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CHAPTER 1

Introduction

Quantum field theory has repeatedly proven to be a solid framework to describe

the physics of at least three of the fundamental interactions we know today. Its

vast development over the last century led not only to a remarkable understanding

of particle physics and to outstanding predictions in the same field, but also to

the development of powerful tools that may be applied outside the field of high

energy physics, such as in the study of statistical mechanics and critical phenomena.

Nevertheless, QFT presents a fundamental issue in that it does not allow to quantise

the gravitational interaction in a consistent way within its formalism. In particular,

the quantised Einstein-Hilbert action results in a non-renormalisable theory. In

order to overcome this problem, it has been a while now that physicists came out

with a different approach: string theory. Though the precise relation between string

theory and the phenomenology of particle physics and cosmology remains in part

an open problem nowadays, string theory has proven to be a consistent quantum

gravity formalism. On top of that, it is undeniable that it has driven large part

of the recent developments in high energy theoretical physics, both conceptual and

technical.

As it is well-known, supersymmetry should be introduced in string theory in

order to remove some inconsistencies that arise in a purely bosonic string theory

(the presence of tachyonic excitations). Remarkably, one can talk about supersym-

metry without the need of string theory, implementing it in the simpler context of

QFT and general relativity, and this is useful since it allows to study the effective

physics, possibly arising from string theory, at energy regimes that are comprised

between the scale at which supersymmetry is broken and the Planck scale where a

modification of the point particle paradigm is needed. In such a context, supersym-
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1. Introduction

metry is basically an additional spacetime symmetry that exchanges bosons with

fermions and vice versa, and as such it requires each particle in a given theory to

have its own superpartner. When supersymmetry is at work the Poincaré algebra is

extended to include also the supersymmetry generators, called supercharges. This

wider symmetry algebra has the noteworthy effect of making supersymmetric the-

ories much more constrained compared to non-supersymmetric ones. The result is

that supersymmetric theories are usually much easier to tackle from the technical

point of view and quantum corrections are under better control due to cancella-

tions between bosonic and fermionic contributions in the loops. Remarkably, this

more constrained setup often allows us to compute one or more of the “observables”

associated to the theory (e.g. generating functional, n-point correlation functions,

etc.) in an exact way i.e. without relying on some kind of approximation as, for

example, perturbation theory. This means that we can have insights on the physics

at strong coupling, which is something extremely rare in ordinary QFT where it is

usually hard to obtain significant results without relying on a perturbative analysis

at weak coupling. In this view, supersymmetric quantum field theories constitute

an extremely valuable playground for exploring the non-perturbative structure of

QFTs and it is not surprising that the high energy physics community put a lot of

effort into studying them over the the last couple of decades.

Within this general picture, in recent years there has been an increasing interest

in the study of supersymmetric quantum field theories defined in curved spaces i.e.

manifolds with a fixed non-flat metric, different from the usual Minkowski one. Such

interest increased after that a systematic way to define such theories was developed

[1]. Before that, defining a supersymmetric QFT on such a background was not a

straightforward task and had to rely on a trial and error approach. Hence, once

this obstacle was essentially removed, more and more results were derived and great

developments in the understanding of this kind of setup were made.

There are three main reasons why studying supersymmetric quantum field theo-

ries on curved manifolds is worth of interest. In the first place, there are some tech-

nical motivations. A general approach for defining physical observables is to switch

on some background sources and couple them to the suitable fields appearing in the

theory of interest. Then one can obtain correlation functions by taking functional

derivatives of the partition function with respect to these background sources, and

sometimes supersymmetry allows to compute them exactly (for instance using the

technique of supersymmetric localisation which essentially reduces the path integral

to an ordinary integral [26, 31, 32]). If one wants to consider correlation functions

involving the stress-energy tensor of the theory, then the background source it has

to be coupled with is nothing but the metric tensor (and its supersymmetric com-

pletion of course); a background metric tensor amounts precisely to considering the

theory on a curved space. Moreover, the presence of a finite length scale which is
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introduced on a compact manifold constitutes a natural IR regulator, hence in this

context one should take care of the usual UV divergences only.

Secondly, the study of these theories may lead to a deeper understanding of

the role of spacetime geometric properties in determining the physics of quantum

fields. To be more concrete, the picture is similar to what happens with topolog-

ical quantum field theories [26]. These are a class of QFTs which live on spaces

whose topological properties constitute the only relevant information determining

the physics of the theory. In particular, computing physical observables amounts

to computing topological invariants associated to the space where the theory is liv-

ing. This deep entanglement between physical and mathematical objects has led to

progress in both sides: mathematical tools were used directly to compute physical

quantities, and techniques arising from the physics world have taught us new ways

for handling mathematical objects, in particular topological invariants indeed [27].

An analogous situation occurs in our context, though the interest is focused on the

complex structure of the manifolds rather than on their topology. It can be shown

that many observables arising from supersymmetric field theories placed on curved

manifolds depend only on some of the geometric information at disposal [3, 4], in

particular on those involving the complex structure. Thus, it would be interest-

ing to explore thoroughly this relationship between complex geometry and physical

observables.

Last but not least, results concerning observables of field theories on curved

spaces can often be related to observables in gravity theories through the holographic

principle. It has been a while now since the first time the AdS/CFT correspondence

idea came out [28, 29, 30] and since then its understanding and usage has grown

more and more. Essentially it is a strong/weak duality which states that in certain

conditions there is a one to one mapping between parameters and physical quantities

of a gravitational theory in a d + 1 dimensional anti-de Sitter space and those of a

conformal field theory living in its d dimensional boundary. Because of this relation

between a bulk gravitational theory and a CFT living at the boundary, the duality is

called holographic. Therefore, by computing exact observables in a conformal field

theory living on a curved space, we can potentially learn a lot in regard of its dual

gravity theory at both strong and weak coupling regimes.

The present thesis lays within this framework and in particular it aims to achieve

some progress in the understanding of one particular spacetime geometry that is

S1 × S3. Such a background is particularly relevant for two reasons. On the one

hand, it has a well-known complex structure, as S1 × S3 is diffeomorphic to the

complex manifolds belonging to the class of primary Hopf surfaces [25], and therefore

there is quite a lot of literature that comes to help when needed. For example, the

complex structure parameters can be encoded in the metric in a simple way by

some deformations of the manifold with respect to the simple direct product of the
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1. Introduction

circle times the round 3-sphere, in particular twisting and squashing. On the other

hand, S1 ×S3 is the conformal boundary of an asymptotically AdS5 space in global

coordinates (after Wick rotation to Euclidean signature and compactification of the

Euclidean time), hence it may be very useful from the holographic perspective.

For instance, one specific application consists in the microscopic counting of black

hole entropy. It is an established fact that black holes display a thermodynamical

behaviour, yet in the context of non-quantum gravity (i.e. general relativity) we

are able to tell only that their entropy is proportional to the horizon area, which

is a macroscopic quantity. A viable theory of quantum gravity should provide a

way for deriving this entropy through a statistical microstate counting. In specific

contexts, string theory has proven to be able to do this [33] but there are still many

cases where a proper microscopic description is not fully known. Supersymmetric

asymptotically AdS5 black holes constitute one of these cases and have the geometry

of interest in this thesis as a conformal boundary. The AdS/CFT correspondence

may be able to provide a tool for counting black hole microstates exploiting the dual

description in terms of a CFT, whence the interest for CFTs in S1×S3 background.

Keeping in mind this context, the aim of this thesis is to tackle the computation

of one particular physical observable arising from a simple N = 1 SCFT living on

the background S1×S3: the supersymmetric Casimir energy ⟨Hsusy⟩. This quantity
is defined to be the vacuum expectation value of the supersymmetric Hamiltonian

governing the evolution of the theory, and it is related to the exponential prefactor

that appears in the expression for the partition function. As we will see, it is not

a priori obvious that ⟨Hsusy⟩ is a well-defined physical quantity, and indeed in non-

supersymmetric theories it is not. Luckily, in [6] it was shown that supersymmetry

makes it non-ambiguous and physical, as well as ⟨Hsusy⟩ was computed for the

background corresponding to the simple direct product S1 × S3 by performing a

dimensional reduction over the 3-sphere. The supersymmetric Casimir energy has

also been shown to be related to the microstate counting problem in an interesting

though not yet entirely understood way [15]. In the present work we will exploit

techniques similar to those in [6] in order to extend their result to the more general

case of a twisted S1 × S3 as background geometry. Below we sketch the outline of

the thesis and illustrate our new results.

Chapter 2 is devoted to a general introduction to supersymmetric theories in

curved spaces. Firstly we review the algorithmic method that allows to take a flat

space supersymmetric field theory and put it onto a curved manifold without spoiling

supersymmetry [1], with a particular focus on N = 1 theories with two conserved

supercharges of opposite R-charge [2]. Then we briefly speak about the dependence

of the partition function of such theories on deformations of the geometry and sketch

the main ideas leading to the proof that only the information concerning the complex

structure of the manifold enters the partition function [3, 4].
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In chapter 3 we start by introducing more specifically the background geom-

etry corresponding to a non-deformed S1 × S3, including its symmetries and the

background field needed to define a supersymmetric theory. Then, we explain the

reasoning carried out in [6] to show that the Casimir energy is unambiguous and

well-defined. The crucial point is that when reducing to one dimension some Chern-

Simons terms pop out and they cannot be obtained by integrating 4d counterterms.

Once this will be established, we will consider a simple chiral multiplet on this back-

ground and go through the majority of the details of the actual computation leading

to the Casimir energy expression. We will expand each field in spherical harmonics

and integrate over S3, and the result will be a one dimensional theory with infinite

degrees of freedom whose ground state energy is fairly simple to obtain. The choice

of the chiral multiplet is due to the fact that it is the simplest N = 1 supersymmet-

ric theory, and it can be regarded as a toy model for understanding this technique

and subsequently apply it to some more relevant and complete theories. Though

this chapter constitute essentially a review of [6], here we present explicitly most of

the passages of the dimensional reduction that are not explained in that work.

The original work of this thesis is contained in chapter 4. We will introduce

both a twisting in the background geometry, parametrised by two real numbers σ1
and σ2, and another more subtle deformation (not visible in the manifold) which is

encoded in an integer parameter n0. The effort we put in detailing the dimensional

reduction and the subsequent derivation of the supersymmetric Casimir energy in

chapter 3 will allow us to provide a natural extension of the procedure to this more

general setting. The focus will be on highlighting the physical differences from the

case studied in the previous chapter and discussing some subtleties that arise only

when the parameters σ1, σ2, and n0 are turned on. For the detailed computations

one can still refer to chapter 3. The final result will be a generalised expression

for the Casimir energy which includes the one obtained in [6] and extend it to the

twisted S1 × S3 background.

Finally, chapter 5 contains a summary of the obtained results as well as their

interpretation in terms of the background complex structure. There we will define

primary Hopf surfaces and see how the newly introduced twisting parameters σ1
and σ2 arrange into the complex structure parameters of an Hopf surface. The

complex structure parameters which were purely real in [6] are completed to complex

values thanks to the introduction of σ1 and σ2, hence our new findings results in

an overcoming of some limitations of the previous work. We will also discuss how

our results relate to others which can be found in literature as well as the possible

directions for further developments.
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CHAPTER 2

Supersymmetric field theories on curved spaces

2.1 From flat to curved space in a nutshell

Given that supersymmetry is a spacetime symmetry rather than an internal one, it is

not a priori obvious how to couple a generic supersymmetric field theory defined on

flat Minkowski space to a non-flat fixed metric without spoiling supersymmetry. The

first approach one might think about is to substitute the curved metric everywhere

in the flat-space lagrangian and then add suitable terms in powers of 1
r
(where r

is a relevand scale of the metric) in both the lagrangian and the supersymmetry

variations so as to recover invariance a and meaningful supersymmetry algebra.

Although this trial and error strategy lead to correct results, it presents considerable

technical difficulties.

Luckily, it has been a while now that a more systematic approach has been devel-

oped [1, 2]. Roughly speaking, the main point of the procedure consists in coupling

the supersymmetric theory of interest to off-shell supergravity, that is without inte-

grating out the auxiliary fields lying inside the supergravity multiplet through their

equations of motion; then one takes the rigid limit in order to keep the metric fixed

and decouple the gravitino.

Let us go a little bit more through details.

1. The first step consists in writing a lagrangian that couples our supersymmet-

ric model to supergravity. This is done by introducing a dynamical metric

gµν together with its complements to a superfield i.e. the gravitino Ψµ and

some auxiliary fields, and the coupling terms are constituted essentially by the

minimal coupling of the supercurrent multiplet with the supergravity auxiliary

fields.
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2. Supersymmetric field theories on curved spaces

2. Without solving the equations of motion for the auxiliary fields, we take the

limit MP → ∞ while holding fixed the metric we are interested in (and there-

fore specifying the spacetime manifold M). By doing this, the fields in the

supergravity multiplet become a non-dynamical fixed background. Then, we

also set Ψµ = 0 so as to make the gravitino disappear.

3. We impose the supersymmetry variation of the gravitino to vanish so as it

decouples completely from the theory:

δΨµ = δΨ̄µ = 0 . (2.1)

These constraints are called Killing spinor equations and in general will be

two linear differential equation for the supersymmetry parameters ζ and ζ̄.

They admit solutions only for some specific values of the background auxiliary

fields, and the number of independent solutions corresponds to the number of

preserved supersymmetries. We stress the fact that the auxiliary fields has not

to satisfy any equation of motion and they can take any arbitrary value.

4. Finally we substitute the expressions for the auxiliary fields obtained by re-

quiring (2.1) to be integrable into the lagrangian. In general we will find

something of the form:

LM = L′
R4 +

+∞∑︂
n=1

1

rn
δLn , (2.2)

where L′
R4 is simply the flat space lagrangian with the flat metric replaced by

gµν and r is some characteristic size of M. Remarkably [1] proved that all

terms with n > 2 vanish. Note that the flat space lagrangian is recovered in

the limit r → ∞.

If one manages to follow all this steps, the rigid supersymmetry algebra on M arises

as a subalgebra of the local supersymmetry algebra of the supergravity theory we

started with, and in general it is different from the supersymmetry algebra of the

flat space theory.

2.2 N = 1 theories with R-symmetry

2.2.1 Supergravity coupling and rigid limit

We now focus on four dimensional N = 1 supersymmetric theories that admit a

U(1)R symmetry, since this is the case which we are going to work with in the rest

of the thesis. A broad discussion of this setting is contained in [2] which is also the

source we will refer to in writing this section. However, we will use the conventions
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2.2. N = 1 theories with R-symmetry

of [5] that are also summarised in appendix A. In particular we will consider a four

dimensional Riemannian manifold M equipped with a real metric with euclidean

signature.

On general ground, a flat-space field theory can be placed on M by coupling

its stress-energy tensor to the metric on M. However, when the theory is super-

symmetric the stress-energy tensor Tµν is part of the supercurrent multiplet, which

includes also various other operators. Then, the correct generalisation is to couple

the operators inside the supercurrent multiplet to the fields lying in the supergravity

multiplet i.e. gµν to Tµν , the gravitino Ψµα to the supersymmetry current Sµα, and so

on. Now, there exist different formulations of 4d N = 1 supergravity as well as there

exist various different supercurrent multiplets. In our setting the most convenient

choice is to work with the R-multiplet, whose existence is subjected to the presence

of a U(1)R symmetry in the theory; this is precisely our case. The R-multiplet is

described by the pair of superfields (Rµ, χα), where Rµ is a vector superfield (in

lorentzian signature it is real) and χα is a chiral superfield (i.e. D̃α̇χα = 0) such

that they satisfy:

D̃
α̇
(σµαα̇Rµ) = −1

2
χα , Dαχα = D̃α̇χ̃

α̇ . (2.3)

The expressions of the superfieldsRµ and χα in components is a bit cumbersome and

not very useful for our purpose (see e.g. [2]); the important thing is that they contain

the R-current JµR, of course the stress-energy tensor Tµν and the supersymmetry

currents Sµα and S̃
α̇

µ, and finally a closed two-form Fµν . Note that Fµν can be seen

as a field-strength for another vector field Aµ, that is:

Fµν = ∂µAν − ∂νAµ , (2.4)

modulo the usual ambiguity in that the transformation Aµ → Aµ + ∂µα leaves Fµν

unchanged. All of these currents are determined only by the flat-space supersym-

metric theory and are conserved.

The R-multiplet couples to the so called “new minimal supergravity” multiplet

[8, 9] which contains the metric gµν , the gravitino fields Ψµα and Ψ̃
α̇

µ, and two

auxiliary bosonic fields: the abelian vector field Aµ and a skew-symmetric two-

index tensor field Bµν . However, it is more convenient to embed the latter inside

another vector field V µ defined by:

V µ ≡ 1

4
ϵµνρσ ∂νBρσ . (2.5)

Such a vector field is covariantly conserved i.e. ∇µV
µ = 0, ∇µ being the Levi-Civita

connection on M. In euclidean signature the background fields Aµ and Vµ are

complex rather than real as in lorentzian signature, and Ψµ and Ψ̃µ are independent

one of another as well as the supersymmetry currents Sµ and S̃µ. Yet, we will

9



2. Supersymmetric field theories on curved spaces

assume the metric gµν to be real. Each field inside the supercurrent multiplet acts

as a source for a field in the new minimal supergravity multiplet. The minimal

coupling lagrangian it is then given by:

L =
1

2
gµν Tµν −ΨµSµ − Ψ̃

µ
S̃µ −

(︃
Aµ −

3

2
Vµ

)︃
JµR − V µAµ . (2.6)

At this point, a couple of comments have to be made. Firstly, note that the la-

grangian should be invariant under an exact one-form shift of Aµ for the theory

to be consistent; this is indeed the case since V µ is covariantly conserved as we

stated above. Secondly, from (2.6) we can see that Aµ plays the role of gauge field

for the local R-symmetry. The full supergravity theory is given by the non-linear

completion of (2.6).

As explained in the previous section, now we have to take the rigid limitMP → ∞
without integrating out the supergravity auxiliary fields and holding the metric fixed.

Since we want the gravitino to disappear from the theory, we set Ψµ = Ψ̃µ = 0,

which also make the supersymmetry variation of the supergravity bosonic fields to

vanish [8]. This is precisely what we want because the supergravity fields should

play the only role of a non-dynamical background for our field theory. Instead, the

supersymmetry variations of the gravitino fields read:

δΨµ = −2Dµζ − 2i Vµζ − 2i V νσµνζ ,

δΨ̃µ = −2Dµζ̃ + 2i Vµζ̃ + 2i V ν σ̃µν ζ̃ ,
(2.7)

where the supersymmetry parameters ζα and ζ̃
α̇
are two-components independent

commuting spinors carrying respectively R-charge +1 and -1 1 and Dµ ≡ ∇µ− iqAµ
is the covariant derivative, q being the R-charge of the field on which it is acting.

Notice that the fact that in euclidean signature they are independent means that

ζ† ̸= ζ̃ and ζ̃
† ̸= ζ. Requiring (2.7) to vanish, we obtain the so called Killing spinor

equations:

Dµζ + i Vµζ + i V νσµνζ = 0 ,

Dµζ̃ − i Vµζ̃ − i V ν σ̃µν ζ̃ = 0 .
(2.8)

A given configuration of the background i.e. of gµν , Aµ, and Vµ preserves some degree

of supersymmetry if the differential equations (2.8) admit at least one non-trivial

solution for either ζ or ζ̃, which in this context are referred to as Killing spinors. In

particular, the number of independent solutions corresponds to the number of super-

charges that are unbroken. Indeed, each independent Killing spinor is determined

modulo a complex multiplicative constant which is nothing but a supersymmetry

1We can take ζ and ζ̃ to be commuting since they are not dynamical fields, thus nothing forces

them to be anti-commuting.
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2.2. N = 1 theories with R-symmetry

parameter of the field theory on M. It is clear now why we did not eliminate the

auxiliary fields through their equations of motion: we want them to take particular

values such that the Killing spinor equations can be solved. Remarkably, (2.8) do

not depend on the field theory involved but on the supergravity field configuration

only, thus a given background that admits a solution of the Killing spinor equa-

tions will preserve supersymmetry in any theory that admits a coupling to the new

minimal multiplet.

After applying this procedure with success, the supersymmetry algebra arise as

a subalgebra of the local supersymmetry algebra of the supergravity theory. In

particular if there is only one Killing spinor ζ, the superalgebra simply reads:

δ2ζ = 0 , (2.9)

where δζ is the action of the operator iζQ, Qα being one of the supersymmetry

generators (analogously δζ̃ will be the action of the operator iζ̃Q̃). If instead (2.8)

admits more than one solution, then for each pair of ζ and ζ̃ we can build the vector

Kµ = ζσµζ̃. Now, we define the twisted Lie derivative along K = Kµ∂µ as the

operator:

L̂K ≡ LK − iq KµAµ . (2.10)

Then, the supersymmetry algebra reads:

{δζ , δζ̃} = 2iL̂K , {δζ , δζ} = {δζ̃ , δζ̃} = 0 . (2.11)

Summarizing, by following the illustrated procedure the problem of defining an

N = 1 supersymmetric theory with an U(1)R symmetry on a given four dimensional

curved manifold reduces to that of finding a suitable configuration of the new min-

imal supergravity auxiliary fields Aµ and Vµ and one or more Killing spinors such

that the Killing spinor equations (2.8) are solved.

2.2.2 Solving the Killing spinor equations

As we said, equations (2.8) do not admit solutions for arbitrary values of gµν , Aµ,

and Vµ. A systematic analysis of the backgrounds admitting one or more solutions

is carried over in details in [2]. Here we will only review their results concerning

manifolds that admit two superchargers of opposite R-charge, that is one indepen-

dent solution for each of the two equations (2.8). This is the case relevant for the

follow of this work.

To begin with, it was shown that a manifold admits at least one supercharge if

and only if it is Hermitian i.e. it is a complex manifold with a smooth Hermitian

product on the tangent space. Provided that this condition is satisfied, let us assume

that the existing solution of (2.8) is ζ. Then, we can build covariant objects as spinor
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2. Supersymmetric field theories on curved spaces

bilinears, and in particular we define:

Jµν ≡
2i

|ζ|2 ζ
†σµνζ , (2.12)

where |ζ| = ζ†ζ. One can show that this quantity is such that:

Jµν J
ν
ρ = −δµρ . (2.13)

This tells us that Jµν is an almost complex structure on the manifold M. In particu-

lar, the Killing spinor equation ensure that Jµν is integrable and therefore a complex

structure, which is equivalent to saying that M is an Hermitian manifold. The com-

plexified tangent space is splitted in holomorphic and anti-holomorphic subspaces,

according to the eigenvalue of their elements with respect to Jµν . The values for the

background fields Aµ and Vµ that allows for a solution ζ are of the form:

Aµ =
1

4
J ν
µ ∂ν (log

√
g)− i

2
∂µ (log s)−

1

4

(︁
δνµ − iJ ν

µ

)︁
∇ρJρν +

3

2
Uµ , (2.14)

Vµ = −1

2
∇ρJρµ + Uµ , (2.15)

where Uµ is a vector field we have the freedom to choose, provided that it is holo-

morphic i.e. JµνU
ν = iUµ and covariantly conserved i.e. ∇µU

µ = 0, and s is an

arbitrary nowhere vanishing complex function. In the complex frame adapted to

the Hermitian metric, the solutions of the Killing spinor equation are the element

of the one-dimensional vector space generated by:

ζα =

√︃
s

2

(︃
0

1

)︃
. (2.16)

Equivalently, in case the Killing spinor is ζ̃ rather than ζ, we can build the bilinear:

J̃µν ≡
2i

|ζ̃|2
ζ̃
†
σ̃µν ζ̃ , (2.17)

where |ζ| = ζ̃
†
ζ̃, and there are expressions for ζ̃, Aµ, and Vµ analogous to (2.14),

(2.15) and (2.16).

If now we admit for the presence of two supercharges of opposite R-charge,

namely a solution ζ and another ζ̃, we have two different complex structures Jµν
and J̃

µ

ν and it can be proved that they induce opposite orientations and that they

commute i.e.:

Jµν J̃
ν

ρ − J̃
µ

νJ
ν
ρ = 0 . (2.18)

We introduce also the vector Kµ as above:

Kµ = ζσµζ̃ . (2.19)
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2.2. N = 1 theories with R-symmetry

Such a vector is holomorphic with respect to both complex structures and it satisfies

KµKµ = 0. It can be shown that the Killing spinor equations imply that Kµ is a

Killing vector, that is:

∇µKν +∇νKµ = 0 . (2.20)

We will also assume that the vector K commutes with its complex conjugate K̄ 2

i.e.:

[K, K̄] =
(︁
Kµ∇µK̄

ν − K̄
µ∇µK

ν
)︁
∂ν = 0 . (2.21)

The expressions (2.14) and (2.15) are still valid, but now the vector Uµ has to

be proportional to Kµ i.e. Uµ = κKµ, where κ is a complex function. The fact

that ∇µV
µ = 0 constrains κ to be such that Kµ ∂µκ = 0. Thanks to the complex

structure Jµν , we can introduce holomorphic coordinates w, z such that K = ∂w.

In such coordinates the metric on M necessarily takes the form:

ds2 = Ω2(z, z̄)
[︁
(dw + h(z, z̄) dz)

(︁
dw̄ + h̄(z, z̄) dz̄

)︁
+ c2(z, z̄) dz dz̄

]︁
, (2.22)

where h(z, z̄) is a complex function and c(z, z̄) and Ω(z, z̄) are real positive func-

tions. In particular the conformal factor is determined by the norm of Kµ:

Ω2 = 2 K̄µK
µ = 4 |ζ|2 |ζ̃|2 . (2.23)

The complex frame where the expressions for the Killing spinors we will give in a

second are valid is still the frame adapted to the Hermitian metric. In this case we

can give its explicit expression:

Θ1 = Ω c dz̄ , Θ2 = Ω(dw + h dz) . (2.24)

The corresponding real frame is obtained as:

e1 =
1

2

(︁
Θ1 + Θ̄

1̄)︁
, e2 =

1

2i

(︁
Θ1 − Θ̄

1̄)︁
,

e3 =
1

2

(︁
Θ2 + Θ̄

2̄)︁
, e4 =

1

2i

(︁
Θ2 − Θ̄

2̄)︁
.

(2.25)

In this frame the Killing spinors are elements of the vector space generated by:

ζα =

√︃
s

2

(︃
0

1

)︃
, ζ̃

α̇
=

Ω√
2s

(︃
1

0

)︃
. (2.26)

Lastly, note that K and K̄ are killing vectors for the metric on M since it is real.

However, the transformations they generate is not a symmetry of the background

fields in general. If we require Aµ and Vµ to be invariant under the action of K and

2The case where [K, K̄] ̸= 0 is more complicated and furtherly restrict the geometry of M, but

it is not relevant for the following.
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2. Supersymmetric field theories on curved spaces

K̄ (the former up to gauge transformations), we get additional constraints for the

functions κ and s:

K̄
µ
∂µκ = Kµ ∂µ|s| = K̄

µ
∂µ|s| = 0 . (2.27)

We will assume these conditions so as to ensure that K and K̄ generate symmetries

of all the supergravity background fields, though one in principle is free to work

with auxiliary fields that are not invariant under their action.

