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ABSTRACT

Abstract

Cataract, the clouding of the crystalline lens that focuses the light entering the
eye onto the retina, is one of the most serious eye disease leading to blindness.
Early detection and treatment can reduce the rate of complications in cataract
patients. This is especially relevant in developing countries where access to
healthcare is poor and the lack of eye specialist makes this diagnosis really
hard.

In this context D-EYE emerges as a smartphone-based ophthalmoscope aims
to be efficiently used both by ophthalmologists in clinics, for large screening or
in rural areas by not medical personnel. The strength of this device are the
possibility to automatically perform diagnosis and the capability of recording
and transmitting high-definition images and videos of the fundus oculi.

In order to extend the possibilities concerning D-EYE, this project focuses on
the development of an algorithm able to automatically detect cataract through
retinal images. Several recent studies in literature suggest to use convolutional
neural network as a possible solution to this task. For this reason the proposed
algorithm is based on MATLAB (The Mathworks Inc., Natick, MA, USA) and
in particular a custom convolutional neural network has been implemented using
"Deep Learning Toolbox". After an iterative process of refining where different
strategies were tested to achieve the best performances, finally the CNN obtains
promising results. In terms of classification percentages the leading network
successfully classifies 95.9% of the fundus images analysed.

The following part of this thesis is organized as follow. Chapter 1 introduces
eye anatomy with particular regard to crystalline lens and the characteristics
of the target disease: cataract. Chapter 2 describes different ophthalmological
instruments related to cataract diagnosis including D-EYE. Chapter 3 presents
an overview of deep learning and convolutional neural networks. Chapter 4
describes in detail the methods utilized. Chapter 5 regards findings and some
discussions about the values achieved. The conclusion of the thesis is given in
chapter 6.



1 INTRODUCTION AND BACKGROUND

1. Introduction and background

In modern society everyone spend a consistent part of his daytime in looking at
some electronic device, either for work, for communicate or just for fun. For this
reason the demand on using eyes is growing more and more. Eye protection and
in general eye research become increasingly important for all the population.

Cataract, diabetic retinopathy, conjunctivitis, glaucoma are some of the
most common eye diseases. According to the WHO, cataract is one of the
leading causes of visual impairment worldwide and one of the main causes of
blindness. The NEI (National Eye Institute), one of 27 institutes and centers
of the US National Institutes of Health, affirms that by 2050, the number of
people in the U.S. with cataract is expected to reach up to about 50 million.
Muller-Breitenkamp et al. present some other forecasts with an estimation of 40
million of people who will suffer from cataract in 5 years [1]. In low and middle
income countries and regions, these figures are even higher because of lower in-
vestment in health. Besides, the longer a patient has an untreated cataract, the
more severe is the vision impairment. Although it is well known that more early
diagnosis and treatment can reduce the suffering of cataract patients and pre-
vent visual impairment from turning into blindness, there is still a lack of timely
treatment in less developed areas because of deficient skilled opathalmologists
and poor eye care services. In a recent article [2] the authors try to estimate
regional and global cataract prevalence, its prevalence in different age groups,
and the determinants of heterogeneity. For this reason they use international
databases such as PubMed, Web of Science, Scopus, Embase, and other sources
of information to conduct a systematic search for all articles concerning the
prevalence of age-related cataract and its types in different age groups. Of the
9922 identified articles, 45 studies with a sample size of 161947 were included
in the analysis, and most of them were from the Office for the Western Pacific
Region. At the end of this paper the conclusion reveals that from the public
health point of view, cataract is still a global challenge, especially in Western
Pacific countries. Despite the lack of inter-gender differences, cataract preva-
lence increases with age, especially after the age of 60 years. Knowledge about
cataract prevalence can support health-care planners in planning and prioritiz-
ing resource allocation.

1.1. Eye anatomy

To understand the diseases and conditions that can affect the eye, it helps to un-
derstand basic eye anatomy. The human eye (figure 1) measures approximately
22 to 27 mm in anteroposterior diameter and 69 to 85 mm in circumference. The
human eyeball consists of three primary layers, with each of them being sub-
dividable. The three primary layers and their respective subdivisions include:
(1) the outermost supporting layer of the eye, which consists of clear cornea,
opaque sclera, and their zone of interdigitation, designated as the limbus; (2)
the middle uveal layer of the eye, constituting the central vascular layer of the
globe, which encompasses the iris, ciliary body, and choroid; and (3) the interior
layer of the eye, commonly designated as the retina [3].
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Figure 1. Panel A, Cross section of the eye. Panel B, Sagittal section of the eye in
orbit.

Here the eye will be presented starting from the outside, going in through
the front and working to the back. The eye sits in a protective bony socket
called the orbit. Six extraocular muscles in the orbit are attached to the eye.
These muscles move the eye up and down and side to side, and rotate the eye.
The extraocular muscles are attached to the white part of the eye, called sclera.
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This is a strong layer of tissue that covers nearly the entire surface of the eyeball.
The surface of the eye and the inner surface of the eyelids are covered with a
clear membrane called conjunctiva. Tears lubricate the eye and are made up
of three layers. These three layers together are called the tear film. The eye’s
lacrimal gland sits under the outside edge of the eyebrow (away from the nose)
in the orbit. This gland produces the watery part of the tears. The meibomian
gland makes the oil that becomes another part of the tear film. Tears drain
from the eye through the tear duct.

Light is focused into the eye through the clear, dome-shaped front portion
of the eye called cornea. Behind the cornea is a fluid-filled space called anterior
chamber. The fluid is called aqueous humor and it is mainly made of water with
the presence of hyaluronic acid. The eye is always producing aqueous humor. To
maintain a constant eye pressure, aqueous humor also drains from the eye in an
area called the drainage angle. Behind the anterior chamber is the eye’s iris (the
colored part of the eye) and the dark hole in the middle called pupil. Muscles in
the iris dilate or constrict the pupil to control the amount of light reaching the
back of the eye. Directly behind the pupil sits the lens. The lens focuses light
toward the back of the eye. The lens changes shape to help the eye focus on
objects up close. Small fibers called zonules are attached to the capsule holding
the lens, suspending it from the eye wall. The lens is surrounded by the lens
capsule, which is left in place when the lens is removed during cataract surgery.
A replacement intraocular lens goes inside the capsule, where the natural lens
was. The vitreous cavity lies between the lens and the back of the eye. A
jellylike substance called vitreous humor fills the cavity, nourishing the inside of
the eye and helping the eye hold its shape.

Light that is focused into the eye by the cornea and lens passes through
the vitreous onto the retina — the light-sensitive tissue lining the back of the
eye. A tiny but very specialized area of the retina, called macula, is responsible
for giving detailed, central vision. The other part of the retina, the peripheral
retina, provides with peripheral (side) vision. The retina has special cells called
photoreceptors. These cells change light into energy that is transmitted to the
brain. There are two types of photoreceptors: rods and cones. Rods perceive
black and white, and enable night vision. Cones perceive color, and provide
central (detail) vision. The retina sends light as electrical impulses through
the optic nerve to the brain. The optic nerve is made up of millions of nerve
fibers that transmit these impulses to the visual cortex — the part of the brain
responsible for the sight.

1.1.1. Retina

When an ophthalmologist uses an ophthalmoscope to look into the eye, he sees
the following view of the retina (figure 2). In the center of the retina is the
optic nerve, a circular to oval white area measuring about 2 x 1.5 mm across.
From the center of the optic nerve radiate the major blood vessels of the retina.
Approximately 17 degrees (4.5-5 mm), or two and half disc diameters to the left
of the disc, can be seen the slightly oval-shaped, blood vessel-free reddish spot,
the fovea, which is at the center of the macula.

A circular field of approximately 6 mm around the fovea is considered the
central retina while, beyond this, is peripheral retina stretching to the ora ser-
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Human retina

Figure 2. A view of the retina seen through an ophthalmoscope.

rata, 21 mm from the center of the retina (fovea). The total retina is a circular
disc of diameter between 30 and 40 mm. The retina is approximately 0.5 mm
thick and lines the back of the eye. The optic nerve contains the ganglion
cell axons running to the brain and, additionally, incoming blood vessels that
open into the retina to vascularize the retinal layers and neurons (figure 3).
A radial section of a portion of the retina reveals that the ganglion cells (the
output neurons of the retina) lie innermost in the retina closest to the lens and
front of the eye, and the photosensors (the rods and cones) lie outermost in the
retina against the pigment epithelium and choroid. Light must, therefore, travel
through the thickness of the retina before striking and activating the rods and
cones (figure 3). Subsequently the absorbtion of photons by the visual pigment
of the photoreceptors is translated into first a biochemical message and then an
electrical message that can stimulate all the succeeding neurons of the retina.
The retinal message concerning the photic input and some preliminary organi-
zation of the visual image into several forms of sensation are transmitted to the
brain from the spiking discharge pattern of the ganglion cells.

Choroid

Ciliary body

Figure 3. A drawing of a section through the human eye with a schematic enlargement
of the retina.

11



1 INTRODUCTION AND BACKGROUND

A simplistic wiring diagram of the retina emphasizes only the sensory pho-
toreceptors and the ganglion cells with a few interneurons connecting the two
cell types such as seen in figure 4.
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Figure 4. Simple diagram of the organization of the retina.

When an anatomist takes a vertical section of the retina and processes it
for microscopic examination it becomes obvious that the retina is much more
complex and contains many more nerve cell types than the simplistic scheme
(above) had indicated. It is immediately obvious that there are many interneu-
rons packed into the central part of the section of retina intervening between
the photoreceptors and the ganglion cells.

All vertebrate retinas are composed of three layers of nerve cell bodies and
two layers of synapses. The outer nuclear layer contains cell bodies of the rods
and cones, the inner nuclear layer contains cell bodies of the bipolar, horizontal
and amacrine cells and the ganglion cell layer contains cell bodies of ganglion
cells and displaced amacrine cells. Dividing these nerve cell layers are two
neuropils where synaptic contacts occur.

The first area of neuropil is the outer plexiform layer (OPL) where connec-
tions between rod and cones, and vertically running bipolar cells and horizon-
tally oriented horizontal cells occur.

The second neuropil of the retina, is the inner plexiform layer (IPL), and
it functions as a relay station for the vertical-information-carrying nerve cells,
the bipolar cells, to connect to ganglion cells. In addition, different varieties of
horizontally- and vertically-directed amacrine cells, interact in further networks
to influence and integrate the ganglion cell signals. It is at the culmination of all
this neural processing in the IPL that the message concerning the visual image
is transmitted through ganglion cells to the brain along the optic nerve [4].

1.1.2. Lens anaotmy

Going deeper in the anatomy of the lenses and in their transparency is useful
to better understand the pathophysiology of their related diseases. The lens is
a transparent structure that is devoid of any blood supply. Anteriorly, the lens

12
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surface is covered by a monolayer of epithelial cells. In addition to maintain-
ing lens metabolic activity, epithelial cells replicate to produce daughter cells,
which migrate and differentiate into fiber cells. Lens fiber cells make up greater
than 95% of the lens and are stretched out to form compact, concentric layers
(“shells”), thereby reducing intercellular space (figure 5). Superficial lens fibers
are nucleated and are metabolically active while deeper fibers, which make up
most of the lens, are organelle-free with minimal metabolic activity. Interiorly,
fiber cells have a high expression of soluble crystallin proteins but are devoid
of nuclei, mitochondria, endoplasm reticulum, ribosomes, and other organelles.
Lens crystallins make up almost 90% of proteins in the mature lens. In humans,
the non-nucleated human lens fiber cells consist of a-crystallins, S-crystallins
and v-crystallins.

Epithelium

Anterior
Capsule

7
Equator =

Nucletis T:DSIEHDI
apsule
Sutures ped

Figure 5. Schematic presentation of the cross-sectional view of mammal.

As said before, lens is essential for focusing light onto the retina and it can
perform this function due to its transparent and dioptric properties. Trans-
parency of the lens depends on avascularity, the paucity of organelles, narrow
inter-fiber spaces, and regular organization of cells and proteins. At the cel-
lular level, there is a limited light-scattering by organelles due to their limited
presence in the lens. Moreover, organelles are located away from the light path,
exiled to the equator in the fibers from the central epithelium, thereby reducing
light scattering in the lens. Transparency is also achieved by the short-range
spatial order of proteins. In fiber cells, crystallins are densely packed in a
short-range order of about 250-400 mg/mL. The small protein size (<10 nm
diameter), together with the close packing at high concentration, renders their
wavelength less than that of light. Furthermore, dense packing of protein ag-
gregates reduces fluctuations of protein density and reduces the refractive index
below wavelength of light. Protein crystallization and precipitation are further
deterred through a specialized mixture of crystallin protein forms («, 8 and 7
form), which confer superior solubility and native protein conformations in the
lens. In addition to their structural function within the lens, by increasing the
refractive index, - and y-crystallins exhibit high solubility and thermodynamic
stability to prevent scattering of light. The a-crystallins serve as chaperones
by partially binding to denatured proteins within the lens cells to form high-
molecular-weight aggregates that maintain protein solubility and transparency.

In the cortex of the lens, transparency is enhanced by a high spatial order
of fiber architecture with narrow intercellular spaces, which then compensates
for light-scattering due to refractive index differences between membranes and
cytoplasm. In the nucleus, high spatial order is not required due to minimal
light scattering and negligible differences in the refractive index between fiber

13
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membranes and cytoplasm. The cornea traps light with wavelength below 310
nm. Interestingly, the mammalian lens possesses small-molecular-weight UV fil-
ters such as tryptophan metabolites that remove UV radiation between 300-400
nm [5].

1.2. Cataract

A cataract is a clouding of the natural intraocular crystalline lens that focuses
the light entering the eye onto the retina. This cloudiness can cause a decrease
in vision and may lead to eventual blindness if left untreated. As new lens
fibres continue to be laid down in the crystalline lens, and existing ones are not
replaced, the lens is unusual in being one of the few structures of the body that
continues to grow during life. The transparency of the lens is maintained by
many interdependent factors that are responsible for its optical homogeneity,
including its microscopic structure and chemical constituents. With ageing,
there is a gradual accumulation of yellow-brown pigment within the lens, which
reduces light transmission. There are also structural changes to the lens fibres,
which result in disruption of the regular architecture and arrangement of the
fibres that are necessary to maintain optical clarity [6]. Cataracts often develop
slowly and painlessly, so vision and lifestyle can be affected without a person
realizing it. In particular vision meets a gradual decline,F which cannot be
corrected with glasses. As there are a wide variety of cataract types, there
is a large spectrum of visual symptoms associated with cataractous changes.
Common complaints include blurry vision, difficulty reading in dim light, poor
vision at night, glare and halos around lights, and occasionally double vision.
Other signs of cataracts include frequent changes in the prescription of glasses,
loss of contrast sensitivity, loss of ability to discern colors and a new ability to
read without reading glasses in patients over 55 (the so called "second sight"
phenomenon).

1.2.1. Risk factors

Taking into account risk factors, the ones associated with cataract formation
vary with socioeconomic and geographical differences. In the developing world a
multitude of factors, such as malnutrition, acute dehydrating diseases at young
age, exposure to excessive ultraviolet rays, smoking and steroid use seem to
be important. In many developing countries cataracts are common in young
adults, frequently associated with atopic disorders and their treatment as well
as with diabetes or elevate blood sugar. Other causes of cataract include trauma
in a variety of forms (direct penetration, contusion, radiation, electrical, or
metabolic) and congenital disorders.

1.2.2. Cataract types

There are several types of cataract. They can be divided mainly based on causes,
symptoms or anatomical regions where they occur. Since, as said before, ageing

14
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is one of the most relevant causes for cataract the description will start from the
types of age-related cataracts: nuclear sclerotic, cortical, and posterior subcap-
sular. As a person ages, any one type, or a combination of any of these three
types, can develop over time.

Nuclear sclerotic cataract (figure 6) is the most common type of age-related
cataract, caused primarily by the hardening and yellowing of the lens over time.
"Nuclear" refers to the gradual clouding of the central portion of the lens, called
the nucleus; "sclerotic" refers to the hardening, or sclerosis, of the lens nu-
cleus. As this type of cataract progresses, it changes the eye’s ability to focus,
and close-up vision (for reading or other types of close work) may temporarily
improve. This symptom is referred to as "second sight," but the vision im-
provement it produces is not permanent. A nuclear sclerotic cataract progresses
slowly and may require many years of gradual development before it begins to
affect vision.

Figure 6. Eye affected by nuclear sclerotic cataract.

Cortical cataracts: "cortical" refers to white opacities, or cloudy areas,
that develop in the lens cortex, which is the peripheral (outside) edge of the
lens. Changes in the water content of the lens fibers create clefts, or fissures,
that look like the spokes of a wheel pointing from the outside edge of the lens
in toward the center. These fissures can cause the light that enters the eye to
scatter, creating problems with blurred vision, glare, contrast, and depth per-
ception. People with diabetes are at risk for developing cortical cataracts.
Posterior subcapsular cataracts begins as a small opaque or cloudy area
on the "posterior," or back surface of the lens. It is called "subcapsular" be-
cause it forms below the lens capsule, which is a small "sac", or membrane,
that encloses the lens and holds it in place. Subcapsular cataracts can interfere
with reading and create "halo" effects and glare around lights. People who use
steroids, or have diabetes, extreme nearsightedness, and/or retinitis pigmentosa
may develop this type of cataract. Subcapsular cataracts can develop rapidly
and symptoms can become noticeable within months.

Besides these age-related types it is possible to meet, for example, congenital
cataracts, traumatic cataracts, secondary cataracts and radiation cataracts.

