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Abstract

Due to the limited computational capabilities, low memory and limited en-
ergy budget, training deep neural networks on edge devices is very chal-
lenging. On the other hand, privacy and data limitations, lack of network
connection, as well as the need for rapid model adaptation, make real-time
training on the device crucial.

Standard artificial neural networks suffer from the issue of catastrophic
forgetting, making learning difficult. Continual learning shifts this paradigm
to networks that can continuously accumulate knowledge on different tasks
without the need to retrain from scratch.

In this work, a Continual Learning technique called Latent Replay is
employed, in which the activations of intermediate layers are stored and
used to integrate training data for each new task. This approach reduces the
computation time and memory required, facilitating training on the limited
resources of edge devices. In addition, a new efficient architecture, known as
PhiNets, was used for the first time in the context of Continual Learning.

An intensive study was conducted to compare PhiNets with efficient ar-
chitectures already tested in this context, such as MobileNet. Several metrics
were considered, such as computation time, inference time, memory used, and
accuracy. In addition, the variation of these metrics based on factors such
as the layer at which Latent Replay is applied was analysed. Tests were per-
formed on well-known computer vision datasets, evaluating them as a stream
of classes.
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Chapter 1

Introduction

In recent years, Deep Learning (DL) models have become ubiquitous in var-
ious applications, improving the state of the art in several fields such as
Computer Vision (CV), Natural Language Processing (NLP), and Audio.
Generally, these models require huge computational power to be run and
often utilize cloud computing for model inference.

In the Internet of Things (IoT) era, moving these models from the cloud
to the edge has become critical, as deployment on edge devices reduces la-
tency, improves privacy, and enhances security. However, bringing Artificial
Intelligence (AI) to devices with limited computational power is a challeng-
ing task. Recently, several models, known as efficient architectures, have
been developed to achieve high performance while minimizing the needed
computational resources, making them suitable for edge devices. However,
implementing Machine Learning (ML) models on the edge introduces another
significant challenge: the need for continuous adaptability of models.

Edge applications are subject to data distribution shifts related to en-
vironmental changes, such as lighting conditions. Additionally, the adapt-
ability of applications to new scenarios, such as the incorporation of new
classes, is crucial. This introduces another critical challenge for Deep Neural
Networks (DNN): the problem of Catastrophic Forgetting (CF). This refers
to neural networks’ tendency to forget previously acquired knowledge when
exposed to newly available data, limiting their ability to continuously learn
and adapt to new tasks.

The naive method involves retraining the model from scratch using the en-
tirety of the available data. However, this approach is generally impractical,
especially when dealing with edge devices equipped with limited computa-
tional resources. On the other hand, if one solely depends on new data to
update the model, it would quickly forget all previously acquired knowledge.

Recently a new machine learning paradigm called Continual Learning

1



2 CHAPTER 1. INTRODUCTION

(CL) has been introduced. It aims to mitigate the problem of catastrophic
forgetting by allowing a model to adapt to new data that arrive in the form
of a sequence of tasks. By exploiting Continual Learning techniques, we
can not only mitigate the risk of forgetting but also reduce the complexity
of the training process. In other words, CL allows models to grow their
knowledge over time with minimal computational cost. Several families of
CL strategies have been proposed in recent years, such as regularization
methods, rehearsal-based methods, and architecture-based methods.

Experience Replay (ER) is an effective rehearsal-based strategy. It stores
representative samples of a task and replays them during training of a new
task to retain past knowledge. Recently, novel replay techniques have emerged
to optimize resource utilization. The Latent Replay (LR) strategy aims to
store and replay past data with minimal memory and computational power,
moving towards edge applications.

In this thesis, we will use for the first time in the realm of Continual
Learning, a novel efficient architecture called PhiNet. It has demonstrated
the potential to enhance well-known efficient architectures such as MobileNet
and EfficientNet. In particular, we will employ the Latent Replay strategy
to compare the performance of PhiNet, MobileNetV1, and MobileNetV2 in a
resource-constrained scenario. We will conduct several experiments using two
well-known datasets for image classification tasks in the context of Continual
Learning: CIFAR-10 and CORe50.

Initially, we aim to examine the impact on the performance of the choice
of the layer at which to apply replay and the number of samples stored in
the replay memory. We will conduct an empirical analysis to identify factors
contributing to model forgetting, demonstrating that networks with greater
expressiveness require more data in memory to preserve knowledge of previ-
ous tasks than less complex models. Additionally, we will show the effective-
ness of Latent Replay compared to the Experience Replay strategy. Finally,
we will compare the effectiveness of PhiNet and MobileNet in real-world
scenarios by limiting the replay memory size to a few MB. Demonstrating
the superiority of PhiNet in situations with limited replay memory size and
computational power.

The thesis is structured as follows. Chapter 2 introduces the idea of Con-
tinual Learning, providing the necessary theory and presenting related work.
In particular, it thoroughly examines the challenges of deep learning and how
Continual Learning strategies attempt to solve them. Different CL scenarios
will be presented, along with an overview of CL families, introducing some
of the most well-known CL approaches for each. Finally, the Latent Replay
strategy will be presented. Chapter 3 will present well-known DL datasets
and how they can be adapted to be representative of different CL scenarios.
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In addition, we will report datasets specifically designed for CL. Moreover,
metrics frequently used in the field to evaluate performances and efficiency
of CL strategy will be presented. Chapter 4 will introduce the theory and
the state-of-the-art of the most recent efficient architectures, motivating the
efficacy of these models and emphasizing their differences. In Chapter 5
will discuss the results of the thesis work. By first demonstrating the ef-
fectiveness of the Latent Replay strategy. Subsequently, the performance
of efficient architectures will be compared. Finally, Chapter 6 provides the
thesis conclusions and proposes potential future improvements.
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Chapter 2

Continual Learning

This chapter introduces the concept of Continual Learning (CL), which is
essential for understanding the terminology and techniques presented in the
rest of the thesis.

Section 2.1 discusses the problems associated with classical deep learn-
ing (DL) techniques. Section 2.2 provides a formal definition of CL and
introduces the problem of data distribution shift and the different Contin-
ual Learning scenarios. Subsequently, Section 2.3 will present some of the
current state-of-the-art methods in the Continual Learning field. Finally,
Section 2.4 formally introduces the Latent Replay (LR) approach, which will
be used throughout the rest of the thesis.

2.1 Motivation
Deep Learning (DL) is a researching field that focuses on developing learning
algorithms that learn to optimize an objective function on training data. This
is achieved through the use of Deep Neural Networks (DNNs), which consist
of multiple layers of interconnected neurons. Each layer builds upon the
previous one to improve and refine predictions.

Modern deep learning provides a very powerful framework for supervised
learning. By adding more layers and more units within a layer, a deep neu-
ral network can represent functions of increasing complexity [11]. In recent
years, state-of-the-art DNN models have been reported to achieve impressive
performance on a wide variety of individual tasks, such as speech recognition,
image classification, machine translation, face recognition, gaming, and many
other applications. Although these results are impressive, DL requires large
amounts of data to train the models and it requires all data to be available
at the beginning of the learning process. Furthermore, it makes the strong

5



6 CHAPTER 2. CONTINUAL LEARNING

assumption that the data are i.i.d. during training. Unfortunately, in many
real-world scenarios, it is difficult to maintain this assumption. In addition,
it is very likely that a dataset will be integrated with new data over time,
making it impossible to have all the data at the beginning [25]. To over-
come these problems, the simplest solution would be to fine-tune the models
on the new available data. In DL, fine-tuning is an approach that involves
further training a pre-trained model on new tasks or data. However, when
trained on new data, Artificial Neural Networks (ANNs) forget most of the
knowledge from the previous task. This effect is known as Catastrophic For-
getting (CF) [7] and it can be explained by observing the learning process of
a neural network. Indeed, during the training phase, the network parameters
are updated through an optimization algorithms. The updates are computed
with respect to the loss function on the current task, with the aim of min-
imising the error on the new available data. Thus, the optimization process
focuses on the current task and does not take into account the preservation
of previously learned information. A simple solution could be to train the
neural network from scratch with all the data whenever new data becomes
available. Nevertheless, this approach may not be feasible due to the com-
putational power required. Indeed, training large neural networks can take
weeks, and retraining every time new data becomes available could be expen-
sive and time-consuming. This is especially true for situations involving data
streams. Therefore, being able to improve a pre-trained network with only
the new available data would be much more efficient. Furthermore, training
with all data may not be possible not only for reasons of efficiency, but also
due to legal, security or privacy obligations on previous data.

In recent years, several methods have been proposed to alleviate catas-
trophic forgetting. One area of research that seeks a solution to the CF
problem is known as Continual Learning (CL). CL explores approaches to
enable a DL model to learn in an evolving environment and continuously
learn to adapt to novel situations and remember previously learned solu-
tions for known situations. CL is directly related to the Plasticity-Stability
Dilemma, where plasticity refers to the ability to adapt new knowledge, while
stability refers to the retention of previously learned information [7, 8].

2.2 Continual Learning

2.2.1 Formal Definition
A formal definition of Continual Learning can be derived from prior research
works [7, 8, 31]. This approach ensures the maintenance of clarity and consis-
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Figure 2.1: Continual Learning schema. In the image is reported a
stream of two tasks ti with the corresponding triplet (xi, yi, ti), with
i = 1, 2.

tency in the context of CL, allowing for comprehension of metrics as defined
in literature.

The starting point is to define a task ti, which corresponds to a dataset Dti

represented by a triplet (xi, yi, ti), where xi ∈ Xti
denotes the feature vector,

yi ∈ Yti
represents the target vector, and ti ∈ T is the task descriptor. In

the simplest case, the collection of tasks descriptor T = {t1, . . . , tT } is a set
of integers enumerating the different tasks, ti = i ∈ Z. More generally, the
task descriptor ti could be a structured object.

In Continual Learning, we focus on a stream of tasks ti ∈ T of length T

(x1, y1, t1), . . . , (xi, yi, ti), . . . , (xT , yT , tT ) (2.1)

where we assume that every triplet is locally i.i.d., i.e., (xi, yi) iid∼ Pt(X, Y ).
The objective is to train a predictor f on the stream of tasks (2.1). It

has to accurately predict the corresponding target vector y when presented
with input x from past, present, or future tasks. It should be noted that the
relationship between task descriptor t and the predictor f may vary. In fact,
the task descriptor may or may not be present during training and testing
phases. The different relationships will be formally defined in Section 2.2.3,
where the scenarios of Continual Learning will be defined. In Figure 2.1 is
reported a graphical representation of the Continual Learning settings.
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2.2.2 Data Distribution Changes
Classic Machine Learning (ML) models learn the underlying data distribu-
tion from the training data, with the aim of leverage this learned distribution
to generate accurate predictions for unseen data. Therefore, the data used for
testing a model during development should be representative of unseen data,
and the performance of the model on the test data should give an idea of how
well the model generalize [19]. During the development is generally assumed
that the train and test data are drawn i.i.d. from the same stationary prob-
ability distribution. However, this assumption does not always hold in the
real world. Firstly, the distribution of real-world data is unlikely to be the
same as that of the training data. Secondly, the real-world is non-stationary,
which could result in data distribution shifts that may cause failures in ML
systems.

It is possible to characterised different types of data distribution drift,
and it is unlikely that a specific approach will work well for all of them.
Therefore, one can characterise CL algorithms based on their capability to
learn under certain types of distributional drift [26].

In supervised learning, the training data is a set of samples extracted
from a joint probability distribution P (X, Y ), where X is the input space
and Y is the output space. The purpose of ML is to model the probability
P (Y |X), i.e., the conditional probability of an output given an input. The
joint probability distribution might be decomposed as:

1. P (X, Y ) = P (Y |X)P (X)

2. P (X, Y ) = P (X|Y )P (Y )

where P (X) and P (Y ) represent respectively the input and output probabil-
ity distribution. Three types of data distribution shifts can be defined from
this:

1. Covariate shift or Domain drift : occurs when there is only a shift in
the input distribution P (X), i.e. the distribution of the input changes,
but the conditional probability of an output given an input remains
the same. It could happen because of biases during the data selection
process. As an example, if you train a model on images taken in one
lighting condition and then deploy it in a different lighting condition,
the model’s performance may suffer due to the change in the input
distribution.

2. Label shift or Virtual Concept drift : occurs when there is only
a shift in the output distribution P (Y ), i.e., the distribution of the
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Figure 2.2: Different type of data distribution shifts. From left to
right: Original Data Distribution, Covariate Shift, Label Shift and
Concept Shift. Figure adapted from [1].

output changes, but for a given output, the input distribution remains
the same. As an example, suppose you have a model that is trained
to identify the species of bird [53]. Now, suppose you want to identify
birds in San Francisco and New York. While the probability P (Y ) of
observing a snowy owl may differ, snowy owls should look similar in
New York and San Francisco and thus, the input distribution given the
output P (X|Y ) will remain unchanged.

