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1 Introduction
In 1931 Dirac published a paper concerning key similarities between the classical
Hamilton-Jacobi theory and the transition amplitudes in quantum mechanics.
In particular, he derived the following relation

〈q, t|Q,T 〉 ∼ e ih̄
∫ t
T
dtL . (1.1)

In 1948, Feynman developed Dirac’s suggestion and succeeded in deriving a
new formulation of quantum mechanics, quite different from the standard one.
This formulation does not require the use of operators and of the Schrödinger
equation to express the quantum mechanical amplitudes. The physical idea is
that the probability amplitude to find a particle at the space-time point (Q,T ),
knwowing that it was at (q, t), is given by the sum of all the possible paths
between the two space-time points, each one contributing with an appropriate
weight.
In this work it is firstly presented (Sec. 2) the Dirac original idea and then
how Feynman developed his path-integral formulation of quantum mechanics.
Moreover, it is explained how this approach can be generalized to quantum field
theory. In particular we focus on the case of a scalar field (Sec. 3), introducing
the generating functional, a basic tool to compute Green’s functions without the
use of Feynman diagrams. Finally, in Sec. 4 and 5, we illustrate two alternative
representations of the generating functional, developed in the Ref.[2]. The first
one is expressed as

W [J ] = T [φc] =
N

N0
exp(−U0[φc]) exp

(
1

2

δ

δφc
∆

δ

δφc

)
exp

(
−
∫
V (φc)

)
,

(1.2)
where φc is defined as φc(x) =

∫
dDyJ(y)∆(y − x). This dual representation is

used to express Schwinger-Dyson equation, obtaining[
δ

δφc
+ eU0[φc]

∫
δV

δφ

(
∆

δ

δφc

)
e−U0[φc]

]
e

1
2

δ
δφc

∆ δ
δφc e−

∫
V (φc) = 0 . (1.3)

It is also possible to note the presence of a deep connection between the above
dual representation and the Hermite polynomials. Then, we express T [φc] in
terms of “covariant” derivatives acting on 1

T [φc] =
N

N0
exp (−U0[φc]) exp

(
−
∫
V (D−φc)

)
· 1 , (1.4)

where D±φ (x) = ∓∆ δ
δφ (x) + φ(x). These “covariant” derivatives simplify the

form of the equations. For example the Schwinger-Dyson equation becomes(
δ

δφc(x)
+

∫
δV

δφ

(
D−φc

))
exp

(
−
∫
V (D−φc)

)
· 1 = 0 . (1.5)

We also see how they make “more comfortable” some explicit calculations.
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2 The path-integral
The Dirac formulation. The key initial idea, that led to the concept of path-
integral, is due to Dirac who was looking for an alternative formulation of quan-
tum mechanics provided by the Lagrangian. He believed that the Lagrangian
formulation of classical dynamics is more fundamental than the Hamiltonian
one for the following reasons. First of all the Lagrangian method allows to find
the equations of motion, thanks to the stationary property of a certain action
function. Secondly, the Lagrangian method could be easily expressed relativis-
tically since the action is Lorentz invariant. For doing this, Dirac worked on
the analogy between the classical theory of Hamilton-Jacobi and the transition
amplitude in quantum mechanics. To show this analogy, let us consider a one-
dimensional classical system of only one particle. Let q be the coordinate and p
the momentum. H is the Hamiltonian of the system. The Hamilton variational
principle

δ

∫ t

t0

dt

(
p
dq

dt
−H(q, p, t)

)
= 0 , (2.1)

allows to describe the time evolution of q(t), p(t) by the Hamilton equations,
expressed through the Poisson brackets as follows

dq

dt
= {q,H} , dp

dt
= {p,H} . (2.2)

A canonical transformation is a transformation of q and p into new variables
Q and P leaving Hamilton’s equations form invariant. It is well known that a
function G(t, q,Q) called generating function exists, such that

p =
∂G

∂q
, P = −∂G

∂Q
, H̃ = H+

∂G

∂t
, (2.3)

where H̃ is the Hamiltonian of the new system.
Denote S(t, q,Q) the special canonical transformation such as Q̇ = Ṗ = 0. By
(2.3), it follows that

H
(
q, p =

∂S

∂q
, t

)
= −∂S

∂t
. (2.4)

Since
dS

dt
=
∂S

∂t
+
∂S

∂q

dq

dt
= −H+ p

dq

dt
, (2.5)

we have

S =

∫ t

t0

dt′L . (2.6)

Note that once S has been evaluated on the solution of the equation of motions,
it can be interpreted as a functional of q(t) and q(t0) = Q. In this way, the
action is the generating function of the canonical transformation, transforming
the system variables from t0 to t.
Describing the same one-dimensional system in quantum mechanics it is possible
to introduce two independent representations for the system, |q〉 and |Q〉, and
look for a 〈q|Q〉 connecting the two representations. If F is any function of the
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dynamical variables, it will have a “mixed” representative 〈q|F̂ |Q〉 and thanks
to the completeness relation ∫

dq |q〉 〈q| = 1 (2.7)

we get

〈q|F̂ |Q〉 =

∫
〈q|F̂ |q′〉 〈q′|Q〉 dq′ =

∫
〈q|Q′〉 〈Q′|F̂ |Q〉 dQ′ , (2.8)

From these relations we obtain

〈q|q̂|Q〉 = q 〈q|Q〉 , 〈q|p̂|Q〉 = −ih̄ ∂
∂q
〈q|Q〉 , (2.9)

〈q|Q̂|Q〉 = Q 〈q|Q〉 , 〈q|P̂ |Q〉 = ih̄
∂

∂Q
〈q|Q〉 . (2.10)

However, since Q̂ and q̂ do not necessarily commute, if F = F [q,Q] the “mixed”
representative 〈q|F [q̂, Q̂]|Q〉, may be not well defined. The generic function F =
F [q,Q] is called well-ordered if it can be expressed as F [q,Q] =

∑
k f

1
k (q)f2

k (Q).
Then if F is well-ordered, so the above “mixed” representative is well defined.
Therefore, setting 〈q|Q〉 = e

i
h̄U(q,Q) into equations above we obtain

〈q|p̂|Q〉 =
∂U(q,Q)

