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Semantic image segmentation is a computer vision task in which we label speci�c

regions of an image according to their semantic content. This task is of essential

importance for a wide range of applications like robotics, autonomous driving,

medicine and image editing. Although many datasets have been built for this

task, they are typically generic while a speci�c problem could require to focus

more on the data related to it.

One of the biggest problems is represented by the di�culty of gathering large

datasets. This is caused by the intrinsic complexity and cost of producing

�ne detailed ground truth for the interested data, as it consists in manually

classifying each pixel of the images.

In this work we tried to mitigate this problem developing and testing new

techniques to perform semi-supervised training and domain adaptation with

unlabeled data. Our framework started from some works, presented in the

literature, which exploit an adversarial learning framework in order to train a

segmentation network using both supervised and unsupervised data. Finally,

we developed some extensions that further improve the performances of the

unsupervised training process.
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1 Introduction

Semantic image segmentation is a computer vision task in which we label spe-

ci�c regions of an image according to their semantic content. More speci�cally,

the goal of semantic image segmentation is to label each pixel of an image with

the corresponding class of what is being represented. Since the prediction is

done for every pixel in the image, this task is commonly referred to as dense

prediction.

The task of semantic segmentation is of essential importance for a wide range of

real world applications, for example: road segmentation for autonomous vehi-

cles, scene segmentation for robot perception, medical image segmentation and

image editing tools.

Numerous methods have been proposed to tackle this task and large datasets

have been constructed with focus on di�erent sets of scenes/objects to target

various real world applications. However, this task remains challenging because

of large object/scene appearance variations, occlusions, and lack of context un-

derstanding.

Although many datasets have been built for this task, they are typically generic

while a speci�c problem could require to focus more on the data related to it.

One of the biggest problems is represented by the di�culty of gathering large

datasets. This is caused by the intrinsic complexity and cost of producing �ne

detailed ground truth for the interested data, as it consists in manually classi-

fying each pixel of the images.

In this work we tried to mitigate this problem developing and testing new

techniques to perform semi-supervised training and domain adaptation with

unlabeled data. In particular, we investigated the use of datasets which are

only partially annotated and, for the domain adaptation task, we considered

a scenario where a large amount of annotated synthetic data is available but

labeled real world samples are not available.

We started from the framework proposed by Hung et al. [1], which exploits

an adversarial learning framework, where a segmentation network is trained

using both labeled and unlabeled data thanks to the combination of three dif-

ferent losses. The �rst loss is a standard supervised cross-entropy loss exploiting
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ground truth annotations which allows to perform an initial supervised training

phase on labeled data. The second one is an adversarial loss derived from a

fully convolutional discriminator, which takes in input the semantic segmenta-

tion from the generator network and the ground truth segmentation maps and

produces a pixel-level con�dence map distinguishing between the two types of

data. The third one is based on a self-teaching framework, where the predicted

segmentation is passed through the discriminator in order to obtain a con�-

dence map and then high con�dence regions are considered reliable and used

as ground truth for self-teaching the network over them. Finally, we developed

some extensions that further improve the performances of the unsupervised

training process.

The remainder of this thesis is organized as follows. Chapter 2 introduces the

problem of semantic segmentation and describes the state-of-the-art frameworks

that use deep learning techniques to solve this problem. Chapter 3 describes

Generative Adversarial Networks and some advanced techniques that exploit

unsupervised or weakly supervised data to improve the performance of image

segmentation. Chapter 4 describes the framework utilized for this work and

the proposed techniques that have been developed. Chapter 5 reports the main

results obtained from the experiments. Chapter 6 discusses the current status

of the project and also outlines possible directions for future work. Chapter

7 reports some additional visual results of the developed technique. Finally

Chapter 8 describes some additional results on the domain adaptation task.
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2 Semantic Segmentation

Image segmentation is a computer vision technique that consists in dividing

or partitioning an image into parts that have similar features or properties.

Semantic image segmentation is a more challenging extension of this task which

aims to label each pixel of an image with a corresponding class of what is being

represented. Since we are making a prediction for every pixel in the image, this

task is commonly referred to as dense prediction.

The task of semantic segmentation is of essential importance for a wide range

of real world applications. For example, an autonomous car needs to detect the

roadsides with a high precision in order to move by itself. In robotics, production

machines should be able to delineate the exact shape of an object to perform

advanced automatic tasks. Further examples could also include medical image

segmentation for automatic disease diagnosis and advanced image editing tools.

It is important to note that semantic segmentation does not separate instances

of the same class but only focuses on the category of each pixel. In other words,

two objects of the same category in the input image will not be distinguished

as separate objects. There exists a di�erent class of models, known as instance

segmentation models, which do distinguish between separate objects of the same

class. Figure 2.1 reports an illustration of this di�erence.

Figure 2.1: Illustration of di�erent computer vision task related to image

understanding

The goal of semantic segmentation, in the simplest formulation, is to take

either a RGB color image (height× width× 3) or a grayscale image (height×
width × 1) and output a segmentation map where each pixel contains a class

label represented as an integer (height×width×1). More advanced techniques
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add additional channels to the input image to include 3D information of the

environment (depth maps).

Currently, the most performing techniques for semantic segmentation are based

on Deep Convolutional Neural Networks. In the following sections these tech-

niques will be introduced as well as some state-of-the-art network for semantic

segmentation.

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) [2] are a specialized kind of neural net-

work for processing data that has a known grid-like topology. Some examples

include time-series data, which can be thought of as a 1-D grid taking samples

at regular time intervals, and image data, which can be considered as a 2-D

grid of pixels.

The name "convolutional neural network" indicates that the network employs

a mathematical operation called convolution that is a specialized kind of linear

operation. Convolutional networks are simply neural networks that use convo-

lution in place of general matrix multiplication in at least one of their layers [3].

CNNs are composed of multiple building blocks, some common examples in-

cude: convolutional layers, pooling layers, and fully connected layers, that are

designed to automatically learn spatial hierarchies of features through a back-

propagation algorithm [4].

Convolutional Layer

Convolution is a specialized type of linear operation which in this particular case

is used for feature extraction, where a kernel (composed by a 2D array of num-

bers), is applied across the input (denoted as input tensor). An element-wise

product between each element of the kernel and the input tensor is calculated

at each location of the tensor and summed to obtain the output value in the

corresponding position of the output tensor, called a feature map. This pro-

cedure is repeated applying multiple kernels, with di�erent sizes, to form an

arbitrary number of feature maps, which represents di�erent characteristics of

the input tensors. Figure 2.2 shows an illustration of the standard convolution

process for 2D data.
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Figure 2.2: Example of standard convolution with a kernel size of 3× 3.

There exists some variations of the standard convolution described above.

For example, we may want to skip over some positions of the kernel to reduce

the computational cost. This operation is called strided convolution and it can

be seen as a downsampling of the output of the full convolution function. It

is also possible to de�ne a separate stride for each direction of motion of the

kernel.

Another variation of the standard convolution operation is the dilated convo-

lution, also called "Atrous Convolution" [5], that consists in inserting "holes"

in the kernel matrix to capture features of the input tensor at a di�erent scale.

Compared to the increase in the kernel size, this operation does not require ad-

ditional computational costs. Figure 2.3 shows an illustation of this technique.

Figure 2.3: Example of atrous convolution with a kernel size of 3× 3 and dilation

factor equal to 1.

Finally, the outputs of a linear operation such as convolution are then passed

through a nonlinear activation function. There are three functions that are

commonly used for this task:

• Sigmoid function: f(x) =
1

1 + e−x
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• Hyperbolic tangent: f(x) =
2

1 + e−2x
− 1

• Recti�ed Linear Unit (ReLU): f(x) = max(0, x)

Pooling Layer

The pooling layer is often used between convolutional layers in a CNN archi-

tecture. This layer provides a typical downsampling operation which reduces

the in-plane dimensionality of the feature maps in order to introduce a trans-

lation invariance to small shifts and distortions, and to decrease the number of

subsequent learnable parameters. Typically this layer is used to perform two

operations: average pooling and maximum pooling. Maximum pooling extracts

patches from the input feature maps, outputs the maximum value in each patch,

and discards all the other values. Average pooling instead outputs the average

value in each patch. Figure 2.4 shows an illustation of max pooling operation.

Figure 2.4: Example of max pooling operation with a �lter size of 2× 2.

Fully Connected Layer

In the classi�cation problems the output feature maps of the �nal convolution

or pooling layer is typically �attened (i.e. transformed into a one-dimensional

vector), and connected to one or more fully connected layers (known as dense

layers), in which every input is connected to every output by a learnable weight.