15
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Congenital ones are cataracts you are born with or that form when you are
a child. Some are linked to your genes, and others are due to an illness, like
rubella, that your mother had during pregnancy. When they are small or out-
side the center of the lens, they may not need treatment. But when a baby is
born with one that blocks vision, a doctor needs to remove it because it can
stop the eye from learning to see.

Many kinds of injuries can lead to a cataract. You can get one if you are hit in
the eye by a ball or get hurt from a burn, chemical, or splinter. In these cases
physicians talk about traumatic cataracts. The disease could come on soon
after the injury or not show up until years later.

When another condition or a medical treatment leads to a cataract, doctors call
it secondary. Diabetes, taking steroids (like prednisone), and even cataract
surgery are possible causes. When you get one after cataract surgery, it is called
a posterior capsule opacification (PCO). Doctors can treat it with a quick pro-
cedure called YAG laser capsulotomy.

UV rays from the sun can be a significant cause of cataracts. People who spend
a lot of time outside, or who have received radiation treatment for cancer, could
develop cataracts as a result.

Furthermore some other types of cataract exist and they are categorized accord-
ing to the particular shape of the disease or if there are present some peculiar
signs. This category includes: lamellar or zonular cataracts, christmas tree
cataracts, brunescent cataracts and diabetic snowflake cataracts. In order, the
firs ones typically shows up in younger children and in both eyes. The genes
that cause them are passed from parent to child. They are so called because
form fine white dots in the middle of the lens and may take on a Y shape (figure
7). Over time, the whole center of the lens may turn white.

Figure 7. Eye affected by lamellar/zonular cataract.

Christmas tree or polychromatic cataracts, they form shiny, colored
crystals in your lens (figure 8). They are most common in people who have a
condition called myotonic dystrophy.

If you do not treat a nuclear cataract, it turns very hard and brown. When

that happens, it is called brunescent. This kind of cataract makes it hard for
you to tell colors apart, especially blues and purples. Surgery to remove it is
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Figure 8. Eye affected by christmas tree/polychromatic cataract.

harder, longer, and riskier than when treated earlier on.

Finally diabetic snowflake is a rare type of cataract that can happen if you
have diabetes. It gets worse quickly and forms a gray-white pattern that looks
like a snowflake (figure 9).

Figure 9. Eye affected by diabetic snowflake cataract.

1.2.3. Surgery

Even if cataract surgery is one of the most common surgical procedures per-
formed around the world and has a very high success rate, sometimes no med-
ical treatment has been show to be effective in the treatment or prevention of
cataracts, although this is an active area of research. To slow the development
of cataracts it is generally recommended that patients eat a balanced diet, pre-
vent excessive exposure to UV radiation by using good quality UV blocking
sunglasses, avoiding injuries by using protective eyewear, and if diabetic closely
control blood sugar levels. Other approaches to temporarily improve visual func-
tion include careful refraction to get the best-corrected vision, pharmacological
dilation, increased lighting and the use of magnifiers for near work.

In other cases cataract surgery is recommended and sometimes necessary.
For example, doctors may recommend cataract surgery if a cataract makes it
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difficult to examine the back of the eye, making hard to monitor or treat other
eye problems, such as age-related macular degeneration or diabetic retinopathy.
Besides, if cataract starts to affect vision, compromising the patient level of
independence, then cataract surgery is necessary to restore the normal situation.

The most common type of cataract surgery in the United States utilizes
ultrasound energy to break the cataract into particles small enough to aspi-
rate through a handpiece. This technique is referred to as phacoemulsification.
Other techniques include manual extracapsular cataract extraction (ECCE) in
which the entire nucleus of the cataract is removed from the eye in one piece
after extracting it from the capsular bag. While ECCE traditionally involved
a large incision that required multiple sutures, a newer techinique known by
many names (such as manual small incision cataract surgery or small incision
ECCE) allows for manual extraction without the need for any sutures. The goal
in modern cataract surgery is not only the removal of the cataract, but also the
replacement of the cataract with an intraocular lens (IOL). The IOL is typically
placed during the cataract surgery, and may be placed in the capsular bag as a
posterior chamber lens (PCIOL), in the ciliary sulcus, as a sulcus lens, or in the
anterior chamber anterior to the iris as an anterior chamber lens (ACIOL). There
are multiple types of IOLs that may be used in modern cataract surgery, in-
cluding monofocal, multifocal, accomodative, and astigmatism-correcting lenses.
The goal of all IOLs is to improve vision and limit dependency upon spectacles
or contact lenses. Recently, the femtosecond laser, familiar to the refractive
ophthalmologist for its role in LASIK, INTACS, and corneal transplantation,
has been adapted to assist in cataract surgery. This procedure still relies upon
the cataract surgeon to remove lens material in a manner similar to phacoemul-
sification, but it replaces several manual steps of the procedure with a more
automated laser mechanism.

1.2.4. Diagnosis
To diagnose cataract several tests can be conducted, including:

e Visual acuity test. A visual acuity test uses an eye chart to measure
how well a person can read a series of letters. The eyes are tested one at
a time, while the other eye is covered. Using a chart or a viewing device
with progressively smaller letters, the eye doctor determines if the subject
has 20/20 vision or if the vision shows signs of impairment.

e Slit-lamp examination. A slit lamp allows the eye doctor to see the
structures at the front of the eye under magnification. The microscope is
called a slit lamp because it uses an intense line of light, a slit, to illuminate
cornea, iris, lens, and the space between iris and cornea. The slit allows
the doctor to view these structures in small sections, which makes it easier
to detect any tiny abnormalities.

¢ Retinal exam. To prepare for a retinal exam, the eye doctor usually
puts drops in the eyes to open pupils wide (dilate). This makes it easier
to examine the back of the eyes (retina). Using a slit lamp or a special
device called ophthalmoscope, the eye doctor can examine the lens for
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signs of a cataract. These devices will be described more in details in the
following chapter.
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2 DIAGNOSTIC TOOLS FOR OPHTHALMOLOGY

2. Diagnostic tools for ophthalmology

In 1999, the World Health Organization (WHO) launched an initiative called
Vision 2020: The right to sight [7]. The objective of the initiative is to elimi-
nate avoidable causes of blindness around the world and prevent the projected
increase of avoidable visual impairment cases worldwide. Since then, more than
90 nongovernmental organizations, agencies, institutions, and corporations have
pledged their support of this initiative. If successful, this would reduce the cases
of blindness from 76 million to below 25 million. The program is based on sev-
eral core principles: human resource development, infrastructure and technology
development, disease control, advocacy, and collaboration among stakeholders
in eye health [8].

Lot of different diseases can affect eye and/or visual system, form the most
common and well-studied ones, such as glaucoma or macular degeneration to
the ones rare or even still unknown, for example Bietti’s Crystalline Dystrophy,
a rare autosomal recessive ocular disease that involves yellow-white crystalline
lipid deposits in the retina and sometimes cornea.

All these pathologies affect specific anatomical parts of the visual system
and for this reason physicians have to use different tools or tests in order to
perform a correct diagnosis. It is not difficult to imagine how wide could be
the area regarding ophthalmological instrumentation. Since the main topics of
this thesis are cataract and fundus images, the following paragraphs will present
diagnostic tools regarding these subjects.

2.1. Slit lamp

Today the slit lamp (figure 10) is the ophthalmologist’s most frequently used and
most universally applicable examination instrument. The most important field
of application is the examination of the anterior segment of the eye including the
crystalline lens and the anterior vitreous body. Supplementary optics such as
contact lenses and additional lenses permit observation of the posterior segments
and the iridocorneal angle that are not visible in the direct optical path. A
number of accessories have been developed for slit lamps extending their range
of application from pure observation to measurement, such as for measuring the
intraocular pressure [9].
The standard silt lamp is comprised of three elements:

e Slit illumination system. It is intended to produce a slit image that is
as bright as possible, at a defined distance from the instrument with its
length, width, and position being variable.

e Stereomicroscope. Its aim is to provide optimum stereoscopic observa-
tion with selectable magnification. The size of the field of view and the
depth of field are expected to be as large as possible, and there should be
enough space in front of the microscope for manipulation on the eye.

e Mechanical system. It connects the microscope to the illumination
system and allowing for positioning of the instrument.
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Figure 10. Example of a modern silt lamp.

The silt lamp is a multi-purpose instrument and it enables the user to inspect
individual eye segments in quick succession to obtain a general impression of the
eye and make a diagnosis. There are several methods of examination that can
be performed with a silt lamp. It is possible to refer each of them to a specific
illumination technique. In particular direct focal illumination, which is the most
important type of illumination of this instrument, is the usual technique used
to detect cataract.

2.1.1. Direct focal illumination

Direct focal illumination, also know as observation with an optical section, is
the most frequently applied method of examination with the slit lamp. With
this method, the axes of illuminating and viewing path intersect in the area of
the anterior eye media to be examined (figure 11).

Light source

Stereomicroscope

\_

Figure 11. Working principle of a silt lamp in direct focal illumination setting.

The angle between illuminating and viewing path should be as large as possi-
ble (up to 90°), whereas the slit length should be kept small to minimise dazzling
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the patient. With a narrow slit (about 0.1 mm to 0.2 mm) and a sufficiently
small angular aperture, the illuminating beam takes the form of two knife blades
placed edge to edge as shown in figure 12. Scattered light appears only in this
"optical section". The intensity of scattered light depends on the object struc-
tures and increases with increasing slit brightness and the higher proportion of
short-wave light obtained by an increased colour temperature of the light source.

Figure 12. Silt lamp examination. Lens under direct focal illumination.

In conjunction with the stereomicroscope an optical section allows very pre-
cise depth information providing precise data of the shape of interfaces of trans-
parent media. With a narrow slit and clear media, the images of slit and object
appear sharply focused at the same time. Slit width and magnification may be
varied depending on the object to be examined. With this method, brilliant
optical section images can be obtained from the cornea through to the rear face
of the crystalline lens.

With a narrow slit, the depth and position of different objects (e.g. the
penetration depth of foreign bodies, shape of the lens etc.) can be resolved
more easily. With a wide slit their extension and shape are visible more clearly
(e.g. depth extension of injuries). It is therefore useful to vary the slit width
during the examination.

The crystalline lens is particularly suited for viewing via an optical section
where the discontinuity zones can be made visible with a narrow slit. For
examination of the anterior segments of the vitreous body it is advisable to use
the smallest possible slit length to avoid dazzling of both patient and examiner.
In these examinations, slit brightness should be high.

The main applications of this technique can be summarized in the following
items [9]:

e Illumination methods for features that stood out in diffuse illumination
but could not be observed in detail; particularly suitable for the assessment
of scars, nerves, vessels, etc.

e Observation by optical section is also of great importance for the deter-
mination of the stabilisation axis of toric contact lenses (typically used to
correct astigmatism).

e Optical sections through the crystalline lens are also particularly good.
Capsule, cortex, lens star and cataracts can be observed without difficulty.
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2.2. Ophthalmoscope

The ophthalmoscope is considered to have been invented in 1851 by the Ger-
man physiologist Hermann von Helmholtz, though it is sometimes credited to
English mathematician and inventor Charles Babbage, who in 1847 developed
an instrument thought to resemble the ophthalmoscope. This important instru-
ment became a model for later forms of endoscopy. The device consists of a
strong light that can be directed into the eye by a small mirror or prism. The
light reflects off the retina and back through a small hole in the ophthalmo-
scope, through which the examiner sees a nonstereoscopic magnified image of
the structures at the back of the eye, including the optic disk, retina, retinal
blood vessels, macula, and choroid. The ophthalmoscope is particularly use-
ful as a screening tool for various ocular diseases such as glaucoma or diabetic
retinopathy. As said before, the light emitted by the ophthalmoscope is very
bright and this forces the pupils to constrict and let pass through them insuffi-
cient light to perform the examination. To overcome this issue, physicians use
some mydiatric in order to dilate the pupils.

2.2.1. Direct ophthalmoscope

For many decades the only typology of this device, the direct ophthalmoscope
(figure 13) is a critical handheld tool used to inspect the back portion of the
interior eyeball, the fundus oculi. The doctor holds the lens of this instrument
over the pupil of the patient and looks through it by coming very close to the
face of the patient. Examination is best carried out in a darkened room. The
examiner looks for changes in the color or pigment of the fundus, changes in the
caliber and shape of retinal blood vessels, and any abnormalities in the macula
lutea.

ti)

Figure 13. Direct ophthalmoscope.

The direct ophthalmoscope emits a diverging beam of light into the eye
of the patient, which illuminates the retina, reflecting light back towards the
observer. An erect, virtual image of the retina is seen, which, dependent on
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the refractive state of both observer and patient, may require focusing-either by
accommodation or using the built-in focusing lenses of the ophthalmoscope.

The field of view and magnification are highly dependent on the refractive
state of the patient, with myopes providing a greater degree of magnification and
smaller field of view than emmetropic patients. The field of view is greater in
patients with widely dilated pupils and also increases with increasing proximity
to the patient.

The anterior segment of the eye can also be examined with the direct oph-
thalmoscope by using the built-in lenses and light as a self-illuminating loupe
(magnifying glass). By increasing the lens power to ~ +15 D and observing
the patient from = 5 cm distance, a magnified view of these structures can be
appreciated.

As the images involved are virtual, the optics of the situation mean that
patient movement is grossly amplified. This means that small amounts of nys-
tagmus (uncontrolled movements of the eye) can be easily picked up; however,
with larger and more rapid excursions, indirect ophthalmoscopy may provide a
better way of imaging the fundus [10].

Another reason to prefer indirect ophthalmoscope is the wider portion of
retina which allows to inspect with. Indeed, even with appropriate illumination,
direct ophthalmoscopy has a small field of view. Figure 14 shows that of four
points in the fundus, points one and four cannot be seen because pencils of light
emanating from these points diverge beyond the pupil of the observer.

Patient Observer

Direct Method

Figure 14. Limited field of view in the direct method. Peripheral pencils of light do
not reach the pupil of the observer.

2.2.2. Indirect ophthalmoscope

The indirect ophthalmoscope (figure 15) is a more recent invention and consti-
tutes a light placed on a headband worn by the physician. In addition to the
light, a handheld lens helps in the examination of the retina and the fundus
of the eye. Comparing direct vs indirect ophthalmoscope, the indirect ophthal-
moscope delivers a stronger source of light, greater opportunity for stereoscopic
inspection of the eyeball interior, and a specifically designed objective lens.

Even if the two instruments are used to achieve similar goals, indirect oph-
thalmoscopes have proven to be an exceptionally valuable device for the treat-
ment and diagnosis of detachments, holes, and retinal tears. In order for the
satisfactory use of an indirect ophthalmoscope, the patient’s pupils must be
completely dilated.
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Figure 15. Indirect ophthalmoscope.

The principle of indirect ophthalmoscopy is to make the eye highly myopic
by placing a strong convex lens in front of the eye of the patient so that the
emergent rays from an area of the fundus are brought to focus as a real inverted
image between the lens and the eye of the observer.

The use of the intermediate lens has several important implications that
make indirect ophthalmoscopy more complicated than direct ophthalmoscopy.
The primary purpose of the ophthalmoscopy lens is to bend pencils of light to-
ward the pupil of the observer. Figure 16 also demonstrates one of the most
characteristic side effects of this arrangement: compared with the image in di-
rect ophthalmoscopy, the orientation of the image on the retina of the observer
is inverted. For the novice, this often causes confusion in localization and orien-
tation. Figure 16 further shows that in this arrangement the pupil of the patient
is imaged in the pupillary plane of the observer. In optical terms the pupils are
in conjugate planes.

Patient Lens Observer

1

1
2
3 3
4 4

Indirect Method

Figure 16. Extended field of view in the indirect method. The ophthalmoscopy lens
redirects peripheral pencils of light toward the observer.

— b

Indirect ophthalmoscopes can be divided into two different categories that
include:

e Monocular indirect ophthalmoscopes. They offer a wider field of
view and higher magnification levels than the traditional ophthalmoscope.
As the name suggests, however, the monocular indirect ophthalmoscope
only offers a single view of the interior of the eye. For a physician to
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properly assess a patient’s ocular condition and fundus, you should have
the patient look in multiple directions.

e Binocular indirect ophthalmoscopes. Instead of only projecting one,
binocular indirect ophthalmoscopes project three elements in the eye. As
a result, the ophthalmologist, or optometrist can get a three-dimensional
rendition of the patient’s interior eye, which facilitates a much more thor-
ough examination.

Table 1 summarizes all the principal differences between direct and indirect
ophthalmoscope.

Indirect ophthalmoscope Direct ophthalmoscope
Observation view
field diameter Wide view (= 37° in diameter) Small view (=~ 10° in diameter)
Magnification 5 times 15 times
Structures viewed | Peripheral retina seen Central retina only
Brightness More brightness Less brightness

Binocular indirect
Stereopsis provides superior stereopsis Image created isn’t stereoscopic
Image of fundus Inverted and virtual image Erect and real image
Visibility in
hazy media Decent Poor

Table 1. Comparison between direct and indirect ophthalmoscope.

2.3. Fundus camera

The first photographs of the retina were published by Jackman and Webster in
1886. The next breakthrough was the first commercially available fundus camera
produced by Carl Zeiss in 1926, following which considerable improvements to
the field of view (FoV) were made. Through the years, camera systems have
evolved to boast sharper images, nonmydriatic wide-field options, pupil tracking,
and, most recently, portability. Popular manufacturers in the market today are
Topcon, Zeiss, Canon, Nidek, Kowa, CSO, and CenterVue.

