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Introduction

Understanding and modeling the general patterns of human mobility is a long-standing

problem in sociology and human geography. It is not only a major intellectual challenge, but

also of importance for public health, city planning, tra�c engineering and economic forecast-

ing. For example, quanti�able models of human mobility are indispensable for predicting the

spread of biological pathogens.

Research in this area gained new perspectives, arousing the interest of physicists ([BHG06],

[GHB08]) due to the availability of several accurate and large scale electronic dataset, which

helps tracking the mobility �uxes and thus allowing to test the the hypotheses and results of

di�erent models.

Statistical models of spatial �ows have been traditionally developed starting from the

principle of entropy maximization subject to various constraints such as the presence of a �nite

amount of resources to move around. Traditionally mobility �uxes were described by models

originating from physics. The mostly widely is the Gravity Model ([Zip46]) that postulates

�uxes in analogy with the Newtons law of gravitation, where the number of commuters

between two locations is proportional to their populations (i.e. the demographic mass) and

decays with the square of the distance between them.

Besides the Gravity Model, several other models were used like the Intervening Opportu-

nities model ([Sto40]) or the parameter-free Radiation model ([SGMB12]). Despite the new

alternatives, the Gravity Model (with variations and improvements) is still the prevailing

framework used to predict population movement [Bar10] [TTG+10] [JWS08], cargo shipping

volume [KKGB10] and inter-city phone calls [KCRB09], [EEBL].

All the most commonly used approaches result in estimating the �ows as the product of

two types of variables, one type that depends on an attiribute of each single location (e.g. the

population), and the other type that depends on a quantity relating a pair of locations (e.g.

the distance or travel time). The di�erences between the various models consist of the choice

of variables considered and the speci�c function of the distance. The aim of this research is to

develop a set of statistical methods based on non-parametric regression and scaling techniques

that will allow us to understand whether a given class of models is compatible with a set

of observed �ows, irrespective of the particular choice of the variables and functional forms.

The proposed methodology is tested on synthetically generated data, and applied to describe

empirical data of commuting and relocation �ows in the United States, and commuting �ows

in England.

In the �rst chapter we present studies of individual mobility based on data of dispersal

of bank notes and cell phone records, modeled with continuous time random walks. In the
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second chapter we show some formulations of the gravity model, we derive the models by

maximising the entropy, and we describe two alternatives: the Intervening Opportunities and

the Radiation Model. In the third chapter we present the Generalized Linear Model, which is

a technique for �tting the Gravity Model, and we apply it to commuting �ows in the USA.

In the fourth chapter we show the methods that we use for non-parametric �t, and we test

them on synthetic data. In the �fth chapter we present some techniques for testing spatial

model assumptions that we apply in the following chapter.



Chapter 1

Individual human mobility patterns

Given the many unknown factors that in�uence population mobility patterns, ranging

from means of transportation to job- and family-imposed restrictions and priorities, human

trajectories are often approximated with various random walk or di�usion models. In this

chapter we will describe some approaches that physicists have developed to describe human

mobility, studying data of dispersal of bank notes or mobile phone records.

1.1 Dispersal of bank notes

Brockmann et al. ([BHG06]) analysed the dispersal of bank notes to conclude that trav-

elling behaviour can be described by a continuous time random walk process incorporating

scale free jumps as well as long waiting times between displacements.

They utilise data collected at online bill tracking websites which monitor the worldwide

dispersal of large numbers of individual bank notes and then infer the statistical properties

of human dispersal with very high spatiotemporal precision. Their analysis of human move-

ment is based on trajectories of 464, 670 dollar bills obtained from the bill tracking system

www.wheresgeorge.com. They analysed the dispersal of bank notes in the United States,

excluding Alaska and Hawaii. The core data consists of 1,033,095 reports to the bill tracking

website. From these reports they calculated the geographical displacements r = |x2 − x1|
between a primary (x1) and secondary (x2) report location of a bank note and the elapsed

time T between successive reports.

From a total of 20,540 short time trajectories originating all across the United States

they measured the probability p(r) of traversing a distance r in a time interval δT between

one and four days. Between a radius Lmin = 10km and the approximate average East-West

extension of the United States Lmax ∼ 3200km, the distribution exhibits power law behaviour

p(r) ∼ r−(1+β) with an exponent β = 0.59± 0.02. For r < Lmin , p(r) increases linearly with

r which implies that displacements are distributed uniformly inside the disk. They measured

p(r) for three classes of initial entry locations, big, intermediate, and small cities, and they

found that all distributions exhibit an algebraic tail with the same exponent β ∼ 0.6. If

the trajectories are considered random walks, an exponent β in the interval 0 < β < 2 is

characteristic of Lévy �ights (see next section for more details). With this assumption, it is

possible to estimate the time Teq for an initially localised ensemble of bank notes to reach

3



4 CHAPTER 1. INDIVIDUAL HUMAN MOBILITY PATTERNS

the stationary distribution. In this case they obtained Teq ∼ 68days, but data show a far

lesser dispersion than expected. To investigate this problem, they considered the relative

proportion P i
0(t) of bank notes which are reported in a small (20 km) radius around the

initial entry location i as a function of time, and used this quantity as an estimate of the

probability of a bank note being reported at the initial location at time t (�rst-passage times).

They found the asymptotic behaviour P0(t) ∼ At−η with the exponent η = 0.6± 0.03, to be

very di�erent to what might be expected for Lévy �ights (P0(t) ∼ t−2/β , that for β ∼ 0.6 it

implies η ∼ 3.33). The slow decay in P0(t) seems to re�ect the impact of an algebraic tail in

the distribution of rests ϕ(t) between displacements.

In order to model the antagonistic interplay between scale free displacements and waiting

times they use the framework of continuous time random walks (CTRW). A CTRW consists

of a succession of random displacements δxn and random waiting times δtn each of which is

drawn from a corresponding probability density function p(δxn) and ϕ(δt). After N iterations

the position of the walker and the elapsed time are given by xN =
∑

n δxn and tN =
∑

n δtn.

The quantity of interest is the position x(t) after time t and the associated probability density

W (x, t) which can be computed within CTRW theory. For displacements with �nite variance

σ2 and waiting times with �nite mean τ such a CTRW yields ordinary di�usion asymptotically,

i.e. ∂t W (x, t) = D ∂2x W (x, t) with a di�usion coe�cient D = σ2/τ .

In contrast, we assume here that both, p(δxn)and ϕ(δt) exhibit algebraic tails, i.e. p(δxn) ∼ |δxn|−(1+β)

and ϕ(δt) ∼ |δt|−(1+α), for which σ2 and τ are in�nite. In this case we can derive a bifractional

di�usion equation for the dynamics of W (x, t):

∂αt W (x, t) = Dα,β ∂
β
|x| W (x, t).

The symbols ∂αt and ∂β|x| denote fractional derivatives which are non-local and depend on the

tail exponents α and β. The constant Dα,β is a generalised di�usion coe�cient. The solution

of this equation is

Wr(r, t) = t−α/βLα,β(r/t
α/β), (1.1)

where Lα,β is a universal scaling function which represents the characteristics of the process.

This equation implies that the typical distance travelled scales according to r(t) ∼ t1/µ,

where µ = β/α. Thus, depending on the ratio of spatial and temporal exponents, the

random walk can be e�ectively either superdi�usive ( β < 2α ), subdi�usive (β > 2α), or

quasidi�usive (β = 2α). For the exponents observed in the dispersal data (β = 0.59 ± 0.02

and α = 0.60± 0.03) the theory predicts a temporal scaling exponent in the vicinity of unity.

Therefore, dispersal remains superdi�usive despite long periods of rest.

To justify how the dispersal characteristics of bank notes carry over to the travelling

behaviour of humans they observed that the power law with exponent β = 0.6 of the short

time dispersal for bank notes re�ects the human dispersal because the exponent remains

unchanged for short time intervals of T = 2, 4, 7 and 14 days. Long waiting times instead

may be caused by bank notes which exit the money tracking system for a long time, for

instance in banks. However, the inter-report time distribution shows an exponential decay

which suggests that bank notes are passed from person to person at a constant rate. Another

clue comes from a comparison with two independent human travelling datasets: long distance

travel on the United States aviation network and a survey on long distance travel conducted
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by the United States Bureau of Transportation Statistics, which both agree well with the

results of [BHG06].

In [BHG06] the authors tested the validity of the model and concluded that the dispersal

of bank notes and human travelling behaviour can be described by a continuous time random

walk process.

1.1.1 Lévy �ights

Lévy �ights (LF ) are a particular kind of random walks. In a random walk the position

is frequently de�ned as a sum of N independent identically distributed displacements δXn,

with probability density function (pdf ) p(∆x):

XN =

N∑
n=1

∆Xn. (1.2)

We start by discussing the symmetric single step pdfs in one dimension, for an ordinary

random walk. According to the central limit theorem the pdfWY (y,N) for the scaled position

YN =
XN√
N

(1.3)

is independent of N in the limit N → ∞ and Gaussian, i.e.

lim
N→∞

WY (y,N) =WY (y) =
1√
2πσ2

e−y2/2σ2
, (1.4)

where σ2 is the variance of the single step δXn. Equations (1.3) and (1.4) give the universal

scaling relation

XN ∼
√
N, (1.5)

and imply that for large N the pdfWX(x,N) for the positionXN is asymptotically a spreading

Gaussian:

WX(x,N) ∼ 1√
N
WY (x/

√
N). (1.6)

Lévy �ights belong to a class of random walks for which the central limit theorem does

not apply. They can be de�ned by a sum of independent identically distributed random

increments, but in this case the single step pdfs possess algebraic tails that make the single

step second moment divergent

p(∆x) ∼ 1

∆x1+β
0 < β < 2. (1.7)

We can then apply the Lévy Khinchin theorem, that is a generalization of the central limit

theorem, and it states that, if the position of a Lévy �ight is scaled according to:

YN =
XN

N1/β
, (1.8)

the scaled variable possesses a pdf independent of N in the limit N → ∞, i.e.

lim
N→∞

WY,β(y,N) =WY,β(y). (1.9)
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The limiting density WY,β(y) is referred to as a Lévy stable law of index β and is no longer

Gaussian. It can be expressed most easily in Fourier-space:

WY,β(y) =
1

2π

∫
dke−iky−D|k|β , (1.10)

where D is some constant. Asymptotically, the limiting density has the the distribution:

WY,β(y) ∼
1

|y|1+β
. (1.11)

Combining Equations (1.8) and (1.10) one can obtain an explicit expression for the pdf of

XN in the limit of large step number,

WX,β(x,N) ∼ 1

N1/β
WY,β(

x

N1/β
). (1.12)

This implies that the position of a Lévy �ight scales superdi�usively with the step number:

XN ∼ N1/β (1.13)

1.1.2 Continuous time random walk

The continuous time random walk (CTRW), is a process de�ned by two pdfs: one for

the spatial displacements f(∆x) and one for random temporal increments ϕ(∆t). The

CTRW then consists of pairwise random and stochastically independent events, a spatial

displacement ∆x and a temporal increment δt drawn from the combined pdf p(∆x,∆t) =

f(∆x)ϕ(∆t). After N iterations the position is XN =
∑N

n=1∆xn and the time elapsed is

TN =
∑N

n=1∆tn. The Fourier-Laplace transforms of W (x, t), pdf of the process, is given by

W (k, u) =
1− ϕ(u)

u(1− ϕ(u)f(k)))
, (1.14)

ϕ(u) and f(k) are the Laplace and Fourier transform of ϕ(∆t) and f(∆x). From the inverse

Laplace-Fourier transform we obtain

W (x, t) =
1

2π

1

2πi

∫
du

∫
dkeut−ikxW (k, u). (1.15)

W (x, t)may exhibit four di�erent universal behaviours which only depend on the asymptotics

of f(∆x) and ϕ(∆t) and thus the behaviour of f(k) and ϕ(u) for small arguments.

Ordinary Di�usion

When both, the variance of the spatial steps and the expectation value of the temporal

increments exist, we have

f(k) = 1− σ2k2 +O(k4)

ϕ(u) = 1− τu+O(u2),

where σ2 and τ are some constants. Inserting into (1.14) and using (1.15) we �nd that

asymptotically

W (x, t) ∼ 1√
t
e−x2/Dt. (1.16)

Thus, CTRW is equivalent to Brownian motion on large spatio-temporal scales.
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Lévy Flights

When the spatial displacements are drawn from a power-law pdf such as (1.7) the Fourier

transform for small arguments is given by

f(k) = 1−Dβ|k|β +O(k2). (1.17)

When combined with temporal increments with �nite expectation value, the same procedure

as outlined above yields

W (x, t) ∼ 1

t1/β
Lβ(x/t

1/β), (1.18)

where Lβ is a Lévy stable law of index β. Consequently, a CTRW with algebraically dis-

tributed spatial steps of in�nite variance is equivalent to ordinary Lévy �ights with a su-

perdi�usive scaling with time X(t) ∼ t1/β.

Fractional Brownian motion (subdi�usion)

The complementary scenario occurs when ordinary spatial steps (�nite variance and

f(k) ∼ 1− σ2k2 ) are combined with a power-law in the pdf for temporal increments,

ϕ(∆t) ∼ ∆t−(1+α), 0 < α < 1. (1.19)

In this case, the time between successive spatial increments can be very long, e�ectively

slowing down the random walk. The Laplace transform for ϕ(∆t) is given by

ϕ(u) = 1−Dαu
α, (1.20)

where Dα is some constant. One obtains for the position of such a random walk

W (x, t) =
1

2π

∫
dke−ikxEα(−Dαk

2tα),

where the function Eα is the Mittag-Le�er function de�ned by

Eα(z) =
∞∑
n=0

zn

Γ(1 + αn)
.

It is easily checked that

W (x, t) ∼ 1

tα/2
Gα(x/t

α/2),

where Gα is a non-Gaussian limiting function. From this we can obtain the scaling relation

X(t) ∼ tα/2.

Since α < 1 these processes are subdi�usive and sometimes referred to as fractional Brownian

motions.
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Ambivalent processes

The last and most interesting combination of waiting times and spatial steps is the one

in which long waiting times compete and interfere with long range spatial steps, i.e. if both

ϕ(∆t) and f(∆x) decay asymptotically as a power-law, (1.7) and (1.19), so f(k) and ϕ(u)

are respectively like (1.17) and (1.20). The asymptotic pdf for the position of the ambivalent

process can again be expressed in terms of a Fourier inversion and the Mittag-Le�er function

according to

W (x, t) =
1

2π

∫
dke−ikxEα(−Dα|k|βtα).

We can then extract the scaling relation

X(t) ∼ tα/β .

The ratio of the exponents α/β resembles the interplay between subdi�usion and superdif-

fusion. For β < 2α the ambivalent CTRW is e�ectively superdi�usive, for β > 2α e�ectively

subdi�usive. For β = 2α the process exhibits the same scaling as ordinary Brownian mo-

tion, despite the crucial di�erence of in�nite moments and a non-Gaussian shape of the pdf

W (x, t).

1.2 Mobile phone

Barabási et al. [GHB08] argued that each consecutive sighting of a bank note re�ects the

composite motion of two or more individuals who owned the bill between two reported sight-

ings. Thus, it is not clear whether the observed distribution re�ects the motion of individual

users or some previously unknown convolution between population-based heterogeneities and

individual human trajectories.