2.2.3 Chiral multiplet on a curved manifold

For our purposes we will need to define a free N = 1 chiral multiplet theory on a

curved background. In euclidean signature the chiral multiplet contains a pair of

complex scalar fields ϕ, ϕ̃, a pair of Weyl spinors of opposite chirality ψα, ψ̃
α̇
, and two

complex auxiliary scalar fields F , F̃ . Once again we stress that in euclidean signature

each field is independent of its tilde version, some reality conditions relating them

have to be specified only when passing to lorentzian signature. In flat space the

free theory of a single chiral multiplet is described by the simple Kähler potential

K(Φ, Φ̃) = Φ̃Φ in terms of superfields, which upon integration in superspace gives

rise to the Wess-Zumino lagrangian:

LR4 =

∫︂
d2θ d2θ̃ Φ̃Φ = ∂µϕ̃ ∂

µϕ− F̃F + iψ̃ σ̃µ∂µψ , (2.28)

where the indices are contracted with δµν = diag (1, 1, 1, 1). The lagrangian (2.28)

is invariant under the supersymmetry transformations:⎧⎪⎪⎨⎪⎪⎩
δsϕ =

√
2 ζψ

δsψ =
√
2Fζ + i

√
2σµζ̃ ∂µϕ

δsF = i
√
2 ζ̃ σ̃µ∂µψ

,

⎧⎪⎪⎨⎪⎪⎩
δsϕ̃ =

√
2 ζ̃ψ̃

δsψ̃ =
√
2 F̃ ζ̃ + i

√
2 σ̃µζ ∂µϕ̃

δsF̃ = i
√
2 ζ σµ ∂µψ̃

.

(2.29)

Note that the spinorial supersymmetry parameters ζ and ζ̃ are unrestricted by any

equation up to now. This theory exhibits an U(1)R symmetry, thus we can apply

the procedure described in section 2.2 to couple it to new minimal supergravity and

then take the rigid limit and try to solve the Killing spinor equations. In particolar

the R-charges of the fields inside the multiplet are:

R[ϕ] = −R[ϕ̃] = qr , R[ψ] = −R[ψ̃] = qr − 1 , R[F ] = −R[F̃ ] = qr − 2 ,

(2.30)

where qr is an arbitrary real number at this point.

Once we follow all the steps described so far, we end up with the following

lagrangian:

LM = Dµϕ̃ D
µϕ+ iV µ

(︂
Dµϕ̃ ϕ− ϕ̃ Dµϕ

)︂
+
qr
4
(R+ 6V µVµ) ϕ̃ ϕ+

− F̃F + iψ̃ σ̃µDµψ +
1

2
Vµ ψ̃ σ̃

µψ ,
(2.31)
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2.3. Structure of the supersymmetric partition function

where the indices now are contracted with the metric gµν on M and we denoted with

R its ricci scalar. Recall that the covariant derivative acting on a field of R-charge

q is given by:

Dµ = ∇µ − iqAµ . (2.32)

The supersymmetry transformations that leave the curved space theory (2.31) in-

variant are:⎧⎪⎪⎨⎪⎪⎩
δsϕ =

√
2 ζψ

δsψ =
√
2Fζ + i

√
2σµζ̃ Dµϕ

δsF = i
√
2Dµ

(︁
ζ̃ σ̃µψ

)︁ ,

⎧⎪⎪⎨⎪⎪⎩
δsϕ̃ =

√
2 ζ̃ψ̃

δsψ̃ =
√
2 F̃ ζ̃ + i

√
2 σ̃µζ Dµϕ̃

δsF̃ = i
√
2Dµ

(︁
ζ σµψ̃

)︁ ,

(2.33)

where here instead ζ and ζ̃ are constrained to satisfy the Killing spinor equations

(2.8), thus in the local frame (2.24) they have to be complex multiples of (2.26).

2.3 Structure of the supersymmetric partition
function

2.3.1 The importance of the partition function in QFT

Given a supersymmetric theory on a curved manifold with euclidean signature metric

such as we described in the previous section, the most fundamental observable one

can compute is the partition function, defined through the functional integral as

follows. Let X be the collection of fields inside the theory and S[X] its euclidean

action. Then, the partition function is:

ZM =

∫︂
DX e−S[X] . (2.34)

The quantity ZM is so important because it generates all the other observables of

the theory, namely the n-point functions, through functional derivation, therefore

determining completely the quantum theory. Moreover, it is through the partition

function that one is able to see the holographic principle at work and relate field

theory results with gravity results. Indeed the AdS/CFT dictionary tells us that

under certain conditions the logarithm of ZM coincides with the renormalised on-

shell action of the dual supergravity theory living in the bulk whose conformal

boundary is M.

In the present work we will not address directly the problem of computing a

partition function, nevertheless our results will be closely linked. In particular, we

will see how one specific observable, the Casimir energy3, fits into the context of

the work in [3]. Remarkably, they found that under certain hypotheses well-suited

3We will speak more extensively of the Casimir energy and how it is defined in chapter 3.
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2. Supersymmetric field theories on curved spaces

for the case of our interest, the data entering the partition function is much less

than that appearing in the lagrangian, with a particular focus on the dependence

on the geometric properties of the underlying manifold M. It is then useful to state

precisely this result and to quickly review the reasoning behind its proof.

2.3.2 The role of Q-cohomology in the quantum theory

One of the key passages of the aforementioned proof relies on a particular property

that is present in supersymmetric theories. Limited to this section, let us denote

with a simple δ the operator that implements supersymmetry. In general the opera-

tor δ squares to some bosonic operator B, and it is possible to define its cohomology.

We call it Q-cohomology, and we say that an object is Q-closed if its supersymmetry

variation vanishes and Q-exact if it is itself the supersymmetry variation of some-

thing else. We say that two objects are in the same Q-cohomology group if their

difference is a Q-exact term.

If a theory is supersymmetric, then δS = 0 which means that the action is Q-

closed. Now let us deform the action by an infinitesimal Q-exact term δV . Then

the deformed partition function is:

Z ′
M =

∫︂
DX e−S[X]−δV [X] =

∫︂
DX e−S[X] (1− δV [X]) =

= ZM −
∫︂

DX δ
(︁
V [X] e−S[X]

)︁
,

(2.35)

where in the last step we exploited the fact that the action is Q-closed. In general,

for any transformation that keeps the path integral measure invariant, path integrals

of the form of the last appearing in (2.35) vanish. To show that, consider the path

integral of a generic functional F [X] and replace the dummy integration fields X

with their transformed version X ′ = X + δX. Then, if the measure is invariant we

have:∫︂
DX F [X] =

∫︂
DX ′ F [X ′] =

∫︂
DX F [X + δX] =

∫︂
DX

(︃
F [X] +

δF [X]

δX
δX

)︃
=⇒

∫︂
DX δF [X]

δX
δX = 0 =⇒

∫︂
DX δF [X] = 0 .

Hence, we can conclude that Z ′
M = ZM i.e. the partition function does not depend

on the action itself but only on its Q-cohomology group. In other words, we have

just showed that Q-exact term in the lagrangian do not contribute to the partition

function of the theory.

Note that the same reasoning can be carried out for each and all of the possibly

more than one supersymmetries at play. For instance, in our case where there are

two supercharges one can define the Q̃-cohomology starting from the operator δ̃ and

come to the conclusion that the partition function is not affected by Q̃-exact terms

in the lagrangian too.
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2.3. Structure of the supersymmetric partition function

2.3.3 Linear analysis of background geometry deformations

In a spirit somehow similar to that of topological field theories, where it does make

sense to study the dependence of the QFT observables on the topological structure

of the space where it lives, in our case it is particularly interesting to study how

the N = 1 SQFTs relate themselves with the geometric structure of M. In the

following we will assume that no background gauge fields are present other that the

R-symmetry gauge field Aµ.

The geometric data that enters the lagrangian of the theory when two super-

charges are present is constitued by the hermitian metric gµν , the complex structure

Jµν , and the Killing vector Kµ, the last two through the background fields Aµ and

Vµ. What we can do is to look at how the lagrangian changes when the geometry

of M is a little deformed. To do that, we have to deform all the three objects:

gµν −→ gµν +∆gµν

Jµν −→ Jµν +∆Jµν

Kµ −→ Kµ +∆Kµ

. (2.36)

We must require them to keep satisfying the properties they had when not deformed,

namely Jµν to be integrable, gµν to be compatible with the complex structure, and

Kµ to be holomorphic with respect to the complex structure. These requirement

will put constraints on the possible deformations, however their explicit expressions

are not very relevant for our purposes. Furthermore, we should exclude from our

analysis those transformations that are only changes of coordinates. It can be showed

that the set of non-trivial complex structure deformations is parametrised by the

moduli of the moduli space of complex structure deformations of M. By properly

going through the computations, one can work out the deformed lagrangian and

it turns out that many of its terms are either Q-exact or Q̃-exact at linear order,

therefore they do not contribute to the partition function, as we showed in the

previous section.

The final outcome of this linearized analysis is that ZM depends only on the com-

plex structure moduli corresponding to ∆Jww̄ and ∆Jzw̄ and not on other geometric

data such as the metric itself.

2.3.4 General parameter dependence of ZM

The result above is remarkable, yet it is achieved by considering only infinitesimal

geometry deformations. Such an assumption is quite strong and would restrict

considerably its applications. Luckily, it has been shown that the statement holds

for finite deformations too [4]. The proof relies on different tools than the ones we

presented here and the linearised approach has the merit of being more intuitive
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2. Supersymmetric field theories on curved spaces

from the physical point of view. We will not present the full non-linear analysis

here. To summarise, we state precisely the general result:

Theorem 1. The partition function ZM of an N = 1 SQFT with two supercharges

of opposite R-charge defined on the background manifold M is an holomorphic func-

tion of the complex structure moduli corresponding to ∆Jww̄ and ∆Jzw̄ . Moreover,

it does not depend on other geometric details of M such as its hermitian metric gµν
or the other components of the complex structure deformation.

Of course this theorem restricts also the parameter dependence of the n-point

functions of the theory since they are obtained from ZM by taking derivatives.
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CHAPTER 3

The Casimir energy of a simple N = 1 SCFT on round

S1 × S3

3.1 Background geometry

The aim of this chapter is mainly to review the computation of the Casimir energy

performed in [6], adding also some technical details that are missing in the paper.

We will comment more about the Casimir energy itself and why it is interesting in

section 3.2, but first of all it is necessary to define the background geometry we are

going to consider and follow the procedure illustrated in chapter 2 to define a SQFT

in such a curved space. We caution the reader that some of the conventions used

here are slightly different from those in [6], hence intermediate results may differ.

3.1.1 A taste of holography: S1 × S3 as conformal boundary of AdS5

The manifold we will work with in this chapter is the direct product S1×S3. Aside

from the fact that such a background has been and it is still being the target of

a lot of high-energy physics research literature, the main motivation that pushed

us to study observables on it is the fact that they can be related to gravitational

observables in a 5-dimensional spacetime through the AdS/CFT correspondence.

Hence, we open a brief parenthesis to show that S1 × S3 is the conformal boundary

of AdS5 indeed.

The d + 1 dimensional euclidean Anti-de-Sitter space, AdSd+1 in short, is one

of the three maximally symmetric solutions of the Einstein equations with constant

curvature in d+1 dimensional spacetime. It corresponds to the solution with negative

curvature which is obtained when there is a negative cosmological constant. The
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3. The Casimir energy of a simple N = 1 SCFT on round S1 × S3

easiest way to define AdSd+1 consists in embedding it into Rd+1,1 as an hyperboloid.

Being {XI} with I = 0, . . . , d + 2 the Cartesian coordinates on Rd+1,1, AdSd+1 is

the manifold defined by the constraint:

− (X0)2 + (X1)2 + · · ·+ (Xd+1)2 = −R2 , R ∈ R , X0 > 0 . (3.1)

We can reformulate the constraint 3.1 by introducing the coordinates (τ, ρ, Ωi), with

τ, ρ ∈ (0,+∞), i = 1, . . . d, defined by:⎧⎪⎪⎨⎪⎪⎩
X0 = R cosh τ cosh ρ

X i = RΩi sinh ρ

Xd+1 = −R sinh τ cosh ρ

. (3.2)

In this system of coordinates (3.1) translates into ΩiΩi = 1, which means that Ωi

define a (d− 1)-sphere. The coordinates on this (d− 1)-sphere together with (τ, ρ)

are a suitable system of coordinates for AdSd+1, and the metric induced by that of

Rd+1,1 is:

ds2AdS = R2
(︁
cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2

d−1

)︁
, (3.3)

where dΩd−1 is the surface element of the unitary (d − 1)-sphere. These are called

global coordinates for AdSd+1. To understand what is the boundary of this space, we

introduce yet another coordinate θ ∈
[︁
0, π

2

)︁
, which is related to ρ as tanh ρ = sin θ.

The metric (3.3) becomes:

ds2AdS =
R2

cos2 θ

(︁
dτ 2 + dθ2 + sin2 θ dΩ2

d−1

)︁
. (3.4)

When we set θ to its extremum π
2
we obtain the metric of a cylinder R+ × Sd−1.

We say that R+ × Sd−1 is the conformal boundary of the euclidean AdSd+1. Notice

that by extending the domain of τ to the complete real axis (namely considering

the universal covering space of AdSd+1), the conformal boundary is R×Sd−1, which

is nothing but the background for the radial quantisation of a flat space CFT. By

compactifying the coordinate τ , the bond with the space where we will work becomes

clear: R gets compactified into S1, hence we can consider the conformal boundary

of AdSd+1 to be S1 × Sd−1. In our specific case, d = 4 and we have that the space

S1 × S3, where we will setup our field theory, is the conformal boundary of AdS5.

3.1.2 Manifold definition and background fields

As we already said, the manifold we will work with is the direct product S1×S3. A

suitable system of coordinates for this space is given by the set (τ, θ, φ1, φ2) where

τ ∈ [0, 2π) is the coordinate on the circle and θ ∈ [0, π
2
] and φ1, φ2 ∈ [0, 2π) are
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3.1. Background geometry

the coordinates on the 3-sphere4. Of course we have the identifications τ ∼ τ + 2π,

φ1 ∼ φ1 + 2π, and φ2 ∼ φ2 + 2π. The metric reads:

ds2 = β2 dτ 2 + r2 dθ2 + r2 sin2 θ dφ2
1 + r2 cos2 θ dφ2

2 , (3.5)

where β and r are positive parameters determining the radius of respectively the

circle and the 3-sphere. These coordinates describe S3 as a Hopf fibration of a 2-

torus (parametrised by φ1, φ2) over an interval parametrised by θ, and in fact they

are called Hopf coordinates. Note that at first sight (3.5) may seem to be singular at

θ = 0 and θ = π
2
since either the term in dφ2

1 or that in dφ
2
2 disappear; however, one

may check that these are just coordinate singularities and that the Riemann tensor

is perfectly regular. For completeness we report also the determinant and the Ricci

scalar of the metric (3.5):

g = β2r6 cos2 θ sin2 θ , (3.6)

R =
6

r2
. (3.7)

The 3-sphere has SO(4) ≃ SU(2)L×SU(2)R symmetry and for each SU(2) factor

there exist an associated angular momentum operator: the left angular momentum

J⃗
L
corresponds to SU(2)L, and the right angular momentum J⃗

R
corresponds to

SU(2)R. JL3 and JR3 are the two Cartan operators and they generate symmetries

along linear combinations of ∂φ1 and ∂φ2 . In particular, in the differential represen-

tation they are given by:

JL3 =
i

2

(︁
L∂φ1

+ L∂φ2

)︁
, JR3 =

i

2

(︁
L∂φ1

− L∂φ2

)︁
, (3.8)

where L∂φi
is the Lie derivative along the vector ∂φi

. Such expressions are compre-

hensive of both the orbital angular momentum and the internal spin.

If the metric (3.5) can support an SQFT with two supercharges of opposite R-

charge, then it must be possible to recast it in terms of holomorphic coordinates

(w, z) in such a way that it takes the form (2.22). This is indeed possible and a

suitable change of coordinates is given by:⎧⎪⎨⎪⎩
w =

iβ

r
τ + φ2 − i log cos θ

z = ei(φ1−φ2) tan θ

. (3.9)

The real coordinates boundary conditions lead to the identifications w ∼ w + 2πiβ
r

and w ∼ w + 2π while z is kept fixed. The functions of z and z̄ appearing in (2.22)

are given by:

Ω = r , h = − iz̄

1 + |z|2 , c =
1

1 + |z|2 . (3.10)

4We warn the reader that thes τ and θ have nothing to do with the ones introduced above in

section 3.1.1 to parametrise the AdS space.
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3. The Casimir energy of a simple N = 1 SCFT on round S1 × S3

The vector K = ∂w is a Killing vector by construction and in real coordinates it

reads:

K = − ir

2β
∂τ +

1

2
∂φ1 +

1

2
∂φ2 , (3.11)

and lowering the index with the real metric, we get the associated 1-form:

K =
1

2
r2
[︃
−iβ
r
dτ + sin2 θ dφ1 + cos2 θ dφ2

]︃
. (3.12)

Obviously it is the direction of (3.11) which is relevant, while the normalisation

is arbitrary since the Killing spinors are defined up to a multiplicative complex

constants. One may check that the Killing vector Kµ satisfies all the properties

that we listed in 2.2.2 i.e. KµKµ = 0 and [K, K̄] = 0. The most general expressions

for the two auxiliary background fields read:

V =
iβκr

2
dτ +

(︂
1− κ

2
r2
)︂ (︁

sin2 θ dφ1 + cos2 θ dφ2

)︁
, (3.13)

A = sin2 θ dφ1 + cos2 θ dφ2 −
i

2
d(log s)+

+
1

2

(︃
1− 3

2
κr2
)︃(︃

− iβ

r
dτ + sin2 θ dφ1 + cos2 θ dφ2

)︃
.

(3.14)

A convenient choice of the function κ is the constant 2
r2
, so that the components

in dφ1 and dφ2 of A and V cancel out (except for those that may be contained in

d(log s)):

V =
iβ

r
dτ , (3.15)

A =
iβ

r
dτ − i

2
d(log s) . (3.16)

This choice has the advantage of making A and V regular everywhere. For now, we

leave the function s unfixed.

In order to give an expression for the Killing spinors, we have to introduce a

local frame. For purely technical purposes, it is more convenient to use a local

frame which is rotated with respect to (2.25). Respectively in real and complex

coordinates it is given by:

e1 = −r sin θ cos θ sin (φ1 + φ2) (dφ1 − dφ2) + r cos (φ1 + φ2) dθ

e2 = −r sin θ cos θ cos (φ1 + φ2) (dφ1 − dφ2)− r sin (φ1 + φ2) dθ

e3 = r sin2 θ dφ1 + r cos2 θ dφ2

e4 = β dτ

, (3.17)
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3.1. Background geometry

Θ1 = Ω c e−2iφ2 dz̄

Θ̄
1̄
= Ω c e2iφ2 dz

Θ2 = Ω(dw + h dz)

Θ̄
2̄
= Ω

(︁
dw̄ + h̄ dz̄

)︁ . (3.18)

In such a frame, the two Killing spinors are given by:

ζα = ς

√︃
s

2

(︃
0

1

)︃
, ζ̃

α̇
= ς̃

r√
2s

(︃
1

0

)︃
, (3.19)

where ς, ς̃ ∈ C are the complex constants that parametrise the supersymmetry

transformations along the two directions selected by the Killing spinors. By imposing

suitable boundary conditions on ζ and ζ̃ we can fix also the function s. The two

spinors should be anti-periodic when we go once around the circle parametrised by

either φ1 or φ2; for what concerns the boundary condition under τ → τ + 2π, it is

consistent to take them either periodic or anti-periodic, but for now we will set them

to be periodic, following [6], and we will analyse the most general case in chapter

4. In order to impose these boundary conditions, we have to work out how (3.19)

transform under the rotations of τ, φ1, and φ2 by 2π. The operator that implements

such transformations is the exponential of the Lie derivative5:

ζ −→ exp (2πLX) ζ , ζ̃ −→ exp (2πLX) ζ̃ , (3.20)

where X is the derivative along one of τ, φ1, φ2. Luckily, both (3.19) are eigenfunc-

tions of the spinorial Lie derivative:

L∂τ ζ =

(︃
1

2s
∂τs

)︃
ζ , L∂φ1

ζ =

(︃
i

2
+

1

2s
∂φ1s

)︃
ζ , L∂φ2

ζ =

(︃
i

2
+

1

2s
∂φ2s

)︃
ζ ,

L∂τ ζ̃ = −
(︃

1

2s
∂τs

)︃
ζ̃ , L∂φ1

ζ̃ = −
(︃
i

2
+

1

2s
∂φ1s

)︃
ζ̃ , L∂φ2

ζ̃ = −
(︃
i

2
+

1

2s
∂φ2s

)︃
ζ̃ ,

(3.21)

hence the exponential of the spinorial Lie derivative simply returns the spinor itself

multiplied by the exponential of its eigenvalue. Therefore, the simple choice of a

constant s makes the Killing spinor satisfy the required boundary conditions, and

the function s itself disappears from Aµ. In particular, choosing s = r leads to two

Killing spinors with the same normalisation.

Summarizing, our choices of the arbitrary functions are:

κ =
2

r2
, s = r (3.22)

5For the definition of the Lie derivative acting on spinors see appendix A.2.
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3. The Casimir energy of a simple N = 1 SCFT on round S1 × S3

and they lead to the following expressions for the background supergravity vector

fields and the two Killing spinors:

A = V =
iβ

r
dτ , (3.23)

ζα = ς

√︃
r

2

(︃
0

1

)︃
, ζ̃

α̇
= ς̃

√︃
r

2

(︃
1

0

)︃
. (3.24)

Note that the normalisation of the Killing vector used in (3.11) corresponds to

ς = ς̃ = 1.

3.2 Generalities on the Casimir energy in QFT

3.2.1 Definition and its ambiguity in ordinary QFT

Throughout our work we speak of Casimir energy referring to the ground state

energy of a quantum field theory. More specifically, we will deal only with CFTs in

the present thesis. Denoting the Casimir energy with E0, it can be expressed as the

integral of the vacuum expectation value of the ττ -component of the stress-energy

tensor:

E0 =

∫︂
S3

d3x
√
g3 ⟨Tττ ⟩ , (3.25)

where g3 = r6 cos2 θ sin2 θ is the determinant of the metric (3.5) restricted to the

3-sphere. However, it is not guaranteed a priori that (3.25) is a meaningful definition

in the sense that it is scheme independent. In fact, it is not in general: there exists

a non-vanishing dimensionless counterterm that we can add to the action and that

has the effect of shifting E0:

Sct ∼ b

∫︂
S1×S3

d4x
√
gR2 = 24π3b rβ , (3.26)

where b is an arbitrary dimensionless constant. Interpreting what multiplies β as a

contribution to the energy, we can conclude that such a counterterm would shift E0

by an amount proportional to b, therefore E0 is ambiguous.

In principle, one could see this also from the vacuum expectation value of the

trace of the stress-energy tensor ⟨T µµ ⟩. Recall that for a 4d CFTs in a curved space

⟨T µµ ⟩ is non-vanishing in general, and it takes the form:

⟨T µµ ⟩ ∼ aE(4) − cW 2 , (3.27)

where E(4) is the Euler density, W = WµνρσW
µνρσ is the square of the Weyl tensor6,

and a and c are the conformal anomaly coefficients i.e. two dimensionless constants

6See appendix A.1 for the definitions of E(4) and Wµνρσ.
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3.2. Generalities on the Casimir energy in QFT

depending on the details of the field theory at work. The counterterm (3.26) has

the effect of adding a term at the RHS of (3.27):

⟨T µµ ⟩ ∼ aE(4) − cW 2 + b□R . (3.28)

However, for our particular background, the trace is untouched since R is constant

and thus □R = 0. therefore, this argument is not enough. In passing, note that

luckily for us both E(4) and W 2 vanish for the background metric (3.5), hence we

are guaranteed that, whatever CFT we define on the round S1 × S3, the one-point

function of the trace of the energy-momentum tensor will vanish.

3.2.2 Supersymmetry at work: removing the ambiguity

The presence of supersymmetry constrains our theory just enough to remove the

ambiguity in the definition of the Casimir energy. The key idea is that (3.26)

should be completed to a supersymmetric counterterm, but one can show that such

a completion vanishes. However, we can show our claim in a more rigorous way.

In presence of supersymmetry the Casimir energy, we will denote it with Esusy,

can equivalently be characterised as the vacuum expectation value of the supersym-

metric Hamiltonian Hsusy, which is the operator that generates translations along

the lorentzian time direction t = −iτ , i.e. Esusy = ⟨Hsusy⟩. Note that this quantity

can be linked to the partition function (2.34). In fact, the latter can be thought as

a trace over the Hilbert space of states7:

ZS1×S3 = Tr
[︁
(−1)F e−βHsusy

]︁
. (3.29)

In the limit where β is very big, this sum is clearly dominated by the state which

has the smallest energy, that is nothing but the ground state whose energy is the

supersymmetric Casimir energy. Hence Esusy can be worked out from the partition

function as:

Esusy = − lim
β→∞

d

dβ
logZS1×S3 . (3.30)

This link between the Casimir energy and the partition function is not particularly

relevant for now, but it is good to keep it in mind and also it will be useful for the

discussion we will carry out in chapter 5.

In order to show our claim that the supersymmetric Casimir energy is unam-

biguous, we start from the superalgebra (2.11). By exploiting the linearity of the

Lie derivative and plugging in the expressions (3.23) and (3.11) for Aµ and Kµ, we

can rewrite the superalgebra in a more explicit form:{︁
δζ , δζ̃

}︁
= ς ς̃

[︃
r

β
L∂τ + i

(︁
L∂φ1

+ L∂φ2

)︁
+R

]︃
, (3.31)

7The (−1)F is included since we are using periodic boundary condition of the dynamical

fermionic fields under the transformation τ → τ + 2π.
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3. The Casimir energy of a simple N = 1 SCFT on round S1 × S3

where R is the R-charge. In this expression we identify the third component of

the left angular momentum (3.8) and the Hamiltonian Hsusy = iL∂t = −L∂τ in the

differential representation:{︁
δζ , δζ̃

}︁
= −ς ς̃

[︃
r

β
Hsusy − 2JL3 −R

]︃
. (3.32)

The strategy we adopt is to perform a dimensional reduction on S3, whose outcome

is a supersymmetric quantum mechanics with infinite degrees of freedom. The one-

dimensional superalgebra is the same as (3.32), but from a purely 1d perspective

the information on the angular momentum is lost, hence JL3 and R are combined

together to form the generator of a global symmetry Σ:{︁
δζ , δζ̃

}︁
= −ς ς̃ r

β
(Hsusy − Σ) , Σ ≡ β

r

(︁
2JL3 +R

)︁
. (3.33)

Moreover, both Hsusy and Σ commute with the supercharges, as we will see when

actually performing the dimensional reduction. Now, in order to show that Esusy
is unambiguous we have to make the assumption that the vacuum of the theory is

supersymmetric, namely Q |0⟩ = Q̃ |0⟩ = 0. If this is the case, then by computing

the vev of both sides of the superalgebra (3.33) we discover that ⟨Hsusy⟩ = ⟨Σ⟩.
Hence, if the vacuum does not break supersymmetry, each consideration we do for

⟨Σ⟩ will automatically be valid also for ⟨Hsusy⟩. Note that up to this point, we have

still the freedom of shifting the two vevs of the same amount and the superalgebra

(3.33) would still be satisfied. What we have to do is to show that ⟨Σ⟩ is physically
well-defined.

