

UNIVERSITÀ DEGLI STUDI DI PADOVA Dipartimento di Biomedicina Comparata ed Alimentazione Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente

Corso di Laurea Magistrale in Biotecnologie per l'Alimentazione

Fusariosi della spiga: caratterizzazione per la resistenza in genotipi di frumento tenero e duro

Relatore: Prof. Alessandro Vannozzi Correlatore: Dott. Stefano Ravaglia Laureanda: Francesca Caredda Matricola: 2040581

ANNO ACCADEMICO 2022/2023

Sommario

RIA	ASSU	NTO)	1				
AB	STRA	ACT		3				
1. INTRO		ROI	DUZIONE	5				
1	.1	Fru	Frumento					
1	.2	Fus	ariosi della spiga	. 8				
	1.2.1	1	Diffusione globale: epidemie e impatti economici	9				
1.2.2		2	Ciclo vitale di Fusarium spp.	11				
1.2.3		3	Ciclo infettivo di <i>Fusarium</i> spp	13				
1	.3	Sint	omi e segni della malattia	14				
1	.4	Mic	otossine prodotte da <i>Fusarium</i>	16				
1	.5	Stra	ntegie di controllo e resistenza al <i>Fusarium</i>	19				
	1.5.1	1	Tipi di resistenza	21				
	1.5.2	2	Fonti di resistenza	23				
	1.5.	3	Geni di resistenza	24				
2.	SCO	OPO	DELLA TESI	27				
3.	MA	TER	IALI E METODI	28				
3	.1	Mat	teriale vegetale	28				
3	.2	Inoc	culazione <i>Fusarium</i>	29				
	3.2.1	1	Inoculo	29				
	3.2.2	2	Distribuzione inoculo	29				
3	.3	Car	atterizzazione fenotipica	30				
3.3.1		1	Rilievi fenotipici in campo: incidenza e severità	30				
	3.3.2	2	Rilievi fenotipici post-raccolta: semi fusariati	32				
	3.3.3	3	Analisi statistica	33				
3	.4	Car	atterizzazione genotipica	33				
	3.4.1	1	Ricerca bibliografica di marcatori KASP	33				
	3.4.2	2	Sviluppo panel Agriseq-IonS5	34				
	3.4.3	3	Campionamento del materiale vegetale per estrazione DNA	35				
4.	RIS	ULT	ATI E DISCUSSIONE	36				
4	.1	Resi	istenza e suscettibilità dei genotipi al FHB secondo le analisi fenotipiche	37				
4	.2	Mai	rcatori e sequenze individuate per la genotipizzazione mediante Agriseq-IonS5	47				
5.	CO	NCL	USIONI	51				
BIE	BIBLIOGRAFIA							
AL	LEG	ATI.		67				

RIASSUNTO

La fusariosi della spiga, o *Fusarium head blight* (FHB), è un importante malattia dei cereali e in particolare del frumento, che risulta essere uno dei cereali più colpiti. Questa malattia, oltre a causare importanti perdite produttive ed economiche, rappresenta un problema per la salute dell'uomo e degli animali a causa della produzione di micotossine dannose. La lotta al FHB risulta quindi di fondamentale importanza, in particolare negli ultimi anni, a causa dell'aumento dell'incidenza della malattia dovuto ai cambiamenti climatici. Tra le strategie di controllo risulta particolarmente efficiente e vantaggioso l'utilizzo di genotipi di frumento resistenti.

La presente ricerca si è quindi focalizzata sulla caratterizzazione di un'ampia popolazione di frumento, sia tenero che duro, per l'individuazione di genotipi resistenti al FHB. Per la caratterizzazione di questi genotipi è stato applicato un duplice approccio, sia da un punto di vista fenotipico, sia da un punto di vista genotipico. Sono state condotte analisi fenotipiche per valutare l'incidenza e la gravità della malattia e analisi visive dei semi per ciascun genotipo. È stata inoltre condotta una approfondita ricerca bibliografica, grazie alla quale è stato possibile identificare più di 100 marcatori molecolari utili sia per la resistenza al FHB, sia per la resistenza alla ruggine, un'altra malattia importante nel frumento, che per altri caratteri di interesse agronomico. Questi marcatori verranno utilizzati per lo sviluppo di un panel Agriseq-IonS5 per la genotipizzazione della popolazione di frumento oggetto di studio.

Dall'elaborazione dei dati ottenuti dalle analisi fenotipiche è emersa una notevole variabilità tra i genotipi di frumento tenero, rendendo così possibile l'individuazione dei genotipi più resistenti alla malattia.

I risultati ottenuti durante questo studio rappresentano quindi una base per futuri programmi di miglioramento genetico e potranno contribuire allo sviluppo di nuove varietà di frumento resistenti.

ABSTRACT

Fusarium head blight (FHB) is an important disease of cereals, particularly wheat, which is one of the most severely affected cereals. In addition to causing significant production and economic losses, it is a human and animal health problem due to the production of harmful mycotoxins. Control of FHB is therefore of paramount importance, particularly in recent years due to the increased incidence of the disease as a result of climate change. Among the control strategies, the use of resistant wheat genotypes appears to be particularly efficient and advantageous.

Therefore, the present research focused on the characterisation of a large population of wheat, both common and durum, for the identification of FHB resistant genotypes. A twopronged approach was used to characterise these genotypes, both from a phenotypic and genotypic point of view. Phenotypic analyses were carried out to assess the incidence and severity of the disease, and visual analyses of the seed were carried out for each genotype. An extensive literature search was also carried out, identifying more than 100 molecular markers useful for resistance to FHB, resistance to rust, another important disease in wheat, and for traits of quality and agronomic interest. These markers will be used in the development of an Agriseq-IonS5 panel for genotypic analyses revealed considerable variability among the common wheat genotypes, making it possible to identify the most disease-resistant genotypes.

The results of this study therefore provide a basis for future breeding programmes and may contribute to the development of new resistant wheat varieties.

1. INTRODUZIONE

1.1 Frumento

Figura 1: Campo di frumento

Il frumento, o grano, (*Triticum spp.*) è una delle colture cerealicole più importanti al mondo in quanto è uno dei cereali più coltivati. Rappresenta una componente essenziale della dieta umana ed è utilizzato nella produzione di una vasta gamma di alimenti costituendo l'alimento base per il 35% della popolazione mondiale (Sun C. et al., 2020). È la seconda coltura più coltivata al mondo dopo il mais con una produzione di circa 734 milioni di tonnellate all'anno (FAO, 2019).

Il frumento è un cereale di antica coltura, sviluppato originariamente nella regione conosciuta come la

Mezzaluna Fertile, circa 10.000 anni fa. Da allora, si è poi diffuso in tutte le parti del mondo, grazie principalmente alle sue notevoli qualità nutritive e alla sua capacità di adattarsi a una vasta gamma di climi e suoli. Nel corso dei millenni, le diverse comunità umane hanno sviluppato le specie di frumento attualmente coltivate a partire dalla forma più primitiva selezionando le caratteristiche desiderabili (de Sousa T. et al., 2021).

Il frumento appartiene al genere *Triticum*, compreso nella famiglia delle *Graminacee* (o *Poaceae*), della quale fanno parte anche molte altre piante coltivate come, per esempio, il mais, l'orzo, il riso e la segale, detti comunemente cereali (Germoglioverde, 2023). Si possono distinguere due principali specie di frumento: il frumento tenero (*Triticum aestivum L.*), una specie esaploide solitamente chiamata frumento "comune" o "da pane", e il frumento duro (*Triticum turgidum L.ssp. durum* (Desf.) Husn.), una specie tetraploide adattata alle condizioni calde e secche ed indicato spesso come "grano per pasta" o "grano duro" (Durante M. et al., 2012; Shewry R. e Hey J., 2015). Altre specie di frumento sono coltivate solo su piccole aree, sia per motivi culturali che per il mercato in espansione degli alimenti salutari, e sono: *Triticum monococcum* o farro piccolo, *Triticum dicoccum* o farro medio e *Triticum spelta* o farro grande (Shewry R. e Hey J., 2015; www.ncbi.nlm.nih.gov).

Oggigiorno, circa il 95% del frumento coltivato nel mondo è frumento tenero, utilizzato principalmente come farina integrale e farina raffinata per la fabbricazione di un'ampia varietà di prodotti da forno come pane e biscotti. Il restante 5% è costituito da frumento duro utilizzato per produrre la semola, impiegata a sua volta per la produzione della pasta. Il frumento può anche essere utilizzato, previa fermentazione, per produrre birra e altre bevande alcoliche. Inoltre, i sottoprodotti ottenuti come risultato del processo di lavorazione del frumento possono essere utilizzati per l'alimentazione degli animali da reddito (de Sousa T. et al., 2021; Durante M. et al., 2012).

Il frumento è un cereale altamente nutriente e costituisce una parte essenziale della dieta umana, oltre ad essere un'importante fonte di carboidrati sotto forma di amido, i suoi semi forniscono anche un'ottima fonte di proteine. Oltre alla loro importanza nutrizionale, le proteine del cereale influenzano anche l'utilizzo del frumento nella lavorazione degli alimenti. Le proteine dell'endosperma del frumento, chiamate prolamine, possono essere suddivise in gliadine e glutenine in base alle loro proprietà di polimerizzazione e rappresentano i componenti principali del glutine nella farina di frumento. Il contenuto di glutenina e gliadina della farina determinano l'elasticità e l'estensibilità dell'impasto che sono le caratteristiche fondamentali della panificazione. Uno dei principali vantaggi del frumento è appunto la capacità unica degli impasti di essere trasformati in diversi tipi di pane e altri prodotti da forno, pasta e altri alimenti trasformati. Inoltre, il frumento è una buona fonte di fibre alimentari, vitamine del gruppo B e minerali come ferro, zinco e magnesio. (Shewry R. e Hey J., 2015; de Sousa T. et al., 2021)

Il frumento è una coltura ad alto rendimento, caratterizzata da una facile conservazione e una notevole adattabilità a diversi climi, in grado di crescere nelle regioni temperate, mediterranee e subtropicali dei due emisferi. Nel corso degli ultimi decenni, la produzione mondiale di frumento ha sperimentato un costante aumento. Questo notevole incremento è stato stimolato principalmente dallo sviluppo di varietà di frumento più produttive, dai miglioramenti nelle pratiche agronomiche e dall'adozione di tecnologie moderne. I primi cinque produttori di frumento sono Cina, India, Russia, USA e Francia (De Sousa T. et al., 2021). La Figura 2 mostra la produzione mondiale di frumento evidenziando i cinque principali produttori mondiali.

Figura 2: Produzione totale (in MT) dei cinque principali produttori mondiali di frumento dell'anno 2018. FAOSTAT (De Sousa T. et al., 2021).

La Cina è quindi il più grande produttore di frumento al mondo con un volume di produzione di 131.696.392 tonnellate all'anno seguita dall'India, seconda con 93.500.000 tonnellate di produzione annuale. L'Italia è invece collocata al diciannovesimo posto con una produzione annuale di 8.037.872 tonnellate (Atlasbig, 2023), ma è leader nella produzione del solo frumento duro, insieme a Turchia e Canada. Tra il 2009 e il 2018, quasi il 50% del frumento duro prodotto in Europa, pari a una media annuale di 4,2 MT, è stato prodotto in Italia (Eurostat, 2019; Focker M. et al., 2021). Il frumento duro è la principale coltura in Italia per superficie coltivata su circa 1,3 milioni di ettari, pur rappresentando solo il 20% della produzione cerealicola e il 2% del Prodotto Interno Lordo (PIL) del settore agricolo. La coltivazione del frumento duro è prevalentemente concentrata nella parte meridionale della penisola e nelle isole, con la Puglia e la Sicilia che insieme rappresentano circa il 50% dell'area totale dedicata a questa coltura (Porceddu E. e Blanco A., 2014).

L'alta adattabilità del frumento a diverse condizioni climatiche è attribuibile alla sua vasta diversità genetica. Ad esempio, esistono più di 25.000 varietà di *Triticum aestivum L.* adattate a diversi ambienti temperati e il panorama varietale continua a crescere costantemente, infatti, ogni anno vengono iscritte diverse nuove cultivar al "Registro delle varietà Italiano" o nel "Catalogo comune delle varietà" dell'Unione Europea (Piani G., 2019).

Le varietà che conosciamo oggi sono il risultato di un lungo processo di miglioramento genetico che ha concentrato sforzi nello sviluppare nuove varietà di frumento con caratteristiche specifiche, come maggiore resa produttiva e qualità superiore per la panificazione. Inoltre, le varietà moderne sono caratterizzate da uniformità genetica e adattamento all'agricoltura convenzionale. La selezione di nuove varietà viene effettuata mediante caratterizzazioni fenotipiche e/o genotipiche per individuare i genotipi più promettenti per soddisfare le esigenze degli agricoltori, dell'industria di trasformazione e dei consumatori. Tuttavia, nonostante le moderne varietà di frumento abbiano un potenziale produttivo più elevato, presentano alcuni svantaggi rispetto alle vecchie varietà. In particolare, queste nuove varietà mostrano una minore tolleranza agli stress abiotici e biotici, come siccità, caldo, freddo, salinità, inquinamento, carenza di nutrienti del suolo, malattie e parassiti come, ad esempio il *Fusarium*, responsabile della cosiddetta fusariosi della spiga o *Fusarium head blight* (De Sousa T. et al., 2021).

1.2 Fusariosi della spiga

La fusariosi della spiga o Fusarium Head Blight (FHB), noto anche come ticchiolatura (scab), è una delle malattie dei cereali più importanti al mondo, causata da diverse specie di funghi del genere Fusarium. Colpisce principalmente frumento, orzo, avena e mais, ma può colpire anche specie erbacee selvatiche e addomesticate (Bayer Crop Science, 2019). Colpisce sia il frumento duro sia il frumento tenero e rappresenta una sfida per i coltivatori di frumento di tutto il mondo (Bentivenga G. et al., 2021). Il FHB colpisce le spighe e provoca gravi perdite economiche, può avere un forte impatto sulla produzione con una diminuzione della resa tra il 30 e il 70%, e può compromettere la sicurezza alimentare a causa della produzione di micotossine dannose per la salute umana e animale (Parry D. et al., 1995). Oltre alla produzione delle micotossine, i danni causati dal FHB sono molteplici, come chicchi scoloriti e avvizziti e riduzione del peso specifico dei chicchi (Rossi V. et al., 2022). Inoltre, è responsabile della riduzione delle caratteristiche di qualità del seme, come i livelli proteici inferiori, il colore della semola e la diminuzione della germinabilità e del vigore dei semi (Prodi A. et al., 2009; Bugiani R., 2013). Le perdite economiche causate dal FHB sono attribuibili, oltre che alla diminuzione della resa dei raccolti e della riduzione del valore commerciale dei cereali, anche all'aumento dei costi di

produzione associati a pratiche di gestione e controllo della malattia. Inoltre, le restrizioni commerciali e le normative sulla sicurezza alimentare influiscono negativamente sulle entrate degli agricoltori poiché possono limitare le esportazioni di cereali da regioni colpite dal FHB, causando un impatto significativo sul commercio internazionale (McMullen M. et al., 1997).

Il complesso delle specie FHB comprende più di 16 specie tra cui: *F. chlamydosporum*, *F. boothii*, *F. scirpi*, *F. arthrosporioides*, *F. poae*, *F. avenaceum*, *F. culmorum*, *F. graminearum*, *F. verticillioides*, *F. asiaticum* e *F. cortaderiae* (Powell A.J. et al., 2021; Dweba C.C. et al., 2017). Sebbene un elevato numero di *Fusarium* spp. siano associati al FHB, *F. graminearum* (teleomorfo *Gibberella zeae*) è globalmente considerato l'agente causale più importante della malattia a causa della sua elevata aggressività e incidenza (Powell A.J. et al., 2021). Altre specie predominanti che causano questa malattia includono *F. culmorum* e *F. avenaceum* (teleomorfo *Gibberella avenacea*) (Haile J.K. et al., 2019).

1.2.1 Diffusione globale: epidemie e impatti economici

Fusarium head blight è stato descritto per la prima volta come una grave minaccia per il frumento e l'orzo in Inghilterra nel 1884. Da allora, numerose epidemie sono state segnalate in tutto il mondo, con costi da milioni a miliardi di dollari USA in alcune parti del mondo, inclusi gli Stati Uniti (Dweba C.C. et al., 2017). Le prime notizie di infezione dal FHB negli Stati Uniti risalgono al 1890, quando la diffusione della malattia si verificò in Delaware, Indiana e Ohio. In seguito, la malattia è stata segnalata in tutte le aree cerealicole degli Stati Uniti. Negli anni '80 e '90 si sono verificati frequenti focolai nelle aree caratterizzate da un'elevata umidità e da una diffusa coltivazione di mais (Zhu Z. et al., 2019). Nganje W. et al. (2004) hanno condotto un'analisi economica delle perdite attribuibili al FHB nel periodo 1993-2001, per nove Stati delle Grandi Pianure settentrionali e degli Stati Uniti centrali (Illi-nois, Indiana, Kentucky, Michigan, Missouri, Minnesota, Ohio, South Dakota e North Dakota) e hanno stimato che le perdite economiche dirette e secondarie tra il 1993 e il 2001 sono state pari a 7,67 miliardi di dollari, di cui 2,59 miliardi (29,9%) nel periodo 1998-2001. Dal 2000, il FHB è stato più frequente e grave nella maggior parte delle regioni coltivate delle Grandi Pianure e si è

diffuso in altre regioni come l'Oklahoma e il Montana, dove il FHB non era mai stato osservato prima (Zhu Z. et al., 2019).

La prima segnalazione di FHB in Canada risale al 1919. Dal 1927 al 1980, le epidemie sono state sporadiche e in gran parte limitate a Ontario, Quebec e Manitoba e la prima epidemia diffusa di FHB registrata in Canada si è verificata nel 1980. Da allora, la malattia si è manifestata frequentemente nel Canada orientale ed è diventata un problema serio nella parte occidentale, in particolare nel Manitoba a partire dal 1993. L'epidemia di FHB del 2014 ha causato significative perdite di resa nel Saskatchewan, la più grande provincia produttrice di frumento del Canada, dove il FHB non era mai stato un problema in precedenza (Zhu Z. et al., 2019).

In Cina, il FHB è stato storicamente diffuso ma non è stato registrato ufficialmente fino al 1936, quando si è verificata un'epidemia nella Cina meridionale. Nella seconda metà del secolo scorso si sono verificate sette epidemie gravi e 14 epidemie medie. La frequenza e la gravità delle epidemie di FHB sono aumentate in modo significativo negli ultimi anni e attualmente la superficie media infetta supera i 5,3 Mha all'anno. L'epidemia del 2012 è stata la più diffusa, con il FHB che si è manifestato in circa 9,9 Mha, comprese le valli dei fiumi Yellow e Huai, la principale area di produzione di frumento in Cina, dove il FHB non era precedentemente endemico (Zhu Z. et al., 2019).

