left of Fig. ?? (see Fig. 2.6) there are:

• GW151226 is the LIGO name of the GW event where:

– 26 is the day of the first observation,

– 12 is the month,

– 15 is the year (2015)

• pointing is the VST pointing where the candidate has been found

• #1 is the number of the detected object. It permits to univocally identify a
candidate. In Chapter 4 it will be called id.

• P means that the image difference is positive.
Since we used as reference the last image taken if the object has increased in
brightness the difference will be positive, otherwise it will be negative.
In Chapter 4 it will be identified under the name search.

• RA is the right ascension coordinate.

• DEC is the declination.

• score is the score that the object "achieved" after the Ranking method. Usually
90 is the maximum score and many (30%) of the candidates with this value are
real transients. Under 30 all the objects are Bogus.
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FIGURE 2.5: A zoom in of the possible candidates classifications.
There are the macrocategories Real/Bogus and even a more specific

one. For my purpose the Real or Bogus classification is enough.

• with a cross-check with public source catalogues is possible to find if the object
is already known:

– SKYBOT 6 permits to identify Solar System objects, usually it means that
the object visualized is an asteroid.

– NED 7 is a database of galaxies and in general extragalactic objects.

– SIMBAD 8 provides a basic data and measurements database for extraso-
lar objects.

Other informations are written immediately above the stamps:

• xc is the abscissa coordinate of the centre of the target

• yc is the vertical axis coordinate of the centre of the target

• fwhm is the full width half maximum of the candidate measured by SExtractor

• fluxrad is the flux

• isoarea number of pixels with values exceeding some predefined threshold

• mag auto is the apparent magnitude of the object

• aper aperture magnitude of the transient

6http://vo.imcce.fr/webservices/skybot/
7https://ned.ipac.caltech.edu/
8http://simbad.u-strasbg.fr/simbad/
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FIGURE 2.6: A zoom in of the "header" of the interface. The name of
the survey exposed is G211117, is a consequential number indicating
a survey. When astronomers are sure that a gravitational trigger is
detected in a survey they change the name with the initial letters GW
and the date. Basically G211117 and GW151226 are the same thing.

• cl star is the SExtractor classification object. If it is close to 1 that object is a
star, near 0 means that is a galaxy.

Also the stamps are organized with a precise criteria. From the upper left to the
right one can find the search image, the difference image (its name has the capital D
letter before the date) and the reference one (indicated with the letter R before the
date of the acquisition) and the light curve.
Other stamps are search images in different epochs all subtracted with the reference
one.

2.2.2 Classification

At the left of Fig.?? (see 2.5) there is the interactive portion of the interface where the
user can input if the object represented is real or bogus and also input a tentative
sub-type classification:

• SN: for the supernovae.

• AGN: for the nuclear active nuclei.

• VAR: for the variable objects.

• MOV: for the moving objects, anything showing signs of motion.

• dipole: is a type of bad subtraction where in the image difference a part of the
object is positive (black) and a part negative (white).

• bad subtraction: residual profile inconsistent with a real source.

• limit: object is in the edge of a stamp.

• bright star: when the candidates is near a bright source faint residuals often
remain.

2.2.3 Artefacts in Difference Images

We call bogus (following Bloom et al., 2012) artefacts of no astronomical interest.
Typically, thousand of variable transient candidates are detected on each subtrac-
tion image, the vast majority of which are subtraction artefacts, which can occur for
a plethora of reasons, including improperly reduced images, edge effects on the ref-
erence or new image, misalignment on the images, improper flux scalings, incorrect
PSF convolution, CCD array defects, and cosmic rays (Brink et al., 2013).
In figs. 2.10, 2.11, 2.12, 2.13 are represented some types of bogus.
In difference images reals objects have point-like residuals, artefacts have diffraction
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FIGURE 2.7: An example of SN.

FIGURE 2.8: An example of AGN.

spike-like residuals while the dipoles/saturated class have residuals almost point-
like with a part that has negative flux arising from registration errors or saturated
CCD effects.

2.2.4 Results

In the 72 pointing of GW151226 the total amount of detected objects by the SExtractor
was 352268. After the score selection they became 6300.
I visually inspected about 3000 objects, It is about half of the total number of selected
candidates with ranking > 30 that for my purpose it is enough.
After this process one can really appreciate why the implementation of the machine
learning would be a great help for the transient search.
In the modern wide-field surveys, where the number of candidates is huge, the vi-
sual inspection made by the astronomer is indeed the bottleneck in the target iden-
tification. For the classification procedure (see next chapter) it is important that the
training set contains at least a few thousand objects with a comparable fraction of
real and bogus.
In a real world the number of real candidates in a typical field is very small, less
that few tens per square degree. This is a limitation when producing and adequate
training set.
One solution is generate artificial stars in the image that however has a number of
complications . For the classification procedure (see next chapter) it is important that
the training set contains at least a few thousand objects with a comparable fraction
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FIGURE 2.9: An example of VAR object, i.e. objects showing a record
of long-term variability. This one is saved in the catalog as an eclips-

ing binaries.

FIGURE 2.10: An example of bright star.

FIGURE 2.11: An example of dipole; they are residuals with roughly
equal amounts of positive and negative flux, caused by errors in im-

age registration.
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FIGURE 2.12: bogus

FIGURE 2.13: CCD error.
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of real and bogus.
In a real world the number of real candidates in a typical field is very small, less
that few tens per square degree. This is a limitation when producing and adequate
training set.
One solution is generate artificial stars in the image that however has a number of
complications .
Therefore we have a good fraction of real transient representatives. To match with
a similar number of bogus we randomly selected from our database a sample of ob-
jects with low score.
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Chapter 3

The training set

3.1 A brief introduction to Machine Learning

Arthur Samuel, a pioneer in artificial intelligence at IBM and Stanford, defined ma-
chine learning as “The field of study that gives computers the ability to learn without being
explicitly programmed”.

Machine learning consists of using algorithms to extract informations from raw
data and represent it in some type of model. We use this model to infer things about
other data we have not yet modeled (Gibson and Patterson, 2017).
In my case the raw data are the subtracted images, the model is the ability of the ma-
chine to assign a number between 0 (bogus) and 1 (real) to the extracted candidates
not yet classified.
Talking about "learning" for a machine could sound strange but its deeper meaning
is that the machine uses algorithms for acquiring structural descriptions from data
examples. A computer learns something about the structures that represent the in-
formation in the raw data.

There are two principal types of machine learning algorithms: the supervised
and the unsupervised. If instances are given with known labels (the corresponding
correct outputs, see table 3.1) then the learning is called supervised, in contrast to
unsupervised learning, where instances are unlabeled (Gibson and Patterson, 2017).
We can also call the models built for information extraction as structural descrip-

tion.
Structural descriptions contain the information extracted from the raw data, and we
can use those to predict unknown data. Models can take many forms such as: deci-
sion trees, linear regression, neural network weights.
Each model works in a different way. They apply different rules to known data to
predict unknown data. Decision trees are so called because they create a set of rules
in the form of a tree structure (as represented in 3.2). Linear models create a set of
parameters to represent the input data (Gibson and Patterson, 2017).

Data in standard format
case 1 Feature 1 Feature 2 ... Feature n Label
1 xxx x ... xx good
2 xxx x ... xx bad
3 xxx x ... xx bad
... ... ... ... ... ...

TABLE 3.1: Example of instances with known value
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FIGURE 3.1: A schematic flowchart of how supervised machine learn-
ing works. In 2 is presented the data pre-processing, in this chapter
is described the definition of the training set and in the next one (4)
the algorithm selection, the training and the evaluation. Credits: Kot-

siantis, 2007.

3.1.1 Decision Trees

Decision trees is a type of supervised algorithm where the data is continuously split
according to a certain parameter. This is based on trees (transient candidates in
our case) that classify instances by sorting them based on feature values (Kotsiantis,
2007).
A decision tree is drawn upside down with its roots at the top (see fig 3.21).
The tree is composed by two entities: decision nodes and leaves. The leaves are the
decisions or the final outcomes, it represents a value that the node can assume. The
decision nodes are where the data is split, each node in a decision tree represents a
feature of an instance to be classified.
Thus instances are classified starting at the root node and sorted based on their fea-
ture values.
It is easy to understand why a decision tree classifies an instance as belonging to a
specific class, the feature importance is clear and relations can be viewed clearly.
There is a huge variety of learning algorithms based on decision trees. For my work I
used the Random Forest Classifier as made available into the scikit-learn python
package2.

