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Abstract 

The Thesis is about the study of an innovative reactor: the SpinChem® Rotating Bed Reactor 

(RBR), developed by the company SpinChem AB. This reactor is conceived for heterogeneous 

reactions, especially for solid-liquid reactions. 

It consists in a rotating stirring element that holds the solid inside, as a packed bed and force a 

liquid flow through the solids. The flow rate of the liquid in the stirring element is proportional 

to the rotation speed. This mechanism is expected to improve the solid-liquid external mass 

transfer, with respect to a normal stirred tank reactor (STR) in which the solid and the liquid 

are mixed with classical impellers. 

In this work the RBR have been compared with a tank reactor stirred by a common impeller. 

Comparison was carried out at different rotation speeds, using two different solid-liquid non-

catalytic reactions: 1) the scavenging of a genotoxic impurity and 2) an ion-exchange reaction.  

In the first reaction we found that there was no difference between the two mixers because the 

reaction is not limited by the external mass transfer. Both the chemical kinetics and the internal 

mass transfer inside the pores of the solids are the slowest steps that control the reaction rate. 

On the contrary, the ion-exchange reaction appeared clearly limited by the external mass 

transfer and the RBR performs better than the STR for the rotation speeds above 400 rpm.  

 

A further study was carried out using the same ion-exchange reaction and the RBR, to 

investigate the influence of the baffles type and the distance of the rotating bed from the bottom. 

It was found that both these variables have an effect on the reaction rate and should therefore 

be taken into account when the RBR is used for kinetic investigations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Riassunto 

Questo lavoro di tesi riguarda lo studio di un nuovo tipo di reattore: il reattore a letto rotante 

SpinChem® (RBR), sviluppato dall’azienda SpinChem AB. Questo reattore è stato concepito 

per reazioni multifase e specialmente per reazioni solido-liquido. 

Il reattore è costituito da un recipiente dotato di baffles e un elemento rotante (letto rotante) al 

cui interno è contenuto il solido, come una sorta di letto impaccato. Il liquido viene 

continuamente risucchiato all’interno del letto rotante e fatto passare attraverso le particelle di 

solido. Il flusso di liquido attraverso il solido è direttamente proporzionale alla velocità di 

rotazione del letto rotante. In questo modo il trasferimento di materia esterno tra solido e liquido 

dovrebbe essere incrementato rispetto ad un normale reattore agitato (STR), nel quale il liquido 

e il solido disperso vengono mescolati con un comune agitatore. 

In questo lavoro lo SpinChem® RBR è stato confrontato con il classico STR, per diverse 

velocità di rotazione, usando due reazioni solido-liquido non-catalitiche: la rimozione di una 

impurità genotossica da una soluzione e una reazione di scambio ionico.  

La prima reazione è risultata in regime di trasferimento di materia interno (nei pori del solido), 

per cui non è stata riscontrata alcuna differenza fra i due reattori. 

Per quanto riguarda la prima reazione è stato verificato che non v’è differenza tra i due tipi di 

reattore in quanto la reazione non è limitata dal trasferimento di materia esterno. 

É risultato invece che, probabilmente, sia la cinetica che il mass-transfer all’interno dei pori del 

solido sono gli step più lenti del meccanismo di reazione e controllano quindi la velocità di 

reazione. 

La reazione di scambio ionico era invece in regime di trasferimento di materia esterno e lo 

SpinChem® RBR è risultato migliore dello STR per velocità di rotazione maggiori di 400 rpm 

circa.  

Sempre utilizzando la reazione di scambio ionico e lo SpinChem® RBR, è stata studiata 

l’influenza del tipo di baffles e della distanza del letto rotante dal fondo del reattore. È stato 

trovato che entrambi queste variabili incidono sulla velocità di reazione e dovrebbero essere 

tenute in conto quando vengono condotti studi di questo tipo. 
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Introduction 

This thesis work is about the study of a novel type of reactor developed by the company 

SpinChem AB in Umeå, Sweden: the SpinChem® rotating bed reactor (RBR).  

This reactor has been ideated to enhance the external mass transfer in heterogeneous reactions 

involving solids and/or liquids.  

It is an alternative to the normal reactors used for this type of reactions: the stirred tank reactor 

(STR) and the packed bed reactor (PBR). The working principles of these two reactors are 

combined together in the SpinChem® RBR. The SpinChem® RBR is a cylinder connected to 

a rotating shaft; it holds the solid phase as a packed bed and rapidly aspirates the reaction 

solution from the bottom of the vessel, percolates it through the solid phase and quickly returns 

it to the vessel. 

Since this product is quite new it is of interest to study it deeply and find new applications for 

which it offers advantages with respect to the normal reactors cited above. 

The aim of this work was to test the SpinChem® RBR for two solid-liquid applications: the 

scavenging of a genotoxic impurity and an ion-exchange reaction.  

For both the reactions the RBR was compared, at different rotation speeds, with a normal STR. 

Furthermore, using the ion-exchange reaction, the influence of some geometrical parameters on 

the performance of the SpinChem® RBR was investigated. The geometrical parameters studied 

were: the type of baffles, the position (height) of the rotating bed in the vessel and the diameter 

of the vessel. 

The thesis is divided in five chapters. The first chapter is an overview on the theory about solid-

liquid reactions. In Chapter 2 the SpinChem® RBR is described in detail. Chapter 3 is about 

the study of the first application: the scavenging of a genotoxic impurity. The second 

application studied, the ion-exchange reaction, is treated in Chapter 4. In the same chapter are 

also reported the results about the investigation of the importance of the type of baffles, the 

height of the rotating bed and the vessel diameter in the SpinChem® RBR. In the last chapter, 

Chapter 5, there are the conclusions of the work. 
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Chapter 1 

Solid-liquid heterogeneous reactions 

In the thesis work two different solid-liquid heterogeneous non-catalytic reactions have been 

investigated. Though the chemistry of these reactions is different, they both belong to the same 

category and are governed by the same mechanisms.  

A liquid species (A) is removed from the bulk of the liquid solution, where it is initially present, 

by reaction with a porous solid (S). This solid is made of an inert substrate (i.e. fused silica gel 

or polymer) whose surface is functionalized with the desired reactive functional groups (X). 

Thus the reaction take place at the surface of the solid and after it the liquid molecules that have 

to be removed are permanently linked to the functional groups of the solid, which can be 

separated from the clean solution when the desired purity is achieved. 

The scheme of the reaction is depicted in Fig. 1. 

 

Figure 1.1. General scheme of the solid-liquid reactions studied in the thesis work 

In this chapter the theoretical aspects regarding solid-liquid heterogeneous reactions of this type 

that will be useful in this study are presented. 

1.1 Mechanisms involved in solid-liquid heterogeneous reactions 

In solid-liquid mass transfer processes, the rate-controlling steps, as depicted in Fig. 1.2 are: 

 diffusion in the liquid film surrounding the solid particles (film diffusion or external 

mass transfer); 

 diffusion within the particle pores or through the solid phase itself (particle diffusion or 

internal mass transfer); 

 chemical reaction at the surface of the particle (surface reaction). 
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Figure 1.2. Different size scales in a heterogeneous solid-liquid reactor. From the flow 

around catalyst pellets to diffusion within pores of pellets and reaction on reaction sites. 

These span distance scales from meters to Angstroms. Adapted from Schmidt, 1998. 

 

Figure 1.3. Mass transfer and reaction steps in a solid particle. Adapted from Fogler, 

2005. 

Each of this mechanism will be analyzed in detail in the following sections. 

1.1.1 Transport in the liquid film surrounding the particles 

Referring to the reaction scheme of Fig. 1.1, the rate of external mass transfer �̇�𝐴
𝑏→𝑖  of the liquid 

species A to the solid-liquid interface is defined as a product of the external mass transfer 

coefficient, ℎ𝑚,𝐴, the interfacial area for mass transfer per unit volume of liquid, 𝑎𝐿,𝑖, and the 

concentration driving force, (𝐶𝐴
𝑏 − 𝐶𝐴

𝑖 ): 

 

�̇�𝐴
𝑏→𝑖 =  ℎ𝑚,𝐴(𝐶𝐴

𝑏 − 𝐶𝐴
𝑖 )𝑎𝐿,𝑖,   [𝑚𝑜𝑙𝐴 (𝑚𝑙𝑖𝑞𝑢𝑖𝑑

3 𝑠)⁄ ]   . (1.1) 

 

The variables 𝐶𝐴
𝑏 and 𝐶𝐴

𝑖  are the concentration of the liquid material in the bulk of the liquid 

and at the solid surface, respectively. The interfacial area for mass transfer per unit volume of 

liquid, 𝑎𝐿,𝑖, is given by: 

 

𝑎𝐿,𝑖 =
𝐴𝑖

𝑉𝐿   , (1.2) 

 

where 𝐴𝑖 represents the external interfacial area between the solid and the liquid, excluding the 

area given by the porosity if the solid is porous, and 𝑉𝐿 is the total liquid volume. 
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1.1.2 Pore-diffusion and surface reaction 

If the reaction occurs between the liquid species A which reacts with the solid at the solid 

surface, the reaction rate per unit of area of the solid is indicated with 𝑅′′ and its unit of measure 

is 𝑚𝑜𝑙 (𝑚𝑠𝑜𝑙𝑖𝑑 𝑠𝑢𝑟𝑓.
2 𝑠)⁄ . Its expression can vary dependently on the model chosen for the 

reaction rate and is usually a function of the concentration of the reactants at the solid surface 

or adjacent to it. 𝑅′′ differs from the rate of formation (or consumption) of each species 

participating the reaction. For example, considering a species A which is consumed (or 

produced) during the reaction, its rate of consumption (or production) 𝑟𝐴
′′ per unit area of solid 

surface is defined as the product of the reaction rate 𝑅′′ and the stoichiometric coefficient of A 

in the reaction: 

 

𝑟𝐴
′′ = 𝜐𝐴𝑅′′, [

𝑚𝑜𝑙𝐴

𝑚𝑠𝑜𝑙𝑖𝑑 𝑠𝑢𝑟𝑓.
2 𝑠

]   . (1.3) 

 

 Thus, the reaction rate of A per unit of liquid volume is usually conveniently expressed as the 

product of the reaction rate of A per unit area of solid evaluated at the external solid surface, 

𝑟𝐴
′′(𝐶𝐴

𝑖 ), the total surface area of the solid per unit volume of the liquid 𝑎𝐿,𝑡𝑜𝑡 and a term 𝜂 to 

take into account the effect of the porosity in case of porous solids: 

 

�̇�𝐴 = 𝑟𝐴
′′𝜂𝑎𝐿,𝑡𝑜𝑡,   [𝑚𝑜𝑙𝐴 (𝑚𝑙𝑖𝑞𝑢𝑖𝑑

3 𝑠)⁄ ]   . (1.4) 

 

In this case the expression of 𝑎𝐿,𝑡𝑜𝑡 is: 

 

𝑎𝐿,𝑡𝑜𝑡 =
𝐴𝑡𝑜𝑡

𝑉𝐿    ,  (1.5) 

 

where 𝐴𝑡𝑜𝑡 is the total surface area of the solid in contact with the liquid accessible to the 

reacting species, including the area given by the porosity, which is usually much greater than 

the external interfacial area 𝐴𝑖. If the solid is non-porous it results 𝐴𝑡𝑜𝑡 = 𝐴𝑖. 

The term 𝜂 is called effectiveness factor and is widely used to account for the interaction 

between pore diffusion and reactions on pore walls of the reacting fluid species in porous 

catalytic or reactive solid particles. The effectiveness factor is defined as the ratio of the reaction 

rate actually observed to the reaction rate calculated if the surface reactant concentration 𝐶𝐴
𝑖  

persisted throughout the interior of the particle, that is, no reactant concentration gradient within 

the particle. The reaction rate in a particle can therefore be conveniently expressed by its rate 

under external surface conditions multiplied by the effectiveness factor, like in Eq. 1.4.  

  

 



 

6 

 

𝜂 =
𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡  𝑤𝑜𝑢𝑙𝑑 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑓 𝑒𝑛𝑡𝑖𝑟𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

𝑤𝑒𝑟𝑒 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑝𝑒𝑙𝑙𝑒𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝐶𝐴
𝑖  

      

             =
𝑟𝐴

′′,   𝑤𝑖𝑡ℎ 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

𝑟𝐴
′′,   𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 (1.6) 

 

The magnitude of the effectiveness factor (ranging from 0 to 1) indicates the relative importance 

of diffusion and reaction limitations. 