Il FHB è una preoccupazione crescente anche in Europa: ad esempio, la crescente domanda di prodotti derivati dal frumento duro ha portato a un'espansione dell'area di coltivazione del frumento duro, dalle regioni di coltivazione tipicamente calde e secche del Mediterraneo alle regioni più umide e piovose dell'Europa centrale e occidentale. Questo ha intensificato il rischio di incidenza di FHB sul frumento duro in quanto condizioni umide e calde favoriscono lo sviluppo di *Fusarium* (Khan M.K. et al., 2020; Haile J.K. et al., 2019). In generale, l'incidenza di FHB, sia su frumento duro che tenero, è bassa nelle regioni più meridionali dell'Italia e della Spagna; tuttavia, nelle regioni più settentrionali dell'Italia, della Spagna e del Portogallo, della Francia meridionale e dell'intera penisola balcanica, *F. graminearum* è segnalato frequentemente sui cereali a maturità. Nell'ultimo decennio è stato segnalato un aumento di *F. graminearum* in alcune aree dell'Europa centrale e settentrionale. All'inizio del 2000 *F. graminearum* divenne la specie di *Fusarium* più abbondante sul frumento nei Paesi Bassi e lo stesso è stato osservato nel Regno Unito. Inoltre, anche nei climi temperati più freschi di aree europee come la Germania *F.*

graminearum è diventata la specie dominante nell'ultimo decennio, perché le temperature più elevate favoriscono il suo predominio nel complesso FHB. Anche in tutte le regioni della Polonia, comprese le aree settentrionali, è stato osservato un aumento significativo della frequenza di *F. graminearum* (Moretti A. et al., 2019).

L'ultimo decennio è stato testimone di gravi epidemie di FHB in tutto il mondo, che hanno causato significative perdite economiche nelle colture di cereali a livello globale (Dweba C.C. et al., 2017). Questa malattia è ora endemica in alcune parti dell'Africa, dell'Asia, principalmente della Cina, dell'Europa, del Sud e del Nord America, portando a gravi epidemie (Powell A.J. et al., 2021). L'espansione e la crescita di importanza di questa malattia è probabilmente dovuta a molteplici fattori, tra cui l'adozione di pratiche di lavorazione conservative, l'espansione della produzione di mais, la dinamica delle popolazioni di agenti patogeni e la variabilità climatica (Haile J.K. et al., 2019). Inoltre, un ulteriore fattore importante a favore dello sviluppo di FHB è l'attuale riscaldamento globale associato all'aumento delle temperature, è quindi probabile che nel prossimo futuro si verifichino sempre più spesso gravi epidemie di FHB, in particolare, in condizioni di elevata umidità (Dweba C.C. et al., 2017).

1.2.2 Ciclo vitale di *Fusarium* spp.

Il ciclo di vita generalizzato di *Fusarium* spp. consiste in fasi sia sessuali che asessuate e in entrambi gli stadi di sviluppo si formano strutture miceliali aploidi (Ma L.-J. et al., 2013; Khan M.K. et al., 2020). Alcune specie di *Fusarium* producono spore meiotiche (sessuali) e spore mitotiche (asessuate): le spore asessuali sono chiamate macroconidi, mentre le spore sessuali sono chiamate ascospore (Khan M.K. et al., 2020). Durante il ciclo di vita asessuato, le strutture miceliali producono tre tipi di spore mitotiche, ovvero microconidi prodotti da conidiofori, macroconidi prodotti da sporodochi e clamidospore prodotte su e all'interno di ife e macroconidi (Dweba C.C. et al., 2017). Tuttavia, non tutti i tipi di spore sono noti per essere prodotti da tutte le specie, e meno del 20% delle specie di *Fusarium* ha un ciclo sessuale noto (Ma L.-J. et al., 2013). Per quanto riguarda *Fusarium graminearum*, l'anamorfo (stadio asessuato) e il teleomorfo (stadio sessuale) di questo patogeno sono rispettivamente *F. graminearum* e *Gibberella zeae*. Generalmente *F. graminearum* è aploide durante il suo ciclo di vita. È un emibiotropo che trascorre il suo ciclo asessuato sui

detriti delle colture infestate e il suo ciclo sessuale sui tessuti viventi del frumento, presentando una breve fase biotrofica che precede il necrotrofismo (Khan M.K. et al., 2020; Gunupuru L.R. et al. 2017). I macroconidi formati sulle ife, chiamati sporodochia, si sviluppano su residui colturali infetti in condizioni umide e sono in gran parte responsabili della dispersione a breve distanza, mentre il ciclo di vita sessuale è innescato da condizioni calde e umide. In quanto ascomicota, il suo ciclo di vita sessuale consiste in una fase dicariota prolungata che è omotallica nella quale ogni cellula contiene due nuclei aploidi parentali che sono geneticamente simili (Khan M.K. et al., 2020; Ma L.-J. et al., 2013). Queste cellule dicariotiche producono cellule a spirale, che portano alla formazione di periteci pieni di aschi. Questi aschi sono costituiti da ascospore (spore prodotte sessualmente) che vengono rilasciate all'esterno attraverso la bocca del peritecio e rappresentano il principale inoculo dell'infezione (Khan M.K. et al., 2020).

K Annu. Rev. Microbiol. 67:399–416

Figura 3: Ciclo di vita generalizzato di *Fusarium spp.* L'organismo cresce come una colonia aploide di ife, ad eccezione di brevi stadi dicariotici e diploidi che precedono la meiosi e la produzione di spore aploidi prodotte sessualmente (ascospore). Le ascospore sono prodotte in un sacco (*ascus*) contenuto all'interno del peritecio (*perithecium*). Le specie omotalliche sono in grado di autofecondarsi, producendo una progenie di ascospore clonali (apomissi); le specie eterotalliche sono autosterili. Possono essere prodotte tre forme principali di spore mitotiche, a seconda della specie: microconidi, macroconidi e clamidiospore. Sono indicate le specie con sequenze genomiche complete che possiedono ogni stadio di spore. Abbreviazioni: Fg, *F. graminearum*; Fol, *F. oxysporum* f. sp. licopersici; Fp, *F. pseudograminearum*; Fs, *F. 'solani '* f. sp. pisi; Fv, *F. verticillioides* (Ma L.-J. et al. 2013).

1.2.3 Ciclo infettivo di *Fusarium* spp.

Il ciclo infettivo del *Fusarium* nel frumento è un processo complesso e influenzato da molteplici fattori. Il ciclo inizia con la presenza di spore fungine (macroconidi) nei residui vegetali e nel suolo, provenienti da colture infette precedenti o da altre fonti, soprattutto grazie al fatto che *Fusarium* è in grado di sopravvivere sui residui colturali infetti da una stagione all'altra (Bayer Crop Science, 2019). Le spore vengono disperse dalla pioggia o diffuse dal vento, depositandosi sulle spighe del frumento. Quando le condizioni ambientali sono favorevoli, come umidità e temperature moderate, le spore germinano e riescono a infettare le spighe sensibili, entrando nelle piante attraverso i tessuti degenerati delle antere o attraverso aperture naturali come gli stomi (Khan M.K. et al., 2020; Moretti, A. et al., 2014).

Le infezioni possono verificarsi in qualsiasi momento dall'emergenza completa della spiga fino alla maturità; tuttavia, la maggior parte delle infezioni si verifica durante l'antesi del frumento poiché le piante risultano più sensibili al FHB nella fase di fioritura (Khan M.K. et al., 2020; Moretti, A. et al., 2014). Una volta all'interno della pianta, il fungo può crescere attraverso il rachide e colonizzare il tessuto vegetale provocando gravi danni alla pianta in un breve periodo di tempo (Moretti, A. et al., 2014). I patogeni del *Fusarium* proliferano e si diffondono rapidamente a livello intracellulare: la parete cellulare, i mitocondri, i cloroplasti e le membrane vengono danneggiati (Dweba C.C. et al., 2017; Khan M.K. et al., 2020). Inoltre, la crescita del fungo avviene tra le cellule e passa dallo xilema e dal midollo e colonizza i tessuti causando necrosi. Questo porta all'assorbimento di acqua nei tessuti del clorenchima, con conseguente produzione di chicchi raggrinziti e sbiancamento prematuro della spiga che influisce, inoltre, sulla fotosintesi. Dopo l'infezione, il fungo esprime i geni per la biosintesi del deossinivalenolo (DON) e questo facilita la diffusione del fungo dalla spiga al rachide in quanto blocca le risposte difensive dell'ospite (Khan M.K. et al., 2020).

Il ciclo infettivo del *Fusarium* nel frumento si completa con la produzione di nuove spore fungine sulle spighe infette. Queste spore fungine possono essere trasportate dal vento o da altre forme di disseminazione e diffondersi ad altre piante di frumento nella stessa area o in campi vicini, avviando così un nuovo ciclo infettivo. Inoltre, i chicchi colonizzati dal patogeno durante lo sviluppo tardivo possono non sembrare colpiti, ma essere comunque contaminati da micotossine ed esser utilizzati come semi per una successiva coltura di frumento. Questi semi infetti, se non trattati, possono dare origine a piantine appassite con la possibilità che la colonizzazione dei semi da parte di *F. gramineaum* possa essere trasmessa alle piante di frumento (Moretti, A. et al., 2014).

Figura 4: Ciclo infettivo di *F. graminearum*, agente causale di *Fusarium head blight* sul frumento (Trail F., 2009).

1.3 Sintomi e segni della malattia

I primi sintomi di FHB si manifestano poco dopo la fioritura; iniziano dapprima con una colorazione bianco-verdastra o giallastra dei fiori e infine le glume diventano di colore sbiancato (Figura 4A, B). Nel frumento, il FHB è infatti riconosciuto come sbiancamento prematuro di una o più spighette all'interno della spiga e può provocare spighette non riempite sopra il punto di infezione. Man mano che la malattia progredisce, si formano macchie brune o necrosi sulla spiga, accompagnate da una copertura biancastra di micelio fungino. Queste macchie brune possono diffondersi rapidamente, avvolgendo l'intera spiga e compromettendo lo sviluppo normale dei chicchi. La spiga infetta può anche presentare un odore caratteristico di muffa o acido (Governo del Saskatchewan, 2023).

Il fungo può anche infettare lo stelo, immediatamente sotto l'inserzione della spiga, provocando una colorazione da marrone a violaceo del tessuto dello stelo. Altri segni

caratteristici delle infezioni da *Fusarium* sono masse di spore dal rosa all'arancio salmone, spesso osservate su spighette e glume infette durante periodi prolungati di tempo umido (Figura 4C) (Friskop, A. et al., 2018).

Figura 5: Spighe di frumento affette da *Fusarium head blight*. (A, B) Spighe di frumento che mostrano spighette sbiancate a causa dell'infezione da *Fusarium*. (C) Spiga gravemente fusariata sulla quale sono visibili le spore color salmone-arancio di *Fusarium*.

I sintomi della malattia compaiono in genere dopo una settimana, anche se in condizioni climatiche ottimali (temperatura di 25-30 °C e bagnature prolungate) possono impiegare anche solo 3-4 giorni (Bugiani, R., 2013).

La gravità del danno al chicco dipende dal momento dell'infezione: l'infezione all'inizio della fioritura porterà probabilmente all'aborto del seme, l'infezione più tardi nella fioritura porterà al danno al seme noto come FDK (*Fusarium damaged kernel* – semi fusariati), mentre le infezioni successive potrebbero non mostrare sintomi ma possono ancora essere in grado di ospitare il fungo (Governo del Saskatchewan, 2023).

I chicchi di frumento infetti appaiono avvizziti, leggeri e opachi, di colore grigiastro o rosato. Questi chicchi a volte sono chiamati "pietre tombali" a causa del loro aspetto gessoso e senza vita. Se l'infezione si verifica in una fase avanzata dello sviluppo del chicco, i chicchi infettati da *Fusarium* possono essere di dimensioni normali con un leggero scolorimento ma ospitare

Figura 6: Frumento danneggiato da *Fusarium* che mostra avvizzimento e scolorimento dei chicchi (in basso) rispetto al frumento sano (in alto).

comunque micotossine. I chicchi di frumento duro infetti spesso perdono l'aspetto traslucido e ambrato, apparendo gessosi o opachi (Bayer Crop Science, 2019; Friskop, A. et al., 2018).

1.4 Micotossine prodotte da *Fusarium*

La maggior parte delle specie di *Fusarium* responsabili della fusariosi della spiga (FHB), in condizioni ambientali favorevoli, è in grado di produrre diversi metaboliti secondari tossici, noti come micotossine. La presenza di tali contaminanti naturali nei cereali è motivo di grande preoccupazione, poiché la loro presenza nei mangimi e negli alimenti è spesso correlata a micotossicosi croniche o acute nel bestiame, e rappresenta altresì una minaccia per la salute umana (Haidukowski M. et al., 2005). Tra le numerose micotossine prodotte da Fusarium quelle più importanti, poiché comunemente riscontrate nei cereali, sono: tricoteceni, zearalenone e fumonisine. Una valutazione globale ha rivelato rispettivamente il 36%, 54% e 55% di micotossine zearalenone, fumonisine e deossinivalenolo (DON) nei prodotti alimentari infetti, durante il periodo 2004-2011, sebbene la maggior parte dei campioni fosse conforme al regolamento e alle raccomandazioni della Commissione europea (Regolamento (CE) N. 1126/2007 della Commissione che modifica il regolamento (CE) n. 1881/2006 che definisce i tenori massimi di alcuni contaminanti nei prodotti alimentari per quanto riguarda le Fusariumtossine nel granoturco e nei prodotti a base di granoturco e Raccomandazione della Commissione 2006/583/CE sulla prevenzione e riduzione delle tossine Fusarium nei cereali e prodotti derivati) (Khan M.K. et al., 2020; Istituto Superiore di Sanità, 2023).

I tricoteceni sono raggruppati in quattro classi A, B, C e D in base alla loro struttura e alle specie produttrici. Le classi di interesse per quanto riguarda *Fusarium* sono la A e la B e la differenza si basa sulla presenza (tipo B) rispetto all'assenza (tipo A) di un gruppo cheto in posizione C-8. Tra i tricoteceni di tipo B, si ritiene che deossinivalenolo (DON), nivalenolo (NIV) e i loro derivati acetilati 3-acetildeossinivalenolo (3-ADON), 15-acetildeossinivalenolo (15- ADON) e 4-acetilnivalenolo (4-ANIV, syn. fusarenone-X) abbiano un impatto significativo sulla sicurezza degli alimenti e dei mangimi (Pasquali M. et al., 2016).

Il deossinivalenolo (DON), scoperto all'inizio degli anni '70, è il contaminante micotossico più comune associato ai cereali infetti da FHB; viene prodotto durante lo sviluppo del patogeno su cereali di base come frumento, orzo e mais e oltre ad essere il tricotecene più comunemente rilevato nei cereali, è quello che si ritrova anche alle più alte concentrazioni (Haidukowski M. et al., 2005; Pestka J.J., 2010). Il DON è anche noto come vomitossina a causa dei suoi effetti emetici nei suini e disturbi gastrointestinali nelle persone (Haidukowski M. et al., 2005). Lo sviluppo del patogeno e della sua micotossina, DON, dipendono dalle condizioni meteorologiche, come condizioni di caldo e umido ad alta intensità e forti precipitazioni. Altri fattori che influenzano la produzione di micotossine sono l'attività dell'acqua (aw) e il tempo di incubazione (Kamle M. et al, 2022).

Il DON è una tossina ciclica con una struttura tricotecenica caratterizzata da un sistema anulare con un gruppo chetone e gruppi funzionali idrossilici. La sua struttura chimica è responsabile delle sue proprietà tossiche. Una volta ingerito, il DON può essere rapidamente assorbito dal tratto gastrointestinale e distribuito in vari tessuti. Il meccanismo d'azione del DON coinvolge l'inibizione della sintesi proteica. Questa micotossina si lega alla subunità 60S dei ribosomi nelle cellule bersaglio, inibendo l'inizio della catena, l'allungamento o le fasi di terminazione della sintesi proteica. Di conseguenza, la sintesi proteica viene inibita, portando a disfunzioni cellulari; ciò causa perossidazione lipidica, morte cellulare programmata (apoptosi), stress ribotossico, inibizione della sintesi del DNA, rottura dell'integrità della membrana e inibizione della divisione cellulare (Pestka J.J., 2010; Gunupuru L.R. et al., 2017).

Per quanto riguarda gli effetti sulla salute animale e umana, questi dipendono dalla dose di esposizione e in relazione ad essa possono causare tossicità acute o croniche sia in uomo che negli animali. Lo studio e la quantificazione di questa micotossina sono molto importanti nel settore zootecnico: negli animali l'intossicazione acuta da DON provoca emesi, mentre l'esposizione cronica a basse dosi provoca anoressia e rifiuto del cibo, ritardo della crescita, immunotossicità, riproduzione e sviluppo compromessi derivanti dalla tossicità materna (Pestka J.J., 2010; Haidukowski M. et al., 2005). Sebbene gli animali siano differenzialmente sensibili al DON, un ridotto aumento di peso è universalmente osservato nelle specie monogastriche inclusi topi, ratti, maiali, cani e gatti cronicamente esposti alla tossina a basse dosi (Pestka J.J., 2010). Il rischio di esposizione per l'uomo è duplice, può essere esposto direttamente attraverso alimenti di origine vegetale (cereali) oppure indirettamente attraverso alimenti di origine animale (reni, fegato,

latte, uova). Le micotossine colpiscono gli esseri umani aumentando le complicanze teratogene e immunologiche. Il consumo di alimenti contaminati da DON provoca nell'uomo diversi problemi di salute come mal di testa, intossicazione alimentare, dolore addominale e diarrea (Khan M.K. et al., 2020). Gli effetti fisiopatologici associati al DON includono segnalazione neuroendocrina alterata, induzione genica pro-infiammatoria, interruzione dell'asse dell'ormone della crescita e integrità intestinale alterata (Pestka J.J., 2010).

Per questi effetti sulla salute animale e umana, le concentrazioni di micotossine negli alimenti e nei mangimi sono rigidamente regolamentate a livello internazionale. Il comitato scientifico dell'alimentazione umana (SFC) della Commissione europea ha recentemente stabilito una dose giornaliera tollerabile (TDI) di 1 μ g kg⁻¹ giorno di peso corporeo⁻¹ per il DON nell'uomo. Inoltre, la Commissione della Comunità europea ha recentemente fissato i tenori massimi di DON nei cereali e nei prodotti a base di cereali (Rossi V. et al., 2022).

Una problematica del DON risiede nel fatto che si tratta di una tossina estremamente termostabile, resistendo a temperature comprese tra 170 e 350 °C (nessuna riduzione rilevata dopo 30 minuti di trattamento a 170 °C), rendendolo un inquinante micotossico comune negli alimenti (Kamle M. et al, 2022). La lavorazione dei cereali ha però generalmente effetti significativi sui livelli di micotossine nei prodotti finali. Il DON è tipicamente concentrato nel mantello di crusca che viene rimosso nella produzione di semola; di conseguenza, è stata osservata una consistente riduzione dei livelli di DON durante ciascuna delle fasi di lavorazione, dal frumento integrale crudo al prodotto finale trasformato. Per consentire programmi di monitoraggio e tutelare la salute dei consumatori, sono stati sviluppati diversi metodi analitici per la quantificazione delle micotossine nei cereali, basati su tecniche cromatografiche o immunometriche (Visconti A. e Pascale M., 2010).