In a classi�cation task, the last of these layers typically has the same number

of output nodes as the number of considered classes. A common activation

function applied to the multi-class classi�cation task is the softmax function

which normalizes output real values from the last fully connected layer to target

class probabilities, where each value ranges between 0 and 1 and all values sum

to 1.
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The softmax function is de�ned as:

f(x)i =
exi∑K
k=1 e

xk

(2.1)

Where i is the i-th class and K is the number of classes considered for the

classi�cation problem.

This layer was initially used also to perform semantic segmentation, however this

had the drawback of limiting the input images to a �xed size. For this reason,

starting from the idea introduced by the Fully Connected Network (FCN) [6],

the dense layers have been substituted by convolutional ones which solve the

problem of multiple resolution images and also reduce the computational costs

needed to produce the output segmentation maps.

Network Training

Training a network is a process which consists in �nding kernels in convolutional

layers and weights in fully connected layers which minimize the di�erences be-

tween output predictions and given ground truth labels on a training dataset.

The backpropagation algorithm is the method commonly used for training neu-

ral networks where loss function and gradient descent optimization algorithm

play essential roles. A loss function, also referred to as a cost function, measures

the compatibility between output predictions of the network and given ground

truth labels.

Gradient descent is commonly used as an optimization algorithm that iteratively

updates the learnable parameters (i.e. kernels and weights) of the network to

minimize the loss. The gradient of the loss function provides us the direction in

which the function has the steepest rate of increase and each learnable param-

eter is updated in the negative direction of the gradient with an arbitrary step

size based on a hyperparameter called learning rate. The gradient is, mathemat-

ically, a partial derivative of the loss with respect to each learnable parameter,

and a single update of a parameter is formulated as follows:

w = w − η · ∂L
∂w

(2.2)

Where w stands for each learnable parameter, η stands for a learning rate, and

L stands for a loss function.

In practice, the learning rate is one of the most important hyperparameters

to be set before the training starts. As a consequence of memory limitations,
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the gradients of the loss function with regard to the parameters are computed

by using a subset of the training dataset called mini-batch, and applied to the

parameter updates. This method is called mini-batch gradient descent, also

frequently referred to as stochastic gradient descent (SGD), and the mini-batch

size is also a hyperparameter. In addition, many improvements on the gradient

descent algorithm have been proposed and widely used, such as SGD with

momentum, and Adam [7].

2.2 CNNs for Image Classi�cation

The ImageNet challenge has been traditionally tackled with image analysis al-

gorithms such as SIFT with mitigated results until the late 90s. However, a gap

in performance has been brought by using neural networks.

The �rst deep learning model published by A. Krizhevsky et al. [8] won the

2012 ImageNet competition with a test accuracy of 84.6% outperforming the

previous best one with an accuracy of 73.8%. This famous model, the so-called

"AlexNet" is what can be considered today as a simple architecture with �ve

consecutive convolutional �lters, max-pool layers and three fully-connected lay-

ers.

Simonyan at al. [8] (2014) released the VGG16 model, composed of sixteen

convolutional layers, multiple max-pool layers and three �nal fully-connected

layers. In particular, they chained multiple convolutional layers with ReLU

activation functions creating non-linear transformations. Indeed, introducing

non-linearities allows models to learn more complex patterns. Moreover they

introduced 3x3 �lters for each convolution (as opposed to 11x11 �lters for the

AlexNet model) and noticed they could recognize the same patterns than larger

�lters while decreasing the number of parameters to train. This model won the

2013 ImageNet competition with 92.7% accuracy.

Szegedy et al. (2014) [9] proposed GoogLeNet (as known as Inception V1), a

deeper network with 22 layers using such "inception modules" for a total of

over 50 convolutional layers. Each module is composed of 1x1, 3x3, 5x5 con-

volutional layers and a 3x3 max-pool layer in order to increase sparsity in the

model and obtain di�erent type of patterns. The feature maps produced are

then concatenated and analyzed by the next inception module. The GoogLeNet

model won the 2014 ImageNet competition with accuracy of 93.3%.

Microsoft ResNet [10] brought back the idea of going deeper. This model won
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the 2016 ImageNet competition with 96.4% accuracy. It is well-known due to its

depth (152 layers) and the introduction of residual blocks. The residual blocks

address the problem of training a really deep architecture by introducing iden-

tity skip connections between the output of one or multiple convolutional layers

and their original input. Consequently, patterns from the input image can be

learned in deeper layers. Moreover, this method does not add any additional

parameter and does not increase the computational complexity of the model.

The residual block is shown in �gure 2.5.

Figure 2.5: Basic building block of residual learning framework

2.3 CNNs for Semantic Segmentation

A naive approach towards constructing a neural network architecture for seman-

tic segmentation simply consists in stacking a number of convolutional layers

(with same padding to preserve dimensions) and output a �nal segmentation

map. This directly learns a mapping from the input image to its correspond-

ing segmentation through the successive transformation of feature mappings.

However this approach is quite computationally expensive and is not used in

practice.

It is important to note that for deep convolutional networks, earlier layers tend

to learn low-level concepts while later layers develop more high-level (and spe-

cialized) feature mappings. A common technique to maintain expressiveness

consists in increasing the number of feature maps (channels)as we get deeper in

the network.

Currently, the most successful techniques for semantic segmentation are based

on the same macro structure that is called Autoencoder. In general, these types

of models are composed by two main components: the �rst one, which is called

Encoder, is a state-of-the-art CNN for classi�cation without its �nal fully con-

nected layers. The second one, which is called Decoder, is the component that

upsamples the feature maps produced by the Encoder to the �nal pixel-wise

prediction. Decoders are the components that most determine the di�erence
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between those models as they di�er in the approaches utilized to upsample the

resolution of the feature map.

The �rst network that adopted such structure was the Fully Convolutional Net-

work (FCN) by Long et al. [6]. They transformed the existing and well-known

classi�cation models into fully convolutional ones by replacing the fully con-

nected layers with convolutional ones to output spatial maps instead of classi�-

cation scores. Those maps are upsampled using fractionally strided convolutions

to produce dense per-pixel labeled outputs. This work is considered a milestone

since it showed how CNNs can be trained end-to-end for this problem, e�ciently

learning how to make dense predictions for semantic segmentation with inputs

of arbitrary sizes [11].

Badrinarayanan et al.[12] presented SegNet, a variant of FCN in which the

decoder stage is composed by a set of upsampling and convolutional layers

which are at last followed by a softmax classi�er to predict pixel-wise labels.

Each upsampling layer in the decoder corresponds to a max-pooling one in the

encoder-part. This operation is performed using the max-pooling indices from

the corresponding feature maps in the encoder phase. The upsampled maps are

then convolved with a set of trainable �lters to obtain dense features maps.

Ronneberger et al.[13] introduced the U-Net architecture which is an improve-

ment of FCN. They modi�ed the fully convolutional architecture by expanding

the capacity of the decoder module. The architecture consists in a contracting

path to capture context and a symmetric expanding path that enables precise

localization.

Lin et al. [14] introduced the Feature Pyramid Network (FPN) an architecture

that shows signi�cant improvement as a generic feature extractor in several

applications. In particular, they exploited the inherent multi-scale, pyramidal

hierarchy of deep convolutional networks to construct feature pyramids with a

marginal extra cost. A top-down architecture with lateral connections is devel-

oped for building high-level semantic feature maps at all scales.

Zhao et al.[15] proposed the Pyramid Scene Parsing Network (PSPNet) to bet-

ter learn the global context representation of a scene. Patterns are extracted

from the input image using a feature extractor like ResNet [10] with a dilated

network strategy. Then the feature maps are fed to a Pyramid Pooling Mod-

ule to distinguish patterns with di�erent scales. Features are pooled with four

di�erent scales each one corresponding to a pyramid level and processed by a

1x1 convolutional layer to reduce their dimensions. With this technique each
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pyramid level analyses sub-regions of the image with di�erent location. The

outputs of the pyramid levels are upsampled and concatenated to the inital fea-

ture maps to contain the local and the global context information. Finally, they

are processed by a convolutional layer to generate the pixel-wise predictions.

Chen et al. [16] presented the Deeplab v2, an autoencoder network based on

ResNet network [10]. In particular, they removed the down-sampling operator

from the last few max pooling layers of DCNNs and instead upsampled the �lters

in subsequent convolutional layers. Filter upsampling consists in inserting holes

between nonzero �lter taps. In [16] they used the term atrous convolution as a

shorthand for convolution with upsampled �lters. Moreover to handle objects

at multiple scales, they employed multiple parallel atrous convolutional layers

with di�erent sampling rates and they called the proposed technique "Atrous

Spatial Pyramid Pooling" (ASPP). Finally, they boosted the model's ability to

capture �ne details by employing a fully connected Conditional Random Field

(CRF) [17].
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3 Unsupervised Techniques for

Semantic Segmentation

As mentioned in the initial problem statement, the goal of this work is to develop

and test new techniques which improve the accuracy of semantic segmentation

models in all the situations in which large datasets are not available or very

costly to produce.

