Università degli Studi di Padova

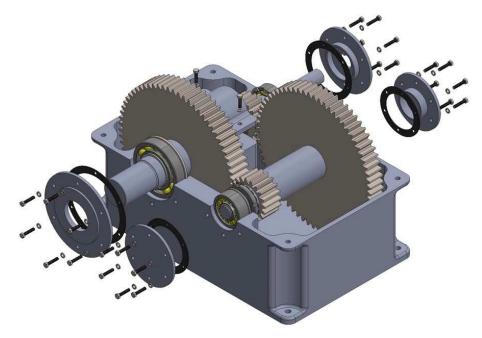
Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Meccanica

PROGETTAZIONE MECCANICA DI UN RIDUTTORE BISTADIO SECONDO ISO 6336

Tutor Universitario: Prof. Giovanni Meneghetti

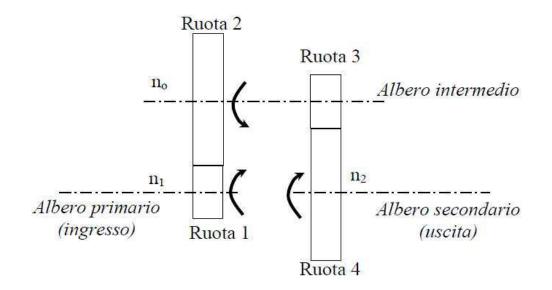
Laureando: Paolo Andrigo


Padova, 16/09/2022

1. INTRODUZIONE

Obiettivo: dimensionamento di un riduttore ad ingranaggi

Semplicità costruttiva, sicurezza in esercizio, ottimizzazione degli spazi, rendimenti elevati...

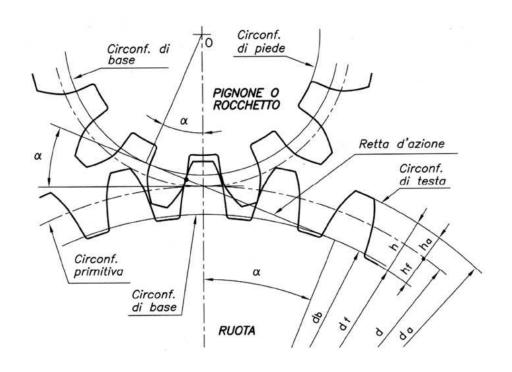

- Progettazione delle ruote dentate secondo ISO 6336
- Progettazione degli alberi del riduttore
- Scelta degli elementi di fissaggio: cuscinetti...
- Verifiche statiche, a fatica, di deformabilità
- Progettazione della scatola del riduttore
- Modellazione di ogni componente 3D

2. CALCOLO VALORI di PROGETTO

Il riduttore varia numero di giri **n** e momento torcente **M** adattandoli alle esigenze in uscita

- Fattore di servizio \mathbf{f}_s ; interasse i costante; alberi coassiali, rendimento della trasmissione $\mathbf{\eta}$
- Potenza, numero di giri, velocità angolare, coppia

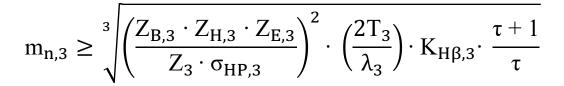
	P	n	ω	M
Alberi	[W]	[rpm]	[rad/s]	[Nm]
"1" Ingresso	22104	1433	150	147
"0" Intermedio	21229	397	41	510
"2" Uscita	20389	110	11	1170

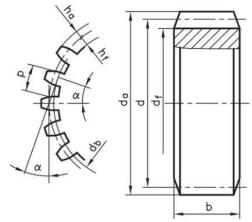

3. DIMENSIONAMENTO delle RUOTE DENTATE

Un dente rotto a flessione è potenzialmente in grado di distruggere completamente la trasmissione

- Scelta del numero di denti Z per la ruota più critica
- Materiale: acciaio da cementazione di media qualità
- Sistema di dentatura: dimensionamento modulare
- Dimensionamento ruota 3, verifica ruota dentata 1
- Normativa ISO 6336: due meccanismi di cedimento

