
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Computer Science

Security comparison between Xiaomi

system applications and Xiaomi

applications on the Google Play Store

Supervisor Master Candidate
Prof. Eleonora Losiouk Michele Agnello
University of Padova

Student ID
1238581

Academic Year
2021-2022

ii

“Programming isn’t about what you know; it’s about what you can figure
out.”
—Chris Pine

iv

Abstract

Whenever a new smartphone that relies on Android as its OS comes out, vendors such as Xi-
aomi, Samsung, Motorola, Huawei can customize the phone with preinstalled applications
with vendor-specific functionalities. System applications require root permission to be unin-
stalled, and they also need to be signed with the same key as the smartphone ROM that has
been signed. Such applications can also be found on the Google Play store, which can guaran-
tee the security of the app. In this thesis we are going to compare these two types of the same
app to find out if one behaves differently than the other or if an application has some hidden
functionalities or vulnerabilities with respect to the other type. Xiaomi smartphones will be
the test subject for this research, since recently there have been a lot of blog posts and news on
how the company is tracking and recording user’s private information.

v

vi

Contents

Abstract v

List of figures ix

Listing of acronyms xi

1 Introduction 1

2 Background 3
2.1 Android Architecture . 3

2.1.1 Linux Kernel . 5
2.1.2 Hardware Abstraction Layer . 5
2.1.3 Android Runtime . 5
2.1.4 Native C/C++ libraries . 6
2.1.5 Java API Framework . 6
2.1.6 System Applications . 6

2.2 Android Applications . 7
2.2.1 Applications components . 7

2.3 Android Manifest . 12
2.4 Android Permissions and Security . 12

2.4.1 Install-Time permissions . 13
2.4.2 Run-Time permissions . 13

2.5 Permission Usage . 13
2.6 Protection Level . 14

3 RelatedWorks 15
3.1 Analysis of Pre-Installed Android Software 15
3.2 FirmScope . 16
3.3 User’s data collection articles . 17

3.3.1 Xiaomi Devices Tracking . 17
3.3.2 Xiaomi Bug Bounty Program . 17
3.3.3 Xiaomi Privacy Policy . 18
3.3.4 Logging Contact-Tracing Data . 18

4 Dataset Collection 19

vii

4.1 Xiaomi Phones . 19
4.2 Applications Collection . 19
4.3 Related Obstacles . 20

5 Tools employed 23
5.1 Androwarn . 23
5.2 Maldrolyzer . 24
5.3 RiskinDroid . 24
5.4 SUPER . 25
5.5 StaCoAn . 25
5.6 Quark Engine . 26
5.7 Apkleaks . 26
5.8 Frida . 26

6 Design 29
6.1 Preliminary analysis . 29

6.1.1 Static Analysis . 30
6.2 Privileged Permissions Discovery . 31

6.2.1 Static Analysis . 32
6.2.2 Dynamic Analysis . 34

7 Implementation 35
7.1 Preliminary analysis . 35

7.1.1 Static Analysis . 35
7.2 Privileged permissions Analysis . 36

7.2.1 Static Analysis . 36
7.2.2 Dynamic Analysis . 37

8 Results 39

9 Conclusion 41

References 43

Acknowledgments 45

viii

Listing of figures

2.1 Shows the android architecture stack . 4
2.2 Shows the activity lifecycle . 9
2.3 Shows how content providers manage access to storage 11
2.4 shows the workflow to follow for using app permissions 12

6.1 List of the partitions found on the phone, in particular product, system and
vendor . 31

6.2 Shows how privileged permissions get declared on the XML file 32

ix

x

Listing of acronyms

AOSP Android Open Source Project

IPC Inter Process Communication

HAL Hardware Abstraction Layer

AOT Ahead Of Time (Compilation)

DEX Dalvik Executable

API Application Programming Interface

NDK Native Development Kit

SDK Software Development Kit

ADB Android Debug Bridge

XML eXtensible Markup Language

ROM Read Only Memory

xi

xii

1
Introduction

TheOpenSourceAndroid system is one of the projects developedbyGoogle. Android is an op-
erating system that is usedmostly to power mobile devices, and its code is entirely open source.
This means that everyone can read or customize this operating system to meet their needs. For
example, big tech companies such as Xiaomi developed a customized ROM based on android
called MIUI, and this ROM now powers most, if not all, of their mobile devices. One of the
advantages of customized ROMs is that they can have pre-installed applications which can en-
hance user experience or make things easier for the end user. On the downside, these apps
can also have inside ads, or can easily be a trial version of the final app that you have to buy on
google play, in this case such applications are called bloatware, because instead ofmaking things
easier for the user, they can take up space, reduce battery life, and cripple the smartphone per-
formance. What is interesting though is that these same pre-installed application can be found
in the google play store, and can be downloaded and even installed on a smartphone developed
by a different vendor. So what we asked ourselves was what are the differences between third-
party apps found on the Play Store and pre-installed apps found on the smartphone? Do they
behave differently? Do they have different source code? But themost important question of all
was do they have different sets of permissions that can make the application run in a different
state? In this thesis i am going to walk you through the in-depth analysis of these applications,
how they behave and if they run the same way or expose different privileged states.

1

The thesis is organized as follows:

• Chapter 2 contains a brief overview of the android operating system and a detailed de-
scription of android application’s permissions

• Chapter 3 explores some of the reviewed research works concerning static and dynamic
analysis of the android application

• Chapter 4 explains the major differences between system and third party apps and also
describes how the apps to analyze were retrieved

• Chapter 5 describes the procedure that was followed in the analysis of these applications,
in particular which app features we needed to focus on for the comparison

• Chapter 6 describes the tools used for static and dynamic analysis of the applications

• Chapter 7 exposes the results found by this analysis and describes some critical issues
brought up by the analysis procedure

• Chapter 8 concludes the thesis, also exposing some of the problems encountered during
the research

2

2
Background

In this chapter, the Android platform [1] is presented. In section 1.1 we describe briefly how
the android architecture is composed; In section 1.2 we introduce the AndroidOS and its core
components; Section 1.3 gives a description of the Android manifest file;In section 1.4 we in-
troduce the concept of permissions in Android, how they are used and how they work, plus an
overview of the Android security mechanisms. The objective is to expose this thesis’ research
context to the reader.

2.1 Android Architecture

The Android platform can be described as a stack of different components, we have an operat-
ing system, a middleware, and system applications. The middleware, which is the main part of
the stack, runs on top of the Linux Kernel and hardware drivers, allowing it to take advantage
of security features, libraries, runtime environments and application frameworks also giving
device manifacturers the ability to develop specific hardware drivers.

3

Figure 2.1: Shows the android architecture stack

4

2.1.1 Linux Kernel

The Android platform provides the security of the Linux kernel, as well as secure interprocess
communication (IPC) to enable secure communication between applications running in dif-
ferent processes. The Linux kernel is used in millions of security-sensitive environments, and
has it provides Android with several key security features like:

• A user-based permission model

• Process isolation

• Extensible mechanism for secure IPC

• The ability to remove unnecessary and potentially insecure parts of the kernel

• Filesystem permissions

• Verified boot

The Linux kernel is also a multi-user OS and is able to deny access to user resources by a
different user; for example, it guarantees that user A does not exhaust user B’s memory, CPU
resources or Devices.