3. Concept drift : occurs when there is only a shift in the conditional
distribution of the output given an input P (Y |X) and the input dis-
tribution remains the same, i.e., same input, different output. As an
example, consider a house price prediction model where the house’s
area is an input parameter. Suppose that the house price was $200 000
before 2020 but fallen to $150 000 after 2020. Despite the house’s fea-
tures having remained the same, the conditional distribution of the
house price, given its features, has changed.

In Figure 2.2 is reported a graphical representation of the different data
distribution shift compared to the original data distribution.

Another possible categorization of the data distribution shift is to subdi-
vide the shift as it changes over time: [7, 10]:

1. Sudden drift: occurs when there is a sudden change in the data
distribution, i.e. the data distribution suddenly changes to a different
one.

2. Incremental drift: occurs when there is a series of small changes
in the data distribution that occur over time, i.e., it consists in many
intermediate data distribution over time.
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Figure 2.3: Different type of temporal shifts. From left to right:
Sudden Drift, Incremental Drift, Gradual Drift, Recurring Concepts
Drift and Outlier Drift. Figure adapted from [10].

Scenario Description Mapping to Learn

Task-IL Sequentially learn to solve a
number of distinct tasks. f : X × T → Y

Domain-IL Learn to solve the same prob-
lem in different tasks. f : X → Y

Class-IL Discriminate between incre-
mentally observed classes. f : X → Y × T

Table 2.1: Overview of the three Continual Learning scenarios. X
is the input space, Y is the output space and T is the task descriptor
space. Table adapted from [49].

3. Gradual drift: occurs when there is a slow and gradual change in
the data distribution over time, the change is smaller and over a long
period.

4. Reoccurring concepts drift: occurs when there is a periodic change
in the data distribution at regular intervals.

5. Outlier drift: occurs when there is a once-off random deviation, i.e.,
a temporary change in the data distribution that returns to its original
distribution.

The Figure 2.3 shows a visual representation of the mentioned time distri-
butions shift. Typically, in Continual Learning, it is possible to observe the
sudden drift since the tasks are divided very precisely, without ambiguity [7].

2.2.3 Continual Learning Scenarios
In the context of Continual Learning, a well-known framework proposed
in [48] categorises the possible scenarios into three categories: (1) Task
Incremental Learning (TIL), (2) Domain Incremental Learning (DIL) and
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Figure 2.4: Overview of the three Continual Learning scenarios.

(3) Class Incremental Learning (CIL) (Table 2.1). These scenarios assume
that there are clear and well-defined boundaries between the tasks to be
learned during training, i.e., a sudden change. If the transition between
tasks is gradual or incremental, the aforementioned scenarios are no longer
applicable. The main difference between the three scenarios lies in the man-
ner in which task label information is exploited throughout the training and
testing phases. Figure 2.4 reports a visual example of the differences between
the three Continual Learning scenarios.

Task Incremental Learning (TIL)

Task Incremental Learning (TIL) refers to a scenario where the model grad-
ually learns new tasks over time and during both training and testing, it is
always clear which task is being performed. As a result, the model always
receives the task label in all the phases. The aim is to train a predictor
f : X × T → Y that predict the label y associated with the test pair (x, t).

In this scenario, a common architecture includes a "multi-head" output
layer, in which each task has its own output units and the rest of the network
is shared between the tasks [48].

Figure 2.5 reports an example with the Split MNIST dataset [52], a mod-
ified version of the MNSIT dataset [24], where the images in the dataset are
divided into 5 tasks (more details in Chapter 3). In this scenario, given in
input the image and task label, the model must predict to which class the
input image belongs (i.e., class 0 or 1).
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(a) Split MNIST with 5 tasks example.

Scenario Input Output Description
Task-IL (x, t) y Choice between two digits of same task.

Domain-IL x y Is the digit odd or even?

Class-IL x g Choice between all ten digits.

(b) Model expected input/output according to each CL scenario.

Figure 2.5: Split MNIST datatset with 5 tasks according to the
three Continual Learning scenarios. Image adapted from [49].

Domain Incremental Learning (DIL)

Domain Incremental Learning (DIL) refers to a scenario where the model
learns and adapts to new data from the same domain over time. The task
structure always remains the same, but the input distribution changes. In
such cases, the task label is not provided during testing. As a result, the
model does not know to which task a sample belongs. However, identifying
the task is not necessary, because each task has the same possible outputs.
The aim is to train a predictor f : X → Y that must predict a label y
associated with the test input x.

In this scenario, in the example of Figure 2.5, the model has to predict
whether the digits belong to the same class (e.g., odd or even).

Class Incremental Learning (CIL)

Class Incremental Learning (CIL) refers to a scenario where the model must
learn and adapt to new data classes gradually. The model needs to solve each
task and correctly identify which task a sample is from. Identifying the task
is necessary to solve the problem, as it determines which possible classes the
current sample belongs to. The aim is to train a predictor f : X → Y × T
that must predict a label y and the task t associated with the test input x.

In the CIL scenario in Figure 2.5, the model has to predict to which class
the image belongs.
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2.3 Continual Learning Strategies
In recent years, many Continual Learning strategies have been proposed to
mitigate the problem of catastrophic forgetting. These strategies are usually
categorized based on how task information is stored and exploited during the
learning phase. Typically, three main groups of approaches are identified in
literature [7, 8, 28, 49]:

• Regularization-based strategies: involve the introduction of a reg-
ularization term in the loss function. This term ensures that the signifi-
cant weights that retain knowledge from previous tasks are consolidated
during training of the new task. These strategies avoid input storage,
prioritizing privacy, and reduce memory requirements [8].

• Architecture-based strategies: use different architectures or layers
to learn new tasks without interfering with old ones. Alternatively,
they freeze the weights of previous tasks in the network to prevent
forgetting. The main disadvantage of this category is that it typically
requires task label information.

• Rehearsal-based strategies: involve storing samples of encountered
tasks to maintain a memory of the past in the model. Alternatively,
generative models are used to generate samples as a memory of encoun-
tered tasks. These samples are used then to strengthen the connections
of past tasks in the model during training of new tasks.

Figure 2.6 shows a non-comprehensive set of common CL strategies, which
will be presented in the following sections.

2.3.1 Upper Bound and Lower Bound
Continual learning strategies are evaluated by comparing performance against
upper and lower bounds. This allows to understand the gap between the
actual strategy and the ideal and worst case scenarios. It is possible to iden-
tify three the upper bounds: the Cumulative, Multi-Task, and Single Model
strategies. While for the lower bound, the Fine-Tuning strategy is considered.

Cumulative Strategy

The cumulative strategy assumes a stream of tasks to be learned and no mem-
ory or computational limits are taken into account during training. When
a new task becomes available, fine tuning is performed using all the data
from the previous task and the new task. Another variant of the cumulative
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Figure 2.6: Taxonomy of CL approaches.

strategy is to start training from scratch with available data, re-initialising
the network weights [28].

Multi-Task Strategy

The multi-task strategy assumes that all the data are available at the begin-
ning of the training phase, and it uses data from all tasks to train the model.
As a result, shared information and dependencies are used to improve the
performance of all tasks and allow better generalization. The main differ-
ence between this strategy and the cumulative strategy is that the multi-task
strategy is trained immediately with all the data from all the tasks, whereas
the cumulative strategy is trained with all the data only when the last task
is reached.

Single Model Strategy

The single-model strategy trains one model for each task it encounters. Each
model is specifically optimized for the task, and this strategy represents the
ideal case. This approach can lead to superior task-specific performance,
although it is less efficient in terms of resource utilization.

Fine-Tuning Strategy

The fine-tuning strategy is the naive method of training the model only with
data from the current task, possibly using basic regularisation techniques.
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However, significant variation in data distribution across multiple tasks can
result in catastrophic forgetting, as previously mentioned.

2.3.2 Regularization Strategies
To prevent catastrophic forgetting, regularization strategies add terms to the
loss function that consolidate the weights of the previous task. Two main
approaches can be distinguished: one constrains the weights of the neu-
ral network by estimating their importance for past tasks, such as Elastic
Weight Consolidation (EWC) [22] and Synaptic Intelligence (SI) [52]. Other
approaches exploit knowledge distillation from a model trained on the pre-
vious tasks to the model trained on the new task, such as Learning Without
Forgetting (LwF) [27].

Elastic Weight Consolidation (EWC)

Elastic Weight Consolidation (EWC) reduces the issue of catastrophic for-
getting in neural networks by constraining the learning process. The main
concept behind this approach is to incorporate a quadratic penalty term into
the loss function that assesses the distance between the current weight val-
ues and the optimal weights that were obtained during the previous task. In
practice, some learned weights from previous tasks may be less important
than others. Thus, EWC utilises Fisher Information Matrix (FIM) to esti-
mate the importance of the weights for the previous tasks. This, provides
insights into how sensitive the network is to weight changes. Weights with
higher importance values significantly influence the performance of previ-
ous tasks. Consequently, during the learning of new tasks, updating these
weights should be constrained more. When training the network on a new
task, the EWC loss function combines the loss for the new task with the
penalty term that limits weight updates based on their importance values.
Through this approach, EWC reduces interference between tasks, making it
easier to balance the learning of new tasks while retaining old ones.

Synaptic Intelligence (SI)

Synaptic Intelligence (SI) extends Elastic Weight Consolidation (EWC) in an
online learning fashion. In SI, weight importance is computed online during
Stochastic Gradient Descent (SGD), instead of computing the FIM after
training, which is too costly. Importance weights tend to be overestimated
in SI, and catastrophic forgetting in a pre-trained network becomes inevitable
since importance weights cannot be retrieved [8].
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Learning Without Forgetting (LwF)

Learning Without Forgetting (LwF) tries to mitigate catastrophic forgetting
by using knowledge distillation. Before training the model on the new task,
data are fed into the network and the outputs are saved. Subsequently, during
training on the new task, the output value are used to distil knowledge from
the previous tasks. However, the effectiveness of this method depends on the
degree of correlation of the new data with the previous tasks. Furthermore,
this method requires an additional forward pass of all new task data and
storage of the outputs.

2.3.3 Architecture Strategies
Architecture-based strategies modify the structure of the network for each
task to prevent catastrophic forgetting. As a result, the model has specific
components for each task. A disadvantage of this methodology is that it gen-
erally requires task label during inference to activate the task specific com-
ponents, which is generally not available in real-world applications. When
there are no constraints in the model size, one can expand the model archi-
tecture adding task specific parameters or layers, such as Progressive Neural
Networks (PNN) [42]. Alternatively, the architecture structure remains fixed
and some neurons or layers are specific for a task, such as in PackNet [32].

Progressive Neural Networks (PNN)

Progressive Neural Networks (PNN) add a task-specific column to prevent
forgetting. For each new task to be learned, the network is extended with a
new column. The idea is to use the columns from previous tasks as knowledge
and use lateral connections between them to adapt to learning the new task.
Throughout the training process, the previous columns remain frozen while
the lateral connections of the new column are being learned. This technique
combines parameter freezing and network expansion. Its major disadvan-
tage is the considerable amount of memory it demands, which makes it not
scalable.

PackNet

PackNet uses a binary mask to select parameters for each task. The process
involves two phases. Firstly, it identifies important weights for previous tasks
by pruning the network. Subsequently, the model maintains those parameters
while retraining the remaining subsets. One disadvantage is that performance



2.3. CONTINUAL LEARNING STRATEGIES 17

gradually decreases as more tasks are learned due to the limited number of
free parameters in the network.

2.3.4 Rehearsal Strategies

Rehearsal strategies use data from past tasks while training a new task to
prevent catastrophic forgetting. There are two main approaches. The first
approach stores a subset of samples from the current task in a fixed-size
memory, such as in Experience Replay [5, 40] or in Latent Replay [14, 33,
36]. Alternatively, some techniques use generative models to create pseudo-
samples of past tasks, such as Generative Replay [46].

Replay strategies have proven to be effective in CL [49]. However, com-
pared to other strategies, these approaches require additional external mem-
ory, which is limiting in some scenarios. In some real-world application,
data storage can lead to privacy concerns. Furthermore, if the memory size
is insufficient, the strategy’s performance decreases as the number of tasks
increases, causing catastrophic forgetting [7]. Additionally, this strategy re-
quires additional computation, which is not necessary in other approaches.

Experience Replay

In Experience Replay, a small amount of data from previous tasks is used to
retain past information during the training phase of a new task. A schematic
representation of the strategy is reported in Figure 2.7.

In practice, the model has a replay memory M , and if the total number
of tasks T is known, m = M/T samples are allocated for each of the tasks.
However, if the total number of tasks T is not known at the beginning, the
space m allocated to each task gradually decreases as the number of new
tasks increases. In the simplest case, the samples to be stored are randomly
selected, but ideally, they should be carefully chosen to be the most repre-
sentative of the task.

