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I N T R O D U C T I O N

The Mass Function is a very important topic in Cosmology and Large
Scale Structure. This thesis examines some techniques for determining it,
drawing its attention mainly on the Excursion Set theory. The aim of this
work is on one hand to derive analytically the modified Press-Schechter’s
Mass Function, on the other hand to recover the same result from a set
of simulations. In detail, the contents are subdivided into Chapters in the
following way:

• Chapter 1 presents the main basic concepts of Cosmology and high-
lights why they are linked to the matter of this thesis;

• Chapter 2 explains how the spherical collapse of Dark Matter haloes
occurs and gives some hints about the filter functions which are usually
employed to smooth the density fluctuation field on a certain scale R;

• in Chapter 3 I report the analytical derivation of the Mass Function in
the Press-Schechter formalism, I discuss the cloud-in-cloud problem
and, in the end, I highlight that the Excursion Set theory consists in
a simple but effective technique to fix the missing factor of 2 in the
Press-Schechter’s Mass Function;

• in Chapter 4 I carry out the aforementioned set of Excursion-Set-
based simulations and try to extract the Mass Function from their
results. In these simulations I choose a top-hat k-space filter function;

• Chapter 5 provides finally an explanation of how overdensity’s ran-
dom walks with 3 different filter functions are achieved. Furthermore,
I’ll compare my algorithm with that discussed previously in this
Chapter.

i





1
B A S I C S O F C O S M O L O G Y

In this Chapter I’ll provide an overview of the main basic concepts of mo-
dern Cosmology. I’ll specifically go through the Friedmann equations, the
Robertson-Walker metric, the main cosmological models, the cosmological
parameters, the standard ΛCDM model and a brief mention of the structure
formation period and of the hierarchical clustering. Moreover, I will also
define the correlation function and the power spectrum. In the end I’ll
explain how these basics are applied to the topic this thesis is based on.

1 the friedmann equations and the cosmological models

1.1 The Friedmann equations and the Robertson-Walker metric

Let us assume the validity of the Cosmological Principle and employ a set of
comoving radial coordinates r. Let then x indicate physical coordinates and
a(t) be the scale factor, defined as r = a(t) x. The scale factor a(t) measures
basically how physical separations between cosmic objects grows with time.
The metric which is usually used to describe the geometrical properties of
Universe is the Robertson-Walker metric, defined as

ds2 = dt2 − 1
c2

a(t)2

a2
0

[
dr2

1− kr2 + r2(dθ2 + sin2 θ dφ)

]
, (1)

where r is the radial coordinate, θ and φ are the two Eulerian angles, k is
the Universe’s curvature and a0 is the current scale factor.
The so-called Friedmann equations regulate the dynamics of Universe and
are the following: (

ȧ
a

)2

=
8πG

3
ρ − kc2

a2 (2)

ä
a
= −4πG

3

(
ρ +

3p
c2

)
, (3)

where ρ is the matter density, G is the gravitation constant, k is the curvature
and p is the matter pressure. Notice that the first equation expresses some-
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2 basics of cosmology

how the Energy conservation, while the second one is in fact a dynamical
equation. As I’ll express later, an expanding Universe has an unique value
of k during all its evolution and the k-value is actually what characterizes the
cosmological models and makes them different from each other. Note also
that, as a(t) > 0 ∀t, then the sign of ȧ and ä depends only on the right side
of the equations. Actually, since both ρ and p are positive, ä is automatically
negative and therefore a(t) is a concave function.

1.2 The expanding Universe

Before proceeding with the presentation of the main cosmological models, a
brief note on the expansion of Universe is needed. The meaning of expansion
is actually that distant galaxies and objects are getting further apart. The
expansion of Universe becomes significant when two objects recede due to
their motion not being governed by their mutual gravitational force. What
the Friedmann equations express is just the 1st and 2nd derivatives of the
scale factor, so that their solution a(t) is expected to tell us whether the
Universe is either contracting or expanding at a given time t.

1.3 Cosmological models

In this section I examine the cosmological models without the cosmological
constant Λ, which will be included in the paragraph concerning the ΛCDM
model. Moreover, I consider only matter dominated models, which repre-
sent roughly in a good way the evolution of Universe after the very early
evolutionary phases.
The cosmological models consist in possible solutions of the Friedmann
equations and differ one another for the geometry of Universe. In particular,
the curvature k can be:

• k < 0, in case of an open Universe;

• k > 0, in case of a closed Universe;

• k = 0, in case of a flat Universe.

Sometimes the scale factor is re-scaled, so that k = 1 if the Universe is open
and k = −1 if it’s closed.
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Let us know therefore assume k = 0, ±1. The resulting cosmological models
are the following.

the einstein-de sitter universe This model corresponds with a
flat Universe (k = 0), that is, the spacetime is a flat space. In this case the
first Friedmann equation (2) loses its dependence on k and can be solved
by simply separating variables, resulting in a(t) ∝ t2/3. This means that if
t→ 0 then a(t)→ 0 and if t→ ∞ then a(t)→ ∞, but in a decelerated way.

the open model This kind of Universe features k = −1 and that makes
both the right-hand terms of equation (2) positive. As a result, the left-hand
term ȧ/a never becomes null nor of course negative. This fact means that
the expansion is infinite and monotonic and hence a(t)→ ±ct when t→ ∞.

the closed model In a closed Universe, at a certain t̃ the scale factor’s
derivative ȧ(t̃) = 0. As a result of this fact and of the second derivative
ä < 0 ∀t, the Universe will expand until t = t̃, will stop its expansion at t̃
and then will start to contract and will go on contracting until it performs a
so-called Big Crash.
Figure 1 shows simultaneously the evolution of the scale factor for the three
discussed models. It turns out very clearly that all these models share the
feature of an initial singularity, known as Big Bang.

2 the cosmological parameters

In order to explain the ΛCDM model, I introduce now some important
cosmological parameters.
The 3 main parameters are therefore:

• the Hubble parameter H(t). It is defined as H(t) ≡ ȧ(t)/a(t) and
consists in the measure of the Universe’s expansion rate at the time
t. The Hubble constant H0 is none other than the Hubble parameter
evaluated at the present time t0. The galaxies in the Local Universe
(z . 1, where z is the redshift) are supposed to follow a linear relation
among the recession velocity and the Hubble constant. More precisely,
this relation is known as Hubble’s law and is usually expressed as

v = H0 d , (4)
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Figure 1: This plot shows the evolution of the scale factor for an Einstein-de Sitter
Universe (k = 0), for an open Universe (k = −1) and for a closed Universe
(k = 1). From Liddle A., An Introduction to Modern Cosmology, p.41

where v is the recession velocity, H0 the Hubble constant and d the
distance from the origin of our reference system;

• the deceleration parameter q(t), defined as

q(t) ≡ − a(t) ¨a(t)
ȧ(t)2 . (5)

It is related to the scale factor’s second derivative and this is why it is
named after the expansion’s acceleration (or equally deceleration);

• the density parameter Ω(t), which takes its name from its linear
proportionality to the matter density of the Universe. It is defined as

Ω(t) ≡ 8π G
3 H(t)2 ρ(t) . (6)

I can easily derive that Ω(t) = 2q(t) in an Universe without cosmological
constant, so that actually only the determination of one out of the two
latter parameters is needed. I denote the current values of the density and
the acceleration parameters with Ω0 and q0. Regard up to this point the
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density parameter as a simple matter density parameter. I’ll introduce the
cosmological constant Λ and the related generalized density parameter in
the following paragraph.
The cosmological parameters are strictly linked to geometry of Universe.
Indeed, I can derive under these circumstances the following relation linking
geometry and cosmological parameters:

kc2 = H0 a0[Ω(t)− 1] , (7)

where k is the Universe’s curvature and a0 the present-time scale factor. It
follows quite easily from this relation that:

• if Ω(t) = 1, then k = 0 and the Universe is flat;

• if Ω(t) > 1, then k > 0 and the Universe is closed;

• if Ω(t) < 1, the Universe is open since k < 0.