1https://www.xoriant.com/blog/product-engineering/decision-trees-machine-learning-
algorithm.html

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.htmlsklearn.ensemble.RandomForestClassifier.predict
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FIGURE 3.2: A schematic decision trees example. Credits: Mayur
Kulkarnix

Random Forest

Random Forest (RF) operates by constructing a multitude of decision trees as ensem-
ble of classifier. RF classify instances by combining prediction of their trees together
(Buisson et al., 2015). The first algorithm for random decision forests was created by
Tin Kam Ho (Ho, 1995) and introduced by Breiman, 2001.
RF as a supervised learning entails learning a model from a training set of data for
which we provide the desired output for each training example (Wright et al., 2015).
For that purpose a previous object classification is needed.
Random forests is a combination of tree predictors such that each tree depends on
the values of a random vector sampled independently and with the same distribu-
tion for all trees in the forest. RF aims to classify examples by building many de-
cision trees from bootstrapped (sampled with replacement) versions of the training
data (Breiman, 2001).
In this work I use the Random Forest classifier Python implementation because it
has been used in many surveys and compared with other algorithms it had the best
efficiency. The RF classifier is superior to other methods in terms of accuracy, speed,
and relative immunity to irrelevant features; the RF can also be used to estimate the
importance of each feature in classification. It has shown high levels of performance
in the astronomy literature (Wright et al., 2015; Bloom et al., 2012; Brink et al., 2013;
Carliles et al., 2010; Richards et al., 2011).
The algorithm needs in input the labelled objects and a 1-dimensional (1D) vector
(the flattened image) for each one. In order to built a training set of candidates with
known class labels one rely on data from previous surveys; I used the GW151226
survey analyzed by me (as described in Ch. 2).
Each element of the vector correspond to some numeric data that lets the algorithm
distinguish examples belonging to each class. Is it possible to see the feature impor-
tance for every image but for a stamp trivially this would be the pixels of the source.
We decided to select the 20% of the elements in the list prepared adter GW151226
survey as a test set and the remaining 80% as training set. The test set is used for
method comparison after the learner has been trained, for further discussion see
Sect. 3.1.3.
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3.1.2 Classification

Classification is the process of predicting the class of given data points. In my case
stamps, or more precisely the pixels that compose the image, are the input features
Classification belongs to the category of supervised learning where the targets also
provided with the input data.
There are various type of classification. The most basic form is a binary classifier that
only has a single output with two labels (two classes: 0 and 1). These classes are con-
ventionally referred, in the literature, as positive classification (1) and negative (0). I
have presented in chapter 2 the candidates classification. There are a lot of different
type of real transients (1) and bogus (0) in subtracted candidates but all amenable in
the two broad classes.
The output can also be a floating-point number between 0.0 and 1.0 to indicate the
probability to belong to a certain class. We will see (chapter 4) that in most cases the
precise natural number is quite impossible to receive as output.
The user needs to determine a threshold to delineate the boundary between the two
classes. But, how to choose the threshold is discussed in the next sections.

3.1.3 Evaluating Models

Evaluating the machine learning algorithm models is an essential part of the project.
Understanding how well an algorithms worked is possible comparing the known
correct classification with the value of the prediction.
Thank to that process we understand how many real objects the machine has recog-
nized, how many reals have been detected as bogus (missed detection rate, MDR) and
how many bogus have been classified as reals (false positive rate, FPR).
Those parameters are easily visualized in the confusion matrix (3.2) and in a plot; in
particular they are calculated with the following expressions:

fp = f alse positive fn = f alse negative tn = true negative

FPR =
fp

fp + tn

MDR =
fn

fn + tp

The plot created plotting the false positive rate against the true positive rate at var-
ious threshold settings is called ROC (receiver operating characteristic) curve. It pro-
vides tools to evaluate the models and select the optimal model and threshold. For
example if the astronomer can only accept to loose less than 5% of the real transients
it takes a value of the threshold which corresponds to 5% of MDR. The threshold can
be seen as a line after which objects change classification. In an astronomer work of
transient discovery it’s important to not loose many candidates but also it is no sense
to choose a very low threshold because it will cause an high number of false positive
objects and the use of machine learning to reduce the number of objects that need
visual inspection will loose it’s meaning.

The Confusion Matrix

The confusion matrix (see 3.2) is a table with rows and columns that represents the
predictions and the actual outcomes (labels) for a classifier. We use this table to
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True condition
condition positive condition negative

Predicted
condition

Predicted condition
positive

True Positive False positive

Predicted condition
negative

False negative True negative

TABLE 3.2: An example of confusion matrix

better understand how well the model or classifier is performing. It make possible
to describes the complete performance of the model.

Accuracy

Accuracy is the degree of closeness of measurements of a quantity to true value of
that quantity, it can be also seen as the average of the values lying across the “main
diagonal” of the confusion matrix.

Accuracy =
(TP + TN)

(TP + FP + FN + TN)

Accuracy is the ratio of number of correct predictions to the total number of input
samples so it has a good result only if the number of samples belonging to each class
are in equal number. For that is better to create a training set with the equal number
of bad and good candidates.

3.2 Definition of the training set

The classification results of the Ranking approach (see chapter 3) are automatically
saved in MySQL tables.
The first step of the preparation of the machine learning input is to handle those
tables:

• GW_classify_margherita is the file where the classification parameters are
saved, like the id or the candidates type (see Fig. 2.5)

• candidates_GW151226 is the file where the candidates informations are saved,
like the id, the pointing, the search date, the reference date, center coordinates
x, y, the magnitude, the image type (positive or negative subtraction) and the
ranking. The majority of those parameters are explained in paragraph 2.2.1.

In the Appendix A it is reported a part of the script I wrote for this thesis. For now I
will focus on the first two functions of the script.

The read_negativi function

The Random Forest Classifier requires a number of examples of real and bogus of
equal value.
Usually in one survey those numbers show a huge difference: even after ranking
the number of bogus is two order of magnitude higher than the real transients. As-
tronomers solved this problem creating artificial stars.
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FIGURE 3.3: Preparation of the training set script flowchart.



3.2. Definition of the training set 23

(X,Y)
x + npix

 y - npix

y + npix

x - npix

FIGURE 3.4: Stamp
creation. FIGURE 3.5: Example

of a stamp.

In the GW151226 survey this is not required since the observation was made with a
low declination, near the ecliptic, that leads to a huge asteroids observation. Those
are not real transients since they not change in magnitude, instead they appear in
one epoch and in the next one they are gone, but those are a good input for the ma-
chine learning process.
Actually we need more bogus than those I classified. The task of read_negativi is,
precisely, to read a number of candidates with negative ranking. We choose to use
negative score objects that we are sure are almost all bogus.
The function requires a parameter in input (nsel), that is the number of negative
score objects that the user needs.
Read_negativi reads from the fits table global_G211117_r_all ,which contains score
values and objects informations, and give an output catalog with the informations
that we need such the id, search, coox, cooy, date_new, Ranking, pointing
(see Appendix A).

The creazione_tabelle function

The creazione_tabelle function is made for the table handling.
The first step consists in reading the MySQL tables: GW_classify_margherita and
candidates_G211117. The two tables are joined with the parameters we need. In
particular the candidates type are merged in the two macro-categories that we al-
ready know: reals and bogus. The table is then saved as numpy table for an easier
manipulation. Then the final table including the negative ranking is divided in two
different tables: one that contains the 20% (identified as tab20) of the total amount
of candidates and one with the 80% (tab80). Table splitting in performed by random
selection.

3.2.1 The stamps creation — produzione_stamps function

The produzione_stamps function takes as input the npix value i.e. the number of
pixel of the square stamp side.
When the script runs the user has to input the length of the stamp size. Npix is half
of the input value because the script takes (from the tables created in the function
3.2) the coordinates of the source center and then adds and subtracts the npix value
creating a stamp around the source center.
Fig.3.4 shows how the stamps are constructed.
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FIGURE 3.6: Histogram that shows the RF predictions. The blue dot-
ted line is the threshold at MD=10%.

FIGURE 3.7: Missed Detection Rate and False Positive Rate plot. The
dotted line indicate the selected threshold at 0.35, it coincides with a

MD=10%.

In this part of the candidate handling is important to avoid those lying near the
the edge of the image. At the end of this script all the candidates labels and their
cropped stamp are saved. The labels are a number indicating the "nature" of the
object, in other words if is real or bogus. We adopted that real objects are indicated
with the number 1 and bogus one with 0. This convention is used in the whole thesis.
The labels list and the stamps are the input for the machine learning. I will explain
how to implement those in the next paragraph.