During the training phase on a new task, each batch of new data is mixed
with a batch of data from the replay memory. Subsequently, the model is
trained on this data union. In this way, the model retains previously learned
information and at the same time acquires new knowledge. A trade-off must
be found between memory size and model performance for the strategy to
be effective. In addition, the used batch size ratio affects the performance.
Generally, the two batches can be of equivalent size. Otherwise, in [36, 37] a
1/5 ratio of new samples to samples taken from memory has been shown to
be effective in maintaining the memory of past tasks and learning new ones.
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Figure 2.7: Architectural diagram of the Experience Replay. There
are three tasks, t1 and t2 are past tasks stored in the replay memory
and t3 is the current task.

Generative Replay

Generative Replay approaches avoid storing past training examples by ex-
ploiting generative models to replicate the distribution of input data. Typ-
ically, Generative Adversarial Networks (GANs) [12] or Variational Auto-
Encoders (VAEs) are used as generative models.

In this approach, generative models are trained on the distribution of
input data. In this way, memory is preserved by generating samples of past
experiences while learning new data, without the need for external memory.
In a common Generative Replay configuration, one frozen model generates
samples from past experience, while another model learns how to classify the
generated past experience and to generate and classify current task samples.
At the end of a task, the generative frozen model is replaced with the new
learned model, which is also frozen, and a new generative model is initialized
for the next task.

2.4 Latent Replay

2.4.1 Motivation
In Section 2.3.4, we introduced the general idea of Experience Replay strate-
gies. These strategies involve merging data from new tasks with some samples
of previous ones, and then fine-tuning the neural network with the combined
dataset. The idea of replay is inspired by the functioning of the human
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brain, where new experiences are initially encoded in the hippocampus. Sub-
sequently, these memories are reactivated alongside with other memories so
that the neocortex can assimilate them [14]. The main difference between the
replay strategies discussed and the natural learning processes is the manner
in which replay is executed. Replay methods involve storing and subse-
quently replaying raw pixel data, but the representations preserved within
the hippocampus for replay purposes are not exact replicas of the original
data (such as raw pixels). Instead, they capture higher-level features in the
visual processing hierarchy that are located beyond the primary visual cortex
or retina [14].

The Latent Replay [14, 33, 36] concept is inspired by this natural be-
haviour of the human brain, and instead of storing raw images for replay,
it stores mid-level features of CNNs. This approach overcomes some of the
weaknesses of the Experience Replay approach: (i) the high cost of storing
samples belonging to old tasks, (ii) the additional computation required to
maintain the memory of old tasks, and (iii) potential for mitigating privacy
concerns [33].

2.4.2 Latent Replay Strategies

Latent Replay strategies store activations from an intermediate layer of a
neural network and subsequently replay these representations to prevent for-
getting. By doing so, they reduce the amount of memory needed to store
samples. Furthermore, the strategies assume that the first layers of a CNN
produce general low-level features that can be shared across tasks. By lever-
aging this assumption, the approaches enhance training efficiency when learn-
ing new task. For the strategies to be effective, a trade-off between the latent
layer selection, the replay memory dimension and the model performance
must be found.

In [36], the authors store the latent activations and during the training
phase on a new task, these activations are injected into the latent layer.
To prevent latent representations shift, they slow down the learning in the
layers preceding the latent one, leaving all the other layers free to learn. An-
other approach proposed in [33], uses a freeze pre-trained models to extract
features that are then used to train a classification head model. For each
encountered task, a subset of the extracted features are stored and used for
replay. Freezing the lower layers reduces the computational cost of Continual
Learning by reducing the number of trainable parameters. Furthermore, to
store more samples, in [14] the authors propose using Product Quantization
(PQ) to compress and efficiently save the features.
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2.4.3 Formal Definition
A formal definition of Latent Replay can be derived as in [14], considering
the class-incremental scenario discussed in Section 2.2.3.

Consider the Figure 2.8a, the model f can be seen as two nested functions:
g(·) (blue layers), parametrized by θg, corresponds to the layers preceding
the latent layer (red layer), while h(·) (yellow layers), parametrized by θh,
corresponds to the subsequent layers. The network can be represented as
y = f(x) = h(g(x)), where x ∈ X is the input data and y ∈ Y is the output
prediction.

Assuming that the first layers of a CNN are highly transferable, the func-
tion g(·) is a pre-trained feature extractor. It could have been supervised
pre-training on a portion of the dataset, supervised pre-training on a differ-
ent dataset, or unsupervised self-taught learning using a convolutional auto-
encoder [14]. The function g(·) gives in output a tensor z ∈ Rn×n×d, where
n × n represent the spatial dimensions of a feature map, while d represents
the number of channels.

During the training phase of the model on a new task, a number of latent
activations z are stored in the replay memory M , typically by randomly
selecting them. As for the Experience Replay, m samples are allocated in
the memory for each task, and when it is full, an equal number of samples
for each task are randomly removed from the memory. By doing this, the
number of samples per task in the replay memory remains balanced.

In order to keep memory of previous learned tasks, ri latent activation
per tasks ti are randomly selected in the memory and mixed with the current
batch of input data in the latent layer. Regardless of the chosen Latent Re-
play strategy, the θh parameters are updated. While, following the approach
in [36], the θg parameters are trained at a slower rate than θh. Instead, fol-
lowing [14, 33], the θg parameters are frozen. In addition, in [14] they use
Product Quantization (PQ) to compress and store the z tensor reducing the
required amount of memory. An architectural scheme of the Latent Replay
with quantization is reported in Figure 2.8b.
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Memory

(a) Architectural diagram of Latent Replay.

Compression

Memory

(b) Architectural diagram of Latent Replay with compression.

Figure 2.8: The model takes the image xi as input, and feeds it to
the feature extractor g(·) in blue. The output g(xi) = zi is stored in
the replay memory and, during the training of new tasks, tensors are
sampled from the memory and injected into the latent layer in red.
They are then propagated through the classification head in yellow.
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Chapter 3

Benchmarks and Metrics for
Continual Learning

In this chapter, we discuss some datasets and metrics commonly used in the
evaluation of Continual Learning strategies.

An overview of classical computer vision datasets and their limitations for
Continual Learning is given in Section 3.1. In Sections 3.2.1 and 3.2.2, some
CL benchmarks are reported for the CIL and DIL scenarios. Section 3.2.3
reports on datasets specifically designed for continuous learning purposes.

Finally, Sections 3.3.1 and 3.3.2 present the metrics commonly used in
the literature to evaluate the performance and efficiency of CL strategies.

3.1 Classic Datasets
Classic machine learning datasets are not suitable for training models in a
Continual Learning scenario, since they are generally based on single tasks.
However, with appropriate modifications, Continual Learning datasets can
be derived from these datasets. Below is provided a brief description of some
of the most common datasets used in classical DL.

• MNIST [24]: The MNIST dataset is a widely used dataset in the field
of machine learning and computer vision. It consists of 28 × 28 pixel
greyscale images divided into 10 classes of handwritten digits (0 − 9).
It includes 60 000 training images and 10 000 test images.

• CIFAR-10/100 [23]: The CIFAR-10 and CIFAR-100 datasets are
used for image classification in computer vision. They consist of 32×32
pixel colour images, which are divided into 10 and 100 classes respec-
tively. Both dataset consists of 50 000 training images, 5000/500 per

23
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Figure 3.1: CIFAR-10 Dataset [23]. From top to bottom, the rows
depict images of the following classes: Airplane, Automobile, Bird,
Cat, Deer, Dog, Frog, Horse, Ship and Truck.

class, and 10 000 test images, 1000/100 per class. An example of the
CIFAR-10 dataset is reported at Figure 3.1.

• ImageNet-1K [41]: ImageNet1 is one of the largest image datasets in
the field of computer vision, with more than 14 million images. One
of the most widely used subsets is ImageNet-1K, which includes 1000
object classes and contains 1 281 167 training images, 50 000 validation
images and 100 000 test images.

• CUB-200-2011 [16]: The Caltech-UCSD Birds-200-2011 (CUB-200-
2011) dataset is used for fine-grained image classification. It contains
11 788 images of birds divided in 200 bird species. It includes 5994 for
training and 5794 for testing.

Many other CV and non-CV datasets have been tailored for use in Con-
tinual Learning, but a comprehensive explanation exceeds the scope of this
thesis.

3.2 Continual Learning Benchmark
Continual learning benchmarks can be generated from deep learning datasets
by applying transformations. A common approach is to divide the dataset

1https://www.image-net.org/index.php

https://www.image-net.org/index.php
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Figure 3.2: Split CIFAR-10 benchmark.

into smaller groups, each containing a different subset of categories, with each
subset identified as a task. In addition, techniques such as image rotation or
pixel permutation can be used to create several tasks from a single dataset.
However, the choice of the transformation to be applied depends on the
specific Continual Learning scenario being considered. Note that it is possible
to construct a Continual Learning benchmark by combining multiple datasets
instead of using a transformation of a single dataset [7].

3.2.1 Class-Incremental Learning Benchmark
In the case of Class-Incremental Learning, benchmarks can be constructed
from a classical dataset that contains an initial set of classes. The classes
in the dataset are then split into different tasks. An example is the Split
CIFAR-10 [52] shown in Figure 3.2, where the classes of CIFAR-10 have
been divided into 5 tasks. Some well-known benchmarks in this scenario are:

• Split MNIST [52]: The different digits of the MNIST dataset are
divided into 2, 5, 10 tasks, containing 5, 2 and 1 digit(s) per task,
respectively. An example with 5 tasks is shown in Figures 3.3a.

• Split CIFAR-10/100 [52]: The different classes of CIFAR-10/100 can
be divided in various ways. For example, CIFAR-10 can be divided into
2, 5 or 10 tasks. CIFAR-100, among other possibilities, can be divided
into 20 disjointed subsets, 5 classes for each task. In [52], the authors
use as Task 1 the entire CIFAR-10 dataset and sequentially 5 additional
tasks, each corresponding to 10 classes of the CIFAR-100 dataset. In
[39], the 100 classes of CIFAR-100 dataset are divided in tasks of 2, 5,
10, 20 or 50 classes at a time. An example of CIFAR-10 divided in 5
tasks is reported in Figure 3.2.

• iILSVRC [39]: A subset of 100 classes of ImageNet dataset are divided
in 10 tasks (iILSVRC-small) or all the 1000 classes divided in 100
tasks (iILSVRC-full).

The same benchmarks could be considered in the Task-Incremental Learn-
ing scenario if task label information is added to the data set subdivision.
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(a) Split MNIST benchmark with 5 tasks.

(b) Permuted MNIST Benchmark with 3 tasks.

(c) Rotated MNIST benchmark with 3 tasks: 0◦, 60◦ and 180◦.

Figure 3.3: MNIST Benchmarks.

3.2.2 Domain-Incremental Learning Benchmark
In the Domain-Incremental Learning, the difference between the tasks is the
data input distribution, while the number of classes remains fixed. Some
well-known benchmarks in this scenario are:

• Permuted MNIST [13]: A random permutation is applied to the
original MNIST digits resulting in a new task for each permutation.
Although the permuted images are not interpretable for humans, the
pixels continue to follow a pattern since similar digits result in similar
permuted digits. One benefit of this benchmark for Continual Learning
is the ability to define an arbitrarily long sequence of tasks by selecting
different permutations for the pixels. Figure 3.3b reports an example
with 3 task.

• Rotated MNIST [31]: A rotation between 0◦ and 360◦ is applied to
the original images. Also in this case it is possible to obtain a long
sequence of tasks. Figure 3.3c reports an example with 3 task.

Other DIL benchmarks can be the result of a combination of a data set
and some artistic transformations, as for the CIFAR-10 in Figure 3.4.
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Figure 3.4: CIFAR-10 benchmark for Domain-Incremental Learn-
ing scenario. In Task 1, the original images are reported, while in
Tasks 2 and 3, a grayscale filter and a filter with a pictorial effect are
respectively applied.

3.2.3 Dataset for Continual Learning
In addition to the benchmarks reported in Sections 3.2, there are datasets
specifically designed for Continual Learning.

• CORe50 [29]: It is a collection of 50 domestic objects belonging to
10 categories. It consists of 128 × 128 pixel colour images with 164 866
samples. The dataset has been collected with different backgrounds and
lighting. Classification can be performed at category level (10 classes)
or at the object level (50 classes).

• OpenLORIS-Object [45]: It is a collection of 69 instances includ-
ing 19 categories daily necessities objects under 7 scenes. The dataset
is collected recording the videos of targeted objects under multiple il-
luminations, occlusions, camera-object distances/angles, and context
information (clutters).

3.3 Metrics
Classical deep learning metrics are not suitable for Continual Learning, which
involves training on a stream of tasks over time rather than training on a
single task. Hence, specific metrics must be defined to evaluate a CL strategy
on a given benchmark. Many metrics employed to evaluate the CL strategy
combine classic DL metrics.