Hence, getting any constraints on the cosmological parameters means setting
constraints also on the cosmological models.

3 the Λcdm model

The current usual cosmological model is the so-called ΛCDM model. Such
a model is named after

• on one hand, the employment of the cosmological constant Λ;

• on the other hand, the nature of the Dark Matter making up the
Universe. I won’t analyze more deeply this point except for saying
that Dark Matter is supposed to be Cold Dark Matter (CDM, indeed),
that is, is thought to be made of heavy and slow particles, e.g. WIMPs.1

The constant Λ came into being to explain why type Ia Supernovae of known
distance appear to be further than they should be in any cosmological
model, even in a model with ρm = 0, that is, a massless Universe (Milne’s
Universe). An agreement between data and models can be found only
by setting Ω0 < 0, which doesn’t appear to make sense. People found
several explanations to that fact, even though basically the most popular
argument is to regard such a negative contribution to the density parameter

1 Weakly Interactive Massive Particles
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as a vacuum’s energy density. I won’t go through deeper details, but what
actually Λ produces is a negative pressure pΛ = −ρΛ c2. This means that
an additional expanding factor acts in the Universe and this effect must
be somehow computed and taken into account. The modified Friedmann
equations therefore become:

(
ȧ
a

)2

=
8πG

3
ρ − kc2

a2 +
Λ
3

(8)

ä
a
= −4πG

3

(
ρ +

3p
c2

)
+

Λ
3

, (9)

where Λ has units [time]−2 and represents an additional repulsive force.
These equations actually come from the field equations of General Relativity
and the addition of the Λ-term makes them covariant. Anyway, I can now
define a proper density parameter for Λ, which is

ΩΛ(t) =
Λ

3 H(t)
(10)

and therefore the new overall density parameter can be expressed as

Ω(t) = Ωm(t) + ΩΛ(t) . (11)

I’ll express from now on the two present density parameters as simply Ωm

and ΩΛ. The new geometry-parameters relation is

kc2 = H0 a0[Ωm(t) + ΩΛ(t)− 1] , (12)

where the flatness of Universe now requires Ωm(t) + ΩΛ(t) = 1. Actually,
thanks to COBE’s, WMAP’s and Planck’s data, we managed to fix the overall
current density parameter Ω0 ∼ 1 with a very small error, so that we can
regard the Universe as flat and anyway, if not perfectly flat, to be not much
closed or open.

4 structure formation and hierarchical clustering

I’ll complete this introductory Chapter by presenting some general basics
about Structure formation. More specific notions will be provided in the
following Chapters.
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Structure formation begun to occur after the so-called Recombination epoch,
at redshift z ∼ 1080, that is, almost 389000 years after the Big Bang. At
that era, the matter decoupled from radiation and the Universe became
transparent, as it is known nowadays. The formation of structures takes
place qualitatively in the following way. After an initial time, say Recom-
bination, the temperature of Universe started to decrease rapidly as so
did until Re-ionization took place. The key point is supposing that at the
Recombination there were some irregularities in the matter distribution,
so that density wasn’t a homogeneous field at all. This is not surprising.
Even though we usually employ the Cosmological Principle with regard
to the whole Universe, it turns out to be a good assumption only on scales
larger than hundreds Megaparsecs, say 500 Mpc. It is easily verifiable, by
for instance observing optical galaxies, that on scales smaller than 100− 500
Mpc the Universe is anything but isotropic and homogeneous. Anyway,
what happens is that the overdense regions exert a greater gravitational
force to their surroundings and tend to draw material in. These regions
become therefore denser and denser, making the forming proto-structures
more and more massive and gradually shaped as time goes by. I discuss the
details of the collapse of haloes in the following Chapter. Once the smallest
structures have formed, they tend to cluster and form larger structures con-
sisting in group of the former, due to their mutual gravitational attraction.
This phenomenon is known as hierarchical clustering. The resulting scenario
is an Universe made of gradually larger and larger structures, as a result of
the clustering of smaller substructures.

5 the correlation function and the power spectrum

Let ρ be the matter density of a given region characterized by some devia-
tions from the homogeneity of the density field, ρb be the matter density of
the background. I define the contrast density field evaluated at the point of
coordinates x as

δ(x) =
ρ− ρb

ρb
. (13)

I then define the so-called correlation function as

ξ(r) ≡ 〈δ(x) | δ(x + r)〉 , (14)
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where r is the magnitude of the vector r. The meaning of the correlation
function is basically estimating how likely is finding the same contrast
density at the points x and x + r. In other words, given a cosmic structure
at the point x, it provides the probability of finding another structure at a
radial distance r. The correlation function can be written in a more extended
form by simply expressing the scalar product in its integral form

ξ(r) =
1

(2π)6

∫
d3k

∫
d3k′ 〈δ̂(k) | δ̂(k′)〉 eik·(x+r) eik’·x . (15)

I define the power spectrum P(k) by linking it to the k-space perturbation
with the relation

〈δ̂(k) | δ̂(k′)〉 ≡ (2π)3 P(k) δ
(3)
D (k + k’) , (16)

where δ
(3)
D is a 3-dimensional Dirac’s delta. By substituting this relation in

equation (15), by making the Dirac’s delta acting and by computing the
integral in the variable k′ getting 1 as a result, I find the relation

ξ(r) =
1

(2π)3

∫
d3k P(k) eik’·x . (17)

This important relation shows clearly that the power spectrum is the Fourier
transform of the correlation function. This result is also known as Wiener-
Khintchine theorem. As the power spectrum P(K) ∝ |δ̂(k)|2, it is proportional
to the amplitude of a plane wave whose wavenumber is k. This means that
the power spectrum tells us how much a density fluctuation on a scale
k contributes to form the generic contrast density δ(x). P(k) represents
therefore the power of a fluctuation on the scale k.

6 application to this thesis

This thesis aims to go through the main techniques for determining the
Mass Function of Dark Matter haloes. Hence, it appears quite obvious that
the brief introduction to Structure formation I carried out in the previous
paragraph was needed. Then, in this thesis I’ll mention again the density
parameter Ωm, as the Mass Function can be used to derive some constraints
on Ωm. As far as the cosmological models are concerned, a collapsing halo
behaves like a closed Universe, while the background keeps on expanding,
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say in flat-Universe-like way. This is why I need also an overview of the
cosmological models. In the end, in the last Chapter I’ll analyse a technique
considering the power spectrum of density perturbations, so an introduction
to that topic is useful too.





2
T H E S P H E R I C A L C O L L A P S E

This Chapter provides a brief but useful explanation about how the spherical
collapse occurs. Even though the actual formation of Dark Matter haloes
takes place in an ellipsoidal collapse, the spherical model can be regarded
as a good approximation of the real collapse.

1 the growth of perturbations and the collapse

Let ρ be the local matter density and ρb be the background density. A
collapse happens basically when the matter density ρ locally suffers a
perturbation, that is, when an overdensity δ = (ρ− ρb)/ρb > 0 comes into
being.
Let us now consider a region in which a top-hat overdensity δ occurs and
employ these two following hypothesis:

• the initial peculiar velocity of the matter in this region is null;

• different mass shells don’t cross each other during the evolution of the
region.

What qualitatively occurs is that, during the expansion, the evolution of the
background and the overdense region is well-modelled by the Friedmann
equations respectively for a flat Universe without Λ and a closed Universe.
Hence, both the background and the perturbation expand, but the latter
expands more slowly. This fact makes it clear that the contrast density
grows in magnitude more and more. The expansion of the overdense region
goes on until δ reaches a critical value, then it stops its expansion, detaches
from the background and starts contracting, performing a collapse. Actually,
even though the collapse is regarded to be the point at which the density
diverges, a halo virializes before really completely collapsing.