La prevenzione e il controllo della contaminazione da micotossine sono tuttavia molto complessi a causa delle variazioni regionali e stagionali nella diversità dei funghi micotossigeni e della loro presenza di micotossine associate (Focker M. et al., 2021). Diversi studi hanno dimostrato che una riduzione della gravità del FHB porta a una diminuzione del contenuto di micotossine nei cereali sia naturalmente che artificialmente infetti. Potenziali misure di controllo per ridurre la gravità della malattia e il conseguente accumulo di micotossine nei chicchi includono l'uso di varietà resistenti al FHB, l'uso di

18

pratiche agricole appropriate (come rotazione delle colture, lavorazione del terreno, fertilizzanti azotati, irrigazione e trattamento delle sementi) e l'uso di fungicidi o antagonisti biologici (Haidukowski M. et al., 2005).

1.5 Strategie di controllo e resistenza al Fusarium

Il controllo del FHB è una sfida complessa a causa della natura persistente dei funghi patogeni e della loro capacità di sopravvivere nei residui delle colture e nel terreno per lunghi periodi. Ciò è ulteriormente complicato dalle variazioni regionali e stagionali della diversità dei funghi micotossigeni e della relativa presenza di micotossine (Focker M. et al., 2021). Esistono comunque diverse strategie che possono avere un effetto benefico sulla riduzione del FHB e una corrispondente riduzione della contaminazione da micotossine. Alcune delle principali strategie di controllo includono:

- Lavorazione del terreno e rotazione delle colture: la lavorazione del terreno per seppellire i residui delle colture infette può ridurre la quantità di inoculo fungino presente nel terreno e ridurre così la propagazione del FHB nella stagione successiva. Inoltre, la rotazione delle colture con piante non ospiti di *Fusarium* riducono l'incidenza e l'intensità di FHB e l'accumulo di DON nel frumento (Wegulo S.N. et al., 2015; Governo del Saskatchewan, 2023);
- Controllo chimico: l'uso di fungicidi può essere un'opzione per il controllo chimico del FHB. Ad esempio, i fungicidi triazolici sono raccomandati per la soppressione del FHB perché sono localmente sistemici e hanno dimostrato di ridurre FHB e DON. Tuttavia, l'efficacia dei fungicidi può variare a seconda della specie di *Fusarium* coinvolta e delle condizioni ambientali (Dweba C.C. et al., 2017; Friskop A. et al., 2018). È importante distinguere fungicidi preventivi e curativi: l'attività preventiva si verifica quando un fungicida è presente sulla o nella pianta prima che il patogeno arrivi o cominci a svilupparsi e in questo caso il fungicida funge da barriera protettiva e previene il verificarsi di infezioni; l'attività curativa o di infezione precoce si verifica quando il fungicida interrompe la crescita precoce dell'agente patogeno nei tessuti vegetali e questo tipo di fungicida è generalmente più efficace da 24 a 72 ore dopo l'infezione. Comunque, la maggior parte dei

fungicidi che prevengono l'infezione precoce hanno anche un'attività preventiva e quindi sono più efficaci se applicati prima che si verifichi l'infezione (Mueller D. e Robertson A., 2008);

- Controllo biologico: è stato dimostrato che l'uso di antagonisti microbici fornisce un controllo promettente di FHB e una riduzione della contaminazione da DON dei chicchi di frumento. Gli agenti di controllo biologico possono essere particolarmente utili nella produzione biologica in cui i fungicidi sintetici non possono essere utilizzati per controllare FHB (Wegulo S.N. et al. 2015; Edwards S.G., 2004);
- Controllo delle infestanti: le specie di *Fusarium* sono state isolate da un'ampia gamma di graminacee e specie di erbe infestanti a foglia larga ed è stato dimostrato che un'elevata densità di infestanti determina un aumento del FHB (Edwards S.G., 2004);
- Irrigazione e concimazione: pratiche di irrigazione appropriate possono ridurre l'umidità nelle spighe, creando un ambiente meno favorevole per la crescita del fungo. Le concimazioni sono importanti per il mantenimento di condizioni di crescita ottimali che possono ridurre la probabilità di infezione (Wegulo S.N. et al. 2015; Cinquemani T., 2023);
- Selezione di varietà resistenti: la selezione e la coltivazione di varietà resistenti è il metodo più efficiente per ridurre le problematiche correlate alla produzione di DON in cereali (McMullen M. et al. 2012; Edwards S.G., 2004; Wegulo S.N. et al. 2015).

La gestione del FHB richiede quindi l'adozione di misure preventive e di controllo specifiche che comportano però dei costi aggiuntivi per gli agricoltori. Il metodo più economico e sicuro per l'ambiente per gestire la malattia e ridurne i danni sarebbe l'uso di genotipi di frumento resistenti ottenuti mediante strategie di selezione convenzionali e innovative. Esistono variazioni nella suscettibilità di diverse specie di piante ospiti al FHB; tuttavia, ad oggi non è stata ancora individuata alcuna varietà di frumento che possieda immunità totale contro il FHB (Dweba C.C. et al., 2017; Ma H. et al. 2022). Sfortunatamente, i programmi di selezione sono ostacolati dal fatto che la resistenza al FHB è sotto ereditarietà poligenica e le basi molecolari della resistenza e della suscettibilità del frumento a *F. graminearum* sono poco conosciute. La resistenza al FHB è un tratto complesso e quantitativo controllato da più geni e caratterizzato da un'ampia

variazione genetica nel pool genico del frumento. Inoltre, sono necessari test in diverse condizioni ambientali per verificare la suscettibilità del germoplasma del frumento al FHB poiché la gravità della malattia è influenzata dalle condizioni climatiche e può comportare una grande variabilità dell'interazione tra genotipo e ambiente. Nonostante tutti questi impedimenti, la resistenza genetica dell'ospite è comunque considerata lo strumento più sicuro ed economico per fornire un controllo sostenibile contro il FHB (Powell A.J. et al., 2021).

Diversi studi volti a identificare i tratti coinvolti nella resistenza al FHB sono stati condotti utilizzando frumento tenero (*Triticum aestivum L.*), mentre sono disponibili informazioni limitate per il frumento duro (*Triticum turgidum ssp. Durum*), che attualmente è uno dei cereali più suscettibili all'infezione da *F. graminearum*. Anche se nell'ultimo decennio diversi studi si sono concentrati sull'identificazione di geni candidati coinvolti nella resistenza a *F. graminearum* nel germoplasma duro coltivato o selvatico, ad oggi le fonti di resistenza al FHB nel frumento duro non sono state completamente identificate (Bentivenga G. et al., 2021; Lionetti V. et al., 2015).

1.5.1 Tipi di resistenza

I meccanismi di resistenza al FHB sono stati classificati principalmente in due gruppi, morfologici e fisiologici (Rudd J.C. et al., 2001). I meccanismi fisiologici implicano lo sfruttamento di percorsi biochimici per produrre sostanze chimiche che inibiscono la crescita patogena dopo l'infezione iniziale. I meccanismi morfologici, invece, implicano l'instaurarsi di condizioni sfavorevoli all'inizio dell'infezione; esempi includono l'altezza della pianta, la presenza di reste e il grado di apertura dei fiori durante il processo di fioritura (Shah L. et al., 2018). Mesterhazy A. (1995) ha osservato che le piante di statura bassa tendono ad avere una gravità della malattia più elevata rispetto ai genotipi più alti, probabilmente a causa della minore distanza tra le spighe e le fonti di inoculo nel suolo. I genotipi aristati possono anche mostrare livelli più elevati di infezione rispetto ai genotipi mutici, probabilmente a causa dell'aumento della superficie che risulta in una maggiore deposizione di spore fungine (Saharan M.S., 2020). Gilsinger J. et al. (2005) hanno usato il termine "evitamento" invece di resistenza morfologica in quanto questi tratti non sono noti per inibire il patogeno dopo l'infezione, ma piuttosto aiutano la pianta a eludere l'infezione iniziale (Saharan M.S., 2020).

La resistenza è stata classificata in cinque tipi in base ai diversi fenotipi associati alla malattia. Il Tipo I e il Tipo II sono quelli primari e stabili per la selezione della resistenza al FHB nei programmi di miglioramento genetico del frumento (Khan M.K. et al., 2020; Saharan M.S., 2020). La resistenza di tipo I comporta la resistenza della pianta all'infezione fungina iniziale ed è determinabile in campo a seguito di inoculazione artificiale mediante nebulizzazione e viene stimata calcolando il numero di spighe infette dopo 7-21 giorni dall'inoculazione spray in condizioni ambientali favorevoli. La resistenza di tipo II è la resistenza alla diffusione dell'infezione all'interno della spiga ed è identificata dalla percentuale di spighette infette dopo il punto di inoculazione (Khan M.K. et al., 2020; Dweba C.C. et al., 2017; Rudd J.C. et al., 2001). Il tipo III comporta la resistenza all'infezione del chicco e viene misurato trebbiando le spighe infette e osservando il danno ai chicchi; in particolare per valutare la resistenza di tipo III vengono misurati: riduzione del numero di chicchi, peso del chicco, peso di prova o stime visive dei chicchi danneggiati dal FHB (Dweba C.C. et al., 2017; Rudd J.C. et al., 2001). I meccanismi della resistenza di tipo IV e di tipo V non sono ben compresi quindi, non sono ampiamente utilizzati per identificare la resistenza al FHB nel frumento (Khan M.K. et al., 2020). La resistenza di tipo IV rappresenta la tolleranza durante la quale l'infezione è presente ma senza effetti sostanziali sulla resa e sulla perdita di qualità del frumento e può essere valutata misurando la resa in granella di spighe o parcelle inoculate naturalmente o artificialmente e confrontando i dati con spighe o parcelle che non mostrano sintomi di malattia. Infine, la resistenza di tipo V è verso l'accumulo di DON, ossia la capacità della pianta ospite di degradare la micotossina. Questo tipo di resistenza è importante dal punto di vista dell'utilizzo del frumento e viene identificata misurando la concentrazione di DON a un dato livello di FHB (Khan M.K. et al., 2020; Dweba C.C. et al., 2017; Rudd J.C. et al., 2001). È spesso comune avere genotipi di frumento contenenti più di un tipo di resistenza perché i geni di resistenza al FHB generalmente conferiscono una risposta a due o più tipi di resistenza sebbene a livelli diversi. Le cultivar di frumento che incorporano meccanismi di resistenza di Tipo I e Tipo II sono preferibili in quanto la resistenza sarebbe più stabile e duratura (Dweba C.C. et al., 2017).

1.5.2 Fonti di resistenza

Stati Uniti e Cina sono stati i primi paesi a eseguire lo screening per il germoplasma resistente al FHB con esperimenti sulla gravità della malattia in diverse varietà di frumento. La Cina, spinta in parte dalle epidemie di FHB negli anni '30 in diverse regioni del paese, ha condotto uno dei più grandi screening nazionali sostenuti dall'organizzazione governativa, *All Corporation of Research on Wheat Scab* (CCRWS) nel 1974 (Powell A.J. et al., 2021). Secondo Ma Z. et al. (2020), il CCRWS ha censito un totale di 34.571 accessioni di frumento. Tra il frumento tenero, 1796 accessioni sono state identificate come resistenti o moderatamente resistenti. Sempre Ma Z. et al. (2020) riportano che sono state sottoposte a screening 70.000 accessioni di frumento esaploide e suoi parenti raccolti in tutto il mondo, portando all'identificazione di circa 7000 accessioni con diversi livelli di resistenza al FHB. Tuttavia, non ci sono molte accessioni identificate come aventi livelli elevati di resistenza al FHB (Powell A.J. et al., 2021).

I due genotipi più utilizzati dai selezionatori di frumento per sviluppare nuove varietà resistenti sono rappresentati da Sumai 3 e Ning 7840. La varietà Sumai 3, rilasciata nel 1970, è stata la prima cultivar resistente al FHB sviluppata in Cina (1947) da un incrocio di una varietà di frumento italiana moderatamente suscettibile, Funo, e una varietà autoctona resistente, Taiwanxiomai. Da allora la cultivar Sumai3 è stata determinante nello sviluppo di altre cultivar resistenti come Ning 7840 (Saharan M.S., 2020; Powell A.J. et al., 2020). Sumai 3 è stato valutato come resistente o altamente resistente dalla maggior parte dei programmi in cui viene utilizzato; questa fonte di resistenza è più ereditabile, stabile e coerente in tutti gli ambienti rispetto alla resistenza della maggior parte delle altre fonti. Vi sono però dei problemi associati all'uso di Sumai 3 come genitore, come la suscettibilità ad altre malattie. Inoltre, sebbene sia stata ampiamente utilizzata dai selezionatori di frumento tenero, i selezionatori di frumento duro hanno avuto meno successo nell'usarla come fonte di resistenza (Rudd J.C. et al., 2001). Sumai3 è stata ed è ancora una delle principali fonti di resistenza nei programmi di miglioramento genetico del frumento tenero e del frumento duro negli Stati Uniti e in Canada, contribuendo allo sviluppo e al rilascio di oltre 20 cultivar moderne. Queste includono cultivar di frumento duro moderatamente resistente disponibili in commercio come: Alsen, Glenn, Barlow e SY Ingmar dal North Dakota, Faller e Prosper dal Minnesota, e AAC Brandon, una cultivar di frumento primaverile dal Canada. AAC Brandon è una delle cultivar di frumento primaverile più resistenti attualmente utilizzate in Canada e ampiamente coltivate nelle praterie canadesi. Anche una cultivar italiana, *Montana*, ha contribuito al miglioramento della resistenza al FHB in Nord America (Powell A.J. et al., 2021). La razza autoctona cinese *Wangshuibai* è un'altra linea altamente resistente al FHB che è stata utilizzata come genitore resistente in molti programmi di selezione (Shah L. et al., 2018).

Grazie a una migliore comprensione del controllo genetico del FHB sono state poi sviluppate e rilasciate anche altre cultivar come Nobeoka Bozu, Nyu Bai e Shinchunaga dal Giappone e la cultivar brasiliana Frontana, utilizzata principalmente nei programmi di selezione del frumento invernale in Canada alla fine del XX secolo, che possiede una resistenza di tipo I. Dall'Europa sono state rilasciate le cultivar di frumento invernale Praag 8 e Novokrumka. Cultivar con livello moderato di resistenza al FHB che sono state riportate da Svizzera, Germania, Francia e Ungheria sono: Arina, Runal, Hermann, Sobi, Sokrates, Toras Cansas, Petrus, Dream, Renan, Apache e M2234 (Saharan M.S., 2020; Powell A.J. et al., 2020). La cultivar olandese Romanus e la cultivar rumena Fundulea F201R sono state segnalate resistenti da Badea A. et al. (2008) e Shen X. et al. (2003). Sei cultivar ceche, Simila, Alana, Alka, Samanta, Sakura e Bakfis sono state documentate per possedere una moderata resistenza al patogeno di FHB. Negli Stati Uniti, anche le cultivar NC-Neuse, Freedom, Ernie e McCormick hanno mostrato un ragionevole livello di resistenza al FHB. Queste cultivar sono state utilizzate come fonte di resistenza in alcuni programmi di miglioramento genetico degli Stati Uniti (Shah L. et al., 2018; Rudd et al. J.C, 2001; Saharan M.S., 2020).

1.5.3 Geni di resistenza

Negli ultimi due decenni, un'intensa ricerca si è concentrata sulla mappatura di regioni genomiche che influenzano vari tratti d'interesse agronomico. Di conseguenza, sono stati identificati oltre 100 QTL (Quantitative Trait Locus)/geni che incidono sulla resistenza al FHB con diversi livelli di influenza sul fenotipo (Dweba C.C. et al., 2017).

Di questi, sette con diversi livelli di resistenza sono stati formalmente assegnati con un nome di gene. Questi sono: *Fhb1*, *Fhb2*, *Fhb4*, *Fhb5* tutti da cultivar di frumento tenero e *Fhb3*, *Fhb6* e *Fhb7* tutti da parenti selvatici del frumento tenero (Powell A.J. et al., 2021). Il principale è *Fhb1* che è stato mappato per la prima volta in *Sumai 3* dal laboratorio di DJ

Somer. È il gene più studiato ed è stato convalidato in diversi studi. Si trova sul braccio lungo del cromosoma 3B e ha dimostrato di conferire resistenza di tipo II, resistenza alla diffusione fungina secondo i meccanismi di resistenza descritti per la prima volta da Christensen e Schroeder nel 1929. La resistenza di Fhb1 è ampiamente utilizzata nelle cultivar di frumento esaploide e ha dimostrato di contribuire alla resistenza al FHB per il 20-50% nel frumento tenero rispetto ai loro genitori (Powell A.J. et al., 2021). Il gene Fhb2 è stato mappato con successo da Cuthbert P.A. et al. (2007) su 6BS e conferisce resistenza di tipo I al FHB. Il gene designato come Fhb3 è stato scoperto in una specie aliena, Leymus racemosus, e nelle linee di introgressione del frumento-Leymus, venendo successivamente mappato nella regione distale del braccio corto del cromosoma 7Lr#1. Il gene di resistenza Fhb4 è stato mappato sul cromosoma 4B nella linea Wangshuibai (Dweba C.C. et al., 2017). Buerstmayr H. et al. (2002) riportano che il cromosoma 5A ospita un altro QTL che controlla la resistenza di tipo I al FHB. Ciò è stato ulteriormente supportato da uno studio sulla linea di frumento resistente al FHB, Wangshuibai, che ha mostrato il QTL Qfhi.nau-5A, successivamente designato come *Fhb5* e mappato sul cromosoma 5A (Dweba C.C. et al., 2017). In uno studio più recente è stato scoperto Fhb6, un nuovo gene resistente al FHB inizialmente identificato e mappato sulla regione subterminale del braccio corto del cromosoma 1E di una pianta erbacea perenne Elymus tsukushiensis. Il gene è stato successivamente trasferito al cromosoma 1AS del frumento, determinando una riduzione del 28% della gravità del FHB tra le progenie portatrici di questo gene. Inoltre, è stato dimostrato che il cromosoma 7A ospita un altro nuovo gene per FHB, designato come *Fhb7*, spiegando la variazione fenotipica del 22% per la resistenza di tipo II e del 24% per la resistenza di tipo III. Il gene Fhb7 è stato introdotto da Thinopyrum ponticum e codifica un GST (glutatione transferasi) in grado di disintossicare le tossine tricoteceni (Dweba C.C. et al., 2017; Guo, J. et al., 2015).

Nonostante siano stati identificati numerose regioni genomiche, non esiste un singolo gene/QTL che conferisca resistenza completa al FHB, sottolineando ulteriormente che la resistenza al FHB è un tratto complesso controllato da più geni (Powell A.J. et al., 2021). L'identificazione di marcatori molecolari associati alle regioni del genoma per la resistenza al FHB rende possibile la selezione assistita da marcatori (MAS), che potrebbe essere uno strumento utile per i programmi di miglioramento genetico di frumento. La MAS, che si basa sull'instaurazione di uno stretto legame tra un marcatore molecolare e la posizione cromosomica del gene, o dei geni, che governano il tratto da selezionare in un particolare

ambiente, utilizza la genetica moderna per accelerare il processo tradizionale di selezione convenzionale. Il marcatore può essere un marcatore causale o un marcatore associato ad un gene: marcatore causale vuol dire che la sequenza bersaglio appartiene a un gene di cui si conosce la funzione, quindi il fenotipo; un marcatore associato ad un gene, invece, vuol dire che il marcatore di per sé non è riconducibile a un gene però si trova nel cromosoma molto vicino a quel gene e può essere quindi utilizzato per discriminare gli alleli presenti al locus di questo gene. Questi ultimi sono in assoluto i marcatori più utilizzati per mappare geni di resistenza. A differenza della selezione convenzionale in cui la progenie deve essere coltivata e osservata per il carattere desiderato prima che possa essere effettuata una selezione, la MAS può essere eseguita in qualsiasi fase del programma di selezione e consente di selezionare e piramidare i geni di resistenza d'interesse. Di conseguenza, il tempo per sviluppare cultivar migliorate può essere significativamente ridotto (Powell A.J. et al., 2021).