3.3 The Random Forest implementation

3.3.1 The machine_learning function

This function permits to create a model able to classify further surveys (like the
GW171408 one, see Ch4).
RandomForestClassifier meta estimator, from sklearn.ensemble library, requires
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various input hyperparameters3; all of them are optional and if they are not spec-
ified a default value4 is adopted. The only parameter I specified is the number of
estimators, i.e. the number of trees in the forest.
The method fit(X,Y) builds a forest of trees from the training set (X, Y) in which X
has to be the flattened stamps and Y the list of the labels for each object.
The predict(X) method predicts classes for X, i.e. it is composed by a list of 0 and
1. The predict_proba(X) method predicts classes probabilities for X, i.e. it is com-
posed by list of float value between 0 and 1. In the sklearn jargon this prediction is
named hypothesis, it can be seen as the probability that an image has of belonging to
the class of real images. In these two methods the input X is the test set, namely the
set composed by the 20% of the entire dataset.
Thanks to the test set is possible to visualize the probability predictions in a his-
togram (fig. 3.6) and evaluate the performance of the classifier algorithm. This plot
is created with bins of 0.025 of the hypothesis value.
In fig. 3.6 we see that the picks are near the limits 0 and 1. This is the first sign that
machine learning is working efficiently because is clear the division between the two
classes.

3.3.2 Fit results

Using the joblib method5 made available by scikit-learn is possible to store a
model after calculation.
The performance of random forest depends on the choice of proper parameters for
the algorithm. For instance it is known (Wright et al., 2015) that changing n_estimators
or stamps size change significativly the algorithm performance.

Testing dependence on stamp size

I ran the machine learning with different input images sizes and I plotted for each
selected value the ROC curve(fig 3.8). For the python code see A.2.
The performance changes is evident with very small stamps like the 2x2 or even 4x4
pixels. When: the input stamps are too small so not all the relevant objects pixels are
included in the image and it become difficult to detect real sources.
We decided to take 20x20 pixels stamps because they have the right amount of pixels
(400) so the source is all contained in the stamp and there are not too many back-
ground pixels in order to avoid contamination by nearby sources.

Test of effect of estimator number

In fig. 3.9 are shown the ROC curves made with different numbers of trees (n_estimators).
The performance gets worse when we use a small number of estimators (less than
50). We decided to use n_estimators=100 because it gives an efficiency very similar
to the maximum value but it takes a lot less time to run.
The threshold (also called hypothesis, h) in binary classification is 0.5 by default. In
general, we want to select a value of h that guaranties some specific performance.

3In machine learning, a hyperparameter is a parameter whose value is set before the learning pro-
cess begins.

4see the full list of hyperparamethers here: https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

5https://scikit-learn.org/stable/modules/model_persistence.html
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FIGURE 3.8: ROC curves of different stamp sizes.

FIGURE 3.9: ROC curves made by fit with a different number of
estimators.
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To this aim we printed in tab B.1 the values of the hyphotesis, and the corresponding
missed detection rate and the false positive rate.
With any classifier the largest h is the lower the MDR but higher the FPR and vice
versa. We decided to take as reference a MD equal to 10% so our reference value
of h was 0.35 (see tab.B.1). Now we have all the elements for applying the derived
random forest model clf to a new survey.
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Chapter 4

Application of the classifier to the
GW170814 survey

4.1 External check

The Random Forest algorithm after learning from the training set returns a model
that describes the relationship between the observed data and the class of the source.
Once the classification function (clf) is estimated, it can be employed to predict the
class of any future object from its observed data (Brink et al., 2013).
In Ch.3 I described how I prepared and implemented the training and test sets. In
this chapter I will describe how I implemented the clf created with the GW151226
training set to a new data set obtained for a different GW trigger (GW170814).

4.1.1 Classifier implementation

The transients found during the GW170814 follow-up survey have been already clas-
sified by other members of the GRAWITA team using the ranking algorithm and
visual inspection. Hence we are able to make a cross check with the ones found by
the classifier. For my model evaluations I will change some parameters in the script.
Those are global variables declared at the beginning of the script (see A.3) and are:

• score_limit: the minimum score of the candidates. For example, if I use the
value 30 the clf classifies only the candidates with score greater than 30. The
minimum possible value to take is -60.

• use_clf: the type of the classifier. I computed different clf based on different
training sets. didates over a certain magnitude and with n_estimator=100, see
4.1.5

• show_plot: a boolean value True/False in order to visualize or not the his-
togram plot.

• hlimit: the minimum value of the threshold above which the candidates are
detected as reals. It makes possible to change the hyptohesis value hence the
MDR and the relative FPR (see B.1). This means that if I chose h=0 the clf
would detect all the objects in the survey as real transients; if I chose h=0.35
(i.e. MD=10%) the clf would detect as reals only the candidates above that
threshold value.
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FIGURE 4.1: Stamps of the 9 non detected objects.

FIGURE 4.2: Stamp examples of 4 detected objects.

4.1.2 Stamps preparation

The process of stamps creation is the same as the one done for training set, see
Ch.3.2.1. We need to create the stamps of all the candidates in the survey.
In GW170814 without score limitation there are 248265 candidates, instead those
with score greater than 30 are 9362. All values are shown in tab 4.1.
My intent is to evaluate the performance of Random Forest, without the application
of any prior method, so first of all I implemented the survey without score limitation.

4.1.3 Clf implementation — The model_implementation function

Survey with no ranking limitations

The input in the methods predict() and predict_proba() (both described in 3.3.1)
are the flattened images of the candidates. It is possible to create an histogram
(fig.4.3) that shows the trend of the predictions probabilities, like the one in fig.3.6.
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FIGURE 4.3: Histogram of the detected sources of all scores objects in
GW170814 survey.

This histogram is quite different from the one in the previous chapter. It has an
higher candidates frequency near the 0. This is due to the fact that there is a differ-
ent real/bogus ratio between the two set of data. The number of detected transients
by the clf is 5882.

Having selected 5882 candidates in a survey of 248256 objects is a good result,
the classification made by the RF has diminished by the 98% the initial number of
candidates. But still the ∼6000 transient candidates found by the algorithm should
be manually checked. It is important to consider that in the discovery of transient
events the timing is a vital aspect. How early a GWs optical counterpart is detected
and how soon a potentially crucial follow-up can be deployed are the the main rea-
sons why astronomers needs to implement a machine learning algorithm that speeds
up the process.

Survey with ranking limitations

I implemented the ranking limited survey. The total number of objects with score>30
is 9362. The number of the detected objects by the clf is 743 (the relative histogram
is in fig. 4.4). This is much smaller number than 5882 and it is feasible to visually
inspect those candidates in a short time.
We conclude that the best strategy is first to make a ranking selection and then im-
plement the classifier.

4.1.4 Cross-check — The cross_check function

The ∼750 candidates found by the machine learning algorithm need to be cross
checked with the ones found by the GRAWITA team.
The list of the already classified objects contains only plausible extragalactic tran-
sients which are possible optical counterparts of gravitational waves so are transient
like asteroids and variable stars have been removed. However, with a cross check
of only those objects, the clf evaluation would not be fair because we trained the
algorithm with all the types of transients. The solution devised is to visually check
the ∼750 candidates. I found 103 real transients in the classifier detected objects. This
is equal to a FPR=14% (marginally lower than the one we expected of the 17%, see
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FIGURE 4.4: Detected objects by the clf in GW170814. The dotted
blue line is at h=0.35.

clf score h MDR (clf) FPR (clf) Matched (GRAWITA) Matched (by me) Detected Full table
G211117 -60 0.35 10% 17% 39 5882 248265
G211117 30 0.35 10% 17% 39 103 743 9362
G211117 30 0.23 5% 32% 44 2418 9362
G211117 60 0.35 10% 17% 34 309 1688
G211117 90 0.35 10% 17% 8 30 115
G211117

mag limited
30 0.30 10% 8% 41 1172 9362

TABLE 4.1: This is the table with the final results of the cross checks.
In the first column is written the name of the classifier, G211117 means
that it has been trained in the GW151226 survey. In the second
column is specified the value of the score_limit, in the third col-
umn is written the threshold value with the relative FPR and MDR.
Then there are the number of matched candidates: firstly with the
GRAWITA list (composed of 48 objects) and secondly my classifica-
tion. In the last two columns there are the detected objects by the clf

and with the number of candidates given in input.
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Confusion Matrix
True Condition
Real Bogus

Predicted
Condition

Real 14% 87% cross check values
Bogus 10% 90% input values

TABLE 4.2: This is the confusion matrix based on my classification of
the 20x20 pixels stamps of ranking limited objects of the GW170814
survey, with a classifier trained in the GW151226 survey with a thresh-

old=0.35.