11



12 the spherical collapse

2 the model

2.1 The background

Let us now begin with the background and consider the first Friedmann
equation, setting k = 0 as for a flat Universe and ρ = ρb:

(
ȧb(t)
ab(t)

)2

=
8πG

3
ρb , (18)

where ab(t) is the background’s scale factor. As in a flat Universe a(t) ∝ t2/3,
then also ȧ(t) ∝ t2/3. By substituting these relations in the Friedmann
equation, it turns out that

ρb =
1

6π G t2 . (19)

2.2 The perturbation

Let us now start by introducing a new variable η, which is related to the
variable t by the differential relation

dη = dt
c

a(t)
, (20)

where c is the light speed. By derivating a(t) in respect with η instead of t,
by substituting it in the Friedmann equation and by multiplying both sides
by a(t)2), I get

(
da
dη

)2

=

[
a(t)

c

]2 [8π G
3

ρ a2 − kc2
]
=

8π G
3

ρ a(t)4 − ka(t)2 . (21)

Thanks to the hypothesis of shell crossing not occurring, the conservation of
mass within each mass shell is guaranteed and this allows me to express ρ

as:
ρ(t) = ρ0

a(t)
a0

, (22)
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where ρ0 and a0 represent respectively the matter density and the scale
factor at the present time (or at any arbitrary time). By substituting it in the
Friedmann equation I get

(
da
dη

)2

=
8π G
3c2 ρ0 a3

0 a(t)− k a(t)2 . (23)

Introduce now ã = 4πGρ0 a3
0/3c2, set x = a/ã and fix k = 1 as in a closed

Universe. Then the Friedmann equation becomes

(
dx
dη

)2

= 2x− x2 , (24)

and allows me to achieve the following solution:

x =
a(t)

ã
= 1− cos η . (25)

Now, in the first place I can find a parametrization t(η) just by multiplying
and dividing by ã, by substituting the solution x = 1− cos η in equation
(20) and by solving the integral:

t(η) =
∫ η

0
dη′

a(η′)
c

=
ã
c

∫ η

0
dη′ (1− cos η′) =

ã
c
(η − sin η) . (26)

In the second place, in this re-parametrization the function a(η) represents a
cycloid and turns out to be useful to study the evolution of the perturbation.
Indeed, as already reported above, the perturbed region expands more and
more slowly if compared to the background and this makes the contrast
density δ growing more and more. The point at which the perturbation
stops expanding and starts its collapse is usually known as turn-around and
takes place at η = π in this new parametrization, while the collapse occurs
at η = 2π. It turns out easily by setting η = π also that the scale factor at
the turn-around is aTA = a(π) = 2ã.
The point is now trying to compute which is the threshold value of δ that
makes a halo collapsing if overtaken. I’ll proceed deriving the contrast
density value at the turn-around and at the collapse both in the linear and
non-linear theory. Note first of all that the overdensity can be written as

1 + δ(η) =
ρm(η)

ρb(η)
=

4
3

ρ0 a3
0

G
ãc2

9(η − sin η)2

2(1− cos η)3 =
9(η − sin η)2

2(1− cos η)3 (27)



14 the spherical collapse

The non-linear values follow simply by setting:

• η = π at the turn-around, so that

1 + δ(π) = 1 + δTA =
9
2

π

8
= 5.55 ; (28)

• η → 2π when the halo collapses and at that moment the contrast
density δ→ ∞.

In order to derive the aforementioned values in the linear theory, let us
consider small values of η, i.e. η � 1. In this approximation the linear
theory can be applied and I can therefore expand the two terms (η− sin η)2

and (1− cos η)3 in a Taylor series. The two expansions I use are therefore:

• (η − sin η)2 ∼
[
η −

(
η − η3

3! +
η5

5! + . . .
)]2

;

• (1− cos η)3 ∼
[
1−

(
1− η2

2! +
η4

4! + . . .
)]3

.

By substituting them in equation (27) I get

1+ δ(η) ∼
9
[
η −

(
η − η3

3! +
η5

5! + . . .
)]2

2
[
1−

(
1− η2

2! +
η4

4! + . . .
)]3 =

9
2

(
η3

6 −
η5

120

)2

(
η2

2 −
η4

24

)3 '
9
2

η6

36

(
1− η2

10

)
η6

8

(
1− η2

4

) .

(29)
In case of x � 1 I can also make use of the Taylor expansion (1− x)−1 ∼
1 + x, so that I derive:

1 + δ(η) ∼ 9
2

[
2
9

(
1− η2

10

)(
1 +

η2

4

)]
=

9
2

(
2
9
+ η2

(
1

18
− 1

45

))
. (30)

Since what I’m interested in is the overdensity δ(η), by subtracting both
sides by a factor of 1 I manage to derive

δ(η) ∼ 3
20

η2 . (31)

I must now express η again in term of the starting variable t. This can be
easily done by considering that for small values of η the integral in equation
(26) corresponds to the integrand function evaluated in η. Furthermore, I
can again make use of Taylor expansions, so that

t(η) ∼ ã
c
(η − sin η) ∼ ã

c
η3

6
. (32)
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Let us now indeed derive η(t) by inverting equation (32):

η(t) =
(

6c
ã

t
)1/3

. (33)

In the end by substituting the expression of η(t) I have just derived in
equation (31) I get

δ(t) =
3

20

(
6c
ã

t
)2/3

. (34)

The δ-values I compute using the linear theory are therefore:

• δlin,TA = δ(t = ã
c π) = 3

20(6π)2/3 = 1.06, at the turn-around;

• δlin,coll = δ(t = ã
c 2π) = 3

20(12π)2/3 = 1.686, for the collapse.

3 the virialization

Actually, as I anticipated above a halo doesn’t collapse making its matter
density diverging but virializes and stabilises, while its radius becomes
half of the turn-around radius. This happens because the radial velocities
become partially tangential during the collapse due to the gravitational
interactions between particles. Moreover, when it happens the δ-value
∼ 178.
Let us now derive these results by applying the Virial Theorem to both the
turn-around and the virialization. Remember also that, as gravity is the only
force acting on the system, the energy is conserved: E = U + T = constant.
At the turn-around, TTA = 0, so that

ETA = UTA = −α
GM
RTA

, (35)

where the parameter α takes into account the mass distribution and hence
also possible variations of the density profile. When the halo virializes the
Virial Theorem tells us that

2Tvir + Uvir = 0⇐⇒ Tvir = −
Uvir

2
. (36)
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By substituting this result in the energy conservation and by supposing the
density profile and therefore the parameter α to remain constant, it turns
out that

Evir = Uvir + Tvir =
Uvir

2
= −α

GM
2Rvir

= −α
GM
RTA

. (37)

By simply comparing the denominators I easily get Rvir = RTA/2. Let us
now compute the value of δ in the non-linear theory. I’ll start by making
the following considerations:

• in a flat Universe a(t) ∝ t2/3;

• as ρ ∝ a(t)−3, then ρ ∝ t−2. Furthermore, tvir = 2tTA. Due to these

facts, ρb,TA
ρb,vir

=
t2
vir

t2
TA

= 4;

• as RTA = 2Rvir, then ρvir
ρTA

= 8;

• remember that ρTA
ρb,TA

= 5.55.

The point is now computing 1 + δvir = ρvir/ρb,vir. Let us multiply and
divide both sides by ρTA and ρb,TA. What I get is

1 + δvir =
ρvir

ρb,vir
=

ρvir

ρTA

ρb,TA

ρb,vir

ρTA

ρb,TA
= 8 · 4 · 5.55 ' 178 , (38)

which turns out be an exact solution in the considered case of the sphe-
rical collapse. Hence, in an Einstein-de Sitter Universe with Ωm = 1, the
virializing non-linear overdensity is δ = 178. In a general framework, an
Universe without cosmological constant Λ features 1+ δvir = 178 Ω−0.7

m , that
is, a weak dependence on the cosmological model. In the end, the ΛCDM
model would have a higher δvir-value because the background expands
more rapidly and then its density results to decrease more quickly.