La selezione convenzionale ha stabilito una solida base nell'area della resistenza al FHB nel frumento e in altre colture, tuttavia, questi progressi hanno incontrato limitazioni a causa della mancanza di buoni germoplasmi e dei principali geni di resistenza, della natura poligenica della resistenza al FHB e della difficoltà nella valutazione della resistenza alle malattie. Inoltre, sono necessari fino a 10 anni per sviluppare una nuova cultivar resistente. Pertanto, la corsa alla produzione di cultivar più resistenti deve essere continuamente supportata con nuovi strumenti tecnologici come la selezione genomica e la selezione assistita da marcatori che rappresentano un mezzo importante per efficientare il processo di ottenimento di nuove varietà di frumento, che oltre la resistenza al FHB, devono dimostrare di essere portatrici di una serie di altri caratteri di importanza agronomica (Powell A.J. et al., 2021; Ma H. et al., 2022).

2. SCOPO DELLA TESI

Il *Fusarium Head Blight* (FHB) rappresenta una minaccia costante per l'industria agricola e la sicurezza alimentare. Negli ultimi anni, si è verificato un notevole incremento dell'incidenza di questa malattia, suscitando crescente preoccupazione sia nella comunità agricola che in ambito scientifico a livello globale. In risposta a questa maggior rilevanza ed espansione del FHB, strategie di prevenzione e controllo della malattia stanno acquisendo sempre più importanza. Tra le diverse strategie, lo sviluppo di genotipi resistenti risulta essere il metodo più efficace e sicuro per la gestione della malattia. Gli studi genetici e molecolari rappresentano degli strumenti fondamentali per comprendere le basi della resistenza delle piante e per sviluppare varietà di frumento che possano contrastare efficacemente l'infezione da *Fusarium*.

Lo scopo del presente lavoro di tesi è stato quello di caratterizzare un insieme di 580 varietà di frumento, includendo sia varietà di frumento tenero che di frumento duro, al fine di individuare varietà portatrici di caratteri di resistenza al FHB, in modo tale da poter esser selezionate e utilizzate nei programmi di miglioramento genetico per lo sviluppo di nuove varietà resistenti. Nello specifico, quindi, gli obiettivi di questo lavoro sono stati:

- Caratterizzazione fenotipica delle varietà mediante analisi sul campo dei parametri di incidenza e gravità della malattia, e mediante analisi visiva post-raccolta dei chicchi (analisi FDK).
- Analisi genotipica delle varietà, sia per confermare il dato fenotipico, mettendo in relazione fenotipo e genotipo per ottenere dati più completi e attendibili, sia per poter individuare caratteri di resistenza che potrebbero non essere evidenziabili con le sole analisi fenotipiche in quanto il fenotipo risulta fortemente influenzato dall'ambiente.

Per quanto riguarda il lavoro relativo all'analisi molecolare, durante questo progetto ci si è posti come obiettivo quello di andare a individuare, mediante revisione bibliografia, un insieme di marcatori utili legati non solo alla resistenza al FHB, ma anche ad altri tratti genomici di interesse agronomico per il frumento, in modo da poter realizzare un panel personalizzato AgriSeq-IonS5. Questo panel AgriSeq-IonS5 potrà essere utilizzato per la genotipizzazione mediante sequenziamento NGS (GBS) delle varietà di frumento oggetto di questo studio.

3. MATERIALI E METODI

3.1 Materiale vegetale

Il materiale vegetale utilizzato nel presente studio è stato fornito dall'azienda S.I.S. – Società Italiana Sementi S.p.A. ed è costituito complessivamente da 578 genotipi di frumento, nello specifico 326 genotipi di frumento tenero e 252 di frumento duro. I genotipi scelti comprendono un sotto-gruppo dei genotipi più comunemente utilizzati nel programma di miglioramento genetico di S.I.S. – Società Italiana Sementi S.p.A.. Il gruppo di frumento tenero comprende 294 genotipi europei (116 italiani, 124 francesi, 6 italofrancesi, 15 spagnoli, 9 britannici, 7 austriaci, 5 tedeschi, 4 polacchi, 2 svizzeri, 1 belga, 1 bulgaro, 1 danese, 1 greco, 1 del Lussemburgo e 1 della Repubblica Ceca), 10 genotipi sudamericani (9 brasiliani e 1 argentino), 10 nordamericani (Canada), 1 asiatico (Cina), 11 dell'Oceania (Australia) e 3 senza origine nota (NA). Il gruppo di frumento duro comprende invece 225 genotipi europei (157 italiani, 41 francesi, 5 italo-francesi, 12 spagnoli, 8 austriaci, 1 tedesco e 1 greco), 6 dell'Oceania (Australia), 1 africano (Marocco), e 7 nordamericani (1 USA, 4 canadesi e 2 messicani). Negli Allegati 1 e 2 sono riportati rispettivamente gli elenchi dei genotipici utilizzati di frumento tenero e duro (riportati mediante codice univoco), insieme al paese d'origine.

L'intero progetto sperimentale è stato svolto presso l'azienda S.I.S., quindi i genotipi sono stati coltivati nel campo prova sperimentale dell'azienda nell'annata 2022/2023, nella località di Malalbergo (BO) in Emilia-Romagna. I 326 genotipi di frumento tenero e i 252 genotipi di frumento duro sono stati seminati il 21 novembre 2022 in parcelle sperimentali (filette) di 1,0 m di lunghezza che derivano dalla semina di circa 50 semi. Le parcelle sono costituite da un lato lungo di 1,0 m e spazziate fra di loro di 0,5 m per una area totale di 0,5 m². Il delineamento sperimentale utilizzato è stato quello di *Augmented Randomized Complete Block Design (Augmented RCDB)* diviso in blocchi da 47 genotipi (frumento tenero sono stati utilizzati Bramante (T1) e 02SB318 (T4) come controlli resistenti e Mieti (T2) e Sagittario (T3) come controlli suscettibili. Per il frumento duro invece, i controlli resistenti erano Tito Flavio (T1) e Joyau (T2), mentre i suscettibili Simeto (T3) e Ovidio (T4). Il disegno sperimentale *Augmented RCDB* è un disegno in cui vi è un gran numero di parcelle non replicate intervallate da controlli frequenti che

vengono replicati. Questo tipo di modello è utile quando il numero di trattamenti è molto elevato oppure la replicazione è impraticabile, come nel presente caso (Burgueño J. et al., 2018).

3.2 Inoculazione Fusarium

3.2.1 Inoculo

L'inoculo fungino utilizzato in questo studio è stato fornito dal Laboratorio di Micologia e Botanica Applicata del Dipartimento di Scienze e Tecnologie Agro-Alimentari dell'Università di Bologna (UNIBO). L'inoculo utilizzato consiste di due ceppi autoctoni di *F. graminearum*, caratterizzati per chemiotipo e patogenicità. L'inoculo artificiale è stato preparato attraverso la diluizione, in acqua, della soluzione conidica fornita da UNIBO fino ad arrivare alla concentrazione di lavoro utilizzata per l'inoculo delle piante $(2 \times 10^4 \text{ conidi mL}^{-1})$.

3.2.2 Distribuzione inoculo

Le parcelle sono state inoculate nebulizzando 100 mL della sospensione conidica, con concentrazione 2×10^4 conidi mL⁻¹, mediante pompa a spalla in due momenti successivi, ossia al 25% e al 75% della fioritura della parcella (stadio di sviluppo GS62 e GS67 della scala di Zadoks, rispettivamente – Zadoks J.C. et al., 1974). Generalmente, durante i primi 10-20 giorni di antesi, le spighe di frumento sono al massimo rischio di infezione da *Fusarium* (Shah L. et al., 2017), per cui il primo intervento è stato effettuato a circa 5-7 giorni dalla data di spigatura e il secondo 4 giorni dopo il primo.

Figura 7: Distribuzione dell'inoculo fungino mediante pompa a spalla.

Considerando la relativa eterogeneità di fioritura della popolazione oggetto di studio, le parcelle sono state suddivise in 4 gruppi e ogni singolo gruppo trattato quindi 2 volte. La suddivisione dei genotipi nei 4 gruppi e le date di inoculazione sono riportare in Tabella 1. Dei 578 genotipi di frumento, 48 (46 frumento tenero, 2 frumento duro) non sono stati sottoposti al trattamento in quanto genotipi troppo tardivi che risultavano fuori range per quanto riguarda il periodo di fioritura e quindi non inseribili nella suddivisione dei 4 gruppi creati. I genotipi del quarto gruppo hanno ricevuto il secondo trattamento 8 giorni dopo il primo invece di 4 giorni a causa di impedimenti metereologici.

Tabella 1: Dati distribuzione inoculo. Vengono riportate la suddivisione in gruppi in base alla fioritura delle varietà e le date di inoculo per ciascun gruppo. GT= grano tenero; GD= grano duro.

	N° Varietà inoculate	Data primo inoculo	Data secondo inoculo
GRUPPO	46 GT + 0 GD	04/05/2023	08/05/2023
GRUPPO	63 GT + 58 GD	08/05/2023	11/05/2023
GRUPPO	107 GT + 93 GD	11/05/2023	15/05/2023
GRUPPO	64 GT + 99 GD	15/05/2023	23/05/2023

L'inoculo è stato distribuito preferibilmente durante condizioni di minore insolazione, al crepuscolo, per ottimizzare l'umidità ambientale e favorire il processo di infezione delle piante. Questa scelta è stata presa allo scopo di mitigare l'impatto dei raggi solari, che altrimenti potrebbero danneggiare o compromettere la sopravvivenza del fungo, limitando così l'efficacia dell'inoculazione. Per maggiori dettagli in Allegato 3 è riportata la mappa del campo di inoculo, con le relative date dei trattamenti.

3.3 Caratterizzazione fenotipica

3.3.1 Rilievi fenotipici in campo: incidenza e severità

I rilievi fenotipici in campo sono stati effettuati a distanza di circa tre e quattro settimane dal giorno della prima inoculazione artificiale (Tabella 2). Il rilievo è stato effettuato nelle prime ore dell'alba, nella fase fenologica di maturazione lattea tardiva (GS 77) e nella fase cerosa, granella morbida ma asciutta (GS 85) secondo la scala di Zadoks J.C. et al. (1974). Sono stati effettuati due rilievi per ogni singola parcella.

Tabella 2: Data rilievi per ogni gruppo

	Data primo rilievo	Data secondo rilievo
GRUPPO 1	29/05/2023	06/06/2023
GRUPPO 2	29/05/2023	06/05/2023
GRUPPO 3	29/05/2023	06/05/2023
GRUPPO 4	01/06/2023	08/06/2023

Gli aspetti che sono stati presi in considerazione sono l'incidenza e la gravità della malattia, che sono stati valutati osservando visivamente le spighe di frumento per ogni parcella, quindi per ogni genotipo oggetto di studio. L'Incidenza della malattia (DI - Disease Incidence), denominata anche *Fusarium Incidence*, è stata valutata per ogni genotipo calcolando un valore da 0% a 100% espresso come percentuale di spighe sintomatiche sul totale delle spighe presenti nella parcella (filetta).

La gravità (DS – Disease Severity), anche chiamata *Fusarium Severity*, è stata valutata sullo stesso campione di spighe, secondo il punteggio percentuale di Parry D. et al. (1984) modificato: da 0% spiga sana, a 100% spiga totalmente colpita (Figura 8).

Figura 8: Scala visiva per stimare la gravità del Fusarium head blight nel frumento (Koehler A., 2023)

Sia l'incidenza che la gravità della malattia sono state riportate anche come AUDPC (Area sotto la curva di progressione della malattia - Area under disease progress curve), che permette di dare una rappresentazione quantitativa del grado di infezione della malattia considerando i due tempi di analisi in modo unificato. La formula per l'AUDPC è stata calcolata con la formula seguente:

$$AUDPC = \sum_{i=1}^{n-1} \frac{y_i + y_{i+1}}{2} \times (t_{i+1} - t_i)$$

Dove:

- y_i è la valutazione di una malattia (percentuale, proporzione, punteggio ordinale, ecc.) all'osservazione i;
- t_i è il tempo (in giorni, ore, ecc.) all'osservazione i
- n è il numero totale di osservazioni
- y_{i+1}: incidenza/gravità della malattia al momento della valutazione i+1 (cioè il successivo rispetto ad i);
- $t_{i+1} t_i$: periodo che intercorre tra le due valutazioni

3.3.2 Rilievi fenotipici post-raccolta: semi fusariati

Figura 9: Trebbiatrice statica utilizzata per la trebbiatura delle parcelle

Le spighe delle diverse parcelle sono state raccolte manualmente a maturazione di raccolta e sono state poi trebbiate con trebbiatrice statica (Figura 9). Per ogni parcella sono stati prelevati dei sub-campioni di circa 100 cariossidi per genotipo su cui è stato valutato il *Fusarium Damaged Kernels* (FDK), cioè il numero di cariossidi che presentano i sintomi del FHB (semi fusariati) in percentuale.

Le analisi FDK sono state svolte unicamente sui genotipi di frumento tenero.
3.3.3 Analisi statistica

I dati fenotipici rilevati sono stati sottomessi all'analisi statistica con l'ausilio del software Rstudio utilizzando il pacchetto R "*augmentedRCBD: Analysis of Augmented Randomised Complete Block Designs*" (Aravind J. et al., 2023). *AugmentedRCBD* è una funzione per l'analisi della varianza di un disegno a blocchi randomizzato aumentato secondo Federer W.T. (1961). Le analisi statistiche sono state effettuate unicamente sui dati relativi ai genotipi di frumento tenero, non è stato invece possibile effettuare le analisi sul frumento duro in quanto le forti piogge di maggio hanno fortemente danneggiato le piante impedendo la loro raccolta. I 326 genotipi di frumento tenero sono stati suddivisi in 7 blocchi secondo il disegno sperimentale, in base alla disposizione dei controlli sul campo. Questa suddivisione in blocchi ha la funzione di normalizzare il dato dei trattamenti (genotipi) mediante un confronto col dato dei controlli, per andare a eliminare le variazioni dovute alle diverse condizioni ambientali presenti nel campo sperimentale. Mediante R-studio sono state quindi calcolate: l'analisi della varianza (ANOVA), differenze critiche, errori standard, coefficienti di variazione, le medie aggiustate, le statistiche descrittive e le statistiche sulla variabilità genetica.

3.4 Caratterizzazione genotipica

3.4.1 Ricerca bibliografica di marcatori KASP

Durante questo progetto di tesi è stata svolta un'approfondita ricerca bibliografica di marcatori per geni/QTL legati alla resistenza al FHB nel frumento. Ci si è concentrati sulla ricerca di marcatori basati sul polimorfismo a singolo nucleotide (SNP) ottenuti con il metodo KASP, ossia PCR allele-specifica competitiva (*Kompetitive Allele Specific PCR*). KASP è una tecnologia di genotipizzazione con sistema di reporting omogeneo basato sulla fluorescenza che utilizza principalmente due primer *forward* allele specifici e un primer *reverse* comune per l'identificazione dei rispettivi alleli aventi un particolare SNP o InDel (He C. et al., 2014; Kaur B. et al., 2020).

Oltre ai marcatori legati alla resistenza al FHB, sono stati raccolti dati anche su marcatori per altri tratti di interesse agronomico, come ad esempio: tolleranza alla siccità, dimensione

e durezza del chicco, resa e qualità del glutine. Inoltre, sono stati ricercati marcatori legati alla resistenza a un'altra importante malattia per il frumento, la ruggine, una patologia causata da funghi parassiti che provocano l'insorgenza di caratteristiche pustole arancioni o brune sulle foglie, compromettendo la crescita e la resa dei raccolti (Nilüfer A., 2022).

3.4.2 Sviluppo panel Agriseq-IonS5

I marcatori individuati mediante revisione bibliografica sono stati utilizzati come base per lo sviluppo di un panel AgriSeq-IonS5. *Applied Biosystems*TM *AgriSeq*TM è una tecnologia di genotipizzazione mirata mediante sequenziamento (GBS) che utilizza una chimica PCR multiplex altamente efficiente che consente di amplificare in modo uniforme da centinaia a migliaia di marcatori in una singola reazione. Questa tecnologia consente quindi di interrogare ampi pannelli di marcatori su centinaia o migliaia di campioni contemporaneamente, rappresentando così un ottimo strumento, altamente vantaggioso in termini di efficienza, di tempo, facilità d'uso e una rapida interpretazione dei dati (Thermo Fisher Scientific Inc. 2006-2023).

Per poter utilizzare i marcatori KASP individuati è stato però necessario, a partire dai tre primer disponibili per ogni marcatore (due primer *forward* allele specifici e un primer *reverse* comune), estrapolare una sequenza di circa 100 basi nella quale fosse presente in posizione centrale lo SNP informativo. Per l'estrazione delle sequenze, è stato sviluppato un sistema automatizzato dal Dott. Giovanni Gabelli (DAFNAE, Università di Padova). Grazie a questo sistema, è stato possibile identificare 50 basi a monte e 50 basi a valle dello SNP di interesse, per ciascun marcatore individuato. Come genoma di riferimento, è stato utilizzato il genoma della varietà di frumento tenero *Chinese Spring* (IWGSC RefSeq v2.1, 2021).

3.4.3 Campionamento del materiale vegetale per estrazione DNA

Il materiale vegetale, consistente nei 578 genotipi di frumento (326 di tenero e 252 di duro), è stato campionato a partire dalle foglie delle piante. Sono stati prelevati circa 50 mg di materiale fresco per genotipo e sono stati caricati nei pozzetti delle piastre a 96 pozzetti. Le piastre sono state mantenute a una temperatura di -18/-20 °C fino al momento dell'estrazione del DNA. Il DNA estratto verrà poi utilizzato per la validazione dei marcatori SNP identificati e successiva genotipizzazione mediante Agriseq-IonS5.

Figura 10: Procedura di campionamento materiale vegetale.

4. **RISULTATI E DISCUSSIONE**

L'inoculazione artificiale realizzata ha portato al successo dell'infezione, la quale è stata indubbiamente favorita dalle condizioni metereologiche altamente favorevoli allo sviluppo della malattia nel periodo post-inoculazione. La stagione sperimentale 2022-2023 è stata caratterizzata da frequenti e abbondanti precipitazioni. In particolare, nel mese di maggio, mese in cui è stata effettuata l'inoculazione, le precipitazioni hanno raggiunto un valore totale medio regionale di 250,7 mm, superiore di 174,8 mm rispetto al valore medio climatico (+230,2 %), secondo il bollettino mensile pubblicato da "Arpae" (Agenzia prevenzione ambiente energia Emilia-Romagna – Arpae, 2023). Questo ha favorito la presenza di condizioni ottimali per la sopravvivenza del patogeno e la diffusione della malattia. Le forti piogge hanno inoltre danneggiato le piante di frumento duro e non è stato quindi possibile effettuare le analisi sul frumento duro; verranno per cui riportati unicamente i risultati relativi al frumento tenero.