Based on the specific task or model, it is possible to use different metrics.
For a classification task, an effective CL solution should have high accuracy,
low forgetting, low memory consumption, and be computationally efficient
[7]. Therefore, a comprehensive assessment must investigate different aspects
of the strategy. Including final accuracy in all the encountered tasks, how
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Figure 3.5: CORe50 dataset. From left to right, the columns depict
images of the following classes: plug adapters, mobile phones, scissors,
light bulbs, cans, glasses, balls, markers, cups, remote controls. Image
adapted from [29].

fast it learns and forgets, and the algorithm’s capacity to transfer knowledge
across different tasks. To have a robust evaluation of the CL strategies,
it would be also important to determine the amount of computation and
memory resources exploited. Otherwise, if we aim to solely evaluate the
model’s performance, the easiest solution would have been to retrain the
model from scratch for each task.

In the following we report a set of the common metrics used in the Con-
tinual Learning setting as defined in [9, 31].

For evaluation purposes, we define a training set Tri
and a test set Tei

for
each task ti ∈ T . This enables the evaluation of the model on all the tasks
t ∈ T after the training of the task ti. By doing so, we obtain the accuracy
matrix R ∈ RT ×T [31], with T = |T |. For T = 3, the matrix is reported
in Table 3.1, where each entry Rij is the test classification accuracy of the
model on task tj after learning task ti and R∗ = Rii correspond to the classic
accuracy on the current task. In the following, the accuracy matrix is used
to compute the performance metrics of the model on the task stream.

3.3.1 Performance metrics
Average Accuracy (ACC)

Given the accuracy metrics R, the Average Accuracy (ACC) [9] is defined as:

ACC =
∑︁T

i=1
∑︁i

j=1 Rij

T (T +1)
2

(3.1)



3.3. METRICS 29

R Te1 Te2 Te3

Tr1 R∗ Rij Rij

Tr2 Rij R∗ Rij

Tr3 Rij Rij R∗

Table 3.1: Accuracy matrix. Elements in R accounted to compute
the Accuracy (elements in white and cyan ), BWT (elements in cyan),
and FWT (elements in gray) criteria. R∗ = Rii, Tri

= training,
Tri

= test tasks. Table adapted from [9].

It considers the average accuracy for training set Tri
and test set Tej

by
considering the diagonal elements of R, as well as all elements below it (cyan
elements). By doing so, it keeps into account the performance of the model
at every encountered task and extend the original ACC defined in [31] that
asses the performance of the model at the end of the last task, i.e., it considers
only the last row of the accuracy matrix.

Forgetting (F)

To quantifies the drop in accuracy of task tj after the model has been trained
on task task ti, we define the Forgetting (F) as in [4, 7]. It is defined as the
difference between the maximum knowledge gained about a particular task
during the learning process in the past and the knowledge the model currently
has about it. The forgetting metric gives an estimate of how much the model
has forgotten about the task given its current state.

For a classification problem, we quantify forgetting for the task tj after
the model has been incrementally trained up to task tk as:

fk
j = max

l∈{1,...,k−1}
Rl,j − Rk,j, ∀j < k (3.2)

It is worth noting that fk
j ∈ [−1, 1] is only defined for j < k, since we are

interested to measure forgetting for previous tasks. Moreover, by normalizing
against the number of tasks seen previously, the average forgetting at task
tk is written as:

F = 1
k − 1

k−1∑︂
j=1

fk
j (3.3)

A lower value of F implies a less forgetting on previous tasks, thus demon-
strating the model’s ability to retain past knowledge.
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Backward Transfer (BWT)

The Backward Transfer (BWT) [9, 31] is the influence that learning a task
t has on the performance on a previous tasks. As for the average accuracy,
BWT is defined to consider the average of the backward transfer after each
task:

BWT =
∑︁T

i=2
∑︁i−1

j=1 Rij − Rjj

T (T +1)
2

(3.4)

In order to map BWT to also lie on [0, 1] and to distinguish among two
semantically different concepts, in [9], the authors define:

REM = 1 − | min(BWT, 0)| (3.5)

i.e., Remembering (REM) , the originally negative BWT and the improve-
ment over time:

BWT + = max(BWT, 0) (3.6)

i.e., Positive Backward Transfer , the originally positive BWT .

Forward Transfer (FWT)

The Forward Transfer (FWT) [9, 31] is the influence that learning a task t
has on the performance on a future tasks. FWT is defined as:

FWT =
∑︁j−1

i=1
∑︁T

j=1 Ri,j

T (T +1)
2

(3.7)

3.3.2 Efficiency metrics
Model Size Efficiency (MS)

It is important to evaluate the effectiveness of a CL strategy to learn new
tasks with a fixed amount of model capacity without deteriorating perfor-
mance. Ideally, the size of the model at the end of training should be the
same as the size of the initial model [7]. For evaluation purposes, we define
θi as the parameters of the model at the task ti. The memory size Mem(θi)
at each task ti should not grow too rapidly with respect to the size of the
model in the first task t1, Mem(θ1). From this, the Model Size Efficiency
(MS) [9] is defined as:

MS = min
⎛⎝1,

∑︁T
i=1

Mem(θ1)
Mem(θi)

T

⎞⎠ (3.8)
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Samples Storage Size Efficiency (SSS)

As seen in Section 2.3.4, one method to reduce CF is to store training sam-
ples from previous tasks and replay them while training a new task. It is
important to assess the memory usage of these samples. Indeed, store all the
samples form previous task and replay them during the training of a new
task could be a solution, but at cost of high memory. Therefore, it is crucial
to find a trade-off between the stored data and the model performance.

The memory occupation in bits by the samples storage memory M ,
Mem(M), should be bounded by the memory occupation of the total num-
ber of examples encountered at the end of the last task, Mem(D), where D
is the dataset of all the encountered data. Thus, we define Samples Storage
Size (SSS) Efficiency [9] as:

SSS = 1 − min
⎛⎝1,

∑︁T
i=1

Mem(Mi)
Mem(D)

T

⎞⎠ (3.9)

Computational Efficiency (CE)

The Computational Efficiency (CE) is bounded by the number of multipli-
cation and addition operations for the training set Tri, in[9] the average CE
across tasks is defined as:

CE = min
⎛⎝1,

∑︁T
i=1

Ops↑↓(Tri )·ϵ
Ops(Tri )

T

⎞⎠ (3.10)

where Ops(Tri
) is the number of multiplication and addition operations

needed to learn Tri
and Ops ↑↓ (Tri

) is the number of operations required to
do one forward and one backward pass on Tri

.

Aggregate Metric (CLSCORE)

In order to summarize into a single final metric the performance of a CL
strategy, in [9], the authors propose an Aggregate Metric (CLSCORE). For
each criterion ci ∈ C, with ci ∈ [0, 1], is assigned a weight wi ∈ [0, 1] where∑︁C

i wi = 1. The final CLSCORE to be maximized is defined as:

CLSCORE =
#C∑︂
i=1

wici (3.11)

where where each criterion ci that needs to be minimized is transformed to
ci = 1 − ci.
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Chapter 4

Efficient Architecture for Edge
Devices

This chapter introduces some of the well-known efficient architectures for
edge devices, along with the features that make them effective on resource-
constrained devices.

Section 4.1 introduces the problem of large deep neural networks and
the concept of efficient architectures. Section 4.2 presents MobileNet, an ef-
ficient architecture designed for mobile devices, with its main features and
design principles. Then, in Section 4.3, MobileNetV2, an improved version of
the original MobileNet, is introduced and explored, highlighting its enhance-
ments and optimizations. Section 4.4 introduces PhiNets, a family of scalable
backbones for image processing on resource-constrained platforms. Finally,
Section 4.5 presents a comparative analysis of the architectures’ performance
on the ImageNet dataset.

4.1 Introduction
In recent years, advancements in Artificial Intelligence (AI) have enabled
technology to achieve state-of-the-art performance in areas such as face de-
tection, Natural Language Processing (NLP), Computer Vision (CV) and
Anomaly Detection (AD) [8, 49, 51]. The general trend has been to build
deeper and more complex deep learning models to achieve higher accuracy
[17]. Nevertheless, the training of these models is computationally demand-
ing, and despite the increasing capability of today’s edge devices, they remain
insufficient for most of the deep learning models, which have high resource
requirements in terms of CPU, GPU, memory, and network [51]. Most of
the approaches perform the training offline on multi-GPU servers and deploy
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models on edge devices for inference. However, numerous computational
tasks must be sent to the cloud, and this poses serious challenges in terms of
network capacity and the computing power of cloud computing infrastructure
[50]. Furthermore, privacy concerns, the absence of network connections,
strict latency requirements, and the need for real-time model adaptation,
make real-time training on edge devices crucial.

Efforts to tackle these challenges have resulted in the development of
efficient neural network architectures designed to achieve high performance
while using fewer computational resources. As an example, MobileNet [17]
consists of VGG-style building blocks and, by replacing standard convolu-
tions with depthwise separable convolutions, significantly reducing the num-
ber of parameters and computational complexity while maintaining compet-
itive accuracy. Similarly, EfficientNet [47] utilizes a compound scaling tech-
nique to optimize model depth, width, and resolution to achieve remarkable
performance-efficiency trade-offs. In [34], the authors present PhiNets, a
scalable backbone framework for deep neural networks. The architecture
is designed to provide image-processing application support for resource-
constrained edge devices. It is built on top of inverted residual blocks for
decoupling memory, cost, and over-processing [38]. Furthermore, it can be
easily tuned using a few hyper-parameters to match the memory and com-
putational resources available on different embedded platforms.

4.2 MobileNetV1

MobileNet [17] is a scalable backbone composed of 28 separate convolutional
layers, each followed by a batch normalization layer and a ReLU activation
function, the entire architecture is shown in Table 4.1. The baseline model
assumes an input size of 224 × 224 × 3 and a final output size of 1000 × 1.

The main innovation of MobileNet is that it implements depthwise sepa-
rable convolution, which factorizes a standard convolution into a depthwise
convolution and a pointwise convolution. While standard convolution em-
ploys kernels on all input channels and combines them in one step, depth-
wise convolution uses different kernels for each input channel and performs
a pointwise convolution to combine the outputs of the depthwise layer. This
separation reduces the computational cost and model size of the architec-
ture. In addition, MobileNet introduces the possibility to enhance speed and
reduce the model size of the network by acting on the width and resolution
multipliers.
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Input Type s c

224 × 224 × 3 3 × 3 conv 2 32
112 × 112 × 32 3 × 3 dw conv 1 32
112 × 112 × 32 1 × 1 conv 1 64
112 × 112 × 64 3 × 3 dw conv 2 64
56 × 56 × 64 1 × 1 conv 1 128
56 × 56 × 128 3 × 3 dw conv 1 128
56 × 56 × 128 1 × 1 conv 1 128
56 × 56 × 128 3 × 3 dw conv 2 128
28 × 28 × 128 1 × 1 conv 1 256
28 × 28 × 256 3 × 3 dw conv 1 256
28 × 28 × 256 1 × 1 conv 1 256
28 × 28 × 256 3 × 3 dw conv 2 256
14 × 14 × 256 1 × 1 conv 1 512

5×14 × 14 × 512 3 × 3 dw conv 1 512
14 × 14 × 512 1 × 1 conv 1 512

14 × 14 × 512 3 × 3 dw conv 2 512
7 × 7 × 512 1 × 1 conv 1 1024
7 × 7 × 1024 3 × 3 dw conv 1 1024
7 × 7 × 1024 1 × 1 conv 1 1024

7 × 7 × 1024 7 × 7 avgpool 1 1024
1 × 1 × 1024 FC 1 k

Table 4.1: MobileNetV1 architecture. c represents the number of
output channels of each layers. s represent the stride.

Depthwise Separable Convolution

MobileNet model is based on depthwise separable convolutions which factor-
ize a standard convolution into a depthwise convolution and a 1 × 1 convo-
lution known as pointwise convolution.

To understand the benefit of this approach, it is worth comparing the
MACs using the standard convolution and the depthwise separable convolu-
tion. Assume depthwise separable convolution takes as input a DF ×DF ×M
feature map F and produces a DG × DG × N feature map G, where DF is
the spatial width and height of a square input feature map, M is the num-
ber of input channel, DG is the spatial width and height of a square output
feature map and N is the number of output channel. The depthwise convo-
lution applies one filter per input channel. Specifically, the kernel K is of size
DK ×DK ×M , where the mth filter is applied to the mth channel in the input
F to produce the mth channel of the output Ĝ. This has a computational
cost of [17]:

DK · DK · M · DG · DG (4.1)
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Figure 4.1: Depthwise Separable Convolution. The input has a
dimension of 12 × 12 × 3. By using the depthwise convolution with a
kernel of dimension 5 × 5 × 3 and stride of 1, results in an output Ĝ
with dimension 8 × 8 × 3. Finally, applying a pointwise convolution
with kernel 1 × 1 × 3 results in an output of dimension 8 × 8 × 1.