B.1) and a MD=10% corresponding to h=0.35.
Of the about 750 objects:

• 39 were in the list of the 48 objects given by the GRAWITA team, that is the
82% of the candidates.
In fig.4.1 are shown the stamps of the 9 non detected objects, they are fainter
than the detected objects, see an example of detected objects in fig. 4.2). Likely
this is the reason why they are not in the list of the ∼750 candidates.
Of the ∼6000 objects detected by the classifier regardless of ranking I found the
same 39 objects. This means that there are no possible real transients with score
lower than 30 and that the ranking approach is reliable.

• in my classification there are:

– 19 are plausible extragalactic transients.

– 84 are consistent with variable stars or asteroids

– 139 are unclear cases that could be either real or bogus, like a faint residual
of the image subtraction.

Tab 4.1 shows the numbers of detections and matching for different score limits. We
see that a score_limit equal to 60 or 90 is too high and we lose a lot of candidates.
The conclusion is that the best way of proceeding is using the ranking approach,
selecting the objects with score greater than 30, and then implementing the machine
learning classifier.

4.1.5 Further analysis

Limitation in magnitude

I described the peculiarity of the GW151226 survey in paragraph 3.2. In the survey
there are a lot of candidates that appear only at one epoch this is due to a large con-
tamination from asteroids. Asteroids are usually brighter than other sources because
are relatively nearby. Extragalactic transients possible GW counterparts are tipically
faint, then we want to study what happens when we train the RF only with faint
objects.

In fig.4.5 I divided the training set (sources with score>30) into bins of range 1
mag, from the lower magnitude to the higher. Evaluating the histogram I restricted
the survey to the candidates with magnitude greater than 20 mag, see 4.6. I created
a training set only with the fainter objects, the MD and FP values are in tab. B.2. The
MD=10% corresponds to a hypothesis value of 0.30, the ROC curve is shown in 4.8.
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FIGURE 4.5: Magnitude trend of
the GW151226 survey. The bins
have range 1 mag and are from
the lower magnitude found in

the survey from the higher.

FIGURE 4.6: Limited magnitude
trend in the GW151226 survey.
The bins have a range of 1 mag

and they start from 20 mag.

FIGURE 4.7: Histogram that
shows the trend of the RF pre-
dictions for the survey with lim-
ited magnitude. The bins have a

range of 0.025.

FIGURE 4.8: ROC curve for the
survey with limited magnitude.
The blue dotted line is at h=0.30

that correspond at MD=10%.
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FIGURE 4.9: Trend of the objects in the GW170814 survey with a clf
trained in a survey limited in magnitude. The dotted blue line is at

h=0.30.

The implementation of new clf in the GW170814 survey created a trend of the pre-
dictions like the one shown in 4.9. The detected objects are 1172, a number of detec-
tions higher than the one made by the classifier with no magnitude limitations. The
cross-check with the 48 objects of the GRAWITA team generated an higher num-
ber than the previous. 41 GWs optical counterparts were detected. It is not a great
improvement: we detected 2 more objects but we should manually check twice the
objects of the previous clf.
The conclusion is that a magnitude limitation is not necessary.

Changing of the hypothesis value

I tried to change the hypothesis value to 0.23, corresponding to a MD=5% (tab 4.1). I
matched 44/48 objects of the GRAWITA list, that is the 92%.
It seems a great achievement but the number of detected objects rapidly increased
and so the false positives. From the tab B.1 we see that with a MD=5% we should
have a FP=32%, we have a FPR=98%. We can not inspect such an amount of objects,
so MD=10% is the right compromise.

4.2 Conclusions

In this thesis I motivated the need for a machine learning approach in the search
for GW optical counterparts.To set the context I first describe the tools used by the
GRAWITA group: the VSTtube, the SExtractor and the ranking approach that pro-
vides a score for all candidates, higher for plausible true transients and low for .
I visually classified about 3000 objects of the GW170814 survey, all those with high
score. These objects, integrated with a similar fraction of bogus extracted randomly
from low score candidates was used to construct a training set and a test set for the
machine learning implementation. I used the first one to train the Random Forest
classifier. Test set is used to evaluate the performance of the method, and in par-
ticular a threshold, i.e a MDR and FPR value.
As the feature representation of the detections I decided after some testing, to use
20x20 pixels stamps. Also as the number of trees in the forest, I adopted n_estimators=100.
I evaluated the performances with the decided hyperparameters and I decided to take
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a MD=10%. I trained the algorithm with the decided hyperparameters, I evaluated the
performances with the test set, I decided to take a MD=10% and I saved the classi-
fier that was created. As an external check I applied the clf in another survey, the
GW151226 one. Firstly the clf classified the GW151226 objects without ranking lim-
itation. I made a cross check of the machine learning detected objects with the list of
the 48 known GWs counterparts in GW151226. The clf detected about 6000 objects,
but only 39 matched the list of real transients.
Then I applied the classifier to the list of ∼9400 with high ranking of the GW151226
survey. With MD=10% I recovered the same previous 39 objects; with MD=5% I
found 44/48 objects. On the other side with a MD=10% the number of detected ob-
jects is 743 while with a MD=5% they are 2418 that is the number of false positive
visibly increased.
My conclusion is that in order to reduce the number of candidates left for visual in-
spection the best strategy is implement the machine learning to the ranking limited
sample of objects.
All together we concluded that while further testing are certainly required the cur-
rent implementation is already a valuable aid and indeed will be implemented in
the incoming observing season .
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Appendix A

Python Scripts

A.1 Script for clf creation

1 import os , sys , glob
2 from astropy . io import f i t s
3 from astropy . t a b l e import Table , Column , vstack
4 import numpy as np
5 import sqlconn
6 import random
7 import m a t p l o t l i b
8 m a t p l o t l i b . use ( ’TkAgg ’ )
9 import pylab as p l t

10 from sklearn . ensemble import RandomForestClass i f ier
11 from sklearn . e x t e r n a l s import j o b l i b
12 from scipy import i n t e r p o l a t e
13 from sklearn . e x t e r n a l s import j o b l i b
14

15 nse l = 3000 # number of negat ive ranking candia tes
16

17 # funct ion t h a t reads a number of negat ive ranking candidates equal to nse l
18 def read_negat iv i ( nse l ) :
19

20 # path
21 dataou = os . path . expandvars ( " $gw_dataou " )
22 f d i r _ n = dataou+ ’ G211117/globa l/ ’
23 c d i f f = ’ g loba l_G211117_r_a l l ’
24 # read the f i t s t a b l e
25 c a t a l o g = Table . read ( f d i r _ n+ c d i f f + ’ . f i t s ’ )
26 # I s e l e c t only negat ive ranking obj
27 ineg =np . where ( c a t a l o g [ ’ Ranking ’ ] <=0) [ 0 ]
28 #random s e l e c t i o n
29 i s e l = np . random . choice ( ineg , nse l )
30 # I c r e a t e the t a b l e with the paramaters of i n t e r e s t
31 c a t a l o g [ ’NUMBER_1 ’ , ’ search ’ , ’X_IMAGE_1 ’ , ’Y_IMAGE_1 ’ , ’ epoch ’ , ’ Ranking ’ ,

’ point ing ’ ] [ i s e l ]
32

33

34 c a t a l o g . rename_column ( ’X_IMAGE_1 ’ , ’ coox ’ )
35 c a t a l o g . rename_column ( ’Y_IMAGE_1 ’ , ’ cooy ’ )
36 c a t a l o g . rename_column ( ’ epoch ’ , ’ date_new ’ )
37 # id make p o s s i b l e to univoca l ly i d e n t i f y the candidates
38 c a t a l o g . rename_column ( ’NUMBER_1 ’ , ’ id ’ )
39

40

41 c a t a l o g [ ’ date_new ’ ]= c a t a l o g [ ’ date_new ’ ] . astype ( s t r )
42

43 # date : dd−mm−yyyy
44 f o r i in range ( len ( c a t a l o g ) ) :
45 c a t a l o g [ ’ date_new ’ ] [ i ] = c a t a l o g [ ’ date_new ’ ] [ i ] [ : 4 ] + ’− ’+\
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46 c a t a l o g [ ’ date_new ’ ] [ i ] [ 4 : 6 ] + ’− ’+ c a t a l o g [ ’ date_new ’ ] [ i ] [ 6 : ]
47

48 # per i candidat i con ranking negativo impongo un id minore di 0 in
modo t a l e da p o t r e r l i r i c o n o s c e r e subi to

49 c a t a l o g [ ’ id ’ ]= c a t a l o g [ ’ id ’ ]∗( −1)
50

51 re turn c a t a l o g [ ’ id ’ , ’ search ’ , ’ coox ’ , ’ cooy ’ , ’ date_new ’ , ’ Ranking ’ , ’
point ing ’ ] [ i s e l ]

52

53

54

55

56

57 # funct ion t h a t j o i n the t a b l e with the eyebal led candidates with the
negat ive ranking one . Two t a b l e s , one with 20% of the t o t a l candidates
and one with the 80% are the funct ion f i n a l r e s u l t .