The general expression of the effectiveness factor depends on the shape and dimension of the 

solid particles and the model used for the reaction rate 𝑅′′. In some cases, instead of the reaction 

rate per unit area of solid 𝑅′′, the reaction rate per unit volume of solid 𝑅′′′ is adopted. The 

relation between the two is: 

 

𝑅′′′ = 𝑅′′𝑎𝑆,𝑡𝑜𝑡, [
𝑚𝑜𝑙

𝑚𝑠𝑜𝑙𝑖𝑑
3 𝑠

]   , (1.7) 

 

where 𝑎𝑆,𝑡𝑜𝑡, similarly to 𝑎𝐿,𝑡𝑜𝑡, is defined as the total surface area of the solid, 𝐴𝑡𝑜𝑡, per unit 

volume of the solid particles, including the volume of the pores: 

 

𝑎𝑆,𝑡𝑜𝑡 =
𝐴𝑡𝑜𝑡

𝑉𝑝,𝑡𝑜𝑡   . (1.8) 

 

Using 𝑅′′′ the porous solid is considered like a unique pseudo-homogeneous phase, instead of 

a porous solid with fluid inside the pores. 

Since in this work are used only spherical solid particles, the relative expression of 𝜂 is: 

 

𝜂 =
1

𝜙
(

1

𝑡𝑎𝑛ℎ(3𝜙)
−

1

3𝜙
)   . (1.9) 

 

In the previous expression 𝜙 is called Thiele modulus and takes into account the effect of the 

particle dimensions toward the particle characteristic length 𝐿, the effective diffusivity of the 

liquid species in the porous particle 𝔇𝑒 and the reaction kinetics 𝑅′′′. Its expression for first 

order monomolecular and nth order monomolecular reactions is (Levenspiel, 1999): 

 

𝜙 = 𝐿√
𝑘′′′

𝔇𝑒
,   𝑅′′′ = 𝑘′′′𝐶𝐴

𝑖  (1.10) 

 

𝜙 = 𝐿√(𝑛+1)𝑘′′′𝐶𝐴
𝑖 𝑛−1

2𝔇𝑒
,   𝑅′′′ = 𝑘′′′𝐶𝐴

𝑖 𝑛
 (1.11) 

 

The characteristic length of the particle 𝐿 is generally defined as: 
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𝐿 =  
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
𝑓𝑜𝑟 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛

   . (1.12) 

 

For spherical particles of diameter 𝑑𝑝 it becomes: 

 

𝐿 =
𝑑𝑝

6
    . (1.13) 

 

The effective diffusivity account for the fact that: 

 not all of the area normal to the direction of the flux is available (i.e. the area occupied 

by solids) for the molecules to diffuse; 

 the paths are tortuous. 

An equation that relates 𝔇𝑒 to the liquid bulk diffusivity 𝔇𝐴,𝐿 is: 

 

𝔇𝑒 =
𝔇𝐴,𝐿𝜀𝑝

𝜏
   , (1.14) 

 

where 𝜀𝑝 is the porosity of the solid particle and 𝜏 is defined as the tortuosity of the pores. It 

describes the difference of the catalyst pores from the ideal linear, cylindrical form. Particle 

porosity is always smaller than one, whereas tortuosity is larger than one. 

 The theoretical determination of tortuosity is model dependent and extremely cumbersome for 

all but the most simple geometries. It is most often the case that 𝔇𝑒, 𝔇𝐴,𝐿 and 𝜀𝑝 in equation 

(1.14) are determined experimentally and 𝜏 is then calculated from these. 

 Typical values of the tortuosity and the pellet porosity are, respectively, 3 and 0.4 (Fogler, 

2005). 

A plot of the effectiveness factor as a function of the Thiele modulus is shown in Figure 1.4. 

 

Figure 1.4. Plot of 𝜂 as function of the Thiele modulus 𝜙. Adapted from Fogler, 2005. 
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As the particle diameter becomes very small, 𝜙 decreases, so that the effectiveness factor 

approaches 1 and the reaction is surface-reaction-limited. On the other hand, when the Thiele 

modulus 𝜙 is large, the internal effectiveness factor 𝜂 is small (i.e. 𝜂 ≪ 1) and the reaction is 

diffusion-limited within the pellet. In this last case the expression of the effectiveness factor 

becomes: 

 

𝜂 =
1

𝜙
   , (1.15) 

 

and the curve depicted in Fig. 1.4 becomes linear. 

1.2 Determining the controlling regime 

A key issue in solid-liquid reactions is the determination of the controlling process regime: 

mass transfer in the liquid film surrounding the solid particles, internal mass transfer due to the 

diffusion of the liquid species into the pores or chemical reaction occurring at the solid surface. 

Experimentally, this is done by checking the effect of some parameters on the observed process 

rate.  A common parameter which can give very useful information about the controlling regime 

is the reaction temperature, however the effect of it is not examined here because it wasn’t used 

for the study object of this thesis. 

It is fundamental to know the regime of a particular reaction system, since the equipment choice 

and the effect of design and operating variables on the process performance depend on the 

regime. 

However is important to remember that is not always possible to identify a controlling step, 

intermediate conditions between regimes are also possible when the magnitude of the different 

mechanisms is similar. 

1.2.1 Identifying external mass transfer limitations 

Solid-liquid mixing operations involving chemical reactions often require a high relative 

velocity between the solid particle and the liquid (high local shear rate or agitation intensity) to 

minimize the thickness of the boundary layer for mass transfer (Paul, Atiemo-Obeng & Kresta, 

2004). 

Most solid-liquid mixing operations operate above the minimum speed for suspension. A higher 

agitation speed improves the degree of suspension and enhances mass transfer rates. The higher 

speed also translates into higher turbulence as well as local and average shear rates.  

The properties of both the liquid and the solid particles influence the fluid-particle 

hydrodynamics and thus the suspension and the mass transfer. Also important are vessel 

geometry and agitation parameters. 
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If the external mass transfer is the rate determining step the concentration of the liquid reacting 

species, for example A, at the external interface of the solid, 𝐶𝐴
𝑖 , is null because they are 

consumed very quickly by the solid and the overall reaction rate of A per unit volume of the 

liquid (𝑟𝐴)𝑜𝑏𝑠 reduces to equation (1.1): 

 

(𝑟𝐴)𝑜𝑏𝑠 = �̇�𝐴
𝑏→𝑖 =  ℎ𝑚,𝐴𝐶𝐴

𝑏𝑎𝐿,𝑖, [
𝑚𝑜𝑙𝐴

𝑚𝑙𝑖𝑞𝑢𝑖𝑑
3 𝑠

]   , (1.16) 

 

The external mass transfer rate is affected primarily by the impact of agitation on the 

hydrodynamic environment near the surface of the particle. The hydrodynamic environment 

near the particle surface depends on the properties of the fluid as well as those of the particles. 

The important hydrodynamic variables are the relative velocity, 𝑣𝑠, between the solids and the 

liquid (also know as slip velocity) and the rate of renewal of the liquid layer near the solid 

surface. The relative velocity, 𝑣𝑠, obviously varies from point to point within the vessel, and 

the average value is difficult to estimate. 

The observed effect of agitation is depicted in Figure 1.5. As the stirrer speed (proportional to 

the power per unit volume of liquid transferred to the liquid) increases, the volumetric mass 

transfer coefficient, ℎ𝑚,𝐴𝑎𝐿,𝑖, increases. If the process is mass transfer controlled, the observed 

rate of reaction increases with increasing impeller speed.  

 

Figure 1.5. Relative external mass transfer trend as function of the relative power given to 

the liquid (proportional to the stirring rate). Adapted from Paul, Atiemo-Obeng & Kresta, 

2004. 

However, beyond the just suspended or complete suspension state the observed rate may not 

increase much with increasing rpm or mixing intensity. For extremely slow reactions on-bottom 

motion to prevent stagnant pockets may be all that is needed. 
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1.2.2 Identifying internal mass transfer limitations 

For systems in which the diffusion of the liquid species inside the pores is the limiting regime, 

the observed overall reaction rate corresponds to equation (1.4) with the asymptotic value of 𝜂 

of equation (1.15): 

 

(𝑟𝐴)𝑜𝑏𝑠 = �̇�𝐴 = 𝑟𝐴
′′ 1

𝜙
𝑎𝐿,𝑡𝑜𝑡   . (1.17) 

 

The presence (or absence) of pore-diffusion resistance in catalyst particles can be readily 

determined by evaluation of the Thiele modulus and subsequently the effectiveness factor, if 

the intrinsic kinetics of the surface reaction are known.  

When reactant fully penetrates the particle and bathes all its surfaces, then the particle is in the 

diffusion free regime. This occurs when MT < 0.4 (Levenspiel, 1999). 

At the other extreme when the center of the particle is starved for reactant and is unused then 

the particle is in the strong pore resistance regime. This occurs when MT > 4. 

This is shown in Figure 1.6. 

 

Figure 1.6. Limits for negligible and for strong pore diffusion resistance. 

When the intrinsic rate law is not known completely, so that the Thiele modulus cannot be 

calculated, there are other methods available. One of these is based upon measurement of the 

rate for differing particle sizes (Missen, Mims and Saville, 1999) and does not require any 

knowledge of the kinetics.  

If the rate of reaction, (𝑟𝐴)𝑜𝑏𝑠, is measured for two or more particle sizes (values of 

characteristic length 𝐿), two extremes of behaviour may be observed: 

 the rate is independent of particle size. This is an indication of negligible pore-diffusion 

resistance, as might be expected for either very porous particles or sufficiently small 

particles such that the diffusional path-length is very small. In either case, 𝜂 → 1, and  

(𝑟𝐴)𝑜𝑏𝑠 = 𝑟𝐴
′′(𝐶𝐴

𝑖 )𝑎𝐿,𝑡𝑜𝑡 for the surface reaction; 
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 the rate is inversely proportional to particle size. This is an indication of strong pore-

diffusion resistance, in which 𝜂 → 1 𝜙⁄  as 𝜙 → 𝑙𝑎𝑟𝑔𝑒. Since 𝜙 ∝ 𝐿, for fixed other 

conditions (surface kinetics, 𝔇𝑒, and 𝐶𝐴
𝑖 ), if measured rates for two particle sizes 

(denoted by subscripts 1 and 2) are compared for strong pore-diffusion resistance: 

 
(𝑟𝐴)𝑜𝑏𝑠,1

(𝑟𝐴)𝑜𝑏𝑠,2
=

𝜂1

𝜂2
=

𝜙2

𝜙1
=

𝐿2

𝐿1
=

𝑑𝑝,2

𝑑𝑝,1
   . (1.18) 

1.2.3 Identifying surface kinetics limitations 

When the slow processes are not the external or internal mass transfer anymore, the overall 

reaction rate could be controlled by the kinetics of the surface reaction. If this is the case, the 

parameters that affect the external and internal mass transfer, i.e. the agitation speed and the 

solid particles diameter, don’t have any effect on the observed reaction rate which corresponds 

to the reaction rate of the surface reaction with 𝜂 = 1: 

 

(𝑟𝐴)𝑜𝑏𝑠  =  𝑟𝐴
′′𝑎𝐿,𝑡𝑜𝑡   . (1.19) 
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Chapter 2 

The SpinChem® Rotating Bed Reactor 

 

In this chapter is described the reactor that have been studied in this work: the SpinChem® 

rotating bed reactor (abbreviated RBR). This new type of reactor is made for heterogeneous 

reactions, in particular solid-liquid reactions, where the solid can be a catalyst or a reactant 

itself. It can also have applications in reactions involving two liquid phases, but this hasn’t been 

studied in this work. 

 The RBR constitutes an alternative to the common two-phase solid-liquid reactors like the 

stirred tank reactor (STR) or packed bed reactor (PBR). 

In this work the performance of the RBR have been investigated and compared with a normal 

stirred tank reactor using two different solid-liquid reactions, whose general aspects are 

described in Chapter 1. 

2.1 The reactor and its working principle 

The SpinChem® rotating bed reactor is a reactor made for heterogeneous reactions, especially 

solid-liquid reactions. The entire reactor is shown in Figure 2.1. 

 

Figure 2.1. A SpinChem® RBR S311 placed in a 1200 mL vessel (on the left) and a 

SpinChem® RBR S221 in  a 210 mL vessel  (on the right). 
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It consists in two main parts: an external vessel and an internal stirring element, the rotating 

bed.  

The choice of the vessel is up to the user but is worthwhile to remember that its geometry and 

the type of baffles used can affect the hydrodynamic of the system and consequently the 

performances of the reactor. SpinChem AB provides glass jacketed vessels with flower-baffles. 

Flower-baffles are particular type of baffles consisting in many (eighteen) tiny baffles engraved 

directly on the internal wall of the vessel, a view of them from the top of the vessel is shown in 

Figure 2.2. 

 

Figure 2.2. The interior of a flower-baffled vessel with eighteen baffles from the top. 

The most important and innovative part of the reactor is the stirring element, depicted in Figure 

2.3. 

It consists of a cylindrical cavity with a drive shaft attached to the top cover, a central inlet in 

the bottom, and a multitude of screened outlets on the peripheral cylindrical surface. 

On the internal side of the perforated wall there is a metallic cylindrical outer filter which 

ensures that the solid particles stay inside the basket. A cylindrical inner filter with the same 

function and a smaller diameter is present around the central part of the basket, as shown in Fig. 

2.3 d) and e). 