4 the filter functions

This ending section provides a brief introduction to the filter functions I’m
going to use in the following Chapters.
A filter function (or equally window function) consists in a function that
somehow weights the matter density in an effective way for the considered
application. It is therefore important because a contrast density δ on a
particular scale R can be properly well defined only with the aid of such
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a window function. Let indeed W(x, R) be a generic filter and let δ(x) be
the overdensity located at a point of comoving coordinates x. Let x be the
absolute value of the vector x. Note that the field δ doesn’t provide any
information about the overdensity’s scale R. Hence, this information can be
obtained by computing the integral

δ(x, R) =
∫

d3x′W(|x’− x|, R) δ(x’) . (39)

In other words, the field δ(x, R) can be obtained by convolving the contrast
density field with the window function.
Equation (39) tells us also that the filter function has dimensions of inverse
volume because the field δ(x) is dimensionless and so must be the field
δ(x, R). If we then consider the normalized function W ′(x, R), it is pos-
sible to associate to W ′ a volume VW . The volume VW can be derived by
computing the integral

VW =
∫

d3x W ′(x) . (40)

One can think about the smoothed density field as a kind of average of
the density fluctuation in a region of volume VW ∼ R3, where R is the
scale on which the filter acts. Moreover, as in the real space the smoothed
density field δ(x, R) is represented by a convolution, in the Fourier space
it can be computed with a simple product. Indeed, let W(k, R) and δ(k)
be respectively the window and contrast density in the k-space. Let also
k be the absolute value of the vector k. Then I can compute the Fourier
transform of the smoothed density as

δ(k, R) = W(k, R) δ(k) . (41)

The choice of the filter also establishes a relation between the smoothing
scale R and the mass M. The most popular choices have been over the years
the following filters:

• a top-hat window in the real space: the function is defined as

W(x, R) =

 3
4π R3 if x ≤ R

0 if x > R
(42)
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This filter has a well-defined volume which is simply the volume of
a sphere of radius R. In this way the halo’s mass turns out to be
M = 4

3 πρMR3;

• a top-hat filter in the k-space, defined as

W(k, R) =

1 if k ≤ 1/R

0 if k > 1/R
. (43)

The problem with this function is that it doesn’t have a well-defined
volume VW in the real space;

• a Gaussian window in the real space, defined as

W(x, R) =
1

(2π)3/2 R3 e−
x2

2R2 . (44)

Its volume can be computed as VW = (2π)3/2R3 and therefore the
halo’s mass will be M = (2π)3/2ρMR3.

In the next Chapter I’ll make use of the top-hat filters both in the real and
in the k-space.



3
M A S S F U N C T I O N A N D E X C U R S I O N S E T T H E O RY

This chapter aims to introduce the concept of Mass Function of Dark Matter
haloes, the Press-Schechter formalism and the application of the Excursion
Set theory in order to fix the missing factor 2 in the Press-Schechter deriva-
tion. In all this Chapter I will of course make use of comoving coordinates.
The reference this Chapter is based on is Zentner(2007).

1 mass function

According to the Cosmological Principle, let us consider an isotropic and
homogeneous Universe, let M be the mass of a general virialized objects and
n be the number density of collapsed objects. The Mass Function is defined
as Φ(M) = dn/dM and is useful because Φ(M)dM provides the number
density of virialized objects whose mass lays between M and M + dM. In
other words, it expresses the probability for an infinitesimal element of fluid
to belong to an object of mass m ∈ [M, M + dM].
Since Dark Matter gives a contribute to the overall density of matter which
is roughly 6 times that of baryonic matter ρm,bar, I’m interested in studying
the Mass Function of Dark Matter haloes. The Mass Function is a very
useful and important topic in Cosmology as f.i. it allows us to:

• study the mass spectrum of cosmological structures and understand
which percentage of haloes belongs to a certain mass interval;

• try to get some constraints on the cosmological parameters. If we
indeed consider the Ωm parameter, as defined in Chapter 1, we can
derive a lower limit1 for the density of matter ρM by computing the
following integral:

ρm =
∫ ∞

0
Φ(M) M dM (45)

and by dividing ρm by the ad-hoc defined critical density ρc I would
get a value for Ωm.

1 In this way, mass which doesn’t belong to virialized objects hasn’t been taken into account

19
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• find a good analytical form for the Luminosity Function of galaxies,
which is somehow related to the Mass Function and is well-fitted by a
Press-Schechter-type function.2

2 the press-schechter formalism

W.H. Press and P. Schechter derived in Press&Schechter(1974) an analytical
form for the Mass Function. Let R be the radial coordinate of a halo. In this
work they assumed that a halo collapses on some small scale R when the
linear density contrast field exceeds a certain threshold δc, which depends
weakly on the employed cosmological model. The threshold value δc can
be computed in the linear theory of spherical collapse and turns out to
be δc = 1.686. Moreover, in their theory they assumed that the smoothed
density contrast on the mentioned scale R doesn’t affect the behaviour of
regions on scales larger than R. In order to do that, it is necessary to choose
a proper filter, which must be function of the smoothing scale R, for the
density contrast. In order to be consistent with the spherical collapse theory
I’ll choose in this paragraph a real top-hat filter.
The analytical derivation is as follows. Let us assume that the density
fluctuation is a Gaussian random variable: the density fluctuation field
δ(x, R) will therefore be a Gaussian random field as well because it consists
in a sum of Gaussian random variables. Let σ2(r) be the mass variance
of the latter. Then the probability of δ(x, R) laying in a density contrast
interval [δ, δ + dδ] can be expressed as:

P(δ, R)dδ =
1√

2π σ2(R)
e
− δ2

2 σ2(R) dδ , (46)

according to the choice of a Gaussian field. Since the smoothing scale R
corresponds to a mass M of the halo as reported above, we can make use
of the mass coordinate instead of the radial one. Then the probability of
having a region of mass M with a density fluctuation above δc follows by
integrating P(δ, R)dδ over all the density contrasts, from the threshold δc to
infinite:

F(M) =
∫ ∞

δc
P(δ, R)dδ =

1
2

erfc

(
δc√

2 σ(M)

)
, (47)

2 Even though haloes are thought to be sites of galaxy formation, the connection between
the Mass Functions of galaxies and haloes isn’t so clear yet.
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where erfc(x) is thus the complementary error function. Note that I ex-
pressed again σ(M) as a function of M instead of R and that the ratio
δc/σ(M) represents the height of the threshold in units of the standard
deviation of the δ field. This means that each epoch is characterized by a cer-
tain typical scale M? which collapses when the mass variance σ(M?) = δc,
so that δc/σ(M?) = 1.
Under these conditions, the number of virialized objects with masses in
[M, M + dM] is given by:

Φ(M)dM =
dn
dM

dM =
ρM

M

∣∣∣∣dF(M)

dM

∣∣∣∣dM , (48)

where the factor ρM/M multiplies the remaining part by the number density
of particles of fluid at the scale M. In such a way, the normalization of F(M)

is lost and the function Φ(M)dM gives the number density of haloes at the
considered scale.
Using further calculations it is possible to derive the final form of the
Press-Schechter Mass Function:

Φ(M)dM =
dn
dM

dM =
ρM

M
1√

2π σ2(M)
2

δc

2 σ(M)

d
(

δ2
c

σ(M)

)
dM

e
− δ2

c
2 σ2(M) dM

(49)
by multiplying and dividing by M in order to get the logarithmic derivative
and by setting ν = δc/σ(M)

Φ(M)dM =
dn
dM

dM =
ρM

M2
1√
2π

ν
d ln ν

d ln M
e−

ν2
2 dM . (50)

By analizing its features it turns out that:

• the mass function resembles a power law dn/dM ∝ M−2 at small
scales M� M?;

• it shows a cut-off when M & M?, as the exponential factor overwhelms
the power-law one in that case.