A simple 1 × 1 × M convolution, known as pointwise convolution, is used
to build new features through computing a linear combination of the output
Ĝ. Using N of this pointwise convolution, we obtain an output features map
G of dimension DG × DG × N . With a computational cost of [17]:

M · N · DG · DG (4.2)

The combination of the depthwise convolution and the pointwise convo-
lution is called depthwise separable convolution, a graphical representation
is reported in Figure 4.1. It has a total computational cost of :

DK · DK · M · DG · DG + M · N · DG · DG (4.3)

On the other hand, as reported in [17], the standard convolution has a
computation cost of:

DK · DK · M · N · DG · DG (4.4)

Therefore, the use of depthwise separable convolution results in a reduction
of 1

N
+ 1

D2
K

of operations.
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Width and Resolution Multiplier

MobileNet model is specified by two hyperparameters: width and resolution
multiplier. These allow to build models that are smaller and require less
computational power [17].

The width multiplier α ∈ (0, 1] thins the network uniformly at each layer,
i.e., controls the number of channels. These are implemented to be always
divisible by 8. Instead, the resolution multiplier ρ ∈ (0, 1], modifies the input
image resolution and the internal representation of every layer is subsequently
reduced by the same multiplier. In conclusion, the computational cost of the
depthwise separable convolution with the width and resolution multiplier is:

DK · DK · αM · ρDG · ρDG + αM · αN · ρDG · ρDG (4.5)

4.3 MobileNetV2
MobileNetV2 [44] builds on the ideas of MobileNetV1 [17], using depth-
separable convolution as an efficient convolutional block. However, it intro-
duces two new concepts: linear bottlenecks and shortcuts between the bot-
tlenecks. The idea is that the bottlenecks encode the model’s intermediate
inputs and outputs, while the inner layer encapsulates the model’s ability to
transform from lower-level concepts to higher-level descriptors [43]. Finally,
the model uses the ResNet [15] concept of shortcut connections to achieve
faster training and increased accuracy. In contrast to the typical approach of
connecting non-bottleneck layers, MobileNetV2 inverts this notion and con-
nects the bottlenecks directly. By combining these two concepts, the authors
introduce a novel layer known as the inverted residual with linear bottleneck.

The architecture of MobileNetV2 is shown in the Table 4.2 and includes a
standard convolutional layer with 32 kernels, followed by 19 inverted residuals
and linear bottlenecks. As for version 1, the baseline model assumes an input
of 224 × 224 × 3 and a width multiplier of 1. The model could be tuned
for different applications by exploiting the resolution and width multiplier
hyperparameters.

Inverted Residual and Linear Bottleneck

Inverted Residual with Linear Bottleneck layers are based on the idea that
information may be embedded in low-dimensional subspaces, which can be
leveraged by reducing the dimensionality of a layer. However, this approach
can break down when non-linear activations like ReLU are present in neural
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Input Type n s t c

224 × 224 × 3 3 × 3 conv2d 1 2 - 32
112 × 112 × 32 bottleneck 1 1 1 16
112 × 112 × 16 bottleneck 2 2 6 24
56 × 56 × 24 bottleneck 3 2 6 32
28 × 28 × 32 bottleneck 4 2 6 64
14 × 14 × 64 bottleneck 3 1 6 96
14 × 14 × 96 bottleneck 3 2 6 160
7 × 7 × 160 bottleneck 1 1 6 320
7 × 7 × 320 1 × 1 conv2d 1 1 - 1280

7 × 7 × 1280 7 × 7 avgpool 1 - - 1280
1 × 1 × 1280 1 × 1 conv2d - - - k

Table 4.2: MobileNetV2 architecture. Each layer is repeated n
times. All layers in the same sequence have the same number c of
output channels. The first layer of each sequence has a stride s and
all others use stride 1. t is the expansion factor of the input channels.
Table adapted from [44].

Input Operator Activation Output

h × w × k 1 × 1, conv2d ReLU6 h × w × tk
h × w × tk 3 × 3, depthwise conv, stride = s ReLU6 h

s × w
s × tk

h
s × w

s × tk 1 × 1, conv2d Linear h
s × w

s × k′

Table 4.3: Bottleneck residual block. Table adapted from [44].

networks. Non-linear activations have the potential to increase representa-
tional complexity but may also lead to a loss of information [44]. However,
it is possible to preserve information if a lot of channels are present. The
Inverted Residual with Linear Bottleneck layer was designed with these two
concepts in mind.

The module takes in input a low-dimensional tensor with k channels and
performs three different convolutions: (1) a pointwise expansion convolution,
(2) a depthwise convolution, and (3) a pointwise projection convolution. The
structure of the bottleneck module is reported in Table 4.3.

The first pointwise convolution expands the low-dimensional input to a
higher-dimensional space suited to non-linear activation, and ReLu6 is ap-
plied. The expansion factor is controlled by t, resulting in tk channels after
the first convolution. Subsequently, a depthwise convolution is executed using
3 × 3 kernels followed by a ReLu6 activation, achieving a channel transfor-
mation. Lastly, the feature map is projected back into a low-dimensional
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subspace using another pointwise convolution. Based on the idea that non-
linear activation results in loss of information, it is important to have a linear
activation function in the final layer. This, has been proven empirically by
the authors in [44].

The spatial resolution of the channels is controlled in the depthwise con-
volution through the stride. If the input and output channels are equal and
the stride in the depthwise convolution is equal to one, and thus the input
and output feature map have the same dimension, a residual connection is
added. The residual connection should be added in the bottleneck rather
than in the expanded layers, as empirically shown to be more effective [44].

4.4 PhiNet
PhiNet is a scalable backbone for image processing on resource-constrained
edge devices [34]. It aims to solve the main drawbacks of current state-of-
the-art scalable backbones for image processing at the edge.

PhiNet is based upon the idea of Inverted Residual with Linear Bottleneck
presented in MobileNetV2 [44]. In addition, the authors insert a Squeeze-
and-Excitation layer [18] before the final pointwise projection convolution.
This emphasizes the channel information before compressing it to a lower-
dimensional subspace. Furthermore, a hardware-aware scaling paradigm is
used to optimize the number of operations, dynamic memory, and param-
eter memory by tuning various hyperparameters. This allows for superior
performance with respect to networks generated using hardware-constrained
scaling technique [34].

PhiNet Convolutional Block

The PhiNet Convolutional Block, shown in Figure 4.2, is based on an exten-
sion of the Inverted Residual Block. As in MobileNetV2, the low-dimensional
input feature map is expanded with a pointwise convolution, this time fol-
lowed by an h-swish activation [2]. A depthwise convolution followed by
an h-swish activation is then performed to transform the channel informa-
tion. Then, to evaluate the importance of each channel in the output of
the depthwise convolution, a squeeze-and-excitation block has been added.
Finally, a pointwise projection convolution is used to bring the feature map
back to low dimensionality. A residual connection between input and output
channels with the same dimension has been added as for MobileNetV2. The
structure of the PhiNet convolutional block module is reported in Table 4.4.

In order to meet the requirements of resource-constrained devices, PhiNet
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24α 24α× t0(
(β−1)N+B

B )

Figure 4.2: PhiNet convolutional block. The input number of chan-
nels is increased with a pointwise convolution, followed by a depthwise
convolution and a SE block. Finally, a second pointwise convolution
project back to the low-dimensional space the number of channel.
If the dimension of the input channels and the output channels are
equal a residual connection is added. Image adapted from [34].

Input Operator Activation Output

h × w × k 1 × 1, conv2d HardSwish h × w × tk
h × w × tk 3 × 3, depthwise conv, stride = s HardSwish h

s × w
s × tk

h
s × w

s × tk SEBlock HardSwish h
s × w

s × tk
h
s × w

s × tk 1 × 1, conv2d Linear h
s × w

s × k′

Table 4.4: PhiNet Convolutional Block.

utilizes a hardware-aware network scaling pipeline. Specifically, using four
hyperparameters enables network optimization in a decoupled manner to
achieve optimal use of the available hardware:

• Width multiplier α: linearly adjusts the channels count in the con-
volutions block of the network. The base model has 24 · α channels in
the first bottleneck layer.

• Shape parameter β: defines the channels count of the depth-wise
convolution blocks in the networks.

• Base expansion factor t0: affects the channels count in the expansion
convolutions of the inner blocks. In particular, the expansion factor
linearly depends with the depth of the network:

t = t0
(︂(β − 1)N + B

B

)︂
(4.6)

where N is the index of the convolutional block and B is the total
number of convolutional block.
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Input Type n s S − E c

224 × 224 × 3 3 × 3 dw conv 1 2 ✕ 3
112 × 112 × 3 1 × 1 conv 1 1 ✕ 144

112 × 112 × 144 PhiNetConvBlock 1 1 ✕ 72
112 × 112 × 72 PhiNetConvBlock 2 2 ✓ 72
56 × 56 × 72 PhiNetConvBlock 2 2 ✓ 144
28 × 28 × 144 PhiNetConvBlock 2 2 ✓ 288
14 × 14 × 288 PhiNetConvBlock 1 1 ✓ 576

7 × 7 × 576 7 × 7 avgpool 1 - ✕ 1280
1 × 1 × 576 1 × 1 conv2d - - ✕ k

Table 4.5: PhiNet architecture with α = 3, β = 0.75, t0 = 6, and
B = 7. Each layer is repeated n times. All layers in the same sequence
have the same number c of output channels. The first layer of each
sequence has a stride s and all others use stride 1. S-E indicate the
presence of the Squeeze-and-Excitation layer.

• Number of layers B: is the total number of PhiNet convolutional
block and thus modify the depth of the network.

The variation of the hyperparameters change the structure of the net-
works. The optimization of resource usage can be achieved through varying
the combinations of these hyper-parameters. It should be noted that dif-
ferent hyper-parameter configurations may result in comparable parameter
counts, but different architectures [3]. An example of the structure of the
PhiNet model is reported in Table 4.5

4.5 Comparative Analysis
The three efficient architectures described can be specified with different hy-
perparameters. By combining them differently, it is possible to build smaller
models that require less computational power.

Specifically, the width and resolution parameters can be set for both ver-
sions of MobileNet. In this comparison, we will keep the resolution parameter
fixed, maintaining the input resolution at 224. We will compare the resource
utilization by adjusting the width parameter, thus reducing the size of the
models. The same approach will be applied to PhiNet, where the input res-
olution is fixed at 224, and adjustments to the parameters α, β, and t0 will
change the model’s structure. It is important to note that while MobileNet
utilizes a single parameter to scale the entire model, in PhiNet, the three
hyperparameters allow the size of the input/output channels and expansion
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Model α β t0 Nr. of Layer MACs Params
0.8 0.75 8 7 195.8M 1.7M
0.9 0.5 4 7 100.2M 0.5M
0.9 0.5 4 9 123.3M 2.1MPhiNet

1.2 0.5 6 7 248.8M 1.6M

1 - - 19 567.8M 3.3M
0.75 - - 19 324.7M 1.9M
0.5 - - 19 149.0M 0.9MMobileNet V1

0.25 - - 19 40.8M 0.3M

1 - - 28 312.4M 2.2M
0.75 - - 28 185.4M 1.4M
0.5 - - 28 91.0M 0.7MMobileNet V2

0.25 - - 28 29.2M 0.2M

Table 4.6: Resource usage of different Efficient Architectures as-
suming an input of 3 × 224 × 224.

channels to be changed independently. This enables the adjustment of the
number of parameters and Multiply–Accumulate (MACs) according to the
needs of the application.

Table 4.6 shows a comparison between the models in terms of MACs and
the number of parameters, varying the respective hyperparameters.



Chapter 5

Results

In order to empirically assess the quality of the Latent Replay strategy ap-
plied to the efficient architectures, several experiments were conducted. The
aim is to evaluate the performance and efficiency of the models for different
selections of the latent layer and different dimensions of the replay memory.
The experiments were conducted in a class-incremental scenario to solve im-
age classification tasks.

In Section 5.1, we report the experimental setup, describing the meth-
ods, the models, the benchmarks, and the metrics used in the experiments.
Following this, in Section 5.2, we present the main findings of this study.
Initially, we examine the influence of the number of elements in the replay
memory on performance. Subsequently, we conduct a comparative analysis of
the performance of Latent Replay against other strategies. Finally, we delve
into the performances of the efficient architectures in real-world scenarios,
specifically under the constraints of memory for the replay.