2.1.2 Hardware Abstraction Layer

The hardware abstraction layer (HAL) is an interface that lets the android system services com-
municate with the linux kernel and vice versa. Tomake this communication possible, this layer
defines a standard interface that hardware vendors can implement and personalize without
changing the higher-level system. Vendors need to implement the specified HAL and driver
for the corresponding hardware component, these HAL implementations are then built into
shared library modules that are then loaded whenever an API call tries to access the specified
hardware.

2.1.3 Android Runtime

The Android Runtime is the virtual environment that is used by android applications and ser-
vices on Android. Its predecessor, which was used before Android 5.0, is called Dalvik and
is also a runtime that was created specifically for Android. These tools were created to run
Dalvik executable written in the DEX format, which is a bytecode optimized for low memory

5

footprint. Android applications written in Java are compiled in DEX bytecode that will run
on the Android platform through the ART. Some of the main features of ART include the
following: Ahead-of-time (AOT) compilation that can improve the performance of applica-
tions; improved garbage collection; development and debugging improvements. Android can
also providemost of the functionality available in the Java programming language, for example,
Java 8 features like lambda expressions, method references, type annotations, etc., through the
Android Gradle Plugin.

2.1.4 Native C/C++ libraries

The Android platform provides a set of tools that allow developers to insert C and C++ code
into android applications. This tool is called theNative Development Kit (NDK) and can also
provide platform libraries to access physical device components and native activities. Through
NDK developers can achieve low-latency or computationally intensive applications or use ex-
ternal C, C++ libraries. Most of the components and services of the Android system, such as
ART andHAL, are built from native code that requires native libraries written in C and C++.

2.1.5 Java API Framework

All the features available in the Android platform are exposed to the developer through APIs
written in the Java programming language. The usage of these APIs simplifies the creation
of Android apps through the reuse of core, modular system components, and services. For
example, such APIs offer a View System to build the UI of an application, a content provider
where applications can access data from other apps, an activitymanager tomanage the lifecycle
of the application, and many more. Moreover, Android developers can also take advantage of
framework APIs used in Android System apps.

2.1.6 System Applications

The Android OS also has a set of pre-installed applications for various functions such as email,
SMS messaging, calendars, browsing the Internet, contacts, etc. These applications are called
systemapps, but theydonothave a special status amongother applications that theuser chooses
to install. In particular, an application downloaded from third parties can become the user’s
default email manager, web browser, or even SMS messenger. Of course, there exist some ex-
ceptions, such as the system’s settings app. System applications also provide functionalities

6

that developers can access from their own application. For example, if your app wants to visit
a web page, you don’t need to build a newweb browser app, you can instead invoke the system
browser app to visit a web page.

2.2 Android Applications

TowriteAndroid applications, you can choose between Java, C++orKotlin, the new language
developed by JetBrains. The Android Software Development Kit (SDK) will then compile all
the code together with any external data or resource files to create either anAPKor anAndroid
App Bundle. An APK is a simple archive file with the extension.apk, contains all the files that
the application needs at runtime and is also the file needed by android devices to install the ap-
plication. Every Android app runs in its own virtual environment or sandbox, and it is isolated
from other apps. Furthermore, the system identifies every app as a different user and assigns
each and every app a unique ID, so that all files in an application can be accessed by the user ID
assigned to that application. By default, each android application can only access the compo-
nents that it needs to work and nothing more. This principle is called the least privileged and
is implemented by the Android system. This principle guarantees a secure environment where
an application can access only system parts for which it has been given permission; however,
there are ways for applications to share data or access system services. If two apps share the
same user ID they can access each other’s files and can also run on the same sandbox or Linux
process. To use this feature, the apps need to be signed with the same certificate. Also, if the
user explicitly grants the specific permission, the application can access device hardware such
as device’s location, camera, and Bluetooth.

2.2.1 Applications components

Android applications are built from components, which are entry points for the system or the
user to access the application. There are four different types of app components: activities, ser-
vices, broadcast receivers, content providers. These components can be activated by messages
called intents.

Intents

Intents are asynchronous messages that can activate app components. At runtime, intents can
connect different app components and request action from an app component. A developer

7

can create an intent from the Intent class, and decide if the intent is implicit or explicit. Implicit
intents do not activate a specific component; instead, they declare a specific action to perform.
Explicit intents target the specific application or a fully-qualified component class name and are
typically used to activate a new activity inside an application. Depending on the component
type, an intent can behave in different ways. For activities and services, an intent defines the
actions to perform, like read, send, update, and also specifies the data to act on with an URI.
For broadcast receivers, the intent can specify the notification being broadcast, for example, the
low battery notification. Content providers are instead not activated by intents. To receive an
implicit intent, the developer needs to insert an intent filter in the manifest file specifying the
accepted intent type.

Activities

Activities are the building blocks for developing an Android application; in fact, the activity
class is the entry point for the interaction between user and application. Whenever the user
opens an application, an activity gets invoked rather than the application as an atomic whole.
Also when the app itself wants to interact with another app it invokes one of the other app’s
activities, this is because in the mobile-app world a user does not always interact with an appli-
cation in the same way, as opposed to desktop application. For example, if a user can open the
email app to view all his emails, but it can also use another application that launches an activ-
ity pointing to the same email app. A developer can implement an activity by creating a class
inheriting fromActivity, and the application can have multiple activities interacting with each
other. Activities provide a window where the application’s UI gets drawn; usually an applica-
tion has at least one activity called main activity which is the first screen that appears when the
user launches the application. When the user of an application starts to move between activi-
ties, such activities transition through different states of their lifecycle. An activity lifecycle is
composed of different states that can be traversed by implementing the system’s core callbacks:
onCreate(), onStart(), onResume(), onPause(), onStop(), and onDestroy().

8

Figure 2.2: Shows the activity lifecycle

Services

A service is a component of an Android application that can run in the background and per-
form time-consuming operations. It doesn’t have a UI and once started it continues to run
even if the user opens another application. An application component can easily interact with
the service through IPC; in this case the component is said to be bound to such service. In
Android, there exist three types of service:

9

• Foreground, this service performs operations that are visible to the user, in fact, it is
forced to display a notification visible to the user to remind him that the service is run-
ning. When this service is stopped, the notification can be canceled.

• Background, on the other end this service performs operations that are not directly visi-
ble to the user.

• Bound, this typeof service is generatedwhenanapplication calls thebindService()method
and binds to this service. The application can then begin a client-server interaction with
the service, so it can exchange data by sending requests and receiving responses, and it
can do so also within multiple processes. The service life span terminates when it has no
other components that bind to it.

The advantage of using a service is that the developer can create a service that is amix between
the aforementioned types. For example, it is possible to create a service that runs indefinitely in
the background and that can be bound to. It depends on the implemented callback methods:
onStartCommand(), onBind(), onCreate(), onDestroy().

Broadcast Receivers

Applications on android are able to send and receive broadcast messages to and from other ap-
plications. These messages can also be customized by an application in order to notify a target
app. In order to receive the message, apps need to register a specific broadcast receiver, so that
when the broadcast message is sent the system routes the messages to those applications who
subscribed to that particular receiver. Android applications can receive broadcast messages by
declaring a receiver in their manifest or by registering with context-registered receivers. In the
first method, the developer declares a receiver in the applications manifest, and implements
onReceive(...) callback method of the class BroadcastReceiver. Then the system registers the
broadcast receiver at install time and that receiver becomes a separate component the systemcan
run to receive themessage, even if the application is not currently running. In the lattermethod
the developer does not need to declare a receiver in the manifest, but he needs to create an in-
stance of BroadcastReceiver, create an IntentFilter, and then register the receiver implementing
the registerReceiver(...) method. Context-registered receivers have a lifespan depending on the
context in which they are registered, if they are registered in anActivity they will keep receiving
messages as long as the activity is not destroyed, if they are registered in the application context
they will receive messages until the app is closed.