A fundus camera (figure 17) or retinal camera is a specialized low power
microscope with an attached camera designed to photograph the interior surface
of the eye, including the retina, retinal vasculature, optic disc, macula, and
posterior pole (i.e. the fundus). The design of the traditional fundus camera
system is based on monocular indirect ophthalmoscopy. The reference layout
consists of a sequence of optic components including objective and condensing
lenses, beam splitters, mirrors, masks, diffusers, and polarizers, which altogether
direct the illuminating light through the pupil of the eye, collecting light reflected
from the retinal surface and relaying it to imaging optics forming an image of the
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retina on the detector screen. Advanced versions of these systems are equipped
with additional features like automated analysis and algorithms. Filters can be
applied to camera systems for autofluorescence, fundus fluorescein angiography,
and indocyanine green angiography [11].

Figure 17. Fundus camera.

Retinal imaging presents a challenging difficulty considering that the retina
must be illuminated and imaged simultaneously. For this reason most of fundus
cameras are designed with internal structure, where the imaging path and illu-
mination path share the common eyepiece and are combined by a beam splitter.
Compared with the external structure, though the former has increased the de-
gree of difficulty of the system design, the illumination is more efficient, and
fewer lenses are needed. However, controlling the amount of light incident on
the fundus within the security exposure dosage range is necessary. Taking into
account the human eye’s comfort under a wide angle of visible light, uniform
illumination is also required when designing the illumination path [12].

The need for a miniature fundus camera device has emerged from specific
limitations that accompany the use of traditional table-top fundus cameras.
First, they form a bulky system, incorporating a host of optical and mechanical
components, and the alignment of every part with respect to another is a critical
parameter for good-quality images. Second, the operation of such a sophisti-
cated system requires skilled personnel. Third, the bulkiness and complexity of
the instrument restrict its use only in high-end clinical settings, such that it is
difficult to be accessible in remote rural settings. Fourth, the number of optical
components and add-on features in more recent devices renders the cost of the
cameras exorbitantly high for them to be installed in rural locales where much
of the population is subjected to ailments amounting to visual morbidity.

To overcame these issues lot of interesting novel technologies have been pro-
posed in literature. One of the most promising innovation is the use of smart-
phones such as professional medical devices.

Smartphones equipped with faster processors, larger storage memory, smaller
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batteries, and advanced operating systems have paved the way for numerous
applications. Smartphones have become an integral part of the medical field
lately to provide fast and clear access to electronically mailed digital images, in-
stant messaging and virtual private network, user—interface services, and mobile
healthcare computing devices. Research on the use of smartphones for medicine
is growing. This technological advancements allow smartphone-based attach-
ments and integrated lens adaptors to transform the smartphone into a fundus
camera and others ophthalmological tools, revolutionizing modern ophthalmol-

ogy [11].

2.4. D-EYE

D-EYE Srl is a leading developer of retinal screening systems for smartphones.
The company is an italian startup founded in 2014 with the mission of improving
access to vital health services. To do that D-EYE Srl designs and manufactures
diagnostic instruments, along with companion applications, that enable mass
health screenings and data collection.

The flagship of the company is the homonymous device D-EYE (figure 18), a
smartphone-based retinal imaging system. The retinal examiner is a phone-case-
sized add-on that turns an Apple (Apple Inc., Cupertino, USA) smartphone into
a fundus camera capable of taking high-definition images and video of the eye for
health screening and evaluation. Specifically, the device consists in a magnetic
fundus lens that attaches to an iPhone. It utilizes a user-friendly smartphone ap-
plication and the built-in iPhone camera to take fundus photographs and videos.
D-EYE is a FDA approved medical device, and its corresponding smartphone
application is HIPAA compliant. This makes it an effective and simple method
to capture, document, and consult within a single interface.

Figure 18. D-EYE device.

The design of the device is suitable both for humans and animals. Ophthal-
mologists can utilize D-EYE to diagnose several pathologies such as glaucoma,
diabetic retinopathy, caratact, papilledema, optic glioma, macular hole, vit-
reus detachment, drusen, astrocytic hamartoma, optic disc dyskinesia. With
the same instrument vets can perform retinal exams in dogs, cats, rabbits and
other small animals, as well as horses, falcons and more.
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All the captured photos are then used in documentation, follow-up, and
discussion of complex cases with colleagues and patients alike. The D-EYE’s
simplistic, yet effective design, along with the image capturing and sharing
capabilities of the iPhone, extends the system’s potential utility to medical
personnel with little ophthalmologic experience. This is a huge advantage in
undeveloped areas of the world, where most patients do not have access to
facilities with expensive conventional ophthalmoscopes. In these cases, when a
whole team of clinical staff could not logistically travel to developing countries
or no eye specialists are available, training local staff and remotely analyzing
images could be a solution in helping to overcome eye care disparities abroad.
The relatively low cost gives these areas the opportunity to have diagnosis made
by qualified experts via teleophthalmology. More in general, telemedicine is
probably the way how future will face the access of health service, especially in
the developing world. Devices suitable for telemedicine, such as D-EYE, will be
essential to archive this goal [13].

Figure 19. Retinal exam performed through smartphone-based ophthalmoscope in
undeveloped areas.

D-EYE, as a smartphone-based device, is ideal for children (figure 20). A
typical problem pediatricians have to deal with is that today’s children might be
afraid of a big ophthalmic instrument while touching and playing with a smart-
phone can make them feel more comfortable. Moreover also school environment
can take advantages from this device. Professors can easily share real-case and
also live photos or videos in order to offer a more effective way of teaching. On
the other hand this low-cost, user-friendly device is perfect to be handled by
students for learning and improving diagnostic skills.

L

Figure 20. D-EYE used for a children ophthalmological examination.
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3. Deep Learning

During the last few decades Artificial Intelligence (Al) is getting more and more
relevance in a very wide range of areas: e-commerce, medicine, automation, elec-
tronics, food companies and so on. Its developments are intimately linked to
those of computing that have led computers to perform increasingly complex
tasks, which could previously only be delegated to a human. Despite this, it is
worth remembering that the origins of Al can be found long time ago. During
IV sec. a.C. the Greek philosopher Aristotle spoke about logical deductive rea-
soning using syllogism. This concept can be found in every philosophy book: a
conclusion is drawn from two given or assumed propositions (premises). Prob-
ably Aristotle was not thinking about AI while he was studying these contents,
but this can be seen as a try to automate human thought.

One of the most important area of Al is machine-learning. Machine-learning
systems are used to identify objects in images, transcribe speech into text, match
news items, posts or products with users’interests, and select relevant results of
search. Conventional machine-learning techniques were limited in their ability
to process natural data in their raw form. For decades, constructing a pattern-
recognition or machine-learning system required careful engineering and consid-
erable domain expertise to design a feature extractor that transformed the raw
data (such as the pixel values of an image) into a suitable internal represen-
tation or feature vector from which the learning subsystem, often a classifier,
could detect or classify patterns in the input [14].

A peculiar edge of machine-learning is the so called deep learning. The
power of deep learning is that it does not need any feature extraction passage
so it can learn directly from raw data. In the early days of artificial intelligence,
the field rapidly tackled and solved problems that are intellectually difficult for
human beings, but relatively straight forward for computers, problems that can
be described by a list of formal, mathematical rules. The real challenge for
artificial intelligence is to solve tasks that are easy for people to perform but
hard for people to formally describe. These tasks are intuitive for people, like
recognizing spoken words or faces in images.

The solution is to allow computers to learn from experience and understand
the world in terms of a hierarchy of concepts, with each concept defined through
its relation to simpler concepts. By gathering knowledge from experience, this
approach avoids the need for human operators to formally specify all the knowl-
edge that the computer needs. The hierarchy of concepts enables computers to
learn complicated concepts by building them out of simpler ones. Drawing a
graph which shows how these concepts are built on top of each other, this graph
is deep, with many layers. For this reason, this approach is called deep learning
[15].

3.1. Artificial Neural Network (ANN)

Theoretical neurophysiology rests on certain cardinal assumptions. The nervous
system is a net of neurons, each having a soma and an axon. Their adjunctions,
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or synapses, are always between the axon of one neuron and the soma of another.
At any instant a neuron has some threshold, which excitation must exceed to
initiate an impulse [16]. As the fundamental unit of the nervous system is the
neuron, also in every ANN there is a basic brick which is used to build the
whole net. Usually it is called artificial neuron or preceptron and its function is
to simulate the behaviour of a biological neuron. Figure 21 presents the principle
of working of a perceptron. Basically there are many inputs (x1, x2, ..., ) and
each of them has his own weight (w1, ws, ..., w,). Weights can be either positive
or negative, similar to the bias (b) a constant term. All these factors pass
through the function f = >"" | z;w; + b and the result passes to the activation
function. In the particular case of figure 21, the activation function is a step
function, i.e. it produces 0 if s is negative or equal to 0 and 1 otherwise.
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Figure 21. Basic scheme of how an artificial neuron works.

Step function § is one of the simplest activation function. There are lot of
different ones that can be used, here are some of the most important.

1

e Sigmoid: y = Tres
e*S

e ReLU (Rectified Linear Unit): y = max(0, s)

10

e Leaky ReLU: y = max(as,s) (tipically a=0.1)
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io

o ELU: v — ae* —1) ifs<0
Y= s ifs>0

104

10

Each activation function has his own peculiarity and can be more useful in
some particular nets than in others, in according to their final purpose. Here the
similarity between the biological world and the computer science one is evident.
When the summation of some electrical stimuli exceeds a certain threshold the
biological neuron fires an impulse. On the other hand there is also a threshold,
designed with a mathematical function, that says when an artificial neuron has
to fire.

As said before, artificial neurons are the fundamental unit of every ANN but
the strength of the net rests in his connections. Each connection is characterized
by the strength with which pairs of nodes are excited or inhibited. Positive val-
ues indicate excitatory connections, the negative ones inhibitory connections.
The connections between the nodes can modify themselves over time. This
dynamic starts a learning process in the entire ANN. The way through which
the nodes modify themselves is called "Law of Learning". The total dynamic
of an ANN is tied to time. In fact, for the ANN to modify its own connec-
tions, the environment has to necessarily act on the ANN more times. Data are
the environment that acts on the ANN. The learning process is one of the key
mechanisms that characterize the ANN, which are considered adaptive process-
ing systems. The learning process is a way to adapt the connections of an ANN
to the data structure that make up the environment and, therefore, a way to
"understand" the environment and the relations that characterize it.

Neurons can be organized in any topological manner (e.g. one- or two-
dimensional layers, three-dimensional blocks or more-dimensional structures),
depending on the quality and amount of input data. The most common ANNs
are composed as following [17]:

e A certain number of neurons is combined to an input layer, normally
depending on the amount of input variables.

e The information is forwarded to one or more hidden layers working within
the ANN.
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e The output layer, as the last element of this structure, provides the result.
Figure 22 shows an example of the structure just mentioned.

Input layer Hidden layers Output layer
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Figure 22. Artificial Neural Network structure.

There is not a single purpose for what an ANN is built up. These networks
can be useful for quite different reasons and in order to understand these different
functionalities it is important to understand how a network learns from input
and how it can produce results.

Basically, there are two different ways of learning.

Supervised learning. The majority of practical machine learning uses su-
pervised learning. Supervised learning is where there are input variables (x)
and an output variable (Y) the algorithm is used to learn the mapping function
from the input to the output.

Y = f(X)

The goal is to approximate the mapping function so well that when the al-
gorithm analyses new input data (x), it can predict the output variables (Y) for
that data. In supervised learning, the training phase of the machine is performed
using data which is well "labelled". It means that some data are already tagged
with the correct answer. It is called supervised learning because the process of
an algorithm learning from the training dataset can be thought of as a teacher
supervising the learning process: the algorithm iteratively makes predictions
on the training data and is corrected by the teacher. Learning stops when the
algorithm achieves an acceptable level of performance.

Supervised learning problems can be further grouped into regression and clas-
sification problems.

e Classification: A classification problem is when the output variable is a
category, such as "red" or "blue" or "disease" and "no disease".

o Regression: A regression problem is when the output variable is a real
value, such as "dollars" or "weight".

Unsupervised learning. Unsupervised learning is where there is only in-
put data (X) and no corresponding output variables. For this reason it is not
necessary supervise the model. Instead, it is required to allow the model to
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work on its own to discover information. It mainly deals with the unlabelled
data. The goal for unsupervised learning is to model the underlying structure
or distribution in the data in order to learn more about the data. These are
called unsupervised learning because unlike supervised learning above there is
no correct answers and there is no teacher. This process allows to perform more
complex processing tasks compared to supervised learning. Although, unsuper-
vised learning can be more unpredictable and gives result that has to be further
confirmed.

Unsupervised learning problems can be further grouped into clustering and as-
sociation problems.

e Clustering: A clustering problem tries to discover the inherent groupings
in the data, such as grouping customers by purchasing behavior.

e Association: An association rule learning problem tries to discover rules
that describe large portions of your data, such as people that buy X also
tend to buy Y.

Since the work of this thesis is based on supervised learning network for

image classification, the following part will focus on a more detailed explanation
of this part.
In supervised learning, the learner (typically, a computer program) is learning
provided with two sets of data, a training set and a test set. The training set
consists of n ordered pairs (1,y1), (Z2,Y2), .-, (Tn, Yn), where each z; is some
measurement or set of measurements of a single example data point, and y; is
the label for that data point. The test data in supervised learning is another
set of m measurements without labels: (zp41, Tnt2, .. Tntm) [18]. The aim of
the net is to label the test data point from some information obtained from the
training set. In order to do that the training phase consists in a series of cyclical
passages that bring to minimize a, so called, cost function.

A cost function, sometimes referred to as a loss or objective function, is
somehow a mathematical representation of the distance between the target and
the prediction of the net. The more this distance is short, the more accurate
the prediction will be. An example of a simple but quite effective cost function
is C'(w,b), the mean squared error or just MSE.

Clw,b) = 53 lyta) - al?

Here, w denotes the collection of all weights in the network, b all the biases,
n is the total number of training inputs, a is the vector of outputs from the
network when z is input, and the sum is over all training inputs, x. Of course,
the output a depends on x, w and b, but to keep the notation simple it is not
explicitly indicated this dependence. The notation ||v|| just denotes the usual
length function for a vector v. Inspecting the form of the quadratic cost function,
it is possible to notice that C'(w,b) is non-negative, since every term in the sum
is non-negative. Furthermore, the cost C(w,b) becomes small, i.e.,C'(w,b) = 0,
precisely when y(x) is approximately equal to the output, a, for all training
inputs, z. So, the training algorithm has done a good job if it can find weights
and biases so that C(w, b) ~ 0. By contrast, it is not doing so well when C(w, b)
is large, that would mean that y(x) is not close to the output a for a large number
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of inputs. So the aim of a training algorithm is to minimize the cost C'(w, b) as
a function of the weights and biases. In other words, the training aims to find
a set of weights and biases which make the cost as small as possible. This can
be done using an algorithm known as gradient descent [19].

This kind of algorithm calculates iteratively the derivative of the cost func-
tion with respect to the weights in order to properly update them. Thanks to
the derivative it is possible to know locally where the function is going and since
the aims is to minimize this function, the algorithm will set the parameters for
the following iteration aiming to have a lower cost value. The procedure just
mentioned is repeated several times until a minimum (not always the global
one) is reached. Figure 23 presents an ideal representation of this approach. It
is important to highlight that, in real cases, cost functions are not as simple as
a parabola, they are n-variable function where n is the number of weight and
usually have more than one minimum. Moreover is important to mention some
other issues linked to gradient descend such as the choice of learning step and
the vanish gradient descend. Since the purpose of this chapter is to make a brief
deep learning introduction and these topics need a deeper investigation, they
are not explained in details in this thesis.

v
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Figure 23. Exemplification of gradient descend algorithm.

After the description of supervised learning, it is worth mentioning some
more details about what is the process of classification and present few examples.

In this type of task, the computer program is asked to specify which of k
categories an input belongs to. To solve this, the learning algorithm is usually
asked to produce a function f : R™ — {1,....k}. When y = f(z), the model
assigns an input described by vector x to a category identified by numeric code
y. There are other variants of the classification task, for example, where f
outputs a probability distribution over classes.

An example of a classification task is object recognition, where the input
is an image (usually described as a set of pixel brightness values), and the
output is a numeric code identifying the object in the image. For example, the
Willow Garage PR2 robot is able to act as a waiter that can recognize different
kinds of drinks and deliver them to people on command [20]. Modern object
recognition is best accomplished with deep learning. Object recognition is the
same basic technology that enables computers to recognize faces, which can
be used to automatically tag people in photo collections and for computers to
interact more naturally with their users [15].

There are different types of artificial neural network that can be used for
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classification task. One in particular is widely utilized and will be also the core
of the algorithm presented in this work for retinal images classification. The
following paragraph will be focused on conwvolutional neural networks.

3.2. Convolutional Neural Network (CNN)

Convolutional neural networks, or CNNs, are a specialized kind of neural net-
work for processing data that has a known grid-like topology. Examples include
time-series data, which can be thought of as a 1-D grid taking samples at reg-
ular time intervals, and image data, which can be thought of as a 2-D grid of
pixels. Convolutional networks have been tremendously successful in practical
applications. The name “convolutional neural network” indicates that the net-
work employs a mathematical operation called convolution. Convolution is a
specialized kind of linear operation, that CNNs use in place of general matrix
multiplication in at least one of their layers [15].

Convolution is a simple mathematical operation which is fundamental to
many common image processing operators. This operation provides a way of
‘multiplying together’ two arrays of numbers, generally of different sizes, but
of the same dimensionality, to produce a third array of numbers of the same
dimensionality. This can be used in image processing to implement operators
whose output pixel values are linear combinations of certain input pixel values.