The open basket of Fig. 2.1 c) and d) is then closed with an annular top lid which is kept tight 

by screwing the upper piece (air outlet) with two tiny holes visible in Fig. 2.1 a) and e). To this 

piece is then connected the shaft. 

The RBR holds the solid phase as a packed bed and when the unit is rotated in a liquid, 

centrifugal force conveys liquid from the central inlet, through the solid that fills the internal 

cavity, and discharges it through the peripheral outlets, as shown in Figure 2.4. When operated, 

the rotary action creates a toroidal liquid flow below the unit flow in the liquid medium being 

processed, which leads to the creation of a vortex towards the inlet at the bottom. The unit thus 

sucks liquid also from the depth of the liquid volume and discharges it in a radial manner at the 

surface. 
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Figure 2.3. The SpinChem® RBR S221. 

If necessary, the stirring element can initially draw a suspended solid from the liquid into the 

treatment chambers, where the material then stays during the processing and allows facile 

recovery. 

 

Figure 2.4. Flow patterns in the SpinChem® rotating bed reactor. 
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2.2 Solid-liquid external mass transfer in the rotating bed reactor 

As reported in the paragraph §1.2.1 of Chapter 1, the mass transfer in the external film 

surrounding the solid particles in solid liquid reactions is influenced by the relative velocity (or 

slip velocity), 𝑣𝑠, between the solid and the liquid and the rate of renewal of the liquid layer 

near the solid surface.  

In slurry reactors (STR) the dispersed solid particles move together with the surrounding liquid, 

resulting in a slow relative velocity between the two phases.  

The idea behind the RBR is to enhance the external mass transfer by increasing the slip velocity 

𝑣𝑠. In the RBR the solid particles are immobilized inside the cylinder and the liquid is forced 

through the bed by the centrifugal force.  

The rotational speed - plus other factors such as bed permeability - will affect the flow rate 

through the RBR. 
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Chapter 3 

Scavenging of genotoxic impurities 

In this chapter the performances of the RBR are studied and compared with those of a slurry 

reactor stirred by a common axial impeller. We used a solid-liquid reaction to remove, or 

scavenge, an undesirable impurity from a liquid solution by means of a solid sorbent. The solid 

selected is made of small spherical particles that can be placed in the RB or directly in the vessel 

(dispersed) if a normal impeller is used instead.  

Prior to the investigation of the reactor performances, it was also necessary to study and 

understand the reaction itself, since not too many previous studies on this type o reaction were 

found. 

In the chapter are also reported the theoretical backgrounds on the reaction, the set-up of the 

analytical method and how the final reaction conditions (solvent, catalyst, temperature etc.) 

were chosen. 

3.1 Theoretical aspects 

The reaction selected to test the RBR is of industrial importance because it helps the removal 

of harmful impurities from pharmaceutical products. In this paragraph the reaction is presented 

first, from the industrial and legislative point of view and, after that, from the chemical point of 

view.  

3.1.1 The problem of genotoxic impurities in the pharmaceutical industry 

The synthesis of pharmaceutical products frequently involves the use of reactive reagents and 

the formation of intermediates and byproducts. 

Low levels of some of these may be present in the final drug substance and drug product as 

impurities (Müller et al., 2006). Such chemically reactive impurities may have at the same time 

the potential for unwanted toxicities including genotoxicity and carcinogenicity and hence can 

have an impact on product risk assessment.  

Genotoxic compounds induce genetic mutations and/or chromosomal rearrangements and can 

therefore act as carcinogenic compounds. These compounds cause damage to DNA by different 

mechanisms such as alkylation or other interactions that can lead to mutation of the genetic 

codes.  
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Genotoxicity pertains to all types of DNA damage (effects from mutagenicity through DNA 

reactivity, DNA damage, and chromosomal damage, both structural chromosome breakage and 

aneuploidy), whereas mutagenicity pertains specifically to mutation induction at the gene and 

chromosome levels (Jouyban and Pars, 2012). 

The pharmaceutical industry and those that regulate it recognize their respective obligation to 

limit genotoxic impurities. Therefore, substantial efforts are made during development to 

control all impurities at safe concentrations. 

The United States Food and Drug Administration (FDA), and equivalent international 

healthcare agencies, require that harmful impurities in drug products be controlled and removed 

to below regulated limits. Genotoxins are a challenging class of impurities that have proven to 

be harmful even at low concentrations and as a result regulatory bodies have specifically 

defined their limits in drug substances and products (Agilent Technologies (2013)). 

Müller et al., 2006 proposed that impurities be classified into one of five classes using data 

(published in the literature or from genotoxicity testing) and comparative structural analysis to 

identify chemical functional moieties correlated with mutagenicity. 

The five classes are: 

 Class 1 – Impurities known to be both genotoxic (mutagenic) and carcinogenic; 

 Class 2 – Impurities known to be genotoxic (mutagenic), but with unknown 

carcinogenic potential; 

 Class 3 – Alerting structure, unrelated to the structure of the API (active pharmaceutical 

ingredients) and of unknown genotoxic (mutagenic) potential; 

 Class 4 – Alerting structure, related to the API; 

 Class 5 – No alerting structure or sufficient evidence for absence of genotoxicity. 

Some widely recognized alerts for DNA reactivity, i.e., mutagenic activity, are depicted in 

Figure 3.1. 
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Figure 3.1. Some examples of structurally alerting functional groups that are known to be 

involved in reactions with DNA (Müller et al., 2006). 

For drug substance, the identification thresholds are within the range of 500 and 1000 ppm (i.e., 

0.05 and 0.1%). ICH Guidelines Q3A(R) and Q3B(R) state that although identification of 

impurities is not generally necessary at levels less than or equal to the identification threshold, 

‘‘analytical procedures should be developed for those potential impurities that are expected to 

be unusually potent, producing toxic or pharmacological effects at a level not more than the 

identification threshold.’’ Thus in the case of impurities where a potential safety concern for 

genotoxicity exists, the guidelines imply that the routine identification threshold is not 

considered to be applicable. 

To address this problem in a general way valid for every genotoxic impurity, in absence of 

adequate toxicity data allowing a compound-specific risk assessment, is now proposed a general 
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concept that is based on the knowledge and approaches as defined by the Threshold of 

Toxicological Concern (TTC). In agreement with the CHMP Draft Guideline on Genotoxic the 

TTC concept is used to establish a limit of 1.5 μg/day, corresponding to a 10-5 lifetime risk of 

cancer, as a virtually safe dose for most genotoxic compounds, while recognizing that some 

highly potent genotoxic compounds may require even lower levels. 

The concentration limits in ppm of genotoxic impurity in drug substance derived from the TTC 

can be calculated based on the expected daily dose to the patient using equation (3.1): 

 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 [𝑝𝑝𝑚] =
𝑇𝑇𝐶 [𝜇𝑔 𝑑𝑎𝑦]⁄

𝑑𝑜𝑠𝑒 [𝑔 𝑑𝑎𝑦]⁄
   . (3.1) 

 

A TTC value higher than 1.5 μg/day may be acceptable under certain conditions, e.g. short-

term exposure. 

Considering the strictest acceptable daily intake (ADI) of 1.5 μg/day, the concentration limits 

corresponding to various values of daily dose are reported in Table 3.1. 

Table 3.1. Relationship between acceptable daily intake (ADI) levels and 

daily dose of a pharmaceutical (active pharmaceutical ingredient, API) for 

daily doses between 1 and 3000 mg 

Daily dose of API [mg] ADI [μg/day] Concentration limit [ppm] 

3000 1.5 0.5 

1000 1.5 1.5 

500 1.5 3 

100 1.5 15 

50 1.5 30 

25 1.5 60 

10 1.5 150 

5 1.5 300 

1 1.5 1500 

 

From Table 3.1 is clear that the lowest concentration limits correspond to some ppm levels, 

depending on the daily dose. Hence is necessary, in the worst case, to control the concentration 

of the impurity below these levels. If the genotoxic impurity in the desired product is in greater 

concentration is necessary to find a clean and safe way to remove it.  

3.1.2 Selected genotoxic impurity and solid scavenger 

The idea that has been studied in this work is to use a solid reactant, called scavenger, that is 

able to react with the genotoxic impurity and link it on its surface. This method applies only to 

the purification of liquid products. At the end the exhaust solid can be removed from the 
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purified solution by filtration. This process can be carried out either in a normal STR or in the 

RBR. 

To try this idea, a genotoxic impurity was selected, in the class of the Michael-reactive 

acceptors (see Figure 3.1). Michael acceptors can undergo cytotoxic reactions with nucleophilic 

cellular constituents. Of particular concern are potentially genotoxic reactions of Michael 

acceptors with nucleic acid nucleophiles (Balu et al., 2004). 

A real example in which such type of impurity is produced is the synthesis of the active 

pharmaceutical ingredient (API) oxycodone, an analgesic generally indicated for relief of 

moderate to severe pain.  

Oxycodone is a semisynthetic opiate produced via an oxidative conversion of the natural 

product thebaine to l4-hydroxycodeinone as depicted in the scheme of Figure 3.2. 

 

Figure 3.2. Oxycodone production steps 

The oxycodone precursor l4-hydroxycodeinone is a Michael acceptor that commonly 

contaminates oxycodone preparations. These two compounds are very similar and the only 

difference is the presence of a carbon-carbon double bond conjugated with the double bound of 

the carbonyl group in the l4-hydroxycodeinone. 

Some ways to remove 14-hydroxycodeinone impurities from oxycodone in different reaction 

conditions have already been proposed. One of these includes the use of a solid reactant 

(scavenger) made of an inert support functionalized with thiol groups (Controlled Chemicals, 

Inc., Colmar, PA (US), 2015).  

To try the reaction, simpler and more common compounds were used instead of the couple 

oxycodone – 14-hydroxycodeinone. These compounds are the cyclohexanone, representative 

of the oxycodone, and the 2-cyclohexen-1-one (or cyclohexenone), analogous of the l4-

hydroxycodeinone. The compounds and the analogy are shown in Figure 3.3.  
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Figure 3.3. Real API-GI system (oxycodone – 14-hydroxycodeinone) and simplified API-GI 

system (cyclohexanone – 2-cyclohexen-1-one) chosen for the study. 

14-hydroxycodeinone and 2-cyclohexen-1-one belong to the class of the α,β-unsaturated 

carbonyl compounds, with the general structure of Figure 3.4. 

 

Figure 3.4. General structure of α,β-unsaturated carbonyl compounds (Bruice, 2004). 

α,β-unsaturated carbonyl compounds are often attacked by nucleophiles at the β carbon.  

The idea was to use a solid state nucleophile to remove the traces of 2-cyclohexen-1-one from 

the solution of 2-cyclohexen-1-one and cyclohexanone. The selected solid nucleophile 

(scavenger) is made of porous spheres of inert fused silica gel functionalized with thiol groups 

(TG), that are the nucleophilic sites (see §3.2.1). The expected reaction is represented in Figure 

3.5. 

 

Figure 3.5. Expected reaction of the 2-cyclohexen-1-one with the thiol scavenger. 
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The product formed is a solid called thioether. As mentioned at the end of §3.1.1 the target, as 

required by the guidelines, is to reach a final GI concentration of 10 ppm or lower, 

corresponding to the lowest concentrations allowed. 

3.1.3 Nucleophilic conjugate addition to α,β-unsaturated carbonyl 

compounds 

As shown in Figure 3.4, α,β-unsaturated carbonyl compounds contain two electrophilic sites: 

the carbonyl carbon and the carbon atom that is β to it. This means that a nucleophile can add 

either to the carbonyl carbon or to the β-carbon.  

Nucleophilic addition to the carbonyl carbon is called direct addition or 1,2-addition. 
  

Figure 3.6. 1,2-addition or direct addition mechanism (Bruice, 2004). 

With certain nucleophiles, addition takes place at the carbon-carbon double bond rather than at  

the carbonyl group, this is called 1,4-addition or conjugate addition. After 1,4-addition has 

occurred, the product, an enol, tautomerizes to a ketone, so the overall reaction amounts to 

addition to the carbon-carbon double bond, with the nucleophile and a final protonation by a 

proton from the reaction mixture adding to the α-carbon. 

 

Figure 3.7. 1,4-addition or conjugate addition mechanism (Bruice, 2004). 

Whether the product obtained from nucleophilic addition to an α,β-unsaturated aldehyde or 

ketone is the direct addition product or the conjugate addition product depends on the nature of 

the nucleophile, the structure of the carbonyl compound, and the conditions under which the 

reaction is carried out. 



 

24 

 

Nucleophiles that form unstable addition products - that is, nucleophiles that are weak bases, 

allowing direct addition to be reversible - form conjugate addition products because they are 

more stable. Nucleophiles in this group include halide ions, cyanide ion, thiols, alcohols, and 

amines (Bruice, 2004). 

Homogeneous reactions between α,β-unsaturated carbonyl compounds and liquid thiols have 

already been reported by Krishnaveni et al., 2005, Movassagh and Shygan, 2006, Khatik et al. 

(2006), Controlled Chemicals, Inc., Colmar, PA (US), 2015. 