To overcome this problem, they study the trajectory of 100,000 anonymized mobile phone

users whose position is tracked for a six-month period. This position is known from the

coordinates of the tower routing the communications, which cover an area approximately of

3 km2. The research was performed on a random set of the total data, selected from people

who made or received at least one phone call or SMS during the �rst and last month of the

study; for this selection users who travelled outside the continental territory were excluded.

As expected, data are characterized by a temporal heterogeneity, but the authors checked

that it does not a�ect the results on the observed travel patterns.

To explore the statistical properties of the population's mobility patterns, they measured

the distance between user's positions at consecutive calls, and found that the distribution of

displacements over all users is well approximated by a truncated power-law:

P (∆r) = (∆r −∆r0)
−β exp(−∆r/κ) (1.21)

with exponent β = 1.75 ± 0.15, ∆r0 = 0.5km and cuto� values κ|D1 ≡ 400km and

κ|D2 ≡ 80km. The observed scaling exponent is not far from β = 1.59 ([GHB08, p. 799]),

observed for bank note dispersal, suggesting that the two distributions may capture the same

fundamental mechanism driving human mobility patterns.
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Equation (1.21) is compatible with the hypothesis that human motion follows a truncated

Lévy �ight (TLF ), but the observed shape of P (∆r) could also be explained by a population-

based heterogeneity, corresponding to the inherent di�erences between individuals, coexisting

with individual Lévy trajectories.

In the description of individual trajectories, Barabási et al. characterized the linear size

occupied by each user's trajectory up to time t by its radius of gyration de�ned as:

rga(t) =

√√√√ 1

nac (t)

nac∑
i=1

(r⃗ai − ⃗racm)2,

where r⃗ai represents the i = 1, ..., nca(t) positions recorded for user a and ⃗racm = 1/nac (t)
∑nac

i=1 r⃗
a
i

is the center of mass of the trajectory. The radius of gyration distribution P (rg) can be ap-

proximated with a truncated power-law:

P (rg) = (rg + r0g)
−βr exp(−rg/κ) (1.22)

with r0g ≡ 5.8km, βr = 1.65 ± 0.15 and κ = 350km. An ensemble of Lévy agents displays a

signi�cant degree of heterogeneity in rg; however, this is not su�cient to explain the truncated

power-law distribution P (rg) exhibited by the mobile phone users: the di�erence in the range

of typical mobility patterns of individuals (rg) has a strong impact on the truncated Lévy

behaviour.

If individual trajectories are described by an LF or TLF, then the radius of gyration

should increase with time as rg(t) ∼ t3/(2+β), whereas, for an RW, rg(t) ∼ t1/2; that is, the

longer we observe a user, the higher the chance that she/he will travel to areas not visited

before. Data results indicate that the time dependence of the average radius of gyration of

mobile phone users is better approximated by a logarithmic increase, not only a manifestly

slower dependence than the one predicted by a power law but also one that may appear

similar to a saturation process.

Users with small rg travel mostly over small distances, whereas those with large rg tend

to display a combination of many small and a few larger jump sizes; so rescaling the distri-

butions with rg, the data collapse into a single curve. This suggests that a single jump size

distribution characterises all users, regardless of their rg. P (∆r|rg) ∼ r−α
g F (∆r/rg) is then

an rg-independent function with asymptotic behaviour.

The authors measured the probability that a user returns to the position where he/she was

�rst observed after t hours Fpt(t): for a two-dimensional random walk, Fpt(t) ∼ 1/(t ln2(t)).

In contrast, in this case the return probability is characterized by several peaks at 24 h, 48 h

and 72 h, capturing a strong tendency of humans to return to locations they visited before,

describing the recurrence and temporal periodicity inherent to human mobility.

An important quantity for modelling human mobility patterns is the probability density

function Φ̃a(x, y) to �nd an individual a in a given position (x, y). In order to compare

di�erent users' trajectories, in [GHB08] the authors chose for them a common reference

frame calculated a posteriori. As in the mechanics of rigid bodies, every (two dimensional)

trajectory is characterized by a 2 × 2 matrix known as the tensor of inertia I, where the

number of times a user visited a given location is the mass associated with that particular
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position.

I =

(
Ixx Ixy

Iyx Iyy

)
,

if we denote a user's trajectory with a set of locations (x1, y1), (x2, y2), . . . (xnc , ync), where

nc is the number of positions available for the user, we have

Ixx ≡
nc∑
i=1

y2i , Iyy ≡
nc∑
i=1

x2i , Ixy = Iyx ≡ −
nc∑
i=1

xiy1.

Since the tensor I is symmetric, it is possible to �nd a set of coordinates in which it will

be diagonal. The corresponding eigenvectors determine the principal axes (ê1 and ê2), repre-

senting the symmetry axes of a given trajectory. They transformed each user's principal axes

(ê1 , ê2) to a common intrinsic reference frame (êx , êy). They discovered that the larger an

individual's rg, the more pronounced is his anisotropy. So they scaled the trajectories on the

intrinsic axes with the standard deviation of the locations for each user a:

σax =

√√√√ 1

nac

nac∑
i=1

(xai − xacm)2.

After scaling, the shapes of the trajectories look similar, despite the fact that we are show-

ing users with signi�cantly di�erent mobility patterns and ranges. This is the underlying

procedure that allows them to obtain an universal density function Φ̃(x/σx, y/σy).

They �nd that, in contrast with the random trajectories predicted by the prevailing Lévy

�ight and random walk models, human trajectories show a high degree of temporal and spatial

regularity, each individual being characterized by a time-independent characteristic travel

distance and a signi�cant probability to return to a few highly frequented locations. After

correcting for di�erences in travel distances and the inherent anisotropy of each trajectory,

the individual travel patterns collapse into a single spatial probability distribution, indicating

that, despite the diversity of their travel history, humans follow simple reproducible patterns.

This inherent similarity in travel patterns could impact all phenomena driven by human

mobility, from epidemic prevention to emergency response, urban planning and agent-based

modelling.

Taken together, their results suggest that the Lévy statistics observed in bank note mea-

surements capture a convolution of the population heterogeneity shown in equation (1.22)

and the motion of individual users. Individuals display signi�cant regularity, because they

return to a few highly frequented locations, such as home or work. This regularity does not

apply to the bank notes: a bill always follows the trajectory of its current owner; that is,

dollar bills di�use, but humans do not. Contrary to bank notes, mobile phones are carried by

the same individual during his/her daily routine, o�ering the best proxy to capture individual

human trajectories.

1.3 Exploration and preferential return

Both dollar-bill tracking and mobile-phone data indicate that the aggregated jump-size

(∆r) and waiting-time (∆t) distributions characterizing human trajectories are fat-tailed,
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that is,

P (∆r) ∼ |∆r|−1−α, with0 < α ≤ 2 (1.23)

and

P (∆t) ∼ |∆t|−1−β, with0 < β ≤ 1 (1.24)

where r denotes the distances covered by an individual between consecutive sightings and t is

the time spent by an individual at the same location. These �ndings suggest that if we look

at ∆r, human trajectories are best described as Lévy �ights or CTRWs. In the last section

we saw that, in contrast with the random trajectories predicted by the prevailing Lévy �ights

and random walk models, human trajectories show a high degree of temporal and spatial

regularity, each individual being characterized by a time-independent characteristic travel

distance and a signi�cant probability to return to a few highly frequented locations.

Barabási et al. [SKWB10] studied trajectories of three million anonymized mobile-phone

users and found the same behaviour of (1.23) and (1.24) with exponent α = 0.55 ± 0.05

and cuto� ∆r ∼ 100 km, corresponding to the distance people could reasonably cover in an

hour; and β = 0.8 ± 0.1 and cuto� ∆t ∼ 17h , probably capturing the typical awake period

of an individual. Although this seems to be in agreement with CTRWs, they found some

contradictions:

• the number of distinct locations S(t) visited by a randomly moving object is expected

to follow

S(t) ∼ tµ, (1.25)

with µ = β. They �nd µ = 0.6± 0.02, smaller than expected.

• Visitation frequency: the probability f of a user to visit a given location is expected to

be asymptotically (t approach in�nity) uniform everywhere for both Lévy �ights and

CTRWs. In contrast, the visitation patterns of humans is rather uneven, so that the

frequency f of the kth most visited location follows Zipf's law

fk ∼ k−ζ

where ζ ∼ 1.2 ± 0.1. This suggests that the visitation frequency distribution follows

P (f) = f−(1+1/ζ) .

• Ultraslow di�usion: the CTRW model predicts that the mean square displacement

(MSD) asymptotically follows ⟨x2(t)⟩ ∼ tν with ν = 2β/α ∼ 3.1. As both P (∆r) and

P (∆t) have cuto�s, asymptotically the MSD should converge to a Brownian behaviour

with ν = 1. In other words, CTRW predicts that the longer we follow a human

trajectory, the further it will drift from its initial position. Yet, humans have a tendency

to return home on a daily basis, suggesting that simple di�usive processes, which are

not recurrent in two dimensions, do not o�er a suitable description of human mobility.

Barabási et al. suggest that two generic mechanisms, exploration and preferential return,

both unique to human mobility, are missing from the traditional random-walk (Lévy �ight

or CTRW) models:

• Exploration: with probability

Pnew = ρS−γ
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the individual moves to a new location (di�erent from the S locations he/she visited

before). The distance∆r that he/she covers during this exploratory jump is chosen from

the P (∆r) distribution and his/her direction is selected to be random. As the individual

moves to this new position, the number of previously visited locations increases from

S to S + 1.

• Preferential return: with the complementary probability

Pret = 1− ρS−γ

the individual returns to one of the S previously visited locations. In this case, the

probability πi of visiting location i is chosen to be proportional to the number of visits

the user previously had to that location. That is, we assume that

πi = fi. (1.26)

With this assumption it is possible to solve the problem of the previous models.

• The probability that an individual moves to a new location is proportional to S−γ , that

is, dS/dn ∝ S−γ , predicting S ∼ n1/(1+γ) , where n is the total number of discrete

moves the individual had up to time t . For a fat-tailed waiting-time distribution

P (∆t) ∼ |∆t|−1−β the time t scales with the number of jumps n as t ∼ n1/β , showing

that S(t) follows (1.25) with the exponent µ = β/(1 + γ). Data are in agreement with

this prediction.

• We notice that mi , the number of visits to location i, increases like dmi/dn = πi(1−
Pnew), where πi = fi = mi/

∑
imi(n) is the probability of returning to the location

i during step n. When γ > 0, in the limit of S(t) → ∞ the probability of exploring

a new location is negligible compared with the return visits; thus, asymptotically we

have dmi/dn = mi/
∑

imi(n). As
∑

imi(n) = n, we obtain mi(n) = n/ni, where ni

denotes the jump during which location i was �rst visited, at which momentmi(ni) = 1.

Owing to preferential return (1.26), the earlier a location is visited, the more it is visited

later. Thus, the ranking ki for location i coincides with the order in which it was �rst

visited, that is, ki = S(ni) ∼ n
(1+γ)
i . As the visitation frequency fi is proportional to

mi(n) = n/ni , we have fk ∼ k−ζ with the exponent ζ = 1 + γ. In general, they �nd

ζ = 1 + γ, if γ > 0, or ζ = 1− ρ, if γ = 0.

• This model predicts

⟨∆x2⟩α/2 ∼ log

(
1− S1−ζ

ζ − 1

)
+ const. (1.27)

Another interesting aspect that they found is population heterogeneity: the radius of

gyration rg of the trajectory of di�erent individuals is found to follow a fat-tailed distribution.

Their model can reproduce this feature as well, indicating that the fat-tailed P (rg) is a

consequence of the inherent �uctuations present within the model and it is rooted in the

P (∆r) distribution.

It is important to note that in contrast with the traditional random-walk, Lévy �ight or

CTRW models, this model is dynamically quenched. That is, after an individual explores a

new location, he/she will have an increasing tendency to return to it in the future, generating

a recurrent and relatively stable mobility pattern for each individual.
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This model is designed to capture the long-term spatial and temporal scaling patterns;

thus, in its present from, it does not reproduce the short-term temporal order and correlations

potentially present in individual mobility. This is important also for practical considerations:

many human-mobility-driven processes, from epidemic spreading to city planning, are driven

by the asymptotic characteristics of human mobility.



Chapter 2

Models of spatial �ows

A spatial interaction is a realised movement of people, freight or information between

an origin and a destination. It is a transport demand/supply relationship expressed over a

geographical space. Spatial interactions cover a wide variety of movements such as journeys

to work, migrations, tourism, the usage of public facilities, the transmission of information or

capital, the market areas of retailing activities, international trade and freight distribution.

Each spatial interaction, as an analogy for a set of movements, is composed of an

origin/destination pair. Each pair can itself be represented as a cell in a matrix where

rows are related to the locations of origin, while columns are related to locations of destina-

tion. Such a matrix is commonly known as an Origin/Destination matrix (OD matrix ), or a

spatial interaction matrix.

The basic assumption concerning many spatial interaction models is that �ows are a func-

tion of the attributes of the locations of origin, the attributes of the locations of destination

and the friction of distance between the concerned origins and destinations.

The gravity model is one of basic models of spatial analysis in geography and social

physics. It provides an empirically e�ective approach to modeling spatial interaction. The

model is originally proposed to describe population migration between two regions (Carey,

1858, [Car65]; Grigg, 1977, [Gri]; Ravenstein, 1885, [Rav85]). Afterward, it is employed to

measure the force of attraction between any two geographical objects such as cities, �rms, and

retail stores. Today, the model can be found in many subjects like economics and sociology.

A lot of variants of the model came out, and di�erent forms of gravity models have di�erent

spheres of application (Erlander, 1980, [Erl80]; Haynes and Fotheringham, 1984, [HF84]; Sen

and Smith, 1995, [SS95]).

2.1 Gravity models

The gravity model is one of the most important spatial interaction methods. It is named

as such because it uses a similar formulation to Newton's gravitation model. Accordingly, the

attraction between two objects is proportional to their mass and inversely proportional to

the square of their respective distance. Consequently, the general formulation of spatial inter-

actions can be adapted to re�ect this basic assumption to form the elementary formulation

14
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of the gravity model:

Tij = k
PiPj

d2ij
(2.1)

• Pi and Pj are the weights (e.g. population) of the location of origin i and the location

of destination j.

• dij is the distance, or any measure related to the friction of space, between the locationof

origin and the location of destination.

• k is a proportionality constant related to the temporal rate of the event being measured.

For instance, if the same system of spatial interactions is considered, the value of k will

be higher if interactions are considered for a year instead of a week.

Thus, spatial interactions between locations i and j are proportional to their respective weights

divided by their distance.

The gravity model can be extended to include several parameters:

Tij = k
Pα
i P

β
j

dγij
(2.2)

• α is the potential to generate movements (emissiveness). For movements of people, α

is often related to an overall level of welfare. For instance, it is logical to infer that for

retailing �ows, a location having higher income levels will generate more movements.

• β is the potential to attract movements (attractiveness). Related to the nature of eco-

nomic activities at the destination. For instance, a center having important commercial

activities will attract more movements.

• γ is a parameter of transport friction related to the e�ciency of the transport system

between two locations. This friction is rarely linear as the further the movement the

greater the friction of distance. For instance, a highway between two locations will have

a weaker beta index than a road.

Di�erent kinds of the Gravity Model may consider di�erent kind of weights. Another

variation is to consider di�erent kind of functions to descibed the dependence on the distance;

for example, a negative exponential instead of a power-law. The function of the distance is

usually called the deterrence function. In the next chapter we will use di�erent formulations

of the model to �t data, and then check which of these is the most appropriate model.