58

59 def c r e a z i o n e _ t a b e l l e ( ) :
60

61 # I make an s q l t a b l e with a l l the type of r e a l or bogus merged in the
two macrocategories . In p a r t i c u l a r :

62 # − j o i n between : GW_classify_margherita
and candidates_G211117 .

63 # GW_classify_margherita i s the t a b l e with the eyebal led obj ,
candidates_G211117 i s the one t h a t conta ins a l l the parameters of the
ob j with score > 3 0 .

64

65 command= ’ s e l e c t REALS+SN+AGN+VAR+MOV as r e a l s ,BOGUS+BAD+LMT+BRIGHT+
MB as bogus , can . number , can . coox , can . cooy , can . pointing , can . magauto ,

can . ranking , can . date_new , can . search from GW_classify_margherita as
gwc inner j o i n candidates_G211117 as can on can . number=gwc . id ; ’

66

67 tab=sqlconn . query (command, sqlconn . conn2 )
68

69 # c r e a t i o n of the s q l t a b l e
70

71 number , coox , cooy , pointing , r e a l s , bogus , magauto , ranking , date_new , search
= [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ]

72

73 f o r t in tab :
74 number . append ( t [ ’number ’ ] )
75 coox . append ( t [ ’ coox ’ ] )
76 cooy . append ( t [ ’ cooy ’ ] )
77 point ing . append ( t [ ’ point ing ’ ] )
78 ranking . append ( t [ ’ ranking ’ ] )
79 r e a l s . append ( t [ ’ r e a l s ’ ] )
80 bogus . append ( t [ ’ bogus ’ ] )
81 magauto . append ( t [ ’ magauto ’ ] )
82 date_new . append ( t [ ’ date_new ’ ] )
83 search . append ( t [ ’ search ’ ] )
84

85 number = np . array ( number )
86 coox = np . array ( coox )
87 cooy = np . array ( cooy )
88 point ing = np . array ( point ing )
89 ranking = np . array ( ranking )
90 r e a l s = np . array ( r e a l s )
91 bogus = np . array ( bogus )
92

93

94 # id −> unique i d e n t i f i c a t o r ( id p o s i t i v e f o r the c l a s s i f i e d o b j e c t s
and negat ive f o r the ones with score <0)

95 #coox−> x coordinate of the c e n t r e of the ob j
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96 #cooy−> y coordinate of the c e n t r e of the ob j
97 # pointing−> number of the point ing where the source i s included
98 # ranking −> rankingof the ob j
99 # r e a l s −> i t i s equal to 1 i f the ob j has been c l a s s i f i e d as r e a l

otherwise i s 0
100 #bogus −> i t i s equal to 1 i f the ob j has been c l a s s i f i e d as bohus

otherwise i s 0
101 #magauto −> magnitude of the ob j
102 #date_new −> date of the observat ion
103 # search −> you f ind P i f the d i f f image i s P o s i t i v e or N i f i t ’ s

negat ive
104

105 t a b e l l a = Table ( [ number , coox , cooy , pointing , ranking , r e a l s , bogus , magauto
, date_new , search ] , names=[ ’ id ’ , ’ coox ’ , ’ cooy ’ , ’ point ing ’ , ’ Ranking ’ , ’
r e a l s ’ , ’ bogus ’ , ’ magauto ’ , ’ date_new ’ , ’ search ’ ] )

106

107

108 varim = read_negat iv i ( nse l )
109 t a b e l l a = vstack ( [ varim , t a b e l l a ] )
110

111 # I c r e a t e the t a b l e with the 80% of the t o t a l amount of ob j taken
randomly

112 i i = random . sample ( range ( 0 , len ( t a b e l l a ) ) , i n t ( len ( t a b e l l a ) ∗ . 8 ) )
113 bb= Column ( length=len ( t a b e l l a ) , dtype=bool )
114 t a b e l l a . add_column ( bb , name= ’ bb ’ )
115 t a b e l l a [ ’ bb ’ ] [ : ] = Fa l se
116 t a b e l l a [ ’ bb ’ ] [ i i ]= True
117

118

119 # c r e a t i o n of the two t a b l e s : tab20 , tab80
120 tab80= t a b e l l a [ np . where ( t a b e l l a [ ’ bb ’ ] ) ]
121 tab20= t a b e l l a [ np . where ( t a b e l l a [ ’ bb ’ ]== Fa l se ) ]
122

123 p r i n t ( tab20 )
124 p r i n t ( tab80 )
125

126 np . savez ( ’ tab . npz ’ , tab80=tab80 , tab20=tab20 )
127

128

129 # funct ion f o r the c r e a t i o n of the stamps of a p r e c i s e s i z e t h a t the user
can decide

130 def produzione_stamps ( npix ) :
131

132 # load the t a b l e s
133 npztab = np . load ( ’ tab . npz ’ )
134 tab80 = npztab [ ’ tab80 ’ ]
135 tab20 = npztab [ ’ tab20 ’ ]
136

137 # f ind the path
138 data = os . path . expandvars ( " $gw_dataou " )
139 _gwdir = data+ ’ G211117/ ’
140

141 i m g l i s t , l a b e l i s t = { } , { }
142

143 # In t h i s loop I c r e a t e the stamps ( with the s i z e i n d i c a t e d by the user
)

144 f o r t , l in zip ( [ tab80 , tab20 ] , [ ’ tab80 ’ , ’ tab20 ’ ] ) :
145 i m g l i s t [ l ] , l a b e l i s t [ l ]= [ ] , [ ]
146 f o r i in range ( len ( t ) ) :
147

148 point ing = t [ ’ point ing ’ ] [ i ]
149
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150 l i s t a = glob . glob ( _gwdir + t [ ’ date_new ’ ] [ i ]+ ’/dif f_G211117_r_ ’
+\

151 t [ ’ date_new ’ ] [ i ] . r e p l a c e ( ’− ’ , ’ ’ ) + ’∗ ’+point ing . r e p l a c e ( ’
’ , ’ ’ ) + ’ . f i t s ’ )

152 # p r i n t ( l i s t a )
153 i f len ( l i s t a ) >1:
154 p r i n t ( "ERROR: more than one f i l e " )
155

156 hdr = f i t s . open ( l i s t a [ 0 ] )
157

158 # I read from the t a b l e the coordinates of the ob j c e n t e r
159 xcentre= t [ ’ coox ’ ] [ i ]
160 ycentre= t [ ’ cooy ’ ] [ i ]
161

162 xplus= i n t ( xcentre ) + npix
163 xminus= i n t ( xcentre ) − npix
164 yplus= i n t ( ycentre ) + npix
165 yminus= i n t ( ycentre ) − npix
166

167 limy , limx = hdr [ 0 ] . data . shape
168

169 i f xminus>=0 and xplus <=limx−1 and yminus>=0 and yplus <=limy
−1:

170 i m g l i s t [ l ] . append ( hdr [ 0 ] . s e c t i o n [ yminus : yplus , xminus : xplus
] )

171 l a b e l i s t [ l ] . append ( t [ ’ r e a l s ’ ] [ i ] )
172 p r i n t ( len ( i m g l i s t [ l ] ) )
173

174 # p l t . imshow ( i m g l i s t [ l ] [ i ] , vmin=0 , vmax=200)
175 # p l t . show ( )
176

177

178 i m g l i s t [ l ] = np . array ( i m g l i s t [ l ] )
179 l a b e l i s t [ l ] = np . array ( l a b e l i s t [ l ] )
180