10

Content Providers

Content providers are components that can share data between applications. The shared data
can be stored in the phone’s file system, in an SQLlite database, on the web, or any other per-
sistent storage that applications can access to. A content provider is able to encapsulate data
and provide a standard interface where applications can securely connect, read, ormodify such
data. Tipically, developers work with content providers in two ways: they need to access the
content provider of another app or they need to create a content provider to share data between
applications. In the first method, they need to create an object of the class ContentResolver to
communicate with the provider much like a client-server communication. The resolver meth-
ods that the developer needs to implement offer the basic CRUD functions to operate on per-
sistent data. Once implemented, the resolver will communicate with the contentprovider that
will perform the required action and responds with some results. In the second method devel-
opers need to create a class that is a subclass to ContentProvider, they will need to decide if the
stored data is data that normally goes into files or structured data that, for example, can go into
a database. Thay will also need to define a content URI that identifies the data in the provider.
Content URIs contain a symbolic name of the entire provider (its authority) and a name that
points to a table (the so-called path). The content resolver will then parse the URI to resolve
the access to the data. The provider must also be defined in the application’s manifest file.

Figure 2.3: Shows how content providers manage access to storage

11

2.3 AndroidManifest

The Android system needs to know that an app component exists before starting it, this is
done through the AndroidManifest.xml file. In this file all the app’s components are declared,
all the app’s permissions are specified, the minimum Android API level required by the app is
declared, the app’s hardware and software features are inserted, and all API libraries the app
needs are specified. The components are declared by specific tags (<activity>, <service>, <re-
ceiver>, <provider>), if they are not present in the manifest, they will never be visible to the
system. In themanifest we can define even the various component’ capabilities by including in-
tent filters in the component’s tags. The app features are instead declared by the <uses-feature>
tag.

2.4 Android Permissions and Security

When an Android application requires access to restricted data or actions that are considered
restricted, this application needs to have the appropriate permissions. There are three main
types of android permissions, Install-time permissions, granted automatically when the app
is installed; Run-time permissions, the app prompts the user to grant the permission at run-
time; Special permissions, these are associated to particularly powerful type of actions, and
they can only be defined by the platform and the OEM. Each special permissions has its own
implementation details.

Figure 2.4: shows the workflow to follow for using app permissions

12

2.4.1 Install-Time permissions

When install type permissions are declared in the application, the system automatically grants
these permissions when the user installs the app. When the user wants to install an application
from an app store, the store notifies to the user about the install-time permission the app needs.
The permission included in this type can also be subdivided into two categories such as normal
permissions and signature permissions. The first sub-type includes permissions that allow ac-
cess to data and actions outside of the application range, or sandbox. Signature permissions
instead are defined by another application; if the application defining the permission and the
application using the permission are signedwith the same key, the system grants the permission
at install time to the app using the permission.

2.4.2 Run-Time permissions

These permissions are also called dangerous permissions because they give applications access
to sensitive data and grant applications the ability to perform actions that can affect the system
andother applications. Before accessing restricted data, the applicationnotifies the user, andhe
can grant or deny this run-time permission. For example, accessing the microphone or camera
requires run-time permission because the application can access sensitive information.

2.5 Permission Usage

Each permission in the android architecture is identified by a unique label. This label needs to
be included in the manifest file of the application.

Listing 2.1: Syntax used to declare permission in manifest file

<manifest ... >
<uses-permission android:name="android.permission.SEND_SMS"/>
...

</manifest>

Starting from Android 6.0 the user is able to approve or reject some run-time permissions,
if the permission is granted the application is able to use the restricted features, if the permis-
sion is rejected the app will fail to use those features. An application can also define its own
permissions, but in this case it will declare the permission with the ”<permission>” tag.

13

2.6 Protection Level

Every permission in the android systemhas a so-called protection level assigned by theOS. This
protection level is a tag written with ”android:protectionLevel” that signals the potential risk
attributed to the permission and exposes the procedure the system should follow when choos-
ing between granting or denying the permission to the requesting application.
Each protection level is a combination of one base type and zero ormore flags. For example, ev-
ery non-custompermission has a base type of ”normal” and no other flags, while the protection
level of ”signature|privileged” is a combination of the signature base type with the privileged
flag. The base type for protection level are:

• ”normal”, this is the default value, it gives applications access to isolated application-level
features with minimum risk to other apps. Usually this level is automatically attributed
to install-time permission, without asking for the user’s approval;

• ”dangerous”, this is attributed to higher risk permissions that can give the application
access to sensitive user data or control over the device that can impact negatively the
user. In this case the permission will not be automatically granted at the requesting ap-
plication; instead it may ask for the user’s approval to accept the usage of the dangerous
feature;

• ”signature”, this means that the application requesting the permission has to be signed
with the same certificate of the application that declared the permission. If the certifi-
cates match, the permission is granted without notifying the user.

• ”signatureOrSystem” (”signature|privileged”), in this case, the system grants the permis-
sion to applications that are either in a dedicated folder of the android system image or
signed with the certificate of the app who is declaring the permission. This level of per-
mission is used for certain special situations where multiple vendors have applications
built into a system image and need to share specific features explicitly because they are
being built together.

14

3
RelatedWorks

This chapter reviews some of the research work which helped to gather data for the confronta-
tionof applications. In particular the first twopapers analyze in detail pre-installed applications
both in Android Software and Android Firmware. In the final section, the chapter exposes a
series of blogs that support the reason for this research project. More than the tools presented
and the results found in those papers, we were interested in how the researchers gathered data
and applications and how to consider if an application is a pre-installed Android app or not.
This part was crucial because we needed to be sure that the pre-installed apps and the same
applications gathered from the Google Play store had to be comparable, both in code and in
behavior. In section 2.1we describe the paper ”AnAnalysis of Pre-installedAndroid Software”;
In section 2.2 insteadwe describe the tool FirmScope. In section 2.3we present a series of blogs
that focus on the collection of user data by Xiaomi applications.

3.1 Analysis of Pre-Installed Android Software

In J. Gamba et al. [2] the objective of the authors is to explore the environment of pre-installed
android software in terms of privacy and security. The authors present a large-scale study of
software from more than 200 vendors collected through crowd-sourcing methods. Through
this study, we can analyze the involvement of different actors in what the authors call the sup-
ply chain, which is the collaboration of different actors, for example, device manufacturers,
mobile network operators, and third party organizations in the making of the final product.

15

The questions that the authors aim to answer are: what is the ecosystem of pre-installed apps?;
what is the relationship between vendors and stakeholders?; Pre-installed apps private and per-
sonally identifiable information? And if so with whom they share it?; Among these applica-
tions, are there any harmful or potentially dangerous apps?. The study consists of the follow-
ing four main steps: data collection, ecosystem overview, permission analysis, and behavioral
analysis. In the first step, applications and traffic information are collected from real-world de-
vices. This dataset includes apps gathered from different users, device models, and more than
200 vendors. Moreover, the authors included traffic flows fromdifferent applications using the
Lumen app. Subsequently, all the ecosystem is investigated by analyzing the applications’ man-
ifest files, their certificates, and the third-party libraries used. In the next step, a set of custom
permissions is extracted and analyzed. These permissions could be used to escalate the android
permission model and access privileged system resources. The final step consists of static and
dynamic analysis of these applications through different tools to check for vulnerabilities or
unwanted behavior. Asmentioned before, we consulted this studymainly to understand what
pre-installed applications are and how they can be recognized, how to collect data, and what
tools are best suited for our analysis.