In the formulation of the Gravity Model we just described, an overall increase in the

�attractiveness� of the various locations will have the e�ect of increasing the total number of

trips made by people. Another formulation of the gravity model can be to to take the total

number of trips as already given. This is equivalent to adding a constraint equation

Ti =
∑
j

Tij

that leads to

Tij = Ti
P β
j

dγij

1∑
j

Pβj
dγij

. (2.3)

This is called Total Interaction Constrained Gravity Model. If we �xed the number of trips

from each location, we call that model Singly-costrained gravity model. If both total trips



16 CHAPTER 2. MODELS OF SPATIAL FLOWS

from and to every location are �xed, we have the Doubly-costrained gravity model. In the

next section we show a derivation of this model with argument of maximum entropy.

2.2 Maximum entropy argument

Here we present the so-called Maximum entropy argument f[Wil69], that is a statistical

derivation which constitutes a theoretical base for (double-constraint) gravity models. The

basic assumption of Maximum entropy argument is that the probability of the distribution of

�ows is proportional to the number of states of the system which give rise to this particular

distribution, and which satis�ed some costraints.

Let us examine a single trip purpose, like the journey to work. We consider for simplicity

only one mode of transport and one type of traveller. Suppose the region is divided into zones

and that Tij is the number of trips between zones i and j, cij is the cost (which takes into

account for money, travel time, etc.) of travelling between i and j, Oi is the total number of

trip origins at i and Dj is the total number of trip destination at j. A general formulation

of gravity model, used to estimate the number of trips between i and j, Tij , in terms of the

other variables, can be written as:

Tij = AiBjOiDjf(cij) (2.4)

where f is some decreasing function cost. Ai and Bi are de�ned as:

Ai =
[∑

j

BjDjf(cij)
]−1

(2.5)

Bj =
[∑

i

AiOif(cij)
]−1

(2.6)

in order to satisfy the constraint equations∑
j

Tij = Oi (2.7)

and ∑
i

Tij = Dj . (2.8)

(2.5) and (2.6) are usually solved by some iterative procedure.

We start from this formulation and assume another constraint equation to �x the total

amount C spent on these trips in the region at the given point in time:∑
i

∑
j

Tijcij = C. (2.9)

We write T =
∑

iOi =
∑

j Dj for the total number of trips.

If we call w(Tij) the number of distinct arrangements of individuals which give rise to the

distribution Tij , corresponding to the number of ways in which T11 can be selected from T ,

T12 from T − T11 and so on; thus we have

w(Tij) =
T !

T11!(T − T11)!

(T − T11)!

T12!(T − T11 − T12)!
· · · = T !∏

ij Tij !
. (2.10)
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The total number of possible states is then

W =
∑

w(Tij) (2.11)

where the summation is over all the distributions Tij which satisfy the constraints (2.7)-(2.9).

However, the maximum value of w(Tij) turns out to dominate the other terms of the sum

to such an extent that the distribution Tij which give rise to this maximum is far the most

probable distribution. Now we look for this maximum. In order to obtain {T̃ij} which

maximises w(Tij) with the constraints (2.7)-(2.9) we the Lagrangian multipliers method for

function M :

M = logw +
∑
i

λ
(1)
i (Oi −

∑
j

Tij) +
∑
j

λ
(2)
j (Dj −

∑
i

Tij) + β(C −
∑
ij

Tij)

λ
(1)
i , λ

(2)
j , and β are Lagrangian multipliers, and the equation to be solved is

∂M

∂Tij
(T̃ij) = 0.

We maximise logw rather than w, so we can use Stirling's approximation logN ! = N logN−
N to estimate the factorial terms; this give us:

∂ logN !

∂N
= logN

and so
∂M

∂Tij
= − log Tij − λ

(1)
i − λ

(2)
j − βcij .

The maximum is therefore

T̃ij = exp [−λ(1)i − λ
(2)
j − βcij ].

Substituting in (2.7) and (2.8) we obtain λ
(1)
i and λ

(2)
j :

e−λ
(1)
i =

Oi∑
j e

−λ
(1)
j −βcij

(2.12)

e−λ
(2)
j =

Dj∑
i e

−λ
(1)
i −βcij

. (2.13)

To obtain the result in more familiar form, write

Ai = e−λ
(1)
i /Oi (2.14)

Bj = e−λ
(2)
j /Dj (2.15)

and then

Tij = AiBjOiDje
−βcij (2.16)

where, using equations (2.12)-(2.15),

Ai =
[∑

j

BjDje
−βcij

]−1
(2.17)
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Bj =
[∑

i

AiOie
−βcij

]−1
. (2.18)

Hence the most probable distribution of trips is the gravity model (in its doubly-costrained

form) discussed earlier. The meaning of what we have shown is that, given the total number

of trip origins and destinationas for each location, given the costs of travelling between each

pair of zones, and �xed the total cost spent in the region at the given point in time, then

there is a most probable distribution of trips, which is gravity model.

The most important problem at this point is how to express the cost. In order to recover

a power law distribution, one needs a logarithmic dependence on distance: cij = a log (rij)

which leads to Tij ∝ r−βa
ij . If the cost is proportional to distance, the number of trips

decays exponentially with distance. We thus recover two of the most important forms used

in empirical studies and in model, but the exact form of the cost dependence with distance

remains unsolved.

There is a long discussion about the validity of this approach in [ES90] but we note

that it assumes in particular that all individuals act independently from each other. This

is obviously not correct when we introduce congestion which induces correlations between

individuals. In such conditions, it is clear that individual choices are correlated and that this

entropy maximization can give reasonable results in the limit of small tra�c only.

2.3 Intervening opportunities model

The basic idea behind the intervening-opportunities model is that trip making is not

explicitly related to distance but to the relative accessibility of opportunities for satisfying

the objective of the trip. The original proponent of this approach was Stou�er, 1940, ([Sto40])

who applied this approach to migration patterns between services and residences. The theory

was further developed by Schneider, 1959, ([Sch59]) to the general framework that is used

today.

The law of intervening opportunities as proposed by Stou�er states �The number of per-

sons going a given distance is directly proportional to the number of opportunities at that

distance and inversely proportional to the number of intervening opportunities.�. An oppor-

tunity is a destination that a trip-maker considers as a possible termination point for their

journey and an intervening opportunity is an opportunity that is closer to the trip maker

than the �nal destination but is rejected by the trip-maker.

This hypothesis may be expressed as:

Tij = k
Aj

Vj
(2.19)

where Aj is the total number of destination opportunities in zone j and Vj is the number of

intervening destination opportunities between zones i and j, k is a proportionality constant.

Schneider proposed a modi�ed Stou�er hypothesis: �The probability that a trip will

terminate in some volume of destination points is equal to the probability that this volume

contains an acceptable destination times the probability that an acceptable destination closer

to the origin of the trips has not been found.�. This was represented mathematically by Ruiter
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[Rui67] as

dP = L[1− P (V )]dV (2.20)

where dP is the probability that a trip will terminate when considering dV possible destina-

tions; the `subtended volume' V is the cumulative total number of destination opportunities

considered up to the destination being considered; dV is an element of the subtended volume

at the surface of the volume; P (V ) represents the opportunity that a trip terminates when

V destinations are considered; L is a constant probability of a possible destination being

accepted if it is considered. The solution of equation (2.20) is

P (V ) = 1− exp(−LV ). (2.21)

With the expected trip-interchange, Tij , we get:

Tij = Oi[P (Vj+1)− P (Vj)], (2.22)

where Oi represents the total number of opportunities at location i. In [Eas84] Eash showed

that the gravity and IO models are �fundamentally the same� and are both derivable from

entropy maximization theory. Eash also noted that the di�erence is how the �cost� of travel

is considered. Although the gravity model considers this �cost� as a function of the distance,

the opportunity model considers the �cost� as the di�culty to satisfy a trip's purpose. The

gravity model then treats the distance variable as a continuous cardinal variable, whilst the

opportunity model treats the distance as an ordinal variable.

2.4 Radiation Model

Despite its widespread use, the gravity law has notable limitations: lack of a rigorous

derivation (entropy maximization fail to o�er the functional form of f(r)), inability to predict

mobility in region where we lack systematic tra�c data, systematic predictive discrepancies,

analytical inconsistency (it predicts that the number of commuters increases without limit

as we increase the destination population, but obviously commuters cannot exceed the origin

population), being deterministic it cannot account for �uctuations.

The Radiation Model is a proposal to solve these problems. We present it in the context

of commuting �ows. Whereas commuting is a daily process, its source and destination is

determined by job selection. The Radiation model assume that the selection consist on

two step. First, an individual look for a job from all counties: the number of employment

opportunities is proportional to resident population; the bene�ts of a potential job is described

by a number z, randomly chosen from a distribution p(z), where z represents a combination of

salary, working hours, conditions, and others. The second step for the individual is to choose

the closest job to his/her home, whose bene�ts z are higher than the best o�er available in

his/her home county.

This process applied in proportion to the resident population in each couty, determines

the daily commuting �ow across the country. The model has three parameters, the bene�t

distribution p(z), the job density and the total number of commuters, but it turn out that

none of them a�ect the �ux distribution, making the model parameter-free. It is called
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Radiation model because it can be formulated in terms of radiation and absorption processes,

in analogy with Physics. Imagine the location of origin, i, as a source emitting an outgoing

�ux of identical and independent units (particles). We de�ne the emission/absorption process

through the following two steps:

• We associate to every particle, X, emitted from location i a number, z
(i)
X , that repre-

sents the absorption threshold for that particle. A particle with large threshold is less

likely to be absorbed. We de�ne z
(i)
X as the maximum number obtained after mi ran-

dom extractions from a preselected distribution, p(z) (mi is the population in location

i). Thus, on average, particles emitted from a highly populated location have a higher

absorption threshold than those emitted from a scarcely populated location. We will

show below that the particular choice of p(z) do not a�ect the �nal results.

• The surrounding locations have a certain probability to absorb particle X: z
(j)
X represents

the absorbance of location j for particle X, and it is de�ned as the maximum of nj

extractions from p(z) (nj is the population in j). The particle is absorbed by the

closest location whose absorbance is greater than its absorption threshold.

By repeating this process for all emitted particles we obtain the �uxes across the entire

country. We can calculate the probability of one emission/absorption event between any

two locations, and thus obtain an analytical prediction for the �ux between them. Let

P (1 |mi, nj , sij) be the probability that a particle emitted from location i with population

mi is absorbed in location j with population nj , given that sij is the total population in

all locations (except i and j) within a circle of radius rij centered at i (rij is the distance

between i and j). According to the radiation model, we have

P (1 |mi, nj , sij) =

∫ ∞

0
dzPmi(z)Psij (< z)Pnj (> z) (2.23)

where Pmi(z) is the probability that the maximum value extracted from p(z) after mi trials

is equal to z:

Pmi(z) =
dPmi(< z)

dz
= mip(< z)mi−1dp(< z)

dz
. (2.24)

Similarly Psij (< z) = p(< z)sij is the probability that sij numbers extracted from the p(z)

distribution are all less than z; and Pnj (> z) = 1 − p(< z)nj is the probability that among

nj numbers extracted from p(z) at least one is greater than z. Thus (2.23) represents the

probability that one particle emitted from a location with population mi is not absorbed

by the closest locations with total population sij , and is absorbed in the next location with

population nj . After evaluating the above integral, we obtain

P (1 |mi, nj , sij) = mi

∫ ∞

0
dz
dP (< z)

dz

[
p(< z)mi+sij−1 − p(< z)mi+nj+sij−1

]
= mi

[
1

mi + sij
− 1

mi + nj + sij

]
=

minj
(mi + sij)(mi + nj + sij)

(2.25)

which is indipendent of the distribution p(z) and is invariant under rescaling of the population

by the same multiplicative factor (njobs). The probability P (Ti1, Ti2, . . . , TiL) for a particular
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sequence of absorptions, (Ti1, Ti2, . . . , TiL), of the particles emitted at location i is given by

the multinomial distribution:

P (Ti1, Ti2, . . . , TiL) =
∏
j ̸=i

Ti!

Tij !
p
Tij
ij with

∑
j ̸=i

Tij = Ti (2.26)

where Ti is the total number of particles emitted by location i, and pij ≡ P (1|mi, nj , sij).

The distribution (2.26) is normalized. The probability that exactly Tij particles emitted from

location i are absorbed in location j is obtained by marginalizing probability (2.26) :

P (Tij |mi, nj , sij) =
∑

{Tik|k ̸=i,j;
∑
k ̸=i Tik=Ti}

P (Ti1, Ti2, . . . , Tij , . . . , TiL)

=
Ti!

Tij !(Ti − Tij)!
p
Tij
ij (1− pij)

Ti−Tij

(2.27)

that is a binomial distribution with average

⟨Tij⟩ ≡ Tipij = Ti
minj

(mi + sij)(mi + nj + sij)
(2.28)

and variance Tipij(1− pij).

(2.28) represent the fundamental equation of the radiation model. It solves some limita-

tions of the gravity law: it has a rigorous derivation and has no free parameters. It has been

shown [SGMB12] that it has better performance with migration �ows in the USA.

The radiation model might provide further insights on the problem of de�ning human

agglomerations, that is an important issue in the study of cities because di�erent de�nitions

a�ect conclusions regarding the statistical distribution of urban activity.



Chapter 3

Fitting Gravity Model: Generalized

Linear Models

In this chapter we present a useful way to �t the Gravity Model, based on Generalized

Linear Models (GLM), which is a generalization of linear regression and is better suited in

this context, because it takes into account the �uctuations in a more proper way.

In the end we apply this technique to relocation �ows in USA, comparing the goodness

of �t with di�erent formulation of Gravity Models (di�erent deterrence functions, di�erent

constraints . . . ).

With this technique it is necessary to decide from the beginning which function to use

as the deterrence function. In the next chapter we will show a method of �tting the Gravity

Model without the need to decide a priori which function to use.

3.1 Fitting Gravity Model

Flowerdew et al. [FA82] 1 suggest a method for �tting the gravity model, in the form

Tij = k
Pα
i P

β
j

dγij
. (3.1)

If we replace Tij with his mean µij and we take the logarithm, we obtain

logµij = log k + α logPi + β logPj − γ log dij . (3.2)

It was common to use a log-normal model to estimate the values of the parameters log k,

α, β, γ, with an ordinary least-squares (OLS) multiple regression analysis, which �nds the

estimates by minimize the sum of squared residuals. It uses log nij , the logarithm of the

number of migrants moving from i to j, and assumes that:

logµij = log k + α logPi + β logPj − γ log dij + uij , (3.3)

with uij indipendent random variables normally distribuited (with zero mean and identical

variance).

Log-normal models presents several weakness:

1They used a data set consist of observations on one year migration �ow between the 126 SMLA's (Standard

Metropolitam Labor Areas) for Great Britain.

22
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• the regression estimates the logarithms of µij , so the antilogarithm of these quantities

are biased estimate of µij . As a consequence, large �ow are understimated, and the

sum of the estimated �ows is considerably less than the sum of the observed �ows.

• Fij are supposed to be log-normally distribuited around the estimated, leading to neg-

ative values of Fij.

• The assumption of identical variances for the uij implies that the expected di�erence

between the estimate of logµij and log nij is the same for every pairs of locations (that

is, there is the same probability for an observed �ow of two and an estimated of one,

as for a �ow of 200 in relation of an estimate of 100!)

• When �ow are zero, a small positive number should be added to all observation, and

this can a�ect the predicted parameters.