Pitting o vaiolatura

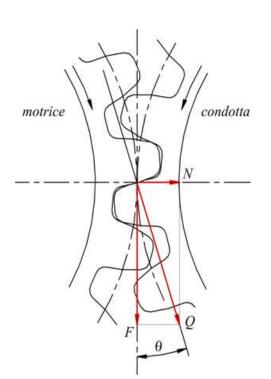

Flessione a base dente


3. DIMENSIONAMENTO delle RUOTE DENTATE

$$\sigma_{F,3} = \frac{2T_3}{Z_3 \cdot \lambda_3 \cdot m_3^3} \cdot Y_F \cdot Y_S \cdot K_{F\beta,3}$$

$$\sigma_{FP,3} = \frac{\sigma_{F,lim} \cdot Y_{NT,3} \cdot Y_{ST}}{S_{F,min}} \cdot Y_{\delta RelT} \cdot Y_{RelT} \cdot Y_{X} \cdot Y_{M}$$

$$\sigma_{HP,3} = \frac{\sigma_{H,lim}}{S_{H,min}} \cdot Z_{NT,3} \cdot Z_L \cdot Z_R \cdot Z_W \cdot Z_V$$


	Caratteristica	Simbolo	Formule di calcolo
	Numero di denti	z	z = d/m
	Modulo	m	$m = p/\pi$
	Passo	p	$p = \pi \cdot m = \pi \cdot d/z$
	Addendum	h_a	$h_a = m$
	Dedendum	h_f	$h_f = 1,25 \cdot m$
	Altezza del dente	h	$h = 2,25 \cdot m$
1	Angolo di pressione	а	α = 20°
	Diametro primitivo	d	$d = m \cdot z$
	Diametro di piede	d_f	$d_f = d - 2h_f$
	Diametro di testa	d_a	$d_a = d + 2h_a$
	Diametro di base	d_b	$d_b = d \cdot \cos \alpha$
	Rapporto d'ingranaggio	и	$u = z_2/z_1 = d_2/d_1$
1	Interasse	а	$a = d_1 + d_2$
	Larghezza dentatura	b	$b = (8 \div 16) \cdot m$

Ruota	Z	m [mm]	D _p [mm]	λ	b [mm]
1	19	4,5	85,5	8	36
2	68	4,5	306	8	36
3	19	4,5	85,5	10	45
4	68	4,5	306	10	45

4. DIMENSIONAMENTO degli ALBERI

Gli alberi devono essere in grado di resistere alle sollecitazioni agenti

Vengono assunte le seguenti lunghezze caratteristiche: $l_1 = 120 \text{ mm}$, $l_2 = 165 \text{ mm}$, x = 40 mm

- Componente assiale e radiale
- Angolo di pressione $\theta = 20^{\circ}$
- Materiale dell'albero: C40
- Albero tozzo o snello
- Coefficiente di sicurezza
- Torsione e flessione
- Diametro minimo

$$F_{t} = \frac{2 \cdot M_{t}}{D_{p}}$$

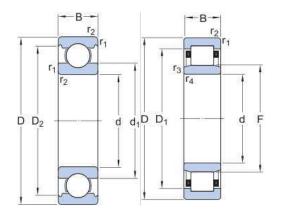
$$F_r = F_t \cdot \theta$$

$$\sigma_{adm} = \frac{\sigma_s}{v_s}; \quad \tau_{adm} = \frac{\sigma_{adm}}{\sqrt{3}}$$

$$\sigma_f = \frac{32 \cdot M_f}{\pi \cdot d^3}$$

$$\tau_{Mt} = \frac{16 \cdot M_t}{\pi \cdot d^3}$$

Diametro

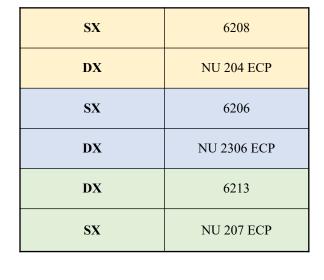

 $30 \text{ mm} \rightarrow 35 \text{ mm}$

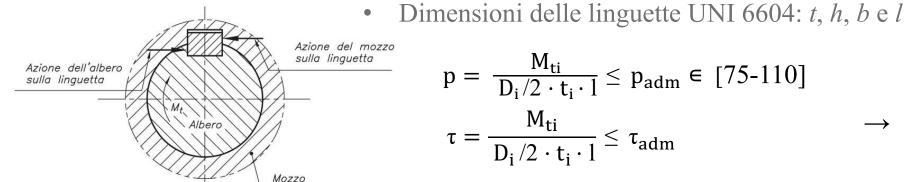
55 mm

65 mm

5. ELEMENTI di FISSAGGIO

I cuscinetti sono gli elementi su cui appoggiano ed entro cui ruotano gli alberi


Scelta dei cuscinetti: tipo, carico, durata, costo...