Also aldehydes and ketones, like cyclohexanone and oxycodone, react with thiols to form 

thioacetals and thioketals. However a thiol is a poor nucleophile and an acid catalyst is required 

for the reaction to take place at a reasonable rate (Bruice, 2004). Provided this, the API 

(cyclohexanone) shouldn’t react with the thiol scavenger but is better to check it in the practice. 

In the case of thiols, the nucleophilic species able to attack the double bond of the GI is the 

sulfur anion or thiolate anion. For that reason the thiol groups must undergo a deprotonation 

before reacting. The overall reaction mechanism is depicted in Figure 3.8. 

 

Figure 3.8. Mechanism of the thiol conjugate addition to α,β-unsaturated carbonyl 

compounds. 

According to Controlled Chemicals, Inc., Colmar, PA (US), 2015 and Müller et al., 2006, the 

rate determining step in these types of reactions is the formation of the charged intermediate. 

The deprotonation of the thiol and the final proton transfer should be fast reactions. 

The deprotonation of the thiol is an equilibrium reaction and is affected by the nature (acidity) 

of the thiol and the pH of the environment. Schmidt et al., 1999 and Shi and Greaney, 2005 

reported that the reactivity of the thiol compounds, thus the overall reaction rate, increases with 

the pH due to the formation of the thiolate anion. Mather et al., 2006, Sarathi et al., 2008 and 

Li et al., 2010 refer to the use of a suitable basic catalyst to increase the reaction rate. The base is used 

to promote the deprotonation of the nucleophile, in this case the thiol.  
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An example of a suitable base that have been used with thiols by Sarathi et al., 2008 and Li et al., 

2010 is triethylamine.  

This base is a moderate basic non-nucleophilic base. A non-nucleophilic base is an organic base that is 

a poor nucleophile. Normal bases are also nucleophles, but often chemists seek the proton-removing 

ability of a base without any other functions. Typical non-nucleophilic bases are bulky, such that protons 

can attach to the basic center but alkylation and complexation is inhibited (Wikipedia, 2015). Some 

examples of these bases are: N,N-diisopropylethylamine (DIEA), triethylamine (TEA), 1,8-

diazabicycloundec-7-ene (DBU), 2,6-di-tert-butylpyridine and phosphazene bases. They are reported in 

Figure 3.9. 

 

Figure 3.9. Some examples of non-nuchleophilic bases commonly employed in organic 

chemistry. 

As reported by Mather et al., 2006, solvent plays an important role when carbon nucleophiles 

are used. Typical solvents for the carbon-Michael reaction include methanol, ethanol, diethyl 

ether, tetrahydrofuran, benzene, xylene, dioxane and mixtures of these solvents. Protic solvents 

seem to be desirable in the carbon-Michael reaction to promote rapid proton transfer and to 

stabilize charged intermediates. 

Barahman and Pershang, 2006 have reported also the addition of thiols to α,β-unsaturated 

carbonyl compounds under solvent-free conditions. 

3.2 Instruments, materials and methods 

In this section all the information regarding the experimental part are reported: the substances 

used, the laboratory equipment, the analytical instruments and the experimental design and 

methods. 

3.2.1 Substances 

The substances used, divided by type, and the respective relevant properties are reported in 

Table 3.2. 
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Table 3.2. List of the substances used and their main properties 

Substance Function 
Aggregation state at room 

temperature 

Boiling point [° 

C] 

2-cyclohexen-1-one reactant liquid 171-173 

Thiol scavenger reactant solid - 

Cyclohexanone 
product to purify 

(solvent) 
liquid 155 

N,N-

diisopropylethylamine 
catalyst liquid 126 

Ethanol solvent liquid 78 

Methanol solvent liquid 64 

Dimethylformamide solvent liquid 152-154 

Tetrahydrofuran solvent liquid 66 

Dichloromethane solvent liquid 39 

n-octane solvent liquid 125 

 

The thiol scavenger (TS) used is the SiliaMetS® Thiol by SiliCycle, commonly used for the 

scavenging of metals. It is made of spherical particle of fused silica functionalised with 

propane-thiol groups (TG) and was available in three different particle sizes. The characteristics 

of the three scavengers are listed in table 3.3. 

Table 3.3. Characteristics of the three scavengers used. 

Diameter (dp) 

[μm] 

Capacity 

[mmolTG/g] 

Specific surface area 

(Sa) [m2/g] 

Specific pore volume 

(spv) [mL/g] 

Pore diameter 

[Å] 

40-63 1.27 480-500 0.70-0.85 55-65 

120-200 1.44 481 0.72 55-65 

200-500 1.22 509 0.82 55-65 

 

The aspect of the thiol scavenger is reported in Figure 3.9. 
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Figure 3.10. A picture of the thiol scavenger SiliaMetS® Thiol from SiliCycle used 

(particle size = 200-500 μm). 

3.2.2 Reactors  

Three types of reactor have been used: 

1. the glass flask with magnetic stirring; 

2. the SpinChem® RBR S221 

3. a conventional stirred tank reactor (STR). 

The glass flasks (25 mL) are used  for the screening trials and the optimization of the reaction 

conditions. For the reactions carried out at high temperature they are combined with an oil bath 

heated by the hot plate, a thermocouple to measure and keep the desired temperature and, if 

needed, a laboratory glass condenser cooled with water. They are shown in Figure 3.11. 

 

Figure 3.11. The glass flasks used for the study of the reaction. The one on the left is 

placed in an oil bath and connected with a condenser. 

The RBR and the STR used are represented in Figure 3.12.  
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Figure 3.12. The STR and the RBR S221. 

Figure 3.13. Stirring elements used in the RBR and in the STR. 

Table 3.4. Properties of the vessel, the rotating bed and the impeller used. 

Vessel Rotating bed Impeller 

volume: V = 210 mL 

height: HV = 65 mm 

diameter: DV = 65 mm 

flower-baffled (18 flower baffles), see Fig. 2.2 

volume: VRB = 28 mL 

width: WRB = 30 mm 

diameter: DRB = 45 mm 

type: pitched-blade 

# of blades: 4 

diameter: DI = 35 mm 

width of the blades: WI = 12 mm; 

 

The difference between the two is only in the stirring element; that is a rotating bed in the first 

case and a Teflon, 4-blades pitched-blade impeller for the STR. The latter is an axial mixer, 

that rotates to force a downdraft circulation. They are shown in Fig. 3.13. 

The properties of the vessel and the stirring elements are listed in Table 3.4. 

3.2.3 Analytical method 

Since the TS and the product of the reaction in Figure 3.5 are solids, the best way to obtain the 

conversion of the 2-cyclohexen-1-one is to analyse its concentration. 
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Since all the species used in the system, except the scavenger, were liquid with relatively low 

boiling points (see Table 3.2), the concentration of the GI was obtained with the gas 

cromatograph (GC) and a flame-ionization detector (FID).  

The GC used (Figure 3.14) is an Agilent 7820A with automatic sampler and the column a 

Restek Rtx®-50-DHA capillary column (maximum column temperature = 340° C).  

 

Figure 3.14. The GC-FID Agilent 7820A with auto-sampler used for the analysis of the 

concentrations. 

Two set-up of the GC parameters were used. The initial set-up (Set-up 1) was used at the 

beginning, than it was changed to another set-up (Set-up 2) to obtain shorter analysis time and 

higher detection limit. All the parameters of the two set-up are reported in Table 3.5. 
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Table 3.5. Characteristics of the two set-up of the GC used. 

Parameter Set-up 1 Set-up 2 

Injection volume [μL] 0.2 0.2 

Solvent A washes preinj. 0 0 

Solvent A washes postinj. 5 5 

Solvent B washes preinj. 0 0 

Solvent B washes postinj. 5 5 

Sample washes 5 5 

Sample pumps 4 4 

Inlet heater temperature [° C] 250 250 

Inlet pressure [psi] 21.3 21.3 

Carrier gas nitrogen nitrogen 

Mode split split 

Split ratio 100:1 10:1 

Initial oven temperature [° C] / holding time [min] 80 / 0 80 / 0 

Ramp 1 [°C/min] 10 5 

Oven final temperature 1 [°C] / holding time [min] 280 / 0 130 / 0 

Ramp 2 [°C/min] - 30 

Oven final temperature 2 [°C] / holding time [min] - 300 / 0 

FID detector temperature [° C] 250 250 

 

Since the reaction mixture is made of cyclohexanone and 2-cyclohexen-1-one, first the 

separation of these two compounds was attempted,  in a roughly 1:1 volume mixture using the 

GC set-up 1. The composition of the mixture was not measured accurately because it was just 

a separation trial. The mixture of the two compounds was homogeneous so they are miscible. 

Before the analysis the column was conditioned at 300 °C for 30 minutes. 

Though the two compounds are very similar and have close boiling points, the separation was 

possible and the chromatogram is reported in Figure 3.15. The compound corresponding to each 

peak was identified by comparing the retention time of the peak with the retention time of the 

peak obtained by injecting the pure compound. 
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Figure 3.15. Chromatogram of a 1:1 volume mixture of GI and API, with the GC-set-up 1. 

After the successful separation, some standard solutions of 2-cyclohexen-1-one (GI) in 

cyclohexanone (API) were prepared in order to plot a calibration curve for the concentration of 

the 2-cyclohexen-1-one. The concentration of the standard solutions, expressed in ppm weight 

of 2-cyclohexen-1-one in cyclohexanone are: 0 (blank), 2, 10, 25, 50, 75, 100, 125, 150, 200. 

The overlapped chromatograms of the standard solutions and the calibration curve are shown 

in Figure 3.16 and 3.17 respectively. 

 

Figure 3.16. Overlapping chromatograms of the standard solutions of GI in API for the 

first calibration curve. The GC-set-up 1 was used. 

Two observations can be done, about Figure 3.17: 
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 there is a linear relationship between the concentration of the GI and the peak area; 

 the straight line obtained doesn’t intercept the origin of the axes. 

This means that in the blank standard (pure cyclohexanone) there are some ppm levels of 2-

cyclohexen-1-one.  

 

Figure 3.17. First 2-cyclohexen-1-one calibration curve. The GC-set-up 1 was used. 

For this reason the calibration curve has been repeated using n-octane instead of cyclohexanone 

as solvent. The reasons to select the n-octane is its low volatility (𝑛𝑏𝑝𝑛−𝑜𝑐𝑡𝑎𝑛𝑒 = 125 °𝐶, the 

errors in the standard solutions preparation due to the evaporation of the compounds are 

minimized), it did not have impurities with the same retention time of the 2-cyclohexen-1-one 

and it does not react with the GI. In this case, for computing the calibration curve, the 

concentration of the GI was expressed in molarity (𝑚𝑜𝑙 𝐿⁄ ) instead of ppm weight. Using this 

unit of measure the curve is valid for determining the concentration of the 2-cyclohexen-1-one 

in every substance, if it is in the range covered by the standard solutions. 

Before proceeding with the new calibration curve, we decided to modify the set-up of the GC 

to obtain 5 minutes shorter analysis time and a higher detection limit. The parameters values of 

the new set-up (set-up 2) are listed in Table 3.5. 

The standard solutions that were prepared for the new calibration curve are listed in Table 3.6. 

The number of standard solution at low concentration was increased, the range was extended 

to higher concentrations and each standard solution was injected three times in the GC to verify 

the reproducibility of the analysis. 
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Table 3.6. Standard solutions used for the second calibration curve. 

Standard solution 𝑪𝑮𝑰 [ppm weight of GI in n-octane] 𝑪𝑮𝑰 [mol/L] 

Blank 0 0 

1 2 1.52E-5 

2 10 7.30E-5 

3 17 1.24E-4 

4 25 1.84E-4 

5 37 2.70E-4 

6 50 3.67E-4 

7 75 5.46E-4 

8 100 7.25E-4 

9 119 8.68E-4 

10 149 1.09E-3 

11 199 1.46E-3 

12 300 2.20E-3 

13 400 2.91E-3 

14 485 3.55E-3 

15 598 4.37E-3 

16 700 5.12E-3 

 

The new calibration curve is shown in Figure 3.18.  

 

Figure 3.18. Second 2-cyclohexen-1-one calibration curve. 
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The new calibration curve obtained is still a straight line but now it passes through the origin 

of the axes. The reproducibility of the analysis is very good: for most of the standard solutions 

the three points corresponding to the three GC analysis are overlapped. For very few standard 

solutions the area measured is a bit different but this is probably due to some injection errors or 

other random errors. 

This calibration curve was used in the successive experiments to determine the concentration 

of the 2-cyclohexen-1-one during the reaction. 

3.2.4 Experimental design 

After the set-up of the analytical method described in the previous paragraph, the desired 

reaction of Figure 3.5 have been tried first in small glass flasks agitated with the magnetic stir 

bar. Since the 2-cyclohexen-1-one represents an impurity, we started with an initial 

concentration around 500 ppm.  