3.2 FirmScope

Firmscope [3] is a tool capable of detecting privilege escalation vulnerabilities in pre-installed
Android applications in automatic. This tool can scan an Android firmware for vulnerabilities
mainly in two steps:

• Pre-processing, in this phase the tool gathers the Android firmware to scan and start to
unpack the individual file-system images contained within it. Then it extracts all the sys-
tem apps contained in an image file, checks each app’s manifest and metadata, exported
components and finally starts to disassemble its DEX files;

• Static Taint Analysis, in this phase FirmScope starts to build an interprocedural control
flow graph (ICFG) for every app, this graph represents control flow that transfers from
target method from the same class or even different apps. After building the graphs, the
tool reconstructs the heirarchy of the classes and resolves all calls, it then infers def-use
chains and builds the interprocedural data flow graph (IDFG), and finally it performs
the taint analysis to identify execution paths that are vulnerable.

As in J. Gamba et al. [2] presented in Section 2.1, we decided to use Firmscope [3] to help us
understand how to recognize and gather system apps and what are privileged permissions and

16

privileged apps.

3.3 User’s data collection articles

3.3.1 Xiaomi Devices Tracking

The article C. Singh [4] exposes the findings of a cybersecurity researcher namedGabriel Cirlig,
who accused the Xiaomi browser, Mi Browser Pro, of collecting all search queries and items
viewed by users, the collection happens even in incognitomode.The researcher was also able to
prove this behavior even for other Xiaomi phones, includingMi 10, Redmi K20, andMiMIX
3. Xiaomi responded to this claim and justified their action saying ”collection of anonymous
browsing data is one of the most common solutions adopted by internet companies.”. How-
ever, Cirlig claimed that if the information collected from the browser is coupled with phone’s
”metadata” collected by Xiaomi, the company is able to identify the user. Moreover, Cirlig was
also able to notice the monitoring of his touches on his screen and even the collection of his
listening abits by the System Music App. The researcher discovered that the collection of the
data was connected with SensorDataAPI, an API that enables third-party access to the appli-
cation’s data. This third party used by Xiaomi is Sensor Analytics, a startup that deliberately
tracks users. Xiaomi even responded to this claim, saying that the data collected by Sensor An-
alytics is anonymous and safely stored in their servers.
Despite the responses to these claims, Xiaomi has released updates for itsMi browser andMint
browser that include a toggle to disable the collection of aggregated usage data in incognito
mode [5].

3.3.2 Xiaomi Bug Bounty Program

In the Xiaomi Bug Bounty Policy [6] Xiaomi presents its bug bounty program, specifying the
methods for disclosure, how rewards are calculated, and other modalities of execution. What
is interesting of this policy is that there is a section in Privacy Vulnerabilities concerning the Xi-
aomimobile applications pre-installed onXiaomi phones. In the thesis, we analyze some of the
applications present on theXiaomi package list. In the scopes section, which is the final section
of the policy, a list of apks that have a critical level of vulnerability is shown, and in particular
the Mi Browser apk is present with a high level vulnerability. According to the policy, the apk
presents a vulnerability that is either undisclosed or new depending on new technologies, and

17

it will have a great impact on the Xiaomi business.

3.3.3 Xiaomi Privacy Policy

In the Xiaomi Privacy Policy [7], in particular Section 3, is written how the company shares,
transfers, and publicly discloses personal information. This section states for example that the
company may share personal data with Xiaomi affiliates, a group of independent companies
forming the Mi Ecosystem, third party service providers and business partners, advertisers all
to provide the user with all the functions of their products or services. In the first two sections
of this policy is also stated what information the company collects (including personal data
and log features present, for example, in applications) and the cookies and other technologies
they use, for example, log files and mobile analytics. This policy is interesting relevant to this
research because it is stating beneath the lines that the company is free to do anything theywant
with the user’s personal information.

3.3.4 Logging Contact-Tracing Data

In this article [8] the author explains how a Google-implemented service, the Google-Apple
Exposure Notification, used to do digitally assisted contact tracing, can log directly to the sys-
tem log crucial information that can be read by third-party applications and used for privacy
attacks. The article then exposes how these logs can not be seen by third-party applications
downloaded from the Play Store, but they can potentially be seen by pre-installed apps. Google
allows phone hardware manufacturers to ship their phones with these pre-installed apps that
have access to privileged permissions, for example READ_LOGS, a permission that lets the
application read system logs. The author presents an example of a Xiaomi Redmi Note 9 that
has 77 pre-installed apps, 54 of which have the READ_LOGS permission, furthermore the
collection of log data is explicitly mentioned in the privacy policy.

18

4
Dataset Collection

One of the most fundamental processes in this research is data collection. In this section, we
will explain how we collected the data and the reason we proceeded in the following way. In
detail: section 3.1 exposes the reasonwhy xiaomi phones are the subject of our research; section
3.2 explains how the applications to analyze were chosen and lists which are those applications;
section 3.3 presents the problems encountered during the process.

4.1 Xiaomi Phones

As explained in previous sections, the objective of this research project is to check if there are
differences between system apps of phones from different vendor and the same app found on
the Google Play Store. Every vendor has their system apps, we thought that Huawei and Xi-
aomi were the more accessible vendors, and eventually we chose Xiaomi because we already
had the phones to execute our research. From there on, we activated the USB debugging and
started to gather application using the Android Debug Bridge (ADB) pull command.

4.2 Applications Collection

After choosing the vendor for our research, we started to find Xiaomi system apps. We used a
personal Xiaomi Redmi Note 7 and tried different approaches to find system apps:

19

• Firstly, we tried to see which applications could be uninstalled from the phone by the
uninstall feature. Since the phone wasn’t rooted system apps couldn’t be uninstalled by
a normal user;

• Next, from the phone’s settings, in particular the App section, we could set SystemApp
Settings and from there we could see all the apps the phone consider as system;

• Finally from online sources we discovered that system apps could be recognized because
their certificate is signed using the rom image key. Of course, this method was not prac-
tical because we were lacking the Xiaomi rom key.

Therewas also anothermethod to recognize systemapplications, and thatwas to search these
applications under the /system/app partitions. To use this method we needed to root a phone
and since the RedmiNote 7 was personal, we used a new phone, the Xiaomi 9A. After rooting
the phone, we pulled the applications from the system folder.
Afterwards, we researched those applications in the Google Play store and tried to download
them. The third party applications were gathered from external sites like ApkMirror [9], Ap-
kPure [10], but we could not confirm if these applications were really taken from the Play
Store. To solve this problem we chose to download the applications from the store using an-
other vendor’s phone, a Huawei 7 and then pull the applications using adb. Of course, not all
the system applications were available on the play store, but in the end we found the following
applications ready for a confrontation: Mi Browser, Weather, Music, Mi Video, Share Mi, Mi
Remote, Calendar, Xiaomi Community, Xiaomi Store, Files.