In an image processing context, one of the input arrays is normally just a
graylevel image. The second array is usually much smaller, and is also two-
dimensional (although it may be just a single pixel thick), and is known as the
kernel. Figure 24 shows an example image and kernel that is used to illustrate
convolution.
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Figure 24. An example small image (left) and kernel (right) to illustrate convolution.

The convolution is performed by sliding the kernel over the image, generally
starting at the top left corner, so as to move the kernel through all the positions
where the kernel fits entirely within the boundaries of the image. (Note that
implementations differ in what they do at the edges of images, as explained
below). Each kernel position corresponds to a single output pixel, the value of
which is calculated by multiplying together the kernel value and the underlying
image pixel value for each of the cells in the kernel, and then adding all these
numbers together.

So, in the example, the value of the first pixel (top left) in the output image
(O) will be given by:
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On = 1Ky +1oKio + I13K13 + 11 Kot + 120 Kog + I23K93

If the image has M rows and N columns, and the kernel has m rows and
n columns, then, with this procedure, the size of the output image will have
M —m + 1 rows, and N —n + 1 columns.
Mathematically the convolution can be written as:

n

O(i,j):iZI(@+k—1,j+l-1)K(k,l)

k=11=1

where 4 runs from 1 to M —m + 1 and j runs from 1 to N — n + 1.

Note that many implementations of convolution produce a larger output
image than this because they relax the constraint that the kernel can only
be moved to positions where it fits entirely within the image. Instead, these
implementations typically slide the kernel to all positions where just the top left
corner of the kernel is within the image. Therefore the kernel "overlaps" the
image on the bottom and right edges. One advantage of this approach is that
the output image is the same size as the input image. Unfortunately, in order
to calculate the output pixel values for the bottom and right edges of the image,
it is necessary to add input pixel values for places where the kernel extends off
the end of the image. This strategy is usually called padding. Typically pixel
values of zero are chosen for regions outside the true image, but this can often
distort the output image at these places. Therefore another common approach
(when it is possible) is to clip the filtered image to remove these spurious regions.
Removing n—1 pixels from the right hand side and m —1 pixels from the bottom
will fix things.

Next paragraph explains why CNNs use convolution and not some of the
various other operation for imagine processing.

Figure 25 shows a color input image (25a) and its convolution results us-
ing two different kernels (25b and 25c). A 3 x 3 convolution matrix K =

1 2 1

0 0 0 | is used. The convolution kernel should be of size 3 x 3 x 3, in

-1 -2 -1
which the user set every channel to K. When there is a horizontal edge at loca-
tion (z,y)(i.e., when the pixels at spatial location (x + 1,y) and (z — 1,y) differ
by a large amount), the convolution result to have high magnitude. As shown in
figure 25b, the convolution results indeed highlight the horizontal edges. When
the user set every channel of the convolution kernel to K7 (the transpose of
K), the convolution result amplifies vertical edges, as shown in figure 25c. The
matrix (or filter) K and K7 are called the Sobel operators.

If a bias term is added to the convolution operation, it can make the convo-
lution result positive at horizontal (vertical) edges in a certain direction (e.g., a
horizontal edge with the pixels above it brighter than the pixels below it), and
negative at other locations. If the next layer is a ReLLU activation function layer
(it will be described later), the output of the next layer defines many "edge de-
tection features", which activate only at horizontal or vertical edges in certain
directions. By combining horizontal and vertical gradients, the Sobel kernels
can highlight edges with any angles.
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{a) Lenna (b) Horizontal edge (e) Vertical edze

Figure 25. The Lenna image and the effect of different convolution kernels.

Moving further down in the deep network, subsequent layers can learn to
activate only for specific (but more complex) patterns, e.g., groups of edges that
form a particular shape. These more complex patterns will be further assembled
by deeper layers to activate for semantically meaningful object parts or even a
particular type of object, e.g., dog, cat, tree, beach, etc. One more benefit
of the convolution layer is that all spatial locations share the same convolution
kernel, which greatly reduces the number of parameters needed for a convolution
layer. For example, if multiple dogs appear in an input image, the same "dog-
head-like pattern" feature will be activated at multiple locations, corresponding
to heads of different dogs. In a deep neural network setup, convolution also
encourages parameter sharing. For example, suppose "dog-head-like pattern"
and "cat-head-like pattern" are two features learned by a deep convolutional
network. The CNN does not need to devote two sets of disjoint parameters (e.g.,
convolution kernels in multiple layers) for them. The CNN’s bottom layers can
learn "eye-like pattern" and "animal-fur-texture pattern", which are shared by
both these more abstract features. In short, the combination of convolution
kernels and deep and hierarchical structures are very effective in learning good
representations (features) from images for visual recognition tasks.

It is important to add a note here. Although the paragraph uses phrases
such as "dog-head-like pattern", the representation or feature learned by a CNN
may not correspond exactly to semantic concepts such as "dog’s head". A
CNN feature may activate frequently for dogs’ heads and often be deactivated
for other types of patterns. However, there are also possible false activations
at other locations, and possible deactivations at dogs’ heads. In fact, a key
concept in CNN (or more generally deep learning) is distributed representation.
For example, suppose the task is to recognize N different types of objects and
a CNN extracts M features from any input image. It is most likely that any
one of the M features is useful for recognizing all N object categories; and to
recognize one object type requires the joint effort of all M features [21].

Convolution is the main part of a convolutional layer, the layer that char-
acterizes a CNN. Lot of other layers are proposed in literature to complete the
whole structure of a convolutional neural network. Now, after the description
of the aforesaid layer, the mostly common used ones will be presented.
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Figure 26. Example of CNN structure with explicit layers.

3.2.1. Convolutional layer

Last paragraph already described what concern convolution. Convolutional lay-
ers simply apply this mathematical operator to the input. As explained before,
convolutional layers are responsible for detecting certain local features in all lo-
cations of their input images. To detect local structures, each node in a convo-
lutional layer is connected to only a small subset of spatially connected neurons
in the input image channels. To enable the search for the same local feature
throughout the input channels, the connection weights are shared between the
nodes in the convolutional layers [22].

It is worth mentioning that every layer has his own hyperparameter and a
good tuning of them is essential to archive great performances in whatever kind
of neural network.

In this particular layer there are three different hyperparameter: depth,
stride and zero-padding.

e Depth. The depth of the output volume produced by the convolutional
layers can be manually set through the number of neurons within the layer
to a the same region of the input. This can be seen with other forms of
ANNSs, where neurons in the hidden layer are directly connected to every
single neuron beforehand. Reducing this hyperparameter can significantly
minimise the total number of neurons of the network, but it can also
significantly reduce the pattern recognition capabilities of the model.

e Stride. It is also important to define the stride, that permits to set the
depth around the spatial dimensionality of the input in order to place the
receptive field. For example if the user set the stride to 1, then the algo-
rithm will have a heavily overlapped receptive field producing extremely
large activations. Alternatively, setting the stride to a greater number will
reduce the amount of overlapping and produce an output of lower spatial
dimensions. In other words is of how many pixel the filter is moving
through the image for every step of convolution.

e Zero-padding. Zero-padding is the simple process of padding the border
of the input, consist in adding fictitious pixel with 0 value and it is also
an effective method to give further control as to the dimensionality of the
output volumes.

It is important to note that these techniques alter the spatial dimensionality
of the convolutional layers output. The following formula calculates it:
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(V—R)+2Z
S+1

Where V represents the input volume size (height x width x depth), R
represents the receptive field size, Z is the amount of zero padding set and S
referring to the stride. If the calculated result from this equation is not equal
to a whole integer then the stride has been incorrectly set, as the neurons will
be unable to fit neatly across the given input [23].

3.2.2. ReLU layer

The rectified linear unit (commonly shortened to ReLU) aims to apply an "el-
ementwise" activation function in order to keep activate some neurons while
switch off some others. Even if activation functions were previously described,
it is worth focusing on the ReLLU one since it is one of the most utilized.

A ReLU layer does not change the size of the input. In fact, this layer can
be regarded as a truncation performed individually for every element in the
input. There is no parameter inside a ReLU layer, hence no need for parameter
learning in this layer. As mentioned before the math behind this operation is
simple and can be well described by the following formula:

{o ifs<0
y = maz(0,s) = )
s ifs>0

The purpose of ReLU is to increase the nonlinearity of the CNN. Since
the semantic information in an image is obviously a highly nonlinear mapping
of pixel values in the input, also the mapping from CNN input to its output
should be highly nonlinear in order to be consistent. The introduction of ReLU
to replace sigmoid is an important change in CNN, which significantly reduces
the difficulty in learning CNN parameters, i.e. it reduces training time and also
improves its accuracy.[21, 23]

3.2.3. Pooling layer

Pooling layers aim to gradually reduce the dimensionality of the representation,
and thus further reduce the number of parameters and the computational com-
plexity of the model. Moreover is it possible to identify the role of the pooling
layer in merging semantically similar features into one. Because the relative
positions of the features forming a motif can vary, reliably detecting the motif
can be done by coarse-graining the position of each feature.

The pooling layer operates over each activation map in the input, and scales
its dimensionality using the "MAX" function. In most CNNs, these come in the
form of max-pooling layers with kernels of a dimensionality of 2 x 2 applied with
a stride of 2 along the spatial dimensions of the input. This scales the activation
map down to 25% of the original size whilst maintaining the depth volume to
its standard size. Stride and filter size are the only two hyperparameter of this
layer. To see a more detail about them refers to subparagraph 2.2.1.
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Due to the destructive nature of the pooling layer, there are only two gener-
ally observed methods of max-pooling. The one just mentioned and furthermore
overlapping pooling may be utilised, where the stride is set to 2 with a kernel
size set to 3. Having a kernel size above 3 will usually greatly decrease the
performance of the model.

It is also important to note that beyond max-pooling, CNN architectures
may contain general-pooling. General pooling layers are comprised of pooling
neurons that are able to perform a multitude of common operations including
L1/L2-normalisation, and average pooling [14, 23].

3.2.4. Fully connected layer

A fully connected layer refers to a layer where the computation of any element
in the output requires all elements in the input. A fully connected layer is
sometimes useful at the end of a deep CNN model. For example, if after many
convolution, ReLLU and pooling layers, the output of the current layer contains
distributed representations for the input image, the following step could be
using all these features in the current layer in order to build features with
stronger capabilities in the next one. A fully connected layer mainly used for
this purpose. Moreover it is possible to implement this kind of layer starting
with a convolutional layer with a kernel size equal to the size of the input matrix
[21].

3.2.5. Owutput layer

The fully connected layer outputs a vector of K dimensions where K is the num-
ber of classes that the network will be able to predict. This vector contains the
"probabilities" for each class of any image, or object in general, being classified.
The final layer of the CNN architecture uses a softmaz function to provide the
classification output [24].

The Softmax regression is a form of logistic regression that normalizes an
input value into a vector of values that follows a probability distribution whose
total sums up to 1. This allows the output to be interpreted directly as a
probability. Similarly, softmax functions are multi-class sigmoids, meaning they
are used in determining probability of multiple classes at once.

The standard softmax function is defined by the formula:
e
0(2); = ——— fori=1,..., Kandz = (21, ..., 2K )

Zf:l e

Where K, as said before, is the number of classes and z a vector with all the
nodes of the previous layer.

In multicategory classification, standard techniques typically treat all classes
equally. This treatment can be problematic when the dataset is unbalanced in
the sense that certain classes have very small class proportions compared to
others. The minority classes may be ignored or discounted during the classifi-
cation process due to their small proportions. This can be a serious problem
if those minority classes are important. Talking about diagnosis in medical
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field, when the minority classes represent the pathological situation, this kind
of misclassification could be fatal.

Intuitively, one can put a relatively big weight for a minority class so that
it cannot be ignored easily. For example, consider a binary problem with the
class 1 to be the minority class and class 2 to be the majority class. Suppose
the weights to be (4, 1) for the two classes. This implies that one misclassified
point of class 1 is treated to be equivalent to four misclassified points of class 2.
Using a bigger weight for class 1, one can increase the impact of class 1 for the
classification rule so that it will not be ignored due to its small proportion.

A natural choice of weights is to make use of the true proportions {r;} of
different classes, if they are available. Let (wq : wg : ... : wg) = (1/m : /79 :
... : 1/m). Using this choice, the aim is to put a big weight for class j if 7; is
small. This indicates that this choice of weights can eliminate the unbalanced
data effect because it is equivalent to finding a classifier that minimizes the mean
within group error rate. Even if typically {7, } are not available there is an easy
way to estimate them. A natural estimator is #; = n;/n, where n; represents
the number of observations for class j in the training dataset (with size n).
Using 7; could have some drawbacks. Clearly, the accuracy of the estimator 7;
affects the performance. The smaller n; and n are, the less reliable 7; is as an
estimator of 7;. Since, in order to have good performances, with CNNs it is
necessary to use huge dataset, this estimation can be consider reliable [25].

This kind of approach will be used even in the proposed algorithm and it
will be further described in the following chapter.

3.3. Training phase

Training a CNN is the most critical part of a deep learning algorithm. The choice
of the initial hyperparameters and the setting of the best training options can
determinate either good or bad performances of the whole classification process.

To better understand the training phase it is necessary to first define what
is the meaning of batch and epoch.

e The batch size is a hyperparameter that defines the number of samples
to work through before updating the internal model parameters. Think
of a batch as a for-loop iterating over one or more samples and making
predictions. At the end of the batch, the predictions are compared to the
expected output variables and an error is calculated. From this error, the
update algorithm is used to improve the model, e.g. move down along the
error gradient.

e The number of epochs is another hyperparameter that defines the number
of times that the learning algorithm will work through the entire training
dataset. One epoch means that each sample in the training dataset has
had an opportunity to update the internal model parameters. An epoch
is comprised of one or more batches. For example, an epoch that has one
batch is called the batch gradient descent learning algorithm. Simplifying
it can be thought as a for-loop over the number of epochs where each
loop proceeds over the training dataset. Within this for-loop is another
nested for-loop that iterates over each batch of samples, where one batch
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has the specified "batch size" number of samples. The number of epochs
is traditionally large, often hundreds or thousands, allowing the learn-
ing algorithm to run until the error from the model has been sufficiently
minimized.

It is common to create line plots that show epochs along the x-axis as time
and the error or skill of the model on the y-axis. These plots are sometimes
called learning curves (figure 27). These plots can help to diagnose whether the
model has over learned, under learned, or is suitably fit to the training dataset.

Tralning Progress (21-Dec-2018 11:43:62)
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Figure 27. Training progress plot produced with MATLAB.

3.3.1. Overfitting and underfitting

Two very common issues every network can run into while training are underfit-
ting and overfitting. A general definition of these concepts will be now presented
[26]. Let M be a model and m be what has to be modelled.

e M is overfitting m if M does not generalize and is sensitive to particular-
ities in m. In an extreme case, M could merely be a representation of m
without any inference. A mining algorithm is producing overfitting models
if the removal or addition of a small percentage of the process instances
in m would lead to a remarkably different model. In a complex process
with many possible paths, most process instances will follow a path not
taken by other instances in the same period. Therefore, it is undesirable
to construct a model that allows only for the paths that happened to be
present in m as this is only a fraction of all possible paths. If one knows
that only a fraction of the possible event sequences are in m, the only way
to avoid overfitting is to generalize and have a model M that allows for
more behavior than recorded in m.

e M is underfitting m if M allows for "too much behavior" that is not
supported by m. This is also referred to as "overgeneralization". It is
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very easy to construct a model that allows for the behavior seen in m but
also completely different behavior. For example, assume a m consisting
of 1,000 cases. For each case A is followed by B and there are no cases
where B is followed by A. Obviously, one could derive a causal dependency
between A and B. However, one could also create a model M where A and
B are in parallel. The latter would not be "wrong" in the sense that the
behavior seen in m is possible according to the model. However, it is very
unlikely and therefore one could argue that M is underfitting m.

Values N Values . Values

Time - Time
Underfitted Good Fit/Robust Overfitted

Figure 28. Comparison between underfitted, overfitted and a good-fit model.

Focusing on convolutional neural network, there is a way to understand if
the model is underfitting or overfitting. It is revelatory to look at the accuracy
of the validation set during the training. Typically the whole dataset is divided
into: training set, validation set and testing set.

e Training set. The sample of data used to fit the model. The actual
dataset that is used to train the model (weights and biases in the case of
Neural Network). The model sees and learns from this data.

e Validation set. The sample of data used to provide an unbiased evalu-

ation of a model fit on the training dataset while tuning model hyperpa-
rameters. The evaluation becomes more biased as skill on the validation
dataset is incorporated into the model configuration.
The validation set is used to evaluate a given model, but this is for frequent
evaluation. Hence the model occasionally sees this data, but never does
it "learn" from this. For this reason it is important to follow the trend
of the validation set accuracy. If the training accuracy increase while the
validation one do not increase with the same velocity, decrease or remains
stable there is a possible overfitting. This means, as shown in figure 28,
that the model is too complex. Underfitting is characterized by the two
curves of validation and training do not increase during the process. This
is probably due to a too much simple model (figure 28).

e Testing set. The sample of data used to provide an unbiased evaluation
of a final model fit on the training dataset. The Test dataset provides the
gold standard used to evaluate the model. It is only used once a model
is completely trained (using the train and validation sets). The test set is
generally what is used to evaluate competing models in order to find the
best one. Many a times the validation set is used as the test set, but it is
not good practice. The test set should be well curated. It has to contain
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carefully sampled data that spans the various classes that the model would
face, when used in the real world.

The partition between these three parts of the dataset depends on the net-
work target and the amount and the sample types. Despite this it is a good
practise divide the initial dataset with about the following percentage: 70%
training set, 30% testing set and 20% of the training set for the validation one.