Figura 11: Precipitazione cumulata (mm) dall'01 al 18 maggio 2023 (Arpae, 2023)

4.1 Resistenza e suscettibilità dei genotipi al FHB secondo le analisi fenotipiche

Dalle analisi statistiche condotte sui dati fenotipici rilevati sono emerse differenze significative per tutti i caratteri in studio, sia per l'analisi della varianza (ANOVA) realizzata con correzione per i trattamenti (genotipi) (Tabella 3), sia per l'ANOVA realizzata con correzione per i blocchi (Tabella 4). Tutti i valori sono risultati significativi o altamente significativi ($P \le 0.05$ e $P \le 0.01$), ad eccezione del fattore blocchi, analizzato dopo l'eliminazione dell'effetto del trattamento (genotipi), che non ha evidenziato significatività.

Tabella 3: Analisi della varianza (ANOVA) con correzione per i trattamenti (genotipi) per i caratteri di incidenza (INCID), gravità (GRAV), area sotto la curva di progressione della malattia per il carattere incidenza (AUDPC_i), area sotto la curva di progressione della malattia per il carattere gravità (AUDPC_g) e semi fusariati (FDK).

			Mean.Sq					
Source	Df	INCID	GRAV	AUDPC_i	AUDPC_g	FDK		
Block (ignoring	6	419,86 **	157,94 *	26626,27 **	9906,73 *	1311,74 **		
Treatments)								
Treatment	283	819,38 **	296,15 **	52187,07 **	18145,32 **	145,51 **		
(eliminating Blocks)								
Treatment: Check	3	11081,56 **	1222,38 **	708447,24 **	76916,38 **	339,51 **		
Treatment: Test and	280	709,42 **	286,23 **	45155,72 **	17515,63 **	143,43 **		
Test vs. Check								
Residuals	18	84,50	39,74	5517,46	2583,94	17,54		
^{ns} P > 0.05; * P <= 0.05; ** P <= 0.01								

Tabella 4: Analisi della varianza (ANOVA) con correzione per i blocchi, per i caratteri di incidenza (INCID), gravità (GRAV), area sotto la curva di progressione della malattia per il carattere incidenza (AUDPC_i), area sotto la curva di progressione della malattia per il carattere gravità (AUDPC_g) e semi fusariati (FDK).

		Mean.Sq					
Source	Df	INCID	GRAV	AUDPC_i	AUDPC_g	FDK	
Treatment (ignoring	283	825,05 **	298,82 **	52544,02 **	18309,57 **	172,56 **	
Blocks)							
Treatment: Check	3	11081,56 **	1222,38 **	708447,24 **	76916,38 **	339,51 **	
Treatment: Test	279	698,24 **	278,52 **	44693,98 **	17119,57 **	158,59 **	
Treatment: Test vs.	1	5436,51 **	3190,98 **	274995,00 **	174497,24 **	3569,01 **	
Check							
Block (eliminating	6	152,20 ^{ns}	32,15 ns	9790,48 ^{ns}	2159,81 ns	35,76 ^{ns}	
Treatments)							
Residuals	18	84,50	39,74	5517,46	2583,94	17,54	
^{ns} $P > 0.05$; * $P \le 0.05$; ** $P \le 0.01$							

La varianza osservata tra i blocchi suggerisce la presenza di variazioni nelle condizioni ambientali tra ciascun blocco. La correzione dei dati per la variazione tra i blocchi ci consente di attribuire le differenze osservate principalmente alle differenze esistenti tra i trattamenti, quindi tra i genotipi, e non a differenze legate a condizioni ambientali variabili.

Inoltre, la differenza tra i genotipi supera la differenza critica (Tabella 5) ed è significativamente maggiore dell'errore standard (Tabella 6), per cui possiamo confermare che le differenze osservate sono statisticamente significative e sono quindi molto probabilmente reali e non dovute al caso.

Tabella 5: Differenza critica calcolata con varie comparazioni, per i caratteri di incidenza (INCID), gravità (GRAV), area sotto la curva di progressione della malattia per il carattere incidenza (AUDPC_i), area sotto la curva di progressione della malattia per il carattere gravità (AUDPC_g) e semi fusariati (FDK).

Comparison	AUDPC_g	AUDPC_i	FDK	GRAV	INCID
A Test Treatment and a Control Treatment	127,64	186,52	10,52	15,83	23,08
Control Treatment Means	57,08	83,42	4,70	7,08	10,32
Two Test Treatments (Different Blocks)	168,86	246,75	13,91	20,94	30,54
Two Test Treatments (Same Block)	151,03	220,70	12,44	18,73	27,31

Tabella 6: Errore standard calcolato con varie comparazioni, per i caratteri di incidenza (INCID), gravità (GRAV), area sotto la curva di progressione della malattia per il carattere incidenza (AUDPC_i), area sotto la curva di progressione della malattia per il carattere gravità (AUDPC_g) e semi fusariati (FDK).

Comparison	AUDPC_g	AUDPC_i	FDK	GRAV	INCID
A Test Treatment and a Control Treatment	60,76	88,78	5,01	7,53	10,99
Control Treatment Means	27,17	39,70	2,24	3,37	4,91
Two Test Treatments (Different Blocks)	80,37	117,45	6,62	9,97	14,53
Two Test Treatments (Same Block)	71,89	105,05	5,92	8,92	13,00

In Tabella 7 è riportata la statistica descrittiva per tutti i caratteri analizzati, e gli indici di asimmetria (con p-value del test di D'Agostino sulla asimmetria) e curtosi (con p-value del test di Anscombe-Glynn sul test curtosi) che forniscono informazioni sulla distribuzione dei dati. Per il carattere INCID, il valore aggiustato medio dei genotipi in prova è di 60,90% con un range di dati che va da 0 a 107,96%. Il carattere GRAV ha dimostrato un valore medio di 26,20% (range da 0 a 83,14%). AUDPC_i ha avuto un valore medio di 473,22 (range da 0 a 863,57), AUDPC_g invece, ha dimostrato una media di 201,36 (range da 0 a 660,57). Il carattere FDK ha avuto una media di 21,98% (range da 0 a 61,54%). Il coefficiente di variazione (CV) per i caratteri rilevati è rimasto nel range da 15,39% a 26,09%, il valore minore è stato rilevato per INCID (15,39%), mentre il valore di CV più alto è stato rilevato per AUDPC_g (26,09%).

Tabella 7: Statistica descrittiva, con i valori statisticamente aggiustati, per i caratteri di incidenza (INCID),
gravità (GRAV), area sotto la curva di progressione della malattia per il carattere incidenza (AUDPC_i), area
sotto la curva di progressione della malattia per il carattere gravità (AUDPC_g) e semi fusariati (FDK).

Trait	Mean	SE	SD	CV	Min	Max	Skewness	Kurtosis
INCID	60,90	1,63	27,44	15,39	0,00	107,96	-0,38 **	2,33 **
GRAV	26,20	1,00	16,78	24,90	0,00	83,14	0,51 **	2,75 ns
AUDPC_i	473,22	12,96	218,39	15,97	0,00	863,57	-0,29 *	2,28 **
AUDPC_g	201,36	7,81	131,65	26,09	0,00	660,57	0,59 **	2,96 ns
FDK	21,98	0,73	12,30	19,89	0,00	61,54	0,61 **	3,29 ^{ns}

Mean= media aggiustata; SE= errore standard; SD= deviazione standard; CV= coefficiente di variazione; Min= valore minimo; Max= valore massimo; Skewness= indice di asimmetria; Kurtosis= indice di curtosi. P > 0.05; * P <= 0.05; ** P <= 0.01

In Tabella 8 sono riportati i dati relativi ai controlli utilizzati in prova. Dei quattro controlli in prova, T4 (02SB318) ha presentato i valori più bassi per tutti i caratteri analizzati, indicando la reazione di resistenza al FHB. 02SB318 è un genotipo già noto come resistente al FHB, caratteristica che si è confermata anche in questa prova. Nonostante le condizioni climatiche abbiano fortemente favorito lo sviluppo della malattia, 02SB318 è riuscito ad evitare l'infezione del patogeno. Probabilmente, 02SB318 ha nel suo genoma geni che conferiscono la resistenza di tipo I, ossia, resistenza della pianta all'infezione fungina iniziale, caratteristica che viene conferma dal fatto che i valori del carattere INCID per 02SB318 sono vicini allo zero. Il T1 (Bramante), altra varietà utilizzata come controllo resistente, ha dimostrato un valore medio di INCID di 26,0% (range da 18,0 a 50,0%), in questo caso, si nota che il patogeno è riuscito a colpire le spighe, tuttavia, i dati di GRAV (valor medio 6,86% – range da 4,0 a 10,0%) evidenziano che la malattia non è riuscita a diffondersi liberamente, caratteristica della resistenza di tipo II. Per il carattere FDK, i controlli hanno dimostrato un comportamento abbastanza contrastante, Bramante per esempio, ha presentato numero di semi fusariati (FDK) superiore ai controlli suscettibili T2 (Mieti) e T3 (Sagittario). La spiegazione per questo fatto, potrebbe essere che, nonostante Bramante riesca ad evitare la diffusione rapida della malattia, le spighette colpite manifestano comunque sintomi dell'attacco del patogeno nel seme, oppure potrebbe essere dovuto al fatto che l'analisi visiva per la caratterizzazione di FDK non sia riuscita a identificare tutti i semi danneggiati dal patogeno per i controlli suscettibili Mieti e Sagittario. Per chiarire questo punto, sarà necessario proseguire con l'analisi di accumulo di micotossina DON nel seme.

Tabella 8: Statistica relativa ai quattro controlli (T1-Bramante, T2-Mieti, T3-Sagittario e T4-02SB318)
riportante i valori di media (means), errore standard (SE), valori minimi (min) e valori massimi (max) per i
caratteri di incidenza (INCID), gravità (GRAV), area sotto la curva di progressione della malattia per il
carattere incidenza (AUDPC_i), area sotto la curva di progressione della malattia per il carattere gravità
(AUDPC_g) e semi fusariati (FDK).

			INCID					
Treatment	r	Means	SE	Min	Max			
T1	7	26,00	4,46	18,00	50,00			
T2	7	86,14	3,67	70,00	100,00			
T3	7	72,71	4,97	60,00	100,00			
T4	7	1,00	0,00	1,00	1,00			
			GRAV					
Treatment	r	Means	SE	Min	Max			
T1	7	6,86	0,74	4,00	10,00			
T2	7	27,71	2,74	18,00	38,00			
T3	7	25,00	3,68	18,00	43,00			
T4	7	1,00	0,00	1,00	1,00			
			AUDPC_i					
Treatment	r	Means	SE	Min	Max			
T1	7	205,71	35,91	140,00	400,00			
T2	7	688,57	29,55	560,00	800,00			
T3	7	580,00	40,00	480,00	800,00			
T4	7	8,00	0,00	8,00	8,00			
			AUDPC_g					
Treatment	r	Means	SE	Min	Max			
T1	7	53,14	6,03	28,00	80,00			
T2	7	220,00	22,25	140,00	300,00			
T3	7	197,14	29,74	140,00	340,00			
T4	7	8,00	0,00	8,00	8,00			
	FDK							
Treatment	r	Means	SE	Min	Max			
T1	7	20,00	2,57	10,00	30,00			
T2	7	10,00	1,57	4,50	15,70			
T3	7	7,41	1,71	2,70	14,60			
T4	7	3,74	0,81	1,80	8,20			

r= numero di ripetizioni per ogni controllo

In Figura 12 è possibile apprezzare la distribuzione di frequenza per i caratteri in analisi. Per i caratteri GRAV, AUDPC_g e FDK, la distribuzione dei dati ha seguito la curva di normalità. Questo è confermato dai valori di asimmetria (Skelwness – Tabella 7), che nonostante siano significativi, sono valori abbastanza bassi, e dei valori di curtosi (Kurtosis – Tabella 7) non significativi per questi tre caratteri. Per i caratteri INCID e AUDPC_i invece, i grafici della Figura 12 e i dati di asimmetria e curtosi (Tabella 7) indicano che i dati si sono concentrati alla sinistra del grafico, indicando che il numero di genotipi con valore inferiore alla media è superiore a quelli con valore superiore alla media.

Figura 12: Distribuzione di frequenza per i caratteri di incidenza (INCID), gravità (GRAV), area sotto la curva di progressione della malattia per il carattere incidenza (AUDPC_i), area sotto la curva di progressione della malattia per il carattere gravità (AUDPC_g) e semi fusariati (FDK) dei genotipi sottomessi all'inoculo artificiale di Fusarium. T1, T2, T3 e T4 indicano i valori ottenuti per i quattro controlli.

In Tabella 9 sono riportati i risultati della varianza fenotipica (PV), genotipica (GV) e ambientale (EV) ottenute dalla tabella dell'ANOVA considerando i valori dei quadrati medi attesi come descritto da Federer e Searle (1976); e i coefficienti di variazione fenotipica (PVC), genotipica (GVC), ambientale (EVC), ottenuti tramite la formula di Burton G.W. (1952) e l'ereditabilità in senso ampio (hBS), calcolata come descritto da Lush J.L. (1940). I dati riportati nella Tabella 9 evidenziano che il contributo genetico (rappresentato da GV) nell'espressione del fenotipo (PV) è stato nettamente superiore del

contributo ambientale (EV) per tutti i caratteri valutati, evidenziando che la risposta dei singoli genotipi all'infezione del FHB è risultato dell'effetto genetico dei genotipi e non delle interferenze ambientali. Inoltre, l'ereditabilità in senso ampio (hBS) è superiore al 80% per tutti i caratteri in analisi.

Tabella 9: Analisi di variabilità genetica per i caratteri di incidenza (INCID), gravità (GRAV), area sotto la curva di progressione della malattia per il carattere incidenza (AUDPC_i), area sotto la curva di progressione della malattia per il carattere gravità (AUDPC_g) e semi fusariati (FDK).

Trait	Mean	PV	GV	EV	GCV	PCV	ECV	hBS
INCID	60,90	698,24	613,73	84,50	40,68	43,39	15,10	87,90
GRAV	26,20	278,52	238,78	39,74	58,98	63,70	24,06	85,73
AUDPC_i	473,22	44693,98	39176,52	5517,46	41,83	44,67	15,70	87,66
AUDPC_g	201,36	17119,57	14535,64	2583,94	59,87	64,98	25,24	84,91
FDK	21,98	158,59	141,05	17,54	54,04	57,30	19,06	88,94

Mean= media aggiustata; PV= varianza fenotipica; GV= varianza genotipica; EV= varianza ambientale; GCV= coefficiente di variazione genotipica; PCV= coefficiente di variazione fenotipica; ECV= coefficiente di variazione ambientale; hBS= ereditabilità in senso ampio.

In Tabella 4A (Allegato 4) vengono riportate le medie aggiustate per i genotipi di frumento tenero in prova, per tutti i caratteri analizzati. I genotipi sono suddivisi in 7 blocchi e le medie sono state aggiustate in base ai blocchi secondo il disegno sperimentale *Augmented RCBD*.

Prendendo in considerazione i genotipi in base al loro paese di origine, è possibile evidenziare differenze significative. Per quanto riguarda i valori di INCID e GRAV (Figura 14), riportati anche come valori di AUDPC nella Figura 15, è possibile osservare come i genotipi argentini (1 genotipo) e brasiliani (9 genotipi) siano quelli che hanno dimostrato minori danni causati dal FHB, oltre al genotipo cinese 02SB318 (T4), che è stato appunto utilizzato come controllo resistente. I genotipi argentini e brasiliani hanno riportato valori medi rispettivamente di 10,0% e 4,3% per INCID e 0,0% e 4,2% per GRAV, nettamente inferiori rispetto alla media generale di 60,25% per INCID e 26,20% per GRAV riportata in Tabella 7. Anche i genotipi canadesi (7 genotipi) mostrano valori di INCID e GRAV bassi (media di 23,0% e 15,2% rispettivamente). I genotipi con valori di INCID più elevati risultano, invece, quelli provenienti dall'Australia (media di 77,7% – 11 genotipi) e per quanto riguarda il carattere GRAV quelli provenienti da Repubblica Ceca (53,9% – 1 genotipo) e Grecia (44,4% – 1 genotipo). I gruppi di genotipi francesi (113 genotipi), italiani (115 genotipi) e spagnoli (15 genotipi) riportano mediamente valori

simili tra loro sia per il carattere INCID che GRAV: i valori di INCID si aggirano intorno a 60-65%, mentre quelli di GRAV tra 25 e 30%, portando quindi valori simili alle medie totali riportate in Tabella 7 (valore medio INCID 60,90% – range da 0,00 a 107,96%; valore medio GRAV 26,20% – range da 0,00 a 83,14%).

Figura 14: Valori di incidenza (INCID) e gravità (GRAV) di FHB riportanti come media tra i diversi genotipi appartenenti allo stesso paese di origine.

Figura 15: Valori di AUDPC_i e AUDPC_g riportanti come media tra i diversi genotipi appartenenti allo stesso paese di origine.

Andando però ad analizzare i singoli genotipi all'interno delle sottocategorie create in base al paese d'origine, per i genotipi europei (italiani, francesi e spagnoli) si osserva una alta variabilità dei dati, che invece non si ritrova, ad esempio, all'interno della sottocategoria "genotipi brasiliani" o "genotipi australiani", dove tutti presentano valori simili tra loro (Figura 16). I dati completi per ogni singolo genotipo per tutti i caratteri in analisi sono riportati in Tabella 4A (Allegato 4).

Figura 16: Confronto fra i grafici ottenuti per i valori di incidenza (INCID) e gravità (GRAV) per i genotipi francesi, italiani, australiani e brasiliani.

Analizzando i valori di FDK, confrontando i genotipi in base al paese di origine, possiamo evidenziare come i gruppi con i valori più bassi di FDK, ossia quindi con una bassa percentuale di semi colpiti dalla malattia, siano quello cinese (1 genotipo), quelli brasiliani (9 genotipi) e australiani (11 genotipi), seguiti dal genotipo greco (Figura 17). I genotipi europei risultano mediamente colpiti, mentre quelli più colpiti sono rappresentati da Repubblica Ceca e Bulgaria che riportano però solamente un genotipo ciascuno; i gruppi "genotipi italiani", "genotipi francesi" e "genotipi spagnoli" sono invece costituiti da un numero maggiore di campioni (115, 113 e 15 genotipi rispettivamente) e una maggiore variabilità dei valori di FDK.

Figura 17: Valori di FDK riportanti come media tra i diversi genotipi appartenenti allo stesso paese di origine

È interessante notare come alcuni genotipi riportino alti valori per INCID e GRAV della malattia, ma bassi valori di FDK. Ne sono un esempio gli 11 genotipi australiani, i genotipi FHB GT23 68, FHB_GT23_127, FHB GT23 201, FHB GT23 208, francesi FHB_GT23_229, il genotipo greco FHB_GT23_112, i genotipi italiani FHB_GT23_21, FHB_GT23_39, FHB_GT23_58, FHB_GT23_108 e i genotipi spagnoli FHB_GT23_60, FHB GT23 89, FHB GT23 191, FHB GT23 222. Questo aspetto potrebbe essere spiegato dal fatto che i genotipi sopra citati portino una resistenza al FHB di Tipo III, e non portino invece la resistenza di tipo I e II. La resistenza di tipo I comporta la resistenza della pianta all'infezione fungina iniziale e può essere determinata sulla base dei valori di incidenza; la resistenza di tipo II comporta invece la resistenza alla diffusione dell'infezione all'interno della spiga e può essere determinata sulla base dei valori di gravità. Quella di tipo III è invece legata alla resistenza all'infezione del chicco e può essere definita sulla base dei valori di FDK, quindi osservando il danno ai semi.