4.3 Related Obstacles

In this section, we will expose the problems encountered during data collection and we will
explain the solution we took along with the reason for it. During the first collection of third
party applications, we decided to use the android emulator and download directly the applica-
tions in x86 format. The problem was that those applications do not exist in x86 format, not
from the play store or other online sources. So we could not use any emulator for our analysis,
and in the end we decided to use real devices for the download of third party applications. The
next major problem we encountered was with the versions of the system apps and the third
party apps. Some of the app’s versions were not always the same, so the confrontation between
the two would not have been accurate or precise. To solve this problem we tried to find the
correct version of the third party app through the sites mentioned before but for some applica-
tions these versions weren’t available. In the end we decided to gather third-party applications

20

with the closest versions to the system apps, if the same wasn’t available. The next difficulty
we encountered was during the identification of the system application. Using the method of
analysis of applications under /system/app, we noted that depending on the Android version,
some system applications had a path that was pointing to /data/app. For example, for Android
9 all the system applications were in the /system/app partition but for Android 10 and 11 some
of themhad the apkunder /data/app. This, of course, created confusion in the identification of
system apps. Furthermore, we noted that the system apps had two versions of themselves, one
under /system/app that was very old, and the other version under /data/app which was recent
and updated. What we concluded from online sources and the AOSP documentationwas that
the system applications under /data/app were the official ones and that the counterpart under
/system/app was a backup version used to restore the application in case it was uninstalled as
root.

21

22

5
Tools employed

This chapter presents the tools used during the analysis. In detail, we will describe what their
outputs are and the reason behind their usage. In section 5.1 we will present Androwarn, fol-
lowing with section 5.2 Maldrolyzer, section 5.3 RiskinDroid, section 5.4 SUPER, 5.5 Sta-
CoAn, 5.6 Quark Engine and section 5.7 ApkLeaks. The tools mentioned above are mainly
focused on static analysis; we decided to use many static analysis tools in hopes of finding vul-
nerabilities in applications through the different output formats and analysis methods of the
tools. In the final section 5.8 we instead present Frida, the tool used for dynamic instrumenta-
tion.

5.1 Androwarn

Androwarn [11] is a static code analyzer for malicious android applications. The tool analyzes
the Dalvik bytecode of the applications through the androguard library. The user of the tool
can choose the technical level of the report generated by the analysis. Androwarn can detect
malicious behavior of an application and categorize it in the following classes:

• Telephony identifier exfiltration

• Device settings exfiltration

• Geolocation information leakage

23

• Connection interfaces information exfiltration

• Telephony services abuse

• Audio/video flow interception

• Remote connection establishment

• PIM data leakage

• External memory operations

• PIM data modification

• Arbitrary code execution

• Denial of Service

This tool was chosen because it was relatively easy to use and has an output that spans mul-
tiple app behaviors that can be easily compared.

5.2 Maldrolyzer

Maldrolyzer [12] is a tool that is able to extract sensitive data that is considered actionable from
an android malware. These data can be a simple command and control server where the mal-
ware sends or receives information, or it can even be a phone number, IMEI and more. This
tool was chosen because of its simplicity, we wanted to detect if the system application or the
third-party applications by xiaomi could be consideredmalware or if they had a commonC&C
server to which they send personal information.

5.3 RiskinDroid

RiskInDroid [13] is a tool written in both Java and Python, it analyzes the permissions of the
applications and based on them attributes a risk from 0 to 100 to the app. The Java language
is used to look at the app’s permission while the Python language is used for the classification
techniques to calculate the risk factor, in fact python has a lbrary called scikit-learn specialized
in machine learning. Moreover, the tool does not only look through the application manifest,
but through reverse engeniring and static analysis it can infer which permission are really used
and which not by dividing them in for sets of permission cathegories:

24

• Declared permissions, are permissions extracted from the manifest

• Exploited permissions, permissions declared in the manifest and used in the bytecode

• Ghost Permissions, are permissions used in the bytecode but not declared on the mani-
fest

• Useless permissions, are permissions declared in the manifest but never used in the byte-
code

From the built permissions set and from the official android permission list, the application
creates an input for the classifier that will output the risk factor. The tool was chosen for this
analysis because it focuses on the permission analysis, which was crucial in our process, and
since the tool can create a list of permission actually used in the bytecode, we could easily focus
our research in finding the API call in the source code.

5.4 SUPER

SUPER [14] is aRust-developedCLI tool that analyzes apks to search for vulnerabilities. What
differentiates this tool by the other stat of the art static analysis tools is that it is rules-based and
extensible. The user of this tool can easily create a personal rule to search for specific vulner-
abilities. The downside of this tool is that its output is in HTML format and is very verbose,
so in order to find differences between the system app output and the third party output we
had to rely on the git diff command. Using Git diff, it was still difficult to spot the difference
since the command gives a difference even if a line of code is inverted. Another difficulty of
this tool is that of the rule format; it is not easy to understand how to modify the rules.json
file correctly. Despite the difficulties, we insisted on using this tool in order to find varying
categories of vulnerabilities in the applications.

5.5 StaCoAn

StaCoAn [15] is a cross-platform static analysis tool for mobile applications. The tool focuses
on the code of the application looking for lines that can contain hardcoded credentials, API
keys, URL’s of API’s, decryption keys, and major coding mistakes. It was built to aid the user
through the tool’s usability and graphical interface, in fact it is very easy to use, the user can just
start the tool drag and drop the apk in the interface and obtain the generated report. This is

25

a static analysis tool that we chose because of its different output compared to the other tools
mentioned before. The only downside of StaCoAn is that it does not work well with obfus-
cated code.

5.6 Quark Engine

Quark engine [16] is amalware reverse engineering tool. The tool offers a static analysis feature
as well as a dynamic analysis one, and we overlooked the dynamic analysis feature because we
needed a tool for dynamic instrumentation. It is another rule-based tool, but what is different
from SUPER is that its rule set gets continuously updated, and it has a rule generator that lets
the user create a personalized rule in the correct format. Furthermore, the authors developed
a personal theory of Android malware, creating a five-stage process to recognize if the applica-
tion is engaging in malicious behavior. To recognize malware behavior, first the tool searches
for the requested permissions, then it looks through native API calls, analyzes certain combi-
nations of native API, looks at their calling sequence, and finally looks for API that handles
the same register. The tool defines weight and thresholds through the stages of the process, in
order to calculate the threat level of the malware, and it neglects some cases of code obfusca-
tion. Quark engine was chosen because it is a well-documented project, it is still rule based and
easy to personalize, and it is still maintained with respect to other tools mentioned before. The
report it generates is available in different formats and detailed.

5.7 Apkleaks

Apkleaks [17] is yet another static analysis tool, but it focuses on scanning an apk for URIs,
endpoints, and secrets. We chose this tool to give us another overview on the code of analyzed
apps, every static analysis tool can scan for URIs and endpoints (we mentioned StaCoAn), we
wanted to have different static analysis tools to have a complete scan of an application through
different points of view. So in the end we could have a better comparison between system apps
and third party apps.

5.8 Frida

Frida [18] is a dynamic code instrumentation toolkit, it can inject javascript code into the cho-
sen application. This tool was chosen because it was easy to integrate with our rooted phones,

26

since we rooted using the Magisk application. The tool requires a server to be installed in the
phone in order to run the custom javascript, after a search on thewebwe found out thatmagisk
offers a plug-in that can install and start the frida server automatically on the phone. Through
ADB we can connect the phone to a computer and discover which process runs on the device,
and after choosing the target process, we can inject code while the process is running. This way
we have a running instance of the application targeted that we can explore, for example, we can
log information on the computer’s terminal or call APIs directly from the application.