3.3.2. Early stopping and drop out

When training a large network, there will be a point during training when
the model will stop generalizing and start learning the statistical noise in the
training dataset. This overfitting of the training dataset will result in an increase
in generalization error, making the model less useful at making predictions on
new data. The challenge is to train the network long enough that it is capable
of learning the mapping from inputs to outputs, but not training the model so
long that it overfits the training data. The idealized expectation is that during
training the generalization error of the network evolves as shown in figure 29.

Training error —
Validation error ----—

Error

Time

Figure 29. Idealized training and validation error curves.

Early stopping is widely used because it is simple to understand and imple-
ment and has been reported to be superior to regularization methods in many
cases [27]. However in real cases it not so simple to find when is the right time
to stop training and many different stopping criteria are proposed in literature.
Another important reason why early stopping is used for regularization is be-
cause it does not interfere with backprop’s ability to control capacity locally.
Early stopping combined with backprop is so effective that very large nets can
be trained without significant overfitting [28].

Dropout is a regularization method that approximates training a large number
of neural networks with different architectures in parallel. During training, some
number of layer outputs are randomly ignored or "dropped out". This has the
effect of making the layer look-like and be treated-like a layer with a different
number of nodes and connectivity to the prior layer. In effect, each update to
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a layer during training is performed with a different "view" of the configured
layer.

Dropout has the effect of making the training process noisy, forcing nodes
within a layer to probabilistically take on more or less responsibility for the
inputs. This conceptualization suggests that perhaps dropout breaks-up situ-
ations where network layers co-adapt to correct mistakes from prior layers, in
turn making the model more robust.

Dropout simulates a sparse activation from a given layer, which interestingly,
in turn, encourages the network to actually learn a sparse representation as a
side-effect. As such, it may be used as an alternative to activity regularization
for encouraging sparse representations in autoencoder models.

Because the outputs of a layer under dropout are randomly subsampled, it
has the effect of reducing the capacity or thinning the network during training.
As such, a wider network, e.g. more nodes, may be required when using dropout
[29].

3.3.3. Data augmentation

Data augmentation is a strategy that enables practitioners to significantly in-
crease the diversity of data available for training models, without actually col-
lecting new data. Data augmentation techniques such as cropping, padding,
and horizontal flipping are commonly used to train large neural networks.

Figure 30. Example of data augmentation for image classification.

The motivation behind the use of data augmentation is both broad and
specific. Specialized image and video classification tasks often have insufficient
data. This is particularly true in the medical industry, where access to data is
heavily protected due to privacy concerns. Important tasks such as classifying
cancer types are hindered by this lack of data. Techniques have been developed
which combine expert domain knowledge with pre-trained models. Similarly,
small players in the Al industry often lack access to significant amounts of data.

Data augmentation has been shown to produce promising ways to increase
the accuracy of classification tasks [30]. To increase the performances of the
network, the algorithm implements this approach to improve the effectiveness
of the training phase.
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3.3.4. Transfer learning

Considering the context of deep learning most models which solve complex prob-
lems need a whole lot of data, and getting vast amounts of labeled data for su-
pervised models can be really difficult, considering the time and effort it takes
to label data points. A simple example would be the ImageNet dataset [31],
which has millions of images pertaining to different categories, thanks to several
years work starting at Stanford.

However, getting such a dataset for every domain is tough. Besides, most
deep learning models are very specialized to a particular domain or even a
specific task. While these might be state-of-the-art models, with really high
accuracy and beating all benchmarks, it would be only on very specific datasets
and end up suffering a significant loss in performance when used in a new task
which might still be similar to the one it was trained on. This forms the moti-
vation for transfer learning, which goes beyond specific tasks and domains, and
tries to see how to leverage knowledge from pre-trained models and use it to
solve new problems.

In order to give a strict definition of transfer learning, it is necessary to
introduce what is a "domain" and a "task".

For this purpose, a domain D consists of two components: a feature space
X and a marginal probability distribution P(X), where X = {z1,...,z,} € X.
For example, if the learning task is document classification, and each term is
taken as a binary feature, then X is the space of all term vectors, z; is the "
term vector corresponding to some documents, and X is a particular learning
sample. In general, if two domains are different, then they may have different
feature spaces or different marginal probability distributions.

Given a specific domain, D = {X, P(X)},a task consists of two components:
a label space )} and an objective predictive function f(-) (denoted by T =
{), f()}), which is not observed but can be learned from the training data,
which consist of pairs {z;,y;}, where z; € X and y; € Y. The function f(-) can
be used to predict the corresponding label, f(z), of a new instance z. From
a probabilistic viewpoint, f(x) can be written as P(y|z). In the document
classification example, ) is the set of all labels, which is True, False for a binary
classification task, and y; is "True" or "False".

For simplicity, in this survey, only the case where there is one source domain
Dg, and one target domain, Dr is considered. This is by far the most popular
of the research works in the literature. More specifically, the source domain
data can be represented as Ds = {(zs,,Ys, ), - (Ts,,+Ys, )}, where zg, € X
is the data instance and yg, € Ys is the corresponding class label. In this
document classification example, Dg can be a set of term vectors together with
their associated true or false class labels. Similarly, the target domain data
representation is Dy = {(z1,,yr, ), -, (T1, ., y7,, )}, Where the input z7, is in
Xr and yr, € Yris the corresponding output. In most cases, 0 < ny < ng.

Now it is possible to give a unified definition of transfer learning.

Given a source domain Dg and learning task Tg, a target domain Dy and
learning task 7r, transfer learning aims to help improve the learning of the
target predictive function fr(-) in Dz using the knowledge in Dg and Tg, where
DS 7& DT, or 73' 7é ’Fp [32]

Ones given a definition of transfer learning, it is important to note where the
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network can take the "learning" from. In literature several pre-trained network
were developed and are now available on-line. Some of the most famous are:
AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014),
GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016) [33].
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Figure 31. Comparison between different Deep Neural Networks.

Figure 31 shows the relation between accuracy, number of parameters (indi-
cated with the size of the circles) and the amount of operations required for a
single forward pass of different neural network architectures. The big amount
of public neural network offers new researches an important opportunity to save
time and to reach better performances. For this reason transfer learning is one
of the first approach to solve image classification problem. Even if deeper anal-
ysis then suggest to built ad-hoc CNN, a better option for this very peculiar
target, transfer learning gives quick initial results and so a way to follow.

3.4. Deep learning in Biomedical imaging

3.4.1. History of ML in computer vision and medical imaging fields

Before considering the last innovations deep learning brings in medical world,
a brief description of the history of ML in the fields of computer vision and
medical imaging is reported.

Until 1980, even when the term "machine learning" did not exist, classical
classifiers such as linear discriminant analysis (LDA), quadratic discriminant
analysis QDA, and k-nearest neighbor classifier (k-NN) were used for classi-
fication. In 1986, multi-layer perceptron (MLP) was proposed by Rumelhart
and Hinton [34]. The MLP created the second neural network research boom
(the first one was in 1960s). In 1995, Vapnik proposed support vector machine
(SVM) [35] and became the most popular classifier for a while, partially because
of publicly available code on the Internet. Various ML methods were proposed,
including random forests by Ho et al. in 1995 [36], and dictionary learning by
Mairal et al. in 2009 [37]. On the other hand, various ML with image input
techniques were proposed before the introduction of the term "deep learning".
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Figure 32. History of machine learning (ML) in the fields of computer vision and
medical imaging. Upper part, feature-based ML. Bottom part, image-based ML.

It started from the Neocognitron by Fukushima in 1980 [38]. In 1989, LeCun
et al. simplified the Neocognitron and proposed a CNN [39], but he did not
study CNNs very much until recently. In 1994, Suzuki et al. applied an MLP to
cardiac images in a convolutional way [40]. Some years later, in 2000, they pro-
posed neural edge enhancers [41]. Hinton et al. proposed a deep brief network
(DBN) in 2006 [42], and they created the term "deep learning" a year later.
Deep learning was not recognized much until late 2012. In 2012, a CNN won in
the ImageNet competition [43]. After that deep learning approach start getting
more and more popularity in various fields of application, medical imaging is
one of those. Today these kind of networks find solutions that are on par or
better than many state-of-the-art algorithms [44].

3.4.2. Applications

Deep learning now offers a large set of new tools that are applicable to many
problems in the world of medical image processing. Indeed, these tools have
already been widely employed. In particular, perceptual tasks are well suited
for deep learning.

On the international conference of Medical Image Computing and Computer-
Assisted Intervention (MICCAI) in 2018, approximately 70% of all accepted
publications were related to the topic of deep learning [45]. Given this fast pace
of progress, it is not possible to describe all relevant publications here. Despite
this, in the following there is an overview of the most relevant applications like
image segmentation, image detection and recognition, image diagnosis, physical
simulation and image reconstruction, including one or two significant examples
for each category [45, 46].

¢ Image segmentation

Medical image segmentation is a method for dividing an image into mul-
tiple regions based on a specific feature. It allows the scientist to focus on
an object based on shape, volume, relative position, and abnormality.
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Liu et al. [47] built a model that combines a deep CNN (SegNet) with
the 3D simplex deformable approach and applied this model of segmen-
tation to images of musculoskeletal tissue in magnetic resonance imaging.
Advantages of SegNet are as follows: it is designed for analysis of high-
resolution images, which is required in musculoskeletal imaging to show
fine details such as thin cartilage. Its scheme provides high memory and ef-
ficient computation to reduce output time. It is easy to implement and this
enables multiple musculoskeletal applications. The design of 3D simplex
deformable modeling preserves information about the shape and surface
of musculoskeletal structure. In short, their method produces rapid and
accurate results in clinical studies.

Image detection and recognition

Image detection and recognition deals with the problem of identifying med-
ically significant features within an image, for example, tumors, anatomi-
cal structures, and cells. In many cases, the images are volumetric. There-
fore efficient parsing is a must. A popular strategy to do so is marginal
space learning, as it is efficient and allows to detect organs robustly. Its
deep learning counter-part is even more efficient, as its probabilistic boost-
ing trees are replaced using a neural network-based boosting cascade. This
approach drives efficiency even further by replacing the search process by
an artificial agent that follows anatomy to detect anatomical landmarks
using deep reinforcement learning. The method is able to detect hundreds
of landmarks in a complete CT volume in few seconds.

Image diagnosis

Computer-aided diagnosis is regarded as one of the most challenging prob-
lems in the field of medical image processing. The clinicians who inter-
pret medical images can benefit from computer-aided systems that provide
more detailed information about certain features that might help to dis-

criminate pathology and aid in treatment planning. There are several
applications of medical image diagnosis via DCNN.

The diagnosis of the thyroid nodule is currently based on the analysis of
images acquired by ultrasound, a real-time and noninvasive technology, to
determine whether the nodule is malignant, indeterminate, or suspicious.
Thyroid nodules are heterogeneous in appearance and have many internal
components and vague boundaries that make it difficult to differentiate
between benign and malignant. To cite a representative example, Ma
et al. [48] hybridize two CNNs in order to eliminate operational error
and improve the accuracy of the result. The two networks were trained
separately and then fused together to diagnose the thyroid nodule based
on a softmax classifier. The proposed model results in an accuracy of
approximately 83.02%.

Physical simulation

A new field of deep learning is the support of physical modelling. So far
this has been exploited in the gaming industry to compute realistically
appearing physics engines, or for smoke simulation in real-time.

Unberath et al. [49] propose DeepDRR, a framework for fast and realistic
simulation of fluoroscopy and digital radiography from CT scans, tightly
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integrated with the software platforms native to deep learning. They use
machine learning for material decomposition and scatter estimation in 3D
and 2D, respectively, combined with analytic forward projection and noise
injection to achieve the required performance. On the example of anatom-
ical landmark detection in X-ray images of the pelvis, the authors demon-
strate that machine learning models trained on DeepDRRs generalize to
unseen clinically acquired data without the need for re-training or domain
adaptation. Their results are promising and promote the establishment of
machine learning in fluoroscopy-guided procedures.

¢ Image reconstruction

The reconstruction of an image from the acquired data is an inverse prob-
lem. Often, it is not possible to exactly solve the inverse problem directly.
In this case, a direct algorithm has to approximate the solution, which
might cause visible reconstruction artifacts in the image. Iterative algo-
rithms approach the correct solution using multiple iteration steps, which
allows to obtain a better reconstruction at the cost of a higher computation
time.

Also the field of medical image reconstruction has been affected by deep
learning, a recent paper by Zhu et al. [50] proposes to learn the entire
reconstruction operation only from raw data and corresponding images.
The basic idea is to model an autoencoder-like dimensionality reduction
in raw data and reconstruction domain. Then both are linked using a
nonlinear correlation model. The entire model can then be converted into
a single network and trained in an end-to-end manner. In the paper,
they show that this is possible for 2-D MR and PET imaging and largely
outperforms traditional approaches.

3.4.3. Focus on ophthalmology

Also ophthalmology greatly benefited from the recent developments in deep
learning. New studies, including pre-registered prospective clinical trials, have
shown DL systems are accurate and effective in detecting diabetic retinopa-
thy (DR), glaucoma, age-related macular degeneration (AMD), retinopathy of
prematurity, refractive error and in identifying cardiovascular risk factors (e.g.
age, blood pressure, smoking status and body mass index, figure 33) from digi-
tal fundus photographs. There is also increasing attention on the use of AT and
DL systems in identifying disease features, progression and treatment response
for retinal diseases such as neovascular AMD and diabetic macular edema using
optical coherence tomography (OCT). Additionally, the application of ML to
visual fields may be useful in detecting glaucoma progression [51].

Ophthalmology is on the cusp of a revolution in the screening, diagnosis,
and management of eye disease. This revolution is being led by computer-
based deep learning technology that has the potential to change the practice of
ophthalmology. The dependence on imaging makes the field of ophthalmology
perfectly suited to benefit from DL algorithms. Incorporation of DL algorithms
into the practice of ophthalmology has begun and could potentially change the
fundamental type of work performed by ophthalmologists.
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Original Age Smoking Status Systolic BP

Actual: 53.0 years Actual: Nonsmoker Actual: 128.5 mmHg
Predicted: 53.8 years Predicted: Nonsmoker Predicted: 130.1 mmHg

Figure 33. Attention maps for a single retinal fundus image. The left-most image is
a sample retinal image in color. The remaining images show the same retinal image,
but in black and white. The soft attention heat map for each prediction is overlaid in
green, indicating the areas of the heat map that the neural-network model is using to
make that particular prediction for the image.

DL solutions can assist clinicians in identifying abnormalities present via
a diagnostic test. In such a scenario, a provisional diagnosis with associated
description of key abnormalities found with the test may be provided by com-
puters. Confirmation of the diagnosis as well as counselling and treatment would
remain the responsibility of the ophthalmologist. DL diagnostic systems could
be integrated into the primary care setting reducing or potentially eliminating
unnecessary referrals. Taking such systems one step further, DL tools could en-
able ophthalmic self-monitoring by patients via smartphone retinal photography,
visual acuity and visual field testing. Such technology would empower patients,
facilitate early diagnosis, as well as identify treatable eye disease. Consistent in-
terpretation of ocular data by DL might also facilitate high quality ophthalmic
research by reducing grading and tester variability. Moreover DL in ocular
imaging may be used in conjunction with telemedicine as a possible solution to
screen, diagnose and monitor major eye diseases for patients in primary care
and community settings especially for those situation where is difficult to have
trained ophthalmologist this can really make the difference [52, 53].

Now some significant examples in recent literature to underline how DL could
be relevant in this particular field are reported.

Globally, 600 million people will have diabetes by 2040, with a third hav-
ing DR. Screening for DR, coupled with timely referral and treatment, is a
universally accepted strategy for blindness prevention. DR screening can be
performed by different healthcare professionals, including ophthalmologists, op-
tometrists, general practitioners, screening technicians and clinical photogra-
phers. Nonetheless, DR screening programmes are challenged by issues related
to implementation, availability of human assessors and long-term financial sus-
tainability [53]. Over the past few years, DL has revolutionised the diagnostic
performance in detecting DR. Using this technique, many groups have shown
excellent diagnostic performance. To name one Gulshan et al. [54] in 2 val-
idation sets of 9963 images and 1748 images, at the operating point selected
for high specificity, the algorithm had 90.3% and 87.0% sensitivity and 98.1%
and 98.5% specificity for detecting referable diabetic retinopathy. These results
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suggest that the use of this algorithm could lead to improved care and outcomes
compared with current ophthalmologic assessment.

It is projected that 288 million patients may have some forms of age-related
macular degeneration (AMD by 2040, with approximately 10% having inter-
mediate AMD or worse [53]. With the ageing population, there is an urgent
clinical need to have a robust DL system to screen these patients for further
evaluation in tertiary eye care centres. In order to find a solution Lee et al.
[55] develop a CNN. Starting from 2.6 million OCT images linked to clinical
data points from the electronic medical record (EMR), 52690 normal macular
OCT images and 48312 AMD macular OCT images were selected. Then a deep
neural network was trained to categorize images as either normal or AMD. At
the image level, they achieved an area under the ROC curve of 92.78% with
an accuracy of 87.63%. Authors conclude that these findings have important
implications in utilizing OCT in automated screening and the development of
computer-aided diagnosis tools in the future.