Figura 18: Genotipi che riportano alti valori di incidenza (INCID) e gravità (GRAV) e bassi valori di FDK.

Questi genotipi, pur non mostrando resistenza di tipo I e II, ma avendo una resistenza di III potrebbero comunque rappresentare dei buoni candidati selezionabili per il miglioramento genetico per la trasmissione di questi caratteri di resistenza. I genotipi che invece riportano valori bassi per incidenza e gravità della malattia portano probabilmente una resistenza di tipo I e II.

Considerando, invece, complessivamente tutti i caratteri fenotipici analizzati è possibile individuare i genotipi più resistenti al FHB, che potrebbero possedere più di un tipo di resistenza. Ne sono un esempio i genotipi brasiliani e il genotipo argentino FHB_GT23_29 che risultano essere resistenti al FHB per tutti i caratteri considerati. Altri genotipi che complessivamente sono risultati i più resistenti sono: il genotipo cinese FHB_GT23_T4; alcuni genotipi italiani come FHB_GT23_125, FHB_GT23_133, FHB_GT23_145, FHB_GT23_203, FHB_GT23_211, FHB_GT23_275, FHB_GT23_282 e FHB_GT23_287; alcuni genotipi francesi come FHB_GT23_77, FHB_GT23_99 e FHB_GT23_219; alcuni genotipi spagnoli quali FHB_GT23_76, FHB_GT23_249, FHB_GT23_101 e i genotipi canadesi FHB_GT23_246, FHB_GT23_247, FHB_GT23_249 e FHB_GT23_254. Tutti questi genotipi possono rappresentare delle importanti fonti di resistenza per lo sviluppo di nuove varietà di frumento tenero resistenti al FHB.

4.2 Marcatori e sequenze individuate per la genotipizzazione mediante Agriseq-IonS5

In seguito alla revisione di oltre 50 articoli scientifici relativi all'utilizzo di marcatori per l'individuazione di caratteri di interesse nel frumento, è stato possibile individuare un totale di 146 marcatori KASP per geni o QTL legati a caratteri di resistenza a malattie e a caratteri di interesse agronomico e di qualità nel frumento; di questi, 41 sono riferiti a resistenza *Fusarium graminearum* (FHB), 53 sono legati alla resistenza alla ruggine, *Puccinia striiformis* f. sp. *tritici* (ruggine gialla), *Puccinia triticina* (ruggine bruna) e *Puccinia graminis* f. sp. *tritici* (ruggine nera), 56 legati invece a differenti caratteri di interesse agronomico e qualitativo (tolleranza alla siccità, dimensione e durezza del chicco, resa, qualità del glutine, ecc.). Per quanto riguarda i marcatori per la resistenza al FHB sono stati individuati marcatori per i geni di resistenza noti *Fhb1*, *Fhb2 e Fhb7* (introgresso nel frumento dalla specie selvatica *Thinopyrum ponticum*), più marcatori per vari QTL. In Tabella 10 sono riportati i marcatori selezionati per FHB; per l'elenco completo dei marcatori individuati e i loro primer si rimanda all'Allegato 5.

Category	Gene	Chr.	Marker Name	SNP	Reference
Fusarium	Fhb1	3BS	snp3BS-8	C/G	Bernardo et al., 2012
Fusarium	Fhb1	3BS	Fhb1-TaHRC	G/T	Su et al., 2018
Fusarium	Fhb1	3B	PFT	A/G	Singh et al., 2019
Fusarium	Fhb1	3B	UMN10_SNP	A/G	www.integratedbreeding.net
Fusarium	QTL 3BSd	3BS	KASP GBS2377	C/T	Jin Cai et al., 2019
Fusarium	QTL 3BSd	3BS	KASP GBS2378	C/T	Jin Cai et al., 2019
Fusarium	QTL 3BSd	3BS	KASP GBS2379	C/T	Jin Cai et al., 2019
Fusarium	QTL3BSc	3BS	KASP GBS2882	A/G	Jin Cai et al., 2019
Fusarium	QTL3BSc	3BS	KASP GBS2883	A/G	Jin Cai et al., 2019
Fusarium	Qfhb-5AS	5AS	IWA7777	A/G	Pandurangan et al., 2021
Fusarium	QFhb-5A	5AS	KASP-Qfhb-5A	T/G	P. Jiang et al., 2019
Fusarium	QFhb.hbaas-5AS	5AS	FHB-5AS-KASP	T/G	Zhu Z. et al., 2020
Fusarium	Fhb7	7E	Fhb7-KASP1	T/A	Zhao, L. et al., 2022
Fusarium	Fhb7	7E	Fhb7-KASP2	G/A	Zhao, L. et al., 2022
Fusarium	Qclu.yas-2D	2D	KASP.2D.1	C/T	Wenjing Hu et al., 2023
Fusarium	Qclu.yas-2D	2D	KASP.2D.2	T/A	Wenjing Hu et al., 2023
Fusarium	QFhb-2DL	2DL	KASP10238	A/G	Li, H. et al., 2022
Fusarium	QFhb-2DL	2DL	KASP10239	A/G	Li, H. et al., 2022
Fusarium	Qfhb.3AL	3AL	GBS17928	C/T	Zhang et al., 2021
Fusarium	QTL3A	3A	KASP GBS2600	A/T	Jin Cai et al., 2019
Fusarium	QTL3DL	3DL	KASP GBS0781	C/T	Jin Cai et al., 2019

Tabella 10: Elenco dei marcatori individuati per la resistenza a Fusarium head blight nel frumento.

Fusarium	QTL3DL	3DL	KASP GBS2710	C/T	Jin Cai et al., 2019
Fusarium	QTL2D	2D	KASP GBS1487	C/T	Jin Cai et al., 2019
Fusarium	QTL4D	4D	KASP GBS3012	A/G	Jin Cai et al., 2019
Fusarium	QFHB. vt-1B	1B	IWA6259	T/C	Carpenter et al., 2020
Fusarium	QFHB. vt-1B	1B	IWA7594	A/C	Carpenter et al., 2020
Fusarium	QFHB. vt-1B	1B	IWB43992	C/T	Carpenter et al., 2020
Fusarium	Qfhb.nc-1A	1A	IWA3805	A/G	Petersen, S. et al., 2016
Fusarium	Qfhb.nc-1A	1A	IWA1587	A/G	Petersen, S. et al., 2016
Fusarium	Qfhb.nc-1A	1A	IWA886		Petersen, S. et al., 2016
Fusarium	Qfhb.nc-1B	1B	IWA7977		Petersen, S. et al., 2016
Fusarium	Qfhb.nc-1B	1B	IWA6448	G/A	Petersen, S. et al., 2016
Fusarium	Qfhb.nc-1B	1B	IWB43992	T/C	Petersen, S. et al., 2016
Fusarium	Qfhb.nc-1B	1B	IWA4987	C/T	Petersen, S. et al., 2016
Fusarium	Qfhb.nc-6A	6A	IWA3483	A/G	Petersen, S. et al., 2016
Fusarium	Qfhb.nc-6A	6A	IWA4036	A/G	Petersen, S. et al., 2016
Fusarium	QFhb.yaas-2DL	2DL	KASP-QFhb-2DL	T/C	Wenjing Hu et al., 2022
Fusarium	QFhb.yaas-3BL	3BL	KASP-QFhb-3BL	G/A	Wenjing Hu et al., 2022
Fusarium	Fhb2	6B	GBS0158	T/C	Toth et al., 2018 / Cai et al., 2016
Fusarium	QTL-FHB-2DLc	2DLc	IWB44589	G/A	McCartnety et al., 2016
Fusarium	QTL-FHB-2DLc	2DLc	IWB28643	G/A	McCartnety et al., 2016

Questi marcatori sono stati ricercati in bibliografia con lo scopo di poter essere utilizzati per lo sviluppo di un panel Agriseq-IonS5 per la genotipizzazione dei genotipi oggetto di studio. A partire dai marcatori individuati sono state estrapolate delle sequenze di circa 100 basi nucleotidiche, che poi verranno utilizzate per lo sviluppo del panel. Il sistema di estrapolazione delle sequenze è stato applicato a tutti i 146 marcatori KASP individuati ma ha prodotto risultati per 98 marcatori su 146. Per i restati marcatori non è stato possibile estrapolare la sequenza poiché il sistema di estrapolazione forniva più risultati per marcatore (su cromosomi diversi) oppure risultati per entrambi i primer *forward* allele specifici. Le sequenze per i marcatori per FHB ottenute sono riportate in Tabella 11. Per l'elenco completo di tutte le sequenze si rimanda all'Allegato 6.

Tabella 11: Elenco dei marcatori per FHB con le sequenze estrapolate per lo sviluppo del panel Agriseq-
IonS5.

MarkerName	Sequences	Strand	Gene	Chr
FHB-5AS-KASP	GCTTCAACAATACTTTGCTCAATGCCATCGACAATTACATCAAATGACTG	plus	QFhb.h	5AS
	ACGAACAAACCCAAGTGATGTGATAATATAGACTACATACTGCAGATAA		baas-	
	CC		5AS	
Fhb1-TaHRC	ATCATTTCACGGCCCTGCAGGTTTTGAGCTTTTGTCTGTTTCGCTGGGAT	plus	Fhb1	3BS
	GGATGCCAAGAAGTTCCTGCAGATGGTCGAAGACAAGAAGAAGAAGAAGACT			
	CCT			
Fhb1-TaHRC	AGGAGTCTCTTCTTGTCTTCGACCATCTGCAGGAACTTCTTGGCATC	minus	Fhb1	3BS
	CATCCCAGCGAAACAGACAAAAGCTCAAAACCTGCAGGGCCGTGAAAT			
	GAT			
GBS0158	CATGAGGAGGTGGCCGCGTGGGTTTGGGGGATCTAGGGTTTCGAGGGAAT	minus	Fhb2	6B
	AATCAAGGGGGGGCTGAGGCTTGCTTCCAGAAGTTCTCTGGGGTTCTGCA			
	GAT			

GBS17928	GTAGCAGCAGGTGCGGGCGCCGTCGGGCAGCGGCTGCAGGCGGGACCA CGCGCGTGGGAGTGGACGGAGATGTTCAGGCGCGTCGGTGGCGCGTCC TTCG	minus	Qfhb.3 AL	3AL
IWA1587	CCTGAAGATTGTGTTCTATTATCTATCTATATTCTTTGTTCTTCAAGTCCG TATGCATAATCGATCTTTGACCAGTAAATAAACAGCTGTTGCTAGTTGCA	plus	Qfhb.n c-1A	1A
IWA3483	GGAAATCATTGTAACCAGATGGTTGAACATAACCATGATTGGAAGAAGA GTTTGTGGATAAACCAGTGCTAACACCTATCTGGGGGCCTCCAATTATAAT GA	minus	Qfhb.n c-6A	6A
IWA3805	ACCTGATCATTTGTTCCATCACAATGCTAACTTTGCTGTCAACTTTGAGG ACTGGTTTATTTCCCATATAAAGTGCACCCATCAGTTGCAGTAAGGGAA TC	plus	Qfhb.n c-1A	1A
IWA4987	CCAAGTCTCCATCCTTCCTCTAGGATCCTGCAGAACAAGATAGCTTTGAA CCTGCGAAGGAATCAGATGCAACTCTGCGCGGCCGGAACATCATCCGTG CT	plus	Qfhb.n c-1B	1B
IWA6259	CTGTGTCATTCAGTATGTAATCTGTACCAGCACGTTGGACATGGGGATAT AGTGCTGGTGCGCTGTTATTGTTAGTCGGTAAAATGGAGTGCTGGATATT A	minus	QFHB. vt-1B	1B
IWA6448	GATGCTGCTTCTAGGTTGCCTGGAAGAACTGGAACAAGAGCTGATGTTT GCACACTTCTCAAAGATTCACAGTACCTAAATCATGCAGAATCCAATAA AGA	minus	Qfhb.n c-1B	1B
IWA7594	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAAGG	minus	QFHB. vt-1B	1B
IWA7777	TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACACCGTCCG CAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAACACAACCGTTACT GT	minus	Qfhb- 5AS	5AS
IWA7977	GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTGCAAGAG CGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCATTCCAGCACTCGA AAA	plus	Qfhb.n c-1B	1B
IWB28643	GGGGTCGTCACCGAATTTGATGTTGCTGGAGATGTTCTCGTCGAGCTCG GCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCGAGGCACCCGTGTGGA GAA	minus	QTL- FHB- 2DLc	2DL c
IWB43992	ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGATCTTGTG CGTCAAATCGAAGCCAAGTATCCTGCATTTCTTTTCAAGCAGCAACTTGC A	plus	QFHB. vt-1B	1B
IWB43992	TGTAAGTTGCTGCTTGAAAAGAAATGCAGGATACTTGGCTTCGATTTGA CGCACAAGATCCATATCGACAGTAATGTTTGAAGTACGAAATACCTGAC CAT	minus	QFHB. vt-1B	1B
IWB43992	ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGATCTTGTG TGTCAAATCGAAGCCAAGTATCCTGCATTTCTTTTCAAGCAGCAACTTAC A	plus	QFHB. vt-1B	1B
IWB44589	GCTCTGACTGACTTGATTGCATGTATAATGTTCTCCGCTTGTTCCACTAC TGTGATGTCTCCTCTAGCAGAACTGCATCCAGCAACAAAGGCCTCAACA TC	minus	QTL- FHB- 2DLc	2DL c
KASP-QFhb- 2DL	GGACGCCTGGTCACTGACCATAAAAAAAGATCCAGCTAGGCTCTTCACA CTGGTCCTAAATGCCCGGCTAGACCGATACCCCTTAAATCCAGGTCAAA TCT	plus	QFhb.y aas- 2DL	2DL
KASP-QFhb- 3BL	GGATTTGACATTCTTTCTTTGGCATCCCTCGGTCTCACAATGACATCAAC ATGTTGTCGCCGTCTTCATCGTTTGCAAGGTTGTATGTGGGCGAAGCTCC T	plus	QFhb.y aas- 3BL	3BL
KASP-Qfhb-5A	GCATGTCTGCAGTTTGACTGACGACGACTAATTTAAACTTGGAGCTGTG AGATTGTCAGTACGGGTGTAGGTATGAACATCTCAGATGTATGCGAACG TGT	plus	QFhb- 5A	5AS
KASP.2D.1	GTGTGTGAAGACTGGGGGTTTTCTGGAGAAACTGAACGTGCGCAGCCAAT CGATCAAACTACCGCTTCATTTTCTTAGAATAATCGAATGAGCAGAGCC CGA	minus	Qclu.ya s-2D	2D
KASP.2D.2	ATGATTTGATTAAAATTGGCACAAAGCAACGAGTCTAAAAACATCCATAA TAAGAGCATATCGAGTACAACAACGTAGAACCAAGACAAAGACGCA ACCT	minus	Qclu.ya s-2D	2D
KASP10238	TCTGCTTCTCTGTTGGGCAACGGAGCGTAGTACTGGCGGGGTCTCCTTT CCGCTCCTGCAGGTCCTACCGCCGCCGTGGTGAACAGGTGAAGGAGAGG AG	minus	QFhb- 2DL	2DL
KASP12056	TGACATGGCAATGAAGCTGGTATTTTATCATCGCTGCAGCTTAACATATG CCAAACATTGCCACCGTGGCAGATCTGCCTTCCAAAACCACCTTGGAGT TA	plus	QFhb- 2DL	2DL
KASPGBS0800	GACGAGGACACGGCCGTGACGGCAATCGAGCACACGGTAATGACGGCG ATTGCTGCAGTGTCCGAGGTCAAAACGCTCCAAAGGGGTGCCCCCGTG GGGT	minus	QTL3B Sd	3BS
KASPGBS1487	TCTGCTTTGGATGTTGCAGTCAAGGGAGTGAGTGTACCATGAAAGTGTT GGCAAATATATAGGGGCGCTGCAGGATTGGAGTAGAGTGGCGGGGCAAG TAAG	minus	QTL2D	2D
KASPGBS1989	TTAAGAAGCCGTGAACGGGCCTGATTGAAGGTAGGGAACGGGTTTTGCA TCGGAAGGACGGTGGCGATCACCTGGCATCGATGTGAAAGACCTCGCAG AAG	minus	QTL3B Sd	3BS

KASPGBS1989	CTTCTGTGAGGCCTCTCACGCCGATGCCAGGTGATCGCCACCGTCCTTCC GATGCAAAACCCGTTCCCTACCTTCAATCAGGCCCGTTCACGGCTTCTTA A	plus	QTL3B Sd	3BS
KASPGBS2285	CAATCTCCTGAGGAAGGAAAGCCAGCCCCAGGCTCTCGTTTTCCTCGTC CAAGACCCGCAACGCGGGATTCCAGACGGACGTATGCCTGCAGCCGAG CGCG	minus	QTL3B Sc	3BS
KASPGBS2377	TGCCTAATCACATGTCTGTGAATCTCCATGCCTCCTTTGAACTCTCTGTT ATGTGATCACGTTGCGCCTGCAGGTGGAAGGCCGTGGCGAAAACCTCCG GC	minus	QTL3B Sd	3BS
KASPGBS2600	GTAAAGCTCTTCAAGAGAGGAACTTGGCCTTAGATTACTCGGTCCGAAG CAGCGGGAGTATGGTCAAGCAAAGTCCTTGAGCTGCTGTGATGAAGATG GTT	minus	QTL3A	3A
KASPGBS2710	GACGGTGGTGGTGGTGCGGGGCGCGGGGACGCTGCAGGTGCAGGGCCGT GGCGGTAGCCTCCGCGTCCAGGTCCAGGCGAAGGTTGCCGCTGCGAGAA AGAA	plus	QTL3D L	3DL
KASPGBS2882	TTCTCGGCAGAACTGCTGCGTCTTAAACCAGATCTGGTGAAATAGCAGT CTACCACTGAGATACAAACCAAAC	minus	QTL3B Sc	3BS
KASPGBS3012	GGCAGTTGGAGAGTTTATGTTGTTGATGACTTCCAAACAATCAGACACG ACGAAGATGGACGACTGCAGAAGATCTGCTGCGAGCGAAAGAGCTTCA TTGC	minus	QTL4D	4D
snp3BS-8	GAAACAAAGCAGCCTTAGGTCAATAGTTTGAAATTTTCATATCAACACA AGGATAACAACCTTGCAAATGCATGTGCATTATAATGGCAGACTACAAT CTT	minus	Fhb1	3BS

Il panel Agriseq-IonS5 verrà quindi sviluppato a partire dalle sequenze individuate (riportate nell'Allegato 6). Questo pannello verrà poi utilizzato per la validazione dei marcatori SNP identificati e successivamente per genotipizzare i 578 genotipi di frumento tenero e duro oggetto di questo studio e potrà in seguito essere utilizzato anche in successivi studi di genotipizzazione di frumento.