The way to achieve this is to �nd the best method to extract useful information

from unlabeled data that can be used to reinforce the standard supervised

training. We chose to utilize a framework based on GANs [18] that is very

commonly used for this task.

The work for this thesis is based on the work of Hung et al. [1] that proposed

a new technique to reinforce the adversarial training with unsupervised data.

This and other techniques will be discussed in details in the following sections.

3.1 Generative Adversarial Networks

Goodfellow et al. [18] in 2015 proposed a new framework for estimating gen-

erative models via an adversarial network. This framework, called Generative

Adversarial Networks (GANs), is composed by two networks pitted against each

other: a generative model G (Generator) that captures the data distribution,

and a discriminative model D (Discriminator) that estimates the probability

that a sample came from the training data rather than from G. Figure 3.1

illustrates an example of a basic GAN structure.

As described in the paper [18], the network G takes samples z from a �xed

distribution Pz(z), and transforms them to approximate the distribution of

training samples x. The adversarial network D is used to de�ne a loss function

which is used to explicitly evaluate the output produced by G. This framework

corresponds to a min-max two-player game with the following value function:

V (G,D) : min
G

max
D

V (D;G) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1−D(G(z)))]
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Figure 3.1: Example of a GAN Structure.

In the space of arbitrary functions G and D, a unique solution exists, with G

recovering the training data distribution and D equal to 1/2 everywhere.

The adversarial model is trained to optimally discriminate samples from the

empirical data distribution and samples from the deep generative model. The

generative model is concurrently trained to minimize the accuracy of the ad-

versarial, which provably drives the generative model to approximate the dis-

tribution of the training data. The adversarial network can be interpreted as a

"variational" loss function, in the sense that the loss function of the generative

model is de�ned by auxiliary parameters that are not part of the generative

model.

As originally explained by the authors, GANs can be thought of as analogous

to a team of counterfeiters, trying to produce fake currency and use it without

detection, while the discriminative model is analogous to the police, trying to

detect the counterfeit currency. Competition in this game drives both teams

to improve their methods until the counterfeits are indistinguishable from the

genuine articles [18].

The original GAN was developed using Multi-Layer Perceptrons, but later ver-

sions using deep convolutional GANs (DCGAN [19]) instead have shown im-

pressive improvements in the task of generating realistic data.

As originally suggested by the authors, adversarial networks can be used to

perform semi-supervised learning: features captured by the discriminator can

be used to improve the performance of classi�ers when limited labeled data is

available. The work of this thesis is based on this idea applied to semantic

image segmentation.
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3.2 Adversarial Networks Applied to Semantic

Segmentation

The adversarial networks, as de�ned in the section above, were used in the

original paper to discriminate between the data produced by the generator and

the sample from the real distribution. To apply this framework to the �eld of

semantic segmentation we need to take in account the di�erence between the

two problems.

As discussed in Chapter 2, semantic segmentation models aim to map an input

image into the corresponding segmentation map. This can be done by training

the network in a supervised manner using the labels provided with the input

data.

Using the same terminology of the GANs framework we can identify the seg-

mentation network as the generator that "generates" segmentation maps corre-

sponding to the input images. The adversarial network (discriminator) in this

case has the task of discriminate between the segmentation maps produced by

the generator and the ground truth labels associated to the input images.

Luc et al. [20] in 2016 proposed this approach for semantic segmentation. They

utilized a FCN as the generator network and a CNN as the discriminator net-

work. In their setup the generator network is trained with a combination of two

loss functions: the classical cross-entropy loss between input data and corre-

sponding labels and the adversarial loss provided by the discriminator. As dis-

cussed by the authors of [20], the adversarial loss encourages the segmentation

model to produce label maps that cannot be distinguished from ground-truth

ones by an adversary binary classi�cation model.
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3.3 Semi-Supervised Semantic Segmentation Tech-

niques

Semantic segmentation architectures are typically trained on huge datasets with

pixel-wise annotations (e.g., the Cityscapes [21] or CamVid [22] datasets), which

are highly expensive, time-consuming and error-prone to generate. To overcome

this issue, semi-supervised methods are emerging, trying to exploit weakly an-

notated data (e.g., with only image labels or only bounding boxes) [23, 24, 25,

26, 27, 28, 29] or completely unlabeled [30, 31] data after a �rst stage of super-

vised training.

In 2015 Papandreou et al. [32] introduced a novel Expectation-Maximization

(EM) methods for training DCNN semantic segmentation models from weakly

annotated data. The proposed algorithms alternate between estimating the la-

tent pixel labels (subject to the weak annotation constraints), and optimizing

the DCNN parameters using stochastic gradient descent (SGD). Additionally

they show how the EM approach also excels in the semi-supervised scenario. In

particular, they show that having access to a small number of strongly (pixel-

level) annotated images and a large number of weakly (bounding box or image-

level) annotated images, the proposed algorithm can almost match the perfor-

mance of the fully-supervised system.

In 2017 Souly et al. [33] proposed a weakly supervised semantic segmenta-

tion framework using GANs. In their work they extended GANs by replacing

the traditional discriminator D with a fully convolutional multi-class classi�er,

which, instead of predicting whether a sample x belongs to the data distribu-

tion, assigned to each input image pixel a label y from the K semantic classes

or mark it as fake sample assigning the class K +1. To train this network they

fed three inputs to the discriminator: labeled data, unlabeled data and fake

data.

Hung et al. [1] developed a di�erent framework for semi-supervised semantic

segmentation. Di�erently from other competing approaches they did not uti-

lize weakly annotated images to improve the accuracy, instead they proposed

a framework based on GANs that uses unlabeled data to boost the standard

training process. In contrast to the typical GANs discriminators, which take

�xed sized input images and output a single probability value, they employed

a fully-convolutional network that can take inputs of arbitrary sizes. After

obtaining the initial segmentation prediction of the unlabeled image from the
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segmentation network, they computed a con�dence map by passing the segmen-

tation prediction through the discriminator network. This con�dence map is

then used as a supervisory signal for a self-taught scheme to train the segmen-

tation network with a masked cross-entropy loss.

We based the work of this thesis on the work proposed in [1] since it has demon-

strated good performances on some commonly used datasets for semantic seg-

mentation.

3.4 Domain Adaptation Techniques

In addition to the aforementioned approaches to tackle the lack of data, an

increasingly popular alternative is represented by domain adaptation from syn-

thetic data. The development of sophisticated computer graphics techniques

enabled the production of huge synthetic datasets for semantic segmentation

purposes at a very low cost. To this end, several synthetic datasets have been

built, e.g., GTA5 [34] and SYNTHIA [35] which have been employed in this

work. The real challenge is then to address the cross-domain shift when a neu-

ral network trained on synthetic data needs to process real-world images since

in this case training and test data are not drawn i.i.d. from the same underlying

distribution as usually assumed [36, 37, 38, 39].

A possible solution is to process synthetic images in order to reduce the inher-

ent discrepancy between source and target domain distributions mainly using

generative networks (i.e., GANs) [40, 41, 42, 43, 44]

Unsupervised domain adaptation has been already widely investigated in clas-

si�cation tasks [45, 46, 47]. On the other hand, its application to semantic

segmentation is still a quite new research �eld.

The �rst work to investigate cross-domain urban scene semantic segmentation

is [48], where an adversarial training is employed to align the features from the

di�erent domains. In particular, they introduced a pixel-level adversarial loss to

the intermediate layers of the network and imposed constraints to the network

output.

In 2017 Zhang et al. [49] presented a curriculum-style learning approach to solve

the problem of domain adaptation. In particular, they �rstly learn to estimate

the global label distributions of the images and local label distributions of the

landmark superpixels of the target domain. Then they used these results to

e�ectively regularize the training of the semantic segmentation network forcing
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its predictions to meet the inferred label distributions over the target domain.

Following these approaches, many works addressed the source to target domain

shift problem with various techniques [50, 51, 52, 53, 53, 54].

As an example, Sankaranarayanan et al. [55] in 2017, proposed an approach

based on GANs to reduce the domain shift between two domains. In particular,

they proposed a joint adversarial approach that transfers the information of the

target distribution to the learned embedding using a generator-discriminator

pair.

Ho�man et al. [56] in 2018 presented a cycle-consistent adversarial domain

adaptation method that uni�es cycle-consistent adversarial models with adver-

sarial adaptation methods. The proposed framework is able to adapt even in

the absence of target labels and is broadly applicable at both the pixel-level and

in feature space.
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4 Proposed Methods

The work of this thesis is based on the work proposed in [1], which has been

introduced in Chapter 3.