Another challenge in the development of AI models in ophthalmology has
been the limited availability of large amounts of data for both the rare diseases
and for common diseases which are not imaged routinely in clinical practice.
There is a consistent part of literature dedicated to image simulation, a possi-
ble answer to this current issue. For example Schiffers et al. [56] demonstrate
that cycleGANs may synthesize virtual angiographic images from their conven-
tional fundus counterparts (figure 34). Fluorescent angiographic methodology
augments the capability to image the functional state of retinal circulation of
conventional fundus imaging. Despite the diagnostic benefits, physicians are
increasingly reluctant to use angiographic imaging technology because of its se-
vere potential side effects. A successful synthesization of an angiographic image
could reduce the need for actual angiographic imaging. Moreover it could allow
to create large artificial dataset, one of the key point to efficiently train modern

algorithms.

.

(a) Real (b) Fake (c) Real (d) Fake

Figure 34. Each row shows from left to right the real and generated angiographic
image,the authentic color image and the reconstructed color image to show cycle con-
sistency.
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3.5. Related work

Studies on automatic cataract diagnosis have gained wide attention for years,
owing to the great harm of cataract. Even if it is not the only kind of image
uses for this task, this paragraph mainly focuses on fundus images. Recently
many methods have been proposed to solve this issue and they are manly based
on either machine learning or deep learning.

Some exceptions exist, in 2008 Abdul-Rahman et al. [57] proposed a tech-
nique to detect cataract based on Fourier transform of fundus images. The
idea is that the image spectrum falls away to higher frequencies more quickly
in cataractous images with respect to physiological ones. This is due to the less
defined image contours in pathological fundus images and the authors found a
parameter that describes this behaviour and useful for cataractous image clas-
sification. Some years later Zheng et al. [58] used a similar approach exploiting
Fourier transform. Once calculated power spectrum, linear discriminant anal-
ysis (LDA) performs cataract grading into two and four level according to the
disease severity.

Following researches tend to classify fundus images not only in healthy and
pathological, they propose a more specific classification including various stages
of the disease. Usually authors classify these images as non-cataractous, mild,
moderate and severe cataract.

In [59], Guo et al. examined wavelet transform as well as sketch-based
methods to extract features from fundus images. After the integration of these
features they applied multi-Fisher classification algorithm for cataract detection
and grading. To improve the accuracy of diagnosis of cataract, Yang et al.
[60] proposed an ensemble learning based approach. In this approach, three
independent feature sets: wavelet-, sketch-, and texture-based features, which
were extracted from fundus images, were served to build SVM models and Back
Propagation Neural Network models; after that, majority voting and stacking
were utilized to integrate the multiple base learning models for final fundus
image classification. Another difference between the two approaches is the use
of pre-processing. Guo et al. chose raw images while Yang et al. transformed
fundus images before using them as input. In particular authors converted
original images from RGB color space to the green channel and after that they
applied histogram equalization to further increase the global contrast.

These kinds of pre-processing are widely used in cataract detection algorithm
because it has been seen that enhance the contrast between the background and
blood vessels improves classification performances. In addition to histogram
equalization Kolhe et al. [61] performed skeletonization to reduce foreground
regions in a binary image and highlighted vessel pathways. After that authors
designed two different algorithms: a binary SVM to classify fundus images and
a multi-class Fisher discriminant analysis algorithm (MDA) to grade cataract
images into mild, moderate and severe.

SVM approach is very popular in literature as machine learning tool and
it is used to solve a wide range of tasks. Also Harini et al. [62] based their
algorithm on an SVM approach. A significative difference from the previous
one is that in [62] authors wanted to improve the quality of the images. A
high-quality image dataset can bring significant improvement in final results.
In order to remove gaussian noise a mean filter was implemented. Authors said
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that other filters involved in salt and pepper noise reduction are not necessary
since fundus images were captured by high quality fundus cameras. It is worth
mentioning Qiao et al. [63] and their SVM approach, in this research authors
chose to extract features not from the whole image but from sub-images. The
algorithm first divides the whole image into 16 small-block images evenly. Since
the optic disc is an important basis for detecting the cataract, the sub-image
containing the optic disc is taken out separately when the image is divided into
blocks. After that, features (such as color feature, wavelet feature and texture
feature) are extracted from each sub-image and finally support vector machine is
used to train and classify fundus images. This approach reveals one of the best
performances compared to the others machine learning approaches previously
analyzed. Indeed it has an accuracy equal to 95.33% when classify images as
cataractous or not and if it grades fundus images into four level it reaches more
than 87%.

A quite different approach was proposed by Song et al. [64]. The authors
utilized semi-supervised learning for automatic cataract classification and grad-
ing. They decided to use a large amount of unlabeled images together with a
small part of labeled ones. In the stage of building a classifier, two base al-
gorithms are used which are Bayesian network and decision tree, respectively.
Then they used tri-training which generates three classifiers from the original
labeled examples and finally unlabeled examples refine initial classifier in an
iterative method.

So far, only machine learning based examples have been discussed, however
a congistent part of literature regards deep learning approach seems to be very
promising. In the field of automatic cataract detection one of the first deep
learning-based algorithm dates back to 2013. Yang et al. [65] built a three-
layer back propagation network with 40 neurons within the input layer. Each
of these neurons represents one of the 40 features extracted from luminance
features, gray co-occurrence matrix and gray-gradient co-occurrence matrix.

The idea to use features instead of images as input it is not a common choice
for this kind of classification task, in fact more recent researches focus on convo-
lutional neural network, obtaining, in general, better results. The deep convolu-
tional neural network of Zhang et al. [66] accepts as input pre-processed fundus
images where only green channel is displayed. Authors trained this network
with a dataset containing more than 5600 images. A clear difference between
articles about machine learning and the ones about deep learning is the amount
of samples within the respective datasets. Talking about hundreds of images
for machine learning and thousands for deep learning, in general, it is an order
of magnitude the difference between them. It is well known that to efficiently
train a deep neural network big datasets are necessary. Moreover, since tests
are performed in a larger amount of data, this characteristic inevitably improves
classification reliability.

Dong et al. [67] started their study from a CNN utilized only for feature
extraction. The final classification step of classification is reserved to either an
SVM algorithm or a Softmax approach. They compared these two techniques
in order to see which one has the best results. In their case Softmax turns out
to have better accuracies both for two- and four-level grading.

In [68], Li et al. proposed a ResNet of 18-layer that inputs retinal fun-
dus images once again in green channel. The interesting point of this article
is that the algorithm produces as output also heatmaps. Heatmaps highlight
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the regions in an image that the CNN focuses on while trying to make a pre-
diction. These results confirm that optic disc and blood vessels are important
features in cataract diagnosis. Zhang et al. [69] wanted to classify fundus
images into six different level of cataract severity, including non-cataractous,
slightly mild, mild, medium, slightly severe and severe cataract. This ambitious
target finds his basements on a complex classification system. The algorithm
extracts high-level features from residual network and texture features from gray
level co-occurrence matrix. Then to automatically grade cataract two support
vector machine (SVM) classifiers are used as base-learners to obtain the proba-
bility outputs of each fundus image. Last step: fully connected neural network
(FCNN) is used as meta-learner to output the final classification result, which
consists of two fully-connected layers. The results are interesting, the whole
process has an average accuracy of 92.66% in six-level grading.

One of the most recent research conducted in this field was published in
2019 by Xu et al. [70]. Similar to [63] authors divided input images into eight
squared sub-images that cover the whole retina. After that they built a CNN
that separately analyze each sub-image. Finally a majority voting approach is
performed in order to classify original fundus images.

It is worth mentioning one last thing. Each dataset of all these studies were
built starting from high-quality fundus images captured either in hospitals or
specialized clinics. Physicians and eye specialist ensure the quality and the
labels reliability of the images and this is a fundamental prerogative to start
any automatic diagnose research.
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4. Method

This chapter presents the main part of the thesis project. The aim is to develop
an algorithm able to automatically classify a D-EYE fundus image in according
to the presence of cataract or not. D-EYE, of which can be found a more detailed
description in section 2.4, is a smartphone-based digital direct ophthalmoscope
that produces retinal videos and photos.

This device is particularly suitable for screening operation. Some algorithms
have already been designed for D-EYE outputs. Currently it can extrapolate
from retinal fundus videos the "good" and the "bad" frames. Good frames are
the ones where the retina is clearly visible while bad frames are all the others,
where retina is unfocused or not present. Indeed, lot of frames result useless
for eye examination, such as the ones show exam room details, patient faces or
eyelids when subjects blink. If necessary, frame selection can be more specific
by picking only images where optic disc is present and focused. From these
frames, the algorithm is then able to perform optic disc and cup segmentation.
This procedure could be very useful for physicians, indeed the cup-to-disc ratio
(often notated CDR) is a key parameter that ophthalmologists use for glaucoma
detection and for monitoring how the disease advances.

Now the company aims to broaden the range of possible applications of
his device. D-EYE wants to investigate if automatic algorithms can provide
a reliable support to the diagnoses of various eye disease including cataract.
Automation is very important for this kind of medical device whose target is
screening. Thanks to this improvement also non-expert ophthalmologists will be
able to use D-EYE, make diagnoses and share hypothesis with other physicians
to confirm results. It is worth pointing out that the algorithm can not replace
years of study and ophthalmologists professionalism. Rather than an alternative
it has to be seen as a supporting tool.

The next paragraphs will be organized as follow. First it describes the two
image datasets used to build the CNN and the different image pre-processing
utilized to improve classification accuracy. Finally the last three paragraphs
present an overview of all phases necessary to implement the convolutional neu-
ral network. The first one outlines the internal structure of the network while
the following two summarize training and testing processes, respectively.

4.1. Dataset

Building an effective dataset is the first step towards creating an accurate convo-
lutional neural network. As said in 3.3, the training phase of a CNN is dataset-
dependent, in particular the amount and the quality of the images greatly affect
final results.
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4.1.1. Dataset 1 - ODIR5k and Retina dataset

Initially, in order to create a satisfactory starting point, two different public
datasets of fundus oculi images are merged. A description of both sources will
be now presented.

Retina dataset (https://github.com/yiweichen04/retina_ dataset)
It contains 601 fundus oculi images in total. Each image is labelled in accordance
with one of the following categories:

e Normal, without any disease. 300 images. Example of file name catego-
rized as Normal: “NL 001"

e Cataract, affected by cataract. 100 images. Example of file name catego-
rized as Cataract: “Cataract 001"

e Glaucoma, affected by glaucoma. 101 images. Example of file name cate-
gorized as Glaucoma: “Glaucoma_001”.
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o Retina, affected by other retina disease different from either cataract or
glaucoma. 100 images. Example of file name categorized as Retina:
“Retina_ 001”.

Regarding image resolution, inside this dataset there are three different pixel
sizes:
- 1848x1224: 40 images (Normal 22, Cataract 5, Glaucoma 5, Retina 8)
- 2464x1632: 158 images (Normal 81, Cataract 19, Glaucoma 22, Retina 36)
- 2592x1728: 403 images (Normal 197, Cataract 76, Glaucoma 74, Retina 56)
No information about how these images were collected is available. Since the
target of this work is to diagnose specifically cataract and not other eye disease
to build the final dataset only Normal and Cataract images were considered
and taken into account.

Ocular Disease Recognition — ODIR5K (https://odir2019.grand-challenge.org/)
This is a wider and more complicated dataset than the previous one. It is a
structured ophthalmic database of 5000 patients with age, colour fundus pho-
tographs from left and right eyes and diagnostic keywords from doctors. Since
this dataset is part of an International Competition on Ocular Disease Intelligent
Recognition (ODIR), hosted by Peking University (PKU) and organized by Na-
tional Institute of Health Data Science at Peking University (NIHDS-PKU) and
Institute of Artificial Intelligence at Peking University (IAI-PKU), the dataset
is divided into training set (7000 images), with annotation, and testing set (1000
images), without annotation. Form now on only images belong to training set
will be considered.

For each patient annotations are labeled by trained human readers with
quality control management. They classify subject into eight labels including
normal (N), diabetes (D), glaucoma (G), cataract (C), age-related macular de-
generation (A), hypertension (H), myopia (M) and other diseases/abnormalities
(O) based on both eye images and additionally patient age. Moreover, for each
fundus image there is a diagnostic keyword which described the clinical situation
of that particular eye. The following list summarize all the different diagnostic
keywords used in this dataset:

- Anterior segment image - cataract
- asteroid hyalosis - central retinal vein occlusion
- atrophy - chorioretinal atrophy
- branch retinal artery occlusion - depigmentation of the retinal pig-
- branch retinal vein occlusion ment epithelium
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- diabetic retinopathy

- drusen

- dry age-related macular degeneration
- epiretinal membrane

- fundus laser photocoagulation spots
- glaucoma

- hypertensive retinopathy

- idiopathic choroidal neovasculariza-
tion

- image offset

- laser spot,

- lens dust

- low image quality

- macular coloboma

- macular epiretinal membrane

- macular hole

- maculopathy

- mild non proliferative retinopathy

- moderate non proliferative retinopa-
thy

- myelinated nerve fibers

- myopic maculopathy

normal fundus

- old branch retinal vein occlusion

old central retinal vein occlusion

- old chorioretinopathy

- old choroiditis

optic disc edema

- optic disk epiretinal membrane

- optic nerve atrophy

- pathological myopia

- peripapillary atrophy

- pigment epithelium proliferation

- post laser photocoagulation

- post retinal laser surgery

- proliferative diabetic retinopathy

- punctate inner choroidopathy

- refractive media opacity

- retinal pigmentation

- retinochoroidal coloboma

- rhegmatogenous retinal detachment
- severe non proliferative retinopathy
- severe proliferative diabetic retinopa-
thy

- silicone oil eye

- spotted membranous change

- suspected glaucoma

- suspected moderate non proliferative
retinopathy

- suspected retinal vascular sheathing
- tessellated fundus

- vitreous degeneration

- wedge white line change

- wet age-related macular degeneration
- white vessel

In the same annotation image it is possible to find one or more diagnostic
keywords. Figure 35 presents a complete example of a patient description.

Patient Sex ‘

Basic Info.

Female

Patient Age ‘ 69

Fundus
Images

0_right.jpg

Laterality

Right

Disease

M

Labels

0 0 0 0

Diagnostic
Keywords

Normal fundus

Figure 35. Example of structured ophthalmic record in ODIR-5K dataset.

As said before, the focus is mainly on cataract images, for this reason ODIR-

5K can be simplified as follow:
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e Not cataract, 6707 images (normal fundus 2870, other diagnosis different
from cataract 3837)

e Cataract, 293 images (only cataract 249, cataract and other diagnostic
keywords 44)

NORMAL FUNDUS

2870

NOT CATARACT
TRAINING 6707
7000 OTHER DISEASE

3837
ODIR-5K ONLY CATARACT

249

CATARACT
293
CATARACT AND
TESTING OTHERS
1000 293

Figure 36. Simplified structure of ODIR-5K.

Regarding image resolution, inside this dataset there are several different
pixel sizes, it is possible to divide them into three different intervals:
- 250x188 - 972x785: 41 images
- 1280x960 - 1974x1483: 1547 images
- 2048x1536 — 5184x3456: 5412 images
This dataset is ‘real-life” set of patient information collected by Shanggong
Medical Technology Co., Ltd. from different hospitals/medical centers in China.
In these institutions, fundus images are captured by various cameras in the
market, such as Canon, Zeiss and Kowa, resulting into varied image resolutions.
Patient identifying information are all removed.

Both sources contain several fundus images acquired by different devices.
Each fundus camera has his own properties and produces slightly different im-
ages. Moreover figure 37 compares two fundus images, one captured by a fundus
camera (figure 37a) and the other captured by D-EYE (figure 37b). As it is
possible to notice several differences characterize each image. On the left it is
possible to observe an image that has a larger field of view (FoV) and contains
almost the entire fundus oculi while one the right D-EYE produces an image,
whose FoV is less wide, focuses on the optic disk. In general D-EYE can record
images of all parts of the fundus but the most interesting frames regard optic
disk and the areas nearby. Another peculiarity belonging only to D-EYE images
is the presence of the iris while in fundus camera images usually there is nothing
but the fundus oculi.

From now on, for simplicity, the dataset presented in this paragraph will be
considered as "dataset 1" while the dataset described in the next paragraph as
"dataset 2".

In practice dataset 1 contains several fundus images but these are not com-
parable to the ones related to the classification target. Even if this dataset
remains essential for an initial tuning of the hyperparameters a dataset with
D-EYE images is necessary. D-EYE is a relatively young device and it has not

64



4 METHOD

(a) (b)

Figure 37. Comparison between fundus images captured by a fundus camera (a) and
captured by D-EYE (b).

the possibility to perform a sufficient amount of examination in patient with
cataract in order to build a dataset able to train a CNN. This is the reason why
the company develop an algorithm that can produce images similar to the ones
acquired by D-EYE. Dataset 2 is built thanks to this algorithm.

4.1.2. Dataset 2 - DEYE-like Tool

DEYE-like Tool is the name of the algorithm that modifies fundus camera im-
ages to make them similar to thoese acquired with the D-EYE device. Figure
38 summarizes the main steps to produce DEYE-like images. Since the starting
point of this process is a fundus image, dataset 1 is used to extrapolate "raw
material". For each image, the software identifies the optic disc and performs a
resizing based on the selected area. After that, the code modifies image prop-
erties (blur and focus) in order to be consistent with D-EYE images. A set of
cropped images is sampled, with each cropped image corresponding to a differ-
ent location. Last two steps consist in simulating a proper field of view and
adding a synthetic iris.

As it is shown in figure 38 (top-right) the results of this process are DEYE-
like images. Similar to those that can be extracted from a D-EYE video.

It is worth mentioning that this process has two variants based on the pur-
pose of the generated images. Specifically, if images are designed to be part
of the training set then the areas where the algorithm can sample from are
uniformly distributed within the ideal square inscribed the retina (figure 39a).
Talking about testing images, the software selects a more restricted zone, con-
sidering only a circumference that includes the OD (figure 39b).