∂q
〈q|Q〉 , 〈q|P̂ |Q〉 = −∂U(q,Q)

∂Q
〈q|Q〉 . (2.11)

Finally supposing ∂U
∂q and ∂U

∂Q are well-order we find

p̂ =
∂Û

∂q
, P̂ = −∂Û

∂Q
. (2.12)

So U is the analogue of the classical function S and in this way Dirac concluded
that

〈q, t|Q,T 〉 ∼ e ß
h̄

∫ t
T
dtL . (2.13)

The Feynman path-integral. As Dirac emphasized, the “∼” above is just a
loose connection. As matter of fact, a “=” would not be correct in the previous
relation as long as T − t is a finite time interval. Feynman started from (2.13)
and he assumed it as an equality (up to a constant) only for an infinitesimal
time interval:

〈q′t|qt+δt〉 = C exp

(
− i
h̄
δtL(q′t, qt+δt)

)
. (2.14)

Now split the time interval T − t into N infinitesimal time intervals ta = t+ aε,
Nε = T − t, using the completeness relation (2.7), we find

〈q′t|qT 〉 =

∫
dq1dq2 · · · dqN−1 〈q′t|q1〉 〈q1|q2〉 · · · 〈qN−1|qT 〉 , (2.15)

which is an exact quantummechanical relation. Replacing Eq.(2.14) into Eq.(2.15)
we can conclude that

〈q′t|qt〉 = lim
N→∞

AN
∫ (N−1∏

i=1

dqi

)
e
i
h̄

∫ t
T
dtL(q,q̇) . (2.16)
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Such an expression is not fully corrected, yet. It can be proved that to “exactly”
formulate the transition amplitude the action must be expressed through the
Hamiltonian formalism, so we can finally define the transition amplitude as

〈q′t|qT 〉 =

∫
DqDp exp

{
i

∫ t

T

dT

[
p
dq

dt
−H(p, q)

]}
. (2.17)

3 The path-integral for a scalar field
Let us apply the functional method of path-integral to the theory of a real scalar
field φ(x). The Lagrangian density of the theory is the following

L(φ, ∂µφ) = L0(φ, ∂µφ)− V (φ) =
1

2
∂µφ∂

µφ+
1

2
m2φ2 − V (φ) , (3.1)

where V (φ) is the potential. The first step is to build the Hamiltonian density
H, performing a Legendre transformation:

π(x) =
∂L

∂ (∂0φ)
= ∂0φ ≡ φ̇ , (3.2)

H(π, φ, ~∇φ) = πφ̇− L =
1

2

(
π2 +

(
~∇φ
)2

+m2φ2

)
+ V (φ) , (3.3)

where π(x) is the canonical momentum. Eq.(2.17), extended to field theory,
defines the transition amplitude from φa(0,x) to φb(T,x) = T as

〈φb(x)| e−iHT |φa(x)〉 = N

∫
DφDπ exp

[
i

∫ T

0

d4x

(
πφ̇− 1

2
π2 − 1

2
(∇φ)2 − V (φ)

)]
,

(3.4)
where N is the normalization constant and φ(x), over which we integrate, has
the following boundary conditions

φ(x) =

{
φ(x) = φa(x) if x0 = 0 ,

φ(x ) = φb(x) if x0 = T .
(3.5)

The integration over π is trivial, just completing the square on the exponent
and integrating, we obtain

〈φb(x)| e−iHT |φa(x)〉 = N ′
∫
Dφ exp

[
i

∫ T

0

d4xL

]
, (3.6)

where N ′ is a normalization constant. Hereafter we will give up the Hamiltonian
formalism, and take Eq.(3.6) to define the Hamiltonian dynamics.
Although the relation (3.6) is a very elegant one, physicists are mostly concerned
with computing quantities that can be measured, like cross sections and decay
rates. These quantities can be related to the S-matrix, which can be computed
from the connected correlation functions trough LSZ (Lehmann, Symanzik, Zim-
mermann) reduction formula. Then, we need a formula to compute the corre-
lation functions. Let us consider the following object∫

Dφ(x)φ(x1)φ(x2) exp

[
i

∫ T

−T
d4xL(φ)

]
, (3.7)
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where φ(x) is constrained by the boundary condition

φ(x) =

{
φ(x) = φa(x) if x0 = −T ,
φ(x) = φb(x) if x0 = T .

(3.8)

With some manipulation it can be proved that (3.7) is equal to

〈φb| e−iHTT {φH(x1)φH(x2)} e−iHT |φα〉 , (3.9)

where1 T is the time ordering operator and the operators φH are expressed
through the Heisemberg picture. Eq.(3.7) can be extended to the case of cor-
relation functions from t = −∞ to t = ∞; this quantity is very important in
quantum field theory. Therefore, we have to take the limit for T → ∞(1 − iε)
which selects the lowest energy level, indicated with |Ω〉. Eq.(3.7) becomes

〈Ω|TφH(x1)φH(x2) |Ω〉 = lim
T→∞(1−iε)

∫
Dφφ(x1)φ(x2) exp

[
i
∫ T
−T d

4xL
]

∫
Dφ exp

[
i
∫ T
−T d

4xL
] ,

(3.10)
that is the desired formula. Higher correlation functions can be obtained, just
inserting additional factors φH and φ, respectively on the left-hand and on the
right-hand sides of the previous equation. Another feature of Eq.(3.10) is that
it is manifestly Lorentz invariant ad it preserves also all the symmetries the
Lagrangian L may have.