3 the cloud-in-cloud problem

The above defined mass function features a serious problem. Indeed, by
definition erfc(0) = 1 and this results in F(M) = 1/2 in the Press-Schechter
formalism if ν = 0. Since considering ν = 0 (which is the same of δ = 0)



22 mass function and excursion set theory

implies considering all the structures that have formed due to a null density
contrast, that is, considering all mass in virialized objects, then equation (47)
states that only half of the mass density in the universe is part of virialized
haloes.
This problem is due to not taking into account that if the density fluctuation
δ(x, M) is above the threshold at a certain scale M, it could be below the
threshold δc at a smaller scale M† < M. What just expressed is usually
known as the cloud-in-cloud problem. Press and Schechter were aware
of such an issue and tried to fix their Mass Function by stating that, if
the problem at a certain scale was having neglected underdense regions
as discussed above, then such underdense regions would collapse onto
overdense regions on a larger scale. Due to this heuristic argument, Press
and Schechter simply multiplied their Mass Function by a factor of 2. On
one hand, it turns to be clear they did it in order to take into account
that more mass should be contained in bound haloes than how much was
predicted by their derivation. This is why in a way of course this additional
factor of 2 makes sense. On the other hand, the hypothesis this argument
should lead exactly to a factor of 2 is at least debatable.

4 excursion set theory

The Excursion Set Theory is a semi-analytical technique consisting basically
in a set of rules used for assigning mass elements to haloes of various sizes.
In order to overcome the cloud-in-cloud problem, the point is trying to
compute the probability that the first up-crossing of the threshold δc occurs
on a scale R.
Let’s start by fixing the coordinates x, so that we can consider δ(R) has only
an explicit dependence on the scale R. Since the standard deviation σ(R)
decreases monotonically with decreasing scale R, according to the form of
the power spectrum P(k), let S = σ2(R) be the new parameter which I’ll
use to denote the smoothing scale from now on. The problem becomes
therefore trying to compute the probability for the first up-crossing to occur
in an interval [S, S + dS].
Let’s start by considering a certain large scale R, that is, a small S, at which
δ(S1) ≡ δ1 < δc and consider an increment ∆S = S2 − S1 > 0. After
this increment, there will be a certain probability of the contrast density
exceeding the threshold. However, in a general framework, the exceeding-δc
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probability depends not only on the size of the step ∆S, but also on the value
of the density field on other scales, making the problem rather complicated.
An important and nice case is when the filter function used to define the
density fluctuation δ is a top-hat one in the k−space. In that case, the
probability of the contrast density suffering a variation ∆δ during the step
∆S is Gaussian with zero mean and variance σ = ∆S, regardless of the
starting scale S1. Hence, a top-hat filter in the k-space allows the (∆δ, ∆S)
steps to be independent on each other. Note that this choice isn’t the most
general at all: one could in principle choose other windows filter functions,
even though calculations would be more complicated because it would be
necessary to find the proper correlation between the steps. It is common
to refer to the function δ(S) as a trajectory performing a Brownian random
walk.
Let us now derive the Mass Function under the above employed conditions.
The probability of a transition ∆δ = δ2 − δ1 , δ2 > δ1 is

P(δ2, S2)dδ2 = G(∆δ, ∆S)d(∆δ) , where (51)

G(∆δ, ∆S)d(∆δ) =
1√

2π ∆S
e−

(∆δ)2
2 ∆S d(∆δ) . (52)

is the Gaussian transition probability.
Consider now the probability distribution P(δ, S + ∆S) on a subsequent
S step (we’re moving towards larger S, that is, a smaller scale R): it can
be related to the probability distribution P(δ, S) by a convolution with the
Gaussian distribution G(∆δ, ∆S)

P(δ, S + ∆S) =
∫

dδ G(∆δ, ∆S) P(δ− ∆δ, S) . (53)

Then, by using a Taylor expansion up to the 2nd order of the previous
relation for small transitions and by integrating each term, I get:

∂P
∂S

= lim
∆S→0

(
(∆δ)2

2 ∆S
∂2P
∂δ2 −

∆δ

∆S
∂P
∂δ

)
, (54)

where the line over ∆δ indicates an average.
Use now the fact that, if we assume a top-hat filter in the k-space, the
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transition probability is Gaussian, so that ∆δ = 0, and ∆S = σ2 = (∆δ)2. By
doing that, we get the following diffusion equation:

∂P
∂S

=
1
2

∂2P
∂δ2 (55)

The aim of this procedure is deriving the Mass Function by considering all
the trajectories that has overtaken the threshold δc before or just at a certain
scale S. However, this way would require proper boundary conditions that
aren’t immediate, so that it appears more simple to solve the equation by
computing the probability of the trajectories not to exceed δc prior to the
scale S and then deriving the quantity we are interested in by subtraction.
The first boundary condition is that P(δ, S) must be finite when δ→ −∞,
which will turn out to be useful later. The second but most important
boundary condition for a δ(S) random walk never piercing the threshold is
P(δc, S) = 0, since the probability of crossing the barrier up to the scale S
is null. Let now γ a new shifted variable ∆δ = δc − δ = γ, so that P(γ, S)
denotes the probability of passing the threshold at the scale S. The boundary
condition becomes therefore P(0, S) = 0. I will now solve equation (55)
in the Fourier-space. Let P̂ be the Fourier transform of the probability
distribution:

P̂(k) =
∫

dγ P(γ, S) e−iωγ , where ω = 2π k (56)

Consider now the relation for the Fourier transform:

f (x) =
dg(x)

dx
⇐⇒ ˆf (x) = i2π k g(x) . (57)

By using that, equation (55) becomes

∂P̂
∂S

= −ω2

2
P̂ , (58)

whose solution can be obtained by separating variables and integrating. It
turns out to be

P̂(ω, S) = c(ω) e−
ω2
2 S , (59)

where c(ω) arises from the integration and must be somehow determined.
For this purpose, I’ll make use of the boundary condition P(γ = 0, S) = 0,
which is responsible for the function c(ω) being odd. This means that
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c(ω) e−
ω2
2 S is still an odd function and its Fourier transform can be done by

considering only the imaginary part:

P(γ, S) =
∞∫

0

c(ω) sin(ωγ) e−
ω2
2 S dω . (60)

Then, in order to derive c(ω) let’s take δ(S0) = δ0 and choose P(δ0, S0) =

δD(δ0) as an initial condition. This follows quite naturally from the fact
that the probability of a transition between δ0 and a certain δ during a step
∆S = S− S0 is null at the very beginning, except for δ = δ0 , S = S0, which
means applying an Identity. The application of such an initial condition
results in

c(ω) =
2
π

sin(ωγ0) e
ω2
2 S0 , (61)

where γ0 = δc − δ0. In the end, the function P(γ, S) can be derived by
substituting c(ω) in equation (16) and integrating, so that

P(γ, S) =
2
π

∞∫
0

sin(ωγ0) sin(ωγ) e−
S−S0

2 ω2
dω . (62)

In order to solve the integral note that:

• by applying the Werner’s formula for a product of sines

sin(ωγ0) sin(ωγ) =
1
2
(cos(ω∆δ)− cos[2(δc − δ0)− ∆δ]) ; (63)

• the integral can be split in two parts thanks to its additive linearity
and both the resulting integral are therefore Fourier transforms of
even Gaussian functions;

• according to the scaling relation of the Fourier transform

F (e−∆S
2 ω2

) =
1

∆S
e−

(∆δ)2
2 ∆S , (64)

where ∆S = S− S0.