5. CONCLUSIONI

Nel corso di questo progetto di tesi è stato condotto uno studio sulla resistenza a *Fusarium head blight* di una vasta collezione di 578 genotipi di frumento. Dai risultati delle analisi fenotipiche è stato possibile dimostrare l'esistenza di variabilità genetica in termini di resistenza alla malattia tra i genotipi di frumento tenero. Tuttavia, non è stato possibile dimostrare la presenza di tale variabilità tra i genotipi di frumento duro, in quanto non è stato possibile analizzarli perché le piante sono state danneggiate a causa delle forti precipitazioni verificatesi durante il periodo dello studio. Per quanto riguarda la popolazione studiata di frumento tenero è stato possibile identificare genotipi promettenti, che dimostrano una maggiore resistenza, e che potrebbero rappresentare delle risorse importanti per lo sviluppo di nuove varietà di frumento resistenti in programmi di miglioramento genetico.

Inoltre, la presente ricerca ha permesso di identificare circa 100 marcatori molecolari che verranno utilizzati per lo sviluppo di un panel Agriseq-IonS5. Questo panel verrà poi utilizzato per genotipizzare la popolazione di frumento coinvolta in questo studio, con l'obiettivo di identificare, da un punto di vista molecolare, caratteri di resistenza a FHB, permettendo così di verificare quali siano i geni/QTL di resistenza presenti in ogni singolo genotipo rendendo possibile la piramidazione di differenti geni di resistenza in un unico genotipo. Inoltre, permetterà di identificare sia altri caratteri di resistenza a FHB che non sono stati evidenziati dalle analisi fenotipiche, sia altri caratteri di interesse agronomico.

Dall'unione quindi dei risultati fenotipici riportati in questo progetto e dei risultati genotipici che si otterranno in seguito alla genotipizzazione con Agriseq-IonS5 si ricaveranno informazioni utili per programmi di sviluppo di varietà di frumento resistenti. Saranno comunque necessarie ricerche future per confermare e approfondire la conoscenza sui caratteri di resistenza dei genotipi di frumento che hanno dimostrato risultati promettenti.

BIBLIOGRAFIA

- Aravind, J., Mukesh Sankar, S., Wankhede, D. P., and Kaur, V., 2023. AugmentedRCBD: Analysis of Augmented Randomised Complete Block Designs. R package version 0.1.7.9000. https://aravindj.github.io/augmentedRCBD/https://cran.r-project.org/package=augmentedRCBD.
- Arpae. 2023, May. Bollettino mensile Maggio 2023. https://www.arpae.it/it/temiambientali/meteo/report-meteo/bollettini-mensili/bm_202305-1.pdf/view
- Atlasbig. I principali paesi produttori di grano al mondo. 2023. https://www.atlasbig.com/it/paesi-per-produzione-di-grano
- Badea, A., Eudes, F., Graf, R. J., Laroche, A., Gaudet, D. A. e Sadasivaiah, R. S., 2008. Phenotypic and marker-assisted evaluation of spring and winter wheat germplasm for resistance to fusarium head blight. Euphytica, 164(3), 803–819. https://doi.org/10.1007/s10681-008-9735-0
- Bansal, M., Adamski, N. M., Puneet Inder Toor, Kaur, S., Sharma, A., Srivastava, P. et al., 2021. A robust KASP marker for selection of four pairs of linked leaf rust and stripe rust resistance genes introgressed on chromosome arm 5DS from different wheat genomes. Molecular Biology Reports, 48(6), 5209–5216. https://doi.org/10.1007/s11033-021-06525-4
- Bariana, H., Forrest, K., Qureshi, N., Miah, H., Hayden, M., Bansal, U., 2016. Adult plant stripe rust resistance gene Yr71 maps close to Lr24 in chromosome 3D of common wheat. Molecular Breeding, 36(7). https://doi.org/10.1007/s11032-016-0528-1
- Bariana, H., Kant, L., Qureshi, N., Forrest, K., Miah, H., Bansal, U., 2022. Identification and Characterisation of Stripe Rust Resistance Genes Yr66 and Yr67 in Wheat Cultivar VL Gehun 892. Agronomy, 12(2), 318. https://doi.org/10.3390/agronomy12020318
- Bayer Crop Science. 2019. Fusarium head blight Diseases. https://www.crop.bayer.com.au/pests/diseases/fusarium-head-blight
- Bentivenga, G., Spina, A., Ammar, K., Allegra, M. e Cacciola, S. O., 2020. Screening of Durum Wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.)

Italian Cultivars for Susceptibility to Fusarium Head Blight Incited by Fusarium graminearum. Plants, 10(1), 68. https://doi.org/10.3390/plants10010068

- Bernardo, A. N., Ma, H., Zhang, D., Bai, G., 2011. Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance. Molecular Breeding, 29(2), 477–488. https://doi.org/10.1007/s11032-011-9565-y
- Buerstmayr, H., Lemmens, M., Hartl, L., Doldi, L., Steiner, B., Stierschneider, M. e Ruckenbauer, P., 2002. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theoretical and Applied Genetics, 104(1), 84–91. https://doi.org/10.1007/s001220200009
- Bugiani, R., 2013. Fusariosi della spiga sempre più diffusa. https://terraevita.edagricole.it/tecnica-tecnologia/colture/fusariosi-della-spigasempre-piu-diffusa/
- Burgueño, J., Crossa, J., Rodríguez, F. and Yeater, K.M., 2018. Augmented Designs-Experimental Designs in Which All Treatments are not Replicated. In Applied Statistics in Agricultural, Biological, and Environmental Sciences (eds B. Glaz and K.M. Yeater). https://doi.org/10.2134/appliedstatistics.2016.0005.c13
- Burton, G.W., 1952. Quantitative Inheritance in Grasses. Proceeding of 6th International Grassland Congress, Vol. 1, Pennsylvania State College, 17-23 August 1952, 277-283
- Cai, J., Wang, S., Su, Z., Li, T., Zhang, X., Bai, G., 2019. Meta-analysis of QTL for Fusarium head blight resistance in Chinese wheat landraces. Crop Journal, 7(6), 784– 798. https://doi.org/10.1016/j.cj.2019.05.003
- Carpenter, N. R., Wright, E. M., Malla, S., Singh, L. et al., 2020. Identification and validation of Fusarium head blight resistance QTL in the U.S. soft red winter wheat cultivar "Jamestown." Crop Science, 60(6), 2919–2930. https://doi.org/10.1002/csc2.20307
- Chen, Y., Carver, B. F., Wang, S., Zhang, F., Yan, L., 2009. Genetic loci associated with stem elongation and winter dormancy release in wheat. Theoretical and Applied Genetics, 118(5), 881–889. https://doi.org/10.1007/s00122-008-0946-5
- Chhetri, M., Bariana, H., Wong, D., Sohail, Y., Hayden, M., Bansal, U., 2017.

Development of robust molecular markers for marker-assisted selection of leaf rust resistance gene Lr23 in common and durum wheat breeding programs. Molecular Breeding, 37(3). https://doi.org/10.1007/s11032-017-0628-6

- Cinquemani, T., 2023. Fusariosi della spiga, che cos'è e come si difende il grano. https://agronotizie.imagelinenetwork.com/difesa-e-diserbo/2023/04/26/fusariosidella-spiga-che-cos-e-e-come-si-difende-il-grano/78778
- Cui, C., Lu, Q., Zhao, Z., Lu, S., Duan, S., et al., 2022. The fine mapping of dwarf gene Rht5 in bread wheat and its effects on plant height and main agronomic traits. Planta, 255(6). https://doi.org/10.1007/s00425-022-03888-1
- Cuthbert, P. A., Somers, D. J. e Brûlé-Babel, A. L. 2007. Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet, 114(3), 429–437. https://doi.org/10.1007/s00122-006-0439-3
- de Sousa, T., Ribeiro, M., Sabença, C. e Igrejas, G., 2021. The 10,000-Year Success Story of Wheat! Foods, 10(9), 2124. https://doi.org/10.3390/foods10092124
- Díaz, A., Zikhali, M., Turner, A. S., Isaac, P. e Laurie, D. A., 2012. Copy Number Variation Affecting the Photoperiod-B1 and Vernalization-A1 Genes Is Associated with Altered Flowering Time in Wheat (Triticum aestivum). PLoS ONE, 7(3), e33234. https://doi.org/10.1371/journal.pone.0033234
- Durante, M., Lenucci, M. S., Rescio, L., Mita, G. e Caretto, S., 2012. Durum wheat by-products as natural sources of valuable nutrients. Phytochemistry Reviews, 11(2-3), 255–262. https://doi.org/10.1007/s11101-012-9232-x
- Dweba, C. C., Figlan, S., Shimelis, H. A., Motaung, T. E., Sydenham, S., Mwadzingeni, L. e Tsilo, T. J., 2017. Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Protection, 91, 114–122. https://doi.org/10.1016/j.cropro.2016.10.002
- Edwards, S. G., 2004. Influence of agricultural practices on fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicology Letters, 153(1), 29–35. https://doi.org/10.1016/j.toxlet.2004.04.022
- Fang, T., Lei, L., Li, G., Powers, C., Hunger, R. M., Carver, B. F. e Yan, L., 2020. Development and deployment of KASP markers for multiple alleles of Lr34 in

wheat. Theoretical and Applied Genetics, 133(7), 2183–2195. https://doi.org/10.1007/s00122-020-03589-x

- FAO. 2020. FAOSTAT. https://www.fao.org/faostat/en/#data/QCL/visualize
- Federer, W. T., 1961. Augmented Designs with One-Way Elimination of Heterogeneity. Biometrics, 17(3), 447. https://doi.org/10.2307/2527837
- Focker, M., van der Fels-Klerx, H. J., Magan, N., Edwards, S. G. et al., 2021. The impact of management practices to prevent and control mycotoxins in the European food supply chain: MyToolBox project results. World Mycotoxin Journal, 14(2), 139–154. https://doi.org/10.3920/wmj2020.2588
- Friskop, A., Zhong, S. e Brueggeman, R., 2018. Fusarium Head Blight (Scab) of Small Grains. https://www.ndsu.edu/agriculture/ag-hub/publications/fusarium-headblight-scab-small-grains
- Fu, D., Szűcs, P., Yan, L., Helguera, M., Skinner, J. S., von Zitzewitz, J., et al., 2005. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Molecular Genetics and Genomics, 273(1), 54–65. https://doi.org/10.1007/s00438-004-1095-4
- Genetic Information Fusarium Head Blight Resistance Integrated Breeding Platform, 2019. https://www.integratedbreeding.net/678/breedingservices/predictive-markers/genetic-information-fusarium-head-blight-resistance
- GermoglioVerde, 2018. Le caratteristiche botaniche del frumento. https://germoglioverde.altervista.org/le-caratteristiche-botaniche-del-frumento/
- Gessese, M., Bariana, H., Wong, D., Hayden, M. e Bansal, U., 2019. Molecular Mapping of Stripe Rust Resistance Gene Yr81 in a Common Wheat Landrace Aus27430. Plant Disease, 103(6), 1166–1171. https://doi.org/10.1094/pdis-06-18-1055-re
- Gill, H. S., Li, C., Jagdeep Singh Sidhu, Liu, W., Wilson, D., Bai, G. et al., 2019.
 Fine Mapping of the Wheat Leaf Rust Resistance Gene Lr42. International Journal of Molecular Sciences, 20(10), 2445–2445. https://doi.org/10.3390/ijms20102445
- Gilsinger, J., Kong, L., Shen, X. e Ohm, H., 2005. DNA markers associated with low Fusarium head blight incidence and narrow flower opening in wheat. Theoretical and

Applied Genetics, 110(7), 1218-1225. https://doi.org/10.1007/s00122-005-1953-4

- Governo del Saskatchewan ©, 2023. Fusarium Head Blight. https://www.saskatchewan.ca/business/agriculture-natural-resources-andindustry/agribusiness-farmers-and-ranchers/crops-and-irrigation/disease/fusariumhead-blight
- Gunupuru L.R., Perochon A. e Doohan F. M., 2017. Deoxynivalenol resistance as a component of FHB resistance. Trop. Plant Pathol, 42(3), 175–183. https://doi.org/10.1007/s40858-017-0147-3
- Guo, J., Liang, X., Hou Yanlin, Cai, J., Shen, X., Zhou, T. et al., 2015. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theoretical and Applied Genetics, 128(11), 2301–2316. https://doi.org/10.1007/s00122-015-2586-x
- Haidukowski, M., Pascale, M., Perrone, G., Pancaldi, D., Campagna, C. e Visconti, A., 2004. Effect of fungicides on the development of Fusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions with Fusarium graminearum and Fusarium culmorum. Journal of the Science of Food and Agriculture, 85(2), 191–198. https://doi.org/10.1002/jsfa.1965
- Haile, J. K., N'Diaye, A., Walkowiak, S., Nilsen, K. T., Clarke, J. M., Kutcher, H. R. et al., 2019. Fusarium Head Blight in Durum Wheat: Recent Status, Breeding Directions, and Future Research Prospects. Phytopathology®, 109(10), 1664–1675. https://doi.org/10.1094/phyto-03-19-0095-rvw
- He, C., Holme, J. e Anthony, J., 2014. SNP Genotyping: The KASP Assay. In: Fleury, D., Whitford, R. (eds) Crop Breeding. Methods in Molecular Biology, vol 1145. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0446-4_7
- Hu, W., Fu, L., Gao, D., Yong, Z. e Zhang, C., 2022. Pyramiding Three QTL Improved Fusarium Head Blight Resistance in Wheat (Triticum Aestivum L.). Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-1200823/v1
- Hu, W., Gao, D., Liao, S., Cheng, S., Jia, J. e Xu, W., 2023. Identification of a pleiotropic QTL cluster for Fusarium head blight resistance, spikelet compactness, grain number per spike and thousand-grain weight in common wheat. Crop Journal, 11(2), 672–677. https://doi.org/10.1016/j.cj.2022.09.007

- Hu, W., Liao, S., Zhao, D., Jia, J., Xu, W. e Cheng, S., 2022. Identification and Validation of Quantitative Trait Loci for Grain Size in Bread Wheat (Triticum aestivum L.). Agriculture, 12(6), 822–822. https://doi.org/10.3390/agriculture12060822
- Hu, Y., Huang, X., Wang, F., He, Y., Feng, L., Jiang, B. et al., 2021. Development and validation of gene-specific KASP markers for YrAS2388R conferring stripe rust resistance in wheat. Euphytica, 217(11). https://doi.org/10.1007/s10681-021-02937-2
- Istituto Superiore di Sanità. 2023. Normativa europea di riferimento. https://www.iss.it/-/attivit-11
- Jiang, P., Wu, L., Ren, Y., Zhang, H., Wu, L., He, Y. et al., 2023. Identification of adult plant stripe rust resistance QTLs in Jiangsu wheat varieties Ningmai 9 and Yangmai 158. Plant Pathology. https://doi.org/10.1111/ppa.13709
- Jiang, P., Zhang, X., Wu, L., He, Y., Zhuang, W., Cheng, X. et al., 2019. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathology, 69(2), 249–258. https://doi.org/10.1111/ppa.13130
- Kamle, M., Mahato, D. K., Gupta, A., Pandhi, S., Sharma, B., Dhawan, K., et al., 2022. Deoxynivalenol: An Overview on Occurrence, Chemistry, Biosynthesis, Health Effects and Its Detection, Management, and Control Strategies in Food and Feed. Microbiology Research, 13(2), 292–314. https://doi.org/10.3390/microbiolres13020023
- Kassa, M. T., You, F. M., Hiebert, C. W., Pozniak, C. J., Fobert, P. R., Sharpe, A. G., et al., 2017. Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16. BMC Plant Biology, 17(1). https://doi.org/10.1186/s12870-017-0993-7
- Kaur, B., Mavi, G.S., Gill, M.S. et al., 2020. Utilization of KASP technology for wheat improvement. Cereal Research Communications 48, 409–421. https://doi.org/10.1007/s42976-020-00057-6
- Khalid, M., Afzal, F., Gul, A., Amir, R., Subhani, A., Ahmed, Z., et al., 2019. Molecular Characterization of 87 Functional Genes in Wheat Diversity Panel and Their Association With Phenotypes Under Well-Watered and Water-Limited Conditions. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00717

- Koehler, A., 2023, May 12. Scouting Fields for Fusarium Head Blight | Weekly Crop Update. https://sites.udel.edu/weeklycropupdate/?p=22192
- Kolmer, J. A., Bernardo, A., Bai, G., Hayden, M. e Anderson, J. A., 2019. Thatcher wheat line RL6149 carries Lr64 and a second leaf rust resistance gene on chromosome 1DS. Theoretical and Applied Genetics, 132(10), 2809–2814. https://doi.org/10.1007/s00122-019-03389-y
- Kumar, S., Bhardwaj, S. C., Gangwar, O. P., Sharma, A., Qureshi, N., Kumaran, V. V. et al., 2021. Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. Theoretical and Applied Genetics, 134(3), 849–858. https://doi.org/10.1007/s00122-020-03735-5
- Li, H., Zhang, F., Zhao, J., Bai, G., Paul St. Amand, Bernardo, A. et al., 2022. Identification of a novel major QTL from Chinese wheat cultivar Ji5265 for Fusarium head blight resistance in greenhouse. Theoretical and Applied Genetics, 135(6), 1867–1877. https://doi.org/10.1007/s00122-022-04080-5
- Li, L., Yao, F., Guan, F., Cheng, Y., Duan, L., Zhao, X. Et al., 2021. A Stable Quantitative Trait Locus on Chromosome 5BL Combined with Yr18 Conferring High-Level Adult Plant Resistance to Stripe Rust in Chinese Wheat Landrace Anyuehong. Phytopathology, 111(9), 1594–1601. https://doi.org/10.1094/phyto-10-20-0465-r
- Li, T., Li, Q., Wang, J., Yang, Z., Tang, Y., Su, Y. et al., 2022. High-resolution detection of quantitative trait loci for seven important yield-related traits in wheat (Triticum aestivum L.) using a high-density SLAF-seq genetic map. BMC Genomic Data, 23(1). https://doi.org/10.1186/s12863-022-01050-0
- Lionetti, V., Giancaspro, A., Fabri, E., Giove, S. L., Reem, N., Zabotina, O. A. et al., 2015. Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum. BMC Plant Biology, 15(1). https://doi.org/10.1186/s12870-014-0369-1
- Lush, J. L., 1940. Inter-size correlation regression of offspring on dairy as a method of estimating heritability of characters. Proceedings American Soceity of Animal Production, 33, 293-301.
- Ma, H., Liu, Y., Zhao, X., Zhang, S. e Ma, H., 2022. Exploring and applying genes

to enhance the resistance to Fusarium head blight in wheat. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1026611