The crucial point is that when reducing to 1d, the generating functional that

computes ⟨Σ⟩ is necessarily a one dimensional Chern-Simons term built starting

from the background gauge field AΣ
τ associated to Σ:

W [AΣ
τ ] = ⟨Σ⟩

∫︂
dτ AΣ

τ . (3.34)

This is the only functional that returns ⟨Σ⟩ when taking a functional derivative

with respect to AΣ
τ . The fact that (3.34) is a Chern-Simons term has two major

consequences.

� If we were considering a purely 1d model, we could have added again a coun-

terterm in the form of a Chern-Simons term to shift ⟨Σ⟩, and ⟨Hsusy⟩ conse-
quently. Remarkably, since we are considering a 1d theory that arises from the

dimensional reduction of a 4d theory, the allowed counterterms should come

from 4d counterterms; but there are no 4d counterterms of mass-dimension

four that look like a CS term upon integrating over the 3-sphere. It follows

that ⟨Σ⟩ is a physical quantity and the supersymemtric Casimir energy is

well-defined!
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� When the symmetry group associated to the vector field that appears in the

CS term is not simply connected, as it is in our case where the group is U(1),

the coupling constant of the CS term has to be quantised in order to ensure

gauge invariance. It follows that the supersymmetric Casimir energy cannot

depend on continuous coupling constants. In particular, this means that in

order to compute Esusy we can consider the theory at any point of the RG

flow, and if we assume the existence of a weakly coupled point, then we can

use a simple free field theory.

Summarizing, we showed that the supersymmetric Casimir energy is actually a

physical unambiguous quantity and that it can be computed by just considering

a free field theory. Now we can get into the actual computations and find the

expression for Esusy for a particular theory in the given background geometry. From

now on we will omit the subscript susy and denote the supersymmetric Hamiltonian

with a simple H and the Casimir energy with E.

3.3 Setting up the theory

3.3.1 Lagrangian and supersymmetry transformations

Though our results of the previous section concerning the Casimir energy are rather

general and can be extended to other backgrounds, the geometry we consider here is

the one detailed in section 3.1 which relies on the hypothesis of N = 1 theories with

a U(1)R-symmetry. Hence the theories we are allowed to couple to this background

are only the chiral multiplet and the vector multiplet (and their combinations). In

the present work we will consider only the chiral multiplet, which is the simplest

supersymmetric field theory.

We already introduced the chiral multiplet and its lagrangian in curved spacetime

in section 2.2.3. We recall that the chiral multiplet is composed by a complex scalar

ϕ whose R-charge is qr, a left Weyl spinor ψα whose R-charge is qr − 1, a complex

auxiliary scalar F with R-charge qr − 2 and their tilde versions. The lagrangian on

our curved background is:

LS1×S3 = Dµϕ̃ D
µϕ+ iV µ

(︂
Dµϕ̃ ϕ− ϕ̃ Dµϕ

)︂
− F̃F + iψ̃ σ̃µDµψ+

1

2
Vµ ψ̃ σ̃

µψ , (3.35)

where obviously gµν is given by (3.5) and Aµ and Vµ are given by (3.23). Note that

compared to (2.31) this lagrangian has a missing term, but this is only because for

our particular background it happens that R + 6V µVµ = 0, thus the term propor-
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3. The Casimir energy of a simple N = 1 SCFT on round S1 × S3

tional to this quantity drops. We recall also the supersymmetry transformations:⎧⎪⎪⎨⎪⎪⎩
δsϕ =

√
2 ζψ

δsψ =
√
2Fζ + i

√
2σµζ̃ Dµϕ

δsF = i
√
2Dµ

(︁
ζ̃ σ̃µψ

)︁ ,

⎧⎪⎪⎨⎪⎪⎩
δsϕ̃ =

√
2 ζ̃ψ̃

δsψ̃ =
√
2 F̃ ζ̃ + i

√
2 σ̃µζ Dµϕ̃

δsF̃ = i
√
2Dµ

(︁
ζ σµψ̃

)︁ ,

(3.36)

where ζ and ζ̃ are constrained to be of the form (3.24). For the following, it is useful

to rewrite the lagrangian (3.35) in a more explicit form and splitting the scalar part

Ls and the fermionic part Lf :

Ls = ∂µϕ̃ ∂
µϕ+ i (V µ − qrA

µ)
(︂
∂µϕ̃ ϕ− ϕ̃ ∂µϕ

)︂
+ qr

(︁
qrA

µAµ − 2V µAµ
)︁
ϕ̃ ϕ− F̃F ,

(3.37)

Lf = iψ̃ σ̃µ∂µψ − i

2
ψ̃ σ̃µ ωµab σ

abψ +
1

2
(Vµ + 2(qr − 1)Aµ) ψ̃ σ̃

µψ . (3.38)

3.3.2 (Non-)Conserved charges

For the further computations, we will need the expressions for the conserved charges

associated to the symmetries of our theory. The simplest one is the R-symmetry,

whose conserved current is obtained by simply varying the action with respect to

the background field Aµ
8:

JµR = − 1√
g

δS

δAµ
= iqr

(︂
Dµϕ̃ ϕ− ϕ̃ Dµϕ

)︂
+ 2qrV

µ ϕ̃ϕ− (qr − 1) ψ̃ σ̃µψ . (3.39)

Such a current is covariantly conserved i.e. ∇µJ
µ
R = 0 and integrating over S3 we

get the associated conserved charge, namely the R-charge:

R =

∫︂
S3

d3x
√
g3 J

τ
R =

∫︂
S3

d3x
√
g3

[︂
iqr

(︂
Dτ ϕ̃ ϕ− ϕ̃ Dτϕ

)︂
+ 2qrV

τ ϕ̃ϕ+

− (qr − 1) ψ̃ σ̃τψ
]︂
,

(3.40)

where we used the bar under the letter to distinguish this operator from the one

appearing in (3.32); both are the R-charge, but R is the abstract operator while R is

one of its particular representations (the one acting through the (anti-)commutator),

so they must not be confused one with the other. We will do the same for all the

other operators.

We can obtain other two currents by directly varying the action, namely the

Ferrara-Zumino current and the stress-energy tensor:

JµFZ =
2

3
√
g

δS

δVµ
=

2i

3

(︂
Dµϕ̃ ϕ− ϕ̃ Dµϕ

)︂
+ 2qr V

µϕ̃ϕ+
1

3
ψ̃ σ̃µψ , (3.41)

8A discussion about the correct way to define the currents in euclidean signature is carried out

in appendix A.4, where it is explained why we have to use the minus sign.
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Tµν =
“ 2√

g

δS

δgµν
”
= −gµν

[︂
Dρϕ̃ D

ρϕ− iV ρ
(︂
Dρϕ̃ ϕ− ϕ̃ Dρϕ

)︂]︂
+ 3qrVµVν ϕ̃ϕ+

+
qr
2
Rµν ϕ̃ϕ+

[︂
Dµϕ̃ Dνϕ+ iVµ

(︂
Dνϕ̃ ϕ− ϕ̃ Dνϕ

)︂
+ (µ↔ ν)

]︂
+

+
qr
2

[︂
gµν ∇ρ∇ρ(ϕ̃ϕ)−∇µ∇ν(ϕ̃ϕ)

]︂
+

− 1

4

[︂
iDµψ̃ σ̃νψ − iψ̃ σ̃µDνψ − Vµ ψ̃ σ̃νψ + (µ↔ ν)

]︂
.

(3.42)

The quotation marks surrounding the definition of the stress-energy tensor are due

to the fact that the spinorial part is computed by varying the action with respect to

the vielbeins rather than the metric; in appendix B we described the full derivation

of Tµν including all technical details. Neither JµFZ nor Tµν are covariantly conserved

due to the presence of non-dynamical fields. Hence, the Hamiltonian is not defined

through Tττ since it would not be a conserved charge. In presence of background non-

dynamical fields, the correct approach is to consider a suitable linear combination

of (3.39), (3.41), and (3.42) and to project it onto the direction of a Killing vector

(see e.g. [10]). In particular, consider a Killing vector ξ that is also a symmetry of

the background auxiliary fields i.e.:

Lξgµν = LξAµ = LξVµ = 0 . (3.43)

Then, we can define the following quantity:

Y µ
ξ ≡ ξν

(︃
T µν + JµRAν −

3

2
JµFZ Vν

)︃
. (3.44)

One may check that the quantity Y µ
ξ is indeed conserved i.e. ∇µY

µ
ξ = 0, and that

it is the canonical Noether current associated to the spacetime symmetry generated

by ξ. Thus, if we take ξ = −∂t = −i∂τ and we integrate the τ component of Y µ
ξ

over S3 we get the Hamiltonian9:

H = −i
∫︂
S3

d3x
√
g3 Y

τ
∂τ = i

∫︂
S3

d3x
√
g3

(︃
T ττ + JτRAτ −

3

2
JτFZ Vτ

)︃

= i

∫︂
S3

d3x
√
g3

{︃
Dµϕ̃ Dµϕ+ iV µ

(︂
Dµϕ̃ ϕ− ϕ̃ Dµϕ

)︂
−Dτ ϕ̃ ∂τϕ− ∂τ ϕ̃ D

τϕ+

− iV τ
(︂
∂τ ϕ̃ ϕ− ϕ̃ ∂τϕ

)︂
− qr

2

[︂
gµν ∇µ∂ν(ϕ̃ϕ)−∇τ∂τ (ϕ̃ϕ)

]︂
+ (qr − 1)Aτ ψ̃ σ̃

τψ+

+
i

4

(︂
Dτ ψ̃ σ̃τψ +Dτ ψ̃ σ̃

τψ − ψ̃ σ̃τDτψ − ψ̃ σ̃τD
τψ
)︂
+

1

4
ψ̃ (σ̃τ Vτ − σ̃τ V

τ )ψ

}︃
.

(3.45)

9Recall that if X is a Killing vector, the differential operator that implements this symmetry

on the space of fields is −iX; since the Hamiltonian acts as i∂t on the fields, the corresponding

Killing vector is −∂t.
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Instead, if we take ξ = −1
2
(∂φ1 + ∂φ2) or ξ = −1

2
(∂φ1 − ∂φ2), we get respectively

the left and the right angular momenta:

JL3 =

∫︂
S3

d3x
√
g3 Y

τ
− 1

2
(∂φ1+∂φ2 )

= −1

2

∫︂
S3

d3x
√
g3
(︁
T τφ1

+ T τφ2

)︁
= −1

2

2∑︂
i=1

∫︂
S3

d3x
√
g3

[︃
Dτ ϕ̃ ∂φi

ϕ+ ∂φi
ϕ̃ Dτϕ+ iV τ

(︂
∂φi

ϕ̃ ϕ− ϕ̃ ∂φi
ϕ
)︂
+

− qr
2
∇τ∂φi

(ϕ̃ϕ)− i

4

(︂
Dτ ψ̃ σ̃φi

ψ +∇φi
ψ̃ σ̃τψ − ψ̃ σ̃τ∇φi

ψ − ψ̃ σ̃φi
Dτψ

)︂
+

+
1

4
V τ ψ̃ σ̃φi

ψ

]︃
,

(3.46)

JR3 =

∫︂
S3

d3x
√
g3 Y

τ
− 1

2
(∂φ1−∂φ2 )

= −1

2

∫︂
S3

d3x
√
g3
(︁
T τφ1

− T τφ2

)︁
=

1

2

2∑︂
i=1

∫︂
S3

d3x
√
g3 (−1)i

[︃
Dτ ϕ̃ ∂φi

ϕ+ ∂φi
ϕ̃ Dτϕ+ iV τ

(︂
∂φi

ϕ̃ ϕ− ϕ̃ ∂φi
ϕ
)︂
+

− qr
2
∇τ∂φi

(ϕ̃ϕ)− i

4

(︂
Dτ ψ̃ σ̃φi

ψ +∇φi
ψ̃ σ̃τψ − ψ̃ σ̃τ∇φi

ψ − ψ̃ σ̃φi
Dτψ

)︂
+

+
1

4
V τ ψ̃ σ̃φi

ψ

]︃
,

(3.47)

where we used the fact that all the components of Aµ and Vµ but the τ component

vanish. Similarly to what we did above, here the bars under the names denote the

fact that the operators (3.45), (3.46), and (3.47) are in the representation acting

through the (anti-)commutators, while H, JL3 and JR3 are the same operators in the

differential representation. Although we will not need the expression for the right

angular momentum, it will be relevant for the discussion in chapter 4.

3.4 Dimensional reduction

3.4.1 Expansion in spherical/spinorial harmonics and 1d dofs

As already mentioned before, our strategy to compute the Casimir energy arising

from the theory (3.35) is to perform a dimensional reduction over the 3-sphere. In

order to do so, we expand all the fields in a suitable basis for the space of functions

on S3 with coefficients depending only on the coordinate on S1; such a basis is

given by the scalar harmonics {Y mn
l } and the spinorial harmonics {Sλlmn}, whose
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properties we summarised in appendix C:

ϕ(τ, θ, φ1, φ2) =
+∞∑︂
l=0

l
2∑︂

m,n=− l
2

ϕlmn(τ)Y
mn
l (θ, φ1, φ2) , (3.48)

ϕ̃(τ, θ, φ1, φ2) =
+∞∑︂
l=0

l
2∑︂

m,n=− l
2

ϕ̃lmn(τ)Y
mn
l (θ, φ1, φ2)

∗ , (3.49)

ψα(τ, θ, φ1, φ2) =
∑︂
l,m,n

∑︂
λ=+,−

ψλlmn(τ)S
λ
lmn(θ, φ1, φ2)α , (3.50)

ψ̃α̇(τ, θ, φ1, φ2) =
∑︂
l,m,n

∑︂
λ=+,−

ψ̃
λ

lmn(τ)S
λ
lmn(θ, φ1, φ2)

†
α̇ , (3.51)

F (τ, θ, φ1, φ2) =
+∞∑︂
l=0

l
2∑︂

m,n=− l
2

flmn(τ)Y
mn
l (θ, φ1, φ2) , (3.52)

F̃ (τ, θ, φ1, φ2) =
+∞∑︂
l=0

l
2∑︂

m,n=− l
2

f̃ lmn(τ)Y
mn
l (θ, φ1, φ2)

∗ . (3.53)

In the two spinorial decompositions (3.50) and (3.51) the sum over n ranges always

from − l
2
to l

2
, while l ≥ 1 and − l

2
≤ m ≤ l

2
− 1 when λ = + and l ≥ 0 and

− l
2
− 1 ≤ m ≤ l

2
when λ = −. From now on we will not write the sum extrema

anymore, they will be understood. The set
(︁
ϕlmn, ψ

+
lmn, ψ

−
lmn, flmn

)︁⨁︁(︁
tilde

)︁
con-

stitutes the degrees of freedom of the 1d theory, ϕlmn and flmn and their tilde versions

being complex scalars while ψ+
lmn and ψ−

lmn and their tilde versions being complex

Grassmann numbers. However we will see that in order to better understand the

physics of the 1d theory it is convenient to rotate the basis for 1d fermions in the

following way:(︄
ψlmn

λlmn

)︄
≡ V

(︄
ψ+
lmn

ψ−
lmn

)︄
, with V ≡

(︄
cos ν+lm − sin ν+lm

sin ν+lm cos ν+lm

)︄
, (3.54)

where the sines and the cosines are given in terms of the quantum numbers l, m,

and n (the full expressions are reported in appendix C). The same redefinition can

be used for the tilde fields, leading to ψ̃lmn and λ̃lmn. Note that thanks to the fact

that sin ν−lm = cos ν+lm and cos ν−lm = − sin ν+lm, the following equalities hold:∑︂
λ=+,−

ψλlmn S
λ
lmn =

(︃
ψlmn Y

mn
l

λlmn Y
m+1,n
l

)︃
, (3.55)

∑︂
λ=+,−

ψ̃
λ

lmn S
λ
lmn =

(︃
ψ̃lmn (Y

mn
l )∗

λ̃lmn (Y
m+1,n
l )∗

)︃
. (3.56)
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Before going on with the actual dimensional reduction, let us figure out what is

the charge σ under the operator Σ (3.33) of the 1d dofs. The R-charge is obviously

inherited from the four dimensional fields, hence it is respectively qr for ϕlmn, qr− 1

for ψlmn and λlmn, and qr − 2 for flmn (the tilde fields simply take a minus sign).

In order to compute the charge under the left angular momentum, we simply act

with the operator JL3 on the 4d fields and exploit the properties of the scalar and

spinorial harmonics:

JL3 ϕ =
∑︂
l,m,n

i

2
(∂φ1 + ∂φ2) (ϕlmnY

mn
l ) =

∑︂
l,m,n

mϕlmnY
mn
l , (3.57)

JL3 ψ =
∑︂
l,m,n,λ

i

2

(︁
L∂φ1

+ L∂φ2

)︁ (︁
ψλlmn S

λ
lmn

)︁
=
∑︂
l,m,n

(︃
m+

1

2

)︃(︃
ψlmn Y

mn
l

λlmn Y
m+1,n
l

)︃
,

(3.58)

JL3 F =
∑︂
l,m,n

i

2
(∂φ1 + ∂φ2) (flmnY

mn
l ) =

∑︂
l,m,n

mϕlmnY
mn
l . (3.59)

From these expressions it is quite clear that the eigenvalues of the left angular

momentum are m for ϕlmn and flmn and m+ 1
2
for ψlmn and λlmn. Analogously one

can work out the eigenvalues for the tilde fields, exploiting the fact that (Y mn
l )∗ =

(−1)m+nY −m,−n
l . It turns out that they are −m for ϕ̃lmn and f̃ lmn and −m− 1

2
for

ψ̃lmn and λ̃lmn. It follows that the charge σ of the 1d fields is:

σ(ϕlmn) = σ(ψlmn) = σ(λlmn) = −σ(ϕ̃lmn) = −σ(ψ̃lmn) = −σ(λ̃lmn) =
β

r
(qr + 2m) ,

(3.60)

σ(flmn) = −σ(f̃ lmn) =
β

r
(qr + 2m− 2) . (3.61)

At this point it may seem a little strange that flmn has a charge σ different from

all the other fields, especially given that the operator Σ commutes with the super-

charges; however this is actually correct since the supersymmetry transformations

involve fl,m+1,n, as we will see in a while, which has precisely the same charge σ as

the other one dimensional fields.

Finally, let us compute also the charge σ of the Killing spinors. By construction,

ζ and ζ̃ have R-charge respectively 1 and −1. For what concerns the left angular

momentum, it is computed again through the spinorial Lie derivative:

JL3 ζ =
i

2

(︁
L∂φ1

+ L∂φ2

)︁
ζ = −1

2
ζ . (3.62)

Then, it follows that the charge σ is vanishing for ζ. Analogously one can show that

JL3 ζ̃ =
1
2
ζ̃ and hence also ζ̃ has vanishing charge σ.
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3.4.2 Dimensional reduction: lagrangian

There is not much to tell about the core step of the dimensional reduction since it is

mainly a matter of cumbersome computations. The bottom line consists in exploit-

ing the orthogonality of the spherical harmonics (C.10) and (C.20) to perform the

integral over S3 appearing in the action. We will simply sketch how the integration

works.

Let us begin from the scalar part of the lagrangian (3.37). Rearranging the

different terms in the lagrangian, we have:

Ss =

∫︂
S1

dτ β

∫︂
S3

d3x
√
g3

{︃
1

β2
∂τ ϕ̃ ∂τϕ+ gij ∂iϕ̃ ∂jϕ+ i

(︁
V τ − qrA

τ
)︁(︂
∂τ ϕ̃ ϕ− ϕ̃ ∂τϕ

)︂
+

+ i
(︁
V i − qrA

i
)︁(︂
∂iϕ̃ ϕ− ϕ̃ ∂iϕ

)︂
+ qr

(︁
qrA

µAµ − 2V µAµ
)︁
ϕ̃ ϕ− F̃F

}︃
.

The first integral is nothing but the one dimensional measure, hence all what remains

is identified with the 1d lagrangian. Doing a couple of integration by parts (keep

in mind that the metric depends only on θ) and exploiting the fact that the τ

component is the only non-vanishing of Aµ and Vµ, we arrive to10:

L(1d)
s =

∫︂
S3

d3x
√
g3

{︃
1

β2
∂τ ϕ̃ ∂τϕ− ϕ̃∇2ϕ+ 2i (V τ − qrA

τ ) ∂τ ϕ̃ ϕ+

+ qr
(︁
qrA

τAτ − 2V τAτ
)︁
ϕ̃ ϕ− F̃F

}︃
.

(3.63)

Now it is quite straightforward to apply the properties of scalar harmonics (see

appendix C.1) and perform the integral. The result can be recast in the following

form:

L(1d)
s =

∑︂
l,m,n

[︃
1

β2
Dτ ϕ̃lmnDτϕlmn +

µ

β2

(︂
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn

)︂
+

+
p2

β2
ϕ̃lmn ϕlmn − f̃ lmn flmn

]︃
,

(3.64)

where the 1d covariant derivative is given by Dτ = ∂τ + σ and the two parameters

µ and p are:

µ = −β
r
(2m+ 1) , (3.65)

p =
β

r

√︁
(l − 2m) (l + 2 + 2m) . (3.66)

The covariant derivative Dτ can be interpreted as providing a minimal coupling

between the fields it acts on and with a 1d background gauge field associated to the

operator Σ.

10Recall that in curved space the Laplacian is defined as ∇2 = 1√
g3

∂i
(︁√

g3 g
ij∂j

)︁
.
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3. The Casimir energy of a simple N = 1 SCFT on round S1 × S3

Now, let us consider the fermionic sector (3.38), where the situation is even

simpler. One can figure out that the matrices involved are:

σ̃τ = − i

β

(︃
1 0

0 1

)︃
, ωµab σ̃

µ σab = −3i

r

(︃
1 0

0 1

)︃
. (3.67)

From the first and property (C.21) it follows that:(︁
i σ̃µ∂µ

)︁
ψ =

1

β
∂τψ

λ
lmn S

λ
lmn + αλ ψ

λ
lmn S

λ
lmn , (3.68)

where α+ = 1
r
(l + 2) and α− = − l

r
. So using the orthonormality it is easy to

integrate over S3, since all the matrices that appear are proportional to the identity.

The result is:

Sf =

∫︂
S1

dτ β
∑︂
l,m,n,λ

[︃
1

β
ψ̃
λ

lmnDτψ
λ
lmn +

(︃
αλ +

µ

β
− 1

r

)︃
ψ̃
λ

lmnψ
λ
lmn

]︃

=

∫︂
S1

dτ β
∑︂
l,m,n

[︃
1

β

(︂
ψ̃

+

lmn ψ̃
−
lmn

)︂
I2Dτ

(︃
ψ+
lmn

ψ−
lmn

)︃
+
(︂
ψ̃

+

lmn ψ̃
−
lmn

)︂
M

(︃
ψ+
lmn

ψ−
lmn

)︃]︃
,

(3.69)

where we introduced the mass matrix M :

M =
1

r

(︄
l − 2m 0

0 −l − 2m− 2

)︄
. (3.70)

Changing basis to (3.54) is straightforward for the kinetic term, since V is an or-

thogonal matrix i.e. V V T = V TV = I2. Instead the mass term in the new basis is

given by:

VMV T =
1

β

(︃
2µ −p
−p 0

)︃
, (3.71)

where µ and p are the same introduced above (3.65), (3.66). Thus, after the change

of basis, the fermionic lagrangian becomes:

L(1d)
f =

∑︂
l,m,n

1

β

[︂
ψ̃lmnDτψlmn + λ̃lmnDτλlmn + 2µ ψ̃lmnψlmn+

− p (ψ̃lmnλlmn + λ̃lmnψlmn)
]︂
.

(3.72)

3.4.3 Dimensional reduction: supersymmetry transformations

The next step we have to do is to find how the four dimensional supersymmetry

transformations (3.36) translate in 1d. The modus operandi is pretty much the same:

we expand every field in scalar/spinorial harmonics and exploit their properties.
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3.4. Dimensional reduction

However, the spinorial part is a little bit more tricky than that of the lagrangian,

since some of the matrices that appear here are not diagonal. Thus, we will need

to unpack the single scalar harmonics inside a spinorial harmonic. We also need to

use the explicit expressions of the Killing spinors (3.24), which we recall here:

ζα = ς

√︃
r

2

(︃
0

1

)︃
=⇒ ζα = ϵαβ ζα = ς

√︃
r

2

(︃
1

0

)︃
, (3.73)

ζ̃
α̇
= ς̃

√︃
r

2

(︃
1

0

)︃
=⇒ ζ̃ α̇ = ϵα̇β̇ ζ̃

α̇
= ς̃

√︃
r

2

(︃
0

1

)︃
. (3.74)

Substituting (3.73) and (3.74) into (3.36) and expanding in scalar/spinor harmonics,

eventually one obtains:

∑︂
l,m,n

δsϕlmn Y
mn
l = ς

√
r
∑︂
l,m,n

ψlmn Y
mn
l , (3.75)

∑︂
l,m,n

(︄
δsψlmn Y

mn
l

δsλlmn Y
m+1,n
l

)︄
=

√
r
∑︂
l,m,n

{︄
ς flmn

(︄
0

Y mn
l

)︄
+ ς̃

1

β

(︄
Dτϕlmn Y

mn
l

p ϕlmn Y
m+1,n
l

)︄}︄
,

(3.76)∑︂
l,m,n

δsflmn Y
mn
l = ς̃

√
r
∑︂
l,m,n,λ

{︃
sin νλlm

(︃
1

β
Dτ +

µ

β
+ αλ −

1

r

)︃
ψλlmn Y

m+1,n
l

}︃
,

(3.77)

∑︂
l,m,n

δsϕ̃lmn (Y
mn
l )∗ = −ς̃√r

∑︂
l,m,n

ψ̃lmn (Y
mn
l )∗, (3.78)

∑︂
l,m,n

(︄
δsλ̃lmn (Y

m+1,n
l )∗

−δsψ̃lmn (Y mn
l )∗

)︄
=

√
r
∑︂
l,m,n

{︄
ς̃ f̃ lmn

(︄
(Y mn

l )∗

0

)︄
+ ς

1

β

(︄
p ϕ̃lmn (Y

m+1,n
l )∗

Dτ ϕ̃lmn (Y
mn
l )∗

)︄}︄
,

(3.79)∑︂
l,m,n

δsf̃ lmn (Y
mn
l )∗ = ς

√
r
∑︂
l,m,n,λ

{︃
sin νλlm

(︃
1

β
Dτ −

µ

β
− αλ +

1

r

)︃
ψ̃
λ

lmn (Y
m+1,n
l )∗

}︃
.

(3.80)

At this point it is rather easy to read the 1d supersymmetry transformations, except

maybe for (3.77) and (3.80), where introducing the rotated basis is not immediate.
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By plugging in the expressions for sin νλlm, µ, and αλ, we get:

sin ν+lm

(︃
µ

β
+ α+ − 1

r

)︃
= −1

r

√︄
l + 2m+ 2

2 (l + 1)
(l − 2m) =

= − p

β

√︄
l − 2m

2 (l + 1)
= − p

β
cos ν+lm ,

(3.81)

sin ν−lm

(︃
µ

β
+ α− − 1

r

)︃
= −1

r

√︄
l − 2m

2 (l + 1)
(l + 2m+ 2) =

= − p

β

√︄
l + 2m+ 2

2 (l + 1)
= − p

β
cos ν−lm .