Once the reaction conditions have been optimized, the performances of the RBR were compared 

with those of the STR at different stirring rates. The scavenger used is always the one with the 

largest particle size of 200-500 μm except in the last experiment in which different particle sizes 

were used to investigate the internal mass-transfer. 

3.3 Results and discussion 

In this section the experiments are explained in detail and the results shown and discussed. 

3.3.1 Optimization of the reaction conditions 

All the reactions reported in this paragraph were carried out in small volume glass flasks, mixed 

with a magnetic stir bar at the highest rotation speed allowable to keep the stir bar stable. The 

scavenger used was the one with the largest diameter (200-500 μm). 

All the experiments discussed to this paragraph and the relative reaction conditions are listed 

in Table 3.7. 
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Table 3.7. List of the experiments from Exp.1  to Exp. 6 

Exp. 

# 

Liquid vol. 

[mL] 

T [° 

C] 
Solvent 

𝑪𝑮𝑰
𝟎  

[mM] 

𝑪𝑮𝑰
𝟎  

[ppm w] 
𝑪𝑨𝑷𝑰

𝟎 [ppm] 
GI:TG:B 

(molar ratio) 

𝑿𝑮𝑰 (t = 

24 h) 

1.1 7.4 21 
Cyclohexanone 

(API) 
3 300 - 1:6.1:0 0 

1.2 7.4 80 
Cyclohexanone 

(API) 
3 300 - 1:6.1:0 0 

2.1 11.2 21 tetrahydrofuran 6.9 750 630 1:6.1:0 0 

2.2 10.6 21 dimethylformamide 4.9 500 630 1:12.2:0 0 

2.3 10.6 80 dimethylformamide 4.9 500 630 1:12.2:0 0.14 

2.4 12.7 21 acrylonitrile 5.3 640 640 1:9.4:0 0 

2.5 7.5 21 dichloromethane 8.3 600 590 1:11.2:0 0 

2.6 10.6 21 methanol 7.1 720 530 1:8.8:0 0.18 

2.7 21 60 methanol 7.1 720 530 1:8.8:0 0.45 

3.1 10.6 21 
Cyclohexanone 

(API) 
5.2 525 - 1:0:30.8 0 

3.2 10.6 21 
Cyclohexanone 

(API) 
5.2 525 - 1:14.9:0 0 

3.3 10.6 21 
Cyclohexanone 

(API) 
5.2 525 - 1:15.5:30.7 0.64 

4.1 19.9 21 Methanol 4 490 520 1:0:8.2 0.4 

4.2 19.9 21 Methanol 4 490 520 1:4:8.2 0.94 

4.3 20.0 60 Methanol 4 490 520 1:0:8.2 0.36 

4.4 19.9 60 Methanol 4 490 520 1:4:8.2 0.84 

5.1 20.3 21 Ethanol 4.4 530 490 1:0:10.2 0 

5.2 20.3 21 Ethanol 4.4 530 490 1:5.1:10.2 0.89 

6.1 25.3 21 ethanol 4 490 0 1:9.2:17.6 0.98 

6.2 22.8 21 30% w EtOH in API 5.1 560 - 1:0:16.1 0 

6.3 22.8 21 30% w EtOH in API 5.1 560 - 1:8:15.7 0.77 

 

The reaction have been tried first (Exp. 1) in neat conditions (without a solvent). The scavenger 

was added to a solution of 300 ppm of GI in API. From the scavenger capacity [mmol of thiol 

groups/g] is possible to calculate the scavenger mass corresponding to the desired number of 

moles of thiol groups (TG) needed.  

As reported by Chen and Zhang (2005), in solid-supported solution-phase reactions like this, 

the advantage of easy separation can be counterbalanced by slow reaction, limitation on solvent 

selection, and the need to use large excess of the solid-bound reagent because not all the active 

sites on the solid-support are equally accessible. 

For that reason we used an excess of scavenger (excess of thiol groups). The moles of TG added 

are reported as the proportion with respect to the moles of GI. The reaction was carried out at 

T = 21° C and T = 80° C. In both cases the GI conversion after 24 hours was 0. 
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Then we carried out the reaction with different solvents (Exp. 2) at T = 21° C and reduced the 

amount of the API to the same concentration of the GI in order to see if the API actually reacts 

with the scavenger. 

The solvents considered were: dimethylformamide, tetrahydrofuran, dichloromethane and 

methanol, i.e. the most common for this type of applications. 

The GI conversion after 24 hours was 18% with methanol and 0 with the other solvents 

Two of the previous solvents, dimethylformamide and methanol, were tested at T = 21° C and 

also at higher temperature: T = 80° C and T = 60° C respectively. With dimethylformamide the 

conversion after 24 hours was 0 at T = 21° C and 14% at T = 80° C. With methanol 14% at 21° 

C and 45% at T = 60° C.  

In all the experiments cited above, the cyclohexanone did not react. 

From these experiments it is clear that in neat conditions there is no removal of the GI. Among 

the solvents tested only methanol gives interesting results, but the conversion could also be due 

to secondary reactions since the 2-cyclohexen-1-one is present in very low amount and could 

react with other impurities present in solution. Furthermore, even if the reaction was the desired 

one, it would be very slow.  

The next step was to add a basic catalyst to facilitate the deprotonation of the thiol groups of 

the scavenger, as discussed in §3.1.3. The base used was the N,N-diisopropylethylamine 

(DIEA), that will be indicated with the letter B. Since it is a weak base, is necessary to use an 

excess of it with respect to the moles of TG in the reaction mixture.  

The Exp.1 in neat conditions was repeated three times (Exp. 3) at T = 21° C: 

 one time with only the TS; 

 one time with only the DIEA; 

 one time with the TS and the DIEA. 

Only when TS and DIEA were both present the conversion of the GI was greater than 0 and 

equal to 64% after 24 hours. The corresponding time-conversion curve is shown in Figure 3.19. 
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Figure 3.19. GI conversion trend of Exp. 3. 

These experiments demonstrated that the addition of a basic catalyst is fundamental for 

promoting the reaction. Furthermore, there is no evidence of secondary reactions because when 

the TS is not present nothing reacts. 

It seems that the curve of Figure 3.19 has not reached a flat plateau after 24 hours, suggesting 

that the conversion could have been higher if the reaction had been carried out for a longer time. 

Anyway it is important to underline that the 64% conversion after 24 hours was reached with  

a high excess of TG (15 times the moles of GI). 

 

Afterwards, the reaction was carried out using methanol as solvent, plus the addition of the 

DIEA (Exp. 4). Two reactions were run in parallel, one with only DIEA and one with TS and 

DIEA, to detect any secondary reactions. Two temperature levels were investigated, T = 21° C 

and T = 60° C. The API was added in traces to verify that it did not react. The GI conversion 

curves are reported in Figure 3.20. 

The fact that without TS the GI is converted rapidly to a value of 40% roughly indicates that 

the 2-cyclohexen-1-one undergoes one or more secondary reactions. For this reason the 

methanol is not a suitable solvent. When the TS is present the conversion arrives to 70% after 

3 hours. At 24 hours the conversion is 94% at T = 21° C and 84% at T = 60° C, evidencing that 

the temperature has a negative effect on the reaction. 

A second alcoholic solvent, ethanol, was subsequently tested. The experiment (Exp. 5) is 

analogue to the previous one, but at room temperature. The conversion is shown in Figure 3.20. 

With ethanol there are no side reactions in the absence of the TS and the conversion after 24 

hours is quite high: 89%. 
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Figure 3.20. GI conversion trend of Exp. 4 and 5. 

The absence of side reactions with ethanol is probably a consequence of its lower acidity with 

respect to methanol (𝑝𝐾𝑎,𝑀𝑒𝑂𝐻 = 15.5, 𝑝𝐾𝑎,𝐸𝑡𝑂𝐻 = 15.9). The alcoxide ion formed after the 

deprotonation of an alcohol is in fact a nucleophile and it could react with the 2-cyclohexen-1-

one in the same way of the thiol scavenger. 

Finally, we tried to reduce the amount of ethanol and increase the API, using a mixture of 30% 

weight of ethanol in API as solvent (Exp. 6). The reaction was carried out with DIEA only and 

with DIEA and TS. The results, depicted in Figure 3.21, were compared with the ones obtained 

from the same reaction using only ethanol as solvent. Figure 3.21 suggest that the lower 

concentration of ethanol with respect to the API, the reaction slows down and the conversion 

after 24 hours is 77% instead of 98% when pure ethanol is used. 

The explanation to this phenomenon could be that the ethanol, like methanol, is a protic solvent 

that promotes rapid proton transfer (see reaction mechanism of Figure 3.8) and stabilizes 

charged intermediates, this translates in a faster reaction. Thus, when the concentration of the 

protic solvent is reduced, also its effects are reduced. 

In all the experiments made the API did not react. 
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Figure 3.21. GI conversion trend of Exp. 6. 

After these experiments, we decided to use pure ethanol as solvent in combination with the 

catalyst DIEA for the following reactions.  

By keeping the same reaction conditions and varying only the parameters of interest, the effect 

on the reaction rate of the DIEA concentration (Exp. 7), TS amount (Exp. 8) and temperature 

(Exp. 9) was investigated. The details on these experiments are reported in Table 3.8 and the 

graphical results in figure 3.22 a), b) and c) respectively. 

Table 3.8. List of the experiments from Exp. 7 to Exp. 9 

Exp. # Liquid vol. [mL] T [° C] Solvent 𝑪𝑮𝑰
𝟎  [mM] 𝑪𝑮𝑰

𝟎  [ppm w] GI:TG:B (molar ratio) 

7.1 19 21 ethanol 2.5 300 1:7:35 

7.2 19 21 ethanol 2.5 300 1:7:72 

7.3 19 21 ethanol 2.5 300 1:7:107 

8.1 19 21 Ethanol 2.5 300 1:3.5:70 

8.2 19 21 Ethanol 2.5 300 1:7:70 

8.3 19 21 Ethanol 2.5 300 1:11:70 

9.1 19 21 Ethanol 2.5 300 1:7:70 

9.2 19 47 Ethanol 2.5 300 1:7:70 

9.3 19 75 ethanol 2.5 300 1:7:70 
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Figure 3.22. a) GI conversion trend of Exp. 7. b) GI conversion trend of Exp. 8. c) GI 

conversion trend of Exp. 9. 
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From Figure 3.22 a) it is clearly noticeable that the reaction rate increases with the DIEA 

concentration also when large excesses of DIEA are used. The TS amount has also a positive 

effect on the reaction rate. 

Conversely, it appears from Exp. 5, that the final conversion (after 24 hours) of the GI decreases 

with the temperature. One explanation could be the presence of a reaction equilibrium which is 

shifted towards the reactants as the temperature increases. 

The optimal reaction conditions for the reaction are then the use of ethanol as solvent, a large 

excess of TS, DIEA as catalyst (in large excess with respect to the TG) and room temperature. 

3.3.2 Rotating bed reactor vs. stirred tank reactor 

From the previous experiments made in the small glass flasks, the optimal reaction conditions 

(solvent, initial concentration of GI, amount of TS, amount of DIEA, temperature) have been 

selected. The reaction was then carried out in the SpinChem® RBR S221 at different stirring 

rates: 200 rpm, 400 rpm and 800 rpm. The same was done using a normal STR, keeping the 

same vessel and replacing the rotating bed cell with a 4 pitched-blade impeller. In this case the 

scavenger was added directly in the liquid mixture, yielding a slurry. With the STR, the 

complete suspension of the solid was difficult at 200 rpm; the minimum stirring speed selected 

was 250 rpm instead of 200 rpm. For the same reason, the height of the impeller from the bottom 

of the vessel was lowered to 5 mm instead of 12 mm. 

The same reaction has been tested also in a small glass flask agitated with the stir bar, both at 

low rotation speed of 100 rpm and at the maximum rotation speed possible at which the stir bar 

was still stable. 

The characteristics of the reactors used are reported in §3.2.2. 

The reaction conditions are reported in Table 3.9 and the conversion-time curves in  

Figure 3.23. 

Table 3.9. Experimental conditions used in the RBR – STR comparison. 

Reactor 

Rotation 

speed 

[rpm] 

Liquid vol. 

[mL] 

T 

[° 

C] 

Solvent 
𝑪𝑮𝑰

𝟎  

[mM] 

𝑪𝑮𝑰
𝟎  

[ppm 

w] 

GI:TG:B 

(molar 

ratio) 

Height of the 

rotating 

bed/impeller base 

from the vessel 

bottom [mm] 

RBR 
200, 400, 

800 
190 21 ethanol 2.5 300 1:7:105 12 

STR 400, 800 190 21 ethanol 2.5 300 1:7:105 12 

STR 250 190 21 ethanol 2.5 300 1:7:105 5 
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Figure 3.23. Conversion curves obtained with the RBR and the STR at different rotation 

speeds. 

All the curves of Figure 3.23 are overlapped. The only exception is the STR at 250 rpm, whose 

reaction is a bit slower than the others. However this is likely due to the fact that some scavenger 

was trapped in the small cavity formed by the drainage hole at the bottom of the tank, hence it 

was not in good contact with the solution.  