To overcome these problems, we should notice that movements can be considered indipen-

dent, characterized by a small constant probability for a person in i to move in j, and the

population of i is large. This implies that the probability that k people move will follow a

Poisson distribution:

P (nij = k) =
e−µijµkij

k!
, (3.4)

and the mean µij will follow (3.2), so:

µij = exp(log k + α logPi + β logPj − γ log dij). (3.5)

In this case, di�erence between µij and the observed �ows are the result of the particolar

realization of the Poisson process, and this di�erence is measured on the scale of nij and not

of his logarithm. Another di�erence with log-normal model is that now the variance is equal

to the mean, and so it is not constant.

Di�erently from log-normal model, estimates derived from Poisson model are usually of

the same order of magnitude as observed �ows and the sum of observed and estimate �ows

are approximately equal.

Poisson model appears [FA82] to give a better description to data than the log-normal

model.

3.2 Generalized Linear Model Theory

Let y1, . . . , yn denote n independent realization of a random variable Yi . In the general

linear model the assumption are that Yi is normally distributed with mean µi and variance

σ2:

Yi ∼ N(µi, σ
2),

where the expected value µi is a linear function of p predictors that take values xi = (xi1, . . . , xip),

and β is a vector of unknown parameters:

µi = xiβ. (3.6)

The Generalized Linear Model, formulated by Nelder and Wedderburn (1972) [NW72]

is a generalization of general linear model for the case of not normally distribuited random

variable.
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The �rst element is the assumption that the observations come from a distribution in the

exponential family, i.e. Yi ∼ f(θ, ϕ), where

f(yi) = exp

{
yiθi − b(θi)

ai(ϕ)
+ c(yi, ϕ)

}
, (3.7)

θi and ϕ are parameters (θi is the parameter of interest, as ϕ is a nuisance parameter (as σ

in regression); b(θi), ai(ϕ) and c(yi, ϕ) are known functions. The function ai(ϕ) has the form

ai(ϕ) = ϕ/pi, where ϕ, called the dispersion parameter, is constant over observations, and

pi is a known prior weight, usually 1, that varies from observation to observation. It can be

shown that if Yi has a distribution in the exponential family then 2

0 = E

{
Y − b′(θ)

a(ψ)

}
E

{
−b′′(θ)
a(ψ)

}
= −E

{
Y − b′(θ)

a(ψ)

}2 (3.8)

so it has the following mean and variance:

E(Yi) = µi = b′(θi)

var(Yi) = σ2i = b′′(θi)ai(ϕ),
(3.9)

where b′(θi) and b′′(θi) are the �rst and second derivatives of b(θi). The expectation of Y

only depends on θ whereas the variance of Y depends on θ and ψ. All the commonest

distributions, like the normal, binomial, Poisson, exponential, gamma and inverse Gaussian,

are special cases of exponential family.

The second important generalization is that, instead of the mean, a transformed mean

ηi = g(µi)

follows a linear model

ηi = xiβ. (3.10)

The function g(µi) is called the link function is a one-to-one continuous di�erentiable trans-

formation; ηi is called the linear predictor. In order to obtain µi we simply need to invert the

link function

µi = g−1(xiβ);

the reason of this transformation is that usually the model for µi is more complicated than

the model for ηi. It is important to notice that the transformation is not of the response yi,

but it is of his expected value µi.

Examples of commonly used link functions are the identity, log, reciprocal, logit and

probit. When the link function makes the linear predictor ηi the same as the canonical

parameter θi, we call it canonical link. For example, the identity is the canonical link for the

normal distribution. The advantage of the canonical link is that all the information about β

is contained in a function of the data of the same dimensionality as β.

2 From the well known relations E( ∂L
∂θ

) = 0, E( ∂
2L
∂θ2

) + E( ∂L
∂θ

)2 = 0, and from (3.13), we have
∂L
∂θ

= Y−b′(θ)
a(ψ)

and ∂2L
∂θ2

= −b′′(θ)/a(ϕ)
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3.2.1 Poisson distribution

The Poisson probability distribution function is

fi(yi) =
e−µiµyii
yi!

(3.11)

for yi = 0, 1, 2 . . . . The moments are E(Yi) = var(Yi) = µi. We now verify that this

distribution belongs to the exponential family. After taking log:

log fi(yi) = yi logµi − µi − log (yi!)

we can easily recognize the canonical parameter in the coe�cient of yi

θi = log µi,

so the canonical link is the logarithm. The second term in the pdf can be written as

b(θi) = exp(θi),

and the last term is a function of yi so we can identify

c(yi, ϕ) = −log(yi!).

For simplicity, we can take ai(ϕ) = ϕ and ϕ = 1. If we di�erenciate b(θi) we can verify the

mean and variance:

µi = b′(θi) = exp(θi) = µi,

υi = ai(ϕ)b
′′(θi) = exp(θi) = µi.

3.3 Maximum Likelihood Estimation

Likelihood theory

Let Y1, . . . , Yn be n independent random variables with probability density functions

(pdf) fi(yi; θ) depending on a vector-valued parameter θ. The joint density of n independent

observations y = (y1, . . . , yn) is

f(y; θ) =

n∏
i=1

fi(yi; θ) = L(θ;y). (3.12)

Often is easier to work with natural logarithm of the likelihood function. A sensible way to

estimate the parameter θ given the data y is to maximize the likelihood (or equivalently the

log-likelihood) function, choosing the parameter value that makes the data actually observed

as likely as possible.

This expression, viewed as a function of the unknown parameter θ given the data y, is

called the likelihood function.
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Consider independent random variables Y1, . . . , YN satisfying the properties of a general-

ized linear model. We wish to estimate parameters β which are related to the Yi's through

E(Yi) = µi and g(µi) = xiβ. The log-likelihood function is

L =

n∑
i=1

Li =
yiθi − b(θi)

ai(ϕ)
+ c(yi, ϕ) (3.13)

To obtain the maximum likelihood estimator for the parameter βj we need

∂L
∂βj

= Uj =
n∑

i=1

∂li
∂βj

=
n∑

i=1

∂Li

∂θi

∂θi
∂µi

∂µi
∂βi

(3.14)

using the chain rule for di�erentiation.We will consider each term on the right hand side of

(3.14) separately. First, by di�erentiating((3.13)) and substituting ((3.9)):

∂Li

∂θi
=
yi − b′(θi)

ai(ϕ)
=
yi − µi
ai(ϕ)

.

Next
∂θi
∂µi

=
1
∂µi
∂θi

.

Di�erentiation of (3.9) gives

∂µi
∂θi

= b′′(θi) = var(Yi)/ai(ϕ).

Finally, from (3.10)
∂µi
∂βj

=
∂µi
∂ηi

∂ηi
∂βj

=
∂µi
∂ηi

xij . (3.15)

Hence the score, given in (3.14), is

Uj =

n∑
i=1

yi − µi
var(Yi)

xij
∂µi
∂ηi

. (3.16)

The variance-covariance matrix of the Uj 's has terms

ℑ = E[UjUk]

which form the information matrix ℑ. From (3.16)

ℑjk = E

{ n∑
i=1

[
Yi − µi
var(Yi)

xij

(
∂µi
∂ηi

)] n∑
l=1

[
Yl − µl
var(Yl)

xlj

(
∂µl
∂ηl

)]}

=

n∑
i=1

E[(Yi − µi)]
2xijxik

[var(Yi)]2

(
∂µi
∂ηi

)2
(3.17)

because E[(Yi −µi)(Yl −µl)] = 0 for i ̸= l as the Yi's are independent. Using E[(Yi −µi)
2] =

var(Yi), (3.17) can be simpli�ed to

ℑjk =
n∑

i=1

xijxik
[var(Yi)]

(
∂µi
∂ηi

)2

. (3.18)
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To �nd b(m), the vector of estimates of the parameters β1, . . . , βp, we can use the method of

scoring which is, at the mth iteration

b(m) = b(m−1) + [ℑ(m−1)]−1U (m−1). (3.19)

[ℑ(m−1)]−1 is the inverse of the information matrix with elements ℑjk given by (3.18) and

U (m−1) is the vector of elements given by (3.16), all evaluated at b(m−1). Multiplying both

sides of (3.19) by ℑ(m−1) we obtain

ℑ(m−1)b(m) = ℑ(m−1)b(m−1) +U (m−1). (3.20)

From (3.18) ℑ can be written as

ℑ = X′WX

where (W ) is the nxn diagonal matrix with elements

wij =
1

var(Yi)

(
∂µi
∂ηi

)2

. (3.21)

From equation (3.18) and (3.16), the expression on the right-hand side of (3.20) is the vector

with elements

p∑
k=1

n∑
i=1

xijxik
var(Yi)

(
∂µi
∂ηi

)2

b
(m−1)
k +

n∑
i=1

(yi − µi)xij
var(Yi)

(
∂µi
∂ηi

)
(3.22)

evaluated at b(m−1). Hence the right-hand side of (3.20) can be written as

ℑ = X′Wz

where z has elements

zi =

p∑
k=1

xikb
(m−1)
k + (yi − µi)

(
∂ηi
∂µi

)
(3.23)

with µi and ∂ηi/∂µi evaluated at b(m−1). Thus the iterative equation (3.20), can be written

as

X′WXb
(m)

= X′Wz. (3.24)

This is the same form as the normal equations for a linear model obtained by weighted least

squares, except that it has to be solved iteratively because, in general, z and W depend on

b. Thus for generalized linear models, maximum likelihood estimators are obtained by an

iterative weighted least squares procedure.

3.4 Likelihood Ratio Tests and the Deviance

The likelihood ratio criterion is a simple way for comparing any two nested models; now

we will see how it can be constructed in this context [Dob08]. When we �t models to

observations, the simplest possibility is the null model, which has only one parameter, thus

all the variation are due to the random component. At the other extreme the full model,

with one parameter per observation, assign all the cvariation to the systematic component.
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As a matter of facts these are extreme models: the �rst being too simple and the second too

uninformative, but they give us a guideline to understand the goodness of �t.

Consider �rst comparing a model of interest w with a full model Ω that provides a separate

parameter for each observation. Let µ̂i denote the �tted values under w and let θ̂i denote

the corresponding estimates of the canonical parameters. Similarly, let µ̃0 = yi and θ̂i denote

the corresponding estimates under Ω.

The likelihood ratio criterion to compare two models in the exponential family has the

form

− 2 log λ =
D(y, µ̂)

ϕ
, (3.25)

where the numerator, which does not depend on unknown parameters, is called the deviance:

D(y, µ̂) = 2

n∑
i=1

pi[yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)]. (3.26)

We have use the fact that ai(ϕ) = ϕ/pi. The likelihood ratio criterion −2logL is the de-

viance divided by the scale parameter ϕ, and is called the scaled deviance. For the Normal

distribution the deviance is identical to the residual sum of squares, and minimum deviance

is synonymous with least squares. If we need to compare two nested models w1, with p1

parameters, and w2, with p2 > p1 parameters, the ratio of the maximized likelihoods can be

written as a di�erence of deviance, since the maximizes log-likelihood under the saturated

model cancels out. Hence we have

− 2 log λ =
D(w1)−D(w2)

ϕ
. (3.27)

Large sample theory tells us that the asymptotic distribution of this criterion under the usual

regularity conditions is χ2
ν with ν = p2 − p1 degrees of freedom.

3.4.1 Poisson deviance

Let µ̂i denote the m.l.e.of µi under the model of interest and µ̃i = yi denote m.l.e. under

full model. The deviance is

D = 2
∑

[yi log yi − yi − log yi!− yi log µ̂i + µ̂i + log yi!]

= 2
∑

[yi log
yi
µ̂i

− (yi − µ̂i)].
(3.28)

The Poisson deviance has an asymptotic chi-squared distribution as n→ ∞ with the number

of parameters p remaining �xed, and can be used as a goodness of �t test. Di�erences between

Poisson deviances for nested models (i.e. the log of the likelihood ratio test criterion) have

asymptotic chi-squared distributions under the usual regularity conditions

3.5 GLM Multinomial

Multinomial distribution

Consider a set of n trials where
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Xi =

1, ith trial is a success

0, n otherwise

if X1, . . . , Xn are indipendent with P (Xi = 1) = p, then Y =
∑n

i=1Xi has a Binomial(n, p)

distribution:

P (Y = y) =

(
n

y

)
py(1− p)n−y, y = 0, . . . , n, 0 < p < 1. (3.29)

We have E[Y ] = np and V ar[Y ] = np(1− p).

The multinomial distribution is a generalization of the binomial distribution where there

are more than two possible response categories. Consider a set of n trials with d possible

response categories. Let Xi be the d-dimensional response vector for trial i, where Xij = 1 if

response category j occurs on trial i and Xij = 0 otherwise. Let X1, . . . , Xn be indipendent

with P (Xij = 1 = θj ; let Y =
∑n

i=1Xi. Then Yj is the number of response in category j.

Then Y has a multinomial distribution:

P (Y = y) =
n!

y1! . . . yd!
θy11 . . . θydd , (3.30)

0 ≤ y1, . . . , yd ≤ n,
∑d

j=1 yi = n, 0 ≤ θ1, . . . , θd < 1.We have E[Yj ] = nθj and V ar[Yj ] =

nθj(1− θj).

Multinomial distribution is connected with Poisson distribution. Consider indipendent

r.v.'s Y1 ∼ Poisson(µi) and Y2 ∼ Poisson(µ2). If we know that Y1 + Y2 = n, then

P (Y1 = y1, Y2 = y2|Y1 + Y2 = n) =
P (Y1 = y1, Y2 = n− y1)

P (Y1 + Y2 = n)

=
e−µ1µy11
y1!

e−µ2µn−y1
2

(n− y1)!

1
e−µ1−µ2(µ1+µ2)n

n!

=

(
n

y1

)(
µ1

µ1 + µ2

)y1( µ2
µ1 + µ2

)n−y1

(3.31)

In general, if we have d counts, and again condition on their sum, we will end up with the

multinomial distribution,

P (Y1 = y1, . . . , Yd = yd|
d∑

i=1

Yi = n) =
n!

y1! . . . yd!

(
µ1∑d
i=1 µi

)y1

. . .

(
µd∑d
i=1 µi

)yd

(3.32)

We cannot use GLM to model a multinomial response since the multinomial distribution

is not in the 1-parameter exponential family. However, it turns out that we can estimate the

parameters in the model using a Poisson GLM with log link, if we choose the proper linear pre-

dictor: the MLEs of multinomial logit models can be obtained by �tting a Poisson GLM with

log link as long as the parameters that correspond to the �xed marginal totals are included

in the model in the appropriate way [Agr13]. We have already seen that if Y1, Y2, ..., Yn are

independent Poisson random variables, then the joint distribution of Y1, Y2, ..., Yn conditional

on the total count
∑n

i=1 Yi is multinomial. In other words, the likelihood associated with
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multinomial observations is the same as the likelihood associated with Poisson observations

that are constrained by a �xed total.

Let Yi ∼ Poisson(µi), where

logµi = ϕ+ xiβ.

The log-likelihood is then (we do not write the term − log yi! because it do not depend on

β):

logL(β) =
∑
i

yi logµi −
∑
i

µi

=
∑
i

yi(ϕ+ xiβ)−
∑
i

µi

= ϕ
∑
i

yi +
∑
i

yixiβ −
∑
i

µi.