(3.82)

Substituting these into (3.77) and (3.80) it is easy to identify also the 1d super-

symmetry transformations of flmn and f̃ lmn. Removing all the sums by matching

correctly the single addends we get:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δsϕlmn =
√
r ς ψlmn

δsψlmn =
√
r
β
ς̃ Dτϕlmn

δsfl,m+1,n =
√
r
β
ς̃ Dτλlmn −

√
r
β
p ς̃ψlmn

δsλlmn =
√
r ς fl,m+1,n +

√
r
β
p ς̃ϕlmn

, (3.83)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δsϕ̃lmn = −√
r ς̃ ψ̃lmn

δsψ̃lmn = −
√
r
β
ς Dτ ϕ̃lmn

δsf̃ l,m+1,n =
√
r
β
ς Dτ λ̃lmn +

√
r
β
p ςψ̃lmn

δsλ̃lmn =
√
r ς̃ f̃ l,m+1,n +

√
r
β
p ςϕ̃lmn

. (3.84)

Now that we found these transformations we can start to understand what is the

physics of the 1d theory. But discussing this, let us complete the dimensional re-

duction by finding also the expressions for the conserved charges. We will return to

the physics of the 1d theory in section 3.4.5.

3.4.4 Dimensional reduction: charges

Again, the dimensional reduction of the conserved charges is rather technical and

the procedure is basically the same used in the previous two sections. One takes

the expressions (3.40), (3.45), (3.46), and (3.47), expands in the suitable spherical

harmonics and finally integrates over S3 exploiting the orthonormality. Here we just
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3.4. Dimensional reduction

quote the results of the integrals:

R =
∑︂
l,m,n

[︃
iqr
β2

(︃
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn − 2µ ϕ̃lmnϕlmn

)︃
+

+
i

β
(qr − 1)

(︂
ψ̃lmnψlmn + λ̃lmnλlmn

)︂]︃
,

(3.85)

H =
∑︂
l,m,n

[︃
− i

β2
∂τ ϕ̃lmn ∂τϕlmn +

i

β2

(︁
p2 − σ2 − 2µσ

)︁
ϕ̃lmn ϕlmn+

− i

2β

(︂
ψ̃lmn ∂τψlmn − ∂τ ψ̃lmn ψlmn + λ̃lmn ∂τλlmn − ∂τ λ̃lmn λlmn

)︂
+

− rσ1
4β2

(︂
ψ̃lmnDτψlmn −Dτ ψ̃lmn ψlmn − λ̃lmnDτλlmn +Dτ λ̃lmn λlmn+

+ 4µ ψ̃lmn ψlmn

)︂]︃
,

(3.86)

JL3 =
∑︂
l,m,n

[︃
im

β2

(︂
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn − 2µ ϕ̃lmnϕlmn

)︂
+

+
ir

8β2

(︂
ψ̃lmnDτψlmn −Dτ ψ̃lmn ψlmn − λ̃lmnDτλlmn +Dτ λ̃lmn λlmn+

− 4µ λ̃lmn λlmn

)︂]︃
,

(3.87)

JR3 =
∑︂
l,m,n

[︃
in

β2

(︂
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn − 2µ ϕ̃lmnϕlmn

)︂
+ (JR3 )f

]︃
. (3.88)

Note that we did not report the fermionic part of the right angular momentum

(JR3 )f . This is due to the fact that we had some issues computing this integral since

there appear terms with an angular dependence aside from the spinor harmonics.

We will argue more on this topic in chapter 4, since for now we do not need this

expression.

The expressions (3.86) and (3.87) can be conveniently rewritten by using the

fermionic equations of motion i.e.:

∂τψlmn = − (σ + 2µ)ψlmn + p λlmn , (3.89)

∂τ ψ̃lmn = (σ + 2µ) ψ̃lmn − p λ̃lmn , (3.90)

∂τλlmn = −σλlmn + pψlmn , (3.91)

∂τ λ̃lmn = σλ̃lmn − p ψ̃lmn . (3.92)
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The resulting expressions are:

H =
∑︂
l,m,n

[︃
− i

β2
∂τ ϕ̃lmn ∂τϕlmn +

i

β2

(︁
p2 − σ2 − 2µσ

)︁
ϕ̃lmn ϕlmn+

iσ

β

(︂
ψ̃lmn ψlmn + λ̃lmn λlmn

)︂
+

2iµ

β
ψ̃lmn ψlmn −

ip

β

(︂
ψ̃lmn λlmn + λ̃lmn ψlmn

)︂]︃
,

(3.93)

JL3 =
∑︂
l,m,n

[︃
im

β2

(︂
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn − 2µ ϕ̃lmnϕlmn

)︂
+

+
i

β

(︃
m+

1

2

)︃(︂
ψ̃lmnψlmn + λ̃lmnλlmn

)︂]︃
.

(3.94)

Remarkably, in this form JL3 resembles very much (3.85). Indeed, combining them

to get Σ is now extremely easy:

Σ =
∑︂
l,m,n

[︃
iσ

β2

(︂
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn − 2µ ϕ̃lmnϕlmn

)︂
+

+
iσ

β

(︂
ψ̃lmnψlmn + λ̃lmnλlmn

)︂]︃
.

(3.95)

3.4.5 Summary of the 1d theory

To conclude this section, we summarise what we have obtained through the di-

mensional reduction. Recall the definitions of the 1d covariant derivative and the

parameters µ and p:

Dτ = ∂τ + σ , (3.96)

µ = −β
r
(2m+ 1) , (3.97)

p =
β

r

√︁
(l − 2m) (l + 2 + 2m) , (3.98)

where σ is the charge of the field under the operator Σ and it reads β
r
(qr + 2m) for

non-tilde fields and its opposite for tilde fields. The 1d lagrangian is given by the

infinite sum L(1d) =
∑︁

l,m,n Llmn, where:

Llmn =
1

β2
Dτ ϕ̃lmnDτϕlmn +

µ

β2

(︂
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn

)︂
+
p2

β2
ϕ̃lmn ϕlmn+

+
1

β
ψ̃lmnDτψlmn +

2µ

β
ψ̃lmnψlmn+

+
1

β
λ̃lmnDτλlmn −

p

β
(ψ̃lmnλlmn + λ̃lmnψlmn)− f̃ lmn flmn ,

(3.99)
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and the supersymmetry transformations parametrised by ς and ς̃ are:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δsϕlmn =
√
r ς ψlmn

δsψlmn =
√
r
β
ς̃ Dτϕlmn

δsfl,m+1,n =
√
r
β
ς̃ Dτλlmn −

√
r
β
p ς̃ψlmn

δsλlmn =
√
r ς fl,m+1,n +

√
r
β
p ς̃ϕlmn

, (3.100)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δsϕ̃lmn = −√
r ς̃ ψ̃lmn

δsψ̃lmn = −
√
r
β
ς Dτ ϕ̃lmn

δsf̃ l,m+1,n =
√
r
β
ς Dτ λ̃lmn +

√
r
β
p ςψ̃lmn

δsλ̃lmn =
√
r ς̃ f̃ l,m+1,n +

√
r
β
p ςϕ̃lmn

. (3.101)

We can now interpret the 1d theory obtained upon dimensional reduction. The free

4d chiral multiplet becomes a 1d theory with infinite degrees of freedom which can

be divided into two kinds of supermultiplets:

� Chiral multiplets : (ϕlmn, ψlmn) and (ϕ̃lmn, ψ̃lmn); these multiplets contain a

complex scalar and a 1d spinor, both of them being dynamical.

� Fermi multiplets : (fl,m+1,n, λlmn) and (f̃ l,m+1,n, λ̃lmn); these multiplets contain

a complex auxiliary scalar and a 1d dynamical spinor.

From (3.100) and (3.101) we learn that when p = 0 the two types of supermultiplets

are completely decoupled, while when p ̸= 0 they tie together to form a so called long

multiplet. As we anticipated, f and f̃ have a shifted index with respect to the other

fields, so that the charge σ is the same for every field in a given supermultiplet.

This shows that the supercharges commute with the operator Σ as we claimed

previously. In passing, notice that the superalgebra one finds from (3.100) and

(3.101) is consistent with the general expression (3.33)11.

For the discussion that follows, it is crucial to be careful with the ranges of the

various quantum numbers, apart from the index n that ranges always from − l
2
to

l
2
. Let us consider separately the two supermultiplets.

� Chiral multiplets : we take the scalar fields as reference, for which l ≥ 0 and

− l
2
≤ m ≤ l

2
. The question is whether the fermionic fields ψlmn and ψ̃lmn

are well-defined in these ranges. For l = 0, we do not have the component

proportional to cos ν+lm, but there is still the one proportional to cos ν−lm, so

11Keep in mind that Dτ ς = Dτ ς̃ = 0 since the Killing spinors do not depend on τ and we showed

above that their charge σ is zero.
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they are indeed well-defined for l ≥ 0. For what concerns m the potential

problem is that fermions are defined also for the value m = − l
2
− 1 through

their component with λ = −, which is outside the range of definition of the

scalars. Luckily, cos ν−
l,− l

2
−1

= 0, so we can safely remove thism from the range

of definition. Hence chiral multiplets are defined for l ≥ 0 and − l
2
≤ m ≤ l

2
.

� Fermi multiplets : again, we take the scalar fields as reference, for which l ≥ 0

and − l
2
− 1 ≤ m ≤ l

2
− 1. The reasoning for what concerns l is the same

as before, so l ≥ 0 is good. For what concerns m, it is again similar. The

fermion definition includes m = l
2
thanks to the λ = − component, which is

outside the range for the scalar fields; neverhteless sin ν−
l, l

2

= 0, hence we can

remove it. We can conclude that Fermi multiplets are defined for l ≥ 0 and

− l
2
− 1 ≤ m ≤ l

2
− 1.

Notice that when the two types of multiplets are decoupled i.e. when p = 0, (3.99)

includes only one of them: for m = l
2
the lagrangian Llmn includes only the chiral

multiplet, while for m = − l
2
− 1 only the Fermi multiplet.

A further comment about the supersymmetry generators in 1d. If in 4d the

operators that generates the susy transformations are iζQ and iζ̃Q̃, when perform-

ing the dimensional reduction they behaves exactly as (3.75) and (3.78), becoming

respectively i
√
r ςQ(1d) and −i√r ς̃Q̃(1d).

To conclude this summary, we report again the expressions for the Hamiltonian

and the operator Σ. As the lagrangian, they can be written as infinite sums: H =∑︁
l,m,nHlmn and Σ =

∑︁
l,m,nΣlmn, where the single addends are:

Hlmn = − i

β2
∂τ ϕ̃lmn ∂τϕlmn +

i

β2

(︁
p2 − σ2 − 2µσ

)︁
ϕ̃lmn ϕlmn+

+
iσ

β

(︂
ψ̃lmn ψlmn + λ̃lmn λlmn

)︂
+

2iµ

β
ψ̃lmn ψlmn −

ip

β

(︂
ψ̃lmn λlmn + λ̃lmn ψlmn

)︂
,

(3.102)

Σlmn =
iσ

β2

(︂
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn − 2µ ϕ̃lmnϕlmn

)︂
+

+
iσ

β

(︂
ψ̃lmnψlmn + λ̃lmnλlmn

)︂
.

(3.103)

From now on we will suppress the indices l, m, and n of the 1d fields for ease of

notation.

3.5 Spectrum of the Hamiltonian

3.5.1 Going to lorentzian signature

Once we obtained a one dimensional theory, we have to quantise it, and then finding

the vev of the Hamiltonian will be quite straightforward. However, all this process is
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3.5. Spectrum of the Hamiltonian

more easily carried out in lorentzian signature, so it is worth spending a few words on

how the Wick rotation is performed. For a summary of our conventions in lorentzian

signature and how they relate to those in euclidean signature see appendix A.3.

The Wick rotation amounts to decompactify the τ coordinate and make the

identification t = −iτ , so that the signature of the metric becomes (−, +, +, +). As

a consequence, every derivative with respect to τ picks a factor −i too i.e. ∂τ = −i∂t.
We do not have to transform other parameters appearing in the metric since gµν
remains real also in lorentzian signature (unlike what will happen in chapter 4).

However, notice that while in euclidean signature the parameter β is a well-defined

quantity which specifies the length of the thermal circle, in lorentzian signature it is

meaningless and it can be absorbed by rescaling t. In order not to confuse the reader,

we will keep the β as a fixed parameter also in lorentzian signature, forbidding any t

rescaling. The next step is to specify some reality conditions relating the fields, the

supercharges, and the supersymmetry parameters in order to reduce the number of

degrees of freedom, which in euclidean is doubled due to the fact that tilde objects

are independent from the non-tilde ones. We will make the simplest choice, that

is12:

ϕ† = ϕ̃ , ψ† = ψ̃ , f † = f̃ , λ† = λ̃ , ς† = ς̃ , Q† = Q̃ .

(3.104)

Recall that the dynamical spinors ψ and λ are grassmann scalars while the su-

persymmetry parameter ζ is a commuting scalar. With these identifications, the

lorentzian lagrangian L(L)
lmn, which in our conventions coincides with minus the eu-

clidean lagrangian (3.99), is given by:

L(L)
lmn =

1

β2
Dtϕ

†Dtϕ+
iµ

β2

(︁
Dtϕ

†ϕ− ϕ†Dtϕ
)︁
+
i

β
ψ†Dtψ − 2µ

β
ψ†ψ+

+
i

β
λ†Dtλ+ f †f − p2

β2
ϕ†ϕ+

p

β
(ψ†λ+ λ†ψ),

(3.105)

where the lorentzian covariant derivative is Dt = ∂t + iσ. The supersymmetry

transformations become:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δsϕ =
√
r ςψ

δsψ = − i
√
r
β
ς†Dtϕ

δsf = − i
√
r
β
ς†Dtλ−

√
r
β
p ς†ψ

δsλ =
√
r ς f +

√
r
β
p ς†ϕ

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δsϕ
† = −√

r ς†ψ†

δsψ
† = i

√
r
β
ς Dtϕ

†

δsf
† = − i

√
r
β
ς Dtλ

† +
√
r
β
p ς ψ†

δsλ
† =

√
r ς†f † +

√
r
β
p ς ϕ†

. (3.106)

At first it may seem that (3.106) are not consistent between each other due to the

minus sign in some of the transformation laws of the hermitian conjugate fields.

12In 1d there is no distinction between left and right spinors, hence we can safely use the dagger

as hermitian conjugation.
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3. The Casimir energy of a simple N = 1 SCFT on round S1 × S3

Yet it is not the case and we can realise it by looking more into the details of how

the supersymmetry transformations are generated through the supercharges. Let us

call Q and Q† the supercharges in the representation acting on field space with the

(anti-)commutator. Then we have:

� Scalars: δsϕ = [i
√
r ςQ, ϕ] , δsϕ

† = [−i√r ς†Q†, ϕ†]

=⇒ (δsϕ)
† = [ϕ†,−i√r ς†Q†] = [i

√
r ς†Q†, ϕ†] = −δsϕ† .

� Fermions: δsψ = {i√r ςQ, ψ} , δsψ
† = {−i√r ς†Q†, ψ†}

=⇒ (δsψ)
† = {ψ†,−i√r ς†Q†} = {−i√r ς†Q†, ψ†} = δsψ

† .

So everything is consistent.

Lastly, we report here the hamiltonian H
(L)
lmn and the charge Σ

(L)
lmn. These two

are related to the corresponding operators in euclidean signature by a factor i,

since the conserved charges in lorentzian signature are obtained by integrating the

t component of a conserved current rather than the τ component:

H
(L)
lmn = −iHlmn =

1

β2
∂tϕ

† ∂tϕ+
1

β2

(︁
p2 − σ2 − 2µσ

)︁
ϕ†ϕ+

2µ

β
ψ†ψ+

+
σ

β

(︁
ψ†ψ + λ†λ

)︁
− p

β

(︁
ψ†λ+ λ†ψ

)︁ ]︃
,

(3.107)

Σ
(L)
lmn = −iΣlmn =

σ

β2

(︁
−iDtϕ

†ϕ+ iϕ†Dtϕ− 2µϕ†ϕ
)︁
+
σ

β

(︁
ψ†ψ + λ†λ

)︁
. (3.108)

From now on we will remove all the superscripts (L) and the lorentzian signature

will be understood.

3.5.2 Quantising the 1D theory

In order to work out the energy spectrum of the quantum theory we have to quantise

it. We will perform this in Lorentzian signature, yet adapting the procedure to

Euclidean signature is straightforward. For our purpose, the canonical quantisation

is very suitable. Firstly, starting from the lagrangian (3.105), we introduce the

canonical conjugate fields:

Πϕ =
∂L(L)

∂∂tϕ
=

1

β2

(︁
Dtϕ

† − iµ ϕ†)︁ , Π†
ϕ =

∂L(L)

∂∂tϕ† =
1

β2

(︂
Dtϕ+ iµ ϕ

)︂
, (3.109)

Πψ =
∂L(L)

∂∂tψ
=

i

β
ψ† , Πλ =

∂L(L)

∂∂tλ
=

i

β
λ† . (3.110)

The non-dynamical fields flmn do not have a canonical conjugate field and they

have been simply set to zero thanks to their equations of motion. We recall that
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3.5. Spectrum of the Hamiltonian

each of these canonical conjugate fields should carry the indices l, m, and n, but

we have suppressed them for the ease of notation. Now we impose the canonical

(anti-)commutation relations:[︁
ϕ, Πϕ

]︁
=
[︁
ϕ†, Π†

ϕ

]︁
= i ,

{︁
ψ, Πψ

}︁
=
{︁
λ, Πλ

}︁
= i . (3.111)

Every other commutator/anti-commutator (depending of what kind of fields are

involved) is vanishing.

In terms of (3.109) canonical conjugate fields, the operators Hlmn and Σlmn are

given by:

Hlmn = β2Π†
ϕΠϕ − i (µ+ σ)

(︂
Πϕ ϕ− ϕ†Π†

ϕ

)︂
+

1

β2

(︁
µ2 + p2

)︁
ϕ†ϕ+

+ iσ (ψΠψ + λΠλ) + 2iµ ψΠψ − ip (λΠψ + ψΠλ) + α1 ,

(3.112)

Σlmn = −iσ
(︂
Πϕ ϕ− ϕ†Π†

ϕ − ψΠψ − λΠλ

)︂
+ α2 , (3.113)

where we introduced two constants α1 and α2 that arise from the intrinsic ordering

ambiguity of the operators in the quantum theory. The presence of these arbitrary

constants may constitute a potential issue for our purpose, as it shifts the one-point

functions of the respective operators, however there are some constraints that can

fix them, as we will show in the next section. In passing, we point out that the

Hamiltonian (3.112) is precisely equal to the canonical Hamiltonian that one can

compute by considering the Legendre transform of the 1d lagrangian (3.105):

Hlmn = Πϕ ∂tϕ+Π†
ϕ ∂tϕ

† +Πψ ∂tψ +Πλ ∂tλ− Llmn . (3.114)

This provides a reassuring consistency check.

For the following, we will need the expression for the supercharge Q. It can

be guessed rather easily by imposing that its action through the canonical (anti-)

commutation relations generates the correct supersymmetry transformations of the

fields (3.106). It turns out that Q reads:

Q =
∑︂
l,m,n

Qlmn =
∑︂
l,m,n

[︃
ψ

(︃
Πϕ +

iµ

β2
ϕ†
)︃
− ip

β2
ϕ†λ

]︃
, (3.115)

and it has no ordering ambiguity since all the fields appearing commute with each

other. We recall that the supersymmetry transformations (3.106) are obtained as:

δsX =
[︁
i
√
r ςQ, X

}︁
+
[︁
− i

√
r ς†Q†, X

}︁
, (3.116)

where X is a placeholder for a generic field and the usage of the commutator or the

anti-commutator depends on whether it is a scalar or a spinor.
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3.5.3 Fixing the ordering ambiguity

As anticipated, the two ordering constants appearing in (3.112) and (3.113) can be

fixed by exploiting two consistency constraints. The first one comes from the super-

algebra: given that the supercharge (3.115) has no ordering ambiguity, requiring the

theory to satisfy the correct superalgebra (3.33) will put a constraint on α1 and α2.

Figuring out what is this constraint, requires us to translate the superalgebra (3.33)

in terms of the anticommutator {Q, Q†}. In order to do this, we have to understand

how the actions of H and H and those of Σ and Σ are related one to each other

(recall that H and Σ are operators in the differential representation while H and Σ

are the same operators in the form of conserved Noether charges). One may check

that upon using (3.111) it holds:[︁
H, X

}︁
= −i∂tX = −H(X) ,

[︁
Σ, X

}︁
= −σX = −Σ(X) . (3.117)

So, the superalgebra (3.33) can be written as:{︁
δς , δς†

}︁
X = −ςς† r

β
(H − Σ)X = ςς†

r

β

[︁
H − Σ, X

}︁
. (3.118)

On the other hand, assuming that X is a scalar, the same superalgebra can be

obtained by the following computation:{︁
δς , δς†

}︁
=
{︂
i
√
r ςQ,

[︁
− i

√
r ς†Q†, X

]︁}︂
+
{︂
− i

√
r ς†Q†,

[︁
i
√
r ςQ, X

]︁}︂
= r ςς†

(︂{︂
Q,
[︁
Q†, X

]︁}︂
−
{︂
Q†,

[︁
X, Q

]︁}︂)︂
= −r ςς†

[︂
X,
{︁
Q, Q†}︁]︂ ,

(3.119)

where in the last passage we exploited the Jacobi identity for graded Lie algebras of

grade 1. By comparing (3.118) with (3.119) we discover that:{︁
Q, Q†}︁ =

1

β
(H − Σ) . (3.120)

One can follow the same steps assuming X to be a spinor instead and the result

would be the same.

Now, if we compute directly the anticommutator of the supercharges (3.115) and

its hermitian conjugate, we find:{︁
Qlmn, Q

†
lmn

}︁
=

1

β

[︃
β2Π†

ϕΠϕ − iµ
(︂
Πϕ ϕ− ϕ†Π†

ϕ

)︂
+

1

β2

(︁
µ2 + p2

)︁
ϕ†ϕ+

− 2iµΠψψ − ip (λΠψ + ψΠλ)

]︃
=

1

β
(Hlmn − Σlmn − α1 + α2 − 2iµ {Πψ, ψ})

=
1

β
(Hlmn − Σlmn − α1 + α2 + 2µ) . (3.121)
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3.5. Spectrum of the Hamiltonian

Hence, to be consisted with (3.120), necessarily we have to require that α1 = α2+2µ.

One constant has thus been fixed.

In order to fix the second constant, we exploit a property of the renormalisation

flow of Chern-Simons terms. Recall the low energy effective action (3.34) through

which we compute the vev of Σ:

W [AΣ
τ ] = ⟨Σ⟩

∫︂
dτ AΣ

τ . (3.122)

Calling k the coefficient of a Chern-Simons term, it is a known fact [21] that when we

integrate out a massive fermion of mass m, k gets shifted by an amount proportional

to sgn(m), the constant of proportionality being linear in the charges at play.Thus,

starting from a UV theory and integrating out all massive fermions, we get a relation

between the value of k at high energy and at low energy:(︁
kUV − kIR

)︁
∝
∑︂
i

sgn(mi) , (3.123)

where we assumed that all fermions have the same charge, which is the case relevant

for us. In our case kUV = 0 since we do not have any Chern-Simons term in the full

theory (3.105). Moreover, from the diagonal mass matrix (3.70), we read that in

each sector of the theory Llmn that contains both the chiral and the Fermi multiplets,

the two fermions appearing in our theory have masses of opposite sign; hence from

(3.123) we can conclude that also kIR should be zero. The conclusion is that ⟨Σlmn⟩
must vanish for long multiplets. This constraint imposes a further condition on the

ordering constants, hence determining them completely. However to work out the

explicit constraint we have to firstly find out what the ground state of the theory

is. That is what we will do in the following section.

3.5.4 VEVs of the different multiplets

As anticipated, our aim is now to find out the ground state of each one of the

Hamiltonians (3.112).

Let us begin by considering long multiplets i.e. those with p ̸= 0. Starting with

the scalar sector, we can introduce creation and annihilations operators a, a† and

b, b† and express ϕ and its conjugate field in terms of them as:

ϕ =
(µ2 + p2)−

1
4√

2

(︁
a+ b†

)︁
, Πϕ =

i (µ2 + p2)
1
4√

2

(︁
a† − b

)︁
. (3.124)

The canonical commutation relations impose:[︁
a, a†

]︁
=
[︁
b, b†

]︁
= 1 , (3.125)[︁

a, b
]︁
=
[︁
a†, b

]︁
=
[︁
a, b†

]︁
=
[︁
a†, b†

]︁
= 0 , (3.126)
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which are precisely the commutation relations we expect for creation and annihi-

lation operators. The bosonic part of (3.112) can be written in terms of a and b

as:

H
(bos)
long =

√︁
µ2 + p2

(︁
a†a+ b†b+ 1

)︁
+ (σ + µ)

(︁
a†a− b†b− 1

)︁
. (3.127)

Let us label with |Ω⟩ the state with no oscillators exited. All others states are

obtained by acting on it with the creation operators and are labelled by the number

of times they act:

|i, j⟩ =
(︁
a†
)︁i(︁
b†
)︁j |Ω⟩ . (3.128)

The energy of the state |i, j⟩ can be read by taking its braket with (3.127):

E(i, j) =
√︁
µ2 + p2−µ−σ+ j

(︁√︁
µ2 + p2−µ−σ

)︁
+ i
(︁√︁

µ2 + p2+µ+σ
)︁
. (3.129)

Immediately we see that in order for the energy to be bounded from below we have

to make the assumption: √︁
µ2 + p2 > |µ+ σ| . (3.130)

Otherwise, we could keep exciting the a-type oscillators and achieve an arbitrary

small energy. Such a behaviour would not be possible to fix even when adding up

the fermionic contribution since fermionic excitations are limited in number because

of the anti-commuting algebra. Hence, in these conditions, the ground state is |Ω⟩
itself, which corresponds to i = j = 0 and it has energy:

⟨H(bos)
long ⟩ =

√︁
µ2 + p2 − µ− σ . (3.131)

Moving on to the fermionic sector, its Hamiltonian is given by:

H
(fer)
long =

p

β

(︁
λψ†+ψλ†

)︁
− 1

β
(σ+2µ)ψψ†−σ

β
λλ† =

1

β

(︁
ψ λ

)︁(︃−σ − 2µ p

p −σ

)︃(︃
ψ†

λ†

)︃
.