181 np . savez ( ’ i m g l i s t ’ , i m g l i s t 8 0 = i m g l i s t [ ’ tab80 ’ ] , i m g l i s t 2 0 = i m g l i s t [ ’ tab20
’ ] , l a b e l i s t 8 0 = l a b e l i s t [ ’ tab80 ’ ] , l a b e l i s t 2 0 = l a b e l i s t [ ’ tab20 ’ ] )

182

183

184

185 # funct ion t h a t runs the machine learn ing
186 def machine_learning ( ) :
187

188 f l i s t = np . load ( ’ i m g l i s t . npz ’ )
189 # I load obj l i s t s (made by only 0 and 1 , 1 s t a y s f o r r e a l and 0 f o r

bogus )
190 l a b e l i s t 8 0 = f l i s t [ ’ l a b e l i s t 8 0 ’ ]
191 l a b e l i s t 2 0 = f l i s t [ ’ l a b e l i s t 2 0 ’ ]
192 # I load the stamsps
193 i m g l i s t 8 0 = f l i s t [ ’ i m g l i s t 8 0 ’ ]
194

195

196 # ############## tab 80 #########
197 r i m g l i s t 8 0 = [ ]
198 f o r img in i m g l i s t 8 0 :
199 #The Random Fores t C l a s s i f i e r r e q u i r e s the stamps with a f l a t t e n e d

shape
200 r i m g l i s t 8 0 . append ( img . f l a t t e n ( ) )
201

202 r i m g l i s t 8 0 = np . array ( r i m g l i s t 8 0 )
203

204 p r i n t ( ’ Shape of the inputs f o r the machine learn ing : ’ , r i m g l i s t 8 0 .
shape , len ( l a b e l i s t 8 0 ) )
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205 # I c a l c u l a t e the dimension of the stamps without asking again to the
user

206 a = r i m g l i s t 8 0 . shape [ 1 ]
207 n= i n t ( np . s q r t ( a ) )
208 n= s t r ( n )
209 p r i n t ( ’You are using ’+n+ ’ x ’+n+ ’ stamps ’ )
210

211

212 # ############## tab 20 #########
213

214

215 i m g l i s t 2 0 = f l i s t [ ’ i m g l i s t 2 0 ’ ]
216 r i m g l i s t 2 0 = [ ]
217

218 f o r img in i m g l i s t 2 0 :
219 r i m g l i s t 2 0 . append ( img . f l a t t e n ( ) )
220

221

222 r i m g l i s t 2 0 = np . array ( r i m g l i s t 2 0 )
223

224 # I ask to the user the number of e s t i m a t o r s
225 e s t i m a t o r s=input ( ’ input n_es t imators : ’ )
226 e s t i m a t o r s= i n t ( e s t i m a t o r s )
227

228 #Run the machine learn ing
229 c l f = RandomForestClass i f ier ( n_es t imators=e s t i m a t o r s )
230 c l f _ f i t = c l f . f i t ( r i m g l i s t 8 0 , l a b e l i s t 8 0 )
231 #make the p r e d i c t i o n s
232 c l f _ p r e d i c t = c l f . p r e d i c t ( r i m g l i s t 2 0 )
233 #make the p r o b a b i l i t y
234 c l f_proba = c l f . predict_proba ( r i m g l i s t 2 0 )
235 # I save in the database the f i t
236 j o b l i b .dump( c l f , ’ c l fG211117 ’ )
237

238 p r i n t ( ’ score ’ , c l f . score ( r i m g l i s t 2 0 , l a b e l i s t 2 0 , sample_weight=None ) )
239 p r i n t ( ’ p r e d i c t i o n ’ , c l f _ p r e d i c t )
240 p r i n t ( ’ proba ’ , c l f_proba )
241 p r i n t ( ’ f i t ’ , c l f _ f i t )
242 p r i n t ( ’ f e a t u r e importance ’ , c l f . feature_importances_ )
243

244 p l t . ion ( )
245

246 # ######### HISTOGRAM ############
247

248 # histogram f o r the v i s u a l r e p r e s e n t a t i o n of r e a l and bogus
249

250 p l t . h i s t ( c l f_proba [ : , 1 ] , b ins=np . arange ( 0 , 1 , . 0 2 5 ) , edgecolor= ’ darkred ’ ,
c o l o r = ’ indianred ’ )

251 p l t . x l a b e l ( ’ Hypothesis ’ )
252 p l t . y l a b e l ( ’ Frequency ’ )
253 p l t . legend ( )
254 input ( ’ re turn to qui t ’ )
255

256 # I c a l c u l a t e the number of f a l s e p o s i t i v e and the missed d e t e c t i o n r a t e
257

258 fp ,md = [ ] , [ ]
259

260 f o r h in np . arange ( 0 , 1 . 0 1 , . 0 2 5 ) :
261 hvect = np . zeros ( len ( l a b e l i s t 2 0 ) )
262 i i = np . where ( c l f_proba [ : , 1 ] > h )
263 hvect [ i i ] = 1
264 j j =np . where ( ( hvect ==1)&( l a b e l i s t 2 0 ==0) )
265 fp . append ( len ( j j [ 0 ] ) )
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266

267 j j =np . where ( ( hvect ==0)&( l a b e l i s t 2 0 ==1) )
268 md. append ( len ( j j [ 0 ] ) )
269

270

271 fp ,md = np . array ( fp ) ,np . array (md)
272 j j =np . where ( l a b e l i s t 2 0 ==0)
273 fp = fp/ f l o a t ( len ( j j [ 0 ] ) )
274 j j =np . where ( l a b e l i s t 2 0 ==1)
275 md = md/ f l o a t ( len ( j j [ 0 ] ) )
276

277 e s t i m a t o r s= s t r ( e s t i m a t o r s )
278 np . savez ( n+ ’ x ’+n+ ’ e s t ’+es t imators , fp=fp ,md=md, c l f_proba=c l f_proba )
279

280 f o r i in range ( len ( fp ) ) :
281 p r i n t ( ’ { : . 2 f } { : . 2 f } { : . 2 f } ’ . format ( np . arange ( 0 , 1 . 0 1 , . 0 2 5 ) [ i ] ,md[ i

] , fp [ i ] ) )
282

283 # ######## PLOT MDR AND FPR ########
284

285 p l t . p l o t (md, fp , ’− ’ , c o l o r = ’ indianred ’ )
286 p l t . x l a b e l ( ’ Missed Detect ion Rate (MDR) ’ )
287 p l t . y l a b e l ( ’ Fa l se P o s i t i v e Rate ( FPR ) ’ )
288 p l t . legend ( )
289

290 input ( ’ re turn to qui t ’ )
291

292

293

294

295

296 # ####### FUNCTION CALLING ################
297

298 answ=input ( ’ ’ ’
299 Tables c r e a t i o n −−−−−−> t
300 Create the stamps −−−−−−> s
301 Run the machine learn ing −−−−−−> m
302 Cross check −−−−−−> c ’ ’ ’ )
303

304

305 i f answ== ’ t ’ :
306 read_negat iv i ( nse l )
307 c r e a z i o n e _ t a b e l l e ( )
308 n=input ( ’How many p i x e l f o r each s ide do you want f o r your ( square )

stamps ? ’ )
309 n= i n t ( n )
310 npix= i n t ( n/2)
311 p r i n t ( npix )
312 produzione_stamps ( npix )
313 machine_learning ( )
314 e l i f answ== ’ s ’ :
315 n=input ( ’How many p i x e l s f o r each s ide do you want f o r your ( square )

stamps ? ’ )
316 n= i n t ( n )
317 npix= i n t ( n/2)
318 produzione_stamps ( npix )
319 machine_learning ( )
320

321 e l i f answ== ’m’ :
322 machine_learning ( )
323

324 e l s e :
325 p r i n t ( ’ERROR: wrong value ’ )
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A.2 Script for plots creation

1 import os , sys , glob
2 from astropy . io import f i t s
3 from astropy . t a b l e import Table , Column , vstack
4 import numpy as np
5 import sqlconn
6 import random
7 import m a t p l o t l i b
8 m a t p l o t l i b . use ( ’TkAgg ’ )
9 import pylab as p l t

10 from sklearn . ensemble import RandomForestClass i f ier
11 from sklearn . e x t e r n a l s import j o b l i b
12 from scipy import i n t e r p o l a t e
13 from sklearn . e x t e r n a l s import j o b l i b
14