We utilized this framework as a baseline for our tests and we developed some

extensions that further improve the performances of the unsupervised training

process.

Firstly, we considered a scenario in which a limited amount of annotated data

are available for a speci�c problem. We used this framework to train the net-

work gathering information from both labeled and unlabeled images. This has

a lot of advantages since unlabeled data can be gathered without any e�ort

compared to the annotated ones, thus we can exploit huge unlabeled datasets

to boost the segmentation network training.

As introduced in [18], this technique follows the idea of using the features learned

by the discriminator network to improve the performances of the generator even

with unlabeled data.

Di�erently from the previous problem, for domain adaptation we used this

framework with data coming from two di�erent datasets. In particular, we

used a computer generated dataset to perform supervised training and a real

world scenes dataset as our unsupervised input.

We investigated a scenario where a large amount of annotated synthetic data is

available but there is no labeled real world data available.

Using this framework we tried to take advantage of unsupervised loss provided

by the discriminator to reduce the domain shift between synthetic and real data.
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4.1 Network Structure

In this section the overall system architecture will be introduced.

The general architecture of the proposed network is shown in Figure 4.1. This

network is based on the framework proposed in [1]. The network is composed

by two main blocks: the segmentation network and the discriminator network.

Figure 4.1: The architecture of the proposed framework for semi-supervised

semantic segmentation. A �rst stage of supervised learning with annotated data is

followed by a second stage of unlabeled data to boost the performance of the

segmentation network through the combination of 3 losses. L1 is a standard

cross-entropy loss between the generated synthetic segmentation maps and their

respective ground truth. L2 is an adversarial loss based on the con�dence map

generated by a fully-convolutional discriminator network, which is trained with a

spatial cross-entropy loss (LD). L3 is a novel loss for unlabeled data.

The segmentation network is a Deeplab v2 [16] which, as described in Chap-

ter 2, is an autoencoder network based on ResNet [10] CNN. We considered

to use Deeplab v2 since it has very good performances, however this approach

does not rely on speci�c properties of this network and it can be substituted

with any network for semantic segmentation. Furthermore in this work we have

not employed the CRF since it is a post-processing technique that is used only

for the output segmentation map.

The discriminator network in the problem of semantic segmentation aims at dis-

criminating images produced by the segmentation network (fake images) from

the corresponding ground truth images (real images).

The network used for the experiments is a fully convolutional network composed

by 5 convolutional layers each followed by a leaky Recti�ed Linear Unit (ReLU)

activation function.

Di�erently from the regular ReLU function, Leaky ReLU allows the pass of a
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small gradient signal for negative values. As a result, it makes the gradients

from the discriminator �ow stronger into the generator.

Di�erently from other adversarial learning models, this network produces a per-

pixel prediction instead of a single binary value for the whole input image.

The parameters of the discriminator network are reported in Figure 4.2.

Conv 4x4, Stride 2, 21 → 64

Leaky Relu

Conv 4x4, Stride 2, 64 → 128

Leaky Relu

Conv 4x4, Stride 2, 128 → 256

Leaky Relu

Conv 4x4, Stride 2, 256→ 512

Leaky Relu

Conv 4x4, Stride 2, 512→ 1

Output

Figure 4.2: Discriminator network used for the experiments. For each block are

reported: block type, kernel size, stride dimension, channels. The dimension of the

output of the last block is referred to the training on the PASCAL VOC2012 dataset
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4.2 Network Training Strategies

In this section we explain in details the techniques utilized to train the frame-

work described above.

The main idea is to use a composed loss function to optimize the generator

network with the standard back-propagation algorithms. This function is com-

posed by di�erent terms that exploit informations coming from both labeled

and unlabeled data.

Given an input image Xn of size H ×W × 3 and its one-hot encoded ground

truth Yn, we denote the segmentation network by G(·) and the predicted prob-

ability map by G(Xn) of size H ×W × C where C is the classes number. We

denote the fully convolutional discriminator by D(·) which takes a probability

map of size H × W × C and outputs a con�dence map of size H × W × 1.

Finally to distinguish between data coming from the supervised dataset and

the unsupervised one we use the terms Xs
n and Xu

n respectively.

The loss of the discriminator LD is a standard cross-entropy loss between the

produced map and the one-hot encoding related to the fake domain (class 0) or

ground truth domain (class 1) depending on the fact that the input has been

respectively drawn from the generator or from ground truth. This loss term is

de�ned by:

LD = −
∑
h,w

log(1−D(G(Xs,u
n ))(h,w)) + log(D(Ys

n)
(h,w)) (4.1)

Where D(G(Xn))
(h,w)) is the con�dence map of Xn at location (h,w), and

D(Ys
n)

(h,w) is the con�dence map of Ys
n at location (h,w) .

Notice that the discriminator has to label with 0 the segmentation maps pro-

duced by the generator using both annotated data from the supervised dataset

(denoted with Xs
n) and unlabeled data from the unsupervised dataset (i.e., Xu

n).

The loss term indicated as L1 is the standard cross-entropy function utilized to

train the network only with annotated data and is de�ned by:

L1 = −
∑
h,w

∑
c∈C

(Ys
n)

(h,w,c) log(G(Xs
n)

(h,w,c)) (4.2)

The loss term indicated as L2 is the adversarial loss driven by the discriminator

network and is de�ned by:

Ls,u
2 = −

∑
h,w

log(D(G(Xs,u
n )(h,w))) (4.3)
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This term force the training of the generator network in the direction of fooling

the discriminator producing data that resembles the ground truth statistics.

Moreover it can be applied even with unlabeled data since it requires only the

output of the segmentation network to be evaluated.

Finally the loss term L3 introduced in [1] is de�ned by the authors as a self-

taught learning framework. The main idea is that the trained discriminator can

generate a con�dence map D(G(Xu
n)) which can be used to infer the regions

su�ciently close to those from the ground truth distribution. The self-taught,

one-hot encoded ground-truth Ŷ is an element-set with Ŷ
(h,w,c∗)
n = 1 if

c∗ = argmaxc(G(Xn)
(h,w,c)). The resulting semi-supervised loss is de�ned by:

L3 = −
∑
h,w

∑
c∈C

I(D(G(Xu
n))

(h,w) > Tsemi) · Ŷ(h,w,c)
n log(G(Xu

n)
(h,w,c)) (4.4)

where I(·) is the indicator function and Tsemi is the threshold to control the

sensitivity of the self-taught process.

Since Ŷn and I(·) are used as constant during training, Equation (4.4) can be

simply viewed as a masked spatial cross entropy loss.

To conclude, a weighted average of the three losses is used to train the generator

exploiting the proposed adversarial learning framework, i.e.,:

LG = L1 + λsadv · Ls
2 + λuadv · Lu

2 + λsemi · L3 (4.5)

where λsadv, λ
u
adv and λsemi are three parameters that controls the in�uence of

each related loss.

The discriminator is fed both with ground truth labels and with the generator

output computed on a mixed batch containing both labeled and unlabeled data

and is trained aiming at minimizing LD. Concerning the generator, instead,

during the �rst 5000 steps L3 is disabled (i.e. λsemi is set to 0) thus allowing

the discriminator to enhance its capabilities to produce higher quality con�dence

maps before using them.

Proposed loss variants

As we can observe in Figure 4.3 the semi-supervised framework described above

produces a con�dence map that has high con�dence (represented in white in the

third image of Figure 4.3) in the center of the biggest segmented areas and very

low con�dence (represented in black in the third image of Figure 4.3) in the area
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corresponding to a change of class (i.e. edges/boundaries) in the segmentation

map.

Xu
n G(Xu

n) D(G(Xu
n)) I(D(G(Xu

n)) > Tsemi)

Figure 4.3: Overview of discriminator output during the training phase.

We designed a modi�ed semi-supervised loss to tackle this problem with the

goal of gathering more information from the generated con�dence map. We

indicate as D̃(·) the normalized version of D(·) de�ned by the following linear

function:

D̃(G(Xn))
(h,w) =

D(G(Xn))
(h,w) −Dmin(G(Xn))

Dmax(G(Xn))−Dmin(G(Xn))
(4.6)

Where Dmax(·) and Dmin(·) indicate the maximum and the minimum values

assumed by D(·) respectively.
Instead of selecting only the most con�dent regions of D(·), we used the full

output of the discriminator as a weighting function for the cross-entropy loss

evaluation. In particular we give large relevance to the regions that look like

ground truth and then smaller and smaller up to no relevance to region marked

as fake by the discriminator.