(3.33)

Let m =
∑

i yi and let τ =
∑

i µi. Then we can derive an expression for ϕ in terms of τ :

τ =
∑
i

expϕ+ xiβ = expϕ
∑
i

expxiβ (3.34)

ϕ = log τ − log
∑
i

expxiβ. (3.35)

Now we can reparameterize the log-likelihood in terms of τ and β:

logL(τ, β) = m

[
log τ − log

∑
i

expxiβ

]
+
∑
i

yixiβ − τ

= (m log τ − τ) +

[∑
i

yixiβ −m log
∑
i

exp {xiβ}
] (3.36)

The �rst term is the log-likelihood associated with
∑

i Yi (recall that we are assuming that we

have observed
∑

i yi = m and that
∑

i Yi ∼ Poisson(
∑

i µi) where
∑

i µi = τ .) The second

term is the log-likelihood associated with Y1, Y2, . . . , Yn conditional on
∑n

i=1 Yi = m, i.e. the

multinomial logit model! To see this:

logP

(
Y1 = y1, . . . , Yn = yn|

n∑
i=1

Yi = m

)
=

n∑
i=1

yi log

(
µi∑n
j=1 µj

)

=

n∑
i=1

yi log

(
exp {ϕ+ xiβ}∑n
j=1 exp {ϕ+ xjβ}

)

=

n∑
i=1

yi log

(
exp {xiβ}∑n
j=1 exp {xjβ}

)

=

n∑
i=1

yixiβ −m log

( n∑
j=1

exp {xjβ}
)

(3.37)

We notice that all of the information about the parameter of interest, β, resides in the second

term. The implication is that the MLE of β and its approximated asymptotic variance is the

same regardless of whether we use the full log-likelihood logL(τ, β) (corresponding to the

Poisson model) or just the log-likelihood for the multinomial logit model! The only issue is

that, when using the Poisson GLM to estimate β when the counts are actually multinomial,

we have to incorporate nuisance parameter(s) (e.g., τ ) in the model in the appropriate way.
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3.6 GLM on USA commuting �ows

Now we apply the technique that we have descibed in this chapter to �t data of migration

�ows of an area of the USA with 300 counties (see chapter 6 for description of dataset) with

di�erent kinds of Gravity Models.

We start with

logµij = log k + α logPi + β logPj − γ log dij , (3.38)

�tted with ordinary least squares (OLS). In table (3.1) we show the results. We notice that

the sum of the estimated �ows is considerably less than the sum of the observed �ows. Clearly

it is not a good �t.

Then we apply GLM with poisson distribution and logarithm as the link function, using

equations (3.4) and (3.38). To compare this model with the previous one we use the chi-

square, which reveals that the second is better, as expected. In this case the sum of observed

�ows is very close to the sum of estimated �ows (table (3.1)) .

Table 3.1: Results of �t of the Gravity Model 3.38 with OLS and GLM. We report parameters (log(k), α, β, γ),

chi-square, and sum of observed and estimated �ows.

OLS parameter [2.83± 0.05 , 0.218± 0.003 , 0.301± 0.003 , 1.542± 0.006]

chi-square 8.99e+ 08 , sum observed �ows 5209095 , sum estimated �ows 188517

GLM [−2.375± 0.005, 0.583± 0.001, 0.8042± 0.0001, 2.0249± 0.0001]

chi-square 1.05e+ 07 , sum observed �ows 5209095, sum estimated �ows 5208408

The e�ect of distance on trip-making behaviour is inverse to the power λ. However, as

the distance between i and j becomes smaller and smaller (approaching zero), the number

of trips the model predicts becomes larger and larger (approaching in�nity). To avoid this

problem, a better function of distance would be the negative exponential.

So we �t with a negative exponential as the deterrence function, using (3.4) with

logµij = log k + α logPi + β logPj − γdij . (3.39)

Looking at the results in table (3.2) and comparing the deviance of this model with the

previous one (with power-law as the deterrence function) we �nd that exponential is a better

deterrence function.

In the end we use another approach. We �t the model with a Multinomial distribution

instead of Poisson; this means that we consider �xed the number of people who migrate

from each location (singly-costrainted Gravity Model). As we show in section 3.5, GLM with

Multinomial distribution is equivalent to GLM with Poisson distribution, with a vector of

nuisance parameter, one for each location, which must be included in the model in order to

satisfy the condition that we have �xed the number of migrants from every county. From

this �t we �nd more parameters, but we are interested only in the usual ones. The formula

used is

logµij = k + α logPi + β logPj − γdij + τi. (3.40)

We �t with both negative exponential and inverse power-law as the deterrence function.

Looking at the deviance in table (3.2), we con�rm again that the negative exponential gives
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a slightly better �t; we also check that nuisance parameters are in agreement with the ex-

pected total. If we compare the multinomial model with the corrisponding Poisson version

(with the deviance, table (3.2)), we �nd that the �rst one provides the better �t. It could be

argued that the multinomial model depends on more parameters, and this may be the reason

for the better �t. If we subtract the deviances and we consider the di�erence of the degrees

of freedom, as in the deviance criteria in section 3.4, we see that the multinomial model can

explain the data better(deviance di�erence: 2088000.0, d.o.f. 298, p-value ∼ 0).

Table 3.2: Results of �t of di�erent Gravity Models:

poisson distribution of trips and power-law as the deterrence function (poisson pow),

poisson distribution of trips and negative exponential as the deterrence function (poisson exp),

multinomial distribution of trips and power-law as the deterrence function (multinomial pow),

multinomial distribution of trips and negative exponential as the deterrence function (multinomial exp).

Intervening opportunities models:

poisson distribution of trips and power-law as the deterrence function (io pow),

multinomial distribution of trips and power-law as the deterrence function (io mult pow),

We report parameters (log(k), α, β, γ) of every models (for multinomial we omit log(k)), and the deviance. We can

notice that the best model is the singly-costrainted Gravity Model with negative exponential as deterrence function.

model parameters deviance

poisson pow [−2.375± 0.005, 0.583± 0.001, 0.8042± 0.0001, 2.0249± 0.0001] 6.79e+ 06

poisson exp [−4.449± 0.005, 0.4637± 0.0001, 0.7181± 0.0001, 0.0521± 0.0001] 5.02e+ 06

multinomial pow [0.4935± 0.001, 0.969± 0.001 , 2.840± 0.001] 3.72e+ 06

multinomial exp [−0.0947± 0.001, 0.9107± 0.001, 0.0641± 0.0001] 2.93e+ 06

io pow [−4.0435± 0.005, 1.5794± 0.001 , 1.0050± 0.0001, 1.4879± 0.0001 ] 6.66e+ 06

io mult pow [1.2189± 0.001, 1.0304± 0.001, 1.5303± 0.0001] 5.01e+ 06

In the end we apply intervening opportunities model, using also in this case population

as an estimate of attractiveness of counties. We assume for trip probability the expression:

pij = k
Pα
i P

β
j

vγij
, (3.41)

where now the distance at the denominator is replaced with vij , which reppresents the number

of intervening opportunities between location i and j, i.e. the sum of the population of i and

the population of the other cities in the middle. From results in table (3.2), we can see that

with our choice of deterrence function, Gravity Models give better results, also in the case of

Multinomial distribution.

We use also Probability Integral transform (PIT) to test the goodness of �ts (more details

about this technique in chapter 5). In �gure 3.1, 3.2, 3.3 we show observed-estimated plot

and the histogram of the PIT for
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Figure 3.1: Results of the �t of Gravity Model with GLM; the probability distribution of trips is multinomial and the

deterrence function is a power-law. On the left: observed-estimated �ows; on the right: probability integral transform

(distance from uniform distribution: MSE 0.031). The minor de�ciences of the model can be seen in the di�erence

between the probability integral transform and the uniform distribution.

Figure 3.2: Results of the �t of Gravity Model with GLM; the probability distribution of trips is multinomial and the

deterrence function is a negative exponential. On the left: observed-estimated �ows; on the right: probability integral

transform (distance from uniform distribution: MSE 0.007). The minor de�ciences of the model can be seen in the

di�erence between the probability integral transform and the uniform distribution.

Figure 3.3: Results of the �t of Intervening opportunities model with GLM; the probability distribution of trips is

multinomial and the deterrence function is a power-law. On the left: observed-estimated �ows; on the right: probability

integral transform (distance from uniform distribution: MSE 0.0338). The poor �t of the model can be deduced from

the di�erence between the probability integral transform and the uniform distribution.



Chapter 4

Non-parametric method to estimate

parameters

Here we propose a general method to �nd the deterrence function and the values of weights

that provide an optimal estimate of the observed OD matrix, Tij , using a singly-constrained

gravity model. In singly-constrained gravity models the average number of trips from i to j

is given by the following equation: Tij = Tipij(w, fγ), where:

pij =
wjf(rij , γ)∑
k wkf(rik, γ)

(4.1)

is the estimated probability of a trip from location i to j, and depends on the weights, the

deterrence function fγ and its parameters.

Due to the independence of individual trips, the probability to observe the trips {Tij}
from i to j , Tij , is given by the multinomial distribution:

P ({Tij}|{pij}, Ti) = Ti!
∏
k

pTikik

Tik!
. (4.2)

As we see in chapter 2, usually the weight is assumed to be proportional to the resident

population or the number of jobs, and in other cases it is assumed to be a function of these

variables. The deterrence function is usually assumed to be power law, exponential, stretched

exponential or a more complex function.

Our aim is to understand if the fundamental assumption of the singly-costrained Gravity

Model (4.1) (4.2) are compatible with observed �ows. In e�ect discrepancies between data

and model can be due to two di�erent kind of reasons:

1. fundamental assumptions (4.1) (4.2) are correct, but additional assumptions that usu-

ally are made on the particular deterrence function form or in the choice of weights are

wrong.

2. fundamental assumptions (4.1) (4.2) are incorrect ( for example, individual decision are

not indipendent).

Our method should help us to decide if we are in the situation (1) or (2).

Our method will seek to �nd the singly-constrained gravity model that provides the

best estimate of the observed �ows. The di�erence of our approach with respect to other

methods in the literature is that we do not make any a priori assumption on the functional

34
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form of weights and deterrence function. In particular, weights do not explicitly depend on

population or any other socio-economic variable, but are treated as free parameters. Similarly,

the deterrence function is estimated using a non-parametric regression, i.e. without pre-

imposing a particular functional form but expressing it as a sum of 10 gaussians whose

parameters (amplitude, mean, and variance) are free parameters. Our method thus consists

in looking for the values of the n weights and the parameters of the 10 gaussians (i.e. n + 30

total parameters) that minimize a cost function that describe distance between model and

data trips.

At the beginning we perform some numerical experiment, in order to test the ability of

our methods to correctly estimate the deterrence function and the weights. We choose the

most useful approach comparing slightly di�erent algorithm.

4.1 Minimization techniques

The problem consists in estimating the true values of the weights wi and to recover the

deterrence function f , given the observed trips Tij . To this end we test di�erent approaches.

The �rst is based on downhill simplex algorithm. It consist on two steps:

1. Optimizing the deterrence function: keeping the weights �xed, the downhill simplex al-

gorithm is used to �nd the parameters of the 10 gaussians {Ak, µk, σk}10k=1 that minimize

the cost function.

2. Optimizing the weights: keeping the deterrence function's parameters �xed, the down-

hill simplex algorithm is used to �nd the weights w that minimize the cost function.

Steps 1. and 2. are repeated until the �nal values of the parameters do not signi�cantly vary

with respect to the initial values (typically when they have not changed more than 1%).

As a cost function, fc({Ak, µk, σk}10k=1, w), �rst we use the absolute value of the di�erence

of the estimate �ows (Tij) from the observed �ows (T ∗
ij), in order to �nd the model with the

shortest L1 distance from the data,

fc =
∑
ij

|Tij − T ∗
ij |. (4.3)

We use also another cost function, derived from the likelihood. The likelihood of a set of

parameter values, (θ = {Ak, µk, σk}10k=1, w), given outcomes Tij , is equal to the probability

of those observed outcomes given those parameter values. For a multinomial distribution we

have (4.2):

L(θ|Tij) = P (Tij |θ) =
∏
ij

P ({Tij}|Ti, {pij}) =
∏
ij

Ti!
∏
k

pTikik

Tik!
,

we take the logarithm:

logL(θ|Tij) =
∑
ij

log(Tij !) +
∑
k

Tik log (pik(θ))−
∑
k

log Tik!. (4.4)

We need to maximize the probabilities respect to the parameters θ, so we can consider

only the term in 4.4 which depends on θ. The cost function we need to minimize simply
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becomes:

fc(θ) = −
∑
k

Tik log (pik(θ). (4.5)

We use also a second approach based on Greedy algorithm. A greedy algorithm is a

mathematical process that looks for simple, easy-to-implement solutions to complex, multi-

step problems by deciding which next step will provide the most obvious bene�t. Such

algorithms are called greedy because while the optimal solution to each smaller instance

will provide an immediate output, the algorithm does not consider the larger problem as

a whole. In this context, we start from some initial value of the parameter θ. For each

iteration we randomly choose one parameter and we change its value adding a normal variable

with variance proportional to the parameter value. Then we check if the cost function has

decreased after this change; only if this happen we accept the change. The process �nish

when the di�erence between the cost function in the last iteraction and the cost function of

100 iteration before is less than a small percent (0.001%).

With this method it is possible to impose condition on the parameter: in particular we

need positive amplitude of gaussians and, especially, positive weights.

4.2 Numerical simulations

We perform two di�erent kind of numerical simulation. In the �rst one (A), we consider

a square of side L = 500, and we randomly place n = 100 points (locations) on it, extracting

their x and y coordinated from a uniform distribution between 0 and 500. The deterrence

function is assumed to be stretched exponential

f(r) = e−r1.5/1500; (4.6)

we assigned a weight w to each locations extracting a number between 1,000 and 100,000

with uniform probability and the total number of trips departing from each location i, Ti, is

randomly chosen between 0.5wi and wi. The matrix pij containing the probabilities of one

trip between any two locations i and j is generated, and a realization of the OD matrix Tij is

extracted from the multinomial distribution 4.2.

The second simulation (B) is hybrid, because �ows data are simulated started from real

data of locations and the weights are assumed to be the real population of the city.

The method based on Downhill simplex algorithm works well with numerical simulation.

We study sample (A) of synthetic data, and we use as initial values for the weights w0 once

the uniform value (w0 = 1), and then total arrival for each locations. We use also both

likelihood (4.4) and absolute value of di�erence (4.3) as cost function. In �gure 4.1 the plot

of observed-simulated value of �ows for w0 = 1 and cost function (4.3) are shown. The plot

for the other combinations of initial values and cost functions look very similar. The only

exception is w0 = 1 and likelihood as cost function: this combination does not converge to

the right solution. If we calculate the distance (MSE) of observed-estimated value, we �nd

that using likelihood leads to a distance slightly bigger. For example, MSE distance with

likelihood is 1205, as with the other cost function (and arrival as initial weights) it is 444. In

�gure 4.2 and 4.3 the estimated deterrence function and the estimated weights are shown.
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Figure 4.1: First algorithm applied on synthetic data (A). Plot of observed-simulated value of �ows for w0 = 1 and

cost function (4.3) (absolute value of the di�erence between observed-estimated �ows).

Figure 4.2: First algorithm applied on synthetic data (A). Deterrence function for the di�erent combination of initial

values and cost function. On the right side, logarithmic scale. We can also see an intermediate step for the deterrence

function for the combination 1. The function is already very close to the true function.

Function are normalized in order to have the same integral (with this model both deterrence

function and weights are de�ned apart from a normalization constant). We observe that

the parameters of the deterrence function converge very quickly to their optimal values, well

before the weights do. Moreover, values of the deterrence function's parameters close to the

optimal ones are attained even when weights are far from their optimal (true) values. In this

case, however, the estimated trips are very di�erent from the observed (true) trips, i.e. the

model's precision is mostly a�ected by the values of weights. It is thus important to carefully

perform the weights optimization step.