3.1 The generating functional
Generalizing the above equations we can introduce the central object of this
work: the generating functional W [J ] of the Green functions, defined as follows

W [J ] ≡
〈Ω|Ω〉J
〈Ω|Ω〉

= N

∫
DφDπei〈πφ̇−H+Jφ〉

= N ′
∫
Dφ exp

[
i

〈
∂µφ∂

µφ+
1

2
m2φ2 − V (φ) + Jφ

〉]
,

(3.11)

where 〈f(x1) · · · f(xN )〉 ≡
∫
dDx1 . . . d

DxNf(x1, . . . , xN ) and N,N ′ are normal-
ization constants.
This path-integral is not well-defined because of the oscillatory integrand; we
can remedy to this problem introducing a damping term or working in the Eu-
clidean space. In this work it will be often used the latter method. Therefore,
setting the new variables x0 = −ix̄0, d

4x = −id4x̄, ∂µφ∂
µφ = −∂̄µφ∂̄µφ; then

the generating functional in Euclidean space is the following:

WE [J ] = NE

∫
Dφ exp

[
−
〈

1

2
∂̄µφ∂̄µφ+

1

2
m2φ2 + V (φ)− Jφ

〉]
. (3.12)

This object is very important since it allows to compute the Green functions,
defined as the coefficients of the functional expansion

W [J ] =

∞∑
N=0

iN

N !

〈
J1 · · · JNG(N)(1, . . . , N)

〉
, (3.13)

1See appendix A
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G(N)(1, . . . , N) =
1

iN
δ

δJ1
. . .

δ

δJN
W [J ]

∣∣∣∣
J=0

. (3.14)

Green’s functions G(N) in Minkowsky space are identified with correlation func-
tions. However, we can still use WE to construct Green’s functions G(N)

E in Eu-
clidean space, but in this case we have to relate them to G(N) through analytic
continuation (Wick rotation), which presuppose no singularities are encountered
in the process of contour rotation.

The Feynman propagator. Let us evaluate the generating functional for a
free theory ( V = 0 ), working in the Minkowsky space and putting the damping
term e−

1
2 εφ for the convergence problem; at the end of the calculation we have

to take the limit ε→ 0 (ε > 0). Therefore the new generating functional is

W0,ε ≡ N
∫
Dφ exp

[
i

〈
1

2
∂µφ∂µφ−

1

2
(m2 − iε)φ2 − Jφ

〉]
. (3.15)

The standard method to compute this integral is to work in the momentum
space, given the Fourier transform and anti-transform

F̃ (p) =

∫ +∞

−∞

d4x

(2π)2
e−ip·xF (x) , F (x) =

∫ +∞

−∞

d4p

(2π)2
eip·xF̃ (p) . (3.16)

Then introducing the new field (φ̃ is the Fourier transorm of φ(x))

φ̃′(p) = φ̃(p) +
[
p2 −m2 + iε

]−1
J̃(p) , (3.17)

the generating functional becomes

W0[J ] = exp

[
− i

2

∫
d4p

|J̃(p)|2

p2 −m2 + iε

]∫
Dφ′ei〈

1
2∂µφ

′∂µφ′− 1
2 (m2−iε)φ′2〉 ,

(3.18)
where Dφ′ differs from Dφ only for an omitted multiplicative constant. Then
the following relation is evident

W0[J ] = W0[0] exp

[
− i

2

∫
d4p

J̃(p)J̃(−p)
p2 −m2 + iε

]
, (3.19)

using the Fourier anti-transform it follows that

W0[J ] = W0[0]e−
i
2 〈J1∆F12J2〉 , (3.20)

where ∆F12 ≡ ∆F (x1 − x2) is the Feynman propagator

∆F (x− y) =

∫
d4p

(2π)4

e−ip·(x−y)

p2 −m2 + iε
. (3.21)

It could be more convenient to set

W0[J ] = eiZ0[J] , (3.22)

where
Z0[J ] =

〈
i

2
J(x)∆F (x− y)J(y)

〉
. (3.23)
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3.2 Generating functional of connected Green functions
As in the free case seen above, we set

W [J ] = eiZ[J] . (3.24)

The term Z[J ] plays a key role in quantum field theory since it is the generating
functional of the connected Green functions. Now, we prove it with reference
to [4]. Let G(N)

c denote the N -point connected Green functions. The general
G(N) contains σK copies of G(K) ( K ≤ N). Then G(N) may be expanded in
the form

G(N) =
∑

{σ1,σ2,...,σN}

∑
P

P
[
G(1)
c · · ·G(1)

c

]
· · ·
[
G(N)
c · · ·G(N)

c

]
, (3.25)

where the occupation number σi are constrained by 1σ1 + . . . + NσN = N . P
denotes all possible distinct permutations of the N variables. Then

W [J ] = eiZ[J] =

∞∑
N=0

iN

N !

∫
dDx1 · · · dDxNGN (x1, · · · , xN )J(x1) · · · J(xN )

=

∞∑
N=0

iN
∑

{σ1,...,σN}

N∏
j=1

[∫
dDx1 · · · dDxjG(j)

c · · ·G(j)
c J(x1) · · · J(xj)

]σj
σj !(j!)σj

.

(3.26)

Noting that
∑∞
N=0

∑
{σ1,...,σN} =

∑
σk
, where the summation on the right hand

side has no restriction, we obtain

W [J ] =

∞∏
j=1

∞∑
σj=0

1

σj !

[
i

j!

∫
dDx1 · · · dDxjG(j)

c (x1, . . . , xj)J(x1) · · · J(xj)

]σj
= exp

∞∑
N=1

iN

N !

∫
dDx1 · · · dDxNG(N)

c (x1, . . . , xN )J(x1) · · · J(xN ) ,

= exp (iZ[J ]) . (3.27)

4 Alternative representation for the generating
functional

In this section we will introduce a different representation for the generating
functional, working in D dimensional Euclidean space. Hereafter the subscript
E will be omitted. First of all it is necessary to introduce some notations. For
every even function or distribution G and for any functions or operators f1 and
f2, we set:

f1Gf2 = 〈f1(x)G(x− y)f2(y)〉 , δ

δf1
G

δ

δf2
=

〈
δ

δf1(x)
G(x− y)

δ

δf2(y)

〉
.

(4.1)
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The starting form of W [J ] is the following

W [J ] ≡ e−Z[J] = N

∫
Dφ exp

[
−
∫
dDx

(
1

2
∂µφ∂µφ+

1

2
m2φ2 + V (φ)− Jφ

)]
,

(4.2)
where Z[J ] is the generating functional for connected Green functions and N is
the normalization constant.