The designed semi-supervised loss indicated as L3,1 is de�ned by the following

function:

L3,1 = −
∑
h,w

∑
c∈C

D̃(G(Xu
n))

(h,w) · Ŷ(h,w,c)
n log(G(Xu

n)
(h,w,c)) (4.7)

This loss can be seen as smoothed self cross-entropy considering that D̃(G(Xn))

acts as a weighting function for the term Ŷn described in Equation (4.4). Notice

that, as in Equation (4.4), only the term Xu
n corresponding to unlabeled data

is used for the evaluation of this loss.

Considering the task of domain adaptation, the unsupervised loss terms L3 and

L3,1 forces the generator to adapt to the target domain, thus producing maps

that resemble the ground truth ones as in the scenario of a single dataset.

As we can observe in Figure 4.4, unlabeled data would lead the model to pro-

duce a less noisy result in the areas corresponding to large classes in the input
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images. However, at the same time, this loss contribution leads the model to

mislead rare and tiny objects (such as tra�c lights, pole or person).

In particular we can observe that the contribution of the designed loss L3,1 in

this case produces worse visual results compared to Hung et al. (L3).

Image Annotation Baseline (L1) Hung et al. [1] Ours (L3,1)

Figure 4.4: Overview of proposed technique applied to domain adaptation

To overcome this behavior we designed another variation of the L3 loss. The

new loss term indicated by L3,2 is de�ned by:

L3,2 = −
∑
h,w

∑
c∈C

I(D(G(Xu
n))

(h,w) > Tsemi) ·W s
c · Ŷ(h,w,c)

n log(G(Xu
n)

(h,w,c)))

(4.8)

Where W s
c is a weighting function computed on the source domain de�ned as:

W s
c = 1−

∑
n|p ∈ Xn ∧ p ∈ c|∑

n|p ∈ Xn|
(4.9)

Where we indicated as p a pixel of image Xn and |·| represents the cardinality
of the considered set.

This corrective term serves as a balancing factor when unlabeled data of the

target set are used. Notice that the term comes into play only when using unla-

beled data of the target domain but the class frequencies have to be computed

on the labeled data of the source domain since we need the ground truth labels

to evaluate it. This calculation has only to be performed a priori and it is not

changed as the learning progresses.

The results of the di�erent modi�ed losses compared to [1] are reported in

Chapter 5.
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5 Results

5.1 Experimental Setup

The original framework on which this thesis is based [1] was developed using

Pytorch1 version 0.2. We chose to re implement this framework using Tensor-

�ow2 version 1.12.0 because it is more supported than Pytorch and includes

some tools like Tensorboard, which is a powerful suite that allows debug and

visualization of the learning process.

To perform the trainings we utilized a single Nvidia 1080Ti GPU, which has

12GB of dedicated memory. The limited amount of available resources forced

us to reduce the batch size and the images resolution until the networks �tted

in memory. Moreover with this con�guration the longest training we performed

took about 20 hours to complete.

All the experiments were performed using the same parameters to train the

network. We chose these parameters after some preliminary tuning of the pro-

posed architecture. In particular we trained the generator network (G) using the

standard technique proposed by [16] with Stochastic Gradient Descent (SGD)

as optimizer with momentum set to 0.9 and weight decay to 10−4. The dis-

criminator network (D) has been trained using the Adam optimizer [7]. The

learning rate employed for both G and D started from 10−4 and was decreased

up to 10−6 by means of a polynomial decay with power 0.9.

We set the weighting parameters empirically to balance between the three com-

ponents as: λsadv = 10−2 for annotated data, λuadv = 10−3 to give less weight in

case of unlabeled data and λsemi = 10−1. Finally we set Tsemi = 0.2 to obtain a

signi�cant mask from the con�dence map.

For the generator network we used the standard Deeplab v23 without CRF [17]

and based on the ResNet-101 model whose weights were pre-trained on the

MSCOCO dataset [57]4.

1https://pytorch.org/
2https://www.tensorflow.org/
3We used the network provided by Wang and Ji available at

https://github.com/zhengyang-wang/Deeplab-v2--ResNet-101--Tensorflow/
4We used the weights computed by V. Nekrasov available at

https://github.com/DrSleep/tensorflow-deeplab-resnet

https://pytorch.org/
https://www.tensorflow.org/
https://github.com/zhengyang-wang/Deeplab-v2--ResNet-101--Tensorflow/
https://github.com/DrSleep/tensorflow-deeplab-resnet
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Tensor�ow

TensorFlow is an open source software library for high performance numerical

computation. Its �exible architecture allows easy deployment of computation

across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clus-

ters of servers to mobile and edge devices. Originally developed by researchers

and engineers from the Google Brain team within Google's AI organization, it

comes with strong support for machine learning and deep learning and the �ex-

ible numerical computation core is used across many other scienti�c domains.

5.2 Datasets

In this section we introduce the datasets that we used to evaluate the perfor-

mances of the semi-supervised framework and the proposed method for unsu-

pervised domain adaptation.

To test the e�ectiveness of the proposed semi-supervised framework we used

two publicly available datasets, namely PASCAL VOC2012 [58] and Cityscapes

[21].

For the domain adaptation task we want to show that it is possible to train a

semantic segmentation network in a supervised way on synthetic datasets and

then apply unsupervised domain adaptation to real data in autonomous driv-

ing scenarios. Thus, we used two synthetic datasets, namely GTA5 [34] and

SYNTHIA [35] for the supervised part of the training, while the unsupervised

adaptation and the result evaluation have been performed on the real world

Cityscapes [21] dataset.

PASCAL VOC2012 [58] is composed by 10, 582 color images with di�er-

ent resolutions, representing a large number of visual object in realistic scenes.

They have a pixel level semantic annotation with 21 classes. Since the labels

for the original test set are not available, we rearranged the original training

and validation sets for our experiments. Accordingly to what has been done in

[1], we used the original validation set, composed by 1449 annotated images, as

our validation and test dataset.

Before feeding the images to the network we performed data augmentation ap-

plying a random scale between 0.5 and 1.5 and then a random crop of size

321× 321 to have images of the same dimension.

CITYSCAPES [21] is composed by 2, 975 high resolution color images

captured on the streets of 50 di�erent European cities. They have a pixel level

semantic annotation with 34 classes of which only 19 are taken in consideration
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Figure 5.1: Examples of images of the PASCAL VOC2012

dataset

for training and testing. Since the labels for the original test set are not avail-

able, we rearranged the original training and validation sets for our experiments.

We randomly divided the original training split in a training set, composed by

2, 475 images, and a validation set, composed by 500 images. The original high

resolution images have been resized to 375× 750 pixel for memory constraints.

The testing was instead carried out on the original resolution of 2048 × 1024

pixel.

Figure 5.2: Examples of images of the Cityscapes dataset

GTA5 [34] is a huge dataset composed by 24966 photo-realistic synthetic

images with pixel level semantic annotation. The images have been recorded

from the prospective of a car in the streets of virtual cities (resembling the

ones in California) in the open-world video game Grand Theft Auto 5. Being

taken from a high budget commercial production they have an impressive visual

quality and are very realistic. In our experiments, we used 23966 images for

the supervised training and 1000 images for validation purposes. There are 19

semantic classes which are compatible with the ones of the Cityscapes dataset.

The original resolution of the images is 1914 × 1052 pixel but we rescaled and

cropped them to the size of 375×750 pixel for memory constraints before being

fed to the architecture.

SYNTHIA [35] is a very large dataset of photo-realistic images. It has been

produced with an ad-hoc rendering engine, allowing to obtain a large variability

of the images. On the other hand, the visual quality is not the same of the

commercial video game GTA5. We used the SYNTHIA-RAND-CITYSCAPES
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Figure 5.3: Examples of images of GTA5 dataset

version of the dataset, which contains 9400 images with annotations compatible

with 16 of the 19 classes of Cityscapes. These images have been captured on the

streets of a virtual European-style town in di�erent environments under various

light and weather conditions. As done in previous approaches, we randomly

extracted 100 images for validation purposes from the original training set,

while the remaining part, composed by 9300 images, is used for the supervised

training of our networks. Again, the images have been rescaled and cropped

from the original size of 760×1280 pixel to 375×750 pixel. For the evaluation of
the proposed unsupervised domain adaptation on the Cityscapes dataset, only

the 16 classes contained in both datasets are taken into consideration.

Figure 5.4: Examples of images of SYNTHIA dataset

5.3 Semi-Supervised Semantic Segmentation

In this section we present the results obtained from each of the techniques de-

scribed in Chapter 4.

The �rst goal of this work was to demonstrate the e�ectiveness of the chosen

semi-supervised framework. To test this we utilized two real-world datasets:

PASCAL VOC2012 and Cityscapes. For each dataset we followed the same

training strategy: we utilized half of the training set with annotations to com-

pute the supervised loss terms and the remaining data as unsupervised input

to perform the unsupervised learning.