At �rst we use as initial condition a sum of identical gaussian for the deterrence function,

as for the weights we start from uniform values. With this algorithm the results depend on

the initial values, and we see that the result is better if we use as initial weight for a location

the total arrival in that place. The reason is that there is a strong correlation between total

arrival and weights of a location; in �gure (4.4) we can see results from synthetic data which

follow multinomial distribution.
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Figure 4.3: First algorithm (based on downhill simple algorithm) applied on synthetic data (A), plot of estimated-true

weights with di�erent initial values and cost function. On the left, initial values for weights w0 = 1 and cost function

(4.3) (absolute value of the di�erence between observed-estimated �ows); we show initial values, an intermediate step

(after 5000 iteration) and the �nal values. We can see that in the intermediate step, di�erently from the deterrence

funcion, the weights are still far from their real values. On the right, initial values for weights w0 =arrival and cost

function in (2): (4.3) (absolute value of the di�erence between observed-estimated �ows) and in (3) (4.4) (likelihood).

We can see that we manage to predict well the true values of weights for every choice of the initial values or cost

function.

Figure 4.4: Correlation weights-arrival in 1000 hybrid simulation from data of migration in the USA (years 2000-2001),

with population as weights. On the left, results with the deterrence function: stretched exponential (5.5). On the right,

results obtained with the deterrence function: sum of gaussian (with parameter of the �t of group of 300 locations in

data SOI 2000-2001.
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Figure 4.5: Greedy algorithm applied on synthetic data (A).

1:Initial weights: uniform values (one); initial parameter forcost function: absolute value of the di�erence between O/E

�ows (MSE 9329)

2:Initial weights: arrivals; initial parameter forcost function: absolute value of the di�erence between O/E �ows (MSE

529).

3: Initial weights: uniform values (one); initial parameter forcost function: Likelihood (MSE 3650).

4: Initial weights: arrivals; initial parameter for cost function: Likelihood (MSE 470).

We can see that starting from arrivals as initial weights gives a better estimation of the real �ows, as the two di�erent

choice for the cost function give equivalent results.

On synthetic data (A) we apply also Greedy algorithm. We start from di�erent initial

condition (uniform weights equal to one, or arrivals). The algorithm will stop after reach the

same level of tollerance (0.0001%) for the �nal change in the cost function. We performed

some simulation on the same combination of initial values-cost function of the simulation for

the �rst algorithm; in this case we reached some level of convergence even with likelihood

and uniform weights. In �gure 4.6 we can see that the deterrence function converge always

quite well to the real value. In �gure 4.5 we see that if we start from uniform weights, the

estimated �ows are not exactly aligned with true �ows as starting from the arrival. Looking

for the MSE distance in the caption, we see that the performance of the two cost function

are both quite good. This algorithm, as we expected, leads to di�erent solution if we start

from values of parameter too far from the real ones. In �gure 4.8 we show the behaviour of

the cost functon during the minimization process.

We then perform another simulation (B), with �ows data closer to the real values, because

we use real data of locations and the weights are assumed to be the real population of the

city. The deterrence function is assumed to be stretched exponential (5.5). The simulation

is performed for the whole USA, and after we select a region with 300 counties. In �gure 4.9

we show the application of greedy algorithm on synthetic data (B). We use arrival as initial

values for weights. For the initial values of the deterrence function we use a �t of P (r), i.e.

the probabilities density function of trip length, which is likely to be a function not so far

from the deterrence function that we are looking for. The deterrence function derived from

the �t is very close to the true function, and also the weights are very closed to the real ones.

We always check the evolution of cost function (every 100 iteration), to be sure to have reach

a minimum of the function.

To summarize, the �rst approach, based on downhill simplex algorithm, works well with

synthetic data, but we prefere the Greedy algorithm because it gives us more control in the

minimization process. In particular we can impose condition on the parameters.
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Figure 4.6: Deterrence function obtained with Greedy algorithm applied on synthetic data (A), with di�erent combi-

nation of initial values and cost functions:

1:Initial weights: uniform values (one); initial parameter forcost function: absolute value of the di�erence between O/E

�ows.

2:Initial weights: arrivals; initial parameter forcost function: absolute value of the di�erence between O/E �ows.

3: Initial weights: uniform values (one); initial parameter forcost function: Likelihood.

4: Initial weights: arrivals; initial parameter for cost function: Likelihood.

We can see that regardless of the initial values and the cost function, there is a perfect agreement with the true function.

Figure 4.7: True-estimated weights for Greedy algorithm applied on synthetic data (A), with di�erent combination of

initial values and cost functions:

1:Initial weights: uniform values (one); initial parameter forcost function: absolute value of the di�erence between O/E

�ows.

2:Initial weights: arrivals; initial parameter forcost function: absolute value of the di�erence between O/E �ows.

3: Initial weights: uniform values (one); initial parameter forcost function: Likelihood.

4: Initial weights: arrivals; initial parameter for cost function: Likelihood.

We notice that starting from arrivals gives better prediction of the true weights.
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Figure 4.8: Cost function every 100 iteration of Greedy algorithm applied on synthetic data (A), with di�erent combi-

nation of initial values and cost functions:

1:Initial weights: uniform values (one); initial parameter forcost function: absolute value of the di�erence between O/E

�ows.

2:Initial weights: arrivals; initial parameter forcost function: absolute value of the di�erence between O/E �ows.

3: Initial weights: uniform values (one); initial parameter forcost function: Likelihood.

4: Initial weights: arrivals; initial parameter for cost function: Likelihood.

We notice that after a rapid initial decline (until ∼ 4000 iterations), the function stabilises.

4.3 Aggregation techniques

We would like to apply this method to study spatial �ows in the USA. The sample in this

situation is very large (number of counties in the USA: 3144). Our method work easily with

sample of around 100−400 locations. So we decide to focus on a subset of USA counties, and

in the meanwhile to study some technique of aggregation of locations. We try two methods:

• We divided locations using a �xed spatial grid (and so di�erent number of counties

in every aggregation). For every aggregation we consider as population the sum of all

population. For the position we choose the midpoint of the coordinates of the counties.

We consider only �ows towards other counties outside the aggregation. We choose grid

step in order to have set of 100− 400 locations to study (step: 170, 200, 250, 350 km).

• We aggregate locations in a �xed group of city (8, 10, 12, 14). We start aggregation

from the counties close to the border and then we procede the selection towards the

centre 4.10.

We perform some simulation aggregating synthetic data (B). In �gure 4.11 we show some

results of grid aggregation on these data. For grid 170km there is a good estimation of

�ows, and optimal weights are very close to population. Population is the real weight of our

dataset; after aggregation, the actual optimal weights for the model may not necessarily be

the sum of population of counties in the subset. In table 4.1 we report the correlation for the

di�erent grid steps. As expected, the correlation weights-population is very strong for grid

with smaller step, and slowly it decrease for larger step.

Also the deterrence function present some deviation from the real one. We see that step

170km is for every aspect a good approximation, but larger steps are not satisfactory.

We test also the aggregation with �xed number of counties for synthetic data (B). In �gure

4.12 we show some results. For aggregation of 8 number there is a good estimation of �ows,
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Figure 4.9: Simulation on data (B, simulated with real values of populations as weights and distances, from data

migration in the USA (years 2000-2001), in a region of with 300 counties. Observed estimated �ows, deterrence

function (almost the same of the real one). Correlation between arrival and weights. Cost function every 100 iteration.

The deterrence function derived from the �t is very close to the true function, and also the weights are very closed to

the real ones. From the evolution of cost function we can check to have reached a mimimum of the cost function.
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Table 4.1: Correlation values for aggregation in grid (of step: grid size) of simulated data. Total is the total number

of locations considered after aggregation. We report the correlation between population and arrivals, weights and

arrivals, weights and population. Population correspond to true value of weights before aggregation; the correlation

weights-population is very strong for grid with smaller step, and slowly it decrease for larger step.

grid size total population/arrivals weights/arrivals weights/population

170 km 321 0.891 0.887 0.981

200 km 240 0.902 0.91 0.935

250 km 155 0.905 0.912 0.922

350 km 86 0.91 0.892 0.882

and optimal weights are very close to population. The estimation of the deterrence function

is quite good for every di�erent aggregation, but from the correlation weights-population in

table (4.1) we can see that the the weights go very quickly far from the population as the

number of aggregated counties increase.

Table 4.2: Correlation values for aggregation in �xed number of counties (# counties) of simulated data. Total is the

total number of locations considered after aggregation. We report the correlation between population and arrivals,

weights and arrivals, weights and population. Population correspond to true value of weights before aggregation; from

the correlation weights-population we can notice that weights go very quickly far from the population as the number

of aggregated counties increase.

# counties total population/arrivals weights/arrivals weights/population

8 389 0.746 0.774 0.981

10 311 0.725 0.807 0.964

12 259 0.837 0.472 0.577

14 222 0.888 0.41 0.505

So we conclude that with synthetic data both this two kind of aggregation are good

approximation if we choose the �nest aggregation (step 170km or 8 number of cities). We

notice that the deterrence function that we choose for generating synthetic data has a range

of about 300 km, and, even after aggregation, average counties dimension (∼ 100 km) is

shorter than the range.
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Figure 4.10: On the left, example of aggregation of counties in the USA with a grid of step 400km. On the right,

aggregation in group of 8 cities.

Figure 4.11: Grid aggregation on synthetic data (B). Estimated weights-population and estimated weights-arrival for

grid of step 170km. Comparison between deterrence function (log - linear scale) of di�erent grid step.
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Figure 4.12: Aggregation with �xed number of cities on synthetic data (B). Estimated weights-population and estimated

weights-arrival for aggregation of 8 cities. Comparison between deterrence function (log - linear scale) of di�erent

aggregation number.



Chapter 5

Test of spatial model assumptions

Spatial models of human mobility and interactions, like the Gravity Model and the Inter-

vening Opportunities model, rely on some common assumptions and di�er on the variable

they use to predict the probability of one �ow event.

The common assumptions are:

• Individual events are independent. For example, the decision of individual A to com-

mute to location j is independent of the decision of individual B (irrespective of the

distance of the home locations of A and B).

• The probability p of a �ow event from location i to location j depends on

� one variable per location, wi (e.g. population within some distance, number of

calls, ...).

� a variable relating two locations, rij (e.g. geographic distance for GM, intevening

opportunities for IOM).

Then p has the following form

pij =
wjf(rij)∑
k wkf(rik)

. (5.1)

It follows that the probability of observing the trip {Tij} from i is given by the multinomial

distribution

P ({Tij}|{pij}, Ti) = Ti!
∏
k

pTikik

Tik!
(5.2)

and the average and variance of the number of the �ows from i to j is respectively

⟨Tij⟩ = Tipij (5.3)

and

σ2ij = Tipij(1− pij). (5.4)

Our aim is to understand if the common assumptions that we highlighted are compatible

with a set of observed �ows. At the beginning we performed the non-parametric regression

analysis that we have described in the previous chapter, and then we performed some test and

scaling techniques. In the following section we will �rst apply this techniques to simulated

data of a subset of 300 counties of the USA. As weights we use real population of each
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locations (in 2000 − 2001), and we use real data also for the number of people who leave a

county. The deterrence function is stretched exponential

f(r) = e−r1.5/1500. (5.5)

On these data we perform non-parametric regression and we use the results of the �t.

5.1 From P(r) to f(r)

When we perform the non-parametric �t, we need to start from reasonable values of the

deterrence function f(r) and weights, in order to possibly reach the global minimum of the

cost function, and not only a local one. We have chosen to use as initial value of the deterrence

function P (r), i.e. the probability density function of length trip, because we expect it to

have similar characteristics of that of f(r).

In this section we describe a relation between P (r) and f(r) which can help to improve

the e�ciency of our algorithm for the non-parametric �t.

The fraction of trips with length r is:

P (r) =
∑
i,j

Tij P (Tij |pijTi) δ(rij − r)/
∑
l

Tl (5.6)

where P (Tij |pijTi) is the probability of observing Tij trips from i to j. If we de�ne T =
∑

l Tl,

we have:

P (r) =
1

T

∑
ij

Tipijδ(rij − r)

=
1

T

∑
i

Ti

∑
j wjf(rij)δ(rij − r)∑

k wkf(rik)

= f(r)
1

T

∑
i

Ti
ci
wi(r)

(5.7)

where ci ≡
∑

k wkf(rik), and wi(r) =
∑

j w(rij = r) is the sum of all weights with distance

r from i. At this point we can formulate two hypothesis:

1. ci is independent from the origin i; if so, ci = c ∀i.
2. wj(r) depend only on r; if so, wi(r) = w(r) ∀i.
If these hypothesis are veri�ed, we can write

P (r) =
f(r)w(r)

c
. (5.8)

So we can reverse the formula to �nd f(r) from P (r), where f(r) is, as usual, de�ned apart

from a constant:

f(r) =
P (r)

w(r)
(5.9)

In practice, we calculate w(r) as the average on i of wi(r). With this formula, it is possible

to determine the deterrence function f(r) from only P (r) and the weights wi, but we need

to verify the hypothesis �rst.

For hypothesis 1, we compute ci ≡
∑

k wkf(rik) for all i and plot the distribution P (ci),

to see if it is peaked on an average value c. In �gure 5.1 we can see the plot for synthetic

data that we are considering.
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Figure 5.1: On the left, histogram of the values of ci (with standard deviation: 0.594), which we approximated to be

independent of i in the �gure on the right of P (r) using Pc(r) (5.10).

Then we compute Pc(r) using

Pc(r) =
f(r)

Tc

∑
i

Tiwi(r) (5.10)

to check if it is close to the real P (r) (�gure 5.1). Even though P (ci) is not particularly peaked

(the ratio between mean and standard deviation is 0.594), Pc(r) is a good approximation for

P (r). In general, the form of P (ci) depends on f(r).

To verify the hypoteses 2, we compute wi(r) for every i at various r, plot the distribution

P (wi(r)), and check if each distribution, for a given r, is peaked. The distribution we

�nd usually presents a peak and long tail on the right, so the ratio between the standard

deviation and the mean is not particularly low. The hypoteses is veri�ed well only for r big

enough (relative errore is ∼ 1% for r ∼ 90km. P (wi(r)) depends on how the weights are

distribuited on the space, but on average we expect that w(r) scales almost linearly with r,

until the average radius of the area we are considering (⟨r⟩ ∼ 300km), after which we expect

a decrease. We can see this behaviour in �gure (5.2). Then we compute Pw(r) using

Pw(r) =
f(r)w(r)

T

∑
i

Ti
ci

(5.11)

check if it is close to the real P (r) (�gure 5.2); we can see that the two function are similar

apart from short distance (r < 50 km); this di�erence is due to anisotropy in distribution of

cities for short distance. If we compute P (r) with (5.8), the approximation is exactly the same
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Figure 5.2: On the left, average values of total weights at distance r, with standard deviations. On the right, approxi-

mation of P (r) using Pw(r) (5.11), which assumes total weights at distance r from a location to be independent of the

location.

as (5.11), apart from a factor that makes no di�erence after the normalization of the function.

So actually the only important approximation that we need to make is wi(r) = w(r).

The value of P (r) we obtain is quite in agreement with the function calculated from data,

so we can use (5.9) to �nd an approximation for f(r) and compare it with the deterrence

function derived from the �t. As we can see in �gure (5.3), the agreement is good for large

r ( r > 60km).