(3.132)

From (3.111) it follows that
{︁
ψ, ψ†}︁ =

{︁
λ, λ†

}︁
= β. In order to have the usual

normalisation for the algebra of creation and annihilation operators, we rescale both

fermions as ψ → 1√
β
ψ and λ → 1√

β
λ. Since the matrix appearing in (3.132) is real

and symmetric, we can diagonalise it while preserving the anti-commutation algebra

by rotating the degrees of freedom. The matrix eigenvalues are:

x± = −µ− σ ±
√︁
µ2 + p2 . (3.133)

Denoting with P the rotation matrix, the new degrees of freedom are:(︃
u+
u−

)︃
= P

(︃
ψ

λ

)︃
. (3.134)

In terms of these new variables, the fermionic Hamiltonian reads simply:

H
(fer)
long = x+ u+u

†
+ + x− u−u

†
− , (3.135)
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with
{︁
u+, u

†
+

}︁
=
{︁
u−, u

†
−
}︁

= 1. Denoting again with |Ω⟩ the state with no

fermionic oscillators excited, the possible fermionic states are just four:

State |Ω⟩ u+ |Ω⟩ u− |Ω⟩ u+u− |Ω⟩
Energy 0 x+ x− x+ + x−

Given the assumption (3.130), the state with the least energy is u− |Ω⟩, hence:

⟨H(fer)
long ⟩ = −

√︁
µ2 + p2 − µ− σ . (3.136)

Summing up everything, we find that the ground state energy for long multiplets is

given by:

⟨Hlong⟩ = ⟨H(bos)
long ⟩+ ⟨H(fer)

long ⟩+ α2 + 2µ = −2σ + α2 . (3.137)

In terms of creation and annihilation operators, the charge Σlmn (3.113) of the long

multiplets is given by:

Σlong = σ
(︂
a†a− b†b− 1− u+u

†
+ − u−u

†
−

)︂
+ α2. (3.138)

Braketting this expression with the ground state we just found, we obtain that its

vev is:

⟨Σlong⟩ = −2σ + α2 . (3.139)

Remarkably, ⟨Hlong⟩ = ⟨Σlong⟩ as prescribed by the superalgebra. This is a good

consistency check that corroborates what we are doing. As we explained in section

3.5.3, we must require ⟨Σlong⟩ = 0, and this fixes α2 = 2σ. The consequence of this

choice is that long multiplets do not contribute to the Casimir energy of the theory,

since the vev of their Hamiltonian is always vanishing. In passing, notice that this

particular choice of the ordering constants coincide with requiring the operators

Hlmn and Σlmn to be Weyl ordered13.

So, we have just learned that only decoupled chiral and Fermi multiplets con-

tribute to the Casimir energy of our theory. We have to compute what are these

contributions. Let us start with the Chiral multiplet. We set p = 0 and we discard

λ so that the Hamiltonian and Σlmn are:

Hchiral = |µ|
(︁
a†a+ b†b+ 1

)︁
+ (σ + µ)

(︁
a†a− b†b

)︁
− (σ + 2µ)ψψ† + µ+

σ

2
,

(3.141)

Σchiral = σ
(︁
a†a− b†b− ψψ†)︁+ σ

2
, (3.142)

13We recall the definition of Weyl ordering. Given a generic field X with fermionic number F

and its canonical conjugate field ΠX , the Weyl ordering of quadratic terms is:

W (X ΠX) ≡ 1

2

(︁
X ΠX + (−1)F ΠX X

)︁
. (3.140)
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where we have already rescaled ψ → 1√
β
ψ. In these expressions we removed a factor

σ
2
which in the long multiplet comes from requiring the Weyl ordering of the terms

containing λ. The condition (3.130) becomes:

|µ| > |µ+ σ| , (3.143)

hence in the vacuum all the bosonic oscillators are not excited. For what concerns the

fermionic sector, there are only two possible states: |Ω⟩ with vanishing energy and

ψ |Ω⟩ with energy −σ−2µ. From (3.143) we know that if µ > 0, then −2µ < σ < 0,

therefore ψ |Ω⟩ is the state with smallest energy; instead if µ < 0, then 0 < σ < −2µ

and |Ω⟩ is the state with the smallest energy. In both cases the vevs of Hchiral and

Σchiral are given by:

⟨Hchiral⟩ = ⟨Σchiral⟩ =
|σ|
2
. (3.144)

We conclude by considering a Fermi multiplet. In this case the only field ap-

pearing is the fermion λ:

HFermi = ΣFermi = −σ
(︃
λλ† − 1

2

)︃
, (3.145)

where again we have already rescaled λ → 1√
β
λ and discarded the contribution to

the ordering constants coming from the Weyl ordering of the chiral multiplet. There

are only two possible states, |Ω⟩ and ψ |Ω⟩; which one is the ground state depends

on the sign of σ, however in both cases the vevs are:

⟨HFermi⟩ = ⟨ΣFermi⟩ = −|σ|
2
. (3.146)

Now that we found the contributions to the vevs of H and Σ coming from all

the different multiplets, all what is left is to sum them up to find the final result.

3.5.5 Infinte sum regularisation and final result

The vev of the Hamiltonian is obviously given by the infinite sum of the vevs of the

Hamiltonians of each supermultiplet:

⟨H⟩ =
∑︂
l,m,n

⟨Hlmn⟩ . (3.147)

As we saw, every term of the sum (3.147) that corresponds to a long multiplet is

vanishing and does not contribute. Hence we must restrict the domain of summation

to indices such that p = 0. Looking back at (3.66), we realise that this condition

holds either when m = l
2
, which corresponds to a chiral multiplet, or when m =
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− l
2
−1, which corresponds to a Fermi multiplet (see the discussion about the ranges

of the quantum numbers in section 3.4.5). Hence (3.147) reduces to:

⟨H⟩ =
∑︂
l,n

⟨Hchiral⟩
⃓⃓⃓
m= l

2

+
∑︂
l,n

⟨HFermi⟩
⃓⃓⃓
m=− l

2
−1

=
+∞∑︂
l=0

n= l
2∑︂

n=− l
2

β

2r
|l + qr| −

+∞∑︂
l=0

n= l
2∑︂

n=− l
2

β

2r
|−l − 2 + qr| .

(3.148)

In order to understand what is the sign of the two terms inside the absolute values

we need to make explicit the conditions imposed by the assumption (3.130):

√︁
µ2 + p2 =

β

r
(l + 1) , µ+ σ =

β

r
(qr − 1) , (3.149)

=⇒ l + 1 > |qr − 1| . (3.150)

This inequality has to be satisfied for every l ∈ N in order for the spectrum of the

Hamiltonian to be bounded from below. Hence, the range of possible values for the

R-charge of the scalar field in the 4d chiral multiplet has to be restricted. The worst

case scenario is achieved when l = 0, hence we must have 0 < qr < 2. In this range,

l + qr > 0 and −l − 2 + qr < 0, so the sum (3.148) becomes:

⟨H⟩ =
+∞∑︂
l=0

n= l
2∑︂

n=− l
2

β

2r
(l + qr)−

+∞∑︂
l=0

n= l
2∑︂

n=− l
2

β

2r
(l + 2− qr) . (3.151)

This sum is clearly divergent, therefore we should find a way to make sense of it. The

usual approach when one has to face a divergent quantity consists in regularising

it and then removing only the divergent terms. Different regularisation techniques

can be used and they could potentially lead to different results. However, a phys-

ical quantity, such as the supersymmetric Casimir energy (that we showed to be

unambiguous in section 3.2.2), cannot depend on some non-physical choice such as

the regularisation method. The key point is that we have to regularise the sum

in a supersymmetric fashion, since different supersymmetric regularisation methods

should yield the same physical result. A viable approach consists in introducing a

small parameter δ and multiplying each term of the sum by the exponential of a

negative supersymmetric quantity multiplied by δ:

⟨H⟩δ =
∑︂
lmn

⟨Hlmn⟩e−δ |⟨Hlmn⟩| . (3.152)

Then one computes the sum and finally takes the limit δ → 0, discarding the

divergent terms in the expansion in powers of δ. In our case this method amounts

49



3. The Casimir energy of a simple N = 1 SCFT on round S1 × S3

to compute:

⟨H⟩δ =
+∞∑︂
l=0

n= l
2∑︂

n=− l
2

β

2r
(l + qr) e

− δβ
2r

(l+qr) −
+∞∑︂
l=0

n= l
2∑︂

n=− l
2

β

2r
(l + 2− qr) e

− δβ
2r

(l+2−qr) .

(3.153)

With the help of a computing software, one can verify that this sum reads:

⟨H⟩δ = − 4r

δ2β
(qr − 1) + E +O(δ) , (3.154)

where E is precisely what survives after discarding the diverging term and taking

the limit δ → 0. Its expression gives the final result for the Casimir energy:

E =
4β

27r
(a+ 3c) , (3.155)

where we introduced the two conformal anomaly coefficients [23]:

a =
3

32

[︁
3(qr − 1)3 − (qr − 1)

]︁
, c =

1

32

[︁
9(qr − 1)3 − 5(qr − 1)

]︁
. (3.156)

We finally got to the end of the computation exposed in [6]. (3.155) is the

expression for the Casimir energy of a chiral multiplet living on the direct product

S1 × S3. In addition to reviewing in detail the arguments presented there, we

developed many steps of the computations which were not explicitly given, at least

those more relevant for understanding the physics. In the next chapter we will

present how to extend this procedure in the case where the metric is not a simple

direct product. For many steps we will refer to what we did here since the general

reasoning is pretty much the same, focusing the exposition on the differences we

encounter.
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CHAPTER 4

A further step: twisting the 3-sphere

4.1 Background geometry

This chapter will contain most of the original results of the present work. The aim

is to follow the same reasoning based upon [6] we exposed in chapter 3 in order to

compute the supersymmetric Casimir energy of a free chiral theory in a more general

background. In particular we will consider a manifold that is still diffeomorphic to

S1 × S3 but now the 3-sphere will be twisted around the circle; such a deformation

has a clear interpretation in terms of both the complex structure of the manifold

itself and of the holographic duality. Here we will derive the results and we demand

to chapter 5 most of the comments and their physical interpretation.

4.1.1 Manifold definition and background fields

First of all, we need to define our deformed manifold and the other background

fields. A suitable system of coordinates for this space is the same as before i.e. the

set (τ, θ, φ1, φ2) where τ ∈ [0, 2π) is the coordinate on the circle and θ ∈ [0, π
2
]

and φ1, φ2 ∈ [0, 2π) are the coordinates on the 3-sphere, with the identifications

τ ∼ τ + 2π, φ1 ∼ φ1 + 2π, and φ2 ∼ φ2 + 2π. Now we introduce also two real

twisting parameters σ1 and σ2. The metric of the twisted S1×S3 can be written as:

ds2 = β2 dτ 2 + r2 dθ2 + r2 sin2 θ (dφ1 + σ1 dτ)
2 + r2 cos2 θ (dφ2 + σ2 dτ)

2 , (4.1)

Compared to (3.5) we note that (4.1) has two new terms that mix the τ coordinate

with the two coordinates of the Hopf fibration φ1 and φ2. We will give an intuitive

explanation of this difference in the following section 4.1.2.
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The determinant and the Ricci scalar of the metric (4.1) are the same as those

of the direct product case:

g = β2r6 cos2 θ sin2 θ , (4.2)

R =
6

r2
. (4.3)

The symmetries of the twisted 3-sphere are the same too, hence we have a left and

a right angular momenta whose Cartan in the differential representation are still

given by (3.8) and are comprehensive of both the orbital angular momentum and

the internal spin.

The relations (3.9) between the real coordinates (τ, θ, φ1, φ2) and the complex

holomorphic coordinates (w, z) get modified as:⎧⎪⎨⎪⎩
w =

(︃
σ2 +

iβ

r

)︃
τ + φ2 − i log cos θ

z = ei(φ1+σ1τ)−i(φ2+σ2τ) tan θ

. (4.4)

The real coordinates boundary conditions now lead to the identification:

(w, z) ∼
(︃
w + 2πσ2 +

2πiβ

r
, z e2πi(σ1−σ2)

)︃
, (4.5)

and also w ∼ w + 2π while z is kept fixed. These identifications will have a clear

interpretation in terms of Hopf surfaces. The functions of z and z̄ appearing in

(2.22) in this case are still:

Ω = r , h = − iz̄

1 + |z|2 , c =
1

1 + |z|2 . (4.6)

The fact that it is possible to recast (4.1) in this form tells us that such a twisted

S1 × S3 background is indeed capable of supporting an N = 1 SQFT with two

supercharges of opposite R-charge. The vector K = ∂w is a Killing vector by

construction and in real coordinates it reads:

K = − ir

2β
∂τ +

(︃
1

2
+
irσ1
2β

)︃
∂φ1 +

(︃
1

2
+
irσ2
2β

)︃
∂φ2 , (4.7)

and lowering the index with the real metric, we get the associated 1-form:

K =
1

2
r2
[︃
−iβ
r
dτ + sin2 θ (dφ1 + σ1 dτ) + cos2 θ (dφ2 + σ2 dτ)

]︃
. (4.8)

In addition to the terms appearing in (3.11) and (3.12), here we have additional

pieces that depend on the newly introduced parameters σ1 and σ2. One may check

that, even after the twisting, Kµ satisfies all the properties that we listed in section
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4.1. Background geometry

2.2.2 i.e. KµKµ = 0 and [K, K̄] = 0. The most general expressions for the two

auxiliary background fields read:

V =
iβκr

2
dτ +

(︂
1− κ

2
r2
)︂ [︁

sin2 θ (dφ1 + σ1 dτ) + cos2 θ (dφ2 + σ2 dτ)
]︁
, (4.9)

A = sin2 θ (dφ1 + σ1 dτ) + cos2 θ (dφ2 + σ2 dτ)−
i

2
d(log s)− 1

2
(σ1 + σ2) dτ+

+
1

2

(︃
1− 3

2
κr2
)︃[︃

− iβ

r
dτ + sin2 θ (dφ1 + σ1 dτ) + cos2 θ (dφ2 + σ2 dτ)

]︃
.

(4.10)

By choosing the function κ to be the constant 2
r2
, we can again make the components

in dφ1 and dφ2 of A and V cancel out (except for those that may be contained in

d(log s)):

V =
iβ

r
dτ , (4.11)

A =

(︃
iβ

r
− 1

2
(σ1 + σ2)

)︃
dτ − i

2
d(log s) . (4.12)

This choice has the advantage of making A and V regular everywhere. We will fix

the other arbitrary function s momentarily.

Let us introduce the local frame we will use for the computations. Again, it is

convenient to use a local frame which is rotated with respect to the general expression

(2.25) we gave previously. Respectively in real and complex coordinates our choice

is:

e1 = −r sin θ cos θ sin(φ1 + φ2)
[︂
(dφ1 + σ1 dτ)− (dφ2 + σ2 dτ)

]︂
+ r cos(φ1 + φ2)dθ

e2 = −r sin θ cos θ cos(φ1 + φ2)
[︂
(dφ1 + σ1 dτ)− (dφ2 + σ2 dτ)

]︂
− r sin(φ1 + φ2)dθ

e3 = r sin2 θ (dφ1 + σ1 dτ) + r cos2 θ (dφ2 + σ2 dτ)

e4 = β dτ

,

(4.13)

Θ1 = Ω c e−2iφ2+i(σ1−σ2)τ dz̄

Θ̄
1̄
= Ω c e2iφ2−i(σ1−σ2)τ dz

Θ2 = Ω(dw + h dz)

Θ̄
2̄
= Ω

(︁
dw̄ + h̄ dz̄

)︁ . (4.14)

In such a frame, the two Killing spinors are given by:

ζα = ς

√︃
s

2

(︃
0

1

)︃
, ζ̃

α̇
= ς̃

r√
2s

(︃
1

0

)︃
, (4.15)
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where ς, ς̃ ∈ C are the complex constants that parametrise the supersymmetry trans-

formations along the two directions selected by the Killing spinors. The function s is

fixed by imposing suitable boundary conditions on ζ and ζ̃. The two spinors should

be anti-periodic when we go once around the circle parametrised by either φ1 or φ2;

however, as we already explained, it is consistent to take their boundary conditions

under τ → τ +2π to be either periodic or anti-periodic, so now we parametrise this

freedom with an integer n0, requiring the Killing spinors to be periodic when n0

is even and anti-periodic when it is odd. Imposing the boundary conditions works

exactly as in the round case: we compute the Lie derivative and then (4.15) trans-

form with its exponential (3.20). Luckily, the Killing spinors are still eigenfunctions

of the Lie derivatives along τ, φ1, φ2, and their eigenvalues are precisely the same

as before. If we want the parameter n0 ∈ Z to define the periodicity of the Killing

spinors when we go once around the circle parametrised by τ , we cannot set s = r

as before, but rather we have to take s = r e−in0τ . With this choice the background

supergravity vector fields and the two Killing spinors become:

A =

(︃
iβ

r
− 1

2
(σ1 + σ2 + n0)

)︃
dτ , V =

iβ

r
dτ , (4.16)

ζα = ς e−
i
2
n0τ

√︃
r

2

(︃
0

1

)︃
, ζ̃

α̇
= ς̃ e

i
2
n0τ

√︃
r

2

(︃
1

0

)︃
, (4.17)

so that the Lie derivatives are:

L∂τ ζ = −in0

2
ζ , L∂φ1

ζ =
i

2
ζ , L∂φ2

ζ =
i

2
ζ ,

L∂τ ζ̃ =
in0

2
ζ̃ , L∂φ1

ζ̃ = − i

2
ζ̃ , L∂φ2

ζ̃ = − i

2
ζ̃ ,

(4.18)

and indeed corresponds to the periodicity conditions highlighted above. As before,

the normalisation of the Killing vector used in (4.7) corresponds to ς = ς̃ = 1.

4.1.2 The effects of the twisting

In the previous section we highlighted the differences in the background metric

between the twisted and the round 3-sphere, yet the intuitive geometric picture

may be a bit hidden behind the mathematical formulae. Therefore it is advisable to

focus for a moment on understanding the core difference between the metrics (3.5)

and (4.1). To do this, let us introduce a new set of coordinates for the twisted case:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τ̃ = τ

θ̃ = θ

φ̃1 = φ1 + σ1 τ

φ̃2 = φ2 + σ2 τ

. (4.19)

54



4.1. Background geometry

In such coordinates the twisted metric (4.1) reads simply:

ds2 = β2 dτ̃ 2 + r2 dθ̃
2
+ r2 sin2 θ̃ dφ̃2

1 + r2 cos2 θ̃ dφ̃2
2 , (4.20)

which has the precise same form of the direct product metric (3.5). What is the

difference between the two then? The difference resides in the range and the identi-

fications of the coordinates φ̃1 and φ̃2 compared to φ1 and φ2. In particular, if we

consider a line at constant φi in both cases (the red lines in the picture below), while

in the round case moving along the coordinate τ does not affect the coordinate φi,

from (4.19) we can read that in the twisted case φ̃i gets shifted too and thus a line

at constant φi winds around the torus defined by the coordinates τ̃ and φ̃i. This

is true simultaneously for i = 1, 2, and the rotation angle depends on the values of

the twisting parameters σ1 and σ2.

Round

τ

φi

0 2π

Twisted

τ̃

φ̃i

0 2π

Aside from the purely geometric interpretation, it would be also interesting to

understand how this background deformation affects the gravity side of holographic

duality. However, this is far beyond the aim of the present work and explaining it

would require a consistent digression. What we can say is that if we consider the

asymptotically AdS5 gravity configuration having our twisted S1 × S3 as conformal

boundary, the twisting parameters σ1 and σ2 are related to the horizon angular

velocities of a supersymmetric black hole (see e.g. [15]).

4.1.3 Supersymmetry algebra

The supersymmetry algebra preserved by the background we defined in section 4.1.1

is a bit more complicated than (3.32) and contains other operators. Unpacking the

Lie derivative in (2.11), we get:

{︁
δζ , δζ̃

}︁
= −ς ς̃ r

β

[︃
H − i(σ1 + σ2)J

L
3 −i(σ1 − σ2)J

R
3 − 2β

r
JL3 +

− β

r

(︃
1 +

ir

2β
(σ1 + σ2 + n0)

)︃
R

]︃
.

(4.21)
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At first sight this may seem a little messy, however, we can rewrite this algebra in

terms of three 1d operators that commute with the supercharges. We introduce:

H̃ = H − i

2
n0R , (4.22)

J = i(σ1 − σ2) J
R
3 , (4.23)

Σ =

(︃
β

r
+
i

2
(σ1 + σ2)

)︃(︁
R + 2JL3

)︁
(4.24)

=⇒
{︁
δζ , δζ̃

}︁
= −ς ς̃ r

β

(︂
H̃ − Σ− J

)︂
. (4.25)

Compared to (3.33), here Σ includes also a piece which depends on the two twisting

parameters and the algebra contains the new operator J where the right angular mo-

mentum appears. Moreover H does not commute any more with the supercharges,

but rather it is the “twisted” hamiltonian H̃ that commutes14. Of course, if we

switch off the twisting parameters by setting σ1 = σ2 = 0, we recover the algebra

discussed in the previous chapter.

Though a little more complicated, the superalgebra (4.25) maintains basically

the same structure we had when the background metric was a direct product, hence

the considerations on the unambiguity of the Casimir energy we did in section 3.2.2

are still valid. In particular, the vacuum expectation values of the operators R, Σ,

and J can all be interpreted as coefficients of suitable Chern-Simons terms, hence

they are physical and do not depend on continuous coupling constants. Therefore,

assuming the vacuum to be supersymmetric, we can conclude that:

⟨H⟩ = i

2
n0 ⟨R⟩+ ⟨Σ⟩+ ⟨J ⟩ , (4.26)

hence also the supersymmetric Casimir energy is physical and unambiguous, and it

can be computed starting from a free theory in flat space.

4.2 Dimensional reduction of the 4d theory

4.2.1 1d degrees of freedom and their charges

As we did in chapter 3, we will consider the free chiral multiplet theory, but now on

the background defined in section 4.1.1. The strategy is pretty much the same: we

expand the 4d fields in scalar and spinor harmonics as in (3.48) and the following,

and we find an infinite set of 1d degrees of freedom labelled by the quantum numbers

l, m, and n.

The first thing we should do is work out the charges of the 1d fields under the

relevant operators, in particular R, JL3 and JR3 . For what concerns the first two,

14One can understand this by noting that the killing spinors (4.17) are not independent of τ as

in the direct product case.
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the only thing thay might change from the direct product case is the left angular

momentum of the spinorial degrees of freedom, given that the vielbeins enter the

definition of the spinorial Lie derivative (A.19) and (A.20). However, this is not the

case, and a direct computation as in (3.58) reveals that the left angular momentum

eigenvalue is still m+ 1
2
for both ψlmn and λlmn. The right angular momentum can

be computed analogously:

JR3 ϕ =
∑︂
l,m,n

i

2
(∂φ1 − ∂φ2) (ϕlmnY

mn
l ) =

∑︂
l,m,n

nϕlmnY
mn
l , (4.27)

JR3 ψ =
∑︂
l,m,n,λ

i

2

(︁
L∂φ1

− L∂φ2

)︁ (︁
ψλlmn S

λ
lmn

)︁
=
∑︂
l,m,n

n

(︃
ψlmn Y

mn
l

λlmn Y
m+1,n
l

)︃
, (4.28)

JR3 F =
∑︂
l,m,n

i

2
(∂φ1 − ∂φ2) (flmnY

mn
l ) =

∑︂
l,m,n

nϕlmnY
mn
l . (4.29)

Hence we conclude that all the 1d fields corresponding to a given value of n have

the same right angular momentum eigenvalue. Summarising, the charges of the 1d

fields are the following:

ϕlmn ψlmn λlmn flmn

R qr qr − 1 qr − 1 qr − 2

JL3 m m+ 1
2

m+ 1
2

m

JR3 n n n n

Denoting with σ and ρ the charges respectively under the operators Σ and J , we

have the following situation:

ϕlmn, ψlmn, λlmn, fl,m+1,n −→

⎧⎪⎨⎪⎩
σ =

(︃
β

r
+
i

2
(σ1 + σ2)

)︃
(qr + 2m)

ρ = in (σ1 − σ2)

, (4.30)

ϕ̃lmn, ψ̃lmn, λ̃lmn, f̃ l,m+1,n −→

⎧⎪⎨⎪⎩
σ = −

(︃
β

r
+
i

2
(σ1 + σ2)

)︃
(qr + 2m)

ρ = −in (σ1 − σ2)

. (4.31)

We note that, as the operator Σ now has a new piece that comes from the twist-

ing of the 3-sphere, its charge σ mimics exactly the same structure. Moreover,

assuming that a given 1d supermultiplet is constituted by the set
{︁
ϕlmn, ψlmn, λlmn,

fl,m+1,n

}︁
, like in the direct product background (which is indeed the case as we will

see later on), we can conclude that all the fields inside a supermultiplet have the
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4. A further step: twisting the 3-sphere

same charges σ and ρ, which means that indeed the operators Σ and J commute

with the supercharges as we claimed in section 4.1.3.

In the same way explained above we can compute the values of the charges σ

and ρ for the two Killing spinors (4.17) and it turns out that they vanish for both

ζ and ζ̃.

4.2.2 Lagrangian and supersymmetry transformations

The 4d lagrangian and supersymmetry transformations of the free chiral multiplet

theory have precisely the same form as (3.35) and (3.36), the difference being that

the background fields gµν , Aµ, and Vµ are now given by the expressions that include

the twisting parameters and n0, respectively (4.1) and (4.16). The dimensional

reduction is carried out more or less as exposed in section 3.4. The differences in

the computations are rather technical and are given mostly by the following two

factors.

� When one unpacks the lagrangian (3.35) there appear new terms arising from

the fact that the metric (4.1) contains mixed terms. For instance, in the

scalar sector there are all the terms like gτi ∂τ ϕ̃ ∂iϕ and those with i and

τ exchanged; also terms containing Ai and V i were vanishing on the direct

product background while now they are not.

� Some properties of the spherical harmonics get slightly modified due to the

presence of the twisting terms; in particular the action of the Laplacian is now

(C.15) rather than (C.11) and that of the operator iσ̃µ∂µ is (C.23) rather than

(C.21) because of the different vielbeins.

Eventually, after expanding all 4d fields in scalar/spinorial harmonics, applying their

properties (see appendix C), and performing the integration over the coordinates on

the twisted S3, we get a one dimensional lagrangian that looks precisely like (3.99),

with a 1d covariant derivative that is now generalised to:

Dτ = ∂τ +
in0

2
q + σ + ρ . (4.32)

This covariant derivative is interpreted as providing a minimal coupling between the

fields it acts on with some background gauge fields associated to the operators R,

Σ, and J .

The same situation repeats for the supersymmetry transformations. The dif-

ferences from the direct product background are those highlighted above and the

results one obtains are similar to (3.83) and (3.84) apart from the fact that there
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are some exponentials containing n0 arising from the expressions (4.17) for ζ and ζ̃:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δsϕlmn =
√
r e−

i
2
n0τ ς ψlmn

δsψlmn =
√
r
β
e

i
2
n0τ ς̃ Dτϕlmn

δsfl,m+1,n =
√
r
β
e

i
2
n0τ ς̃ Dτλlmn −

√
r
β
p e

i
2
n0τ ς̃ψlmn

δsλlmn =
√
r e−

i
2
n0τ ς fl,m+1,n +

√
r
β
p e

i
2
n0τ ς̃ϕlmn

, (4.33)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δsϕ̃lmn = −√
r e

i
2
n0τ ς̃ ψ̃lmn

δsψ̃lmn = −
√
r
β
e−

i
2
n0τ ς Dτ ϕ̃lmn

δsf̃ l,m+1,n =
√
r
β
e−

i
2
n0τ ς Dτ λ̃lmn +

√
r
β
p e−

i
2
n0τ ςψ̃lmn

δsλ̃lmn =
√
r e

i
2
n0τ ς̃ f̃ l,m+1,n +

√
r
β
p e−

i
2
n0τ ςϕ̃lmn

. (4.34)

The exponentials can be reabsorbed in the 1d supersymmetry parameters by rescal-

ing them as:

ς → e−
i
2
n0τ ς , ς̃ → e

i
2
n0τ ς̃ . (4.35)

Not only it is possible to perform this rescaling, but it is even convenient since the

rescaled ς and ς̃ have vanishing covariant derivative; in fact, given that the charges

σ and ρ of the Killing spinors are vanishing, we have:

Dτ

(︁
e−

i
2
n0τ ς

)︁
= ∂τe

− i
2
n0τ ς +

in0

2
e−

i
2
n0τ ς = 0 , (4.36)

and analogously for ς̃. Summarising, in terms of the rescaled supersymmetry pa-

rameters (4.35), the 1d supersymmetry transformations in the twisted background

are exactly the same as (3.100) and (3.101) with the covariant derivative given by

(4.32), and the supersymmetry parameters satisfy Dτ ς = Dτ ς̃ = 0.