Thanks to this code it is possible to generate an infinite number of samples
to train and test networks. For this project three different datasets are created,
one for training and validation and the other two only for testing.

e Dataset 2.1: 6778 images (Non cataract 5544, Cataract 1234) utilized for
training and validation.

e Dataset 2.2: 3506 images (Non cataract 2367, Cataract 1139) utilized for
testing.

e Dataset 2.3: 1551 images (Non cataract 189, Cataract 1362) utilized for
testing.
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Resulting images

DEYE-like
Tool

Fundus camera images
sampled and modified to
be like DEYE images

g: : R: : Main operations:
* Resize based on OD
Blurring

3 * Unfocusing
I * FoVsimulation
* Synthetic iris addition

Figure 38. DEYE-like Tool principle of working.

Sampling of the cropped images for training Sampling of the cropped images for testing

Figure 39. Comparison between the processes of sampling in images related to
training and testing.

4.2. Pre-processing

In general, CNNs are designed to extrapolate important features directly from
input images. For this reason, sophisticated pre-processing is usually not neces-
sary. However, for this project, better performances are reached using modified
images instead of raw ones as input because the literature review shows that
some specific elaboration could improve both training phase and classification
performances. First each image has been resized to a smaller resolution in ac-
cording to input size of the different CNNs implemented. This size reduction is
necessary to allow the net to process images but also it standardizes all inputs
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and significantly reduces computational time.

Taking into account a smaller amount of pixels could be risky for the loss
of information. Therefore, image dimensions have been chosen to have a good
compromise between preserving all important features (such as optic disc, vessels
and macula) and having an acceptable computational time.

Several pre-processing approaches for fundus images can be found in litera-
ture. Each of them is thought to enhance the visualization of a certain feature.
For example, considering an RGB image, in order to obtain a better contrast
between the background and blood vessels many research suggest looking at
green channel. Instead, if the target is optic disc detection sometimes red chan-
nel appears to be a better choice [71]. The following paragraphs will present
the different pre-processing procedures tried in order to improve classification
accuracy.

4.2.1. Fourier Transform

The Fourier transform is an operation that transforms data from the time (or
spatial) domain into the frequency domain. Beside several application in signal
processing field, Fourier Transform is an important image processing tool which
is used to decompose an image into its sine and cosine components. The output
of the transformation represents the image in the Fourier or frequency domain,
while the input image is the spatial domain equivalent. In the Fourier domain
image, each point represents a particular frequency contained in the spatial
domain image.

Since this work concerns only with digital images, the following description
will be restricted only to Discrete Fourier Transform (DFT). The DFT is the
sampled Fourier Transform and therefore does not contain all frequencies form-
ing an image, but only a set of samples which is large enough to fully describe
the spatial domain image. The number of frequencies corresponds to the num-
ber of pixels in the spatial domain image, i.e. the image in the spatial and
Fourier domain are of the same size.
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where f(i, ) is the image in the spatial domain and the exponential term is
the basis function corresponding to each point F'(k,[) in the Fourier space. The
basis functions are sine and cosine waves with increasing frequencies, F(0,0)
represents the DC-component of the image which corresponds to the average
brightness and F(N-1,N-1) represents the highest frequency.

In most implementations, and also in this work, the Fourier image is shifted
in such a way that the DC-value, F(0,0), is displayed in the center of the image.
The further away from the center an image point is, the higher is its correspond-
ing frequency. Moreover, since the dynamic range of the Fourier coefficients is
too large to be displayed on a image, it is necessary to apply a logarithmic trans-
formation in order to build a figure that allows to distinguish the components
of all frequencies.
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The use of Fourier transforms to analyse the optical property of images is
well known. It has been used to examine ocular optical quality, analysis of ocular
dynamic wavefront aberrations, early diagnosis of glaucoma, automated local-
ization of anatomic features on the retina, modelling polar variations in videok-
eratographic power values and assessment of corneal endothelial cell structure.
As introduced in section 4.1 both in [57] and [59] authors used discrete Fourier
transform to pre-process images. This reveals that also in cataract detection is
a well-established technique.

(b)

Figure 40. Example of image pre-processing with Fourier transform. Figure (a), (b):
original fundus images cataractous and not cataractous, respectively. Figure (c), (d):
images (a) and (b) after Fourier transform, respectively.

4.2.2. Green channel

An RGB image can be considered as a 3D array with dimensions m-by-n-by-3.
The first two elements, m and n, indicate width and hight while the third element
specifies color channel: red, green or blue. Therefore every pixel expresses, for
each color, a level of brightness, usually within the interval 0-255. Taking into
account only one channel means creating a new image using only the matrix of
pixel related to a color, in this case green.

This kind of image pre-processing is very popular when retinal images are
involved. Several researches [58][60][64][65][66][68][70] exploit green channel in
order to enhance contrast between the background and blood vessels and to
reduce artifacts due to uneven illumination. Another interesting aspect of us-
ing only one color channel instead of three is that this reduces the amount of
data by 2/3 archiving an effective data compression and greatly reducing the
computational time.
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(a) (c)
(b) (d)
Figure 41. Example of image pre-processing with green component. Figure (a), (b):

original fundus images cataractous and not cataractous, respectively. Figure (c), (d):
images (a) and (b) after extrapolating only green channel, respectively.

4.2.3. Histogram equalization

Histogram equalization is a more sophisticated technique, it modifies the dy-
namic range of an image by altering the pixel intensity values guided by the
histogram of that image. Recalling that the intensity histogram of an image is
a table of counts, each bin represents a range of intensity values. The counts
record the number of times each intensity value range occurs in the image. For
an RGB image, there is a separate table entry for each of the R, G, and B com-
ponents. Histogram equalization creates a non-linear mapping, which reassigns
the intensity values in the input image such that the resultant images contain a
uniform distribution of intensities, resulting in a flat (or nearly flat) histogram.
The resulting image typically brings more image details to light, since it makes
better use of the available dynamic range [72].

It is not difficult to find image analysis studies where this technique is used to
enhance general contrast. Regarding fundus images, histogram equalization is
usually applied [60][64][65] together with the isolation of the green component,
while in [61] it is used to uniformly adjust the contrast of the image before
applying skeletonization.

In order to perform histogram equalization in fundus images it is possible to
exploit two different MATLAB functions.

e J = histeq(I,hgram) transforms the RGB image I so that the histogram
of the output RGB image J with length bins approximately matches the
target histogram hgram.

e J = adapthisteq(I) enhances the contrast of the grayscale image I by trans-
forming the values using contrast-limited adaptive histogram equalization
(CLAHE)

CLAHE is an adaptive contrast enhancement method. It is based on adap-
tive histogram equalization (AHE), where the histogram is calculated for the
contextual region of a pixel. The pixel’s intensity is thus transformed to a value
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within the display range proportional to the pixel intensity’s rank in the local
histogram. CLAHE is a refinement of AHE where the enhancement calculation
is modified by imposing a user-specified maximum, ie, clip level, to the height
of the local histogram, and thus on the maximum contrast enhancement fac-
tor. The enhancement is thereby reduced in very uniform areas of the image,
which prevents overenhancement of noise and reduces the edge-shadowing effect
of unlimited AHE. [73]

(a) (c)
(b) (d) {f)

Figure 42. Example of image pre-processing with histogram equalization. Figure
(a), (b): original fundus images cataractous and not cataractous, respectively. Figure
(c), (d): images (a) and (b) after using histeq, respectively. Figure (e), (f): images (a)
and (b) after using adapthisteq, respectively.

4.3. CNN architecture

The core of the algorithm is the network architecture, i.e. how each layer is
implemented and how all layers are chained together. A first approach to achieve
the task of this work is using transfer learning. Paragraph 3.3.4 offers a brief
introduction to this technique and describes his major advantages.

MATLAB offers an easy way to implement transfer learning and it pro-
vides ready-to-load the most common CNNs such as AlexNet, GoogLeNet,
SqueezeNet and others. Listing 1 shows an example of the code utilized to
create a network starting from AlexNet.

AlexNet is a convolutional neural network that has 25 layers. The network it
is possible to load from MATLAB is a pretrained version of the network trained
on more than a million images from ImageNet database. The pretrained net-
work can classify images into 1000 object categories, such as keyboard, mouse,
pencil, and many animals. As a result, the network has learned rich feature
representations for a wide range of images.

Listing 1. Example of transfer learning code

net = alexnet;
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layersTransfer = net.Layers(1l:end—3);

samples = imdsTrain.countEachLabel;
classWeights = 1./samples.Count;
classWeights = classWeights ’/mean(classWeights) ;

layers = |
layersTransfer

fullyConnectedLayer (2, WeightLearnRateFactor’,20,
"BiasLearnRateFactor’,20)

softmaxLayer

weightedClassificationLayer (classWeights) |;

All the layers but the last three are transferred to the new network. The
replacement of the last layers is necessary to let the neural network be able to
classify retinal images as request by the task. As it is possible to notice last
layers are strictly related to the final classification. Paragraphs 3.2.4 and 3.2.5
describe fully connected layer and softmaz layer, respectively. Here it is worth
presenting some more details about input options in the fully connected layer
and what is a weighted classification layer.

Looking at the code, fully connected layer is called in line 11. Value 2
indicates the number of classes while WeightLearnRateFuactor and BiasLearn-
RateFactor are nonnegative scalar numbers by which the software multiplies the
global learning rate to determine the learning rate for the weights in this layer.

Weighted classification layer is a particular type of classification layer useful
in cases, such as this task, where there the dataset is unbalanced. In general
classification layer computes the cross entropy loss for multi-class classification
problems with mutually exclusive classes. The peculiarity of this layer, as sug-
gests the name, is that the loss is calculated setting the weights in according
to the number of samples in each class. This improves the network ability to
correctly classify images belonging to the class with less samples, the patholog-
ical one. This is the most critical classification since it is fundamental to lower
cataract false negative and weighted classification layer is a good strategy to
reduce this problem.

Starting with a pre-trained network is ideal to test the feasibility of the
project. It is a relatively quick way to see if the accuracy reached is suffi-
cient to encourage further studies with deep learning. On the other hand, once
performed this first step, a more specific network is necessary. AlexNet is spe-
cialized in classify common objects like pencil, keyboards and several type of
animals. For this reason it is important to build a network ex novo, specific for
retinal images. The proposed structure is the following one (Listing 2).

Listing 2. CNN architecture implemented
inputSize = [320 320 3];
samples = imdsTrain.countEachLabel;

classWeights = 1./samples.Count;
classWeights = classWeights ’/mean(classWeights) ;
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cnn = |
imagelnputLayer (inputSize)

convolution2dLayer (3,8, 'Padding’, "same )
batchNormalizationLayer
reluLayer

maxPooling2dLayer (2, Stride ’,2)

convolution2dLayer (3,16, 'Padding’, "same )
batchNormalizationLayer
reluLayer

maxPooling2dLayer (2, Stride ’,2)

convolution2dLayer (3,32, 'Padding’, "same ")
batchNormalizationLayer
reluLayer

maxPooling2dLayer (2, Stride *,2)

convolution2dLayer (3,32, 'Padding ’, "same ")
batchNormalizationLayer
reluLayer

fullyConnectedLayer (10)

fullyConnectedLayer (2)

softmaxLayer

weightedClassificationLayer (classWeights) |;

Image input size (320x320) is chosen to be a submultiple of usual dimensions
of images acquired by D-EYE (640x640). From line 7 to line 35 it is possible to
observe the whole CNN structure. This network consists in 20 layers in total,
the proposed architecture consists of four convolutional units interspersed with
max pooling layers. A convolutional unit includes a convolutional layer, a batch
normalization layer and a ReLU layer.

In each convolutional layer the parameter FilterSize is 3, this means that
the size of the local regions to which the neurons connect in the input image is
3x3. Regarding NumFilters, they are set to progressively larger numbers (8-16-
32), the deeper the algorithm goes into the network the higher is the number
of neurons in the convolutional layer that connect to the same region in the
input. The Stride remains 1 by default and Padding, same indicates that the
software calculates the size of the padding at training time so that the output
has the same size as the input. Figure 43 shows the outputs after the input
image passes through the first convolutional layer. Once again optic disc and
blood vessels highlight the difference between the non cataractous image (figure
43a) and the cataractous one (figure 43b) and this strengthen the importance
of these features.

The second layer of these convolutional units is a batch normalization layer.
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(b)

Figure 43. Output images after the first convolutional layer. Figure (a) shows the
output when the input is a non cataractous image. Figure (b) shows the output when
the input is a cataractous image.

Batch normalization layers normalize the activations and gradients propagat-
ing through a neural network, making network training an easier optimization
problem. To speed up training of convolutional neural networks and reduce
the sensitivity to network initialization, batch normalization layers are usually
put between convolutional layers and nonlinearities, such as ReLU layers. In
practice this kind of layer normalizes its inputs z; by first calculating the mean
pp and variance 0% over a mini-batch and over each input channel. Then, it

calculates the normalized activations as
. _ ZTi— HB

B \/0123—1—6

Here, € improves numerical stability when the mini-batch variance is very
small. To allow for the possibility that inputs with zero mean and unit variance
are not optimal for the layer that follows the batch normalization layer, the
batch normalization layer further shifts and scales the activations as

yi = Y2 + 3

Where the offset S and scale factor v are learnable parameters that are
updated during network training.
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The last layers involved into the final classification process are the same as
in Listing 1. For a more detailed description of CNN layers refer to section 3.2.

4.4. CNN training

Once tested the workability of the task through various pre-trained networks
and defined the definitive CNN architecture, the natural following step is to
train the network. This is one of the most critical part and from the correct
setting of the hyperparameters greatly depends final results.

The following figure (figure 44) summarizes all the options utilized to train
the proposed network and the next part will briefly describe the most important
training properties.

TrainingOptionsSGDM with properties:

Momentum: 0.3%000
InitiallearnRate: 1.0000e-04
LearnRateScheduleSettings: [1x1 struct]
L2Regularization: 1.0000e-04
GradientThresholdMethod: 'lZnorm'
GradientThreshold: Inf
MaxEpochs: 15
MiniBatchSize: 10
Verbose: 0
VerboseFreguency: 50
ValidationData: [1x1 matlab.io.datastore.ImageDatastore]
ValidationFrequency: 3
ValidationPatience: Inf
Shuffle: 'every-epoch'
CheckpointPath: ''
ExecutionEnvironment: 'auto'
WorkerLoad: []
CutputFen: []
Plots: 'training-progress'
Sequencelength: 'longest'
SequencePaddingValue: 0
DispatchInBackground: 0

Figure 44. CNN training options.

The top left caption says: "TrainingOptionsSGDM". SGMD (Stochastic
Gradient Descent with Momentum) The word "stochastic" means a system or a
process that is linked with a random probability. Hence, in Stochastic Gradient
Descent, a few samples are selected randomly instead of the whole dataset for
each iteration. In Gradient Descent there is a term called "batch" which denotes
the total number of samples from a dataset that is used for calculating the
gradient for each iteration. In typical Gradient Descent optimization the batch
is taken to be the whole dataset. Although using the whole dataset is useful
for getting to the minima in a less noisy and less random manner, the problem
arises when datasets gets big, such as in this project.

This problem is solved by Stochastic Gradient Descent. In SGD, the algo-
rithm uses only same samples (mini-batch) to perform each iteration. Samples
are randomly shuffled and selected for performing each iteration. Since the im-
ages from the dataset are chosen at random, the path taken by the algorithm
to reach the minima is usually noisier than typical Gradient Descent algorithm.
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Even though this process requires a higher number of iterations to reach the
minima than typical Gradient Descent, it is still computationally much less ex-
pensive than classic Gradient Descent techniques. Hence, in most scenarios,
SGD is preferred for optimizing a learning algorithm.

The standard gradient descent algorithm updates the network parameters
(weights and biases) to minimize the loss function by taking small steps at each
iteration in the direction of the negative gradient of the loss,

01_;,_1 = Gl - OzVE(Gl)

where [ is the iteration number, o > 0 is the learning rate, 6 is the parameter
vector, and F(0) is the loss function. The stochastic gradient descent algorithm
can oscillate along the path of steepest descent towards the optimum. The "M"
of SGMD indicates the momentum, as shown in figure this parameter is set
to 0.9. Adding this term to the parameter update is one way to reduce this
oscillation. The stochastic gradient descent with momentum update is

9l+1 =0, — aVE(&l) + ’Y(el — 9171)

where 7 determines the contribution of the previous gradient step to the
current iteration.

InitialLearnRate equals to 0.0001 corresponds to « in the previous formula
at the beginning of the process. With the parameter LearnRateScheduleSettings
it is possible to change, usually decrease, o during the training. In this case
the choice is to keep this value constant. Inside his documentation, MATLAB
remembers that if the learning rate is too low, then training takes a long time.
If the learning rate is too high, then training can reach a suboptimal result.
The setting of this parameter aims to have a good compromise between time
consuming and optimal results.

Adding a regularization term for the weights into the loss function E(6) is
one way to reduce overfitting. The regularization term is also called weight
decay and in this project is L2Regularization. In this way the loss function with
the regularization term takes the form

Er(0) = E(0) + \Q(w)

where w is the weight vector, A is the regularization factor (coefficient), and
the regularization function Q(w) is

1
Qw) = inw.

GradientThresholdMethod and GradientThreshold are parameters related to
gradient clipping. If the gradient increases in magnitude exponentially, then
the training is unstable and can diverge within a few iterations. This "gradient
explosion" is indicated by a training loss that goes to NaN or Inf. Gradient
clipping helps prevent gradient explosion by stabilizing the training at higher
learning rates and in the presence of outliers.