To test the e�ectiveness of the proposed approach, for each considered dataset,

we performed 4 di�erent tests in which we use di�erent combinations of loss

term to optimize the network:
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• supervised baseline: L1 (indicated as Baseline)

• supervised adversarial: L1 + λsadv · Ls
2 (indicated as Adversarial)

• semi-supervised framework: L1 + λsadv · Ls
2 + λuadv · Lu

2 + L3 (indicated as

Hung et al. [1])

• proposed method: L1 + λsadv · Ls
2 + λuadv · Lu

2 + L3,1 (indicated as Ours)

Results on the PASCAL VOC2012 Dataset

With this dataset we trained the network for 40000 steps with a batch com-

posed by 3 images, which was the maximum number allowed by the memory

constraints.

Table 5.1 shows two evaluation metrics: the mean Intersection over Union (IoU)

and mean pixel accuracy evaluated on the di�erent tested techniques. Table 5.2

shows the mean intersection over union evaluated for each single class of the

dataset.

As we can see from Table 5.1, the original semi-supervised framework presented

by [1] improves mean IoU score by 0.5% and mean pixel accuracy score by 0.13%,

compared to the fully supervised adversarial training technique. Furthermore

the proposed variation of the semi-supervised framework brings a further im-

provement in both the evaluation metrics. In particular from Table 5.2 we can

see how the proposed technique improves the results in some of the considered

classes.

Mean IoU Mean Pixel Accuracy
Baseline 72.38 93.71

Adversarial 73.51 93.97
Hung et al. [1] 74.02 94.10
Ours (L3,1) 74.38 94.17

Table 5.1: Mean results of di�erent techniques evaluated on

the original PASCAL VOC2012 validation dataset.
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Baseline 93.2 87.2 37.4 84.9 64.6 75.5 92.2 84.4 88.6 32.8 75.5 53.6 81.9 77.9 78.2 83.3 52.4 77.8 43.6 83.9 71.1

Adversarial 93.7 86.3 38.9 85.2 66.9 78.7 93.2 85.5 88.0 35.8 75.9 58.8 80.3 77.5 80.5 83.0 54.1 80.9 44.2 83.8 72.8

Hung et al. [1] 93.7 86.6 38.5 86.7 69.7 76.5 93.1 85.2 88.8 33.2 80.1 60.0 81.8 80.6 78.8 83.1 55.3 81.5 44.5 85.9 71.0

Ours (L3,1) 93.8 86.6 38.8 86.3 67.7 76.9 92.6 83.9 88.7 35.0 81.0 62.9 81.7 82.1 79.6 83.2 55.6 82.4 46.3 83.2 73.7

Table 5.2: Mean intersection over union on the di�erent classes of PASCAL

VOC2012 evaluated on the original validation dataset.

Figures 5.5 and 5.6 reports the plot of the training error of G and D re-

spectively during the training process. Figures 5.7 and 5.8 reports the plot of

the mean IoU and mean pixel accuracy evaluated on the validation set. Finally

Figure 5.9 reports the plot of the validation error on the PASCAL VOC2012

validation set.

We evaluated the metrics on the validation error every 1000 steps to reduce the

time needed for the training.

As we can see in Figure 5.9, when we include the discriminator network in the

training process the validation error tends to increase over time.

On the contrary the mean IoU metric and the pixel accuracy continue to im-

prove. In a standard scenario the raise of the validation error suggests that the

network is over�tting on the training data, however this is not the case since

the other evaluation metrics, speci�c for semantic segmentation, are improving

during the training process. This is a common behavior that has been observed

when using adversarial networks: generator and discriminator are competing

against each other, hence improvement on the one means a higher loss on the

other. However the increment of the generator error (after that the discrimi-

nator starts to learn) does not a�ect the quality of the output images, which

instead seems to be improved by the contribution brought by the discriminator.

This increase in the network accuracy can be achieved only with an accurate

tuning of the training parameters, i.e. learning rate or the various weighting

terms. First of all it is essential to tune the learning rate of the generator and

discriminator in a way that allows both to improve simultaneously. Moreover

a too high value for the weighting terms λs,uadv and λsemi can lead the generator

error to diverge rapidly by the in�uence of the discriminator.
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Figure 5.5: Generator training error on the PASCAL VOC2012 dataset. The error

is computed on the batch fed to the network at the corresponding step.
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Figure 5.6: Discriminator error on the PASCAL VOC2012 training dataset. The

error is computed on the batch fed to the network at the corresponding step.



34 Chapter 5. Results

0,6

0,62

0,64

0,66

0,68

0,7

0,72

0,74

0,76

0 5000 10000 15000 20000 25000 30000 35000 40000

M
e

an
 Io

U

Training step

Baseline

Adversarial

Hung et al.

Ours

Figure 5.7: Mean IoU on the PASCAL VOC2012 validation dataset evaluated in

the training phase.
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Figure 5.8: Mean Pixel Accuracy on the PASCAL VOC2012 validation dataset

evaluated in the training phase.
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Figure 5.9: Validation error on the PASCAL VOC2012 validation dataset

evaluated in the training phase.

In Figure 5.10 are reported some examples of output segmentation maps

produced after the training of the network. As we can see from the images, the

visual results con�rm what emerges from the evaluation metrics: the network

trained with the proposed method produces better segmentation maps com-

pared to the other techniques. In particular we can observe how the proposed

method enhances the boundaries of the segmentation map in correspondence of

a class change and it helps to reduce the overall noise of the image.

As we can see in Figure 5.11 there are also some cases in which the proposed

method has worse results compared to the other versions. If we focus on the

examples in the last row, we can clearly see that the proposed method has some

issues in predicting the chair's class. This particular case is a challenging one

because it can have an ambiguous interpretation, indeed the object represented

in the image is shaped like a chair but has some features that are commonly

present on a sofa.

Additional output segmentation maps produced on the PASCAL VOC2012 val-

idation set can be found in Appendix A.
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Backgound Aeroplane Bicycle Bird Boat Bottle Bus

Car Cat Chair Cow Dining-Table Dog Horse

Motorbike Person Potted_Plant Sheep Sofa Train TV/Monitor

Image Annotation Baseline Adversarial Hung et al. [1] Ours (L3,1)

Figure 5.10: Examples of correct semantic segmentation of some sample scenes

extracted from the PASCAL VOC2012 validation dataset. The network is trained

using half of the dataset as annotated data and the remaining as unsupervised data

Image Annotation Baseline Adversarial Hung et al. [1] Ours (L3,1)

Figure 5.11: Examples of incorrect semantic segmentation of some sample scenes

extracted from the PASCAL VOC2012 validation dataset. The network is trained

using half of the dataset as annotated data and the remaining as unsupervised data
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Results on the Cityscapes Dataset

With this dataset we trained the network for 40000 steps with a batch composed

of only one image to �t the memory constraints.

For this dataset we performed the same tests that were performed for the PAS-

CAL VOC2012 dataset to have a fair comparison.

As in the previous dataset we reported the two evaluation metrics and the mean

IoU computed for each di�erent class of the dataset.

As we can see from the results (Tables 5.3 and 5.4), even using this dataset the

proposed method has higher scores in both the evaluation metrics. The semi-

supervised technique of Hung et al. [1] instead has a lower mean IoU compared

to the supervised adversarial training.

If we observe Table 5.2 we can see how the proposed technique improves the

results in the majority of the considered classes.

These results are quite di�erent from the ones reported in the original paper

[1] in which the semi-supervised framework has an higher mean IoU than the

supervised adversarial training. Moreover each obtained result is lower than the

corresponding original one. This is probably caused by the lower resolution of

images used to train the network.

Mean IoU Mean Pixel Accuracy

Baseline 49.81 87.37

Adversarial 50.91 86.38

Hung et al. [1] 50.80 86.69

Ours (L3,1) 53.71 87.79

Table 5.3: Mean results of di�erent techniques evaluated on the original

Cityscapes validation dataset.
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Baseline 86,7 61,3 73,4 24,1 27,6 41,1 15,1 48,7 87,3 39,0 60,6 66,3 14,6 86,6 33,8 53,3 29,1 36,3 61,3

Adversarial 83,5 63,8 70,4 22,2 25,4 42,5 23,6 53,5 88,2 46,1 62,1 65,8 14,8 86,8 34,4 51,7 31,5 38,5 62,5

Hung et al. [1] 84,5 61,8 71,2 23,6 23,4 41,4 23,3 52,2 88,2 43,5 59,9 66,4 14,8 87,0 34,0 56,9 31,7 38,0 63,3

Ours (L3,1) 85,9 66,7 73,8 27,3 28,7 41,6 26,8 54,1 87,2 49,0 65,3 67,0 20,6 87,7 35,4 59,2 40,7 39,5 64,1

Table 5.4: Mean intersection over union on the di�erent classes of Cityscapes

evaluated on the original validation dataset.
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Figure 5.12: Generator training error on the Cityscapes dataset. The error is

computed on the batch fed to the network at the corresponding step.
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Figure 5.13: Generator training error on the Cityscapes dataset. The error is

computed on the batch fed to the network at the corresponding step.
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Figure 5.14: Mean IoU on the Cityscapes validation dataset evaluated in the

training phase.
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Figure 5.15: Mean Pixel Accuracy on the Cityscapes validation dataset evaluated

in the training phase.
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Figure 5.16: Validation error on the Cityscapes validation dataset evaluated in the

training phase.