4.2.3 Issues with the conserved current Y µ
ξ

The next step is to reduce the four dimensional operators R, H, JL3 , and JR3 to

1d ones. Note that their 4d expressions are still the same that we reported for the

direct product case, namely (3.40), (3.45), (3.46), and (3.47). For what concerns the

R-charge and the left angular momentum, everything works in the same way and

we are able to find two expressions that are precisely equal to the direct product

case but with the new covariant derivative (4.32). We will recall their expressions

later on in section 4.2.4.

Yet, the presence of the twisting terms inside our new vielbeins (4.13) introduces

some issues with the dimensional reduction of the fermionic part of the Hamiltonian

and the right angular momentum. In particular, the sigma matrices with a lower
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spacetime index turn out to present a dependence on the coordinates on S3 that

cannot be reabsorbed into the harmonics. For example, one may verify that σ̃τ has

the expression:

σ̃τ = eaτ σ̃
a =

(︄
−iβ − r

(︁
σ1 sin

2 θ + σ2 cos
2 θ
)︁

−ir(σ1 − σ2) sin θ cos θ ei(φ1+φ2)

ir(σ1 − σ2) sin θ cos θ e−i(φ1+φ2) −iβ + r
(︁
σ1 sin

2 θ + σ2 cos
2 θ
)︁ )︄ .
(4.37)

A similar expression holds for σ̃φ1 − σ̃φ2 , which is the combination that enters JR3 ,

while instead σ̃φ1 + σ̃φ2 , which appears in JL3 does not have the same problem

since all the terms depending on θ, φ1, and φ2 cancel out. Unfortunately, inside

(3.45) and (3.47) there are no other factors that summed up with these can remove

the angular coordinates dependence, hence we cannot exploit the orthogonality of

spherical harmonics to compute the integrals. One should try to compute them

directly but this is a non-trivial challenge and, even if it is possible to do it by

means of 3-j symbols (see e.g. [11]), the results are quite complicated and definitely

different from what we expected to find (i.e. something quite similar to the direct

product case). We suspect that these shortcomings are due to the fact that we are

trying to compute quantities that are not left-invariant using a local a frame that

is left-invariant, and that the expression (3.44) for the conserved current associated

to the symmetry generated by ξ has to be adjusted in its fermionic part in order

to take this into account. Though, at the moment we do not have a proof for this

claim.

What to do then? A reasonable strategy is to guess what the expressions for H

and JR3 could be based on other considerations and clues. Starting from H, we can

try to use the canonical four dimensional Hamiltonian instead of (3.45):

H(L) =
∂L(L)

S1×S3

∂∂tϕ
∂tϕ+

∂L(L)

S1×S3

∂∂tϕ̃
∂tϕ̃+

∂L(L)

S1×S3

∂∂tψ
∂tψ − L(L)

S1×S3 , (4.38)

where L(L)

S1×S3 = −LS1×S3 , the RHS being (3.35). Expliciting the various terms, one

obtains:

H(L) =

∫︂
S3

d3x
√
g3

{︂
Dµϕ̃ Dµϕ+iV

µ
(︂
Dµϕ̃ ϕ− ϕ̃ Dµϕ

)︂
−Dτ ϕ̃ ∂τϕ+

− ∂τ ϕ̃ D
τϕ− iV τ

(︂
∂τ ϕ̃ ϕ− ϕ̃ ∂τϕ

)︂
− iψ̃ σ̃τ∂τψ

}︂
.

(4.39)

Upon expanding in harmonics, integrating over S3, and using the equations of mo-

tion determined by the twisted 1d lagrangian we get:
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H(L) =
∑︂
l,m,n

{︃
− 1

β2
∂τ ϕ̃lmn ∂τϕlmn +

1

β2

[︃
p2 −

(︃
in0

2
qr + σ + ρ

)︃2

+

− 2µ

(︃
in0

2
qr + σ + ρ

)︃]︃
ϕ̃lmn ϕlmn +

2µ

β
ψ̃lmn ψlmn+

+
1

β

(︃
in0

2
(qr − 1) + σ + ρ

)︃(︂
ψ̃lmn ψlmn + λ̃lmn λlmn

)︂
+

− p

β

(︂
ψ̃lmn λlmn + λ̃lmn ψlmn

)︂}︃
,

(4.40)

The fact that (4.40) has a structure similar to (3.93) is promising. Moreover, one can

show that this expression coincides with the one obtained from integrating (3.45)

when σ1 = σ2, therefore we can at least be sure that (4.40) is the correct Hamiltonian

whenever the two twisting parameters are equal. Shifting our attention to the right

angular momentum, the situation here is more tricky since there are no other simple

ways one can follow to work out its expression. A reasonable guess is to take

the expression (3.94) for the left angular momentum, of course with the covariant

derivative suitable for the twisted background, and substitute the eigenvalues of JL3
with those of JR3 :

JR3 =
∑︂
l,m,n

[︃
in

β2

(︂
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn − 2µ ϕ̃lmnϕlmn

)︂
+

+
in

β

(︂
ψ̃lmnψlmn + λ̃lmnλlmn

)︂]︃
.

(4.41)

By construction this operator will return the expected value when acting through the

(anti-)commutator on a given field, hence it is reasonable to assume that (4.41) is the

correct expression. Notice that when σ1 = σ2 the operator J
R
3 disappears completely

from the supersymmetry algebra (4.25), therefore we know that at least in the case

σ1 = σ2 our computations will be valid independently of the issue discussed in this

subsection.

4.2.4 Summary of the 1d theory

We now summarise everything we have learned about the one dimensional theory

that we obtain when performing the dimensional reduction over the 3-sphere of the

4d free chiral multiplet in the twisted S1 × S3 background. Recall the definitions of
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the 1d covariant derivative and the parameters µ and p:

Dτ = ∂τ +
in0

2
q + σ + ρ , (4.42)

µ = −β
r
(2m+ 1) , (4.43)

p =
β

r

√︁
(l − 2m) (l + 2 + 2m) , (4.44)

where q is the R-charge, σ and ρ are the charges of the field under respectively the

operators Σ and J and they read:

ϕlmn, ψlmn, λlmn, fl,m+1,n −→

⎧⎪⎨⎪⎩
σ =

(︃
β

r
+
i

2
(σ1 + σ2)

)︃
(qr + 2m)

ρ = in (σ1 − σ2)

,

ϕ̃lmn, ψ̃lmn, λ̃lmn, f̃ l,m+1,n −→

⎧⎪⎨⎪⎩
σ = −

(︃
β

r
+
i

2
(σ1 + σ2)

)︃
(qr + 2m)

ρ = −in (σ1 − σ2)

.

(4.45)

It is good to keep in mind the above expression since we will make use of them

many times in what follows. The 1d lagrangian is given by the infinite sum L(1d) =∑︁
l,m,n Llmn, where Llmn is the same as before apart from the covariant derivative:

Llmn =
1

β2
Dτ ϕ̃lmnDτϕlmn +

µ

β2

(︂
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn

)︂
+
p2

β2
ϕ̃lmn ϕlmn+

+
1

β
ψ̃lmnDτψlmn +

2µ

β
ψ̃lmnψlmn+

+
1

β
λ̃lmnDτλlmn −

p

β
(ψ̃lmnλlmn + λ̃lmnψlmn)− f̃ lmn flmn ,

(4.46)

The supersymmetry transformations parametrised by ς and ς̃ are also the same as

before: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δsϕlmn =
√
r ς ψlmn

δsψlmn =
√
r
β
ς̃ Dτϕlmn

δsfl,m+1,n =
√
r
β
ς̃ Dτλlmn −

√
r
β
p ς̃ψlmn

δsλlmn =
√
r ς fl,m+1,n +

√
r
β
p ς̃ϕlmn

, (4.47)
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δsϕ̃lmn = −√
r ς̃ ψ̃lmn

δsψ̃lmn = −
√
r
β
ς Dτ ϕ̃lmn

δsf̃ l,m+1,n =
√
r
β
ς Dτ λ̃lmn +

√
r
β
p ςψ̃lmn

δsλ̃lmn =
√
r ς̃ f̃ l,m+1,n +

√
r
β
p ςϕ̃lmn

. (4.48)

As in the direct product case, the 4d theory reduces to a 1d theory of an infinite set

of fields grouped in chiral supermultiplets (ϕlmn, ψlmn) and Fermi supermultiplets

(λlmn, fl,m+1,n). These supermultiplets are tied together to form a long multiplet

when p ̸= 0 while they are decoupled when p = 0.

The supersymmetry transformations are implemented by the two 1d operators

i
√
r ςQ(1d) and −i√r ς̃Q̃(1d) and the two supersymmetry parameters have vanishing

covariant derivative i.e. Dτ ς = Dτ ς̃ = 0.

The operators we will need afterwards are the R-charge, the Hamiltonian, and

the charges Σ and J . Each of them is an infinite sum of operators acting only on

the fields with a specific set of indices (l, m, n), like for example R =
∑︁

l,m,nRlmn

and other analogous expressions. These operators are:

Rlmn =

[︃
iqr
β2

(︃
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn − 2µ ϕ̃lmnϕlmn

)︃
+

+
i

β
(qr − 1)

(︂
ψ̃lmnψlmn + λ̃lmnλlmn

)︂]︃
,

(4.49)

H
(L)
lmn = − 1

β2
∂τ ϕ̃lmn ∂τϕlmn +

1

β2

[︃
p2 −

(︃
in0

2
qr + σ + ρ

)︃2

+

− 2µ

(︃
in0

2
qr + σ + ρ

)︃]︃
ϕ̃lmn ϕlmn +

2µ

β
ψ̃lmn ψlmn+

+
1

β

(︃
in0

2
(qr − 1) + σ + ρ

)︃(︂
ψ̃lmn ψlmn + λ̃lmn λlmn

)︂
+

− p

β

(︂
ψ̃lmn λlmn + λ̃lmn ψlmn

)︂
,

(4.50)

Σlmn =
iσ

β2

(︂
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn − 2µ ϕ̃lmnϕlmn

)︂
+

+
iσ

β

(︂
ψ̃lmnψlmn + λ̃lmnλlmn

)︂
.
(4.51)

Jlmn =
iρ

β2

(︂
Dτ ϕ̃lmn ϕlmn − ϕ̃lmnDτϕlmn − 2µ ϕ̃lmnϕlmn

)︂
+

+
iρ

β

(︂
ψ̃lmnψlmn + λ̃lmnλlmn

)︂
.
(4.52)
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From now on we suppress the indices l, m, and n attached to the one dimensional

fields.

4.3 Computing the Casimir energy

4.3.1 Lorentzian 1d theory

In order to carry out the computation of the Casimir energy more easily, we perform

a Wick rotation and go to lorentzian signature. We trade τ for t = −iτ , so that

the metric signature becomes (−, +, +, +). As before, we keep the parameter β

also in lorentzian signature, though it has no physical meaning; it will be easier

to return to euclidean signature when discussing the physical interpretation of the

final results. In order to keep gµν real, now we have also to analytically extend the

twisting parameters σ1 and σ2, otherwise we end up with imaginary terms of the

form 2ir2σi sin
2 θ dφi dt inside the ds

2. Moreover, we should do the same thing with

the parameter n0 so as to ensure that the reality condition ς† = ς̃ holds. Hence, we

define the lorentzian parameters as:

σ
(L)
1 = iσ1 , σ

(L)
2 = iσ2 , n

(L)
0 = in0 . (4.53)

The one dimensional covariant derivative in lorentzian signature becomes:

Dt = ∂t +
in

(L)
0

2
q + iσ(L) + iρ(L) , (4.54)

where σ(L) and ρ(L) are the charges under the operators:

J (L) = (σ
(L)
1 − σ

(L)
2 ) JR3 , (4.55)

Σ(L) =

(︃
β

r
+

1

2

(︂
σ
(L)
1 + σ

(L)
2

)︂)︃(︁
R + 2JL3

)︁
. (4.56)

The reality conditions we require are the same we used in the direct product case:

ϕ† = ϕ̃ , ψ† = ψ̃ , f † = f̃ , λ† = λ̃ , ς† = ς̃ , Q† = Q̃ ,

(4.57)

therefore also the 1d lagrangian and supersymmetry transformations look precisely

like (3.105) and (3.106):

L(L)
lmn =

1

β2
Dtϕ

†Dtϕ+
iµ

β2

(︁
Dtϕ

†ϕ− ϕ†Dtϕ
)︁
+
i

β
ψ†Dtψ − 2µ

β
ψ†ψ+

+
i

β
λ†Dtλ+ f †f − p2

β2
ϕ†ϕ+

p

β
(ψ†λ+ λ†ψ) ,

(4.58)
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δsϕ =
√
r ςψ

δsψ = − i
√
r
β
ς†Dtϕ

δsf = − i
√
r
β
ς†Dtλ−

√
r
β
p ς†ψ

δsλ =
√
r ς f +

√
r
β
p ς†ϕ

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δsϕ
† = −√

r ς†ψ†

δsψ
† = i

√
r
β
ς Dtϕ

†

δsf
† = − i

√
r
β
ς Dtλ

† +
√
r
β
p ς ψ†

δsλ
† =

√
r ς†f † +

√
r
β
p ς ϕ†

. (4.59)

From now on the lorentzian signature will be understood and we remove all the

superscript (L).

Now, we can quantise the theory using the canonical quantisation. Let us intro-

duce the canonical conjugate fields:

Πϕ =
∂L(L)

∂∂tϕ
=

1

β2

(︁
Dtϕ

† − iµ ϕ†)︁ , Π†
ϕ =

∂L(L)

∂∂tϕ† =
1

β2

(︂
Dtϕ+ iµ ϕ

)︂
, (4.60)

Πψ =
∂L(L)

∂∂tψ
=

i

β
ψ† , Πλ =

∂L(L)

∂∂tλ
=

i

β
λ† . (4.61)

Then we impose the canonical (anti-)commutation relations:[︁
ϕ, Πϕ

]︁
=
[︁
ϕ†, Π†

ϕ

]︁
= i ,

{︁
ψ, Πψ

}︁
=
{︁
λ, Πλ

}︁
= i . (4.62)

At this point we can express the operators (4.49), (4.50), (4.51), and (4.52) in terms

of the canonical conjugate fields:

Rlmn = −iqr
(︂
Πϕ ϕ− ϕ†Π†

ϕ

)︂
+ i(qr − 1) (ψΠψ + λΠλ) + αr , (4.63)

Hlmn = β2Π†
ϕΠϕ − i

(︂
µ+

n0

2
qr + σ + ρ

)︂(︂
Πϕ ϕ− ϕ†Π†

ϕ

)︂
+

1

β2

(︁
µ2 + p2

)︁
ϕ†ϕ+

+ i
(︂n0

2
(qr − 1) + σ + ρ

)︂
(ψΠψ + λΠλ) + 2iµ ψΠψ − ip (λΠψ + ψΠλ) + α1 ,

(4.64)

Σlmn = −iσ
(︂
Πϕ ϕ− ϕ†Π†

ϕ − ψΠψ − λΠλ

)︂
+ α2 , (4.65)

Jlmn = −iρ
(︂
Πϕ ϕ− ϕ†Π†

ϕ − ψΠψ − λΠλ

)︂
+ α3 , (4.66)

where we added the arbitrary constants αr, α1, α2, and α3 in order to keep track

of the ordering ambiguity. We have checked that (4.64) coincides precisely with

the canonical Hamiltonian obtained as a Legendre transform of the 1d lagrangian

(4.58); this is a further evidence that our guess for the Hamiltonian is indeed correct.

Notice that these expressions are in line with what one should have expected; in

particular in the Hamiltonian, wherever there was a σ in the direct product case,

now there is a factor n0

2
q + σ + ρ due to the presence of the additional operators in

the supersymmetry algebra (4.25).

65



4. A further step: twisting the 3-sphere

Finally, the supercharge that acts on field space through the (anti-)commutator

has precisely the same expression as (3.115):

Q =
∑︂
l,m,n

Qlmn =
∑︂
l,m,n

[︃
ψ

(︃
Πϕ +

iµ

β2
ϕ†
)︃
− ip

β2
ϕ†λ

]︃
, (4.67)

where of course the canonical conjugate field is now (4.60). Once again, we stress

that the supercharge Q has no ordering ambiguity and this is crucial for fixing the

ordering constants appearing in the other operators.

Now that we have a clear picture of the one dimensional theory obtained by

reducing the four dimensional one over S3, we can carry out the actual computation

of the supersymmetric Casimir energy. The modus operandi is once again analogous

to that we used in chapter 3, however it is convenient to consider firstly the case

in which the parameter n0 is vanishing (so that the Hamiltonian commutes with

the supercharges), and only afterwards the case n0 ̸= 0 which features a few more

subtleties.

4.3.2 Case n0 = 0

Let us begin by assuming that there is no n0 i.e. that the Killing spinors have

periodic boundary conditions under the transformation τ → τ + 2π in the original

euclidean background. In this case the superalgebra is given by:{︁
Q, Q†}︁ =

1

β
(H − Σ− J ) . (4.68)

An explicit computation tells us that the canonical (anti-)commutation relations

imply that:{︁
Qlmn, Q

†
lmn

}︁
=

1

β
(Hlmn − Σlmn − Jlmn + 2µ− α1 + α2 + α3) . (4.69)

It follows that (4.68) is valid if and only if the ordering constants satisfy:

α1 = α2 + α3 + 2µ . (4.70)

At this point we still have two constants to fix. We can repeat the reasoning we

exposed in section 3.5.3 for both the operators Σ and J : since their vevs are the co-

efficients of a 1d Chern-Simons term, they should vanish on long multiplets because

of the presence of fermions of opposite masses in the lagrangian. We anticipate that

this conditions correspond again to taking the Weyl ordering of the operators. Thus

the ordering constants are given by:

α1 = 2 (µ+ σ + ρ) , (4.71)

α2 = 2σ , (4.72)

α3 = 2ρ . (4.73)
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In passing, notice that these choices are consistent with the fact that Σ and J are

basically the same operator apart from a multiplicative factor, thus we should have

expected their ordering constants to be equal up to the same factor i.e. α2 =
σ
ρ
α3.

Now we can start analysing the spectrum of the Hamiltonian. Instead of per-

forming again the whole computation, we note that the Hamiltonian on the twisted

background (4.64) is precisely equal to the Hamiltonian on the direct product back-

ground (3.112) provided that we make the substitution σ → σ+ ρ, where obviously

the two σ are not the same but rather those corresponding to the respective back-

grounds. As a consequence, much of the computations follow precisely what we did

in section 3.5.4 and we do not repeat them here. Starting from the long multiplet,

after introducing the creation and annihilation operators as in (3.124), we find that

the Hamiltonian of the long multiplet is bounded from below if and only if:√︁
µ2 + p2 > |µ+ σ + ρ| . (4.74)

Under this assumption, the vev of the scalar part is obtained when no oscillator is

excited and it reads:

⟨H(bos)
long ⟩ =

√︁
µ2 + p2 − µ− σ − ρ . (4.75)

Eq. (4.74) also tells us that the vev of the fermionic part is u− |Ω⟩ and its value is:

⟨H(fer)
long ⟩ = −

√︁
µ2 + p2 − µ− σ − ρ . (4.76)

Summing up ⟨H(bos)
long ⟩, ⟨H

(fer)
long ⟩, and the ordering constant α1, we get ⟨Hlong⟩ = 0

as expected. Following section 3.5.4, it is easy to check that ⟨Σlong⟩ = ⟨Jlong⟩ = 0

too, hence we have the confirmation that Weyl ordering is indeed correct. Long

multiplets still do not contribute to the Casimir energy.

In the same way, thanks to the considerations of section 3.5.4, we can directly

tell that Chiral multiplets have a ground state with energy:

⟨Hchiral⟩ =
|σ + ρ|

2
, (4.77)

and the ground state can be either |Ω⟩ or ψ |Ω⟩ depending on the sign of σ + ρ.

Since chiral multiplets correspond to m = l
2
, the expression (4.43) reads:

µ = −β
r
(l + 1) < 0 , (4.78)

where the inequality descends from the fact that the quantum number l is always

positive. But then (4.74) for p = 0 implies that 0 < σ+ ρ < −2µ, hence the ground

state is |Ω⟩ and the absolute value can be safely removed from (4.77):

⟨Hchiral⟩ =
σ + ρ

2
. (4.79)
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For what concerns the vevs of the charges Σ and J , they are easy to find starting

from their expressions in terms of creation and annihilation operators. In particular

Σ is given by (3.142) and J is a simple rescaling of the same operator by a factor
ρ
σ
. Eventually we obtain:

⟨Σchiral⟩ =
σ

2
, ⟨Jchiral⟩ =

ρ

2
. (4.80)

Finally, for Fermi multiplets all the three operators HFermi, ΣFermi, and JFermi
are proportional to −λλ† + 1

2
, with constant of proportionality respectively σ + ρ,

σ, and ρ. The only two states have energy ±1
2
(σ + ρ) and we have to understand

which one of the two is smaller. Knowing that Fermi multiplets are decoupled when

m = − l
2
− 1, from the expressions (4.45) we get:

σ + ρ =
β

r
(qr − l − 2) +

σ1
2
(qr − l − 2 + 2n) +

σ2
2
(qr − l − 2− 2n) . (4.81)

The sign of this quantity depends on various factors and it is difficult to carry out a

completely general discussion at this point. Hence, though what we did up to now

is rather general, we will now make a further assumption in order to conclude the

computations: we will assume that the two scales in our background i.e. β and r

are very well separated. In particular, given that one of the main applications of

this work is the microscopic counting of black holes entropy in AdS5 through the

holographic principle, the limit of big β is the one more relevant since it corresponds

to low temperature black holes. Hence from now on we will assume β ≫ r. As a

consequence, if the twisting parameters are of order 1, which is reasonable, we have:

σ + ρ =
β

r

(︃
qr − l − 2 +O

(︃
r

β

)︃)︃
. (4.82)

It follows that the sign of σ+ρ coincides with the sign of qr− l−2. But if β ≫ r, the

condition (4.74) is satisfied for 0 < qr < 2, precisely as in the direct product case;

given that the quantum number l is always positive, this tells us that σ+ρ < 0, thus

the ground state is |Ω⟩. Eventually, the vevs of the Fermi multiplets corresponds to:

⟨HFermi⟩ =
σ + ρ

2
, ⟨ΣFermi⟩ =

σ

2
, ⟨JFermi⟩ =

ρ

2
. (4.83)

Immediately we note that for all the three possible multiplets, we have:

⟨Hlmn⟩ − ⟨Σlmn⟩ − ⟨Jlmn⟩ = 0 , (4.84)

which is perfectly consistent with the superalgebra (4.68) and provides a consistency

check for what we are doing.

The final step consists in summing up all the non-vanishing contributions to

the ground state energy of the theory, that are those arising from decoupled chiral
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(m = l
2
) and Fermi (m = − l

2
− 1) multiplets:

⟨H⟩ =
∑︂
chiral

1

2
(σ + ρ) +

∑︂
Fermi

1

2
(σ + ρ) =

=
∑︂
l≥0

l
2∑︂

n=− l
2

1

2

[︃(︃
β

r
+

1

2
(σ1 + σ2)

)︃
(qr + l) + n(σ1 − σ2)

]︃
+

+
∑︂
l≥0

l
2∑︂

n=− l
2

1

2

[︃(︃
β

r
+

1

2
(σ1 + σ2)

)︃
(qr − l − 2) + n(σ1 − σ2)

]︃
.

(4.85)

Before going on with the computations, it is convenient to introduce two new pa-

rameters:

ω1 ≡
β

r
+ σ1 , ω2 ≡

β

r
+ σ2 . (4.86)

Aside from keeping the expressions more readable, in chapter 5 we will see that ω1

and ω2 are related to the complex structure parameters of the twisted S1 × S3. In

terms of (4.86), the sum that gives the Casimir energy reads:

⟨H⟩ =
∑︂
l≥0

l
2∑︂

n=− l
2

1

2

[︃
1

2
(ω1 + ω2) (qr + l) + n(ω1 − ω2)

]︃
+

+
∑︂
l≥0

l
2∑︂

n=− l
2

1

2

[︃
1

2
(ω1 + ω2) (qr − l − 2) + n(ω1 − ω2)

]︃
.

(4.87)

At first sight one may be tempted to perform immediately the sum over n, so that

the term n(ω1 − ω2) drops out, however doing this would lead to a wrong result.

In fact, the sums are again divergent and we have to regularise them in a super-

symmetric fashion before performing any summation. Applying the regularisation

method (3.152), we introduce a small parameter δ and we define:

⟨H⟩δ =
∑︂
l≥0

l
2∑︂

n=− l
2

1

2

[︃
1

2
(ω1 + ω2) (l + qr) + n(ω1 − ω2)

]︃
e−

δ
2 [

1
2
(ω1+ω2)(l+qr)+n(ω1−ω2)]+

−
∑︂
l≥0

l
2∑︂

n=− l
2

1

2

[︃
1

2
(ω1 + ω2)(l + 2− qr)− n(ω1 − ω2)

]︃
e−

δ
2 [

1
2
(ω1+ω2)(l+2−qr)−n(ω1−ω2)].

(4.88)

We see that the terms linear in n do not cancel out anymore. Now one can compute

explicitly the sums and expand everything in powers of δ:

⟨H⟩δ = − 2

δ2
(qr − 1)

(︃
1

ω1

+
1

ω2

)︃
+ E +O(δ) . (4.89)
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The finite part E is identified with the supersymmetric Casimir energy once we take

the limit δ → 0 and we discard the diverging term, and it reads:

E =
2

3
(ω1 + ω2) (a− c) +

2

27

(ω1 + ω2)
3

ω1ω2

(3c− 2a) , (4.90)

where obviously a and c are still the conformal anomaly coefficients (3.156). As a

consistency check, we notice that the expression (4.90) reduces to (3.155) when the

twisting parameters σ1 and σ2 vanish, so that we match the result of the untwisted

case. Once again we stress that this result is valid for β ≫ r and 0 < qr < 2, and

that the proof we gave is solid for σ1 = σ2; for σ1 ̸= σ2 we believe that the result

is the same but we have only given heuristic motivations, though rather convincing.

We will comment further on this result in chapter 5; for now, let us move on and

include in our scenario a non-vanishing n0 too.