27

28

6
Design

In this section, wewill present ourmethod of research and comparison and our reasons behind
thismethod. In detail, section 4.1will introduce the preliminary analysis performed in order to
identifywhich features of the applicationwe should have considered for the comparison. Then
in section 4.2 we will describe our analysis on privileged permissions and why we considered
them the core of our comparison, we will also describe our process in order to trigger these
permissions and why we chose some specific tools.

6.1 Preliminary analysis

Since this research focuses on the differences between the same app obtained from different
sources, we decided to execute an analysis on both code and behavior, which is equivalent to
static and dynamic analysis. The idea was to start with the static analysis of the application’s
code and manifest, check for meaningful differences, and then, through dynamic instrumen-
tation, observe in which ways the applications behave differently. After having discovered the
vulnerable or dangerous behaviors, we could create a threat model and eventually find out an
attack that can be attributed to the vulnerability. We decided to follow this approach because
the analysis can be performed through a reverse engineering process because we had all the nec-
essary resources. Both Applications APK,Manifest, Decompiled Source Code, and phones to
test the applications.

29

6.1.1 Static Analysis

After gathering all the applications, we proceeded with static analysis. Through a list of An-
droid static analysis toolswe gathered on the internet, we beginworking on the analysis of these
applications. However, some of these tools were outdated, discontinued, or deprecated; here
are the functioning tools used in the process: Androwarn,Maldrolyzer, RiskInDroid, SUPER,
StaCoAn, Quark-Engine, ApkLeaks, ApkAnalyzer, Jadx. As mentioned beforehand some ap-
plications were not in the same version, but we decided to proceed anyway with the analysis in
those cases because there are possible scenarios that go along with the purpose of our research.
For example if the application found on the Play Store is a downgraded version with respect to
the system app and in this version there is a security issue which is not present in the recent ver-
sion of the system app, this scenario represents a vulnerability that can be distributed between
devices that download this application.

Manifest and Source Code

During the static analysis we thought that in android applications theManifest and the Source
Code would be the most crucial part where we could find results. In the source code we hoped
to find more suspicious code in the system app than third party apps; of course this difference
is more clear if both the system app and the third party app are on the same version, otherwise
the result may be unreliable. On the third party app there should not be secret vulnerable code
since the application is distributed through the Google Play store and is supervised.
What we searched for in the manifest was the over- or under-permissioning of one application
over the other. We also hoped to find some dangerous or privileged-level permissions on the
system application because of the same reason explained for the source code.

Permission APIs

Directly connected to the permission are the APIs, every permission has specific APIs that can
be called in the source code. Whenwe analyzed the source code, we also searched for difference
in API calls between apps. For example, the system app can execute some privileged API calls
which cannot be executed by the third party application. This led to the discovery of privileged
permissions [19].

30

6.2 Privileged Permissions Discovery

From the first results obtained by the static analysis (whichwill be discussed in detail in Section
5) we did not notice significant differences between system apps and third-party applications.
This type of result led us to believe that maybe the system applications run on a different status
in contrast with the third-party applications downloadable from the play store. Since system
apps are pre-installed, whichmeans they are signed with the same key used to sign the vendor’s
ROM, they can use a set of permissions specific to system applications that make them execute
on a privileged status. With this idea in mind, we researched the Android documentation and
found out all about privileged permissions and privileged applications.
Privileged applications are apks located under the /priv-app folder in one of the system parti-
tions of the image. Up to Android 8.1 this system partition was called /system, from Android
9 onward there exist three system partitions called /system /product/ /vendor. In these parti-
tions we can find a folder called /etc/permissions/priv-app, and in this last folder we can find
files that specify which signature|privileged permission to grant to a privileged application.

Figure 6.1: List of the partitions found on the phone, in particular product, system and vendor

These xml files, in the case of Xiaomi phones, have a list of applications and in every appli-
cation the signature|privileged permission granted is specified. Moreover, these XMl files can
grant or deny the permissions for applications who are on the same partition. For example, if
we find a file named privapp-permissions.xml under the /vendor partition, the application un-
der the same partition can request these privileged permissions and the request will be resolved
based on privapp-permissions.xml under the /vendor partition.

31

6.2.1 Static Analysis

With this new information inmindwe decided to chek for the request and consequent usage of
these privileged permissions. From the xml files found in /system/etc/permissions/priv-appwe
obtained a list of all the privileged permission that can be granted to system app, and decided
to repeat a Static Analysis checking traces of the usage of such permissions.

Manifest

Since these are permissions, the first place we decided to check was the manifest of the appli-
cations, and surprisingly we noticed the presence of privileged applications according to the
XML file. Not all the permissions specified by the file were present in the applications, but
there were also applications without this privileged permissions; this allowed us to restrict our
research and focus on a smaller set of applications, namely: Music,Weather,Mi Browser, Share
Me, and Calendar. Eventually from the Play store on the Samsung phone we only found Cal-
endar, Share Me andMi Browser.

Figure 6.2: Shows how privileged permissions get declared on the XML file

Permission APIs

Afterwardswe tried to connect the list of privilegedpermissions to their associatedAPI through
the Android documentation and tools such as PScout. Then we repeated the static analysis
on the source code of the application, in order to find usage of these APIs which would have
justified the presence of privileged permissions in the manifest file.

32

Permission per applications Presence in Xiaomi Presence in Samsung
Xiaomi Calendr 12.5.6 Xiaomi 12.5.6 Samsung
INTERACT_ACROSS_USERS NO NO
MOUNT_UNMOUNT_FILESYSTEMS NO NO
READ_PRIVILEGED_PHONE_STATE NO NO
STATUS_BAR NO NO
WRITE_SECURE_SETTINGS YES YES
GET_ACCOUNTS_PRIVILEGED NO NO

XiaomiMi Browser 13.10.0-gn Xiaomi 13.10.0-gn Samsung
GET_ACCOUNTS_PRIVILEGED YES YES
INTERACT_ACROSS_USERS YES YES
READ_PRIVILEGED_PHONE_STATE YES YES
STOP_APP_SWITCHES YES YES
WRITE_SECURE_SETTINGS YES YES

Xiaomi Share Me 3.22.06 Xiaomi 3.22.06 Samsung
INTERACT_ACROSS_USERS YES YES
LOCATION_HARDWARE YES YES
MANAGE_USERS YES YES
MODIFY_PHONE_STATE NO NO
MOUNT_UNMOUNT_FILESYSTEMS NO NO
OVERRIDE_WIFI_CONFIG YES YES
STATUS_BAR YES YES
WRITE_APN_SETTINGS NO NO
WRITE_MEDIA_STORAGE YES YES
WRITE_SECURE_SETTINGS YES YES
LOCAL_MAC_ADDRESS YES YES

Table 6.1: Privileged permissions found on the applications’ manifest

33

6.2.2 Dynamic Analysis

The next step in the analysis was to test if the applications present different behavior during
execution. However, not having the third party applications for x86 system implied that we
couldn’t use the android studio emulator for our tests. Our solution then was to root two
phones, one Xiaomi phone so that we could test the execution of Xiaomi system applications,
and one phone from another vendor so that we could freely download the third party applica-
tions from the Play store. For the phone from a vendor different from Xiaomi we decided to
go with a Samsung phone, since it was already in our hands and had been previously used in
another research project.