15 # ###### SCRIPT FOR THE CREATION OF THE PLOTS #######
16

17 # p l o t missed d e t e c t i o n r a t e and f a l s e p o s i t i v e r a t e with d i f f e r e n t stamp
s i z e s

18 def plot_mdr_fpr ( ) :
19

20 # load the value of fp and md f o r stamps with 2 px f o r each s ide
21 two= np . load ( ’ 2x2 . npz ’ )
22 fp2 = two [ ’ fp ’ ]
23 md2 = two [ ’md’ ]
24

25 # load the value of fp and md f o r stamps with 4 px f o r each s ide
26 four= np . load ( ’ 4x4 . npz ’ )
27 fp4 = four [ ’ fp ’ ]
28 md4 = four [ ’md’ ]
29

30 # load the value of fp and md f o r stamps with 10 px f o r each s ide
31 ten= np . load ( ’ 10 x10 . npz ’ )
32 fp10 = ten [ ’ fp ’ ]
33 md10 = ten [ ’md’ ]
34

35 # load the value of fp and md f o r stamps with 20 px f o r each s ide
36 twenty= np . load ( ’ 20 x20 . npz ’ )
37 fp20 = twenty [ ’ fp ’ ]
38 md20 = twenty [ ’md’ ]
39

40 # load the value of fp and md f o r stamps with 30 px f o r each s ide
41 t h i r t y = np . load ( ’ 30 x30 . npz ’ )
42 fp30 = t h i r t y [ ’ fp ’ ]
43 md30 = t h i r t y [ ’md’ ]
44

45 # load the value of fp and md f o r stamps with 40 px f o r each s ide
46 four ty= np . load ( ’ 40 x40 . npz ’ )
47 fp40 =four ty [ ’ fp ’ ]
48 md40 = four ty [ ’md’ ]
49

50 # load the value of fp and md f o r stamps with 50 px f o r each s ide
51 f i f t y = np . load ( ’ 50 x50 . npz ’ )
52 fp50 = f i f t y [ ’ fp ’ ]
53 md50 = f i f t y [ ’md’ ]
54

55 p l t . ion ( )
56 p l t . p l o t (md2, fp2 , ’− ’ , l a b e l = ’ 2x2 ’ )
57 p l t . p l o t (md4, fp4 , ’− ’ , l a b e l = ’ 4x4 ’ )
58 p l t . p l o t (md10 , fp10 , ’− ’ , l a b e l = ’ 10 x10 ’ )
59 p l t . p l o t (md20 , fp20 , ’− ’ , l a b e l = ’ 20 x20 ’ )
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60 p l t . p l o t (md30 , fp30 , ’− ’ , l a b e l = ’ 30 x30 ’ )
61 p l t . p l o t (md40 , fp40 , ’− ’ , l a b e l = ’ 40 x40 ’ )
62 p l t . p l o t (md50 , fp50 , ’− ’ , l a b e l = ’ 50 x50 ’ )
63 p l t . a x i s ( [ 0 . , . 5 , 0 . , . 5 ] )
64

65 p l t . x l a b e l ( ’ Missed Detect ion Rate (MDR) ’ )
66 p l t . y l a b e l ( ’ Fa l se P o s i t i v e Rate ( FPR ) ’ )
67 p l t . legend ( )
68

69 input ( ’ re turn to qui t ’ )
70

71 # s c r i p t f o r the c r e a t i o n of md fp p l o t with d i f f e r e n t value of
n_est imators

72 def changing_est imators ( ) :
73

74 f l i s t = np . load ( ’ i m g l i s t . npz ’ )
75 # load d i f f e r e n t values
76 c l f 1 0 0 = np . load ( ’ 20 x20est100 . npz ’ ) # load n_est =100
77 md100 = c l f 1 0 0 [ ’md’ ]
78 fp100 = c l f 1 0 0 [ ’ fp ’ ]
79 c l f 1 k = np . load ( ’ 20 x20est1000 . npz ’ ) # load n_est =1000
80 md1k = c l f 1 k [ ’md’ ]
81 fp1k = c l f 1 k [ ’ fp ’ ]
82 c l f 1 0 = np . load ( ’ 20 x20est10 . npz ’ ) # load n_est =10
83 md10 = c l f 1 0 [ ’md’ ]
84 fp10 = c l f 1 0 [ ’ fp ’ ]
85 c l f 5 0 = np . load ( ’ 20 x20est50 . npz ’ ) # load n_est =50
86 md50 = c l f 5 0 [ ’md’ ]
87 fp50 = c l f 5 0 [ ’ fp ’ ]
88

89 p l t . ion ( )
90 p l t . p l o t ( md100 , fp100 , ’− ’ , l a b e l = ’ 100 ’ )
91 p l t . p l o t (md1k , fp1k , ’− ’ , l a b e l = ’ 1000 ’ )
92 p l t . p l o t (md50 , fp50 , ’− ’ , l a b e l = ’ 50 ’ )
93 p l t . p l o t (md10 , fp10 , ’− ’ , l a b e l = ’ 10 ’ )
94 p l t . a x i s ( [ 0 . , . 5 , 0 . , . 5 ] )
95

96 p l t . x l a b e l ( ’ Missed Detect ion Rate (MDR) ’ )
97 p l t . y l a b e l ( ’ Fa l se P o s i t i v e Rate ( FPR ) ’ )
98 p l t . legend ( )
99

100

101

102

103 # ####### FUNCTION CALLING ################
104 plot_mdr_fpr ( )
105 changing_est imators ( )

A.3 Script for model evaluation

1 import os , sys , glob
2 from astropy . io import f i t s , a s c i i
3 from astropy . t a b l e import Table , Column , vstack
4 import numpy as np
5 import sqlconn
6 import random
7 import m a t p l o t l i b
8 m a t p l o t l i b . use ( ’TkAgg ’ )
9 import pylab as p l t

10 from sklearn . ensemble import RandomForestClass i f ier
11 from sklearn . e x t e r n a l s import j o b l i b
12 from scipy import i n t e r p o l a t e
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13 from sklearn . e x t e r n a l s import j o b l i b
14 import c o l l e c t i o n s
15

16 # parameters used in a l l the s c r i p t
17 npix = 10
18 s c o r e _ l i m i t = 30
19 u s e _ c l f = ’ c l fG211117 ’
20 show_plot = True
21 h l i m i t = 0 . 3 5
22

23 def produzione_stamps ( ) :
24

25 # path
26 _ f f = ’/data01/padova/PDdiff/GW170814/globa l/global_GW170814_r −60. f i t s

’
27 tab = Table . read ( _ f f , format= ’ f i t s ’ )
28

29 tab [ ’ epoch ’ ]= tab [ ’ epoch ’ ] . astype ( s t r )
30 f o r i in range ( len ( tab ) ) :
31 tab [ ’ epoch ’ ] [ i ] = tab [ ’ epoch ’ ] [ i ] [ : 4 ] + ’− ’+\
32 tab [ ’ epoch ’ ] [ i ] [ 4 : 6 ] + ’− ’+tab [ ’ epoch ’ ] [ i ] [ 6 : ]
33

34

35 data = os . path . expandvars ( " $gw_dataou " )
36 _gwdir = data+ ’GW170814/ ’
37

38 i m g l i s t = [ ]
39 # s e l e c t i o n of ob j with score >score l i m i t
40 i i = np . where ( tab [ ’ Ranking ’ ]>= s c o r e _ l i m i t ) [ 0 ]
41 f o r i in i i :
42 point ing = ( tab [ ’ point ing ’ ] [ i ] )
43 l i s t a = glob . glob ( _gwdir+tab [ ’ epoch ’ ] [ i ]+ ’/diff_GW170814_VST_r_ ’+\
44 tab [ ’ epoch ’ ] [ i ] . r e p l a c e ( ’− ’ , ’ ’ ) + ’∗ ’+point ing+ ’ . f i t s ’ )
45

46 i f len ( l i s t a ) >1: p r i n t ( "ERROR: more than one f i l e " )
47 hdr = f i t s . open ( l i s t a [ 0 ] )
48

49 # coordinates s e l e c t i o n
50 xcentre=tab [ ’X_IMAGE_1 ’ ] [ i ]
51 ycentre=tab [ ’Y_IMAGE_1 ’ ] [ i ]
52

53 #stamps c r e a t i o n
54 xplus= i n t ( xcentre ) + npix
55 xminus= i n t ( xcentre ) − npix
56 yplus= i n t ( ycentre ) + npix
57 yminus= i n t ( ycentre ) − npix
58