We conclude that neither the rotation speed nor the reactor type affect the reaction rate. Since 

these variables affect only the mass transfer in the external film surrounding the solid particles, 

the reaction appears not externally mass-transfer limited. 

From this and the also the previous experiments is also important to note that the GI final 

concentration after 24 hours, expressed in ppm of GI in ethanol, is around 10 ppm, as the desired 

value. Anyway, as demonstrated with Exp. 3, if cyclohexanone is used instead of ethanol, the 

reaction is much slower and the desired final concentration of GI is not reached after 24 hours. 

3.3.3 Internal mass transfer investigation 

Since the TS is porous and has been verified that the reaction is not externally mass transfer 

limited, the presence of an internal-mass transfer limitation was investigated by running the 

reaction using scavengers of different particle size. All three particle sizes available listed in 

Table 3.3 were tested. All the other reaction conditions were kept constant and are reported in 

Table 3.10. Since the scavengers with different particle size do not have the same capacity 

(mmol of TG/g), the mass of scavenger added was recalculated, based on the scavenger capacity 

in order to add always the same moles of TG. 
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Table 3.10. Experimental conditions used for the different particle size 

comparison. 

 
Particle diameter (dp) 

[μm] 

Liquid vol. 

[mL] 

T [° 

C] 
Solvent 

𝑪𝑮𝑰
𝟎  

[mM] 

𝑪𝑮𝑰
𝟎  [ppm 

w] 

GI:TG:B (molar 

ratio) 

 40-63 20 21 ethanol 2.5 300 1:14:210 

 120-200 20 21 ethanol 2.5 300 1:14:210 

 200-500 20 21 ethanol 2.5 300 1:14:210 

 

The reactor used is the small agitated flask because it was demonstrated in the previous 

experiment that it is equivalent to the other types of reactor. A large excess of scavenger and 

DIEA were added in order to simplify the calculations for further modelling of the reaction 

kinetics. The results are shown in Figure 3.24. 

 

Figure 3.24. GI concentration and conversion curves versus reaction time obtained with 

particles of different size. 

From Figure 3.24 is clear that the reaction rate is inversely proportional to the particle size. As 

said in §1.2.2 this suggests that the reaction is internally mass-transfer limited. That is also 

intuitive given that TS is porous and the rate of reaction is fast compared to the diffusion time 

in a porous matrix. 

 

A more quantitative understanding has been developed through a modelling of these 

experiments. 

 The GI is now indicated with the letter A to simplify the notation. Since from the previous 

experiments of § 3.3.2 is clear that the reaction is not externally mass transfer limited, is 

possible to remove the terms regarding the external mass transfer from the material balance 

equations and the concentration of the GI at the external surface of the solid particles, 𝐶𝐴
𝑖 , can 

be considered equal to the GI concentration in the bulk, 𝐶𝐴
𝑏.  

For these reasons the material balance assuming perfectly stirred, closed reactor model, reduces 

to equation (1.4): 
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�̇�𝐴
𝑐𝑜𝑛𝑠 =

d𝐶𝐴
𝑏

dt
= 𝑟𝐴

′′𝜂𝑎𝐿,𝑡𝑜𝑡   . (3.1) 

 

The models tested for 𝑅′′ and the respective expressions of  𝜙 and 𝜂 used are the following: 

 

1) 𝑅′′ = 𝑘′′𝐶𝐴
𝑏   ,  𝜂 = 1   , (3.2) 

 

2) 𝑅′′ = 𝑘′′𝐶𝐴
𝑏,  𝜙 = 𝐿√

𝑘′′𝑎𝑆,𝑡𝑜𝑡

𝔇𝑒
   ,   𝜂 =

1

𝜙
(

1

𝑡𝑎𝑛ℎ(3𝜙)
−

1

3𝜙
)   , (3.3) 

 

3) 𝑅′′ = 𝑘′′𝐶𝐴
𝑏𝑛

   ,   𝜂 = 1   , (3.4) 

 

4) 𝑅′′ = 𝑘′′𝐶𝐴
𝑏𝑛

, 𝜙 = 𝐿√(𝑛+1)𝑘′′𝑎𝑆,𝑡𝑜𝑡𝐶𝐴
𝑏𝑛−1

2𝔇𝑒
  ,   𝜂 =

1

𝜙
(

1

𝑡𝑎𝑛ℎ(3𝜙)
−

1

3𝜙
)   , (3.5) 

 

where 𝑘′′𝑎𝑆,𝑡𝑜𝑡 = 𝑘′′′ . The parameters to be estimated are 𝑘′′and n. 

The detailed explanation of the previous models can be found in Chapter 1. 

The assumption is that the reaction rate can be expressed as a function of the concentration of 

only GI (=A) because: 

 the concentration of the DIEA, the catalyst, is constant and can be incorporated in 𝑘′′; 

 the scavenger is present in large excess and the superficial concentration of the TG can 

be considered constant and incorporated in 𝑘′′. 

To calculate 𝑎𝑆,𝑡𝑜𝑡 (see § 1.1.2), the density of the solid particles including the volume of the 

pores, 𝜌𝑝, has been calculated before. It is given by the ratio between the total mass of 

scavenger, 𝑚𝑠, and the total volume of the solid particles including their porosity, 𝑉𝑝,𝑡𝑜𝑡. It can 

alternatively be expressed as a function of the fused silica density (𝜌𝑓𝑠 = 2200 𝑘𝑔/𝑚3) and 

the specific pore volume of the scavenger, (Sa and spv respectively): 

 

𝜌𝑝 =
𝑚𝑆

𝑉𝑝,𝑡𝑜𝑡
=

1
1

𝜌𝑠𝑖𝑙
+𝑠𝑝𝑣

   . (3.6) 

 

The value of 𝑎𝑆,𝑡𝑜𝑡 has been calculated from the solid particles density, 𝜌𝑝, and the specific 

surface area of the scavenger, Sa: 

 

𝑎𝑆,𝑡𝑜𝑡 =
𝐴𝑡𝑜𝑡

𝑉𝑝,𝑡𝑜𝑡 =
𝑆𝑎𝑚𝑆

𝑉𝑝,𝑡𝑜𝑡 = 𝑆𝑎𝜌𝑝   . (3.6) 

 

For the calculation of the effective diffusion coefficient, equation (1.14): 
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 𝔇𝐴,𝐿 has been estimated with the Wilke-Chang method (Poling, Prausnitz and 

O'Connell, 2001). 𝔇𝐴,𝐿 = 9.66𝑒 − 10 𝑚2 𝑠⁄ ; 

 𝜀𝑝 has been estimated by dividing the pore specific volume for the specific volume of 

the solid particles: 

 

𝜀𝑝 = 𝑠𝑝𝑣 ∗ 𝜌𝑝   ; (3.7) 

 

𝜀𝑝  =  0.62; 

 for 𝜏 was chosen an average common value of 3.5 (Fogler, 2005). 

For each model tested the parameters 𝑘′′ and n have been estimated. They are reported in Table 

3.10 along with the values of the objective function (FOB) obtained at the end of the 

optimization. The results of the fitting are depicted in Figure 3.25.  

 

Figure 3.25. Fitting of the experimental data obtained with the different particle sizes. 
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Table 3.11. Estimated parameters relative to the different particle sizes and 

the kinetic models used. 

dp [μm] Model 𝒌′′ 𝒏 FOB value 

40-63 1 9.87e-11 - 0.04359 

40-63 2 9.99e-11 - 0.04438 

40-63 3 9.82e-11 1.35 0.01549 

40-63 4 9.95e-11 1.35 0.01547 

120-200 1 5.84e-11 - 0.08521 

120-200 2 6.35e-11 - 0.09325 

120-200 3 5.26e-11 1.48 0.02751 

120-200 4 5.66e-11 1.51 0.02724 

200-500 1 3.51e-11 - 0.09760 

200-500 2 4.39e-11 - 0.11885 

200-500 3 3.12e-11 1.50 0.02714 

200-500 4 3.79e-11 1.58 0.02615 

 

From the FOB values of Table 3.11 and Figure 3.25 is clear that the best models are models 3 

and 4. The fitting and the estimated parameters of these two models are similar.  

 

Using model 4 (that provides information about the internal mass transfer) and the estimated 

parameters, the values of the Thiele modulus and the effectiveness factor have been calculated 

as a function of 𝐶𝐴
𝑏 (since for n-th order reactions 𝜙 is a function of 𝐶𝐴

𝑏), with 𝐶𝐴
𝑏 varying in the 

range of the experimental data. The effectiveness factor versus the Thiele modulus are plotted 

in Figure 3.26. 

 

Figure 3.26. Calculated effectiveness factors as a function of Thiele modulus obtained from 

the experiments using different particle sizes. 
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Also the ratios of the observed rates of consumption of A obtained with the different particle 

sizes have been plotted against 𝐶𝐴
𝑏 in Figure 3.27. In the same figure the ratios of the average 

particle diameters are also reported. 

 

Figure 3.27. Ratios of the observed consumption rates of GI relative to the different 

particle sizes. 

Figure 3.27 confirms that the Thiele modulus is inversely proportional to the particle size. With 

the smallest particles the estimated effectiveness factor is very close to 1 and 𝜙 < 0.2, 

indicating that the pore resistance could be negligible in this case. With the intermediate particle 

size tested 𝜂 is slightly lower and, for the highest values of 𝐶𝐴
𝑏 the Thiele modulus 𝜙 is greater 

than 0.4, the limit for negligible pores diffusion (Levenspiel, 1999). For the largest particle size, 

𝜙 is always greater than 0.4 and its highest value is close to 0.8. Therefore in this last two cases 

the internal mass-transfer cannot be ignored and it seems in the same order of magnitude of the 

intrinsic chemical kinetics. 

From Figure 3.27 is possible to see that the ratios of the observed reaction rates of the species 

A are not equal to the ratios of the average particle diameters, but somehow lower. This 

confirms that the reaction is not in the in the strong pores-diffusion regime (𝜙 > 4), though the 

effect of the porosity cannot be neglected. 

However it has to be taken into account that the accuracy of these results is not very high, as a 

consequence of the inaccuracy of the kinetic model itself and the assumptions made. Among 

these, the most influential are: 

 the solid particles have been assumed spherical, but their shape is irregular; 
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 the average diameter of the particles was used in the calculations, without taking into 

account any particle size distribution (it wasn’t available); 

 the estimation of 𝜀𝑝 is quite approximated; 

 the value of 𝜏 have been chosen arbitrarily. 

 The most reliable results are always the experimental ones and they say that the particle 

size has an effect on the reaction rate, likely due mostly to the internal diffusion inside 

the solid pores. 
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Chapter 4 

Ion exchange reaction 

This chapter is about the study of the RBR by using a solid-liquid ionic exchange reaction. A 

series of experiments oriented to the understanding of the reaction and the optimization of the 

reaction conditions and parameters was done first. Then the RBR and the normal STR were 

compared at different rotation speeds.  

Finally, the importance of the type of baffles used and the height of the rotating bed (RB) in the 

vessel was investigated. 

4.1 Theoretical aspects 

The solid-liquid ion exchange reaction used is a very simple and common reaction. This kind 

of reaction is widely employed for the deionization of the water. The water flows through an 

ion-exchange resin bed and the ions of the dissolved salts are exchanged and replaced by H+ 

and OH- ions from the resin. 

Ion exchange resins are polymers that are capable of exchanging particular ions within the  

polymer with ions in a solution that is passed through them.  This ability is also seen in various 

natural systems such as soils and living cells.  

The synthetic resins are used primarily for water softening, but also for various other 

applications including separating out some elements. 

Ion exchangers are insoluble acids or bases which have salts that are also insoluble, and this 

enables them to exchange either positively charged ions (cation exchangers) or negatively 

charged ones (anion exchangers). 

Most typical ion-exchange resins are based on crosslinked polystyrene. The actual ion 

exchanging sites are introduced after polymerisation. Additionally, in the case of polystyrene, 

crosslinking is introduced via copolymerisation of styrene and a few percent of divinylbenzene, 

like in Figure 4.1. Crosslinking decreases ion-exchange capacity of the resin and prolongs the 

time needed to accomplish the ion exchange processes but improves the robustness of the resin. 
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Figure 4.1. Two common examples of ion-exchange resins. 

The resins are prepared as spherical beads of 0.5 to 1.0 mm in diameter.  These appear solid 

even under the microscope (Figure 4.2 a)), but on a molecular scale the structure is quite open, 

(Figure 4.2 b)).   

This means that a solution passed down a resin bed can flow through the crosslinked polymer, 

bringing it into intimate contact with the exchange sites. 

Four main types of ion exchange resins differ in their functional groups: 

 strongly acidic, typically featuring sulfonic acid groups, e.g. sodium polystyrene 

sulfonate; 

 strongly basic, typically featuring quaternary amino groups, for example, 

trimethylammonium groups; 

 weakly acidic, typically featuring carboxylic acid groups; 

 weakly basic, typically featuring primary, secondary, and/or ternary amino groups, e.g. 

polyethylene amine. 