5.1 Experimental Setup

In this section, we describe the experimental setup used in our study. We
provide a summary of the CL strategy settings used. Next, we present the
models considered and the details of their architectures, as well as the hy-
perparameters used. Lastly, we detail the benchmarks and metrics utilized
during the experiments, along with the hardware specifications of the exper-
imental environment.
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5.1.1 Methods
In this work, we focus on applying the Latent Replay strategy introduced
in Section 2.4 to efficient architectures. We evaluate how the choice of the
latent layer for replay affects the performance in terms of accuracy, memory
size, and efficiency across different the architectures. To comprehend the ef-
fectiveness of the approach on each model, we used three baselines to identify
the minimum and maximum performance we can expect.

Baseline

In order to have an upper and lower bound for performance, the following
baselines were taken into account:

• Fine-Tuning: Each time a new task becomes available, we fine-tune
the model trained on the previous task using only the newly available
data. This approach can lead to catastrophic forgetting and is consid-
ered the minimum required performance.

• Multi-Task: We assume that all data are available at the beginning
of the experiment, and we train the pre-trained model on all tasks
of the benchmark simultaneously. This approach should improve the
generalization of the model and it is considered the best achievable
performance.

• Experience Replay: The basic Experience Replay from the input
is used to compare the final average accuracy, the amount of memory
used, and the number of operation with respect to the Latent Replay
strategy.

Latent Replay

During Latent Replay experiments, the weights of the pre-trained model are
completely frozen up to the layer selected for replay. All subsequent layers
are free to learn. In the most extreme case, the entire feature extractor is
completely frozen, leaving only the classification head free to learn. The
layer utilized for Latent Replay depends on the model. For MobileNetV1,
we utilized the output layer of the Depthwise Separable Convolution. While,
for MobileNetV2 and PhiNet, the output layer of the Inverted Residual with
Linear Bottleneck was used.

During the training of new tasks, a subset of data is stored in memory
to retain knowledge of the current task during the training of future tasks.
The replay memory is implemented to maintain a balanced amount of data
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Memory Amount
500, 1000, 1500, 2000,Element 3000, 4000, 5000, 6000

MB 0.5, 2, 5, 10, 20, 50, 100

Table 5.1: Size of memory used in the experiments.

for each encountered task. Once the memory is full and a new task becomes
available, an equal number of elements are removed for each stored task to
free up space for an equal number of samples for the new task. In this way,
it is ensured that a fixed number of elements, equally distributed between
tasks, are kept in memory. The selection of elements to be retained and
removed is done randomly.

Memory has been implemented in two different versions. The first imple-
mentation allows storing a fixed number of elements in memory, regardless of
the size in bytes of the latent activations. This implementation enables the
evaluation of the data needed to retain previous knowledge by varying the
layer to which the replay is applied. In contrast, the second implementation
takes into account the size of the latent activations, limiting the number of
bytes available. In this implementation, a different number of elements is
saved based on the replay layer chosen, representing a real-world scenario.
In Table 5.1, we report the memory sizes used during the experiments.

5.1.2 Models
In the experiments, we utilized an optimized version of PhiNet. Specifically,
the original PhiNet, based on the hyperparameters configurations, had a
number of convolutional channels that were not optimized for use on CPUs
and GPUs. Following the approach of MobileNets, we ensured that the chan-
nels of the convolutional blocks were divisible by 8 and empirically demon-
strated the effectiveness of this modification in improving the inference time.
Table 5.2 reports the statistics of a PhiNet in the two versions. Figure 5.1
shows the inference time comparison between the original model and the op-
timized model as the number of convolutional blocks increases, additional
results are reported in Appendix B.1. Interestingly, although the optimized
model requires slightly more parameters and operations, it reduces inference
time by ∼ 30%.

In the following, experiments are conducted with the optimized PhiNet in
different configurations, with MobileNetV1 and two versions of MobileNetV2.
For PhiNet, we primarily maintained the number of convolutional blocks at
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Model MACs Params
Original 1,520,210,158 4,394,545
Optimized 1,521,181,866 4,406,997

Table 5.2: Comparison of the original and the optimized PhiNet
with α = 3, β = 0.75, t0 = 5, and 7 PhiNet convolutional block.
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Figure 5.1: Comparison of the inference time between the original
model and the optimized model as the number of PhiNet Convolu-
tional Blocks layers increases1.

the default value of 7. Subsequently, we adjusted the value of α to control the
number of input and output channels in the PhiNet convolutional block. A
low α value reduces the size of the latent activation stored in memory, while
a high value retains more information but decreases the number of storable
samples. By changing β and t0, the number of internal channels in the block,
i.e., those obtained after input expansion, varied. A larger value increases
the number of transformations applied to the channels, extracting a higher
number of features. Additionally, we tested a deeper PhiNet by increasing
the number of convolutional blocks to 9.

For MobileNetV1, we only tested the basic model used in previous studies
[36, 37]. While, for MobileNetV2, we utilized both the original model and a
smaller version with a reduced α, which decreased the size of the input and
output channel of the inverted residual block. As a result, it reduces the size
of latent activations to be stored.

All the used models were pre-trained using the ImageNet dataset. Table

1System specifications: NVIDIA Titan Xp, Intel(R) Core(TM) i7-6800K, 32 GB DDR4
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Model α β t0 MACs Params Top1 [%]
PhiNet A 0.8 0.75 8 195.8M 1.7M 64.69
PhiNet B 0.9 0.5 4 100.2M 0.5M 53.66
PhiNet B9 0.9 0.5 4 123.3M 2.1M 61.86
PhiNet C 1.2 0.5 6 248.8M 1.6M 65.21

MobileNet V1 1 - - 567.8M 3.3M 70.60

MobileNet V2 1 - - 312.4M 2.2M 73.01
0.75-MobileNet V2 0.75 - - 185.4M 1.4M 70.01

Table 5.3: Performance on ImageNet for benchmarked models. For
PhiNet, the subscript denotes the number of convolutional blocks in
the model, in addition to two convolutions added by default. In cases
where it is not specified, the default value of 7 has been applied, as
in the original implementation.

Split CIFAR-10 CORe50
Tasks 5 5

Classes/Task 2 2
Train data/Task 10 000 ∼23 979
Task Selection Random Random

Table 5.4: Experiments benchmark for the class-incremental learn-
ing scenario.

5.3 presents a summary of the key models statistics and the notation used
for the rest of the chapter.

5.1.3 Benchmarks
The experiments are conducted in a class-incremental learning scenario for
image classification using two different datasets: CIFAR-10 and CORe50.
The datasets are resized to 224×224 and standardized using ImageNet statis-
tics. To generate the Continual Learning benchmarks, the Avalanche library
[30] is used, which provides ready-to-use benchmarks and other utilities to
create new ones.

The first selected benchmark is Split CIFAR-10. To construct this dataset,
two randomly chosen classes are assigned to each task in a sequence of five
consecutive tasks. The second benchmark is based on the CORe50 dataset,
specifically using the category-level classification version. Similar to the first
dataset, five different tasks with two categories each are used. Table 5.4
reports the main details of the two benchmarks.
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Figure 5.2: Impact of the weight decay on PhiNet A.

5.1.4 Evaluation Metrics
To evaluate the models’ performance in our experiments, we focus only on
the Average Accuracy (ACC). We measure accuracies on all tasks once the
model has completed learning each task. For the sake of simplicity, unless
stated otherwise, we report the accuracy at the end of the stream of tasks,
i.e. the average of the accuracies achieved on each task after the model has
been trained on all tasks. Therefore, considering a stream of T tasks, the
ACC introduced in Section 3.3.1 becomes:

ACC = 1
T

T∑︂
i=1

RT,i (5.1)

where R is the accuracy matrix. This approach highlights the model’s ability
to solve all learned tasks at the end of training.

5.1.5 Learning Details
The experiments were conducted using PyTorch 2.0.1 [35] on a single NVIDIA
RTX A6000 GPU2. We employed a standard Adam optimizer [21] with a
constant learning rate. For each model, we performed a manual learning
rate search to determine the optimal value.

Following the approach in [17], we empirically found to use very little or
no weight decay. Figure 5.2 reports the final accuracies for each task at the

2System specifications: AMD Ryzen Threadripper Pro 5995WX (280W), 8x64GB RAM
DDR4 3200MHz
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Strategy Epochs Mini-batch
Fine Tuning 4 128

Multi-Task 20 128

Experience Replay 4 21/107

Latent Replay 4 21/107

Table 5.5: Number of epochs and mini-batch size for each strategy.
For rehearsal-based strategies, the mini-batch size is reported as curr.
task/past tasks, where curr. task are the elements of the current task
and past task are the elements of the replay buffer.

end of the learning process with different values of weight decay for PhiNet
A in a Latent Replay setting.

We conducted a grid search to determine the ideal number of epochs
for the baselines. For the Latent Replay strategy, the training consist of
4 epochs without early stopping to mimic a feasible setting for on-device
learning, where storing multiple copies of the weights for retrieval can be
unfeasible. Following the approach of [36], for the replay strategies we used
a mini-batch size of 128 by concatenating 21 elements from the new task and
107 elements from memory. A summary with the number of training epochs
and mini-batch size used for each strategy is reported Table 5.5.
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5.2 Experimental Results
In this section, we first show how the number of elements in replay memory
affects the performance of Latent Replay. We then present the effectiveness
of the strategy employed in retaining knowledge with respect to the consid-
ered baselines. Subsequently, we compare the size of latent activations of the
considered models as the layer selected for replay varies. Finally, we evalu-
ate the impact of this choice on the performance in a memory-constrained
scenario.

In the following, we will refer to the convolutional blocks of each model
as Convi. Depending on the model, it will represent a Depthwise Separable
Convolution for MobileNetV1, an Inverted Residual with Linear Bottleneck
for MobileNetV2, and a PhiNet Convolutional Block for PhiNet. Addition-
ally, for PhiNet, we will use StdConvi to denote the first two convolutional
blocks that are inserted into the model by default.

5.2.1 Data Efficiency
In this section, we first present the absolute variation in performance as the
number of elements in the replay buffer varies for each layer. Subsequently,
we show the percentage variation between the accuracy obtained with the
maximum value of elements in memory and the values considered in the
experiment.

Absolute Performance Variation

In replay-based strategies, the number of elements in the memory has a sig-
nificant role in retaining knowledge of previous tasks. To assess how the
number of elements in the replay buffer impacts performance on the different
architectures, we conducted experiments with different memory values: 500,
1000, 1500, 2000, 3000, 4000, 5000, and 6000. Furthermore, we repeated the
experiment by changing the layer in which the replay was applied, highlight-
ing how layers closer to the input need more samples in memory to retain
the knowledge of past tasks than layers closer to the output.

Figure 5.3 and Figure 5.4 show the average accuracy on all tasks, vary-
ing the elements in memory by performing Latent Replay on each layer of
the models on CIFAR-10 and CORe50 respectively. As expected, for all
the models increasing the number of elements in the buffer results in better
accuracy. This effect is particularly evident for layers closer to the input,
which, having more free parameters to learn, need to keep more elements
in memory to retain previous tasks’ knowledge. On the other hand, the
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higher expressiveness of the network in these cases allows it to achieve better
performance compared to other layers with a sufficient number of elements
in the buffer. Even with a large number of elements in memory, the lower
layers cannot achieve the same level of accuracy because of their lower ex-
pressiveness. As we approach the output layer, we observe a performance
saturation as the number of elements increases. However, it should be noted
that when the replay buffer contains few samples, the outmost layers exhibit
superior performance compared to the inner layers. Therefore, in memory-
constrained settings, it appears more convenient to update only the classifier
while keeping the feature extractor frozen.

Interestingly, in Figures 5.3 and 5.4, some models exhibit a performance
gap between the outmost layer and all the inner layers. This potentially
arises because performing replay on the last layer freezes all the weights of
the feature extractor, limiting its adaptation to the current task. Therefore,
the generality of the extracted features is crucial for achieving high accuracy
on new tasks; otherwise, it may result in suboptimal performance. This
phenomenon is more evident for CIFAR-10 than for CORe50, possibly due to
the greater difficulty of the former. Objects in CORe50 are well distinguished
and always represented in the foreground of the image.

Percentage Performance Variation

To better understand the effect of the number of elements in memory on the
layers, we calculated the percentage change between the accuracy obtained
with the maximum value of elements in memory and the values considered
in the experiment in the following way:

∆GAP = aℓ,6000 − aℓ,n

aℓ,6000
· 100 (5.2)

where aℓ,n is the average accuracy at the layer ℓ with n elements in the replay
buffer, and aℓ,6000 is the average accuracy at the layer ℓ with 6000 elements
in the replay buffer.

Figures 5.5 and 5.6 shows the ∆GAP for each layer of the considered
models. We can see that in the first layers, the performance gap between the
minimum and maximum value of elements in memory leads to a percentage
change of ∼ 20%. While, for the last layer, this difference is around ∼ 3%,
showing that the inner layers are more sensitive to the variation of elements
in the memory buffer. Moreover, when considering individual layers, we can
see that as the number of elements in memory increases, there is a decrease in
the percentage change, eventually reaching a point of performance saturation.
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Figure 5.3: Impact of different number of elements in memory on
the different architectures using CIFAR-10.
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Figure 5.4: Impact of different number of elements in memory on
the different architectures using CORe50.
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This trend is particularly evident in the final layer, where the percentage
variation approaches zero for higher values of elements in memory.