75



4 METHOD

Epochs and mini-batch are described in section 3.3. After several trials 15
epochs and 10 as mini-batch size reveal good performances together with an
acceptable computational time.

VerboseFrequency indicates the number of iterations between of printing onto
the command window training progress. This property only has an effect when
Verbose value equals true therefore in this case it has no effect. In order to
follow training process the algorithm exploits the property Plots. Setting the
value training-process the algorithm display a figure which shows mini-batch
loss and accuracy, validation loss and accuracy, and additional information on
the training progress. Figure 45 is an example of the plot produced by the
algorithm analysing only a small part of the dataset.

2| Training Progress (03-Jun-2020 09:40:43) -a
Training Progress (03-Jun-2020 09:40:43)
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Figure 45. CNN training process.

Each plot in the figure shows three different curves: training (smoothed),
training and validation. These lines can be very useful in order to follow the
training process epoch by epoch and to detect possible over/under fitting. In
particular validation curve is built starting from ValidationData. ValidatioData
is simply an image datastore containing all data utilized for validation during
training, in this specific case 30% of the whole dataset. Each dot of the valida-
tion dashed line represent the evaluation of validation metrics and the iterations
between one of these and the following one can be modified through the param-
eter ValidationFrequency. The ValidationPatience value is the number of times
that the loss on the validation set can be larger than or equal to the previously
smallest loss before network training stops. Setting this value to Inf means that
the training process will not stop until the end of the last epoch.

Last two properties it is worth mentioning are: Shuffle, every-epoch and
SequenceLength, longest. The first one permits the algorithm to shuffle the
training data before each training epoch, and shuffle the validation data before
each network validation. This property is useful to avoid discarding the same
data every epoch. The second one lets the software pads the sequences so that
all the sequences in a mini-batch have the same length as the longest sequence
in the mini-batch. This option does not discard any data, though padding can
introduce noise to the network.
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All the other options are not relevant for this project and they are either set
as default value or not utilized. For further information about this kind of train-
ing options please refers to https://it.mathworks.com/help/deeplearning/
ref/nnet.cnn.trainingoptionssgdm.html.

4.4.1. Data augmentation

Listing 3. Data augmentation

imageAugmenter = imageDataAugmenter (
"RandXReflection’ 1) ;

augimdsTrain = augmentedIlmageDatastore(inputSize (1:2) ;...
imdsTrain , 'DataAugmentation’ ,imageAugmenter) ;

In order to easily exploit data augmentation, MATLAB offers a function
whose purpose is to configure a set of preprocessing options for image augmen-
tation, such as resizing, rotation, and reflection. As it is possible to notice in
listing 3, line 2, the proposed algorithm augments data using RandXReflection.
If this property is activate then each image is reflected horizontally (figure 46)
with 50% probability. The function augmentedImageDatastore (line 3) includes
the images produced by the data augmentation process into the training set.

The reason why choosing horizontal reflection is that the result produced
by this process are realistic fundus images. Moreover, if the training process
is supported by this strategy then the final accuracy increase with respect to a
classifier which do not exploit data augmentation.

(@) (b)

Figure 46. Example of data augmentation. Figure (a): original image. Figure (b):
reflected image.

4.5. CNN testing

The following part of the algorithm regards the testing phase. After the training
of each network a test is necessary in order to understand which performances
the classifier can reach and to iteratively refine hyperparameters to achieve
better and better results.
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For this reason a specific dataset is built for CNN testing, usually this dataset
is called testing set. Specifically these images are set aside during the training
phase, once the network is ready to classify new images then the CNN picks
from the testing set and produces a label for each fundus image (cataractous or
not). Since all the images belonging to this dataset are labelled, the comparison
between the true labels (the ones established by physicians or eye-specialist)
and the predicted labels (the ones that result as output from the trained net-
work) allows to estimate several performance parameters for example accuracy,
sensitivity, specificity and others. A widely used tool that summarize all these
parameter is the confusion matrix. MATLAB function plotconfusion provides
this matrix directly from true and predicted labels. Confusion matrix and sta-
tistical measures of the performance will be described more in detail in the
following chapter.
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5. Results

Figure 47 shows one of the MATLAB confusion matrix obtained with the CNNs.
In particular this confusion matrix is related to testing set 2.2 with adapthisteq
as pre-processing. All the others confusion matrix produced are reported in
appendix 1.

On this confusion matrix plot, the rows correspond to the predicted class
(Output Class) and the columns correspond to the true class (Target Class).
The diagonal cells (in green) correspond to images that are correctly classified
(with cataract or not). The off-diagonal cells (in red) correspond to incorrectly
classified fundus images. Both the number of observations and the percentage
of the total number of observations are shown in each cell.

ADAPTHISTEQ
" i 1320 22 9849
SELERG 85.1% 1.4% 16%
w
w
ot
&-'J normal & 187 It
3 2.7% 10.8% 20.1
=
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Q
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o N
o «
& ®

Target Class

Figure 47. Confusion matrix produced by the MATLAB function plotconfusion that
summarizes all the important statistics to evaluate CNN performances. It refers to
the testing set 2.2 when fundus images are preprocessed with using contrast-limited
histogram equalization (CLAHE).

In diagnostic medical tests (but not only) usually there is a specific ter-
minology to define values expressed within a confusion matrix. Note that the
terms "positive" and "negative" do not refer to the value of the condition of
interest, but to its presence or absence. The condition itself could be a disease,
so this work "positive" means "affected by cataract", while "negative" means
"not affected by cataract".

e True Positive (TP): outcomes where the model correctly predicts the
positive class. In this case 1320 out of 1362 real positive.
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e True Negative (TN): outcomes where the model correctly predicts the
negative class. In this case 167 out of 189 real negative.

¢ False Positive (FP): outcomes where the model incorrectly predicts the
positive class. In this case 22 out of 1551 images.

e False Negative (FN): outcomes where the model incorrectly predicts
the negative class. In this case 42 out of 1551 images.

These values allow to compute several statistical measures. Formulas and
values are reported below.

The column on the far right of the plot shows the percentages that refers to
the following metrics. Starting from the top to the bottom:

e Precision or positive predictive value (PPV): —2L— = 1— FDR = 98.4%

TP+FP
e False discovery rate (FDR): FP+TP — PPV =1.6%
e Negative predicted rate (NPV): W — FOR =179.9%

e False omission rate (FOR): =1—- NPV =20.1%

FN+TN

The row at the bottom of the plot shows the percentages that refers to the
following metrics. Starting from the left to the right (first green percentages
then red ones):

e Sensitivity or true positive rate (TPR): TP?_% =1—-FNR=96.9%

e Miss rate or false negative rate (FNR): 1-TPR=3.1%

FN —
FN+TP —

e Specificity or true negative rate (TNR): — FPR = 88.4%

TN+FP

e False positive rate (FPR)): =1-TNR=11.6%

FP+TN

Finally the cell in the bottom right of the plot shows (in green) the overall
accuracy: % 95.9%.

Although all these values have their statistical importance, for this project
accuracy, sensitivity and specificity are chosen for evaluating and comparing
CNN performances.

Accuracy measures how many samples are correctly labelled by the network
with respect to all the classification performed. It is a general metric which could
indicates the quality of the classifier.

Sensitivity measures how often a test correctly generates a positive result
for people who have the condition that is being tested for. A test that is highly
sensitive will flag almost everyone who has the disease and not generate many
false-negative results.

Specificity measures a test’s ability to correctly generate a negative result
for people who do not have the condition that is being tested for. A high-
specificity test will correctly rule out almost everyone who does not have the
disease and will not generate many false-positive results.

It is important to recognize that sensitivity and specificity exist in a state of
balance. Increased sensitivity usually comes at the expense of reduced specificity
(meaning more false-positives). Likewise, high specificity usually means that the
test has lower sensitivity (more false-negatives).
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5.1. Dataset 1

This paragraph refers to the dataset presented in 4.2.1, which contains 393 im-
ages acquired by patients with cataract and 7007 images acquired by healthy
subjects. As already mentioned, these images are acquired by fundus cameras
and not from D-EYE. However dataset 1 results are useful because they rep-
resent, a solid starting point for tuning hyperparameters and allow to compare
the obtained results with those reported in literature and with those obtained
by dataset 2.

Table 2 summarizes accuracy, sensitivity and specificity of the CNNs trained
on dataset 1. The first row regards images without pre-processing while the sec-
ond one fundus images after performing Fourier transform. Since a specific test-
ing set was not considered necessary, these percentages refers to the validation
set.

Accuracy Sensitivity Specificity
Original Tmages | 85.0% 90.7% 84.7%
FT 89.1% 89.8% 89.1%

Table 2. CNN performances related to dataset 1.

5.2. Dataset 2

This paragraph refers to the datasets presented in 4.2.2, which contains 3735
cataractous fundus images and 8100 healthy images. Once tuned hyperparam-
eters thanks to dataset 1, it was possible to start training CNNs on dataset 2.
The following tables present the most significant results. It is worth remember
that dataset 2.1 refers to a validation set while datasets 2.2 and 2.3 are testing
sets.

e Accuracy

Original FT Green channel histeq adapthisteq
Dataset 2.1 | 90.3%  92.2% 91.0% 82.0% 86.1%
Dataset 2.2 | 79.7% 79% 80.5% 76.9% 81.0%
Dataset 2.3 | 87.0%  75.1% 86.2% 86.1% 89.6%

Table 3. CNN accuracy related to variations of dataset 2 with different pre-processing.

e Sensitivity

Original FT Green channel histeq adapthisteq
Dataset 2.1 | 81.1%  66.8% 81.9% 77.0% 83.8%
Dataset 2.2 | 44.8%  32.2% 48.2% 56.5% 54.2%
Dataset 2.3 | 85.5%  72.3% 85.7% 87.0% 90.2%

Table 4. CNN sensitivity related to variations of dataset 2 with different pre-
processing.
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e Specificity

Original FT Green channel histeq  adapthisteq
Dataset 2.1 | 92.4%  97.8% 93.0% 83.1% 86.6%
Dataset 2.2 | 96.5%  99.0% 96.1% 86.6% 93.9%
Dataset 2.3 | 97.9%  95.2% 89.9% 79.9% 85.2%

Table 5. CNN specificity related to variations of dataset 2 with different pre-
processing.
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Figure 48. Histogram of the accuracy varying dataset and pre-processing.
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Figure 49. Histogram of the sensitivity varying dataset and pre-processing.

These statistic outcomes are encouraging. Looking at table 3 and figure 48,
it is possible to notice that the CNN reaches a good accuracy on validation set
but also on testing sets.

Focusing now on general performances, including also sensitivity and speci-
ficity. Some considerations can be done comparing dataset 1 and dataset 2.
Looking at the data, the network is able to classify both fundus camera images
and D-EYE images with comparable performances. In order to understand the
importance of this result it is necessary to briefly recall the background of these
two devices. On one hand there are fundus cameras, big devices designed to
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Figure 50. Histogram of the specificity varying dataset and pre-processing.

capture high quality fundus images and to perform a wide range of specific eye
medical tests. This justifies why fundus cameras cost some thousands of US
dollars. On the other hand there is D-EYE, a portable device whose cost is
around few hundreds of US dollars. As already introduced, the main purpose of
D-EYE is a massive screening of various eye pathologies, especially suitable in
poor areas. Moreover fundus cameras can visualize a wider portion of the retina
with respect to D-EYE. For all these reasons different output images between
these two devices are unavoidable. Since the performance of a CNN is partially
related to the quality of the images there could be a gap between the results
obtained with dataset 1 with respect to the ones related to dataset 2. The com-
parability of the percentages indicates that the CNN specific for D-EYE images
is well-built and well-trained since it can reach good accuracy (more than 90%),
despite the quality difference of the images.

Regarding D-EYE images, tables 3-5 and figures 48-50 report the findings
comparing different kinds of pre-processing. The function adapthisteq results
to be the best pre-processing for this particular classification task. This is
mainly due to the fact that D-EYE, as a screening medical device, requires a
classification algorithm with an high sensitivity. Table 4 and figure 49 reveal
that the CNN reaches the best sensitivity if classifies images pre-processed with
adapthisteq. Moreover, considering the testing sets, this pre-processing method
has the highest accuracy in terms of classification (table 3, figure 48).

5.3. Post-processing

A more detailed analysis of the results reveals that it is possible to exploit in
order to further improve final accuracy. Describing DEYE-like tool, paragraph
4.2.2 reveals that from each fundus image the algorithm produces artificial im-
ages similar to the ones captured by D-EYE. Since all these images blocks comes
form a single fundus image and since the effect of the cataract appears in each
image, their diagnose must be the same. This assumption allows the use of
majority voting technique. This is a well-known technique in literature, for
example [60] and [70] increase their method performances thanks to majority
voting.
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This simple, but effective, strategy consists in finding the majority of a
sequence of elements using linear time and constant space and then replacing
all these elements with the majority value. The majority value, if there is one,
is the element that occurs repeatedly for more than half of the elements of the
input. In this case the elements are the labels given to each image after the
classification process ("cataract" and "not cataract"). The algorithm iterates
this process for each group of fundus images generated from the same input
image in order to give a unique diagnosis.

This procedure is implemented after the classification process and the algo-
rithm obtains a relevant performance improvement. Table 6 and figure 51-53
show the comparison between each statistical metrics before and after applying
post-processing.

Original FT Green channel histeq adapthisteq
Accuracy pre 87.0%  75.1% 86.2% 86.1% 89.6%
Accuracy post 92.1%  85.3% 93.2% 89.2% 95.9%
Sensitivity pre 85.5%  72.3% 85.7% 87.0% 90.2%
Sensitivity post | 91.0%  83.3% 93.8% 90.7% 96.9%
Specificity pre | 97.9%  95.2% 89.9% 79.9%  85.2%
Specificity post | 100.0%  99.5% 88.9% 77.8% 88.4%

Table 6. Statistical metrics comparison before and after post-processing for each

pre-processing applied .
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Figure 51. Histogram of the accuracy before and after post-processing for each
pre-processing applied.
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Figure 52. Histogram of the sensitivity before and after post-processing for each
pre-processing applied.
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Figure 53. Histogram of the specificity before and after post-processing for each
pre-processing applied.

As it is possible to notice, in general, all performances improve independently
of any pre-processing methods used. Moreover adapthisteq keeps the best results
in according to what has been concluded before. It obtains 95.9% accuracy,
96.9% sensitivity and 88.4% specificity.

It is worth mentioning that majority voting is a useful technique not only for
the testing phase but it can represent the real use of an application for cataract
detection, since from a video acquired with D-EYE various frames are selected
and analysed. Therefore the final diagnosis could be the result a majority voting
process that involves several frames extrapolated form the same video.
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6 CONCLUSION

6. Conclusion

The World Health Organization affirms that cataract is responsible for 51%
of world blindness. As people in the world live longer, the number of people
with cataract is anticipated to grow. This terrible issue is an important cause
of low vision in both developed and developing countries. D-EYE pursues a
sight-saving mission aimed to achieve the vision of the homonymous company:
to provide access to eye health everywhere [74]. The device, defined as "a
pocket-sized ophthalmoscope that goes where patients are", could represent a
breakthrough in rural areas healthcare also thanks to his close relationship with
telemedicine.

In this thesis project, an algorithm able to automatically detect the presence
of cataract analysing D-EYE fundus images has been developed. The core of
the proposed algorithm is a custom convolutional neural network, which uses
20-layer to provide a binary classification (cataract vs not-cataract) from an
image. Among the results obtained, contrast-limited adaptive histogram equal-
ization (CLAHE), applied to green-channel images, turns out to be the best
pre-processing method for this kind of fundus images while majority voting is a
valid post-processing to improve final classification performances both in test-
ing phase and in real applications. The proposed convolutional neural network
together with pre- and post-processing is able to reach 95.9% of accuracy. Since
D-EYE is mainly designed to be a screening device, sensitivity is an important
statistical parameter in order to evaluate the classification effectiveness. An
iteratively refining process regarding hyperparameters and the implementation
of different strategies, either aimed at enhancing images quality or at improving
algorithm performances, allowed the CNN to achieve 96.9% sensitivity in testing
phase. The percentages just reported are comparable with the state-of-art deep
learning algorithms for cataract detection.

These findings are encouraging and once again they demonstrate the power
and the decisive role CNNs play in medical image processing. In our opinion
deep learning will take hold more and more in future medical researches.

It is worth mentioning that D-EYE equipped with automatic detection algo-
rithms can be useful not only for ophthalmologists but also for not-specialized
medical personnel to perform examinations in geographically remote areas where
an early eye disease detection could be crucial for blindness prevention. More-
over, thanks to his user-friendliness, students and professors can exploit D-EYE
for education activities and also eye specialists can easily share outcomes and
examination videos.

Currently cataract is not the only eye disease D-EYE can automatically
detect. Indeed previous works, exploiting deep learning techniques, allowed the
device to be able to estimate cup-to-disc ratio, a key parameter to evaluate
the presence of glaucoma [75]. In the future, the company will develop other
algorithms in order to detect a wider spectrum of diseases. For example, starting
form the same basis of this code, a convolutional neural network could classify
diabetic retinopathy, papilledema and other eye complaints.

In conclusion this work can be useful to help D-EYE to become more relevant
and effective on the scene of ophthalmology and eye healthcare.
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APPENDIX 1

Appendix 1

This appendix contains confusion matrices produced by the algorithm. Each
page refers to a different image dataset, specified as header. From left to right
and from top to down figures show matrices related to no pre-processing, pre-
processed with Fourier transform, with green channel, with histeq, with adapthis-
teq, respectively.
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