The structure of the first two types of resin is shown in Figure 4.1. 

Suppose a resin has greater affinity for ion B than for ion A. If the resin contains ion A and ion 

B is dissolved in the water passing through it, then the following exchange takes place, the 

reaction proceeding to the right (R represents the resin): 

 

𝑅𝐴 + 𝐵𝑛± ⇌ 𝑅𝐵 + 𝐴𝑛±   , (4.1) 
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Figure 4.2. a) Macroscopic and b) molecular structure of an ion-exchange resin. 

When the resin exchange capacity approaches exhaustion, it will mostly be in the RB form. 

4.2 Instruments, materials and methods 

This chapter describes the properties of the ion-exchange system used for this study (type of 

resin, ionic species to react with), the reactors and the analytical method used to measure the 

reaction time. 

4.2.1 Substances 

The ion-exchange reaction chosen is the one represented in Figure 4.3. 

 

Figure 4.3. Ion exchange reaction used to study the RBR. 

The cation exchange resin used is the AmberliteTM IRN99 produced by DOW®. Its properties 

are listed in Figure 4.4. 
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Figure 4.4. Appearance and properties of the ion-exchange resin Amberlite IRN99. 

A 1.05 M NaOH solution was prepared by dissolving 4.2 g of NaOH in 100 mL of deionized 

water.  

To follow the reaction phenolphthalein was used as pH-indicator. 40 mg of phenolphthalein 

were first dissolved in 0.5 mL of the previous 1.05 M NaOH solution and then added to 1 L of 

deionized water. Several liters of this solution were prepared. 

Before use, a big amount of raw resin was washed six times with deionized water in a vacuum 

funnel. The volume of water used for each wash cycle was equal to the volume of resin to be 

washed. The vacuum was regulated so that the water flux through the resin was slow (the flux 

has not been measured, the washing time was around 5 min). During the wash the resin was 

always kept immersed in the water to ensure its wetting and prevent the air to enter in the pores 

of the beads. Also after the wash cycle, the clean resin was stored under deionized water in a 

glass bottle for the same reasons. 

Washing of the raw resin is supposed to have two functions: 

 wash away the impurities, such as salts or small amounts of acids, from the raw resin; 

 force the air out from the beads pores, enhancing the wetting of the resin. 

4.2.2 Reactors 

The reactors used are the same described in §3.2.2 but more types of vessels, differing in 

diameter and type of baffles, were tested. They will be described later. 

4.2.3 Experimental and analytical method 

The characteristics of the phenolphthalein as pH indicator are reported in Figure 4.5. 
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Figure 4.5. Properties of the pH-indicator phenolphthalein. 

When the pH of the solution is lower than 8-8.2 the solution is clear. After the addition of a 

sufficient amount of a base, like NaOH, the colour suddenly shifts to the pink. If this basic 

solution flows through the cation exchange resin Amberlite IRN99 contained in the RB, the 

OH- ions are removed from the solution and below pH = 10 the strong pink colour gradually 

fades. When the pH is lower than 8-8.2 the solution returns completely clear. The reaction can 

be repeated with the same batch of resin by adding again NaOH. OH- builds up on the resin, up 

to saturation after many cycles. 

The reaction time to achieve OH- removal (from the initial pH to pH = 8-8.2) corresponds to 

the solution discoloration time after the NaOH addition and it can be measured visually, with a 

stopwatch or by using a probe connected to a spectrophotometer. 

The procedure used for the experiments is the following one: 

 the reactor is filled with the basic phenolphthalein solution (§ 4.2.1) and the ion-

exchange resin is added; 

 the stirring element (RB or impeller) is set in motion by switching on the overhead 

motor; 

 when the solution is clear a small volume of the 1.05 M NaOH solution is added with 

the micropipette; this corresponds to the initial time; 

 the reaction is allowed to run and just after the discoloration the final time is registered 

 a new volume of NaOH can be added to run another reaction. 

All the experiments were carried out at room temperature (21° C). 

4.2.4 Experimental design 

The experimental plan is divided in four series of experiments: 

1. the reaction was carried out with different volumes of resin in the RB to see how the 

reaction time varies and decide the most convenient amount of resin to be used for the 

next experiments; 
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2. the RBR and the STR were compared at different rotation speeds; 

3. the position (height) of the rotating bed in the vessel was varied to see if and how it 

influences the reaction time; 

4. study of the effect of the baffles type (unbaffled vessels, vessels with normal baffles and 

flower-baffled vessels) and the RB height on the reaction time. Different diameters of 

the vessel were tested. 

4.3 Results and discussion 

The results of the four series of experiments summarized in the previous paragraph are here 

reported and discussed. The symbols and acronyms used are the following: VL (liquid volume), 

VR (resin volume), VNaOH (injection volume of NaOH 1.05 m), RS (rotation speed), HRB (height 

of the rotating bed base from the vessel bottom), HI (= height of the impeller base from the 

vessel bottom), HL (liquid height in the reactor), DL (vessel diameter), DRB (rotating bed 

diameter). The meaning of some of these abbreviations is also shown in Figure 4.6. 

 

Figure 4.6. Main geometrical parameters of the reactors used. 

4.3.1 Resin volume vs. reaction time 

For these experiments the RBR shown in §3.2.2 was used. Different volumes of resin inside the 

reactor were tested. For each volume, several measurements of the reaction time were done by 

subsequent injections of the NaOH solution. 

After each series of injections (experiment) with the same resin volume, both the 

phenolphthalein solution and the resin were substituted with fresh ones before the next 

experiment. 

The details on the experiments are reported in Table 4.1 and the results in Figure 4.7. 
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Table 4.1. List of the experiments and experimental conditions. 

VL [mL] VR tested [mL] VNaOH [μL] RS [rpm] HRB [mm] Replications for each VR 

200 2.5, 5, 10, 20, 28 100 800 10 2 

 

Figure 4.7. Reaction time as function of the NaOH injections for different resin volumes. 

The results show that the experiments are repeatable. Measurements with the stopwatch become 

progressively less accurate as the reactions gets faster.  Only with the smallest amount of resin 

tested (2.5 mL) the points corresponding to the two replicas are not exactly overlapped.  

Unexpectedly, the reaction time always decreases with the NaOH injections, above a minimum 

amount of resin. Possible causes are: 
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 the forced flow of liquid through the resin bed gradually increase the wetting of the resin  

beads and the solid-liquid contact increases; 

 the swelling degree of the resin changes as a consequence of the substitution of the 

protons of the sulfonate groups of the resin with the Na+ ions of the base due to the ion 

exchange. 

The decrease in the reaction time is greater with 2.5 mL with respect to the other resin volumes. 

Always with this volume of resin, an increase of the reaction time is observed after 35-40 

injections of NaOH. This is due to the saturation of the functional groups of the resin. 

 

All the points of each graph of Figure 4.6 have been plotted as a function of the resin volume 

in Figure 4.8 a).  

 

Figure 4.8. a) Reaction times versus resin volume.                                                                 

b) Mean reaction times versus resin volume. 

The time drift appears as a vertical dispersion. From the points of Figure 4.8 a), the mean 

reaction times corresponding to each volume of resin have been calculated and plotted as a 

function of the resin volume in Figure 4.8 b).  

4.3.2 Rotating bed reactor vs. stirred tank reactor 

From the previous series of experiments we decided to use a volume of resin of 5 mL for the 

next experiments. With this amount the reaction time is high enough (but not too high) and 

variations in other factors, like the rotation speed, will probably induce a detectable variation 

in the reaction time, if those factors have an impact on it. If a very high volume of resin was 

used the reaction time would be very low and changes in it due to the change of other variables 

would be probably too small to be measured by a stopwatch. 

The RBR and the STR have been compared by running the ion exchange reaction at the same 

conditions in both the reactors. This was done for five different rotation speeds: 200 rpm, 400 

rpm, 600 rpm, 800 rpm and 1000 rpm. 
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The experiments are summarized in Table 4.2 and the results reported in Figure 4.9, 4.10 and 

4.11. 

Table 4.2. List of the experiments and experimental conditions. 

Reactor 
VL 

[mL] 

VR 

[mL] 

VNaOH 

[μL] 
RS [rpm] 

HRB or HI 

[mm] 

Replications for each 

RS 

RBR 200 5 100 
200, 400, 600, 800, 

1000 
10 2 

STR 200 5 100 200, 400 6 2 

STR 200 5 100 600, 800, 1000 17 2 

 

In Figure 4.9 the results, divided for rotation speed, are presented. 

In Figure 4.10 the results of all the experiments are plotted together, but separated for reactor 

type. For both the RBR and the STR there is a clear dependence of the reaction time on the 

rotation speed, gradually vanishing at increasing rotation rate. This already suggests that the 

reaction is mass-transfer limited. 

In Figure 4.11 a) the points obtained for each rotation speed are plotted against the 

corresponding rotation speed. For each speed tested, the reaction times of both replicas obtained 

with the RBR were compared with those obtained with the STR, using a non-parametric statistic 

test to assess if there was or not a significant difference between the two samples. As observable 

visually from Figure comparison it results that: 

 the STR is better than the RBR at 200 rpm; 

 the STR is the same as the RBR at 400 rpm; 

 the RBR is better than the STR at 600, 800 and 1000 rpm. 
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Figure 4.9. Reaction times versus NaOH injections at each rotation speed tested. 
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Figure 4.10. Reaction times obtained a) with the RBR and b) with the STR at different 

rotation speeds as function of the NaOH injections. 

Figure 4.11. a) Reaction times versus rotation speed.                                                                  

b) Mean reaction times versus resin volume. 

4.3.3 Effect of rotating bed position 

In these experiments the height HRB (see Figure 4.6) of the RB from the bottom of the vessel 

was varied and the corresponding reaction time measured to see if there is a relationship 

between the two variables. The vessel used was the standard flower-baffled vessel described in 

§ 3.2.2. 

The position is the distance (or height) between the rotating bed base and the bottom of the 

vessel. As shown in Figure 2.3 a) and e) the RB has two small holes for the air outlet in the 

center of its upper part. When the RB rotates, a vortex is formed at the liquid surface. If the RB 

is too close to the liquid surface or HL is too low, the center of the vortex can reach the two 

holes and the air is sucked-in, causing operating problems: during the spinning of the RB, the 

air can partially occlude the suction hole in the bottom of the RB, resulting in a lower liquid 
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flow through it. The maximum height, at fixed rotation speed, is thus defined as the height HRB 

such that the eye of the vortex is very close to the two holes for the air outlet, like in the reactors 

of Figure 4.16. Inversely, the minimum height is when the RB base is almost touching the vessel 

bottom. 

The procedure used is the following one: 

 some NaOH injections (4 in this case) were made, and the reaction time measured, with 

the RB at the maximum height; 

 the rotating bed height was decreased and other NaOH injections made at the new 

height; 

 the previous step were repeated for the desired heights to test, every time decreasing the 

height. 

The experiments are listed in Table 4.3 and the results reported in Figure 4.12 and 4.13. 

Table 4.3. List of the experiments and experimental conditions. 

VL [mL] VR [mL] VNaOH [μL] RS [rpm] HRB tested [mm] NaOH inj. for each HRB Replications 

210 5 100 500 24, 16, 8, 0 4 2 

 

Figure 4.12. Reaction time as function of the RB height and NaOH injections. 

The results show that the reaction time is inversely proportional to the bed height HRB. This 

dependence is even a bit underestimated considering that the reaction time naturally tends to 

diminish when the number of NaOH injections increase, as shown from the previous series of 

experiments in § 4.3.2 and 4.3.1.  
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Figure 4.13. a) Reaction times versus RB height. b) Mean reaction times versus RB height. 

One explanation of this effect could be that the RB sucks the liquid almost only from the hole 

at its bottom and, for this reason, only the liquid below the RB is well mixed and easily enters 

in it. The liquid above the RB is more stagnant and cannot enter directly in it because on the 

top of the RB there are only the two small holes for the air outlet. Thus, the liquid that is above 

the RB has to migrate below the RB and then enter in it through the big hole. This effect is 

greater when the RB is very close to the bottom of the vessel because there is a lot of liquid 

above the RB (and much less below the mixer) that has to reach the lower part of the bed to 

enter in it. When the RB is very close to the bottom, the liquid must also overcome a greater 

pressure drops to enter in the RB because there is a very tiny clearance between the bottom of 

the vessel and the base of the RB.   

4.3.4 Effect of the baffles type using the rotating bed 

Cylindrical glass vessels of different diameter were available. Furthermore, for the same 

diameter, two different types of vessel were at hand: one with smooth wall and the other one 

with 18 small flower-baffles, like in Figure 2.2. The vessel with smooth wall is easily 

convertible to a baffled vessel by placing the baffles at the walls, as shown in Figure 4.14. 

 

Fig. 4.14. Two of the vessels with normal baffles used. 
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Using the RB as stirring element, the effect of the baffles type on the reaction time was studied 

for all the different diameters available.  