The trend lines confirm this behaviour. In particular, for small memory
values, the decreasing trend of the performance gap moving toward the outer
layers confirms the need for more elements for the innermost layers. For high
memory values, on the other hand, the lines tend to become constant, thus
showing that there is a trend toward performance saturation for all layers.

Intuitively, as the number of elements in the memory buffer increases, all
layers can be expected to reach a point of performance saturation. Also, we
can expect that, with a sufficient number of elements in memory, a network
with more expressiveness, and thus fewer frozen layers, will achieve better
performance with respect to a simpler model. In the ideal case, with a
sufficient number of elements in memory, replaying from input could yield
the best performance, and as more layers are frozen, the performance could
decrease.
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Figure 5.5: Percentage change in CIFAR-10 performance across
different model layers as the number of memory elements varies.
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Figure 5.6: Percentage change in CORe50 performance across dif-
ferent model layers as the number of memory elements varies.
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5.2.2 Strategies Evaluation
In this section, we initially compare the performance between Latent Replay
and the baseline methods under consideration. We also report a metric to
measure the similarity between ideal performance and empirically obtained
performance. Subsequently, we conduct a detailed examination of the per-
formance of Latent Replay and Experience Replay by considering not only
accuracy but also the trade-off between computation, memory, and accuracy.

Performance Comparison

Figure 5.7 and Figure 5.8, respectively, on CIFAR-10 and CORe50, present a
comparison showing the performance of the Latent Replay strategy against
the three baselines discussed in Section 5.1.1. The comparison focuses on the
evolution of the average accuracy on all tasks once the models have completed
learning each task. Following the approach of [36], we use a replay buffer with
a fixed amount of 1500 elements for the rehearsal methods.

As a reference, it is important to highlight the upper bound obtained
when training offline on all the tasks with the Multi-Task strategies. As
expected, the approach improves the generalization, and for all the considered
models, it leads to the best performances. On the other hand, the Fine-
Tuning baseline suffers from catastrophic forgetting, reaching generally an
average accuracy of 20%.

In terms of the replay strategies, we considered the replay from input
with the Experience Replay and two layers for Latent Replay. Specifically,
we reported the layer that achieved the best performance in these settings
and the last layer, i.e., leaving only the classification head free to learn. Using
these strategies leads to a performance difference with respect to the upper
bound that depends on the model and the layer used for replay, but it reaches
a minimum of ∼ 7% in the best cases and a maximum of ∼ 20% in the worst
cases. In Tables 5.6 and 5.7, we report the average accuracy values for each
model in each of the strategies used.

It is worth noting that the Experience Replay strategy does not always
outperform the Latent Replay strategy. As discussed in Section 5.2.1, in the
ideal case with a sufficient number of samples in memory, optimal perfor-
mance could be achieved by performing the replay from the input, and then
decreasing as the layers freeze moving toward the output. Figures 5.7 and
5.8 confirm this behaviour for PhiNet. However, MobileNet achieves optimal
performance by performing replay in inner layer. This can be explained by
assessing the distance from the ideal case as the number of elements in the
memory varies for the different models.
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Figure 5.7: Accuracy results on CIFAR-10 of Fine-Tuning, Multi-
Task, Experience Replay and Latent Replay.
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Figure 5.8: Accuracy results on CORe50 of Fine-Tuning, Multi-
Task, Experience Replay and Latent Replay.
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Average Accuracy [%]Model Fine-Tuning Multi-Task Exp. Replay Best Layer Last Layer

PhiNet A 19.38 93.91 86.70 83.14 82.08
PhiNet B 23.04 89.49 83.62 79.16 69.02
PhiNet B9 23.62 91.88 82.93 80.60 73.36
PhiNet C 19.58 94.11 82.93 84.01 84.01

MobileNetV1 19.08 93.53 73.63 80.41 71.73

MobileNetV2 19.48 94.90 82.88 86.50 81.84
0.75-MobileNetV2 19.49 93.55 82.57 86.05 80.62

Table 5.6: Final accuracy on CIFAR-10 for each strategy.

Average Accuracy [%]Model Fine-Tuning Multi-Task Exp. Replay Best Layer Last Layer

PhiNet A 19.76 92.56 86.18 85.52 80.34
PhiNet B 22.49 88.54 82.71 75.21 71.57
PhiNet B9 23.46 88.79 84.48 76.25 73.48
PhiNet C 19.86 91.98 86.04 85.85 82.18

MobileNetV1 25.61 95.38 86.21 87.92 77.92

MobileNetV2 22.08 96.37 89.94 93.77 88.80
0.75-MobileNetV2 19.70 94.98 87.55 90.67 84.23

Table 5.7: Final accuracy on CORe50 for each strategy.

Similarity Measure

To understand how far we deviate from the ideal case, we introduce the
similarity measure Sn based on the Kendall Tau Rank Distance Kn [6, 20].
This metric calculates the number of pairs that are in different order in two
lists. The greater the distance, the more dissimilar the two lists are, more
details are reported in Appendix A.

We can define the ideal case with the following list:

[Input, Conv1, . . . , Convi, . . . , Convn] (5.3)
where, with a sufficient number of samples, Input is the layer on which we
expect to have the best performance and Convn the one with the worst
performance.

For each memory size used, we can construct a list sorted by layer perfor-
mance to assess the distance to the ideal case for each model. In particular,
we assess the similarity to the ideal case in the following way:

Sn = 1 − Kn (5.4)

a high value indicates that the number of samples in the replay buffer is
enough to have a performance close to the ideal case. Conversely, a low
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Figure 5.9: Similarity to the ideal case for PhiNet A and Mo-
bileNetV2 computed with the Kendall tau distance.

value indicates an insufficient number of samples to reach the ideal case,
potentially leading to better performance in outer layers compared to inner
layers. It is important to highlight that a low value does not necessarily
imply inferior performance. Instead, it means that optimal performance is
attained by using internal layers.

Figure 5.9 shows the similarity values for PhiNet A and MobileNetV2. At
a memory size of 1500, PhiNet exhibits a value of 0.8, indicating we are close
to the ideal case and the Experience Replay could outperform the inner layer.
Conversely, MobileNetV2 displays a similarity value around 0.5, suggesting
that, in this case, the performance of the inner layer could surpass that of
the replay from input, confirming previous findings. A complete assessment
of similarity measures is reported in the Appendix B.2.
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Computation, Storage and Accuracy Trade-off

To conduct a thorough evaluation of Latent Replay in comparison to Ex-
perience Replay, Table 5.8 and 5.9 present relevant dimensions, including:
(1) Computation refer to the percentage cost of MAC operation to be per-
formed after the layer relative to a full forward step from the input, (2) Latent
Size is the dimension of the sample to be stored in the memory, and (3) the
∆ Accuracy represent the difference with respect to the Experience Replay.

Remarkably, when restricting the learning to only the classifier, all models
exhibit good performance. In such cases, the computational cost becomes
negligible compared to replay, while still maintaining high performance levels.
An exception is PhiNet B, experiencing in the worst case a loss of ∼ 14%,
probably attributed to the suboptimal quality of the extracted features. This
model achieved an accuracy of around ∼ 53% on ImageNet.

From Tables 5.8 and 5.9, it is evident that replay from the input generally
does not seem to be advantageous. The increase in accuracy is not substan-
tial, and, conversely, it significantly increases computational costs. While
the performance of Experience Replay could be enhanced by augmenting the
number of samples in memory, this approach becomes impractical for edge
applications due to the prohibitive cost associated with storing additional
elements.
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Model Layer Computation [%] Latent Size [MB] Avg. Acc.[%] ∆ Acc. [%]

PhiNet A
Input 100.00 215.33 86.70 0.00

2 99.059 2871.09 83.14 -3.56
10 0.002 27.83 82.08 -4.62

PhiNet B
Input 100.00 215.33 83.62 0.00

9 5.056 49.35 79.16 -4.46
10 0.003 31.49 69.02 -14.60

PhiNet B9

Input 100.00 215.33 82.93 0.00
6 36.064 179.44 80.60 -2.33
12 0.003 31.49 73.36 -9.57

PhiNet C
Input 100.00 215.33 82.93 0.00

10 0.002 42.48 84.01 1.08
10 0.002 42.48 84.01 1.08

MobileNetV1
Input 100.00 215.33 73.63 0.00

14 50.538 574.22 80.41 6.78
26 0.009 287.11 71.73 -1.90

MobileNetV2
Input 100.00 215.33 82.88 0.00

6 59.631 143.55 86.50 3.62
18 0.004 358.89 81.84 -1.04

0.75-MobileNetV2
Input 100.00 215.33 82.57 0.00

10 47.296 53.83 86.05 3.48
18 0.007 358.89 80.62 -1.95

Table 5.8: Computation, storage, and accuracy trade-off with replay
strategies for all the models on CIFAR-10. For each model 3 layers
are shown, from input, the inner layer with best performance and the
final layer close to the output.
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Model Layer Computation [%] Latent Size [MB] Avg. Acc.[%] ∆ Acc. [%]

PhiNet A
Input 100.00 215.33 86.18 0.00

8 13.560 42.62 85.52 -0.66
10 0.002 27.83 80.34 -5.84

PhiNet B
Input 100.00 215.33 82.71 0.00

8 12.167 49.35 75.21 -7.51
10 0.003 31.49 71.57 -11.14

PhiNet B9

Input 100.00 215.33 84.48 0.00
4 56.202 430.66 76.25 -8.23
12 0.003 31.49 73.48 -11.00

PhiNet C
Input 100.00 215.33 86.04 0.00

2 99.017 4019.53 85.85 -0.19
10 0.002 42.48 82.18 -3.86

MobileNetV1
Input 100.00 215.33 86.21 0.00

14 50.538 574.22 87.92 1.71
26 0.009 287.11 77.92 -8.29

MobileNetV2
Input 100.00 215.33 89.94 0.00

13 28.703 107.67 93.77 3.83
18 0.004 358.89 88.80 -1.13

0.75-MobileNetV2
Input 100.00 215.33 87.55 0.00

10 47.296 53.83 90.67 3.12
18 0.007 358.89 84.23 -3.32

Table 5.9: Computation, storage, and accuracy trade-off with replay
strategies for all the models on CORe50. For each model 3 layers are
shown, from input, the inner layer with best performance and the
final layer close to the output.
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5.2.3 Memory Evaluation
In order to compare the size of latent activations of PhiNet and MobileNet
as the layer selected for replay varies. We measure the size of the latent
activation for each layer by considering a standard input image of size 3 ×
224×224, and the tensors were stored in FP32 format. To assess and compare
the layers of different architectures, we used the MACs from the replay layer,
representing the operations to be performed after it, as this also indicates
the latency of the backward step.

From Figure 5.10, distinct trends between the architectures emerge. PhiNet,
with fewer layers, exhibit a rapid increase in latent activation size. This is due
to the faster increase in latent activation resolution size as one approaches
the input. In contrast, MobileNetV2 generally maintains a lower resolution,
resulting in a smaller latent activation size for the same number of MACs,
with an increase only in the last few layers. However, the focus on keeping
only the last layers free is fundamental for edge devices applications since
they require much less computation.

As shown in Figure 5.11, a crucial advantage of PhiNet is achieved by
selecting the last convolutional block as the latent layer. This results in a
significant reduction in the number of operations required during training
and minimizes the size of latent activations. This optimization allows for
efficient use of computational resources but also results in significant mem-
ory savings in the replay buffer, useful when memory is limited. In contrast,
MobileNetV2 uses a fixed number of channels in the last convolutional layer.
Thus, selecting the last layer increases the size of latent activations, con-
siderably reducing the number of storable samples and compromising the
update times for the network. This limits the performance of that layer for
replay. However, it should be noted that the layers before the last have a
small memory footprint but increase the number of MACs significantly. This
allows to improve the performance of MobileNetV2 but at the cost of many
operations.

As for MobileNetV1, it is not apparent which is the most convenient layer
to extract the Latent Replay. The latent activations of the convolutional
blocks turn out to be larger than the size of the single input image. Therefore,
it is more convenient to freeze the feature extractor to the desired layer and
perform a direct replay from the input. This procedure is more costly than
performing Latent Replay using PhiNet or MobileNetV2.
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Figure 5.10: Comparison of the latent activation size and MAC of
the selected layer between different models. The dimensions refer to
a single sample.
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MAC of the selected layer between different models. The dimensions
refer to a single sample.
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5.2.4 Memory-Performance Trade-off Evaluation

In Section 5.2.1, we conducted experiments by maintaining a constant num-
ber of storable elements in the replay buffer. This approach allowed us to
understand how the behaviour of the models varies as the number of stored
elements changes. However, it is important to note that this approach does
not represent a real-world scenario where memory constraints would be in
terms of available bytes, rather than storable elements. Therefore, in this sec-
tion, we assess how a fixed dimension memory impacts the performances of
the different architectures. We conducted experiments with different memory
sizes: 0.5MB, 2MB, 10MB, 20MB, 50MB, and 100MB.