N =

(∫
Dφ exp(−S[φ])

)−1

, (4.3)

where
S[φ] =

∫
dDx

(
1

2
∂µφ∂µφ+

1

2
m2φ2 + V (φ)

)
. (4.4)

Schwinger representation. Suppose V (φ) can be expanded as

V (φ) =

∞∑
n=0

cnφn . (4.5)

Using
δ

δJ(x)
e〈Jφ〉 = φ(x)e〈Jφ〉 , (4.6)

we have

W [J ] = N

∫
Dφe〈−V (φ)〉e−〈

1
2∂µφ∂µφ+ 1

2m
2φ2−Jφ〉

= Ne−〈V ( δ
δJ )〉

∫
Dφe−〈

1
2∂µφ∂µφ+ 1

2m
2φ2−Jφ〉

=
N

N0
exp

(
−
∫
V

(
δ

δJ

))
W0[J ] , (4.7)

where

N0 =

(∫
Dφ exp(−S0[φ])

)−1

. (4.8)

Expression (4.7) takes the name of Schwinger representation for the generating
functional.

4.1 Dual representation for W [J ]

As we have seen the connection between the path-integral formalism and the
operator one is the following

W [J ] =
〈Ω|Ω〉J
〈Ω|Ω〉

, (4.9)

Note that we have

W [J ] = N 〈0|T exp

[∫
(−V (φ̂) + Jφ̂)

]
|0〉 , (4.10)
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where |0〉 is the free vacuum. Let us introduce the field φc(x), defined as

φc(x) =

∫
dDyJ(y)∆(y − x) , (4.11)

which satisfies the following equation(
−∂2 +m2

)
φc(x) = J(x) . (4.12)

Replacing φ by φ+ φc into Eq.(4.10), it follows that (up to a constant)

W [J ] = 〈0|T exp

[∫
(−V (φ̂+ φc)) + J(φ̂+ φc)

]
|0〉

= e−Z0[J] 〈0|T exp

[∫
(−V (φ̂+ φc))

]
|0〉 . (4.13)

Note that, thanks to the Wick theorem (A.11),

〈0|TF [φ̂+ f ]|0〉 = 〈0| exp

(
1

2

δ

δf
∆
δ

δf

)
: F [φ̂+ f ] : |0〉

= exp

(
1

2

δ

δf
∆
δ

δf

)
〈0|F [f ]|0〉

= exp

(
1

2

δ

δf
∆
δ

δf

)
F [f ] . (4.14)

Finally, applying Eq.(4.14) to the right hand side of Eq.(4.13), we get

W [J ] = exp(−Z0[J ]) exp

(
1

2

δ

δJ
∆−1 δ

δJ

)
exp

[
−
∫
dDxV

(∫
dDzJ(z)∆(z − x)

)]
,

(4.15)

that, can be expressed through φc as

W [J ] = T [φc] =
N

N0
exp(−U0[φc]) exp

(
1

2

δ

δφc
∆

δ

δφc

)
exp

(
−
∫
V (φc)

)
,

(4.16)
where

U0[φc] = −1

2
φc∆

−1φc , (4.17)

and ∆−1(x) =
∫
dDp(p2 +m2)eipx.

4.2 Schwinger-Dyson equation in the dual representation
Here we shortly present the Schwinger-Dyson equation, then we will express this
equation through the dual representation we have just introduced.

Schwinger-Dyson equation. This equation is the quantum equation of mo-
tion for Green’s functions. In classical mechanics the equation of motion could
be derived by imposing that the action has to be stationary under an infinites-
imal variation

φ(x)→ φ(x) + ε(x) . (4.18)
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The appropriate generalization to quantum field theory is to consider this vari-
ation as an infinitesimal change of variables

φ(x)→ φ(x) + εF [φ, x] , (4.19)

which does not change the measure (Dφ = Dφ′) and the value of the path-
integral. F [φ, x] is an arbitrary functional of φ (we suppose it admits an expan-
sion in powers of φ). The generating functional, expanded to the first order in
ε, becomes:

Wε[J ] =

∫
D
[
1 + ε

〈
δF

δφ

〉]{
1− ε

∫
dDx

[
δ 〈L〉
δφ
− Jφ

]
F

}
exp (−〈L − Jφ〉) .

(4.20)
Collecting the terms proportional to ε, imposing that the path-integral does not
change and using Eq.(4.6), we could find∫

dDxF

(
δ

δJ
, x

)[
δ 〈L〉
δφ

(
δ

δJ

)
− J(x)

]
W [J ] = 0 . (4.21)

If F = F (x), then (4.19) is just a translation of φ. The above equation reduces
to [∫

δ 〈L〉
δφ

(
δ

δJ

)
− J

]
W [J ] = 0 , (4.22)

that could be expressed as[
∆−1 δ

δJ
(x) +

∫
δV

δφ(x)

(
δ

δJ

)
− J(x)

]
W [J ] = 0 , (4.23)

where
∆−1 δ

δJ
(x) ≡

∫
dDy∆−1(y − x)

δ

δJ
(y) . (4.24)

With the dual representation, the above equation becomes[
δ

δφc
+

∫
δV

δφ

(
∆

δ

δφc

)]
e−U0[φc]e

1
2

δ
δφc

∆ δ
δφc e−

∫
V (φc) =[

δ

δφc
+ eU0[φc]

∫
δV

δφ

(
∆

δ

δφc

)
e−U0[φc]

]
e

1
2

δ
δφc

∆ δ
δφc e−

∫
V (φc) = 0 . (4.25)

As we will see there is a deep connection with the Hermite polynomials.