59 limy , limx = hdr [ 0 ] . data . shape
60

61 # check i f the ob j are in the edge
62 i f xminus>=0 and xplus <=limx−1 and yminus>=0 and yplus <=limy−1:
63 i m g l i s t . append ( hdr [ 0 ] . s e c t i o n [ yminus : yplus , xminus : xplus ] )
64

65 i m g l i s t = np . array ( i m g l i s t )
66 p r i n t ( " #### s e l e c t e d " , len ( i m g l i s t ) , ’ stamps ’ )
67 np . savez ( ’ imglistGW ’+ s t r ( s c o r e _ l i m i t ) + ’ . npz ’ , i m g l i s t = i m g l i s t )
68

69

70 def model_implementation ( ) :
71

72 # load stamps
73 f l i s t = np . load ( ’ imglistGW ’+ s t r ( s c o r e _ l i m i t ) + ’ . npz ’ )
74 i m g l i s t = f l i s t [ ’ i m g l i s t ’ ]
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75

76 _ f f = ’/data01/padova/PDdiff/GW170814/globa l/global_GW170814_r −60. f i t s
’

77 tab = Table . read ( _ f f , format= ’ f i t s ’ )
78 # can idates s e l e c t i o n by ranking value
79 i i = np . where ( tab [ ’ Ranking ’ ]>= s c o r e _ l i m i t )
80 s tab = tab [ i i ]
81

82 #images f l a t t e n e d
83 r i m g l i s t = [ ]
84 f o r img in i m g l i s t :
85 r i m g l i s t . append ( img . f l a t t e n ( ) )
86 r i m g l i s t = np . array ( r i m g l i s t )
87

88 # load c l f
89 c l f = j o b l i b . load ( u s e _ c l f )
90 # p r e d i c t i o n s
91 c l f _ p r e d i c t = c l f . p r e d i c t ( r i m g l i s t )
92 c l f_proba = c l f . predict_proba ( r i m g l i s t )
93

94 # histogram
95 i f show_plot :
96 p l t . ion ( )
97 p l t . h i s t ( c l f_proba [ : , 1 ] , b ins=np . arange ( 0 , 1 , . 0 2 5 ) , edgecolor= ’

darkred ’ , c o l o r = ’ indianred ’ )
98 p l t . x l a b e l ( ’ Hypothesis ’ )
99 p l t . y l a b e l ( ’ Frequency ’ )

100 p l t . legend ( )
101 input ( ’ re turn to qui t ’ )
102

103 s tab [ ’h ’ ] = c l f_proba [ : , 1 ]
104 s tab . wri te ( ’ c l a s s i f ’+ s t r ( s c o r e _ l i m i t ) + ’ . f i t s ’ , format= ’ f i t s ’ )
105

106

107 def cross_check ( ) :
108

109 _ f f = ’ c l a s s i f ’+ s t r ( s c o r e _ l i m i t ) + ’ . f i t s ’
110 s tab = Table . read ( _ f f , format= ’ f i t s ’ )
111 s tab . s o r t ( ’ Ranking ’ )
112 s tab . reverse ( )
113 s tab [ ’ ordine ’ ] = np . arange ( len ( s tab ) ) +1
114

115 # s e l e c t i o n on the candidas by the h value
116 i i = np . where ( s tab [ ’h ’ ] > h l i m i t )
117 htab = stab [ i i ]
118

119 # loading of the t a b l e s with the already c l a s s i f i e d o b j e c t s . I t
conta ins the l i s t of only the r e a l t r a n s i e n t s

120 f f = open ( ’ f u l l _ l i s t _ p a p e r . asc ’ )
121 r ighe = f f . r e a d l i n e s ( )
122 ras , decs = [ ] , [ ]
123 f o r r in r ighe [ 1 : ] :
124 ras . append ( f l o a t ( r . s p l i t ( ) [ 0 ] . s p l i t ( ’− ’ ) [ 0 ] ) )
125 decs . append(− f l o a t ( r . s p l i t ( ) [ 0 ] . s p l i t ( ’− ’ ) [ 1 ] ) )
126

127 n =0
128 # c r o s s check of the candidates s e l e c t e d by the RF with the ones manual

s e l e c t e d
129 f o r i in range ( len ( ras ) ) :
130 ram , decm = htab [ ’X_WORLD_1 ’ ] , htab [ ’Y_WORLD_1 ’ ]
131 #comparing the o b j e c t by the dis tance , when t h i s i s <1 a r c s e c the

o b j e c t i s the same
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132 d i s t = np . s q r t ( ( ( ras [ i ]−ram ) ∗np . cos ( decs [ i ]∗np . pi / 1 8 0 . ) ) ∗∗2+( decs [
i ]−decm ) ∗∗2)

133 imin = np . argmin ( d i s t )
134 i f d i s t [ imin ] < 1 / 3 6 0 0 . :
135 p r i n t ( htab [ ’ ordine ’ ] [ imin ] , ras [ i ] , decs [ i ] , htab [ ’h ’ ] [ imin ] )
136 n += 1
137 e l s e : p r i n t ( ’ missed ’ , ras [ i ] , decs [ i ] )
138 p r i n t ( ’ matched = { } t o t a l = { } with h > { } ( f u l l t a b l e = { } ) ’ . format ( n , len (

htab ) , h l imi t , len ( s tab ) ) )
139

140 # ###### FUNCTION CALLING #########
141

142 answ = ’ q ’
143 while answ not in ’smc ’ :
144 answ=input ( ’ ’ ’
145 Create the stamps −−−−−−> s
146 Run the machine learn ing −−−−−−> m
147 Cross check −−−−−−> c ’ ’ ’ )
148

149 i f answ== ’ s ’ : produzione_stamps ( )
150 e l i f answ== ’m’ : model_implementation ( )
151 e l i f answ== ’ c ’ : cross_check ( )
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Tables

h MD FP
0.00 0.00 0.98
0.03 0.00 0.95
0.05 0.00 0.91
0.08 0.00 0.86
0.10 0.01 0.75
0.12 0.01 0.67
0.15 0.03 0.57
0.18 0.03 0.49
0.20 0.04 0.38
0.23 0.05 0.32
0.25 0.07 0.25
0.28 0.08 0.21
0.30 0.08 0.18
0.33 0.09 0.17
0.35 0.10 0.17
0.38 0.11 0.16
0.38 0.11 0.16
0.40 0.13 0.14
0.43 0.13 0.14
0.45 0.14 0.13
0.48 0.15 0.13
0.50 0.16 0.12
0.53 0.17 0.11
0.55 0.18 0.11
0.58 0.20 0.10
0.60 0.23 0.09
0.62 0.24 0.09
0.65 0.27 0.09
0.68 0.28 0.08
0.70 0.30 0.08
0.73 0.32 0.08
0.75 0.36 0.07
0.78 0.40 0.07
0.80 0.44 0.06
0.83 0.48 0.06
0.85 0.56 0.05
0.88 0.62 0.04
0.90 0.72 0.03
0.93 0.79 0.02
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0.95 0.90 0.01
0.98 0.97 0.00
1.00 1.00 0

TABLE B.1: Values of MD, FP in function of the threshold h.

h MD FP
0.00 0.00 0.96
0.03 0.00 0.91
0.05 0.00 0.87
0.08 0.00 0.83
0.10 0.01 0.74
0.12 0.02 0.65
0.15 0.02 0.49
0.18 0.03 0.40
0.20 0.04 0.27
0.23 0.05 0.22
0.25 0.07 0.16
0.28 0.08 0.11
0.30 0.10 0.08
0.33 0.13 0.07
0.35 0.15 0.06
0.38 0.16 0.06
0.40 0.18 0.06
0.43 0.21 0.05
0.45 0.21 0.05
0.48 0.23 0.05
0.50 0.26 0.05
0.53 0.28 0.05
0.55 0.29 0.05
0.58 0.30 0.04
0.60 0.33 0.04
0.62 0.35 0.03
0.65 0.37 0.03
0.68 0.39 0.03
0.70 0.42 0.02
0.73 0.45 0.02
0.75 0.48 0.02
0.78 0.51 0.02
0.80 0.56 0.02
0.83 0.61 0.02
0.85 0.67 0.01
0.88 0.73 0.01
0.90 0.81 0.01
0.93 0.87 0.00
0.95 0.95 0.00
0.98 0.98 0.00
1.00 1.00 0.00

TABLE B.2: Magnitude limited classifier: values of MD, FP in function
of the threshold h.
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