$$L_{10} = \frac{C^{p}}{P} = \frac{60 \cdot L_{10h} \cdot n}{10^{6}}$$

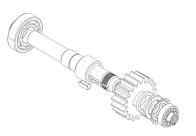
$$P = X \cdot F_{r} + Y \cdot F_{a}$$

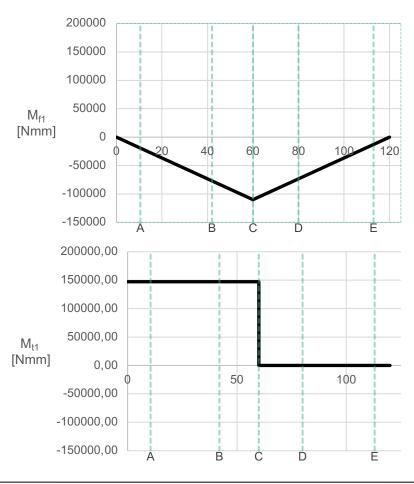
$$\rightarrow$$

Materiale scelto linguette: C40

$$p = \frac{M_{ti}}{D_i/2 \cdot t_i \cdot 1} \le p_{adm} \in [75-110]$$

$$\tau = \frac{M_{ti}}{D_i/2 \cdot t_i \cdot 1} \le \tau_{adm}$$


16.83 mm	28 mm
29.47 mm	32 mm (sx), 36 mm (dx)
78.96 mm	80 mm (2x40 mm)


6. VERIFICHE STATICHE

La geometria degli alberi è variabile: gli alberi hanno una conformazione a gradini

- Spallamenti, raggi di raccordo...
- Geometria albero di ingresso: sezioni critiche
- Studio della sollecitazione, criterio di Von Mises

Alb. 1	φ	M_{f}	$M_{\rm t}$	Wf	Wt	σf	τMt	σ id	σsn	vs
sez.	[mm]	[Nmm]	[Nmm]	[mm ³]	[mm ³]	[MPa]	[MPa]	[MPa]	[MPa]	[]
A-A	35	19244	147250	4209,24	8418,49	4,57	17,49	30,64	420	13,71
В-В	35	76975	147250	4209,24	8418,49	18,29	17,49	35,39	420	11,87
C-C	35	109965	147250	4209,24	8418,49	26,12	17,49	40,00	420	10,50
D-D	31	73310	0	2924,72	5849,45	25,07	0	25,07	420	16,76
Е-Е	20	12829	0	785,40	1570,80	16,33	0	16,33	420	25,71

7. VERIFICHE a FATICA

- Gli alberi rotanti sperimentano una tensione variabile tra un valore massimo e un valore minimo
- Limite di fatica e coefficienti di abbattimento

	R	D/d	R/d	Ktn	Sensibilità	σ R	a	q	σа	τMt	kf	k a	kı	σ a∞, -1	σ* a∞, -1	vs
sez.	[mm]	0	[]	[]	0	[Mpa]	0	0	[Mpa]	[Mpa]	[]	[]	[]	[Mpa]	[Mpa]	0
A-A	1	1,43	0,033	2,38	parziale	640	0,197	0,835	6	0	2,15	1,17	1,08	320	117,58	19,58
В-В	2	1,08	0,039	2,48	totale	590	0	1	6,11	0	2,48	1,25	1,12	295	84,76	13,87
C-C	/	/	/	/	/	/	/	/	7,31	15,63	1,95	1,26	1,12	295	106,79	14,62
D-D	3	1,27	0,055	2,02	totale	590	0	1	9,18	15,63	2,02	1,26	1,12	295	103,09	11,23
E-E	3	1,27	0,055	2,02	totale	590	0	1	34,69	15,63	2,02	1,26	1,12	295	103,09	2,97
F-F	/	/	/	/	/	/	/	/	39,47	15,63	1,95	1,26	1,12	295	106,79	2,71
G-G	2	1,08	0,039	2,48	totale	590	0	1	32,18	0	2,58	1,25	1,12	295	84,76	2,63
Н-Н	1	1,43	0,033	2	parziale	640	0,197	0,835	46,91	0	2,15	1,17	1,08	320	117,58	2,51