In the end, by taking into account all these facts together with the normali-
zation of the Gaussian functions, I get the following solution:

P(δ, S) =
1√

2π ∆S
(e−

(∆δ)2
2 ∆S − e−

[2(δc−δ0)−∆δ]2

2 ∆S ) . (65)
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As I anticipated above, I’ve so far derived the probability that the contrast
density δ didn’t cross the threshold before or just at the scale S.
What I’m really interested in is the fraction of trajectories exceeding the
threshold prior to the scale S, which can be derived as the complement of
the distribution P(δ, S):

F(S) = 1−
δc∫
−∞

P(δ, S)dδ = erfc
(

δc − δ0√
2 ∆S

)
, (66)

where one must make sure that the integral doesn’t diverge in −∞. This is
why the first boundary condition is necessary. Equation (66) is well-argued
because

1√
2π ∆S

∫ δc

−∞
e−

(∆δ)2
2 ∆S dδ = − 1√

2π ∆S

∫ δc

−∞
e−

[2(δc−δ0)−∆δ]2

2 ∆S dδ =
1
2

erf
(

δc − δ0√
2 ∆S

)
(67)

Indeed, the arguments of the exponential functions becomes equal when
δ = δc. Take now δ0 = 0 and S0 = 0, meaning an arbitrary starting
value at a very large scale, and remember that S = σ2. By doing that,
I get exactly the result of the Press-Schechter formalism without being
necessary to add a heuristic factor of 2. This follows as a consequence of
the second exponential term in equation (65), which takes into account
all the trajectories that crossed the barrier at a scale smaller than S (larger
R, or M) and which could subsequently have crossed again the threshold
downwards, meaning an underdense region at a larger S (smaller R). In
other words, it solves the cloud-in-cloud problem in a formal way.
Hence, let’s derive the Mass Function. First of all, a proper definition of the
differential probability distribution dF/dS of the first up-crossing is needed.
Given a generic initial datum (δ0, S0), it can be computed as

f (S|δ0, S0) =
dF(S)

dS
= − d

dS

∫ δc

−∞
P(δ, S)dδ =

δc − δ0√
2π ∆S3/2

e
(δc−δ0)

2

2 ∆S . (68)

Note that f ≥ 0 ∀S. Then:

dF
dM

=
dF
dS

∣∣∣∣ dS
dM

∣∣∣∣ = 1√
2π S

δc

S

∣∣∣∣ dS
dM

∣∣∣∣ e−
δ2
c

2S . (69)
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Figure 2: This plot features different curves representing the mass fraction in col-
lapsed objects per logarithmic interval ν f (ν). The solid line shows the
predictions of the discussed Excursion Set model. The dashed and dotted
lines represent fits by Sheth&Tormen(1999) and Jenkins et al.(2001). The
red points consist in numerical data from N-body simulations by J.L.
Tinker

In the end, the Mass Function follows from calculations similar to those of
equation (49) and by setting S = σ2:

Φ(M) =
dn
dM

=

√
2
π

ρM

M2
δc

σ

∣∣∣∣ d ln σ

d ln M

∣∣∣∣ e−
δ2
c

2σ2 =

√
2
π

ρM

M2 ν
d ln ν

d ln M
e−

ν2
2 ,

(70)
which is the Press-Schechter Mass Function without any additional factor
of 2.
Although this method provides a simple but effective expression for the
Mass Function predicting rather accurately the overall features of the mass
spectrum, it shows some limitations. This approach tends indeed to predict
too many low-mass halos and too few high-mass halos. This fact is clearly
shown in Figure 2, which features the mass fraction in collapsed objects
ν f (ν) = dF/d ln ν per logarithmic interval in ν.

An example by Zentner(2006) of δ(S) random walks with independent
S step is shown in Figure 3. This is what I’m trying to reproduce in the
following Chapter.



28 mass function and excursion set theory

Figure 3: This plot features three examples of δ(S) random walks with independent
S step, with arbitrary axes. The second exponential term in equation
(65) provides an analytical argument for the fact that the trajectories can
cross the threshold many times both upwards and downwards. From
Zentner(2006)
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N U M E R I C A L A P P L I C AT I O N S O F T H E E X C U R S I O N S E T

In this Chapter I carry out a numerical application of the Excursion Set
theory in its simplest approach of independent steps, disclosed in the
previous Chapter. What I do is building a Montecarlo simulation and trying
to extract the Mass Function from that.
As expressed in the previous Chapter, the choice of a k-space top-hat filter
function makes the steps in S independent on each other. Hence, the
probability of a transition ∆δ is Gaussian with zero mean and variance
σ = ∆S, regardless of the starting scale.
The starting point of the simulation is therefore building a proper random
walk and seeing at which S the contrast density δ crosses the threshold δc.
Then:

• several random walks are generated by repeating the same procedure
many times;

• the S-values at which the barrier is passed are recorded and turned
into ν = δc/

√
S;

• I choose proper bins and plot a histogram featuring how many times
the random walk crosses δc within the interval ∆ν of a certain bin;

• the columns of the histogram are fitted with a proper function;

• I compute the function f (ν) by derivating the fitting function in respect
with ν.

In the end, several simulations are put together in order to find an average
result, equipped with proper error bars.

1 generation of gaussian random fields and the building

of a random walk

I anticipated above that the basic idea is developing a random walk with
the above-mentioned features. In order to do that, I started by generating

29
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Figure 4: This plot shows a single random walk in δ. At each step ∆S in S the
random walk is shifted to the right of ∆S. Note that the trajectory can
pierce the barrier many times, both upwards and downwards. The
threshold is displayed as a red horizontal line

random numbers uniformly in the interval [0, 1). These numbers represent
the indepedent steps in S. Then, for each S-step I produced a step in δ by
generating a random number with a Gaussian distribution having σ2 = S,
as requested by the k-space top-hat filter. In this way the generation of
Gaussian random fields allowed me to achieve the desired random walk in
δ. Examples of outcome of this procedure are displayed in Figures 4 and
5. Note that this is exactly the result showed in Figure 3 in the previous
Chapter.

2 the montecarlo simulation

The simulation I did is based on the repetition of the above-mentioned
procedure many times, that is, thousands times. Let n be the number
of repetitions. The algorithm works as I anticipated in the introductory
part of this Chapter. Every single random walk goes on until it reaches the
threshold value δc = 1.686 for the first time. When it happens, the S-value of
crossing is registered in a proper list and this procedure is repeated n times.
Then, I converted the set of S-values into a set of ν-values by computing
ν = δc/

√
S for each S. In the end, I built a histogram featuring the ν-values

in the x-axis and their occurrence in the y-axis. For each column I derived a
data-point of coordinates (ν, N), where ν is the mean value between the two
limits in ν of each bin and N is the height of the column. This histogram is
showed with normalized columns independently on the number of random
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Figure 5: This plot features three examples of δ random walks with independent S
step, like the previous plot. The threshold is displayed as a red horizontal
line



32 numerical applications of the excursion set

Figure 6: This histogram shows the occurrence of the ν-values in a 1000 random
walks simulation

walks, so that simulations consisting of a different number of random walks
can be compared. An example of such a histogram is featured in Figure
6, corresponding to a simulation with 1000 random walks. What this kind
of histogram tells us is the number (or the number density, if normalized)
of times the threshold is exceeded in a certain bin. As I’m interested in
gaining the Mass Function from this simulation, I’ll proceed as follows. As
described in the previous Chapter, the function

ν f (ν) =
dN

d ln ν
=

√
2
π

ν e−
ν2
2 (71)

indicates the mass fraction of collapsed objects per logarithmic interval in ν.
This means that, if I knew the primitive of the function f (ν) and it was a
good fitting function for the data-points I got from the histogram, then the
Mass Function would be recovered.
Let us remember that the Gaussian function doesn’t have an explicit analy-
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tical primitive, that is, it can only be expressed as an integral. Indeed, the
complementary error function is expressed as

erfc
(

δ√
2 S

)
=
∫ ∞

δc
e

δ2
2 S dx , (72)

and its derivative f (δ) in respect with δ is just

f (δ) = −e−
δ2
2 S
∣∣∞
δc
= e−

δ2
c

2 S = e−
ν2
2 , (73)

except for the normalization factor. In other words, I’ll try and see whether
the erfc is a good fitting function or not, since its graphic is known, even
though it is an integral function. Figures 7 and 8 show two examples of
fit with the erfc function. They represent respectively a 1500 and a 2500
random walks simulation. By looking at these two fits it turns out that the
aforementioned function produces if not a good a fit, at least a reasonable
one.