4.3.3 Case n0 ̸= 0

When n0 ̸= 0 the R-charge appears explicitly in the superalgebra (4.25), therefore

the ordering constant of (4.63) needs to be fixed too. In general, for all the operators

Rlmn, Σlmn, and Jlmn, it is possible to carry out the reasoning highlighted in section

3.5.3: their vevs are essentially Chern-Simons coefficients, hence when the theory

contains pairs of fermions with masses of opposite signs, they should vanish. This

tells us that all long multiplets do not contribute to any of ⟨R⟩, ⟨Σ⟩, ⟨J ⟩. As before,
imposing this property will fix the ordering ambiguity.

First of all, from the superalgebra (4.25) we can read the first constraint as

before. The result is:

α1 =
n0

2
αr + α2 + α3 + 2µ . (4.91)

Let us consider only the long multiplets now. In terms of creation and annihila-

tion operators, the operators (4.64), (4.63), (4.65), and (4.66) are given by:

Hlmn =
√︁
µ2 + p2

(︁
a†a+ b†b+ 1

)︁
+
(︂
µ+

n0

2
qr + σ + ρ

)︂ (︁
a†a− b†b− 1

)︁
+

+ x+ u+u
†
+ + x− u−u

†
− + α1 ,

(4.92)

Rlmn = qr
(︁
a†a− b†b− 1

)︁
− (qr − 1)

(︂
u+u

†
+ + u−u

†
−

)︂
+ αr , (4.93)

Σlmn = σ
(︂
a†a− b†b− 1− u+u

†
+ − u−u

†
−

)︂
+ α2 , (4.94)

Jlmn = ρ
(︂
a†a− b†b− 1− u+u

†
+ − u−u

†
−

)︂
+ α3 , (4.95)

where u− and u+ are the two fermionic degrees of freedom in the diagonal basis and:

x± = −
(︂
µ+

n0

2
(qr − 1) + σ + ρ

)︂
±
√︁
µ2 + p2 . (4.96)

70



4.3. Computing the Casimir energy

In order to have an Hamiltonian bounded from below, we must impose the inequality:√︁
µ2 + p2 >

⃓⃓⃓
µ+

n0

2
qr + σ + ρ

⃓⃓⃓
, (4.97)

where again we recall that µ, p, σ, ρ were defined in (4.43), (4.44), (4.45). Under

this hypothesis, we have the minimum possible energy when no bosonic state is

excited. Yet, this condition does not fix automatically the fermionic ground state as

it did before when n0 was vanishing. This complication arises from the fact that the

R-charge does not commute with the supercharge. The fermionic oscillators give

rise to four possible states:

|Ω⟩ −→ (Hlmn − α1) |Ω⟩ = 0 (4.98)

u+ |Ω⟩ −→ (Hlmn − α1)u+ |Ω⟩ = x+ u+ |Ω⟩ (4.99)

u− |Ω⟩ −→ (Hlmn − α1)u− |Ω⟩ = x− u− |Ω⟩ (4.100)

u+u− |Ω⟩ −→ (Hlmn − α1)u+u− |Ω⟩ = (x− + x+)u+u− |Ω⟩ (4.101)

Given the values of x± in (4.96), telling which state is the one with lowest energy

is not immediate. We can distinguish three different cases based on the relation

between the two terms appearing in (4.96):

A) The parameters at work satisfy the following two inequalities:{︄√︁
µ2 + p2 <

⃓⃓
µ+ n0

2
(qr − 1) + σ + ρ

⃓⃓
µ+ n0

2
(qr − 1) + σ + ρ < 0

. (4.102)

Under these conditions, the lowest energy state is |Ω⟩. Therefore the vevs of

the operators (4.93), (4.94), and (4.95) are:

⟨Rlmn⟩ = −qr + αr , ⟨Σlmn⟩ = −σ + α1 , ⟨Jlmn⟩ = −ρ+ α2 .

(4.103)

Requiring that ⟨Rlmn⟩ = ⟨Σlmn⟩ = ⟨Jlmn⟩ = 0 we fix the values of the ordering

constants: ⎧⎪⎪⎨⎪⎪⎩
αr = qr

α2 = σ

α3 = ρ

=⇒ α1 =
n0

2
qr + σ + ρ+ 2µ . (4.104)

Eventually, the ground state energy in this case would be:

⟨Hlmn⟩ =
√︁
µ2 + p2 + µ ̸= 0 =

n0

2
⟨Rlmn⟩+ ⟨Σlmn⟩+ ⟨Jlmn⟩ . (4.105)

This is inconsistent with our assumptions, since we used the hypothesis that

the vacuum does not break supersymmetry to arrive to this result, in which
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case (4.26) should have held. Necessarily there is something wrong in the

computations we did when the parameters entering the theory satisfy the

conditions (4.102), and we cannot say anything more.

B) The parameters at work satisfy the following two inequalities:{︄√︁
µ2 + p2 <

⃓⃓
µ+ n0

2
(qr − 1) + σ + ρ

⃓⃓
µ+ n0

2
(qr − 1) + σ + ρ > 0

. (4.106)

Under these conditions, the lowest energy state is u+u− |Ω⟩. Therefore the

vevs of the operators (4.93), (4.94), and (4.95) are:

⟨Rlmn⟩ = −3qr+2+αr , ⟨Σlmn⟩ = −3σ+α1 , ⟨Jlmn⟩ = −3ρ+α2 .

(4.107)

Requiring that ⟨Rlmn⟩ = ⟨Σlmn⟩ = ⟨Jlmn⟩ = 0 we fix the values of the ordering

constants:⎧⎪⎪⎨⎪⎪⎩
αr = 3qr − 2

α2 = 3σ

α3 = 3ρ

=⇒ α1 =
n0

2
(3qr − 2) + 3σ + 3ρ+ 2µ . (4.108)

Eventually, the ground state energy in this case would be:

⟨Hlmn⟩ =
√︁
µ2 + p2 − µ ̸= 0 =

n0

2
⟨Rlmn⟩+ ⟨Σlmn⟩+ ⟨Jlmn⟩ . (4.109)

Also this case is inconsistent with our assumptions and we cannot say anything

when the parameters satisfy (4.106).

C) The parameters at work satisfy the following inequality:√︁
µ2 + p2 >

⃓⃓⃓
µ+

n0

2
(qr − 1) + σ + ρ

⃓⃓⃓
. (4.110)

Under these conditions, the lowest energy state is u− |Ω⟩. Therefore the vevs

of the operators (4.93), (4.94), and (4.95) are:

⟨Rlmn⟩ = −2qr+1+αr , ⟨Σlmn⟩ = −2σ+α1 , ⟨Jlmn⟩ = −2ρ+α2 .

(4.111)

Requiring that ⟨Rlmn⟩ = ⟨Σlmn⟩ = ⟨Jlmn⟩ = 0 we fix the values of the ordering

constants:⎧⎪⎪⎨⎪⎪⎩
αr = 2qr − 1

α2 = 2σ

α3 = 2ρ

=⇒ α1 =
n0

2
(2qr − 1) + 2σ + 2ρ+ 2µ . (4.112)
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This case corresponds to Weyl ordering the operators. Eventually, the ground

state energy reads:

⟨Hlmn⟩ = 0 =
n0

2
⟨Rlmn⟩+ ⟨Σlmn⟩+ ⟨Jlmn⟩ . (4.113)

This case is the only one consistent with our assumptions.

So let us restrict to consider case C, which corresponds to parameters satisfying the

condition:√︁
µ2 + p2 > max

{︂⃓⃓⃓
µ+

n0

2
(qr − 1) + σ + ρ

⃓⃓⃓
,
⃓⃓⃓
µ+

n0

2
qr + σ + ρ

⃓⃓⃓}︂
. (4.114)

This inequality is even more complicated than the one we had when n0 = 0, thus

we will again assume to have β ≫ r; under this hypotesis (4.114) reduces simply to:

l + 1 >

⃓⃓⃓⃓
qr − 1 +O

(︃
r

β

)︃⃓⃓⃓⃓
, (4.115)

which is satisfied when 0 < qr < 2 as before, and we do not have any further

condition on the twisting parameters and n0 since their contribution is suppressed

by a factor r
β
.

As showed above, long multiplets do not contribute to the Casimir energy, thus

we have to consider only decoupled chiral and Fermi multiplets. Everything goes

much like for the case n0 = 0, hence we skip the details of the computations for

Chiral and Fermi multiplets. The results are:

⟨Hchiral⟩ = ⟨HFermi⟩ =
1

2

(︂
σ + ρ+

n0

2
(qr − 1)

)︂
, (4.116)

⟨Rchiral⟩ = ⟨RFermi⟩ =
1

2
(qr − 1) , (4.117)

⟨Σchiral⟩ = ⟨ΣFermi⟩ =
σ

2
, (4.118)

⟨Jchiral⟩ = ⟨JFermi⟩ =
ρ

2
. (4.119)

Remarkably, for every supermultiplets the vevs satisfy the condition:

⟨Hlmn⟩ =
n0

2
⟨Rlmn⟩+ ⟨Σlmn⟩+ ⟨Jlmn⟩ , (4.120)

which is consistent with (4.26) if we assume the vacuum does not break supersym-

metry. The Casimir energy is then given by summing up all the contributions from

the decoupled chiral and Fermi multiplets. As before, the sum is divergent and we

regularise it using the method (3.152). We do not repeat all the steps, we refer the

reader to section 4.3.2 for more details. The final results we obtain is:

E = −(ω1 + ω2 + n0)

3ω1ω2

(︁
ω2
1 + ω2

2

)︁
(a− c) +

1

27

(ω1 + ω2 + n0)
3

ω1ω2

(5a− 3c) , (4.121)
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where the parameters ω1 and ω2 are given by (4.86) and a and c are the conformal

anomaly coefficients (3.156). It is easy to check that (4.121) reduces to (4.90) when

n0 vanishes. Recall that this result is only valid under the hypoteses β ≫ r and

0 < qr < 2. In the next chapter we will discuss the physical implications of this

result.

74



CHAPTER 5

Physical interpretation and final comments

In this last chapter we will comment the original results concerning the supersym-

metric Casimir energy we obtained in chapter 4 and see how they relate with the

general picture of SQFT in curved backgrounds as well as with other literature re-

sults. We will also highlight what are the directions which may be interesting for

further studies. For convenience, we recall here the most general expression for the

Casimir energy we obtained (4.121):

E = −(ω1 + ω2 + n0)

3ω1ω2

(︁
ω2
1 + ω2

2

)︁
(a− c) +

1

27

(ω1 + ω2 + n0)
3

ω1ω2

(5a− 3c) , (5.1)

where the parameters ω1 and ω2 are (in euclidean signature):

ω1 =
β

r
+ iσ1 , ω2 =

β

r
+ iσ2 . (5.2)

When n0 = 0 the expression (5.1) reduces to (4.90), that is:

E =
2

3
(ω1 + ω2) (a− c) +

2

27

(ω1 + ω2)
3

ω1ω2

(3c− 2a) . (5.3)

We recall also that to derive these expressions we assumed β ≫ r which corresponds

to a 3-sphere radius much smaller than that of the circle.

5.1 Hopf surfaces and complex structure
parameters

5.1.1 S1 × S3 as a primary Hopf surface

In section 2.3 we enunciated a general theorem that applies to field theories such as

the chiral multiplet on S1×S3 we considered in the present work, hence it would be
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interesting to study how our results fit in this context. In order to do this, we firstly

need to better understand the complex structure of the manifold we are working on.

Consider the set C2 \ (0, 0) with coordinates (z1, z2), and consider the infinite

cyclic group Γ generated by the following automorphism on C2 \ (0, 0):

(z1, z2) −→ (z′1, z
′
2) = (pz1 + λzm2 , qz2) , (5.4)

wherem ∈ N and p, q, and λ are complex parameters such that 0 < |p| ≤ |q| < 1 and

(p − q)mλ = 0. A primary Hopf surface is defined as the manifold Mp,q,λ obtained

by taking the quotient:

Mp,q,λ =
C2 \ (0, 0)

Γ
. (5.5)

Obviously Mp,q,λ has two complex dimensions, thus four real dimensions which is

the same dimensionality of S1×S3. In fact it has been shown that all primary Hopf

surfaces are diffeomorphic to S1 × S3 [25].

We focus our interest to the case where λ = 0 so that we can label a primary Hopf

surface purely through p, q ∈ C. These two quantities correspond to the complex

structure parameters of an Hopf surface. However, it is convenient to trade p and q

for two other parameters ω1, ω2 ∈ C:

p = e−2πω2 , q = e−2πω1 . (5.6)

It will be clear why we named them ω1 and ω2 later on. Their real and imaginary

parts encode the information about how S1×S3 is deformed, and with a slight abuse

of terminology we will refer to them as complex structure parameters too. For now,

we will assume that |p| = |q|, which translates into the condition:

Re(ω1) = Re(ω2) . (5.7)

Now, let us introduce the new coordinates (w, z) on Mp,q, defined as:{︄
w = −i log z̄1
z = z̄2

z̄1

⇐⇒
{︄
z1 = e−iw̄

z2 = z̄ e−iw̄
. (5.8)

These new coordinates are well-defined everywhere but on the locus z1 = 0. How-

ever, we can introduce another atlas with coordinates (w′, z′), where w′ = w+i log z

and z′ = z−1, to cover the full manifold. In the definition of Mp,q (5.5), quotienting

by the cyclic group Γ amounts to introduce the identifications:

(z1, z2) ∼ (z1 e
−2πω2 , z2 e

−2πω1) . (5.9)

In terms of the new coordinates (5.8), these identifications translates into:

(w, z) ∼
(︁
w + 2πi ω̄2, z e

2π(ω̄2−ω̄1)
)︁
, (5.10)
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and clearly from (5.8) it also follows that w ∼ w+2π with z fixed. We can recognise

that these identifications are of the same form as (4.5). In particular, if we take ω1

and ω2 to be (5.2), the identifications (4.5) and (5.10) coincide precisely. This shows

that the coordinates (w, z) on an Hopf surface introduced in (5.8) are a system of

complex holomorphic coordinates on S1 × S3, and turning on the imaginary part

of the complex structure parameters of the Hopf surface ω1 and ω2 correspond to

twisting the 3-sphere over the circle. For completion, we add that the specific metric

(4.1) corresponds to the following hermitian metric on Mp,q:

ds2Mp,q
=

r

|z1|2 + |z1|2
(dz1 dz̄1 + dz1 dz̄1) . (5.11)

As we showed in section 3.2, the supersymmetric Casimir energy is directly

related to the partition function of the theory as:

E = − lim
β→∞

d

dβ
logZS1×S3 . (5.12)

Therefore, the general statements concerning the dependence of the partition func-

tion on the background geometry which we discussed in section 2.3 should be valid

for the Casimir energy too. In view of what we just illustrated concerning primary

Hopf surfaces, our result (5.3) and the more general (5.1) confirm this. Indeed, the

expression we found for the supersymmetric Casimir energy of a chiral multiplet

theory on S1×S3 is an holomorphic function of the parameters ω1 and ω2, which we

have just shown to be the complex structure parameters of an Hopf surface. There

is no dependence on other geometric details of the background manifold nor on the

complex conjugates of ω1 and ω2. The only other parameter entering (5.1) is n0.

5.1.2 Squashing the 3-sphere

The most general S1 × S3 background should allow also for real parts of ω1 and

ω2 that are different one from each other, thus relaxing the assumption (5.7). It is

possible to show that this further deformation can be realised as a squashing of S3

[5, 3] i.e. to a metric of the form:

ds2 = β2 dτ 2+
√︂
χ2
1 cos

2 θ + χ2
2 sin

2 θ dθ2+

+ χ2
1 sin

2 θ (dφ1 + σ1 dτ)
2 + χ2

2 cos
2 θ (dφ2 + σ2 dτ)

2 ,

(5.13)

where χ1, χ2 ∈ R are the squashing parameters and are related precisely to the real

parts of the complex structure parameters:

ω1 =
β

χ1

+ iσ1 , ω2 =
β

χ2

+ iσ2 . (5.14)
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Correspondingly, the Killing vector (4.7) gets generalised to:

K =
1

2

(︁
− i∂τ + ω1 ∂φ1 + ω2 ∂φ2

)︁
. (5.15)

In principle one can try to apply again the same reasoning we exposed in the

previous chapter, however the new squashing parameters introduce increasing tech-

nical difficulties, hence we leave a thorough analysis of this case for future work. Let

us just say that one could follow a more effective approach in this case, following

section 3 of [6] where essentially it is considered a metric even more general than

(5.13), though without twisting parameters. The main trick comes from [26] and

consists in trading the fermionic degrees of freedom in the 4d chiral multiplet for

some new scalars built as bilinears:

B =
1√
2

ζ†ψ

|ζ|2 , C =
√
2 ζψ ,

B̃ =
1√
2

ζ̃
†
ψ̃

|ζ̃|2
, C̃ =

√
2 ζ̃ψ̃ .

(5.16)

These are called “twisted variables” (for examples of their usage in a context sim-

ilar to ours see [4, 22]). Without entering into the details, one can show without

performing the actual dimensional reduction that the 1d chiral multiplets arise from

the couple (ϕ, C) and the Fermi multiplets from (B, F ). Moreover, using this re-

definition of the degrees of freedom, the shortening conditions can be read directly

from the 4d supersymmetry transformations. Then, knowing that long multiplets

do not contribute to the Casimir energy, one can focus on the shortened multiplets

right from the beginning.

Eventually, given that (5.1) does not have a separate dependence on the real and

imaginary parts of ω1 and ω2, the result we should expect to find is still the same

but with the most general complex structure parameters (5.14). Yet it would be

nice to have a concrete confirmation of this reasonable claim.

5.1.3 The full partition function

The Casimir energy we considered so far constitutes only a piece of the full partition

function of the theory. Given the discussion we illustrated in section 2.3, of course

the latter has to be an holomorphic function of the complex structure parameters

p and q. The usual technique employed to compute ZS1×S3 is the supersymmetric

localisation, which once again relies on the constrained setup proper of supersym-

metric theories. It turns out that the partition function has the form:

ZS1×S3 = e−βE I(p, q) , (5.17)

where E is indeed the supersymmetric Casimir energy and I(p, q) is the supersym-

metric index on S1 × S3 [18, 19]. The supersymmetric index is essentially a trace
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over the Hilbert space of states on S3 and the complex structure parameters p and

q take the role of fugacitites from the index perspective (see e.g. [24]).

The explicit computation of (5.17) for completely general values of the complex

structure parameters p and q has not been done yet, however we have the results

for a number of specific theories living in backgrounds with various degrees of de-

formation. It would be interesting to try to reproduce the entire partition function,

including the supersymmetric index, through the 1d theory obtained by dimensional

reduction on S3, thus making contact with the localisation result.

5.2 Comparison with existing literature

The results we obtained partially fill in the general picture of supersymmetric theo-

ries on S1×S3, which received a remarkable attention from the high energy physics

community in recent years.

The expression (5.3) fits in this context as an independent check of an already

known result. Indeed our expression, when written in terms of generic ω1 and ω2, is

in agreement with the one that has been found through localisation in [5]. Differently

from the present work, they considered an N = 1 theory including also the vector

multiplet and with a background metric that accounts for the squashing of the 3-

sphere but not for its twisting. Nevertheless, one can make the comparison between

the two Casimir energy expressions by writing them in terms of the Hopf surface

complex structure parameters and assuming that they are valid for every possible

value of p and q.

Somehow more interesting is the expression (5.1) we obtained for n0 ̸= 0. We

recall that n0 is an integer parametrising the periodicity condition of the Killing

spinors when we go once aroung the thermal circle i.e. τ → τ + 2π. Let us start by

noticing that (5.1) can also be restated as:

E =
1

3

(ω1 + ω2 + n0)

ω1ω2

[︁
2ω1ω2 + 2n0 (ω1 + ω2) + n2

0

]︁
(a− c)+

+
2

27

(ω1 + ω2 + n0)
3

ω1ω2

(3c− 2a) .

(5.18)

A background completely analogous to the one we considered, including the presence

of the parameter n0, was considered in [15]. Once again, they used the localisation

technique to compute the complete partition function of a theory including both a

chiral and a vector multiplet. Their result for the Casimir energy is:

E[15] =
1

3

(ω1 + ω2 + n0)

ω1ω2

[︁
2ω1ω2 + 4n0 (ω1 + ω2) + 16n2

0

]︁
(a− c)+

+
2

27

(ω1 + ω2 + n0)
3

ω1ω2

(3c− 2a) .

(5.19)
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5. Physical interpretation and final comments

As the reader may notice, (5.18) and (5.19) are similar but not identical. We believe

that the difference is due to the regularisation procedure used in [15], where the

authors themselves argue that it is not clear which regularisation scheme they should

use and how. On the other hand, our regularisation procedure does not break

supersymmetry and we are quite confident that it is correct.

Another result one can compare (5.1) with is contained in [16, 17]. There, they

studied the asymptotic behaviour of I(p, q) in the limit β ≪ r (opposite to our

assumption) and σ1, σ2 ≪ 1 and they found a result that is closely related to the

Casimir energy. Its expression is:

E[16, 17] =
4π2

3

(ω1 + ω2 + n0)

ω1ω2

(a− c) +
1

27

(ω1 + ω2 + n0)
3

ω1ω2

(5a− 3c) . (5.20)

In this case, it is not surprising that (5.1) and (5.20) are different, given that they

are valid under different assumptions, however it is remarkable that the term pro-

portional to 5a− 3c is precisely the same.

Noteworthy, whenever a = c the three independently derived results (5.1), (5.19),

and (5.20) coincide. Hence, we can be reasonably confident that at least the piece

of the Casimir energy proportional to 5a− 3c is valid in general for any background

diffeomorphic to S1 × S3. In passing, notice that the case a = c is the one relevant

for the application of the AdS/CFT correspondence (more about this in the next

section). For what concerns the term proportional to a − c, the situation is still

not clear since the results do not match precisely. It is tempting to speculate that

the more general form of the Casimir energy has to interpolate between (5.1) and

(5.20) given that they are valid in opposite regimes, yet this would contrast with

the expression (5.19). Further studies are needed to clarify completely this question,

which is intimately related to the question of what is a supersymmetry-preserving

regularisation scheme.

5.3 Further developments

As we said, the context of supersymmetric quantum field theories on curved spaces is

experiencing quite a lot of attention. The present work constitutes a little progress

in the understanding of the implications of a background diffeomorphic to S1 ×
S3. However, there are still several open questions left, some of them we already

mentioned. In this final section we try to put some order among ideas.

The most direct improvements of our computations would be to extend the

results outside the regime β ≫ r and to consider the most general Hopf surface

as a background, including also the squashing of the 3-sphere. On the latter we

already commented in section 5.1.2 and there is not much else to say; we have a

clear expectation for which expression for the Casimir energy one should end up

with, and it would probably constitute just a completion of what we already know.
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5.3. Further developments

The former development instead would be more interesting, especially in the case

n0 ̸= 0, since we still do not have an expression for E we can trust completely

when this parameter is non-vanishing. Moreover, a more thorough analysis of the

inequalities arising from requiring the one dimensional hamiltonian to be bounded

from below may put physical constraints on the values of the parameters σ1 and σ2
allowed for a consistent result.

The other main line for further developments is to consider more articulated field

theories. Remaining in the context of N = 1 SQFT, it would be interesting to add

also the vector multiplet to the game, and therefore gauge interactions. In principle

the procedure should not be that different from the one we exposed in this thesis; the

additional vector field that appears in 4d should be expanded in vector harmonics on

S3 [11] and then their properties should come in help in order to reduce the theory

to 1d. One should end up with a one dimensional supersymmetric gauge theory

extending the one we found here. We expect the resulting Casimir energy to be the

one obtained in this thesis, with a and c being the conformal anomaly coefficients

of the full theory including the vector multiplet too.

Subsequently, one may wish to add even further structure and perhaps consider

the N = 4 SuperYang-Mills theory. The theory N = 4 SYM on S1 × S3 is par-

ticularly interesting from the holographic perspective since its holographic dual is

a known supergravity theory in AdS5. The AdS/CFT dictionary states that the

logarithm of the CFT partition function on S1 × S3 at large N coincides with the

renormalised on-shell action of the dual 5d supegravity theory. The former quantity

is precisely the Casimir energy, therefore extending our findings to this field theory

would result in a way to obtain the on-shell supergravity action.

Here we can make a last comment about our result (5.1): the fact that we are

pretty confident about the expression of the Casimir energy when the two Weyl

anomaly coefficients a and c are equal is relevant in the holography context since at

large N we have a = c indeed [20]. Therefore, if we would attempt to interpret our

result from the dual supergravity perspective, in principle we will not have troubles

caused by the fact that we are not sure about that part of E which is proportional

to a − c. For σ1 = σ2 = n0 = 0 this has been done in [14]. It would be interesting

to reproduce our results for non-vanishing σ1, σ2 and n0 from such a holographic

perspective.
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APPENDIX A

Conventions and definitions

A.1 Spacetime and geometric objects

For the most part of the present work, we will consider a four dimensional spacetime

M with a fixed Riemannian metric gµν with euclidean signature (+, +, +, +). Eu-

clidean spacetime indices ranges from 1 to 4. The determinant of the metric will be

denoted simply by g. Starting from the metric, we can build the Christoffel symbols:

Γµνρ =
1

2
gµσ (∂νgρσ + ∂ρgνσ − ∂σgνρ) , (A.1)

and use them to define the Levi-Civita connection ∇µ on M by specifying its action

on a generic tensor:

∇σT
µ1...µp

ν1...νq
= ∂σT

µ1...µp
ν1...νq

+Γµ1σρ T
ρ...µp

ν1...νq
+ . . .−Γρσν1 T

µ1...µp
ρ...νq − . . . (A.2)

Recall that the covariant four-divergence of a vector V µ satisfies the following iden-

tity:

∇µV
µ =

1√
g
∂µ (

√
g V µ) . (A.3)

Of course starting from the Christoffel symbols we can build the Riemann tensor:

R ρ
µν σ = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + ΓρµτΓ

τ
νσ − ΓρντΓ

τ
µσ , (A.4)

and then the Ricci tensor Rµν = R ρ
ρµ ν and the Ricci scalar curvature R = gµν Rµν .

Another relevant quantity that measures the curvature of the manifold is the Weyl

tensor, which is defined as:

Wµνρσ = Rµνρσ −
1

2
(Rµρ gνσ +Rνσ gµρ −Rµσ gνρ −Rνρ gµσ)+

R
6
(gµρ gνσ − gνρ gµσ).

(A.5)
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A. Conventions and definitions

We introduce now the Levi-Civita symbol εµνρσ which is defined to be totally anti-

symmetric with ε1234 = 1. εµνρσ does not transform as a tensor, but we can define

the Levi-Civita tensor as:

ϵµνρσ =
√
g εµνρσ , (A.6)

and it transforms correctly as a tensor. With this new quantity, we can define

another relevant scalar related to the metric, the Euler density:

E(4) =
1

4
ϵµ1ν1µ2ν2 ϵρ1σ1ρ2σ2 Rµ1ν1ρ1σ1 Rµ2ν2ρ2σ2 . (A.7)

We introduce also a flat local frame through the vielbein 1-forms {e1, e2, e3, e4},
where ea = eaµ dx

µ. Of course they satisfy:

ds2 = gµν dx
µ dxν = δab e

a eb . (A.8)

It directly follows that det
(︁
eaµ
)︁
=

√
g. The volume form on the manifold M is

defined through the vielbeins as:

vol = e1 ∧ e2 ∧ e3 ∧ e4 . (A.9)

Most of the times we will indicate the volume form with a naive d4x
√
g in the main

text. Once we have specified a local frame, we can introduce the spin connection:

ωµab =
1

2

(︁
e ν
a ∂µebν − e ν

b ∂µeaν − e ν
a ∂νebµ + e ν

b ∂νeaµ+

− e ν
a e ρ

b ecµ ∂νe
c
ρ + e ν

b e
ρ
a ecµ ∂νe

c
ρ

)︁
.