Dynamic instrumentation through Frida

After having rooted the two phones, we needed to choose a framework for dynamic instru-
mentation, we decided to go with Frida since it was one of the most popular on theWeb and it
was relatively easy to integrate in the two rooted phones. In detail, since we rooted the phones
throughMagisk, we could install the Frida server on them using aMagisk plugin. After this set
up, we could test if the API of the permission were triggered through a Javascript script that
can be executed during the runtime of the application. This process seemed reasonable since
this way we could see if third party applications could trigger privileged API.

34

7
Implementation

In this section, we will present the actual implementation of the research. The process is the
same as the one presented in the ”Design” chapter. In section 4.1 we will present our prelimi-
nary analysis, what are the applications gathered and the tools used for the comparison. Then
in section 4.2 we will present our study on privileged permission, a new static analysis consid-
ering those permissions, and to conclude, our dynamic instrumentation of applications.

7.1 Preliminary analysis

As mentioned in the previous chapter, in our preliminary analysis we started gathering the ap-
plications to analyze. First, we started collecting the system applications from a personal phone,
a Xiaomi Redmi Note 7 with Android 10, and then we collected the third party applications
from online sources as ApkMirror, ApkCombo, ApkPure. In the end, our data set consisted
of 10 applications: Music, Weather, Mi Browser, ShareMe and Calendar, Mi Video, Mi Store,
Mi Community, Mi Remote, and Files. On these applications, we started to execute our static
analysis.

7.1.1 Static Analysis

For every applicationwe analyzed the thirdparty app and the correspondent systemapp through
a set of open source tools specific for static analysis of android applications. The set of tools

35

consisted of: Androwarn, Maldrolyzer, RiskInDroid, SUPER, StaCoAn, Quark-Engine, Ap-
kLeaks, ApkAnalyzer, Jadx.

Manifest and Source Code

Androwarn, SUPER, StaCoAn, Quark Engine and ApkLeaks are tools that focus on the anal-
ysis of the source code of the applications while ApkAnalyzer and RiskInDroid are tools that
analyze themanifest of an android application. In particular, RiskInDroid attributes a risk fac-
tor to the application.
With applications that have matching version we haven’t found differences, if not on the sig-
nature of the apk. Instead, with applications that have a different version, the tools found
discrepancies in both manifest and source code.

7.2 Privileged permissions Analysis

After this first preliminary analysis with no results, we moved on to the analysis of privileged
permissions. The process for the discovery of these permissions has been explained in Chapter
4. For the privileged permission our dataset shortens, because on the file xml we found only
five applications out of the 10 in our initial dataset, the apps are: Music, Weather, Mi Browser,
ShareMe, andCalendar. The system appswere taken from a rootedXiaomi 9Awhile the third
party applications were downloaded from a Samsung phone, not all the applications where
available only ShareMe, MiBrowser and Calendar. We proceeded with a full analysis on these
applications.

7.2.1 Static Analysis

For the static analysis we first decided to focus on the manifest analysis of the apps, checking if
the privileged permissions were present in both the system app and the third-party app.

Manifest

For the manifest analysis, we used Apkanalyzer and RiskInDroid. The three apps that we ana-
lyzed had all the correspondent versions, so the results could be trusted.

36

Permission APIs

After having found the privileged permissions in both the third-party app and the system app,
we needed to connect these permissions to their APIs. To this end we consulted the AOSP and
third-party tools like PScout, eventually as a cross-check for the correctness of the mapping we
used a temporary application programmed in Android Studio. In the end, we used Jadx to
check for calls of these Apis in the applications.

7.2.2 Dynamic Analysis

After the static analysis, we proceededwith the dynamic analysis of the applications. Wemanu-
ally tested the applications on the rooted phones for differences in behavior. The test consisted
of trying the system applications in all of their features and checking for the same behavior in
the third-party app.

Dynamic instrumentation through Frida

Using Frida, we created a script that can test whether the application having privileged permis-
sion can actually call an API during its execution. If the application does not have the right
privileges, meaning the XML file and the install in the correct partition, it will crash. The
scripts functions in the following way, it first hooks the android log class and the interested
class that has the API call we want to execute. In our case we need to generate a new Telepho-
nyManager object; since it is not used in the application, we cannot hook it. The permission
READ_PRIVILEGED_PHONE_STATEallows for the call toTelephonyManager.getImei(),
so we’re rewriting the code forcing the system app to call that method. If the application has
the right privileges and permission, the phone Imei gets logged on the computer terminal, oth-
erwise the application running crashes.

37

Listing 7.1: JavaScript code injected into the applications

Java.perform(function () {
var Log = Java.use("android.util.Log");
var TelephonyManager = Java.use("android.telephony.TelephonyManager");

Log.w.overload('java.lang.String', 'java.lang.String').implementation =
function(tag, msg) {
console.warn("\nInside Log.w");
console.log("Log.w tag: " + tag);
console.log("Log.w msg: " + msg);
var TelephonyManagerObject = TelephonyManager.$new();
var Imei = TelephonyManagerObject.getImei();

console.log("TelephonyManagerObject.getImei retval " + Imei);
var retval = this.w(tag, msg);
console.log("Log.w retval: " + retval);
return retval;

}

});

38

8
Results

As mentioned in the Desing and Implementation chapter, the results found in this analysis
were not very significative. In the first preliminary analysis the applications that were on the
same version had no difference in the code. The applications with different versions had lit-
tle differences but it is impossible to establish if this is due to the provenience of the applica-
tion or the application’s version. In the second analysis where we restricted the dataset but

Table 8.1: The table shows differences found in the Weather application, the versions do not match

Tool System Play Store
G-12.3.6.8 Xiaomi Version G.12.3.6.3 Samsung Version

Androwarn Telephony Identifiers leakage More Less
Device Settings Harvesting Various differences Various differences
Fingerprint Various differences Various differences
Receivers Rest is equal com.google.firebase.iid.FirebaseInstanceIdReceiver
Provider com.miui.bugreport.logprovider.DumpLogProvider Rest is equal
Permissions Asked android.permission.ACCESS_WIFI_STATE Not asked

Not asked com.google.android.c2dm.permission.RECEIVE
com.miui.bugreport.permission.DUMP_CACHED_LOG Not asked

Permission Implied android.permission.READ_EXTERNAL_STORAGE android.permission.READ_EXTERNAL_STORAGE
Libraries com.miui.system Rest is equal
Intents Sent Rest is equal Ljava/lang/String

Rest is equal Ljava/lang/StringBuilder;->toString()Ljava/lang/String
Maldrolyzer No malaware No malaware
Riskindroid Higher risk Lower risk (Difference is only of 1 unit)
SUPER 2x Rooted device detection CommonUtils.java (613, 616) 2x Rooted device detection CommonUtils.java (877, 880)

3xWeak AlgorithmUtil.java (272, 289, 302) 1xWeak Algorithm zzt.java (70)
Overall more low criticality vulnerabulities and warnings

Stacoan 525 instances with keys written in plain sight 525 instances with keys written in plain sight
Quark-Engine Various differences Various differences
Apkleaks Similar Similar

added the dynamic instrumentation, we have not found differences in the code or manifest.
Both the system apps and the apps obtained from Google Play had matching versions and

39

both had the same manifest with the privileged permissions and no difference in the source
code. What we found interesting was that even if the application is downloaded from the Play
store it had privileged permissions. To check if the privileged permission can be effectively
used by a third-party app, we proceeded with the dynamic instrumentation. Through Frida,
we tested if the applications, both system and third party, can invoke an API connected to
a privileged permission that has been found on the manifest. The permission in question is
READ_PRIVILEGED_PHONE_STATE and the API associated with it is getImei() from
the TelephonyManager class. When the script is executed through Frida in the system applica-
tion, nothing happens, whichmeans that the application has the privileges to execute this API.
When instead the script is executed on a third party app, the applications crashes and an error
is thrown, meaning the app does not have the privileges to execute the API call.
What we presume is that since the system app is installed in the correct partition and has an xml
file with the specified privileged permission, it is able to execute the interested APIs. On the
other hand, the third party application is installed under the data partition and has no xml file
with permission specified, so it is not able to execute the privileged APIs. We can deduce that
the third-party applications are basically copies of the system applications and they also have
permissions on the manifest that are not used.