Figure 5.12 and Figure 5.13 show the results of experiments conducted
with fixed Latent Replay memory in terms of bytes. As expected, for small
memory values, PhiNet outperforms MobileNet by choosing the last layer of
the feature extractor for replay. The smaller size of the latent activations for
PhiNet enables storing more elements in the replay memory, thus significantly
improving performance.

Moving towards the innermost layers, we see how the performance of
PhiNet degrades, while those of MobileNetV2 grow to a maximum and then
decrease. However, the performance of MobileNetV2 does not achieve the
best performance of PhiNet, even in the inner layers and with a much higher
number of operations. The differences in performance trends can still be
attributed to the sample size in memory. As we approach the input, the size
of PhiNet’s latent activations grows faster than those of MobileNetV2, as
discussed in Section 5.2.3 (Figure 5.10). Hence, the number of samples that
can be stored in memory are insufficient to guarantee good performance. On
the other hand, MobileNetV2 keeps its activations small until the first few
layers of the model. Initially, the performance improves, but moving toward
the input, despite the small size of the latent activations, the stored samples
are insufficient to maintain knowledge of previous tasks. These findings con-
firms that the inner layers need more memory samples than the last layers
to retain memory. As for MobileNetV1, it can be seen that the performance
settles around 20%, demonstrating the inefficiency of this model in situations
of limited memory.

For larger values of memory, and thus for a larger number of available
samples, PhiNets’ performance for layers closer to the output are comparable
to that of MobileNetV2. Whereas, for the innermost layers MobileNetV2
outperforms PhiNets, which as mentioned can store less samples due to the
latent activation size.

Figure 5.14 and Figure 5.15 show the performance of different layers of
each model as the memory size changes. The application of Latent Replay
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Figure 5.12: Performance comparison on CIFAR-10 dataset using
different models and fixed maximum value for the replay buffer.
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Figure 5.13: Performance comparison on CORe50 dataset using
different models and fixed maximum value for the replay buffer.
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on internal layers leads to catastrophic forgetting under limited memory con-
ditions for all the evaluated models, making it an unsuitable choice in these
applications. This phenomenon arises from the increasing size of activations,
consequently, fewer elements are stored in the buffer. As detailed in Sec-
tion 5.2.1, internal layers with a small number of elements in memory fail to
retain knowledge of past tasks. In the extreme case of 0.5 MB, few or no
elements are stored in memory in these layers, reducing the Latent Replay
strategy to the base case of fine-tuning the current task. As a result, an
average accuracy of ∼ 20% is achieved, demonstrating complete forgetting
of previous tasks. For larger memory sizes, performance improves slightly
since more elements can be stored in memory. However, even with a 100MB
memory capacity, layers closer to the input cannot store enough elements to
maintain the memory of past tasks.

Table 5.10 presents the optimal results achieved by each model as the
replay memory size varies. As previously highlighted, for limited memory
values, PhiNet outperforms MobileNet. Specifically, with memory limited to
0.5MB, PhiNet A improves the performance of 0.75-MobileNetV2 by 3.72%
on CIFAR-10 (5.49% on CORe50), requiring only 0.011% of the operations
performed by MobileNet on both datasets. The balance between performance
and efficiency makes PhiNet superior up to 20MB of replay buffer.

However, for higher memory values, the last layer of PhiNet seems to
be no longer the optimal choice, possibly due to the performance saturation
of that layer, visible also in Figures 5.14 and Figure 5.15, where for high
memory values the performances in the first layer are approximately equal.
Nevertheless, moving toward the inner layers, PhiNet fails to achieve the
performance of MobileNet, which shows 0.8% higher accuracy on CIFAR-10
(5.59% on CORe50), while requiring 82% more operations on both datasets.
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Figure 5.14: Evaluation of the different architectures on CIFAR-10
using different maximum values for the replay buffer.
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Figure 5.15: Evaluation of the different architectures on CORe50
using different maximum values for the replay buffer.
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CIFAR10 CORe50Model Memory [MB] Avg. Acc. [%] MACs Avg. Acc. [%] MACs

PhiNet A 50.25 3,050 51.42 3,050
PhiNet B 48.48 3,450 47.19 3,450
PhiNet B9 51.00 3,450 48.51 3,450
PhiNet C 47.96 4,650 46.95 4,650
MobileNetV1 32.29 51,200 23.11 51,200
MobileNetV2 37.01 43,092,800 46.51 20,085,760
0.75 MobileNetV2

0.5

46.53 28,089,840 45.93 28,089,840

PhiNet A 72.49 3,050 70.20 3,050
PhiNet B 63.83 3,450 63.73 3,450
PhiNet B9 66.45 3,450 65.10 3,450
PhiNet C 69.58 4,650 65.65 4,650
MobileNetV1 32.15 51,200 23.24 51,200
MobileNetV2 61.21 43,092,800 68.99 43,092,800
0.75 MobileNetV2

2

65.18 28,089,840 66.26 28,089,840

PhiNet A 77.82 3,050 77.23 3,050
PhiNet B 66.34 3,450 67.28 3,450
PhiNet B9 69.80 3,450 67.92 3,450
PhiNet C 72.78 4,650 71.68 4,650
MobileNetV1 44.24 51,200 36.77 77,806,080
MobileNetV2 67.16 43,092,800 77.14 43,092,800
0.75 MobileNetV2

5

71.76 28,089,840 77.00 28,089,840

PhiNet A 79.83 3,050 79.04 3,050
PhiNet B 68.11 3,450 69.58 3,450
PhiNet B9 71.95 3,450 71.69 3,450
PhiNet C 76.77 4,650 79.26 4,650
MobileNetV1 53.77 51,200 47.76 51,200
MobileNetV2 75.30 43,092,800 81.89 43,092,800
0.75 MobileNetV2

10

77.23 28,089,840 81.15 28,089,840

PhiNet A 81.88 3,050 82.41 26,554,002
PhiNet B 73.06 5,068,714 71.90 3,450
PhiNet B9 75.82 7,833,578 75.56 7,833,578
PhiNet C 77.10 4,650 81.10 4,650
MobileNetV1 62.74 51,200 57.88 51,200
MobileNetV2 81.74 43,092,800 86.90 43,092,800
0.75 MobileNetV2

20

81.88 28,089,840 85.85 87,691,008

PhiNet A 83.27 3,050 86.19 26,554,002
PhiNet B 79.41 5,068,714 75.19 12,197,466
PhiNet B9 81.86 7,833,578 79.37 31,255,778
PhiNet C 81.72 13,354,858 83.16 31,930,098
MobileNetV1 68.88 51,200 68.68 51,200
MobileNetV2 85.86 43,092,800 92.51 147,774,464
0.75 MobileNetV2

50

85.27 28,089,840 89.99 87,691,008

PhiNet A 86.69 26,554,002 88.62 26,554,002
PhiNet B 81.60 12,197,466 79.01 12,197,466
PhiNet B9 83.48 7,833,578 79.74 31,255,778
PhiNet C 85.25 13,354,858 86.35 31,930,098
MobileNetV1 69.98 51,200 75.93 77,806,080
MobileNetV2 87.49 147,774,464 94.21 147,774,464
0.75 MobileNetV2

100

88.14 87,691,008 91.99 87,691,008

Table 5.10: Best performance on CIFAR-10 and CORe50 for differ-
ent models with a fixed replay buffer.
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Chapter 6

Conclusion

The goal of this master thesis is to investigate the Latent Replay strategy
when applied to edge architectures. In particular, we have employed the
efficient architecture PhiNet for the first time in the context of Continual
Learning.

Section 6.1 provides a summary of the main results obtained, and we
conclude in Section 6.2 presenting an outlook for future works.

6.1 Conclusion
In this thesis work, we investigated the application of the Latent Replay
strategy in efficient architectures. In particular, the behaviour in the context
of Continual Learning of the efficient architecture PhiNet was analyzed for
the first time. This validation process is carried out using established datasets
like CIFAR-10 and CORe50.

We first collected empirical evidence of the influence of the number of
samples in the replay memory on the performance of the models. Demon-
strating that, with a sufficient number of samples, the innermost layers can
achieve superior performance. However, in scenarios with limited memory,
we observed that the outermost layers become the optimal choice in the
accuracy-memory trade-off.

Furthermore, we have compared Latent Replay with other Continual
Learning techniques such as Experience Replay. We found that in limited
memory scenarios, Latent Replay emerges as the preferred choice, demon-
strating its ability to efficiently use resources while maintaining high levels
of performance.

In conclusion, we conducted a comparative assessment of PhiNet against
well-established architectures, such as MobileNets, utilizing the Latent Re-
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play strategy in memory-constrained scenarios. Our findings demonstrate
PhiNet’s superiority in layers close to the output, where there is a reduced
computation, making it a suitable choice for deployment on resource-constrained
devices. In terms of overall performance, PhiNet models show an advan-
tage over MobileNet architectures. Specifically, with the memory limited to
0.5MB, the PhiNet models with the best performance show, for the CIFAR-
10 dataset, an improvement of 4.47% (or 4.91% for CORe50) compared to
their MobileNet counterparts. It is important to note that this high perfor-
mance was achieved with a significant computational resource efficiency. For
the CIFAR-10 dataset, the PhiNet models require only 0.012% (or 0.015% for
CORe50) of the computation required by MobileNet. This means not only
superior performance but also an optimization of computational efficiency,
further strengthening the practical effectiveness of PhiNet models.

6.2 Future Research
This work presents numerous possibilities for future development. Specifi-
cally, one could extend the application of PhiNet in Continual Learning to
tasks other than image classification by exploring Latent Replay in domains
like Object Detection. PhiNet has demonstrated excellent results compared
to other edge architectures, such as MobileNetV2, making it a promising
candidate for diverse applications.

Furthermore, a crucial future direction to improve the efficacy of Latent
Replay involves exploring novel compression techniques. These techniques
can reduce the memory footprint, thereby enhancing the efficiency of the
Continual Learning process at the edge.



Appendix A

Kendall Tau Distance

The Kendall tau rank distance is a distance function calculates the number
of pairs that are in different order in two lists. The larger the distance, the
more dissimilar the two lists are.

Following the same definition in [6], we define the set of discord pairs of
two lists τ1 and τ2 as:

D(τ1, τ2) = {(i, j) : i < j, [τ1(i) < τ1(j) ∧ τ2(i) > τ2(j)] ∨ [τ1(i) > τ1(j) ∧ τ2(i) < τ2(j)]}
(A.1)

The Kendall tao distance is defined in two froms:

Kd = |D|, Kn = 2|D|
n(n − 1) (A.2)

where in the latter case, the distance is normalized to lie in the interval [0, 1],
and in the former case the distance lies in the interval [0, n(n − 1)/2]. We
have K = 0 only when τ1 = τ2. And the maximum occurs when τ1 is the
reverse of τ2.

As an example, suppose to have two lists:

τ1 = [1, 2, 3, 4]
τ2 = [3, 4, 1, 2]

the discordant pairs in the two lists are:

D(τ1, τ2) = {(1, 3), (1, 4), (2, 3), (2, 4)}

Thus, the Kendall Tau distance is:

Kd = 4
Kn = 0.6̄
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Appendix B

Additional Results

B.1 Optimized PhiNet Performances
Optimized PhiNet evaluation was carried out with a range of values for the
parameters α, β and t0, where each parameter was varied independently
while keeping the others constant with the following values:

α = 3 β = 0.75 t0 = 6

In the tests each of the parameters was tested with the following range
of values:

α ∈ [0.25, 10] β ∈ [0.25, 1] t0 ∈ [1, 8]
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Figure B.1: Comparison of the inference time between the original
model and the optimized model changing the α parameters.

79



80 APPENDIX B. ADDITIONAL RESULTS

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

·109

3

4

5

6

7

MACs

In
fe

re
nc

e
T

im
e

[m
s]

Optimized
Original

(a) GPU Inference Time

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

·109

30

40

50

60

MACs

In
fe

re
nc

e
T

im
e

[m
s]

Optimized
Original

(b) CPU Inference Time.

Figure B.2: Comparison of the inference time between the original
model and the optimized model changing the β parameters.
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Figure B.3: Comparison of the inference time between the original
model and the optimized model changing the t0 parameters.
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B.2 Similarity Measure
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Figure B.4: Similarity measures on CIFAR-10 for the different mod-
els.
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Figure B.5: Similarity measures on CORe50 for the different mod-
els.
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