8. VERIFICHE di DEFORMABILITÀ

Inflessioni eccessive comportano problemi di ingranamento ed eccesivo rumore

- Integrazione equazione della linea elastica: $\frac{d^2\eta}{dx^2} = -\frac{M_f(x)}{FI}$
- Confronto frecce e rotazioni reali con valori limite: valori aggiornati da catalogo

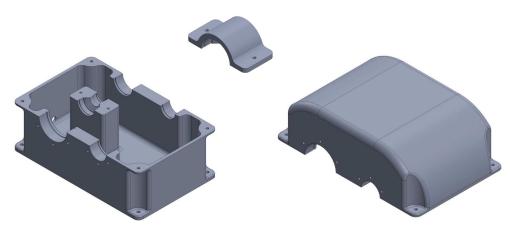
	f ₂ [mm]	f3 [mm]	φsx [rad]	ф _{dx} [rad]
Ft2	-0,0078	-0,0064	-1,46E-04	-9,72E-05
Ft3	0,023	0,0348	4,00E-04	5,73E-04
Piano XY	0,0152	0,0284	2,54E-04	4,76E-04

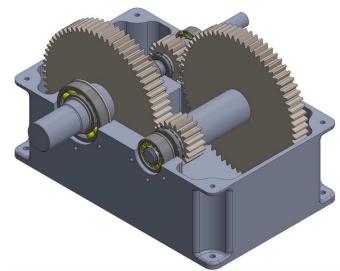
	f ₂ [mm]	f ₃ [mm]	φ _{sx} [rad]	φ _{dx} [rad]
F _{r2}	-0,0028	-0,0023	-5,31E-05	-4,54E-05
F _{r3}	-0,0084	-0,0127	-1,46E-04	-2,09E-04
Piano XZ	-0,0112	-0,015	-1,99E-04	-2,44E-04

f ₁ [mm]	φsx [rad]	фах [rad]
0,0033	6,51E-04	6,51E-04
< 0,04	< 2,91E-03	< 8,73E-04
f ₂ / f ₃ [mm]	φsx [rad]	ф _{dx} [rad]
0,019/0,032	3,23E-04	5,35E-04
< 0,1	< 2,91E-03	< 5,82E-04
f ₁ [mm]	φsx [rad]	фах [rad]
0,0017	2,11E-04	2,11E-04
< 0,047	< 2,91E-03	< 1,161E-03

$$\mathbf{f}(\mathbf{x}) = \frac{F}{6EJ_{eq}} \cdot \frac{a^2b^2}{l} \cdot \left(2\frac{x}{a} + \frac{x}{b} - \frac{x^3}{a^2b}\right)$$

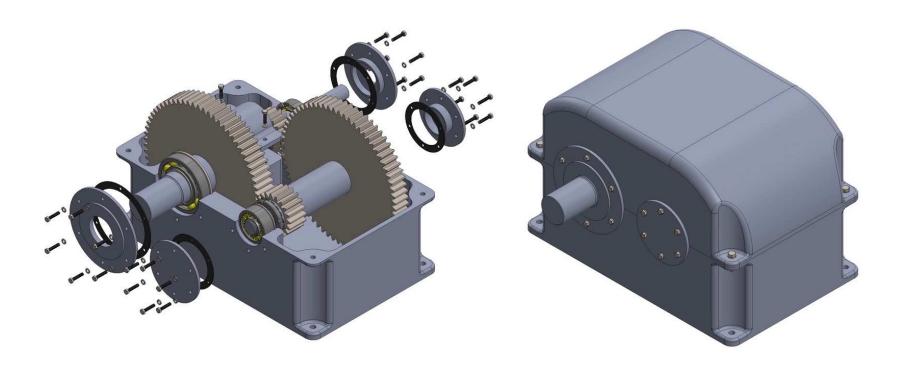
$$\mathbf{f}(\mathbf{x}) = \frac{F}{6EJ_{eq}} \cdot \frac{a^2b^2}{l} \cdot \left(2\frac{x}{a} + \frac{x}{b} - \frac{x^3}{a^2b}\right)$$
$$\mathbf{f}(\mathbf{x}) = \frac{F}{6EJ_{eq}} \cdot \frac{a^2b^2}{l} \cdot \left(2 \cdot \frac{x'}{b} + \frac{x'}{a} - \frac{x'^3}{ab^2}\right)$$