3 establishing the fit’s goodness

Even though the fit looks appropriate, a stronger proof of its validity is
needed. This can be achieved by repeating the up-to-now-described pro-
cedure many times, by computing a mean value of every column’s height
and by associating to the computed averages proper error bars. Figure 9

displays the fitted data-points with their errors bars. The error bars come
from a set of 15 simulations, each of which includes 1000 random walks.
Note that the automatic binning of the software make the bins regarding

different simulations not identical to each other, that is, their ν-limits are
slightly different. Anyway, if I consider the mean points in ν of correspon-
dent bins of different simulations, they all lay in the interval identified by
the limits of the correspondent bin of one of the simulations, e.g. the first
simulation. This means that, in order to make things faster and more simple,
the binning of the first simulation can be employed for all the simulations.
Even though this procedure isn’t completely correct, it can be used as a
good approximation. The error bars have been obtained by computing the
standard deviation of each set of column heights values.
Moreover, it can easily noticed that the fore coefficient of the fitting function
doesn’t guarantee the exact normalization of the erfc, even though it is very
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Figure 7: (a) Histogram of a 1500 random walks simulation; (b) the plot shows the
data-points fitted by the erfc function, with a proper coefficient
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Figure 8: (a) Histogram of a 2500 random walks simulation; (b) the plot shows the
data-points fitted by the erfc function, with a proper coefficient
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Figure 9: This plot shows the fitted data-points with their errors bars. The error
bars come from a set of 10 simulations, each of which includes 1000
random walks

similar to what it should be. Indeed, my fit provides a coefficient a = 1.213,
while the correct normalization would present a fore coefficient a = 1.253.
This fact can be explained by considering that of course the fit could be
improved by using more random walks for each simulation (this process
requires a much more powerful computer than mine) and by increasing the
number of simulations. In this way, perhaps I would be able to achieve a
better correspondence between coefficients.
The main programs I wrote and used to carry out the simulations and to
plot histograms and fits are reported in appendix a.
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R A N D O M WA L K S W I T H D I F F E R E N T F I LT E R S

This ending Chapter allows us to take a look of how a contrast density
random walk changes depending on which filter function one employes.
In this Chapter I follow the implementation presented by Desjacques et
al.(2018). The filters I’m going to use are the same discussed in Chapter 2:

• top-hat filter in the k-space;

• top-hat filter in the real space;

• Gaussian filter in the real space.

The goal of this Chapter is mainly discussing the numerical implementation
of these filters in a random walk.
Let in what follows Q(R) be a stochastic force defined as

Q(R) =
dδ(R)

dR
. (74)

What this quantity tells us is the rate of change of the smoothed linear
density δ(R). As we already know from the previous Chapters, Q(R) has a
null average value 〈Q(R)〉 = 0 but has a non-zero two-point function given
by

〈Q(R1) Q(R2)〉 =
1

2π2

∫
k

P(k)
dWR1(k)

dR1

dW∗R2
(k)

dR2
(75)

1 the sharp-k filter

This is the case I already discussed in Chapter 3 with respect to the
Press-Schechter formalism. A top-hat filter in the k-space makes the steps
uncorrelated and the random walk fully Markovian. The choice of such a
filter is very popular in literature as it allows to derive an exact solution to
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the first-crossing problem.
The sharp-k filter is defined as

W(k, R) =

1 if k ≤ 1/R

0 if k > 1/R
= Θ(1− kR) , (76)

where Θ is the Heaviside step function, so that its derivative in respect of
the scale R is

dWR(k)
dR

=
dΘ(1− kR)

dR
= − k

R
δD

(
k− 1

R

)
, (77)

where δD indicates a Dirac’s delta. By substituting this result in equation
(75) , I get

〈Q(R1) Q(R2)〉 = −
k2 P(k)

2π2

∣∣∣∣
k=1/R1

1
R2

1
δD(R1 − R2) . (78)

I achieved this result by:

• considering that the fore minus is due to the complex conjugate;

• considering the resulting Dirac’s delta comes from the fact that
δD(k− 1/R) = 0 ∀k 6= 1/R, and the product of the two deltas is equal
only if R1 = R2;

• noticing that the evaluation in k = 1/R1 and the factor of 1/R2
1 again

are due to the previous consideration.

I rewrite now equations (74)-(78) in terms of ln k = − ln R getting

dδ(R = 1/k)
d ln k

= Q(ln k) and (79)

δ(R) =
∫ − ln R

−∞
d ln k′ Q(ln k′) . (80)

The two-point function becomes therefore

〈Q(ln k1) Q(ln k2)〉 =
k3

1 P(k1)

2π2 δD(ln k1 − ln k2) . (81)

Note now that both equations (79)-(81) don’t depend explicitly on R, that
is, the stochastic forces are uncorrelated. In other words, the δ-steps are
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uncorrelated as we had expected. Furthermore we can change the initial
conditions setting (Ri, δ(Ri)) = (∞, 0), where the Ri is the initial scale.
Under these circumstances I can get a numerical solution by discretizing
the steps in the k-space, that is, by proceeding via subsequent ∆ ln ki. By
doing that the stochastic force owns to a Gaussian distribution with zero
mean and variance

σ2
Q =

ki P(ki)

2π2 ∆ ln ki
(82)

and the random walk can be achieved by computing δ(R) as the following
sum:

δ(R) = ∑
ki<1/R

ri

√
k3

i P(k)
2π2 ∆ ln ki , (83)

where ri is a random number originating from a Gaussian distribution
N (0, 1), that is, with zero mean and standard deviation σ = 1.

2 other filters : real top-hat and gaussian

The main point of the top-hat filter in the Fourier space is that the derivative
of the window function is a Dirac’s delta and this makes all the stochastic
forces on different scales independent from each other, since they’re not
vanishing only at the scale they’re centered on. This fact is not true for
all other filters whose derivative with respect to the scale R is not a δD.
This means basically that every stochastic force Q(Ri) depends on all the
previous steps [Q(R0), Q(R1), . . . , Q(Ri−1)] and this makes of course the
contrast density random walk non-Markovian.
I want now to build such a random walk with a generic filter. The starting
point is considering that δ(k) is Gaussian. This implies that the Fourier
amplitudes of different wavenumbers k are independent on each other. Let
us then start by writing the smoothed linear density field in k-coordinates
as

δ(R) =
∫

k
dk3 δ(k)WR(k) . (84)

Let now Qsk(k) be the stochastic force in the k-space for the sharp-k filter.
By looking at this last expression and at equation (80), it turns out clearly
that Qsk(k) is nothing but δ(k) integrated over a spherical shell in Fourier
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Figure 10: This plot shows the three discussed random walks. The solid lines show
the sharp-k random walks, the dashed lines those obtained with the
Gaussian filter and the dotted lines feature the real top-hat ones. Notice
that the Gaussian and real top-hat appear smoother than the sharp-k
ones. From Desjacques et al.(2018)

space with fixed logarithmic width d ln k. According to this fact, the contrast
density can be written in terms of Qsk(k) and the filter WR(k) as

δ(R) =
∫ ∞

0
d ln k′ Qsk(ln k′)WR(ln k) , (85)

where the integration runs from 0 to ∞.
The numerical implementation follows then by exploiting the stochastic
force for sharp-k filter Qsk(ln k′). In other words, the steps in the random
walk can be obtained by simply multiplying the argument of the sum
in equation (83) by the k-space window function WR(k). A comparison
between the three different discussed random walks is showed in Figure
10, taken from Desjacques et al.(2018). Notice that, as the steps obtained
with the real top-hat and Gaussian filters are correlated, then the resulting
non-Markovian random walks appear much smoother than those built with
the Fourier space top-hat filter.