For each diameter, a different liquid volume was used in order to keep the ratio HL/DV at a 

constant value of 1.2 approximately. For the vessel without baffles with DRB/DV = 0.85 a higher 

HL/DV value was needed to avoid the entrance of air inside the RB through the superficial vortex 

(with the mechanism explained at the beginning of § 4.3.3), occurring even with the RB kept at 

the bottom of the vessel if HL is lower than 1.64. That’s why HL/DV = 1.64 for DRB/DV = 0.85. 

The resin amount and the NaOH injection volume were changed proportionally to the liquid 

volume, using this reference: 5 mL of resin for 200 mL of liquid and injections of 100 μL of 

NaOH 1.05 M solution. 

For a better understanding of the geometry and a better analysis of the results, the vessel 

diameter is expressed as the ratio of the RB diameter and the vessel diameter, DRB/DV, and the 

height of the liquid as the ratio HL/DV. The baffle types are indicated with the acronyms NB 

(normal rectangular baffles) and FB (flower baffles). When no baffles are used the acronym is 

S (smooth wall).  

During each test, the height of the rotating bed was varied, like in the experiment of § 4.3.3.  

 The data and the pictures of the experiments made are reported in Table 4.4 and Figure 4.15 

respectively. The characteristic of the normal rectangular baffles used are reported in Figure 

4.14 and Table 4.4.  

Table 4.4. List of the experiments and experimental conditions. 

DRB/DV HL/DV 
Baffles 

type 

VL 

[mL] 

VR 

[mL] 

VNaOH 

[μL] 

RS 

[rpm] 

HRB tested 

[mm] 

NaOH inj. for each 

height 

0.85 1.64 S 190 4.8 95 500 4 15 

0.85 1.64 FB 190 4.8 95 500 45, 30, 15, 0 4 

0.71 1.22 S 220 5.5 110 500 4 15 

0.71 1.22 NB, FB 220 5.5 110 500 27, 18, 9, 0 4 

0.62 1.25 S 340 8.5 170 500 4 15 

0.62 1.25 NB, FB 340 8.5 170 500 39, 26, 13, 0 4 

0.48 1.10 S 650 16.3 325 500 4 15 

0.48 1.10 NB, FB 650 16.3 325 500 48, 32, 16, 0 4 
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Figure 4.15. Set-up of the various experiments made with vessels of different diameter and 

different types of baffles. 

When vessels without baffles are used, a very deep vortex is formed at the liquid surface when 

the RB rotates, as shown in Figure 4.16 and as expected. If the RB is too high, the center of the 

vortex touches the holes on the top of it and air enters in the RB towards them. That is why the 

RB must be kept very close to the bottom and is not possible to vary its height in the experiments 

without baffles, as clear from Figure 4.16. 

 

 

 



 

64 

 

Table 4.4. Dimensions of the rectangular baffles used in the different vessels. 

DRB/DV Type of baffles Number of baffles TB [mm] WB [mm] 

0.71 Normal baffles 3 4 8 

0.62 Normal baffles 3 8 12 

0.48 Normal baffles 3 7 12 

 

Figure 4.16. Influence of the baffles on the dimension of the vortex which  is formed when 

the RB is rotating. 

In Figure 4.16 is also shown that normal and flower baffles dramtically recude the surface 

vortex formation. This allows to keep the RB very close to the liquid surface and to test different 

heights of the RB. 

With the smallest diameter vessel (DRV/DB = 0.85) the space between the external surface of 

the RB and the wall of the vessel was very small and it was not possible to insert the normal 

baffles. Only the flower-baffles were tested. Here an advantage of the flower-baffles comes out: 

with them the volume of the reactor is better exploited and is possible to use bigger internals or 

a bigger RB. 

The procedure used for each experiment was the same used for the two experiments of §4.3.3. 

Each experiment was started with 4 NaOH injections keeping the RB at the maximum height, 

than the height was decreased gradually. 4 NaOH injections were made per each height. 

Each experiment was repeated two times and the results of the two replications were the same. 

For this reason only one of the two replicas is reported in the results. 

The results are reported in Figure 4.17 in two modalities:  

 the reaction times as function of  RB height and the NaOH injections; 

 the mean value of the reaction times obtained as function of the height. 
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Figure 4.17. Reaction times obtained with vessels of different diameter and  types of 

baffles, as a function of the RB height and NaOH injections. 
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First of all is clear that when no baffles are employed, the reaction time is much larger than any 

other case. 

With flower-baffles, the trend of the reaction time as function of the height, for vessels of 

different diameter, is the following: 

 with DRV/DB = 0.85, 0.62 and 0.48 the reaction time is not much influenced by the height 

as far as the rotating bed is not too close to the bottom of the vessel. Then the reaction 

time increases considerably;  

 with DRV/DB = 0.71 the reaction time is more dependent to the height of the bed and the 

two variables are always inversely proportional. 

On the contrary, with three normal baffles the reaction time is directly proportional to the height 

of the rotating bed for DRV/DB = 0.71 and 0.62. For DRV/DB = 0.48 the behaviour and the values 

of the reaction times are equal to those obtained with flower baffles.  

The cause of this phenomena could be that the normal baffles improve the mixing of the liquid 

above the RB when they are very close to the lateral surface of it, as they were in the cases of  

DRV/DB = 0.71 and 0.62 (Figure 4.14). It was supposed that the liquid discharged from the 

lateral surface of the RB impacts on the big baffles and is forced to split, partly in the upper, 

partly in the lower region of the vessel, improving the mixing above the RB. 

Since the two types of baffles have an opposite influence on the reaction time when the height 

of the RB is modified (except with DRV/DB = 0.48), it is difficult to say which one is the best 

by looking only at these experiments. Furthermore, the fact that the reaction time naturally 

decreases with the number of NaOH injections makes the comparison even more difficult.  

 

To assess which type of baffles is better the comparison should be done as: 

 find the optimum height of the RB for both vessels with different baffles first; 

 keeping the RB at the optimum height, compare the performances of the vessels with 

the different type of baffles. 

Probably for DRV/DB = 0.85 the normal baffles are equal to the flower baffles because the RB 

is far from the baffles and its interaction with them is very weak, without differing between the 

two types of baffles. This explains also the fact that the dependence of the reaction time on the 

RB height is almost nil, except when the RB is very low and the interactions with the bottom 

of the vessel becomes important. 
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Chapter 5 

Conclusions 

The aim of this project was to investigate the performances of the SpinChem® rotating bed 

reactor (RBR) and compare it with a normal stirred tank reactor (STR). The influence of some 

geometrical parameters such as the vertical position (height) of the RB in the vessel, the type 

of baffles and the vessel diameter has been investigated too.  

Two solid-liquid non-catalytic reactions were used for this purpose: the scavenging of a 

genotoxic impurity and an ion-exchange reaction. 

 

The scavenging of genotoxic impurites chosen consisted in the removal of impurities of 2-

cyclohexen-1-one (genotoxic impurity) from the product to purify, cyclohexanone, by means 

of a solid thiol scavenger. The scavenger used was made of fused-silica spherical particles 

functionalized with thiol-propane groups and was available in three different particle sizes.   

Only few studies about this type of reaction were found in the literature, hence was necessary 

to optimize the reaction conditions. 

It was found that the reaction takes place only if a non-nucleophilic basic catalyst (like N,N-

diisopropylethylamine) is added to the solution and a very large excess of scavenger is 

employed (more than five equivalents with respect the initial moles of 2-cyclohexen-1-one). 

Nevertheless, the reaction is quite slow and usually more than 24 hours are needed to arrive at 

a final concentration of a few dozen of ppm of the impurity. If an alcoholic solvent is used 

instead of the cyclohexanone, the reaction is comparatively faster and is possible to arrive at a 

final concentration of 2-cyclohexen-1-one lower than 10 ppm after 24 hours using a reasonable 

excess of scavenger. Still, the reaction remains faily slow so that neither the type of reactor, nor 

the rotation speed influence the reaction rate. It means that the controlling regime is not the 

external mass transfer. It was found that the reaction rate is inversely proportional to the particle 

size of the scavenger. This could be due to a resistance caused by the internal mass transfer 

inside the pores, as it suggested by the reaction modelling. 

 

The second reaction studied is the removal of sodium hydroxide from an aqueous solution with 

a cation exchange resin. In this case the reaction time can be significantly influenced by the 

rotation speed and the reactor type. Above 400 rpm the RBR was always more effective than 
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the STR. It can be concluded that the reaction is external mass-transfer limited and the RBR 

effectively improves the external mass transfer when the rotation speed is high enough. 

Since the reaction is externally mass transfer limited, we studied the effect of other variables 

affecting the internal mixing, on the reaction time: the vertical position (height) of the RB in 

the vessel, the type of baffles and the vessel diameter. 

In vessels without baffles a deep vortex is created, increasing the reaction time. Among the 

normal rectangular baffles and the flower baffles it was not possible to states uniquely which 

one is the best and further studies are needed for that.  

It was found that also the distance between the RB and the vessel bottom (height) influences 

the reaction time. In vessels with normal baffles the reaction time is directly proportional to the 

height. In vessels with flower baffles is the opposite: the two variables are inversely 

proportional. In this last case the reaction time is weakly affected by the height if the  RB is not 

too close to the bottom. Then the reactor is much less effective. 

These considerations hold when the vessel diameter is small enough, compared to the RB 

diameter, and there are strong interactions between the RB and the wall of the vessel. When the 

diameter of the vessel is large, the behavior obtained with the normal baffles is equal to that of 

the flower baffles and also the reaction time is the same. 

 

Concluding, it is important to remark that only if a reaction is externally mass-transfer limited 

the RBR can give advantages with respect to a normal STR. If this is the case, before comparing 

the two reactors, an individual optimization (to find for example the optimum height of the 

stirring element) should be carried out for each type of reactor.  

In this work the comparison of the two reactors was done employing a vessel with flower 

baffles, before the discovery of the effect of the RB position on the reaction time. It would be 

interesting to repeat this comparison: 

 with the RB and the impeller at their optimum height.  

 with the RB and the impeller at the optimum height, using the normal baffles instead 

of flower baffles. 
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Notation 

�̇�𝐴
𝑏→𝑖   molar flux of species A, per unit volume of liquid, from the bulk to the external 

interface of the solid  

ℎ𝑚,𝐴   external mass transfer coefficient of species A 

𝐶𝐴
𝑏  concentration of species A in the bulk of the liquid 

𝐶𝐴
𝑖   concentration of species A adjacent to the external surface of the solid 

𝑎𝐿,𝑖  interfacial area of the solid, per unit volume of liquid, available for the external 

mass transfer 

𝐴𝑖  external area of the solid (excluding the area given by the solid porosity) 

𝑉𝐿  total volume of liquid 

𝑅′′  reaction rate per unit area of the solid 

𝜐𝐴   stoichiometric coefficient of species A 

𝑟𝐴
′′  reaction rate of species A 

𝑎𝐿,𝑡𝑜𝑡  total area of solid per unit volume of liquid 

𝐴𝑡𝑜𝑡  total solid surface in the reactor 

𝑅′′′  reaction rate per unit of volume of solid (including the volume of the pores) 

𝑎𝑆,𝑡𝑜𝑡  total area of solid per unit volume of solid (including the volume of the pores) 

𝔇𝑒  effective diffusion coefficient 

𝑘′′′  kinetic costant referred to the reaction rate per unit of volume of solid (including 

the volume of the pores) 

𝑘′′  kinetic costant referred to the reaction rate per unit area of the solid 

𝐿  characteristic length of the solid particles 

𝑛  reaction order 

𝑑𝑝  particle diameter 

𝔇𝐴,𝐿  diffusion coefficient of species A in the liquid solution 

(𝑟𝐴)𝑜𝑏𝑠   reaction rate of A observed experimentally 

𝜌𝑝  density of the solid particle, based on the volume of the particles (including the   

volume of the pores) 

𝑚𝑆  mass of solid 

𝑉𝑝,𝑡𝑜𝑡  total volume of the solid particles (including the volume of the pores) 

𝑆𝑎   total area of solid per unit mass of solid 

VL  liquid volume 

VR  resin volume 

VNaOH  injection volume of NaOH 1.05 m 

RS  rotation speed 
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HRB  height of the rotating bed base from the vessel bottom 

HI  height of the impeller base from the vessel bottom 

HL  liquid height in the reactor 

DL  vessel diameter 

DRB  rotating bed diameter 

 

Greek letters 

 

𝜙  Thiele modulus 

𝜂  effectiveness factor 

𝜀𝑝  particle porosity 

𝜏  solid tortuosity 

 

Acronyms 

 

RBR   rotating bed reactor 

RB  rotating bed 

STR  stirred tank reactor 

PBR  packed bed reactor 

GI  genotoxic impurity 

API  active pharmaceutical ingredient 

TS  thiol scavenger 

TG  thiol groups 

DIEA  N,N-diisopropylethylamine 

B  basic catalyst 

spv  specific pore volume 
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