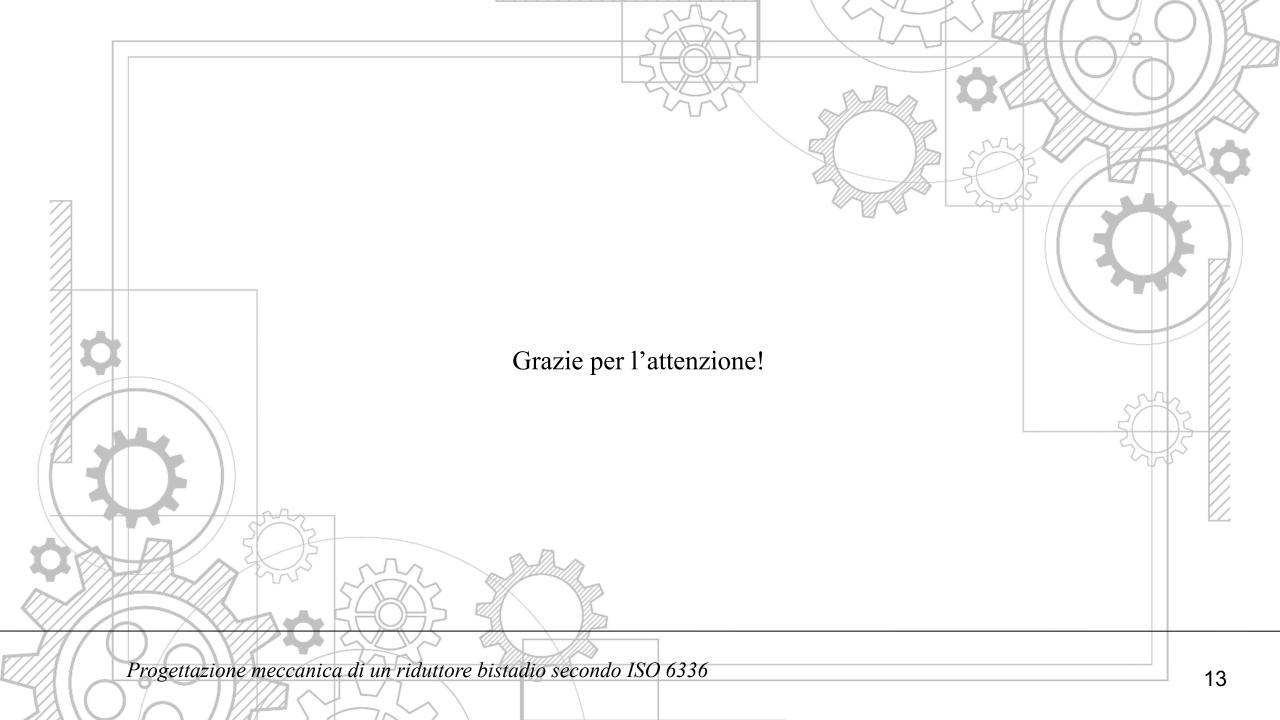

$$\phi_{sx}(\mathbf{x}) = +\frac{F}{6EJ_{eq}} \cdot \frac{b \cdot (1^2 - b^2)}{l}$$


$$\phi_{dx}(\mathbf{x}) = -\frac{F}{6EJ_{eq}} \cdot \frac{a \cdot (1^2 - a^2)}{l}$$

$$\phi_{\mathbf{dx}}(\mathbf{x}) = -\frac{F}{6EJ_{\mathbf{eq}}} \cdot \frac{\mathbf{a} \cdot (1^2 - \mathbf{a}^2)}{l}$$

9. CONCLUSIONI


- Modellazione di ogni componente: alberi, coperchi, base...
- Esatto posizionamento degli alberi
- Riduzione degli ingombri
- Smontaggio e riparazioni semplici
- Funzione di supporto



9. CONCLUSIONI

- Elementi di tenuta
- Elementi di fissaggio