3 comparison between algorithms

In this last section I make a comparison between the aforementioned algo-
rithms and the code I developed.
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My program is based on a simple generation of Gaussian random fields.
According to Zentner(2007), the random walk starts by the variance value
S = 0 and at each S-step ∆S a δ-step comes into being by generating a
random number following a Gaussian distribution with zero mean and
variance σ2 = ∆S. Then, the algorithm is set in the real space and plots
a x-axis in S. On one hand, this code is quite concise and relatively easy
to build. Furthermore, the results are quite fine and it doesn’t need any
assumptions on the power spectrum. On the other hand, the disadvantages
are mainly that this algorithm can be applied only to the sharp-k case, as it
is the only filter that makes the steps uncorrelated. As a result, if one would
build a random walk employing another filter function, then this code is
not useful anymore. The algorithm proposed by Desjacques et al.(2018)
rests on more solid theoretical basis. It takes place in the Fourier space and
computes how the δ(R) random walk behaves by discretizing the k-steps.
The process requires in this case some further calculations and a choice of a
proper power spectrum P(k), the latter not being requested in my algorithm.
Hence, upon these points this procedure appears unfavourable. However,
as I discussed above such a code allows to implement every kind of filters
by simply multiplying its Fourier-space form by the Fourier top-hat filter.
Moreover, the plot shows R instead of S in the x-axis and this makes by
construction the δ-steps larger and larger while proceeding towards smaller
scales. This reflects the presence of a power spectrum weighing differently
the contribute of the wavenumber k at different scales. As far as the results
are concerned, I carried out a set of simulations using only my algorithm,
so that I cannot actually compare my results with any others.
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A P P E N D I X A

In this final section I include some of the source codes I used to carry out
the simulations:

• generation of a simple δ random walk with a while cycle:

import numpy as np
import m a t p l o t l i b . pyplot as p l t
def randomwalk ( t ) :

d e l t a l i s t = [ ]
s l i s t = [ ]
d e l t a 0 =0

s0=0

d e l t a l i s t . append ( d e l t a 0 )
s l i s t . append ( s0 )
while d e l t a l i s t [−1]< t :

d e l t a s =np . random . random ( )
d e l t a d e l t a =np . random . normal ( 0 , d e l t a s )
s2= s l i s t [−1] + d e l t a s
s l i s t . append ( s2 )
d e l t a 2= d e l t a l i s t [−1] + d e l t a d e l t a
d e l t a l i s t . append ( d e l t a 2 )

p r i n t ( " s l i s t " , s l i s t )
p r i n t ( " d e l t a l i s t " , d e l t a l i s t )
p l t . xlim ( [ 0 , s l i s t [ −1 ] ] )
p l t . ylim ([−3 , t + 1 ] )
p l t . p l o t ( s l i s t , d e l t a l i s t ,"−g " ,

l a b e l =" Contrast dens i ty random walk " )
l i n e a r t =1 .686

p l t . p l o t ( [ 0 , s l i s t [−1 ] ] , [ l i n e a r t , l i n e a r t ] , "−r " )
p l t . x l a b e l ( " S " )
p l t . y l a b e l ( ’ del ta ’ )
p l t . show ( )
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• Montecarlo simulation with m random walks. When the function is
called with proper parameters, it returns a histogram featuring ν on
the x-axis and the number density N(ν) in the y-axis. Moreover, it
returns the bins’ limits and the heights of the columns:

import numpy as np
import m a t p l o t l i b . pyplot as p l t

def s imulat ion (m, threshold ) :
s _ f i n a l _ l i s t = [ ]
n u _ l i s t = [ ]
f o r i in range (m) :

d e l t a l i s t = [ ]
s l i s t = [ ]
d e l t a 0 =0

s0=0

d e l t a l i s t . append ( d e l t a 0 )
s l i s t . append ( s0 )

while d e l t a l i s t [−1]< threshold :
ddel tas=np . random . random ( )
d e l t a s =np . s q r t ( ddel tas )
d e l t a d e l t a =np . random . normal ( 0 , d e l t a s )
s2= s l i s t [−1] + ddel tas
s l i s t . append ( s2 )
d e l t a 2= d e l t a l i s t [−1] + d e l t a d e l t a
d e l t a l i s t . append ( d e l t a 2 )

s _ f i n a l _ l i s t . append ( s l i s t [−1])
nu=threshold/np . s q r t ( ( s l i s t [ −1 ] ) )
n u _ l i s t . append ( nu )
p r i n t ( " ( 1 ) s _ f i n a l _ l i s t " )
p r i n t ( s _ f i n a l _ l i s t )
x=np . array ( n u _ l i s t )
n , bins , patches= p l t . h i s t ( x , bins =30 , dens i ty=True ,

h i s t t y p e = ’ s t e p f i l l e d ’ , log=Fa l se )
p l t . x l a b e l ( ’ nu ’ )
p l t . y l a b e l ( ’N( nu ) ’ )
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p l t . show ( )
p r i n t("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
p r i n t ( " ( 2 ) column_values " )
p r i n t ( " ( 3 ) b ins_values " )
re turn ( n , bins )

• this program imports the bins’ limits and the column’s heights ob-
tained from the previous code, computes the mean point of each bin’s
interval, build a point for each bin (see Chapter 4) and fits the data-
points with a erfc function. In the version I report below, it takes up
several sets of values got by different simulations and use them to plot
the error bars:

import numpy as np
import m a t p l o t l i b . pyplot as p l t
from scipy . s p e c i a l import e r f c
from scipy . optimize import c u r v e _ f i t
from scipy . i n t e g r a t e import quad

def e r r o r s (m) :
dat = np . genfromtxt ( ’ val_bins_pimp . t x t ’ )
bins=dat [m, : ]
k=len ( bins )
v a l u e s _ l i s t = [ ]
e r r b a r _ l i s t = [ ]
f o r s in range ( k ) :

v a l _ l i s t = [ ]
f o r t in range (m) :

val=dat [ t , s ]
v a l _ l i s t . append ( val )
va l_array=np . array ( v a l _ l i s t )

mean=np . mean( va l_array )
std=np . std ( va l_array )
v a l u e s _ l i s t . append (mean)
e r r b a r _ l i s t . append ( std )

x d a t a l i s t = [ ]
f o r i in range ( k−1) :
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x =( bins [ i +1]+ bins [ i ] ) / 2

x d a t a l i s t . append ( x )

zero= v a l u e s _ l i s t [−1]
v a l u e s _ l i s t . remove ( zero )
xdata=np . array ( x d a t a l i s t )
ydata=np . array ( v a l u e s _ l i s t )

zero_err= e r r b a r _ l i s t [−1]
e r r b a r _ l i s t . remove ( zero_err )
e r r _ a r r a y =np . array ( e r r b a r _ l i s t )
p r i n t ( ’∗ x_data : ’ , x d a t a l i s t )
p r i n t ( ’∗ y_data : ’ , v a l u e s _ l i s t )
p r i n t ( ’∗ e r r _ a r r a y : ’ , e r r b a r _ l i s t )

def func ( x , a ) :
re turn a∗ e r f c ( x/np . s q r t ( 2 ) )

p l t . e r r o r b a r ( xdata , ydata , yerr=err_array ,
fmt = ’b . ’ , l a b e l = ’ data ’ )

popt , pcov = c u r v e _ f i t ( func , xdata , ydata )
p l t . p l o t ( xdata , func ( xdata , ∗popt ) ,

’ r− ’ , l a b e l = ’ f i t : a=%5.3 f ’% tuple ( popt ) )
p l t . x l a b e l ( ’ nu ’ )
p l t . y l a b e l ( ’N( nu ) ’ )
p l t . ylim ([ −0 .5 , ydata [ 0 ] + 0 . 5 ] )
p l t . legend ( )
p l t . show ( )
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