In this procedure we can also use population instead of weights, when we are dealing with

real data (in this simulation we took the population as weights). There is an approximation

due to binning, but the result does not change very much if we use smaller bin, furthermore

we risk to have bin without any values. In our comparison, we have always used the same

binning for deterrence function or pdf calculated with the di�erent methods.

5.2 Probability Integral transform

We check that the multinomial assumption for P (T ) holds using the Probability integral

transform (PIT). This technique allows to compare not only the average observed �ows with

the model's prediction, but also the entire distribution. It is a stronger test than plotting

Tdata vs Tmodel, and can be used also when the OD matrix is extremely sparse (few trips

from each location) which is the case when one wants to study OD matrices at high spatial

resolution.
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Figure 5.3: Approximation of f(r) using (5.9) (which assumes total weights at distance r from a location to be

independent of the location) compared with f(r) derived from �t, and the true f(r) that we used for generate data.

This method works on cumulative distributions and can be applied to data points gener-

ated by any number of di�erent distributions.

The classic Probability Integral Transform Theorem can be stated as follows.

Theorem 1. If a random variables X has a continuous distribution function F(x), then the

random variables F(X) has a uniform distribution in the interval (0, 1), that is, is a U(0,1)

random variable.

Let X ∼ FX(x). De�ne the transformation

Y = FX(X) ∈ [0, 1],

X = F−1
X (Y ),

here dy
dx = FX(x)′ = fX(x).

FY (y) = fX [F−1
X (y)]

1

fX [F−1
X (y)]

= 1,

i.e. Y is uniform over [0, 1]. Another way to see it is through the distribution function:

FY (y) = P (Y ≤ y) = P (FX(X) ≤ y) = P (X ≤ F−1
X (y)) = FX(F−1

X (y)) = y.

The earliest use of this result was presented by Ronald Aylmer Fisher in his famous paper

[Pro30] in 1930 where he introduced the theory of �ducial limit on intervals. Fisher again used

the PIT in 1932 in the fourth edition of his book entitled "Statistical methods for research

workers" [Fis32], in which he proposed a method to combine tests of signi�cance.

The inverse Probability Integral Transform is used intensively in simulation of random

variables.

In order to evaluate the goodness of �t we calculate the distance of probability integral

transform obtained from the data, from the theoretical uniform one; we use di�erent kind of

measure, that we present at the end of this chapter. When we apply this technique to real

data, we compare the distance that we �nd with the distance �nd with a simulated set of

data with the same distribution of the real data.
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5.3 Function collapse

In the study of critical phenomena, in Physics, three fundamental pillars are scaling, uni-

versality and renormalization [Sta99]. The scaling hypothesis was independently developed

by several workers, including Kadano� and Fisher. It has two categories of predictions, that

are scaling laws and data collapse; for thermodynamic functions it is made in the form of a

statement about one particular thermodynamic potential, generally chosen to be the Gibbs

potential per spin, G(H,T ) = G(H, ϵ) (H is the magnetic �eld, ϵ ≡ (T −Tc)/Tc is the reduce
temperature, Tc is the critical temperature) . One form of the hypothesis is the statement

that asymptotically close to the critical point, Gs(H, ϵ), the singular part of G(H, ϵ), is a

generalized homogeneous function (GHF). Thus the scaling hypothesis may be expressed as

a relatively compact statement that asymptotically close to the critical point, there exist

two numbers, aH and aT (termed the �eld and temperature scaling powers) such that for all

positive λ, Gs(H, ϵ) obeys the functional equation:

Gs(λ
aHH,λaT ϵ) = λGs(H, ϵ). (5.12)

This equation constrains the form of a thermodynamic potential, near the critical point,

so this constraint has implications for quantities derived from that potential, such as the

equation of state. Starting from (5.12), it is possible to derive a way to scaling quantities,

such as magnetization or temperature, in order that if we plot them, an entire family of

di�erent curves ( like M(H = const, T ) ) will �collapse� onto a single function.

Inspired by this physical property, we look at the basic form of (5.1), in search for a

relation between the variables that we expected to be present if (5.1) is a distribution in

agreement with data. We �nd a function of �ows and weights, that is di�erent for every

couple of locations. These di�erent functions, after being scaled in a proper way, should

collapse onto a single function common for all of them.

From (5.1) and ci ≡
∑

k wkf(rik) we have:

f(rij) =
pijci
wj

. (5.13)

Using pij = Tij/Ti, we �nd:

f(rij) =
Tijci
Tiwj

. (5.14)

If we divide the data in bin and we plot h(rij) =
Tij
Tiwj

, we do not expect a good collapse of

the function, because we have neglected ci (see �g 5.4).

Let g(rij , rik) be a function de�ne as follows:

g(rij , rik) ≡
f(rij)

f(rik)
. (5.15)

using (5.14):

g(rij , rik) =
Tij
wj

wk

Tik
. (5.16)

Then we procede as follow (we show here some results obtained from synthetic data):

• for all pairs of locations (i, j) and (i, k) we compute g(rij , rik) using (5.16). We exclude

�ows with less than 10 travellers because the statistics is too poor.
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Figure 5.4: h(rij) =
Tij

Tiwj
for hybrid simulated data. As we expected, with this function we do not see a good collapse.

Figure 5.5: Hybrid simulated data, plot of the di�erent curves gij(r).

• After �xing rij , we divide r in bins and plot the curves g(rij , rik) for all bins. For

semplicity, we can say that these curves represent the functions gij(r), with r = rik. As

expected, these curves are di�erent from each other (�g 5.5).

• Consider two distances, rij and rlm. Let rik = rln = r, we have the identity

g(rij , rik) = g(rlm, rln)g(rij , rlm). (5.17)

Plotting the two curves glm(r) and gij(r) = glm(r)g(rij , rlm), we should see a collapse

(�g 5.5).

• Finally, after chosing a particular r0, we plot all the curves gij(r), ∀i, j, multiply by

the right rescaling factor g(r0, rlm) = f(rlm)/f(r0) to see the collapse. In �gure 5.6 we

plot also f(r)/f(r0), that is the theoretical function where the other function should

collapsed.

In order to evaluate the goodness of the collapse we calculate the distance of the collapsed

curves from the theoretical one, using di�erent kind of measure, that we present in the next

section. When we apply this technique to real data, we compare the distance that we �nd

with the distance �nd with a simulated set of data with the same distribution of the real

data.
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Figure 5.6: Collapse of the gij(r) for hybrid simulated data. On the left: log-scale, on the right: linear scale. In white

we represent the theoretical function f(r)/f(r0) where the other should collapse. Distance from the theoretical curve:

jac 0.071, MSE 0.020, sor 0.102. We simulated data with the same distribution �nd from the �t, and we perform the

same function collapse. The values of the distance that we �nd are very closed to the �rst ones: jac 0.068, MSE 0.018,

sor 0.100.

5.4 Distance between probability density functions

To compare two probability density functions there are various distance/similarity mea-

sures that can be used [Cha07]. Here we list the distances that we chose for our analysis.

For two discrete probabilities distribution P = (p1, . . . , pd) and Q = (q1, . . . , qd), we can

de�ne:

• Sørensen distance (sor):

dsor =

∑d
i=1|Pi −Qi|∑d
i=1(Pi +Qi)

; (5.18)

• Jaccard coe�cient :

sjac =

∑d
i=1 PiQi∑d

i=1 P
2
i +

∑d
i=1Q

2
i −

∑d
i=1 PiQi

; (5.19)

and Jaccard distance (jac):

djac = 1− sjac =

∑d
i=1(Pi −Qi)

2∑d
i=1 P

2
i +

∑d
i=1Q

2
i −

∑d
i=1 PiQi

; (5.20)

• Kolmogorov-Smirnov (ks):

dks = sup
i
|(Pi −Qi)|; (5.21)

• Hellinger distance (he):

dhe =
1√
2

√√√√ d∑
i=1

(
√
pi −

√
qi)2. (5.22)



Chapter 6

Data analysis

Here we present the results of our analysis applied to data of commuting and migration

�ows in the USA and England.

The dataset which is better described by our model is the one which has distribution more

similar to the theoretical one. We compare the distance between observed-estimate �ows,

the probability integral transform (the distance from the expected uniform distribution), the

distance of the collapse from the expected distribution.

We will show that basic assumptions of singly-costrained Gravity Models are rather com-

patible with local and global commuting �ows in England. The agreement is less good for

commuting �ows in the USA, and even worse for migration in the USA.We hypotesize that

the wrong level of aggregation may be the reason of the discrepancies from model to data.

6.1 Datasets

Our Datasets consist of:

• US commuting

Data on commuting trips between United States counties are available online at

http://www.census.gov/population/www/cen2000/commuting/index.html. The �les

were compiled from Census 2000 responses to the long-form (sample) questions on

where individuals worked. The �les provide data at the county level for residents of

the 50 states and the District of Columbia (DC). The data contain information on

34,116,820 commuters in 3,141 counties.

• US migrations

United States population migration data from 1992-1993 to 2006-2007 are available

online at

http://www.irs.gov/uac/SOI-Tax-Stats-Migration-Data The main source of area-to-area

migration data in the United States is the Statistics of Income Division (SOI) of the In-

ternal Revenue Service (IRS), which maintains records of all individual income tax forms

�led in each year. The Census Bureau is allowed access to tax returns, extracted from

the IRS Individual Master File (IMF), which contains administrative data collected for

every Form 1040, 1040A, and 1040EZ processed by the IRS. Census determines who in

the �le has, or has not, moved. To do this, �rst, coded returns for the current �ling

54
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year are matched to coded returns �led during the prior year. The mailing addresses on

the two returns are then compared to one another. If the two are identical, the return

is labeled a non-migrant. If any of the above information changed during the prior 2

years, the return is considered a mover. An aspect of this dataset is that �ows with

less than 10 people are not recorded for privacy reasons.

• England commuting

Data of commuting �ows in UK between 7201 wards are available at :

http://www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm

6.2 Local level: comparison of di�erent dataset

The model that we want to test is the singly-costraint Gravity Model with weights and

deterrence function as free parameters. Now we apply the methods presented in the previous

chapters to compare the goodness of the �t of this model against our three datasets. We

study the performance of the model on a regional level. The considered region is shown in

�gure (6.1).

For the same region we compare the data of migration of 2000-2001 (USAm) and the data

of commuting �ows in the USA (USAc). We make a comparison also with data of commuting

�ows in a region of 300 wards in England (UKc).

Our aim is to decide if observed �ows are compatible with the assumption of a generic

singly-costrained gravity model. To do so, we compare the various distributions that we

�nd with the theoretical ones, and we calculate the distances: from observed to estimated

�ows (�g. (6.2), from probability integral transform to the expected uniform distribution

(�g. (6.3)), from estimation for P (r) and f(r) and the function obtained from �t (�g. (6.5),

�g. (6.6), �g. (6.7)). In the end we compare the distance of data collapse with the distance

that we �nd with a simulation with the same parameter as the �t (�g. (6.4)); we perform

a comparison also between the distance from the uniform distribution of probability integral

transform, and the distance of simulated data (see caption of �g. (6.3)).

We can see that UK data are the best �tted by singly-costrained Gravity Model, then the

�t of commuting �ows is better than migration �ows in the USA.

Which characteristics of the data are responsible for that? If we look at the number of

non-zero �ows in the data and we compare it with the number of non-zero �ows predicted

by our model (with the parameters of the �t) we �nd that data of migration in the USA as

more zero �ows that the other dataset (table (6.1)).

So it seems that the more non zero �ows, the better is the �t. For (USAm) there is

an order of magnitude of di�erence between non-zero �ows and non-zero estimated �ows.

Actually data of migration does not report �ows with less than 10 people (for privacy reason,

because data derives from taxes). So we look at �ows greater than ten observed (4750), and

estimated (5009), and we conclude that the absence of �ows with less than ten people in the

data can explain the discrepancy between observed-estimated non-zero �ows.

In (table (6.1)) we report also correlation weights-arrivals for real data, and the same

correlations for synthetic data generated with the same distribution found from the �t of real
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Table 6.1: Dataset, number of non-zero �ows in the data, number of non-zero �ows estimated from the �t, correlation

weights arrival, average dimensions of locations (de�ne as the average of the distance from each location to the closest

one), average ranges, i.e. average travels distance. We can notice that in the USA travel range and locations dimensions

are longer that in the UK.

data non-zero non-zero estimated weights-arrival average dim average range

USA (USAm) 4750 29610 0.661 (0.688) 24.7 km 50.1 km

USA (USAc) 12322 31929 0.884 (0.894) 24.7 km 35.1 km

UK (UKc) 41239 48097 0.836 (0.800) 1.7 km 7.9 km

Figure 6.1: Region with 300 counties of the USA that we are studying.

data (in brackets in the table). We expect a strong relationship between weights-arrivals,

like in simulated data of previous chapter, and this correlation is the reason why we chose

arrivals as intial parameters of the weights for the non-parametric �t. Here we notice that

the correlation is very similar from real to expected, but its value depends on the parameter.

There is not a particular disagreement from real to simulated value; we notice though that

commuting �ows have a smaller correlation.

An aspect that distinguishes the datasets is that migration �ows are characterized by a

longer average travels distance (�gure 6.2), and in general distances in the USA are longer

than in UK. In the next section we will focus on the characteristics of deterrence function at

local and global level.

The region of the USA that we study is the same that we studied in chapter 3 for (USAc)

data. If we compare the distance of estimated �ows with the real ones for the non-parametric

�t of (USAc) with the results obtain with GLM models of chapter 3, we can see that this �t

is de�nitely better. Taking into account the kind of data that we are studying, this model

can be satisfactory, depending on the information that we are looking for. For example, it

can tell us which is the best approximation for the deterrence function.

6.3 Deterrence function

When we look at the deterrence functions of �gure 6.2 we notice that they have di�erent

characteristic.

The position of maximum depend on the scale, that is the average distance between
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Figure 6.2: On the left: observed-estimated �ows; on the right: P(r), initial deterrence function and optimal deterrence

function. Data (from the top): USAm (migration USA), USAc (commute USA) and UKc (commute UK) in a region

with 300 locations. We report chi-square and other distance between observed-estimated data:

USA migration: chi-square 471067, MSE 2759, jac 0.11 , sor 0.25.

USA commuting �ows: chi-square 1168643, MSE 63605, jac 0.049, sor 0.16.

UK commuting �ows: chi-square 86710, MSE 75.29966, jac 0.081 ,sor 0.19 .
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Figure 6.3: Probability integral transform and distance from the theoretical uniform distribution, for data (from the

left): migration �ows in the USA (USAm), commuting �ows in the USA (USAc), commuting �ows in England (UKc) .

Migration USA (USAm): MSE 0.00399 jac 0.0040 sor 0.024;

simulation: MSE 4.91e-05 jac 4.91e-05 sor 0.0026.

Commute USA (USAc):

MSE 0.00182 jac 0.0018 sor 0.018;

simulation: MSE 8.5e-06 jac 8.5e-06 sor 0.0012.

Commute UK (UKc)

MSE 0.00089 jac 0.00089 sor 0.013;

simulation: MSE 3.35e-05 jac 3.35e-05 sor 0.0022.

Figure 6.4: Function collapse for (from the left): migration in the USA (USAm), commuting �ows in the USA (USAc),

commuting �ows in England (UKc). Here we report: the distance from the functions calculated from the data and the

theoretical expected function and the distance from the functions calculated from the synthetic data (with the same

distribution as the real data) and the theoretical expected function.