40

9
Conclusion

In conclusion, what we can say about the analysis is that the third-party applications are not
different from the system applications. They have the same privileged permissions and do not
use privileged APIs to execute dangerous actions that can harm the user. Moreover, privilege
escalation attacks or confused deputy attacks should not be possible because the third-party
application gets installed under the /data partition. If the third party application gets installed
under the /system/priv-app partition and it has a set of permissions granted by the xml file
under /system/etc/permissions it could be possible for the application to behave like a system
application.

41

42

References

[1] “Android open source project.” [Online]. Available: https://source.android.com/

[2] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and N. Vallina-Rodriguez, “An
analysis of pre-installed android software.”

[3] M. Elsabagh, R. Johnson, A. Stavrou, C. Zuo, Q. Zhao, and Z. Lin, “Firmscope: Auto-
matic uncovering of privilege-escalation vulnerabilities in pre-installed apps in android
firmware.”

[4] “Xiaomi devices found tracking and recording browsing data
of millions.” [Online]. Available: https : / /malwaretips . com / threads /
xiaomi-devices-found-tracking-and-recording-browsing-data-of-millions.100533/

[5] “[update: Toggle to opt-out] xiaomi devices found tracking and record-
ing browsing data of millions.” [Online]. Available: https://fossbytes.com/
xiaomi-devices-found-tracking-and-recording-browsing-data-of-millions/

[6] “Xiaomi bug bounty policy.” [Online]. Available: https://hackerone.com/xiaomi?
type=team

[7] “Xiaomi privacy policy.” [Online]. Available: https://privacy.mi.com/all/en_IN/

[8] “Why google should stop logging contact-tracing data.” [On-
line]. Available: https : / / blog . appcensus . io / 2021 / 04 / 27 /
why-google-should-stop-logging-contact-tracing-data/

[9] “Apkmirror, free and safe android apk downloads.” [Online]. Available: https:
//www.apkmirror.com/

[10] “Apkpure.” [Online]. Available: https://m.apkpure.com/it/

[11] “Androwarn, yet another static code analyzer for malicious android applications.”
[Online]. Available: https://github.com/maaaaz/androwarn

43

https://source.android.com/
https://malwaretips.com/threads/xiaomi-devices-found-tracking-and-recording-browsing-data-of-millions.100533/
https://malwaretips.com/threads/xiaomi-devices-found-tracking-and-recording-browsing-data-of-millions.100533/
https://fossbytes.com/xiaomi-devices-found-tracking-and-recording-browsing-data-of-millions/
https://fossbytes.com/xiaomi-devices-found-tracking-and-recording-browsing-data-of-millions/
https://hackerone.com/xiaomi?type=team
https://hackerone.com/xiaomi?type=team
https://privacy.mi.com/all/en_IN/
https://blog.appcensus.io/2021/04/27/why-google-should-stop-logging-contact-tracing-data/
https://blog.appcensus.io/2021/04/27/why-google-should-stop-logging-contact-tracing-data/
https://www.apkmirror.com/
https://www.apkmirror.com/
https://m.apkpure.com/it/
https://github.com/maaaaz/androwarn

[12] “Maldrolyzer, simple framework to extract ”actionable” data from android malware
(c&cs, phone numbers etc.).” [Online]. Available: https://github.com/maldroid/
maldrolyzer

[13] “Riskindroid, a tool for quantitative risk analysis of android applications based on ma-
chine learning techniques.” [Online]. Available: https://github.com/ClaudiuGeorgiu/
RiskInDroid

[14] “Secure, unified, powerful and extensible rust android analyzer.” [Online]. Available:
https://github.com/SUPERAndroidAnalyzer/super

[15] “Stacoan, a crossplatform tool which aids developers, bugbounty hunters and ethical
hackers performing static code analysis on mobile applications.” [Online]. Available:
https://github.com/SUPERAndroidAnalyzer/super

[16] “Quark-engine, an obfuscation-neglect android malware scoring system.” [Online].
Available: https://github.com/quark-engine/quark-engine

[17] “Apkleaks, scanning apk file for uris, endpoints & secrets.” [Online]. Available:
https://github.com/dwisiswant0/apkleaks

[18] “Frida, a world-class dynamic instrumentation framework.” [Online]. Available:
https://frida.re/docs/android/

[19] “Privileged permission allowlisting.” [Online]. Available: https://source.android.com/
docs/core/config/perms-allowlist?hl=en

44

https://github.com/maldroid/maldrolyzer
https://github.com/maldroid/maldrolyzer
https://github.com/ClaudiuGeorgiu/RiskInDroid
https://github.com/ClaudiuGeorgiu/RiskInDroid
https://github.com/SUPERAndroidAnalyzer/super
https://github.com/SUPERAndroidAnalyzer/super
https://github.com/quark-engine/quark-engine
https://github.com/dwisiswant0/apkleaks
https://frida.re/docs/android/
https://source.android.com/docs/core/config/perms-allowlist?hl=en
https://source.android.com/docs/core/config/perms-allowlist?hl=en

Acknowledgments

I would like to thank my family and friends who supported me throughout my life.

45

	Abstract
	List of figures
	Listing of acronyms
	Introduction
	Background
	Android Architecture
	Linux Kernel
	Hardware Abstraction Layer
	Android Runtime
	Native C/C++ libraries
	Java API Framework
	System Applications

	Android Applications
	Applications components

	Android Manifest
	Android Permissions and Security
	Install-Time permissions
	Run-Time permissions

	Permission Usage
	Protection Level

	Related Works
	Analysis of Pre-Installed Android Software
	FirmScope
	User's data collection articles
	Xiaomi Devices Tracking
	Xiaomi Bug Bounty Program
	Xiaomi Privacy Policy
	Logging Contact-Tracing Data

	Dataset Collection
	Xiaomi Phones
	Applications Collection
	Related Obstacles

	Tools employed
	Androwarn
	Maldrolyzer
	RiskinDroid
	SUPER
	StaCoAn
	Quark Engine
	Apkleaks
	Frida

	Design
	Preliminary analysis
	Static Analysis

	Privileged Permissions Discovery
	Static Analysis
	Dynamic Analysis

	Implementation
	Preliminary analysis
	Static Analysis

	Privileged permissions Analysis
	Static Analysis
	Dynamic Analysis

	Results
	Conclusion
	References
	Acknowledgments