Relation with the Hermite polynomials. The standard representation of
the “probabilistic” Hermite polynomials is given by

Hen(x) = (−1)ne
x2

2 Dne−
x2

2 . (4.26)

Thanks to Eq.(B.7) the right hand side of (4.26) becomes

(−1)ne
x2

2 Dne−
x2

2 = e−
D2

2 xn . (4.27)

Replacing x with ix into (4.27) we get

e−
x2

2 Dne
x2

2 = e
D2

2 xn . (4.28)
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Then, supposing f(x) can be expanded in power of x, we find

e−
x2

2 f(D)e
x2

2 = e
D2

2 f(D) . (4.29)

This provides the following expansion

e
D2

2 f(x) =

∞∑
n=0

(−i)ncnHen(ix) . (4.30)

This equation can be used in quantum field theory. As matter of fact, (4.16)
involves exp

(
1
2δφc∆δφc

)
acting on φc. So in the perturbative expansion there

appear terms like

exp

(
1

2
δφc∆δφc

)
φnc . (4.31)

Note that
δφc∆δφcφ

n
c (x) = n(n− 1)∆(0)φn−2

c (x) , (4.32)

is the functional version of

∆(0)∂2
φcφ

n
c = n(n− 1)∆(0)φn−2

c , (4.33)

thanks to (4.30) we obtain

exp

(
1

2
δφc∆δφc

)
φnc (x) = (−i)n∆

n
2 (0)Hen

(
iφc(x)

∆
1
2 (0)

)
. (4.34)

Eq.(4.34) suggests a connection of the Schwinger-Dyson equation with the Her-
mite polynomials. We start from (4.27), through which we can find

eU0[φc]
δn

δφnc (x)
e−U0[φc] =

[
n∑
k=0

(
n

k

)
δn−k

δφn−kc (x)
e−U0[φc]

]
δk

δφkc (x)

=

[
1

2
exp (δφc∆δφc)

n∑
k=0

(
n

k

)(
∆−1φc

)n−k
(x)

]
δk

δφkc (x)
.

(4.35)

Using (4.34) we can express the Schwinger-Dyson equation for V = λ
n!φ

n as
follows[

δ

δφc(x)
+

n−1∑
k=0

λ(−i)k∆
k
2 (0)

(n− k − 1)!k!
Hek

(
iφc(0)

∆
1
2 (0)

)(
∆

δ

δφc

)n−k−1

(x)

]
e

1
2

δ
δφc

∆ δ
δφc e−

∫
V (φc) = 0 .

(4.36)
It interesting to consider a normal ordered potential

: V (φ) :=
λ

n!
: φn :=

λ

n!
exp

(
−1

2

δ

δφ
∆
δ

δφ

)
φn ,

in this case (4.25) becomes[
δ

δφc(x)
+

λ

(n− 1)!

n−1∑
k=0

(
n− 1

k

)
φkc (x)

(
∆

δ

δφc

)n−k−1

(x)

]
e

1
2

δ
δφc

∆ δ
δφc e−

∫
:V (φc): = 0 ,

(4.37)
that compared with (4.36) shows how the terms e±U0[φc] compensate the con-
tribution coming from the normal ordering regularization of the potential.
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4.3 T [φc] and normal ordered potentials
Let us consider only the case of a normal ordered potential, indicated with : V :.
It is useful to set

Dj =
1

2

δ

δφcj
∆

δ

δφcj
, Djk =

δ

δφcj
∆

δ

δφck
, D =

1

2

δ

δφc
∆

δ

δφc
. (4.38)

The expression (4.16) becomes

T [φc] =
N

N0
exp(−U0[φc]) exp(D) exp

(
−
∫

: V (φc) :

)
. (4.39)

Considering a generic functional F [φ], we want to express eDF [φ] as

exp(D) exp (F [φ]) = exp

( ∞∑
N=1

QN
N !

)
, (4.40)

where {QN} is a set of connected functionals, defined as

QN [φ] = eDFN [φ]
∣∣
conn

=

N∏
i>j=1

eDij
N∏
i=1

eDiF [φi]
∣∣
connφi→φ . (4.41)

The subscript “connect” means that at least one linkage operator (eDij ) must be
retained between each pairs of2 F [φi]. We need a similar decomposition; then
we set

T [φc] =
N

N0
exp

(
−U0[φc] +

∞∑
k=1

Qk[φc]

k!

)
, (4.42)

where now

QN [φc] = eD
(∫

: V (φc) :

)N ∣∣∣∣∣
conn

. (4.43)

Note that, like U [φc], the QN generate connected functions. Rescaling the
potential by a constant µ we find

exp(D) exp

(
−µ
∫

: V (φc) :

)
= exp

( ∞∑
K=1

µk

k!
Qk[φc]

)
, (4.44)

and so
Qk[φc] = ∂kµ ln

[
exp(D) exp

(
−µ
∫

: V (φc) :

)]∣∣∣∣
µ=0

. (4.45)

Now, the relation (B.1), expressed below through the appropriate variables,

eDF [φc]G[φc] = eD12
(
eD1F [φc1 ]eD2G[φc2 ]

)∣∣
φc1=φc2=φc

(4.46)

allows to make some considerable simplification. To show this, let us calculate
Q1 and Q2

Q1 = −eD
∫

: V := −
∫
V (4.47)

2This method is clearly exposed in [3].
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and

Q2 =
[
eD12 − 1

] [(
eD1

∫
: V [φc1 ] :

)(
eD2

∫
: V [φc2 ] :

)]∣∣∣∣
φc1=φc2=φc

=
[
eD12 − 1

] [∫
V (φc1)

∫
V (φc2)

]∣∣∣∣
φc1=φc2=φc

. (4.48)

Then

Qn[φc] = (−1)n
n∏
j>k

eDjk
n∏
i=1

∫
V (φci)

∣∣∣∣∣∣
c, φc1=φc2=...=φc

, (4.49)

where the subscript c indicates that non connected terms must be discharged.
So the generating functional of the connected Green function can be expressed
as follows

U [φc] = ln
N

N0
+ U0[φc] +

∞∑
p=1

(−1)p+1

p!

n∏
j>k

eDjk
n∏
i=1

∫
V (φci)

∣∣∣∣∣∣
c, φc1=φc2=...=φc

.