Figures 5.12 and 5.13 report the plot of the training error of G and D re-

spectively during the learning process. Figures 5.14 and 5.15 reports the plot of

the mean IoU and mean pixel accuracy evaluated on the validation set. Finally

Figure 5.16 reports the plot of the validation error on the Cityscapes validation

set.

We evaluated the metrics on the validation error every 1000 steps to reduce the

time needed for the training.

As we can observe in the plot reported in Figure 5.15, the mean pixel accuracy

during the training phase is very unstable compared to the results on the PAS-

CAL dateset. This can be attributed to two factors: smaller batch size used for

training the network and lower number of images in the validation dataset.

In Figure 5.16 we can observe that the validation error has a similar behavior to

that of the PASCAL dataset, therefore considerations made earlier apply also

in this case.

In Figures 5.17 we reported some examples of the produced output map.

Despite the improvement in the mean IoU, in this dataset we cannot appreciate

a clear visual improvement of the segmentation maps in a large scale. However

if we focus on the images on rows 3 and 5 of Figure 5.17 we can see that the

proposed method is producing better results in the segmentation of the classes
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terrain and fence respectively.

Additional output segmentation maps produced on the Cityscapes validation

set can be found in Appendix A.

road sidewalk building wall fence pole tra�c light tra�c sign vegetation terrain

sky person rider car truck bus train motorcycle bicycle unlabeled

Image Annotation Baseline Adversarial Hung et al. [1] Ours (L3,1)

Figure 5.17: Examples of correct semantic segmentation maps of some sample

scenes extracted from the Cityscapes validation dataset. The network is trained

using half of the dataset as annotated data and the remaining as unsupervised data.
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5.4 Domain Adaptation

The results obtained by the semi-supervised framework and the improvements

achieved by the proposed modi�ed loss have moved this study to a di�erent

but correlated branch of research. Domain adaptation, as discussed in previous

chapters, is a form of unsupervised learning that aims at performing a domain

shift between two data distributions. We tested this framework to perform a

novel unsupervised domain adaptation strategy to adapt a deep network trained

on synthetic data to real world scenes.

To evaluate the performances on this task we performed two di�erent sets of

experiments. In the �rst experiment we trained the network using the scenes

from the GTA5 dataset to compute the supervised loss (i.e. L1) and the adver-

sarial loss (i.e. Ls
2). Then we used the training scenes of the Cityscapes dataset

for the unsupervised domain adaptation, i.e., no labels from Cityscapes have

been used and when dealing with this dataset we only computed the losses Lu
2

and L3. Finally we evaluated the performances on the original validation set of

Cityscapes.

In the second experiment we performed the same procedure but we replaced

the GTA5 dataset with the SYNTHIA one.

In the task of domain adaptation the semantic labels of the Cityscapes dataset

have been used just for test purposes, and the full training set is used without

annotation to perform unsupervised learning.

To test the e�ectiveness of the proposed approach, as done for the single dataset,

we performed 4 di�erent tests in which we use di�erent combinations of loss term

to optimize the network:

• supervised baseline: L1 (indicated as Baseline)

• supervised adversarial: L1 + λsadv · Ls
2 (indicated as Adversarial)

• semi-supervised framework: L1 + λsadv · Ls
2 + λuadv · Lu

2 + L3 (indicated as

Hung et al. [1])

• proposed method: L1 + λsadv · Ls
2 + λuadv · Lu

2 + L3,2 (indicated as Ours)

We have not reported the results with the (L3,1) loss since, as discussed in

Chapter 4, in the task of domain adaptation it has bad visual results compared

to the other techniques.

For all the tests we trained the network for 20000 steps with a batch composed

of only one image to �t the memory constraints.
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Results on GTA5 Dataset

In order to measure the performance we compared the predictions on the original

Cityscapes validation set with the ground truth labels and computed the mean

IoU as done in the semi-supervised experiments and by the majority of the

competing approaches [48, 51, 50].

Table 5.5 shows the results of the proposed approach when exploiting di�erent

domain adaptation strategies and compares them with some state-of-the-art

approaches for domain adaptation.

As a �rst experiment we trained the network in a supervised way on the GTA5

dataset and then we tested it on real world data from the Cityscapes dataset.

In particular using only the loss term L1 we obtained a mean IoU of 27.9%. The

addition of the adversarial loss (i.e. Ls
2) on the synthetic data further improves

the mean IoU to 29.3%. This con�rms the results obtained on the single dataset

in which we observed that even the in�uence of the discriminator on supervised

data can bring an overall improvement on the segmentation maps.

Then we trained the model with unsupervised data using the framework of Hung

et al. [1] obtaining a mean IoU of 29%. Observing more in detail the various

class accuracy it is possible to see that the accuracy has increased on some

of the most common classes corresponding to large structures (road, building,

sky, car), while the behaviour on low frequency classes corresponding to small

objects is more unstable (some improve but others have a lower accuracy).

As discussed in Chapter 4, this is the reason for the introduction of the modi�ed

loss term (i.e L3,2). Thanks to this when using the full framework with all the

loss terms the mean IoU increases to 30.4% and in particular it is possible to

appreciate a large performance boost on many uncommon classes corresponding

to small objects and structures.

By comparing with state-of-the-art approaches it is possible to see how the

method of Hung et al. [1] has lower accuracy than our approach, mostly because

it struggles with small structures and uncommon classes. The method of [48]

has even lower performances, however it is also based on a di�erent generator

network (i.e, the method of [5]).
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Baseline 45.3 20.6 50.1 9.3 12.7 19.5 4.3 0.7 81.9 21.1 63.3 52.0 1.7 77.9 26.0 39.8 0.1 4.7 0.0 27.9

Adversarial 61.0 18.5 51.6 15.4 12.3 20.5 1.4 0.0 82.6 24.7 61.0 52.1 2.2 78.5 25.9 41.5 0.4 8.0 0.1 29.3

Ours (L3,2) 54.9 23.8 50.9 16.2 11.2 20.0 3.2 0.0 79.7 31.6 64.9 52.5 7.9 79.5 27.2 41.8 0.5 10.7 1.3 30.4

Ho�man et al. [48] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

Hung et al. [1] 81.7 0.3 68.4 4.5 2.7 8.5 0.6 0.0 82.7 21.5 67.9 40.0 3.3 80.7 34.2 45.9 0.2 8.7 0.0 29.0

Table 5.5: Mean intersection over union (mIoU) on the di�erent classes of the

original Cityscapes validation set. The approaches have been trained in a supervised

way on the GTA5 dataset and then the unsupervised domain adaptation has been

performed using the Cityscapes training set.

Figure 5.18 shows the output examples of the di�erent versions of our ap-

proach and of the method of [1] on some sample scenes. The supervised training

leads to reasonable results but some small objects get lost or have a wrong shape

(e.g., the riders in row 1). Furthermore, some regions of the street and of struc-

tures like the walls are corrupted by noise (see the street in the last two rows or

the fence on the right in row 3). The adversarial loss Ls
2 reduces these artifacts

but there are still issues on the small objects (e.g., the rider in the �fth row) and

the boundaries are not always very accurate (see the fence in the third row).

The complete model leads to better performances, for example in the images

of Figure 5.18 the people are better preserved and the structures have better

de�ned edges. Finally the approach of [1] seems to lose some structures (e.g.,

the fence in the third row) and has issues with the small objects (the riders in

row 5 get completely lost) as pointed out before.

Additional output segmentation maps produced on the Cityscapes validation

set can be found in Appendix A.



5.4. Domain Adaptation 45

Image Annotation Baseline Adversarial Hung et al. [1] Ours (L3,2)

Figure 5.18: Examples of correct semantic segmentation maps of some sample

scenes extracted from the Cityscapes validation dataset. The network has been

trained using GTA5 with annotations and Cityscapes for the unsupervised part.