(A.10)

By means of the spin connection, the Levi-Civita connection is extended to objects

with flat indices as follows:

∇µT
a1...ap

b1...bq
= ∂µT

a1...ap
b1...bq

+ ω a1
µ c T

c...ap
b1...bq

+ . . . − ω c
µ b1

T
a1...ap

c...bq
− . . .

(A.11)

Such a connection is compatible with both the metric and the vielbeins i.e.:

∇µgρσ = ∇µe
a
ν = 0 . (A.12)

A.2 Spinors

In the local flat frame we can introduce spinors. The symmetry group of the local

flat space is SO(4) whose universal covering group is Spin(4) ≃ SU(2)+ × SU(2)−.

� Left-handed Weyl spinors ψα are two components spinors that carry an un-

dotted index and transform in the (1
2
, 0) representation of Spin(4).

� Right-handed Weyl spinors ψ̃
α̇
are two components spinors that carry a dotted

index and transform in the (0, 1
2
) representation of Spin(4).
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A.2. Spinors

The conventions we will adopt for spinors in euclidean signature are basically the

same as [5]. We introduce the 2× 2 sigma matrices:

σaαα̇ = (σ⃗, −iI2) , σ̃aα̇α = (−σ⃗, −iI2) , (A.13)

where σ⃗ = (σ1, σ2, σ3) is the vector of the Pauli matrices:

σ1 =

(︃
0 1

1 0

)︃
, σ2 =

(︃
0 −i
i 0

)︃
, σ3 =

(︃
1 0

0 −1

)︃
. (A.14)

The sigma matrices generate the Clifford algebra and indeed they have the following

properties:

σa σ̃b + σb σ̃a = −2δab , σ̃a σb + σ̃b σa = −2δab . (A.15)

Starting from the sigma matrices, we introduce also two-indices sigma matrices,

which are the generators of SU(2)+ and SU(2)− respectively:

σab =
1

4
(σa σ̃b − σb σ̃a) , σ̃ab =

1

4
(σ̃a σb − σ̃b σa) . (A.16)

Spinorial indices are raised and lowered by acting from the left with the antisym-

metric two-indices symbols ϵαβ = −ϵαβ = ϵα̇β̇ = −ϵα̇β̇, fixed by requiring ϵ12 = 1.

The convention for contracting indices is “NorthWest to SouthEast” for undotted

indices and “SouthWest to NorthEast” for dotted indices i.e.:

ψχ = ψαχα , ψ̃χ̃ = ψ̃α̇χ̃
α̇ . (A.17)

With these conventions, if both spinors are anti-commuting then they satisfy ψχ =

χψ and ψ̃χ̃ = χ̃ψ̃, while if one of the two is a commuting spinor, the two relations

pick a minus sign. For other identities involving spinor bilinears we refer to [5].

The extension of the Levi-Civita connection on spinors is given by:

∇µψ = ∂µψ − 1

2
ωµab σ

abψ , ∇µψ̃ = ∂µψ̃ − 1

2
ωµab σ̃

abψ̃ . (A.18)

Another differential operator that we will use is the spinorial Lie derivative along a

vector, which is defined as follows:

LXψ = Xµ∇µψ − 1

4
∇µXν σ

µσ̃νψ , (A.19)

LXψ̃ = Xµ∇µψ̃ − 1

4
∇µXν σ̃

µσνψ̃ , (A.20)

where the sigma matrices with spacetime indices are simply σµ = e µ
a σa.

Finally, though they will not be used much, we report the definitions of the

supercovariant derivatives in superspace:

Dα =
∂

∂θα
+ iσµαα̇θ̃

α̇
∂µ , D̃α̇ = − ∂

∂θ̃
α − iθασµαα̇ ∂µ , (A.21)

where θα and θ̃
α̇
are the superspace coordinates.
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A. Conventions and definitions

A.3 From euclidean to lorentzian

It will be useful to know how to pass from euclidean to lorentzian signature and

viceversa, thus it is better to collect our conventions regarding this transformation.

For the lorentzian metric, we use the signature mostly plus i.e. (−, +, +, +). The

Wick rotation amounts to analytically continue the lorentzian time t to the complex

plane and identify the euclidean time τ as the imaginary axis. This leads to the

identification t = −iτ and, more in general, to the transformation laws of covariant

and contravariant indices. Denoting with a subscript L and E respectively the

objects in lorentzian signature with those in euclidean signature, we have:

vtL = −ivτE , (vL)t = i(vL)τ . (A.22)

All the other components of vectors and tensors remain unchanged. In the lorentzian

the local frame is identified by the vielbeins {e0, e1, e2, e3}, where e0 = ie4. We

define the lorentzian volume form to be:

vol = e0 ∧ e1 ∧ e2 ∧ e3 . (A.23)

Then, the relation between the lorentzian and euclidean volume forms is:

volE = e1 ∧ e2 ∧ e3 ∧ e4 = i e0 ∧ e1 ∧ e2 ∧ e3 = i volL , (A.24)

which is consistent with the naive identification d4xL = −i d4xE. Moreover, given

a lagrangian QFT, conventionally we set iSL = −SE. This, together with (A.24),

tells us that the lagrangians are related as LL = −LE.
Our choice of sigma matrices in lorentzian signature is to take σ0 = iσ4 = I2

and also σ̄0 = iσ̃4 = I2. Matrices σi are the same as in euclidean signature, while

σ̄i = σ̃i. This choice is consistent with the fact that we want σµ and σ̃µ to be vectors.

In fact, we have:

σtL = e t
a σ

a
L = e t

0 σ
0
L + e ti σ

i
L = e t

4 σ
4
E + e ti σ

i
E = −ie τ

a σaE = −iστE , (A.25)

which is precisely what we want according to (A.22). Similarly one can verify that σ̄µ

transform in the same way and everything is consistent. Spinors transforming in the

representations (1
2
, 0) and (0, 1

2
) are related by hermitian conjugation in lorentzian

signature:

(ψα)
† = ψ̄α̇ , (ψ̄

α̇
)† = ψα . (A.26)

An important property of sigma matrices in lorentzian signature is that they are

hermitian i.e. (σµ)† = σµ and (σ̄)† = σ̄µ. Finally, sigma matrices satisfy the identity:

σ̄µα̇α = ϵα̇β̇ ϵαβ σµ
ββ̇
. (A.27)
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A.4. Currents in euclidean signature

A.4 Currents in euclidean signature

In the following we provide the definition of a conserved current in euclidean signa-

ture such that it is consistent with the standard definition in Lorentzian signature

given the chosen conventions on the Wick rotation.

Let us begin from a general current in lorentzian signature:

Jµ =
1√−g

δS

δAµ
. (A.28)

This means that under a variation corresponding to the associated symmetry, the

lorentzian action varies as:

δS =

∫︂
d4x

√−g Jµ δAµ . (A.29)

Denoting euclidean quantities with a bar (limited to this section), with our conven-

tions (A.29) translates into:

δS̄ = −
∫︂
d4x̄

√
ḡ Jµ δAµ = −

∫︂
d4x̄

√
ḡ
(︁
J tδAt + J iδAi

)︁
=

=−
∫︂
d4x̄

√
ḡ
(︁
iJ tδĀτ + J iδĀi

)︁
.

(A.30)

Now, if we require our current to transform as (A.22) under a Wick rotation i.e.

J̄
µ
=
(︂
J̄
τ
, J̄

i
)︂
= (iJ t, J i), we obtain:

δS̄ = −
∫︂
d4x̄

√
ḡ
(︂
J̄
τ
δĀτ + J̄

i
δĀi

)︂
= −

∫︂
d4x̄

√
ḡ J̄

µ
δĀµ . (A.31)

It follows that if we want the euclidean current to be consistent with our conventions

on the Wick rotation, we have to take the following as its definition:

J̄
µ
= − 1√

ḡ

δS̄

δĀµ
, (A.32)

which has a further minus sign in front compared to the lorentzian definition (A.28).
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APPENDIX B

Derivation of the stress-energy tensor

In this appendix we sketch briefly the computations leading to the expression for

the stress-energy tensor of the chiral theory in a curved background. The discussion

will be mainly based on [10], yet we have followed some slightly different steps here

and there.

Recall that the lagrangian of our theory is given by:

L = Dµϕ̃ D
µϕ+ V µ

(︂
iDµϕ̃ ϕ− iϕ̃Dµϕ

)︂
+
qr
4
(R+ 6V µVµ) ϕ̃ ϕ− F̃F+

+ iψ̃ σ̃µDµψ +
1

2
Vµ ψ̃ σ̃

µψ .
(B.1)

Notice that here we retained the term proportional to R+6V µVµ even if it vanishes

for S1×S3 because its variation under an infinitesimal deformation of the metric will

not be zero in general, and indeed we would miss some terms otherwise. In ordinary

general relativity the stress-energy tensor is defined to be (in euclidean signature):

Tµν ≡
2√
g

δS

δgµν
, (B.2)

however it is necessary to generalize this definition when the theory includes chiral

matter, because it is not always possible to write the variation of the action in

terms of that of the (inverse) metric. Indeed, as we will see, there will be terms

whose variation is proportional to the variation of the vielbeins. It is then natural to

generalize (B.2) by taking the variation of the action with respect to them. Imposing

the matching of the two definitions on something known, as the metric itself for

instance, it turns out that:

Tµν ≡
ecµ
2
√
g

δS

δe ν
c

+ (µ↔ ν) . (B.3)
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B. Derivation of the stress-energy tensor

One can use either one or the other definition according to which one is more suitable

for a given term contributing to the variation of the action.

Let us start by computing how the action varies under an infinitesimal variation

of the background metric:

δS =

∫︂
M
d4x (δ

√
gL+

√
g δL) =

∫︂
M
d4x

(︃
−
√
g

2
gµν Lϕ δgµν +

√
g δL

)︃
. (B.4)

Here we used the fact that δ
√
g = −

√
g

2
gµν δg

µν and that on-shell F = F̃ = 0 and

the fermionic lagrangian vanishes (with Lϕ we denote the terms in the lagrangian

where the field ϕ appears). Now we have to compute δL. Let us begin considering

the scalar sector:

δLscalar =
[︃
Dµϕ̃ Dνϕ+ iVµ

(︂
Dνϕ̃ ϕ− ϕ̃ Dνϕ

)︂
+

3qr
2
VµVν ϕ̃ϕ

]︃
δgµν +

qr
4
ϕ̃ϕ δR .

(B.5)

Most of the terms are straightforward, except for the one involving the Ricci tensor

R. Its variation reads:

δR = Rµν δg
µν + gµν δRµν = Rµν δg

µν + gµν ∇ρ∇ρ(δg
µν)−∇µ∇ν(δg

µν) . (B.6)

Plugging (B.6) into (B.5) and integrating by parts15, we end up with:

δLscalar =
[︃
Dµϕ̃ Dνϕ+ iVµ

(︂
Dνϕ̃ ϕ− ϕ̃ Dνϕ

)︂
+

3qr
2
VµVν ϕ̃ϕ+

+
qr
4

(︂
Rµν ϕ̃ϕ+ gµν ∇ρ∇ρ(ϕ̃ϕ)−∇µ∇ν(ϕ̃ϕ)

)︂]︃
δgµν .

(B.7)

Now we come to the fermionic sector. Here the variation is due to the variation of

the vielbeins and of the spin connection:

δLfermion =

(︃
iψ̃ σ̃aDµψ +

1

2
Vµ ψ̃ σ̃

aψ

)︃
δe µ
a −

(︃
i

2
ψ̃ σ̃µσbcψ

)︃
δωµbc . (B.8)

The tricky step is to find the variation of the spin-connection. We start from the

equation that expresses the torsionlessness of the connection:

0 = ∇µe
a
ν = ∂µe

a
ν − Γρµν e

a
ρ + ω a

µ b e
b
ν .

Taking the variation of both sides of this equation and then isolating δωµbc, we get:

δωµbc = ebρ e
ν
c δΓ

ρ
µν − e ν

c ∇µ(δebν) . (B.9)

15Recall that ∇µgνρ = ∇µg = 0 due to the connection being compatible with the metric, and

that boundary terms vanish because S3 has no boundary.
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For the Christoffel symbols we have:

2gρσ Γ
ρ
µν = ∂µgσν + ∂νgσµ − ∂σgµν

=⇒ 2gρσ δΓ
ρ
µν =− 2δgρσ Γ

ρ
µν + ∂µ(δgσν) + ∂ν(δgσµ)− ∂σ(δgµν)

=∇µ(δgσν) +∇ν(δgσµ)−∇σ(δgµν)

=⇒ δΓρµν =
1

2
gρσ [∇µ(δgσν) +∇ν(δgσµ)−∇σ(δgµν)]

=
1

2
gµσ gνλ∇ρ(δgσλ)− 1

2

(︁
gνσ∇µ(δg

ρσ) + gµσ∇ν(δg
ρσ)
)︁
.

(B.10)

Instead, the variation of the vielbein is found as follows:

ebν = gµν e
µ
b =⇒ δebν = gµν δe

µ
b + e µ

b δgµν

=⇒ δebν = gµν δe
µ
b − ebρ gνσ δg

ρσ . (B.11)

Substituting (B.10) and (B.11) into (B.9), we get the following expression for the

variation of the spin connection:

δωµbc = ∇ν

(︃
gµλ e

ν
[b ec]ρ δg

λρ +
1

2
ebρ ecλ δ

ν
µ δg

λρ − ecρ δ
ν
µ δe

ρ
b

)︃
. (B.12)

Now let us focus on the second term of (B.8). Substituting the expression just

obtained for δωµbc, it is clear that the second term of (B.12) does not contribute

since it is symmetric under the exchange of the indices b and c and it is contracted

with σbc, which is antisymmetric. Integrating by parts we get:(︃
i

2
ψ̃ σ̃µσbcψ

)︃
δωµbc =

i

2
Dν

(︂
ψ̃ σ̃µσbcψ

)︂ (︁
gµλ e

ν
[b ec]ρ δg

λρ − ecρ δ
ν
µ δe

ρ
b

)︁
,

where we traded ∇µ for Dµ since the object on which it acts is uncharged under the

R-symmetry. Now we exploit the identity:

σ̃d σbc =
1

2

(︁
−δdb σ̃c + δdc σ̃b − ϵdbca σ̃a

)︁
,

in order to get rid of two of the sigma matrices. Carrying on a few extra steps it is

easy to arrive to the following expression:(︃
i

2
ψ̃ σ̃µσbcψ

)︃
δωµbc =

i

4

[︃
Dλ

(︁
ψ̃ σ̃ρψ

)︁
− gλρDν

(︁
ψ̃ σ̃νψ

)︁
+

−Dν
(︁
ψ̃ σ̃cψ

)︁
eaλ edν ebρ ϵ

dabc

]︃
δgλρ+

+
i

4

[︃
Dρ

(︁
ψ̃ σ̃νψ

)︁
eaν −Dν

(︁
ψ̃ σ̃ρψ

)︁
eaν+

−Dν
(︁
ψ̃ σ̃µψ

)︁
ecµ edν ebρ ϵ

dabc

]︃
δe ρ
a .
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B. Derivation of the stress-energy tensor

Now notice that the last term inside the first parenthesis of the RHS is antisymmetric

under the exchange of λ and ρ, hence it vanishes when contracted with δgλρ. In the

same spirit we should also symmetrize the first term in these indices. Then, notice

that the second term inside the first parenthesis vanishes on-shell; indeed using the

equations of motion for ψ and ψ̃ we find:

Dν

(︁
ψ̃ σ̃νψ

)︁
= Dνψ̃ σ̃

νψ + ψ̃ σ̃νDνψ =
1

2
Vν ψ̃ σ̃

νψ − 1

2
Vν ψ̃ σ̃

νψ = 0 .

Finally, we can exploit the properties of the Levi-Civita symbol in the last term of

the second parenthesis:

ecµ edν ebρ ϵ
dabc =

√
g ενσρµ e

aσ = ϵνσρµ e
aσ .

So, putting everything together, we have:(︃
i

2
ψ̃ σ̃µσbcψ

)︃
δωµbc =

i

8

[︃
Dλ

(︁
ψ̃ σ̃ρψ

)︁
+Dρ

(︁
ψ̃ σ̃λψ

)︁]︃
δgλρ +

i

4

[︃
Dρ

(︁
ψ̃ σ̃νψ

)︁
eaν+

−Dν

(︁
ψ̃ σ̃ρψ

)︁
eaν −Dν

(︁
ψ̃ σ̃µψ

)︁
ϵνσρµ e

aσ

]︃
δe ρ
a .

We are finally ready to write down the variation of the fermionic lagrangian in a

suitable form:

δLfermion =

[︃
iψ̃ σ̃aDµψ +

1

2
Vµ ψ̃ σ̃

aψ − i

4
Dµ

(︁
ψ̃ σ̃νψ

)︁
eaν +

i

4
Dν

(︁
ψ̃ σ̃µψ

)︁
eaν+

+
i

4
Dν
(︁
ψ̃ σ̃ρψ

)︁
ϵνσµρ e

aσ

]︃
δe µ
a − i

8

[︃
Dλ

(︁
ψ̃ σ̃ρψ

)︁
+Dρ

(︁
ψ̃ σ̃λψ

)︁]︃
δgλρ.

(B.13)

The complete variation of the action under an infinitesimal variation of the back-

ground metric is obtained by substituting (B.7) and (B.13) into (B.4):

δS =

∫︂
M
d4x

√
g

{︃[︃
− 1

2
gµν

(︂
Dρϕ̃ D

ρϕ+ iV ρ
(︁
Dρϕ̃ ϕ− ϕ̃ Dρϕ

)︁)︂
+Dµϕ̃ Dνϕ+

+
3qr
2
VµVν ϕ̃ϕ+ iVµ

(︂
Dνϕ̃ ϕ− ϕ̃ Dνϕ

)︂
+
qr
4

(︂
Rµνϕ̃ϕ+ gµν∇ρ∇ρ(ϕ̃ϕ)+

−∇µ∇ν(ϕ̃ϕ)
)︂]︃
δgµν +

[︃
iψ̃ σ̃aDµψ +

1

2
Vµ ψ̃ σ̃

aψ − i

4
Dµ

(︁
ψ̃ σ̃νψ

)︁
eaν+

+
i

4
Dν

(︁
ψ̃ σ̃µψ

)︁
eaν +

i

4
Dν
(︁
ψ̃ σ̃ρψ

)︁
ϵνσµρ e

aσ

]︃
δe µ
a +

− i

8

[︃
Dλ

(︁
ψ̃ σ̃ρψ

)︁
+Dρ

(︁
ψ̃ σ̃λψ

)︁]︃
δgλρ

}︃
.

(B.14)
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Applying the definitions (B.2) and (B.3) according to which one is more convenient

for a given term, after a bit of algebra on the fermionic sector one gets the expression

for the stress-energy tensor:

Tµν = −gµν
[︂
Dρϕ̃ D

ρϕ− iV ρ
(︂
Dρϕ̃ ϕ− ϕ̃ Dρϕ

)︂]︂
+ 3qrVµVν ϕ̃ϕ+

qr
2
Rµν ϕ̃ϕ+

+
[︂
Dµϕ̃ Dνϕ+ iVµ

(︂
Dνϕ̃ ϕ− ϕ̃ Dνϕ

)︂
+ (µ↔ ν)

]︂
+
qr
2

[︂
gµν ∇ρ∇ρ(ϕ̃ϕ)+

−∇µ∇ν(ϕ̃ϕ)
]︂
− 1

4

[︂
iDµψ̃ σ̃νψ − iψ̃ σ̃µDνψ − Vµ ψ̃ σ̃νψ + (µ↔ ν)

]︂
.

(B.15)

93





APPENDIX C

Spherical harmonics on S3

Here we present a brief review of scalar and spinorial harmonics on S3, based mainly

on appendix A of [10] and on [11], where the topic is developed more broadly.

C.1 Scalar harmonics

To start with, we describe the 3-sphere of radius r as an embedding inside C2 ≃ R4:

ds2 = du dū+ dv dv̄ , uū+ v v̄ = r2 . (C.1)

This manifold has isometry group SO(4) ≃ SU(2)L × SU(2)R with generators LLi
and LRi , i = 1, 2, 3. In differential representation, the two Cartan generators are

given by:

LL3 =
1

2
(u∂u + v∂v − ū∂ū − v̄∂v̄) , LR3 =

1

2
(u∂u − v∂v − ū∂ū + v̄∂v̄) .

(C.2)

In order to make contact with the main text, we introduce the following real coor-

dinates: {︄
u = ir sin θ e−iφ1

v = r cos θ e−iφ2
. (C.3)

In such coordinates, the defining relation for the 3-sphere is automatically satisfied.

The metric induced on S3 reads:

ds2S3 = r2 dθ2 + r2 sin2 θ dφ2
1 + r2 cos2 θ dφ2

2 , (C.4)

and the Cartan generators become:

LL3 =
i

2
(∂φ1 + ∂φ2) , LR3 =

i

2
(∂φ1 − ∂φ2) . (C.5)
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C. Spherical harmonics on S3

Now we introduce the scalar spherical harmonics Y mn
l (θ, φ1, φ2) as a basis for the

space of functions on S3, where l ∈ N and − l
2
≤ m,n ≤ l

2
, m and n taking integer

or semi-integer values according to the parity of l. Their expressions is given by the

sum:

Y mn
l = Nlmn

∑︂
k

rl (−i)2k+m+n (sin θ)2k+m+n (cos θ)l−m−n−2k e−iφ1(m+n) e−iφ2(m−n)

k! (k +m+ n)!
(︁
l
2
−m− k

)︁
!
(︁
l
2
− n− k

)︁
!

,

(C.6)

where the index k runs on integers between max{0,−m − n} and l
2
− max{m,n}

and the coefficient in front of the sum is:

Nlmn =

√︄
(l + 1)

(︁
l
2
−m

)︁
!
(︁
l
2
− n

)︁
!
(︁
l
2
+m

)︁
!
(︁
l
2
+ n
)︁
!

2π2
. (C.7)

Each function f : S3 → C can be decomposed in this basis with coefficients flmn ∈ C:

f(θ, φ1, φ2) =
+∞∑︂
l=0

l
2∑︂

m,n=− l
2

flmn Y
mn
l (θ, φ1, φ2) . (C.8)

The scalar harmonics so defined possess two important properties that will be useful

for our purposes: (︁
Y mn
l

)︁∗
= (−1)m+n Y −m,−n

l , (C.9)∫︂
S3

d3x
√
g3 Y

mn
l

(︁
Y m′n′

l′

)︁∗
= δl,l′ δm,m′ δn,n′ , (C.10)

where g3 is the determinant of the metric on the 3-sphere. Noteworthy, Y mn
l are

eigenfunctions of both the Cartan generators and of the Laplacian on the 3-sphere:

∇2Y mn
l = − 1

r2
l (l + 2)Y mn

l , LL3 Y
mn
l = mY mn

l , LR3 Y
mn
l = nY mn

l .

(C.11)

From these relations we can derive the expressions for the derivatives of Y mn
l with

respect to φ1 and φ2:

∂φ1Y
mn
l = −i(LL3 + LR3 )Y

mn
l = −i(m+ n)Y mn

l , (C.12)

∂φ2Y
mn
l = −i(LL3 − LR3 )Y

mn
l = −i(m− n)Y mn

l . (C.13)

We will need also the derivative with respect to θ and this has to be computed

directly using the explicit expression (C.6). The result one obtains is:

∂θY
mn
l = (m+ n) tan−1 θ Y mn

l − (m− n) tan θ Y mn
l +

− i
√︁

(l + 2m+ 2) (l − 2m) ei(φ1+φ2) Y m+1,n
l .

(C.14)

Note that almost every property we listed so far is independent of the metric on

the 3-sphere. However, the metric enters the definition of the Laplacian operator,

96



C.2. Spinor harmonics

hence it is natural to expect that the action of the Laplactian on the scalar harmonics

changes when considering a twisted metric as we do in chapter 4. This is indeed the

case and in particular, once we introduce the twisting, we have:

∇2
(twisted)Y

mn
l = − 1

r2
l (l + 2)Y mn

l − 1

β2
[σ1 (m+ n) + σ2 (m− n)]2 Y mn

l . (C.15)

C.2 Spinor harmonics

Analogously, we can introduce the spinorial spherical harmonics on S3 as the spino-

rial functions: (︁
Sλlmn

)︁
α
=

(︄
cos νλlm Y

mn
l

sin νλlm Y
m+1,n
l

)︄
, (C.16)

where λ = +,−. For λ = + the indices take values l ≥ 1 and − l
2
≤ m ≤ l

2
− 1,

while for λ = − they take valus l ≥ 0 and − l
2
− 1 ≤ m ≤ l

2
, and in both cases

− l
2
≤ n ≤ l

2
. The sines and cosines appearing are defined to be:

sin ν±lm = ∓
√︄
l + 1± (2m+ 1)

2 (l + 1)
, cos ν±lm =

√︄
l + 1∓ (2m+ 1)

2 (l + 1)
. (C.17)

Note that sin ν−lm = cos ν+lm and cos ν−lm = − sin ν+lm. The functions (C.16) are a basis

for left-handed spinorial functions. Taking the hermitian conjugate, we find a basis

for right-handed spinors:

(︁
Sλlmn

)︁†
α̇
=

(︄
cos νλlm

(︁
Y mn
l

)︁∗
sin νλlm

(︁
Y m+1,n
l

)︁∗
)︄
, (C.18)

Much like in the scalar case, each spinorial function ψ defined on S3 can be decom-

posed in the basis {Sλlmn} with coefficients ψλlmn ∈ C:

ψ(θ, φ1, φ2) =
∑︂
l,m,n

∑︂
λ=+,−

ψλlmn S
λ
lmn , (C.19)

where the extrema of the sums over l, m, and n are specified by the ranges above.

Much like the scalar harmonics, the spinorial harmonics satisfy the property:∫︂
d3x

√
g3
(︁
Sλlmn

)︁†
α̇
Iα̇α
(︁
Sλ

′

l′m′n′

)︁
α
= δl,l′ δm,m′ δn,n′ δλ,λ′ , (C.20)

Moreover, in the left-invariant frame (3.17) the following additional property holds:

(iσ̃µ ∂µ) S
λ
lmn = αλ S

λ
lmn , (C.21)

where:

α+ =
1

r
(l + 2) , α− = − l

r
. (C.22)
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However, this relation obviously depends on the metric on S3. If we introduce the

twisting of the 3-sphere, in the twisted left-invariant frame (4.13), it is modified as:

(iσ̃µ ∂µ) S
λ
lmn = αλ S

λ
lmn +

i

β

[︁
(σ1 + σ2)L

L
3 + (σ1 − σ2)L

R
3

]︁
Sλlmn , (C.23)

where LL3 and LR3 are the same Cartan generators in the differential representation

that we introduced above (C.5).
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stato il miglior relatore e mentore che potessi avere. Mi ha insegnato moltissimo, è
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