(4.50)

5 Generating functional and “covariant” deriva-
tives

In this section we will express the generating functional through “covariant”
derivatives. The key expression is the following operator identity

exp

(
−1

2
IMI

)
F [δI ] exp

(
1

2
IMI

)
= F [DMI ] , (5.1)

where F is a functional, I and M are functions (or distributions), DMI(x)
denotes the “covariant derivative”

DMI =
δ

δI(x)
+MI(x) . (5.2)

In our case we define
D±φ (x) = ∓∆

δ

δφ
(x) + φ(x) . (5.3)

It can be easily proved that these operators satisfy the following commutation
relations[

D−φ (x),D+
φ (y)

]
= 2∆(x− y) ,

[
D±φ (x),D±φ (y)

]
= 0 . (5.4)

Another fundamental relation comes from the use of (5.2) into the operatorial
version of (B.7)

exp

(
1

2
δIM

−1δI

)
F [MI] = F [DMI ] · 1 . (5.5)
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Thanks to the above relations, (4.16) becomes

T [φc] =
N

N0
exp (−U0[φc]) exp

(
−
∫
V (D−φc)

)
· 1 . (5.6)

This new representation still simplifies the form of the Schwinger-Dyson equa-
tion (4.25), reducing it to(

δ

δφc(x)
+

∫
δV

δφ

(
D−φc

))
exp

(
−
∫
V (D−φc)

)
· 1 = 0 . (5.7)

Now we will try to calculate the Green function through covariant derivatives.
To do this, note the expression below

δ

δJ(x)
exp (−U0[φc]) = exp (−U0[φc])D−φc(x) , (5.8)

so the N -point Green function is

δnW [J ]

δJ(x1) . . . δJ(xN )
= exp(−U0[φc])D−φc(x1) . . .D−φc(xN ) exp

(
−
∫
V (D−φc)

)
· 1

= exp(−U0[φc])

(
−
∫
V (D−φc)

)
D−φc(x1) . . .D−φc(xN ) · 1 .

(5.9)

The above representation makes easier the explicit calculation as we will see
later.
Another feature of this representation concerns the case of a normal ordered
potential. According to the Wick theorem (A.11) and to (5.1), we can write

: F [φ] := F [D+
φc

] · 1 . (5.10)

For example let us try to calculate : φ4 :. We use the notation ∆(x1−x2) = ∆12

and φ(xi) = φi.

: φ2(x) : =

2∏
k=1

Dφ(xk) · 1

∣∣∣∣∣
x1=x2=x

=

2∏
k=1

φ(xk) + ∆12

∣∣∣∣∣
x1=x2=x

= φ2(x)−∆(0) ,

: φ3(x) : =

3∏
k=1

Dφ(xk) · 1

∣∣∣∣∣
xk=x

=

3∏
k=1

φ(xk)−∆12φ3 −∆13φ2 −∆23φ1

∣∣∣∣∣
xi=x

= φ3(x)− 3∆(0)φ(x) ,

: φ4(x) : =

4∏
k=1

Dφ(xk) · 1

∣∣∣∣∣
xk=x

=

4∏
k=1

φk −∆12φ3φ4 −∆13φ2φ4 −∆14φ2φ3−

−∆23φ1φ4 −∆24φ1φ3 −∆34φ1φ2 + ∆12∆34 + ∆13∆24 + ∆23∆14|xk=x

= φ4(x)− 6∆(0)φ2(x) + 3∆2(0) . (5.11)

Since D+
φ and D−φ differ only by the sign of ∆(x − y), we can easily get the

expression of
∏n
k D
−
φ from (5.11). For example let us calculate T [φc] for V (φ) =
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λ
4! , to the first order in λ. Using Eq.(5.6) and thanks to (5.11)

T [φc] =
N

N0
exp (−U0[φc])

[
1− λ

4!

∫
dDxD−φc

4
(x) + ...

]
· 1 ,

=
N

N0
exp (−U0[φc])

[
1− λ

4!

(∫
dDx

(
φ4
c(x) + 6φ2

c(x)∆(0) + 3∆2(0)
))

+ . . .

]
.

(5.12)

The generating functional of connected Green functions. Let us em-
ploy this representation to Z[J ]. With reference to section 4.3 we will consider
a generic potential V [φ] which can be expanded in powers of φ (V is not normal
ordered as in the previous case). Then the generating functional is

T [φc] =
N

N0
exp (−U0[φc]) exp

(
1

2

δ

δφc
∆

δ

δφc

)
exp

(
−
∫
V (φc)

)
=

N

N0
exp

(
−U0[φc] +

∞∑
k=1

Qk[φc]

k!

)
= exp (−U [φc]) , (5.13)

where QN are connected functionals. Rescaling the potential with µ, we could
obtain

Qk[φc] = ∂kµ ln

[
exp(D) exp

(
−µ
∫
V (φc)

)]∣∣∣∣
µ=0

. (5.14)

Introducing the covariant derivatives and thanks to the following relations

exp

(
±1

2

δ

δφ
∆
δ

δφ

)
exp

(
−
∫
V (φc)

)
= exp

(
−
∫
V (D∓φc)

)
· 1 , (5.15)

exp(D)F [φ]G[φ] = F [D−φ ]G[D−φ ] · 1 , (5.16)

we are able to make some relevant simplifications. Let us try to compute Q1

and Q2

Q1 = −eD
∫
V = −

∫
V
(
D−φc

)
· 1 , (5.17)

Q2 = eD
∫
V

∫
V =

∫
V
(
D−φc

)∫
V
(
D−φc

)
· 1 . (5.18)

So generalizing, we can express the generating functional as follows:

U [φc] = ln
N

N0
+ U0[φc] +

∞∑
p=1

(−1)p+1

p!

(∫
V
(
D−φc

))p
· 1

∣∣∣∣∣
c

, (5.19)

where the subscript cmeans that terms non connected by at least one propagator
must be discharged. Eq.(5.19) can be expanded to the case of normal ordered
potential : V (φ) : as

U [φc] = ln
N

N0
+ U0[φc] +

∞∑
p=1

(−1)p+1

p!

(∫
V
(
D+
φc

)
· 1
∣∣∣∣
φc=D−φc

)p
· 1

∣∣∣∣∣
c

= ln
N

N0
+ U0[φc] +

∞∑
p=1

(−1)p+1

p!

(∫
V
(
D+
φc

)
· 1
∣∣∣∣
φc=D−φc

)p−1

·
∫
V (φc)

∣∣∣∣∣∣
c

.

(5.20)
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Now, we calculate G(2)
c and G

(4)
c for λ

4!φ
4 theory to the second order in λ, to

show how this alternative representation works. Eq.(5.19) gives expression to
the generating functional. Using the following notations: ∆(xi − xj) ≡ ∆ij ,
φc(xi) ≡ φi, φc(y) ≡ φy, the generating functional, expanded to the first order
in λ is

U [φc] = ln
N

N0
+ U0[φc] +

λ

4!