(USAm)

data: jac 0.632 MSE 0.136 sor 0.434 ks 12523 ed 48.1

simulation: jac 0.0398 MSE 0.00214 sor 0.081 ks 1869 ed 8.43

(USAc)

data: jac 0.8023 MSE 0.04916 sor 0.4749 ks 8088 ed 41.6

sumulation: jac 0.0321 MSE 0.000392 sor 0.0672 ks 911.5 ed 5.9

(UKc)

data: jac 0.33938 MSE 0.05343 sor 0.236 ks 45705 ed 67.1

simulation: jac 0.0637155 MSE 0.00540649 sor 0.103598 ks 17600 ed 27.8.
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Figure 6.5: Data of migration �ows in the USA (years 2000-2001) (USAm). On the top-right, the histogram of ci,

which we assume to be peaked in order to approximate P (r) with estimation (1). On the top-left, average values of

total weights at distance r from a location (with standard deviation), assumed to be independent of the location for

estimation (2).Below , estimation (1) and (2) of P (r); from the �gure you can read the distance from real value to

estimate of the P (r), with the approximation ci = c (estimated 1), and with approximation wi(r) = w(r) ∀i (estimated

2). Below, estimated of f(r) from P (r) with approximation (1) and (2): in the �gure you can read the distance from

estimate of f(r) (from the initial �t) and estimate of f(r) from the P (r) with the approximations.
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Figure 6.6: Data of commuting �ows in the USA (years 2000-2001) (USAc). On the top-right, the histogram of ci,

which we assume to be peaked in order to approximate P (r) with estimation (1). On the top-left, average values of

total weights at distance r from a location (with standard deviation), assumed to be independent of the location for

estimation (2).Below , estimation (1) and (2) of P (r); from the �gure you can read the distance from real value to

estimate of the P (r), with the approximation ci = c (estimated 1), and with approximation wi(r) = w(r) ∀i (estimated

2). Below, estimated of f(r) from P (r) with approximation (1) and (2): in the �gure you can read the distance from

estimate of f(r) (from the initial �t) and estimate of f(r) from the P (r) with the approximations.
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Figure 6.7: Data of commuting �ows in the UK (UKc). On the top-right, the histogram of ci, which we assume to be

peaked in order to approximate P (r) with estimation (1). On the top-left, average values of total weights at distance

r from a location (with standard deviation), assumed to be independent of the location for estimation (2).Below ,

estimation (1) and (2) of P (r); from the �gure you can read the distance from real value to estimate of the P (r), with

the approximation ci = c (estimated 1), and with approximation wi(r) = w(r) ∀i (estimated 2). Below, estimated of

f(r) from P (r) with approximation (1) and (2): in the �gure you can read the distance from estimate of f(r) (from

the initial �t) and estimate of f(r) from the P (r) with the approximations.
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Figure 6.8: Aggregation in group of 24 wards in England and Wales. The di�erent aggregation regions have di�erent

colors, and the red points correspond to their �nal position.

locations: the longer the distance, the further to the right the maximum of the function

will be. In table (6.2) average linear dimensions derived from data are reported (locations

dimension is the average of the minimum distance between locations).

Table 6.2: Average locations dimensions and average trip distance for data of after aggregation in group of 8 counties

in USA, and 24 wards in the UK.

data average locations dimension average trip distance

USA (USAm) 110.8 km 670 km

USA (USAc) 110.8 km 173.1 km

UK (UKc) 13.6 km 27.6 km

Now we analyze the problem of scale. In the simulation of the previous chapter, if we

compare the range of the deterrence funtion with aggregation and the range that we �nd in

single region, both of them are around 300 km. This agreement is also due to the fact that

the range is long and, even after aggregation, the minimum distance between counties (∼ 80

km) is still shorter than the range.

It is interesting to see whether di�erent regions share the same characteristics for the

deterrence function, and if at local and global scales the range (and the peak) of deterrence

function are the same. In �gures 6.9 , 6.10 and 6.12, we present together the optimal de-

terrence functions found for di�erent regions, and the function found from aggregation with

�xed number of locations (8 for migration and commuting �ows in the USA, 24 for England

�g. 6.8). In the graphs of deterrence function, we always represent the function starting from

the minimum distance values between pair of locations of the dataset.

When we �t separately di�erent groups of 300 wards in England (�g. 6.9), we found that

the characteristics of the deterrence function are in agreement with each other: range around
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Figure 6.9: Deterrence function and P (r) (logarithmic and linear scale) for England commuting �ows. Results of the

analysis in di�erent regions, and after aggregation at global scale in �xed number of counties (24). Average dimension

of locations (local level) : ∼ 1.8km. Average dimension of locations (after aggregation ) : ∼ 13.6km.

40 km, just some noise for longer distance.

This behaviour tells us that England has homogeneous characteristic in the di�erent areas.

Furthermore, we see that the range is quite in agreement with that of aggregation. This is

due to the fact that the shortest distances after aggregation are still shorter than the range

of local deterrence function. In the next section we will perform the analysis to test the

goodness of �t for the aggregated data of England.

When we aggregate counties in the USA, shortest distances after aggregation are already

at the limit of the local range of the deterrence function, so we cannot expect the same regular

behaviour that we �nd in England.

Despite that, in �gure 6.10 we can see that there is less aggrement also between di�erent

region of the USA; the range is more or less the same, but the situation is less homogeneous

and there is some noise for longer distance (100-1000 km).

Even though it can be partly due to the big distance after aggregation, still aggregation

underline a de�nitely longer range for the deterrence function at global level (∼ 140km, the

double of the local values).

When we study data of migration, the situation is de�nitely eterogenous. In �gure 6.11

we show the function at local level for three di�erent areas (the three of them very central);

they have various shapes, they all present a peak, and the range is around 80 km (but even

for this there are �uctuations).

In �gure 6.12 we show in more details the results of di�erent aggregation numbers on

migration in the USA. Despite the presence of noise, it is clear the position of the maximum

and the range of the deterrence function: the peak is around 100 km, and then the range is

around 400 km.

For migration in the the USA, the �t is clearly not good neither at local nor global level.

6.4 Test hypothesis on aggregated data

Now we apply scaling technique ad probability integral tranform to aggregation in �xed

location number of synthetic data (group of 8 locations), USA commuting �ows (group of 8
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Figure 6.10: Deterrence function and P (r) (logarithmic and linear scale) for USA commuting �ows, 2000-2001. Results

of the analysis in di�erent regions, and after aggregation at global scale in �xed number of counties (8). Average

dimension of locations (local level) : ∼ 36.5km. Average dimension of locations (after aggregation ) : ∼ 110.8km.

Figure 6.11: Deterrence function and P (r) (logarithmic and linear scale) for migration in the USA (years 2000-2001).

Results of the analysis in three di�erent regions, and after aggregation at global scale in �xed number of counties (8).

Figure 6.12: Deterrence function and P (r) (logarithmic and linear scale) for migration in the USA (years 2000-2001).

Aggregation in �xed group of counties (8, 10, 12, 14).
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Figure 6.13: Observed-estimated

�ows for aggregate data. From the

top: synthetic data (group 8), USA

commuting �ows, UK commuting

�ows.
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Figure 6.14: Function collapse for aggregate data. From the left: synthetic data, USA commuting �ows, UK commuting

�ows.

locations) and UK commuting �ows (group of 24 locations) (in �g 6.13 we show the plot of

observed-estimated �ows). When we speak about synthetic data, we refer to hybrid simula-

tion (B) described in chapter 4, with real population as weights, real positions of locations,

and stretched exponential as deterrence function (5.5).

In �gure 6.14 we show the results of function collapse for aggregation in group of �xed

location number, and in table (6.3) we report the distances. The aggregation is performed

on synthetic data (group of 8 locations), USA commuting �ows (group of 8 locations) and

UK commuting �ows (group of 24 locations). We compare the distance of the collapse with

the distance of a simulated data with the same distribution. To understand the e�ect of

aggregation, we start our analysis from aggregation on synthetic data to show that neither in

the simulation the collapse is like in the direct simulation (without aggregation). We perform

also probability integral tranform from the same aggregated systems, comparing the result

with simulated data (�g 6.15, table(6.4)).

Table 6.3: Distance from data collapse to theoretical function. We report also the values for simulated data with the

same distribution.

data distances

Synthetic data jac 0.230 MSE 0.0223 sor 0.1888 ks 27220 ed 47.4

simulation for synthetic data jac 0.027 MSE 0.0018 sor 0.0618 ks 8889.6 ed 16.6

USAc jac 0.940 MSE 0.0130 sor 0.6014 ks 10155 ed 50.6

simulation for USAc jac 0.037 MSE 1.498e-05 sor 0.0727 ks 911 ed 5.72

UKc jac 0.548 MSE 0.0144 sor 0.3805 ks 54710 ed 96.2

simulation for UKc jac 0.022 MSE 0.000152 sor 0.056 ks 5968 ed 13.4.

From these results, we realize that the kind of discrepancy between the distribution that

we �nd from data and the expected distibution, is comparable with the distance between

aggregated synthetic data and their expected values!

From results in section 6.2 it seems that assumption of singly-costrained gravity model

are not veri�ed, in particular for commuting and migration �ows in the USA. From these

observations from aggregated �ows, we hypotesize that assumption may be satis�ed, and the

discrepancy between real data from model may be due at the fact that we are looking at the

spatial �ows phenomena at an aggregation scale too long. In order to satisfying assumption,

it may be necessary to look at migration and commuting �ows at lower level of aggregation
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Table 6.4: Distances from theoretical uniform distribution for Probability integral tranform. We report also distances

calculated for simulated data with the same distribution of the results of the �t.

data distances

Synthetic data (10) (311) MSE 0.00071 jac 0.00071 sor 0.0109 chi-square 0.0212

simulation for synthetic data MSE 2.34e-06 jac 2.341e-06 sor 0.000603 chi-square 7.02e-05

Synthetic data (8) (389) MSE 0.00013 jac 0.00013 sor 0.0045 chi-square 0.0038

simulation for synthetic data MSE 3.94e-06 jac 3.9405e-06 sor 0.00080176 chi-square 1.18e-04

USAc (389) MSE 0.00271 jac 0.00270 sor 0.0235 chi-square 0.0813

simulation for USAc MSE 1.32e-06 jac 1.323e-06 sor 0.000476 chi-square 3.97e-05

UKc (301) MSE 0.00086 jac 0.00086 sor 0.0114 chi-square 0.0257

simulation for UKc MSE 3.50e-06 jac 3.50e-06 sor 0.000784 chi-square 1.05e-04

Figure 6.15: Probability integral transform for aggregate data. From the left: synthetic data (group 10), USA com-

muting �ows, UK commuting �ows.

respect than that of counties and wards. Wards in England are smaller than counties, and

indeed commute �ows in England are better described by the model. In addition to level of

aggregation, also discretization should be chosen consistently with mobility processes.

6.5 Outliers

For data of commuting �ows in a region of the USA, we look for outliers, i.e. locations

that have �ows on average farthest from the others respect to the predict value. As there

is a relationship between population and estimated weights, we try to see if there are some

locations whose optimal weights are farther from this relation. We �nd two locations with

this behaviour, both with big population (�g. 6.16). We perform non-parametric �t excluding

them and we �nd that distance between observed and estimated �ows is better without the

two locations, but just because we took o� the biggest �ows, as Probability integral transform

is worst because there are less large �ows. So we conclude that there are not locations which

can be easily considered outliers.

In general the non-parametric �t can help us to �nd outliers. Another way to �nd outliers

is to consider probability integral transform separately for each locations and consider the

one with the longest distance from uniform distribution.
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Figure 6.16: USA commuting �ows; we underline the two counties which may be consider outliers.



Chapter 7

Conclusion

In this thesis we underline the common assumptions behind di�erent formulations of

the singly-costrained Gravity Model, and we develop a technique based on non-parametric

regression to test these model assumptions.

The assumptions that we test are: independence of individual trips and probability of

a trip proportional to a �weight� of the destination multiplied by a function of the distance

(deterrence function).

We perform a non-parametric regression �t based on greedy algorithm. Non-parametric

�t has the weights as free parameters, and uses a sum of ten gaussians to describe the

deterrence function f(r). The algorithm of the non-parametric �t consists of a minimization

of a cost function ( derived from likelihood) which describes the distance of observed values

from values estimated by the model. The problem of a �t with many parameters ( we are

looking at sample of around ∼ 300 locations plus 30 parameters of the sum of gaussians) is

that we cannot be sure that we �nd the global minimum of the function. The idea behind the

Greedy algorithm is to apply little change to a single parameter (randomly chosen) and then

evaluate the new value of the cost function: only if it has decreased, the new parameter's

value will be accepted. The initial values for the parameters are very important. To be

sure to reach a reasonable solution, we start from arrivals as weights (because we �nd with

simulation that there is a strong correlation between arrivals and weights). For the sum

of gaussians, we start from a �t of P (r), i.e., the probabilty distribution function of travel

distance (derived from data). We choose it as initial value because it has reasonably similar

characteristics to the deterrence function.

We notice that if some approximations hold, then there is a simple relation between P (r)

and f(r). It is possible to derive f(r) from the knowledge of P (r) and weights. This can

be a useful future improvement of the algorithm to perform a more e�cient non-parametric

�t: the minimization process would �nd only the optimal weights, and in every step of the

algorithm the deterrence function would be derived from P (r) and weights.

Starting from the results of non-parametric �t, we developed two techniques to assess the

goodness of �t of the model: probability integral transform and data collapse. The latter

of these draws inspiration from scaling in critical phenomena in Physics. We evaluate the

distance between data and their theoretical distribution, and compare the distances with the

ones obtained by simulation from the same parameters.

69
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We apply this method to data of commuting and relocation �ows in the USA, and com-

muting �ows in England. Data of �ows in the whole of the USA (or in the whole of England)

are too numerous to apply a minimization algorithm (∼ 3000 counties in the USA, ∼ 7000

wards in England). So we select a region with 300 locations in the USA (and in England as

well), and we perform our method for testing model assumptions on three di�erent kind of

data (migration and commuting �ows in the USA, commuting �ows in the UK). Comparing

the distances from the expected distributions, we conclude that commuting �ows in England

are better described by the model, but none of the three datasets is perfectly compatible with

model assumptions.

To manage to study �ows in the whole of the United States, we aggregate �ows in order

to have a number of locations accessible to our algorithm. We notice that the model performs

worse after aggregation. We test model assumptions on the aggregate data of commuting �ows

in the USA and in England, and we compare the results with the one obtained from simulated

data (with real position of counties and real population as weights). The discrepancies from

distances obtained from data and the expected distances are comparable with discrepancies

for aggregation on simulated data. So we conclude that the wrong level of aggregation may

be the reason why the model assumptions are not perfectly followed by the datasets.

The advantages of non-parametric regression and scaling techniques are that it allows

us to test the basic assumptions behind models, which is an important �rst step in the

comprehension of phenomena. The non-parametric �t can also help in understading which

aspects of the data model are less compatible. For example, whether it is possible to �nd

outliers, which are locations with a behaviours which are particularly unexplained by the

model.

A negative aspect of the non-parametric �t is that it is computationally di�cult, and we

manage to obtain good results only with a sample of around 300 − 400 locations. So it can

be used to study �ows only between a limited number of locations.

To reach a better understanding of commuting and relocation �ows, it would be interest-

ing to improve the evaluation of the level of con�dence of the validity of the assumptions.

Furthermore, more work is necessary to understand the e�ect of aggregation and the impor-

tance of scale and discretization for the Gravity models of human mobility.
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