Results on SYNTHIA Dataset

By using the SYNTHIA dataset as source dataset, the domain adaptation task

is even more challenging if compared with the GTA5 case since the computer

generated graphics are less realistic. Table 5.6 shows that by training the gener-

ator network in a supervised way on the SYNTHIA dataset and then testing on

the real world Cityscapes dataset, a mean IoU of 25.4% can be obtained. This

value is smaller than the mean IoU of 27.9% obtained by training the generator

on the GTA5 dataset. This result con�rms that the GTA5 dataset has a smaller

domain shift with respect to real world data, when compared with the SYN-

THIA dataset (GTA5 data, indeed, have been produced by a more advanced

rendering engine with more realistic graphics).

Under this training scenario, the adversarial loss (i.e. Ls
2) does not bring to

noteworthy improvements in the domain adaptation task, indeed the mean IoU

is equal to the ones obtained without the contribution of the discriminator.

As in GTA5 dataset we trained the model with unsupervised data using the

framework of Hung et al. [1] obtaining a mean IoU of 29.4%.

Using the proposed framework with the modi�ed loss term (i.e L3,2) a notice-

able improvement to 30.4% of mean IoU can be observed.

The method of [48] appears to be again the less performing approach. In this
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comparison, it is even less accurate than our baseline, but it employs a di�erent

segmentation network.
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Baseline 10.3 20.5 35.5 1.5 0.0 28.9 0.0 1.2 83.1 74.8 53.5 7.5 65.8 18.1 4.7 1.0 25.4

Adversarial 9.3 19.3 33.5 0.9 0.0 32.5 0.0 0.5 82.3 76.9 54.7 5.5 64.9 17.0 5.7 3.9 25.4

Ours (L3,2) 78.4 0.1 73.2 0.0 0.0 16.9 0.0 0.2 84.3 78.8 46.0 0.3 74.9 30.8 0.0 0.1 30.2

Ho�man et al. [48] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.1

Hung et al. [1] 72.5 0.0 63.8 0.0 0.0 16.3 0.0 0.5 84.7 76.9 45.3 1.5 77.6 31.3 0.0 0.1 29.4

Table 5.6: Mean intersection over union (mIoU) on the di�erent classes of the

original Cityscapes validation set. The approaches have been trained in a supervised

way on the SYNTHIA dataset and then the unsupervised domain adaptation has

been performed using the Cityscapes training set.

Figure 5.19 shows the output segmentation maps of the di�erent techniques

on some sample scenes. The �rst thing that can be noticed by looking at the

qualitative results of the baseline supervised version is that by training on the

SYNTHIA dataset some classes as sidewalk and road are highly corrupted. It

is evident that a simple synthetic supervised training starting from this dataset

would bring to a network which can not be used in an autonomous vehicle

scenario. This is probably caused by the not completely realistic representa-

tion of streets and sidewalks in the SYNTHIA dataset, where their textures

are often very unrealistic. Additionally, while the position of the camera in the

Cityscapes dataset is always �xed inside the car, in SYNTHIA the camera can

assume di�erent positions, for example the view can be done from inside the

car, from cameras looking from the top or from the side of the road. Similarly

to the baseline approach, the adversarial loss Ls
2 is unable to adapt the network

to the real domain, indeed the class road remains very badly detected also af-

ter its usage. Di�erently, unsupervised data and the self-teaching component

of allows to avoid all the artifacts on the road surface by reinforcing the seg-

mentation network to capture the real nature of this class in the Cityscapes

dataset. Also Hung's method [1] is able to correctly reconstruct the class road,

avoiding the noise present in the baseline, but it su�ers on small classes where

it is outperformed by the proposed method. This is clearly visible on rows 5

and 6 of Figure 5.19, where our method is able to locate more precisely small

classes as person.
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Additional output segmentation maps produced on the Cityscapes validation

set can be found in Appendix A.

Image Annotation Baseline Adversarial Hung et al. [1] Ours (L3,2)

Figure 5.19: Examples of correct semantic segmentation maps of some sample

scenes extracted from the Cityscapes validation dataset. The network has been

trained using SYNTHIA with annotations and Cityscapes for the unsupervised part.
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6 Conclusions

In this work we studied the use of adversarial training to improve the perfor-

mances of semantic segmentation networks using unsupervised data. In par-

ticular, we developed a framework that exploits the information of unlabeled

data to boost the performance of a state-of-the-art network for semantic seg-

mentation. This was made possible by using a fully convolutional discriminator

to produce a con�dence map that has been used to reinforce the learning in

areas with high con�dence. Experimental results demonstrate the e�ectiveness

of this approach when using data coming from the same domain of the labeled

data, moreover, the proposed loss term brings a further improvement compared

to the competing approach.

Furthermore we applied the developed framework to unsupervised domain adap-

tation from synthetic urban scenes to real world ones. Experimental results on a

real world dataset prove the e�ectiveness of the proposed approach with di�er-

ent source datasets. In particular, we obtained good results also on challenging

uncommon classes thanks to the proposed loss weighting term. The results of

this approach have been published in [59]

Regarding future works, a �ne-tuning of the network optimization parameters

can be done in order to increase the performances of the domain adaptation

framework.

In addition, some variations of discriminator network could be tested to improve

the reliability of the produced con�dence maps. Moreover, we could test some

di�erent reparameterizations of the discriminator input in order to reduce the

di�erence between generated and real segmentation maps.

Finally, further research could be devoted to the improvement of the self-

teaching strategy and to the exploitation of generative models to produce more

realistic and re�ned synthetic training data to be fed to the framework for

domain adaptation.
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7 Appendix A

Backgound Aeroplane Bicycle Bird Boat Bottle Bus

Car Cat Chair Cow Dining-Table Dog Horse

Motorbike Person Potted_Plant Sheep Sofa Train TV/Monitor

Image Annotation Baseline Adversarial Hung et al. [1] Ours (L3,1)

Figure 7.1: Extra examples of incorrect semantic segmentation of some sample

scenes extracted from the PASCAL VOC2012 validation dataset. The network is

trained using half of the dataset as annotated data and the remaining as

unsupervised data



52 Chapter 7. Appendix A

Image Annotation Baseline Adversarial Hung et al. [1] Ours (L3,1)

Figure 7.2: Extra examples of correct semantic segmentation of some sample

scenes extracted from the PASCAL VOC2012 validation dataset. The network is

trained using half of the dataset as annotated data and the remaining as

unsupervised data
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road sidewalk building wall fence pole tra�c light tra�c sign vegetation terrain

sky person rider car truck bus train motorcycle bicycle unlabeled

Image Annotation Baseline Adversarial Hung et al. [1] Ours (L3,1)

Figure 7.3: Extra examples of incorrect semantic segmentation maps of some

sample scenes extracted from the Cityscapes validation dataset. The network is

trained using half of the dataset as annotated data and the remaining as

unsupervised data

Image Annotation Baseline Adversarial Hung et al. [1] Ours (L3,2)

Figure 7.4: Extra examples of incorrect semantic segmentation maps of some

sample scenes extracted from the Cityscapes validation dataset. The network has

been trained using GTA5 with annotations and Cityscapes for the unsupervised part.
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Image Annotation Baseline Adversarial Hung et al. [1] Ours (L3,2)

Figure 7.5: Extra examples of incorrect semantic segmentation maps of some

sample scenes extracted from the Cityscapes validation dataset. The network has

been trained using SYNTHIA with annotations and Cityscapes for the unsupervised

part.
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8 Appendix B

The biggest problem of domain adaptation between synthetic and a real world

dataset is the intrinsic di�erence between the two. Computer generated graph-

ics often presents an homogeneous structure while real world data is corrupted

by noise caused by multiple factors.

We tried to reduce the domain shift between the synthetic and the real dataset

adding some noise to the input images during the training on the domain adap-

tation framework.

As a preliminary test we used a simple Gaussian noise added to the images of

GTA5 dataset. In particular we used a Gaussian distribution with µ = 0 and

σ = 5.

Mean IoU Mean IoU with Noise

Baseline 27.9 27.7

Adversarial 29.3 29.6

Hung et al. [1] 29.0 25.3

Ours 30.4 25.1

Table 8.1: Mean IoU for di�erent techniques evaluated on Cityscapes validation

set. The results on the second column are produced with the addition of a Gaussian

noise in the synthetic images.

As we can see from the results in Table 8.1 the addition of the noise to

the synthetic images does not a�ect too much the performances of the network

when using only synthetic data. On the contrary when including real data

to the training process, the performances of the network has very bad results

compared to the version without the addition of noise.

This can suggest that the Gaussian distribution is not the more indicated to

model the domain shift between the two datasets.

Further experiments can be made to investigate di�erent type of noise to make

the synthetic data more similar to the real ones.

Moreover a more advanced approach could involve GANs to generate more

realistic synthetic data to use in the training process e.g. following the work

proposed in [40].
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