∫ (
D−φc

)4

· 1
∣∣∣∣
c

. (5.21)

But we have already calculated
(
D−φc

)4

· 1, and so we have(
D−φc

)4

· 1 = φ4
x + 6φ2

x∆xx + 3∆2
xx . (5.22)

Now, we proceed to calculate the generating functional to the second order in λ

D−φy ·
(
φ4
x + 6φ2

x∆xx + 3∆2
xx

)
= φ4

xφy + 4φ3
x∆xy + 6φ2

xφy∆xx + 12φx∆xx∆xy + 3φy∆2
xx , (5.23)

(
D−φy

)2

·
(
φ4
x + 6φ2

x∆xx + 3∆2
xx

)
=

φ4
xφ

2
y + 8φ3

xφy∆xy + φ4
x∆yy + 12φ2

x∆2
xx + 6φ2

xφ
2
y∆xx + 12φxφy∆xx∆xy+

6φ2
x∆xx∆yy + 12φxφy∆xx∆xy + 12∆xx∆2

xy + 3φ2
y∆2

xx + 3∆2
xx∆xy ,

(5.24)

(
D−φy

)3

·
(
φ4
x + 6φ2

x∆xx + 3∆2
xx

)
=

φ4
xφ

3
y + 12φ3

xφ
2
y∆xy + 3φ4

xφy∆yy + 36φ2
xφy∆2

xy + 12φ3
x∆xy∆yy+

24φx∆3
xy + 18φ2

xφy∆xx∆yy + 36φx∆xx∆xy∆yy + 6φ2
xφ

3
y∆xx+

36φxφ
2
y∆xx∆xy + 36φy∆xx∆2

xy + 3φ3
y∆2

xx + 6φy∆2
xx∆yy + 3φy∆2

xx∆xy .

(5.25)

Our final task is to compute G(2)
c and G(4)

c . Let us start with the 2-point Green’s
function and to find it we use the following relation:

G(2)
c (x1, x2) = − δ2Z[J ]

δJ1δJ2

∣∣∣∣
J=0

= −
∫
dDy1d

Dy2∆x1y1∆x2y2

δ2U [φc]

δφc(y1)δφc(y2)

∣∣∣∣
φc=0

.

(5.26)

It is not necessary to explicitly calculate
(
D−φy

)4

·
(
φ4
x + 6φ2

x∆xx + 3∆2
xx

)
be-

cause many of its terms do not contribute to the 2-point Green’s function. We
just consider the terms of the generating functional which meet our purpose.
Then, we have to discharge the disconnected terms and the terms that do not
contain φ2

y or φ2
x or φxφy. We get

U [φc]|2 = ln
N

N0
+ U0[φc] +

λ

4!

(∫
dDxφ4

x + 6φ2
x∆xx + 3∆2

xx

)
− λ2

2(4!)2

∫
dDxdDy

(
96φxφy∆3

xy + 144φxφy∆xx∆yy∆xy + 72φ2
x∆yy∆2

xy + 72φ2
y∆xx∆2

xy

)
+o(λ2) ,

(5.27)
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where the subscript 2 means that this expression can just lead to G(2)
c . There-

fore, by (5.26) applied to (5.27), we obtain:

G(2)
c (x1, x2) = ∆x1x2

− λ

2

∫
dDx∆x1x∆xx∆x2x +

λ2

6

∫
dDxdDy∆x1x∆3

xy∆x2y+

λ2

4

∫
dDxdDy∆x1x∆2

xy∆yy∆x2x +
λ2

4

∫
dDxdDy∆x1x∆xx∆xy∆yy∆x2y + o(λ2) .

(5.28)

Finally we work on G(4)
c , that can be expressed as follows:

G(4)
c = − δ4Z[J ]

δJ1 . . . δJ4

∣∣∣∣
J=0

= −
∫
dDy1 · · · dDy4∆x1y1 · · ·∆x4y4

δ4U [φc]

δφc(y1) . . . δφc(y4)

∣∣∣∣
φc=0

.

(5.29)
Following a similar procedure, we obtain the generating functional to calculate
4-point Green’s function (to the second order in λ) and it is expressed as

U [φc]|4 = ln
N

N0
+ U0[φc]−

λ

4!

(∫
dDxφ4

x + 6φ2
x∆xx + 3∆2

xx

)
+

λ2

2(4!)

∫
dDxdDy

(
72φ2

xφ
2
y∆2

xy + 48φxφ
3
y∆xx∆xy + 48φ3

xφy∆yy∆xy

)
+ o(λ2) .

(5.30)

We obtain

G(4)
c (x1, x2, x3, x4) = −λ

∫
dDx∆x1x∆x2x∆x3x∆x4x+

λ2

6

∫
dDxdDy

(
∆2
xy [∆x1x∆x2x∆x3y∆x4y + ∆x1x∆x3x∆x2y∆x4y + ∆x1x∆x4x∆x2y∆x3y]

)
+

+
λ2

2

∫
dDxdDy (∆yy∆xy [∆x1x + ∆x2x + ∆x3x + ∆x4y + cyclic permutations]) + o(λ2) ,

(5.31)

and it is the result we expected to find (for example see [7]).
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APPENDIX A

A Wick theorem
Let us consider the 2-field correlation function expressed through the operatorial
formalism 3

〈0|T {φ(x1)φ(x2)} |0〉 . (A.1)

We would like to rewrite it in a form that it is easy to evaluate and that can
also be expanded to the case of more than two fields. First of all, we can write
the field as following

φ(x) = φ+(x) + φ−(x) , (A.2)

where

φ+ =

∫
d3p

(2π)3

1√
2Ep

ape
−ip·x; φ− =

∫
d3p

(2π)3

1√
2Ep

a†pe
+ip·x . (A.3)

This decomposition is very useful, because thanks to ape−ip·x and a†p follows

φ+(x) |0〉 , 〈0|φ−(x) = 0 . (A.4)

A term like a†pa†qakal is said to be normal ordered and has a vanish vacuum
expectation value. Let us define the normal ordering symbol N() whose action
is to make into normal order the operators it contains. We introduce, now, one
more quantity, the contraction of two field, defined as follows:

φ(x)φ(y) =

{
[φ+(x), φ−(y)] forx0 > y0 ,

[φ+(y), φ−(x)] for y0 > x0 .
(A.5)

This quantity is exactly the Feynman propagator

φ(x)φ(y) = ∆(x− y) , (A.6)

Now, supposing x0 > y0, the time-ordered product is

Tφ(x)φ(y) = φ+(x)φ+(y) + φ+(x)φ−(y) + φ−(x)φ+(y) + φ−(x)φ−(y)

= φ+(x)φ+(y) + φ−(y)φ+(x) + φ−(x)φ+(y) + φ−(x)φ−(y) +
[
φ+(x), φ−(y)

]
.

(A.7)

The relation between the time-ordering and the normal-ordering is the following

T{φ(x)φ(y)} = N{φ(x)φ(y)}+ φ(x)φ(y) = N{φ(x)φ(y)}+ 〈0|φ(x)φ(y)|0〉 .
(A.8)

The generalization to many arbitrary field takes the name of Wick’s theorem
and it is the following (for example, see [6])

T{φ(x1)φ(x2) . . . φ(xn)} = N{φ(x1)φ(x2) . . . φ(xn) +all possible contractions} .
(A.9)

This rule admits a functional form that could make easier the explicit calcula-
tions. For example (A.8) can be written as

T (φ(x1)φ(x2)) =

[
1± 1

2

∫
dDy1d

Dy2
δ

δφ(y1)
∆(y1 − y2)

δ

δφy2

]
N(φ(x1)φ(x2)) .

(A.10)
3The fields are operator expressed through the Heisemberg picture
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APPENDIX A

The equation above could be generalized to the case of many arbitrary fields
(an excellent reference is [8]); the result is the following

TF [φ̂] = exp

(
1

2

δ

δφ̂
∆
δ

δφ̂

)
: F [φ̂] : . (A.11)
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B Some relations
In this appendix we detail the proofs of some relations used in this work.

B.1
Let φi(xi), ∆(xi, xj), Ji(xi) be functions or distributions, let F and G be func-
tionals. The relation we want to prove is the following

eDF [φ]G[φ] = eD12 [(eD1F [φ1])(eD2G[φ2])]
∣∣
φ1=φ2=φ

, (B.1)

where

Dj = − i
2

∫
δ

δφj
∆

δ

δφj
, Dij = −i

∫
δ

δφi
∆

δ

δφj
. (B.2)

Suppose F [φ], G[φ] can be expanded in powers of φ, then the starting point is
the relation below

F [φ] = F

[
−i δ
δJ

]
· exp

(
i

∫
Jφ

)∣∣∣∣
J=0

. (B.3)

Generalizing this equations to the product of two functionals and considering
that eD commutes with F

[
−i δδJ

]
, we get

eDF [φ]G[φ] = F

[
1

i

δ

δJ1

]
G

[
1

i

δ

δJ2

]
e(−

i
2

∫
δ
δφA

δ
δφ )e[i

∫
φ(J1+J2)]

∣∣∣∣
J1=J2=0

.

(B.4)
Now, noting that

exp

(
− i

2

∫
δ

δφ
A
δ

δφ

)
exp

(
i

∫
Jφ

)
= exp

(
i

∫
JAJ + i

∫
Jφ

)
, (B.5)

we obtain

eDF [φ]G[φ] =

F ·G · exp

(
i

2

∫
J1∆J1 +

i

2

∫
J2∆J2 + i

∫
J1∆J2

)
· exp

(
i

∫
φ(J1 + J2)

)∣∣∣∣
J1=J2=0

,

(B.6)

that can be rearranged to Eq.(B.1) .
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B.2
Let I and L be functions, let F be a functional and let M be an even function
or distribution. Then, we have

exp

(
−1

2
IMI

)
F [δI] exp

(
1

2
IMI

)
=

(
1

2
δIM

−1δI

)
F [MI] . (B.7)

We are will not prove it, but we will prove its more general operatorial version.
We define

F [MI] ≡ exp
(
δIM

−1δI
)
F [MI] . (B.8)

The operatorial version of Eq.(B.7) is

exp

(
−1

2
IMI

)
F [δI ] exp

(
1

2
IMI

)
= exp (−IMI)F [δI ] exp (LMI)

∣∣
L=I

.

(B.9)
It immediately follows that if we let the right hand side of the above equation
acting on 1, we obtain the Eq.(B.7). Indeed

exp (−IMI)F [δI ] exp (LMI)
∣∣
L=I
· 1 = F [δI ]

∣∣
δI≡MI

= F [MI] . (B.10)

Then, let us demonstrate Eq.(B.9). To start with we introduce the Laplace
transform

L{f}(s) ≡
∫ ∞
−∞

dte−stf(t) , (B.11)

through which we can express F [MI] as follows

F [MI] = e
1
2 δIM

−1δI

∫
DJeIMJ F̂ [MJ ] =

∫
DJe

1
2JMJ+IMJ F̂ [MJ ] . (B.12)

then we have
F [δI ] =

∫
DJe

1
2JMJ+JδI F̂ [MJ ] . (B.13)

Now, we will have the Eq.(B.9) acting on a generic functional G[MI]

e−
1
2 IMIF [δI ]e

1
2 IMIG[MI] = e−

1
2 IMI

∫
DJeJδI F̂ [MJ ]e

1
2 IMIG[MI]

= e−
1
2 IMI

∫
DJF̂ [MJ ]e

1
2 (J+I)M(J+I)G[M(I + J)]

= e−IMI

∫
DJe

1
2JMJ F̂ [MJ ]eLM(I+J)

∣∣∣∣
L=I

G[M(I + J)]

= e−IMI

∫
DJe

1
2JMJ+JδI F̂ [MJ ]eLMI

∣∣∣∣
L=I

G[MI]

= e−IMIF [δI ]e
LMI

∣∣
L=I

G[MI] . (B.14)

and so we have proved Eq.(B.9).
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