- Ma, J., Xiao, Y., Hou, L. e He, Y., 2021. Combining Protein Content and Grain Yield by Genetic Dissection in Bread Wheat under Low-Input Management. Foods, 10(5), 1058. https://doi.org/10.3390/foods10051058
- Ma, L.-J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O'Donnell, K., Trail, F., Gardiner, D. M., Manners, J. M., e Kazan, K., 2013. Fusarium Pathogenomics. Annual Review of Microbiology, 67(1), 399–416. https://doi.org/10.1146/annurevmicro-092412-155650
- Ma, Z., Xie, Q., Li, G., Jia, H., Zhou, J., Kong, Z. et al., 2020. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theoretical and Applied Genetics, 133(5), 1541–1568. https://doi.org/10.1007/s00122-019-03525-8
- McCartney, C. A., Brûlé-Babel, A. L., Fedak, G., Martin, R. A., McCallum, B. D., Gilbert, J. et al., 2016. Fusarium Head Blight Resistance QTL in the Spring Wheat Cross Kenyon/86ISMN 2137. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01542
- McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G. e Van Sanford, D., 2012. A Unified Effort to Fight an Enemy of Wheat and Barley: Fusarium Head Blight. Plant Disease, 96(12), 1712–1728. https://doi.org/10.1094/pdis-03-12-0291-fe
- McMullen, M., Jones, R. e Gallenberg, D., 1997. Scab of Wheat and Barley: A Reemerging Disease of Devastating Impact. Plant Disease, 81(12), 1340–1348. https://doi.org/10.1094/pdis.1997.81.12.1340
- Mesterhazy, A., 1995. Types and components of resistance to Fusarium head blight of wheat. Plant Breeding, 114(5), 377–386. https://doi.org/10.1111/j.1439-0523.1995.tb00816.x
- Mohd Shahnawaz Khan, Athar, T., Choudhary, S., Deval, R., Sait Gezgin, Mehmet Hamurcu et al., 2020. Fusarium head blight in wheat: contemporary status and molecular approaches. 3 Biotech, 10(4). https://doi.org/10.1007/s13205-020-2158-x
- Moretti, A., Panzarini, G., Somma, S., Campagna, C., Ravaglia, S., Logrieco, A. e

Solfrizzo, M., 2014. Systemic Growth of F. graminearum in Wheat Plants and Related Accumulation of Deoxynivalenol. Toxins, 6(4), 1308–1324. https://doi.org/10.3390/toxins6041308

- Moretti, A., Pascale, M. e Logrieco, A. F., 2019. Mycotoxin risks under a climate change scenario in Europe. Trends in Food Science & Technology, 84, 38–40. https://doi.org/10.1016/j.tifs.2018.03.008
- Mueller, D. e Robertson, A., 2008. Preventative vs. Curative Fungicides | Integrated Crop Management. https://crops.extension.iastate.edu/cropnews/2008/07/preventative-vs-curative-fungicides
- Neelam, K., Brown-Guedira, G., Huang, L., 2012. Development and validation of a breeder-friendly KASPar marker for wheat leaf rust resistance locus Lr21. Molecular Breeding, 31(1), 233–237. https://doi.org/10.1007/s11032-012-9773-0
- Nganje, W. E., Bangsund, D. A., Leistritz, F. L., Wilson, W. W. e Tiapo, N. M., 2004. Regional Economic Impacts of Fusarium Head Blight in Wheat and Barley. Review of Agricultural Economics, 26(3), 332–347. https://doi.org/10.1111/j.1467-9353.2004.00183.x
- Nilüfer A., 2022. Wheat Stripe, Leaf, and Stem Rust Diseases. IntechOpen EBooks. https://doi.org/10.5772/intechopen.107010
- Nsabiyera, V., Qureshi, N., Bariana, H. S., Wong, D., Forrest, K. L., Hayden, M. J., Bansal, U. K., 2016. Molecular markers for adult plant leaf rust resistance gene Lr48 in wheat. Molecular Breeding, 36(6). https://doi.org/10.1007/s11032-016-0488-5
- Pakeerathan, K., Bariana, H., Qureshi, N., Wong, D., Hayden, M., Bansal, U., 2019. Identification of a new source of stripe rust resistance Yr82 in wheat. Theoretical and Applied Genetics, 132(11), 3169–3176. https://doi.org/10.1007/s00122-019-03416-y
- Pandurangan, S., Nilsen, K. T. e Kumar, S., 2021. Validation of a SNP-KASP marker for the Fusarium head blight resistance quantitative trait loci on chromosome 5AS. Canadian Journal of Plant Science, 101(1), 135–139. https://doi.org/10.1139/cjps-2020-0099
- Parry, D. W., Bayles, R. A., & Priestley, R. H., 1984. Resistance of winter wheat varieties to ear blight (Fusarium culmorum). Journal of the National Institute of

Agricultural Botany.

- Parry, D. W., Jenkinson, P. e McLeod, L. 1995. Fusarium ear blight (scab) in small grain cereals. A review. Plant Pathology, 44(2), 207–238. https://doi.org/10.1111/j.1365-3059.1995.tb02773.x
- Pasquali, M., Beyer, M., Logrieco, A., Audenaert, K., Balmas, V., Basler, R. et al., 2016. A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00406
- Pestka, J. J., 2010. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 84(9), 663–679. https://doi.org/10.1007/s00204-010-0579-8
- Petersen, S., Lyerly, J., Maloney, P., Brown-Guedira, G., Cowger, C., Correia, M. et al., 2016. Mapping of Fusarium Head Blight Resistance Quantitative Trait Loci in Winter Wheat Cultivar NC-Neuse. Crop Science, 56(4), 1473–1483. https://doi.org/10.2135/cropsci2015.05.0312
- Piani G. 2019. Confronto fra varietà di frumento duro coltivate con metodo convenzionale nella collina litoranea marchigiana. Relatore Santilocchi R., correlatore Bianchelli M. Dipartimento di scienze agrarie alimentari e ambientali. Facoltà di agraria, Università Politecnica della Marche
- Porceddu, E. e Blanco, A., 2014. Evolution of durum wheat breeding in Italy breeding of durum wheat breeding in Italy. (pp. 157–173). Bari: CIHEAM: In: Porceddu E. (ed.), Damania A.B. (ed.), Qualset C.O. (ed.). Proceedings of the International Symposium on Genetics and breeding of durum wheat.
- Powell, A. J. e Vujanovic, V., 2021. Evolution of Fusarium Head Blight Management in Wheat: Scientific Perspectives on Biological Control Agents and Crop Genotypes Protocooperation. Applied Sciences, 11(19), 8960. https://doi.org/10.3390/app11198960
- Prodi, A., Tonti, S., Nipoti, P., D. Pancaldi e Pisi, A., 2009. Identification of deoxynivalenol and nivalenol producing chemotypes of Fusarium graminearum isolates from durum wheat in a restricted area of northern Italy. Journal of plant pathology, 91(3), 727–731. https://doi.org/10.4454/jpp.v91i3.570

- Qi Lv, Pumphrey, M. O., Friebe, B., Chen, P.-H. e Gill, B. S. 2008. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet, 117(7), 1155–1166. https://doi.org/10.1007/s00122-008-0853-9
- Qureshi, N., Bariana, H. S., Zhang, P., McIntosh, R., Bansal, U. K., Wong, D. et al., 2018. Genetic Relationship of Stripe Rust Resistance Genes Yr34 and Yr48 in Wheat and Identification of Linked KASP Markers. Plant Disease, 102(2), 413–420. https://doi.org/10.1094/pdis-08-17-1144-re
- Qureshi, N., Kandiah, P., Gessese, M. K., Nsabiyera, V., Wells, V., Babu, P. et al., 2018. Development of co-dominant KASP markers co-segregating with Ug99 effective stem rust resistance gene Sr26 in wheat. Molecular Breeding, 38(8). https://doi.org/10.1007/s11032-018-0854-6
- Ramirez-Gonzalez, R. H., Segovia, V., Bird, N., Fenwick, P., Holdgate, S., Berry, S. et al., 2014. RNA Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnology Journal, 13(5), 613–624. https://doi.org/10.1111/pbi.12281
- Rasheed, A., Wen, W., Gao, F., Zhai, S., Jin, H., Liu, J. et al., 2016. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 129(10), 1843–1860. https://doi.org/10.1007/s00122-016-2743-x
- Rossi, V., Terzi, V., Moggi, F., Morcia, C., Faccioli, P., Haidukowski, M. e Pascale, M., 2007. Assessment of Fusarium infection in wheat heads using a quantitative polymerase chain reaction (qPCR) assay. Food Additives and Contaminants, 24(10), 1121–1130. https://doi.org/10.1080/02652030701551818
- Rudd, J. C., Horsley, R. D., McKendry, A. L. e Elias, E. M., 2001. Host Plant Resistance Genes for Fusarium Head Blight: Sources, Mechanisms, and Utility in Conventional Breeding Systems. Crop Science, 41(3), 620–627. https://doi.org/10.2135/cropsci2001.413620x
- Saharan, M. S., 2019. Current status of resistant source to Fusarium head blight disease of wheat: a review. Indian Phytopathology, 73(1), 3–9. https://doi.org/10.1007/s42360-019-00186-x

- Shah, L., Ali, A., Yahya, M., Zhu, Y., Wang, S., Si, H. et al., 2017. Integrated control of fusarium head blight and deoxynivalenol mycotoxin in wheat. Plant Pathology, 67(3), 532–548. https://doi.org/10.1111/ppa.12785
- Shen, X., Zhou, M., Lu, W. e Ohm, H., 2003. Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theoretical and Applied Genetics, 106(6), 1041–1047. https://doi.org/10.1007/s00122-002-1133-8
- Shewry, P. R. e Hey, S. J., 2015. The Contribution of Wheat to Human Diet and Health. Food and Energy Security, 4(3), 178–202. https://doi.org/10.1002/fes3.64
- Singh, L., Anderson, J. A., Chen, J., Gill, B. S., Tiwari, V. K., Rawat, N., 2019. Development and Validation of a Perfect KASP Marker for Fusarium Head Blight Resistance Gene Fhb1 in Wheat. The Plant Pathology Journal, 35(3), 200–207. https://doi.org/10.5423/ppj.oa.01.2019.0018
- Su, Z., Jin, S., Zhang, D., Bai, G., 2018. Development and validation of diagnostic markers for Fhb1 region, a major QTL for Fusarium head blight resistance in wheat. Theoretical and Applied Genetics, 131(11), 2371–2380. https://doi.org/10.1007/s00122-018-3159-6
- Sun, C., Dong, Z., Zhao, L., Ren, Y., Zhang, N. e Chen, F., 2020. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal, 18(6), 1354–1360. https://doi.org/10.1111/pbi.13361
- Tariq, M., Mirza, J. I., Hussain, S., Qureshi, N., Forrest, K., Bariana, H., Bansal, U., 2021. Molecular mapping of all stage stripe rust resistance gene YrPak in wheat landrace PI388231. Euphytica, 217(6). https://doi.org/10.1007/s10681-021-02856-2
- Taxonomy browser (Triticum). (n.d.). https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=4564
- Thermo Fisher Scientific Inc. 2006-2023. https://www.thermofisher.com/it/en/home/life-science/agriculturalbiotechnology/agrigenomics/agriseq-targeted-genotyping-sequencing.html
- Toth, J. A., Sudhakar Pandurangan, Burt, A. J., J. Mitchell Fetch, Kumar, S., 2019. Marker-assisted breeding of hexaploid spring wheat in the Canadian prairies, 99(2),

111-127. https://doi.org/10.1139/cjps-2018-0183

- Trail, F., 2009. For Blighted Waves of Grain: Fusarium graminearum in the Postgenomics Era: Figure 1. Plant Physiology, 149(1), 103–110. https://doi.org/10.1104/pp.108.129684
- Ur Rehman, S., Ali Sher, M., Saddique, M. A. B., Ali, Z., Khan, M. A., Mao, X. et al., 2021. Development and Exploitation of KASP Assays for Genes Underpinning Drought Tolerance Among Wheat Cultivars From Pakistan. Frontiers in Genetics, 12. https://doi.org/10.3389/fgene.2021.684702
- Visconti, A. e Pascale, M., 2010. REVIEW: An Overview on Fusarium Mycotoxins in the Durum Wheat Pasta Production Chain. Cereal Chemistry, 87(1), 21–27. https://doi.org/10.1094/cchem-87-1-0021
- Wegulo, S. N., Baenziger, P. S., Hernandez Nopsa, J., Bockus, W. W. e Hallen-Adams, H., 2015. Management of Fusarium head blight of wheat and barley. Crop Protection, 73, 100–107. https://doi.org/10.1016/j.cropro.2015.02.025
- Wu, J., Zeng, Q., Wang, Q., Liu, S., Yu, S., Huang, S. et al., 2018. SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theoretical and Applied Genetics, 131(7), 1481–1496. https://doi.org/10.1007/s00122-018-3092-8
- Yan, L., Helguera, M., Kato, K., Fukuyama, S., Sherman, J. e Dubcovsky, J., 2004. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theoretical and Applied Genetics, 109(8), 1677–1686. https://doi.org/10.1007/s00122-004-1796-4
- Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M. et al., 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences, 103(51), 19581–19586. https://doi.org/10.1073/pnas.0607142103
- Zadoks, J.C., T.T. Chang e C.F. Konzak, 1974. "A decimal code for the growth stages of cereals". Weed Research. 14 (6): 415–421. doi:10.1111/j.1365-3180.1974.tb01084.x
- Zhang, P., Guo, C., Liu, Z., Bernardo, A., Ma, H., Jiang, P. et al., 2020. Quantitative trait loci for Fusarium head blight resistance in wheat cultivars Yangmai 158 and Zhengmai 9023. The Crop Journal, 9(143-153).

https://doi.org/10.1016/j.cj.2020.05.007

- Zhang, R., Singh, R. P., Lillemo, M., He, X., Randhawa, M. S., Huerta-Espino, J. et al., 2019. Two Main Stripe Rust Resistance Genes Identified in Synthetic-Derived Wheat Line Soru#1. Phytopathology®, 109(1), 120–126. https://doi.org/10.1094/phyto-04-18-0141-r
- Zhao, L., Ge, W., Lyu, Z., Xu, S., Xu, Y., Bernardo, A. et al., 2022. Development and validation of diagnostic markers for the wheat Fusarium head blight resistance gene Fhb7. Crop Science, 62(5), 1903–1911. https://doi.org/10.1002/csc2.20754
- Zhu, Z., Chen, L., Zhang, W., Yang, L., Zhu, W., Li, J. et al., 2020. Genome-Wide Association Analysis of Fusarium Head Blight Resistance in Chinese Elite Wheat Lines. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00206
- Zhu, Z., Hao, Y. e Mergoum, M., 2019. Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. The Crop Journal, 7(6), 730–738. https://doi.org/10.1016/j.cj.2019.06.003

ALLEGATI

ALLEGATO 1

Tabella 1A: Elenco varietà di frumento tenero oggetto di studio riportate mediante codice univoco e origine

Codice Univoco	Origine	Codice Univoco	Origine	Codice Univoco	Origine
FHB_GT23_T1	Italia - Francia	FHB_GT23_39	Italia	FHB_GT23_82	UK
FHB_GT23_T2	Italia - Francia	FHB_GT23_40	Italia	FHB_GT23_83	UK
FHB_GT23_T3	Italia	FHB_GT23_41	Francia	FHB_GT23_84	UK
FHB_GT23_T4	Cina	FHB_GT23_42	Italia	FHB_GT23_85	Francia
FHB_GT23_1	Francia	FHB_GT23_44	Italia	FHB_GT23_86	Francia
FHB_GT23_2	Francia	FHB_GT23_45	Italia	FHB_GT23_87	Francia
FHB_GT23_3	Francia	FHB_GT23_46	Italia - Francia	FHB_GT23_88	UK
FHB_GT23_4	Francia	FHB_GT23_47	Francia	FHB_GT23_89	Spagna
FHB_GT23_5	Italia	FHB_GT23_48	Francia	FHB_GT23_90	Italia
FHB_GT23_6	Francia	FHB_GT23_49	Spagna	FHB_GT23_91	Francia
FHB_GT23_7	Italia - Francia	FHB_GT23_50	Francia	FHB_GT23_92	Spagna
FHB_GT23_8	Francia	FHB_GT23_51	Francia	FHB_GT23_93	Spagna
FHB_GT23_9	Austria	FHB_GT23_52	Francia	FHB_GT23_94	Francia
FHB_GT23_10	Italia	FHB_GT23_53	Australia	FHB_GT23_95	Francia
FHB_GT23_11	Italia - Francia	FHB_GT23_54	Italia	FHB_GT23_96	Italia
FHB_GT23_12	Spagna	FHB_GT23_55	Francia	FHB_GT23_97	Francia
FHB_GT23_13	Italia	FHB_GT23_56	Francia	FHB_GT23_98	Francia
FHB_GT23_14	Belgio	FHB_GT23_57	Francia	FHB_GT23_99	Francia
FHB_GT23_15	Italia	FHB_GT23_58	Italia	FHB_GT23_100	Italia
FHB_GT23_16	Spagna	FHB_GT23_59	Italia	FHB_GT23_101	Spagna
FHB_GT23_17	Italia	FHB_GT23_60	Spagna	FHB_GT23_102	Italia
FHB_GT23_18	Italia	FHB_GT23_61	Polonia	FHB_GT23_103	Austria
FHB_GT23_19	Italia	FHB_GT23_62	Italia	FHB_GT23_104	Austria
FHB_GT23_20	Francia	FHB_GT23_63	Francia	FHB_GT23_105	Italia
FHB_GT23_21	Italia	FHB_GT23_64	Francia	FHB_GT23_106	Spagna
FHB_GT23_22	Austria	FHB_GT23_65	Francia - Italia	FHB_GT23_107	Austria
FHB_GT23_23	Francia	FHB_GT23_66	Polonia	FHB_GT23_108	Italia
FHB_GT23_24	Polonia	FHB_GT23_67	Germania	FHB_GT23_109	Austria
FHB_GT23_25	Austria	FHB_GT23_68	Francia	FHB_GT23_110	Francia
FHB_GT23_26	Italia	FHB_GT23_69	Francia	FHB_GT23_111	Francia
FHB_GT23_27	Francia	FHB_GT23_70	Italia	FHB_GT23_112	Grecia
FHB_GT23_28	Bulgaria	FHB_GT23_71	Italia	FHB_GT23_113	Francia
FHB_GT23_29	Argentina	FHB_GT23_72	Italia	FHB_GT23_114	Francia
FHB_GT23_30	NA	FHB_GT23_73	Italia	FHB_GT23_115	Francia
FHB_GT23_31	Francia	FHB_GT23_74	Italia	FHB_GT23_116	Italia
FHB_GT23_32	Svizzera	FHB_GT23_75	Francia	FHB_GT23_117	Italia
FHB_GT23_33	Francia	FHB_GT23_76	Spagna	FHB_GT23_118	Italia
FHB_GT23_34	Italia	FHB_GT23_77	Francia	FHB_GT23_119	Francia
FHB_GT23_35	Francia	FHB_GT23_78	UK	FHB_GT23_120	Francia
FHB_GT23_36	Italia	FHB_GT23_79	UK	FHB_GT23_121	Italia
FHB_GT23_37	NA	FHB_GT23_80	Francia	FHB_GT23_122	Italia
FHB_GT23_38	Italia	FHB_GT23_81	Danimarca	FHB_GT23_123	Svizzera
FHB_GT23_124	Germania	FHB_GT23_171	Francia	FHB_GT23_218	Germania
--------------	-----------------	--------------	----------	--------------	-------------
FHB_GT23_125	Italia	FHB_GT23_172	Francia	FHB_GT23_219	Francia
FHB_GT23_126	Francia	FHB_GT23_173	Spagna	FHB_GT23_220	Francia
FHB_GT23_127	Francia	FHB_GT23_174	Francia	FHB_GT23_221	Francia
FHB_GT23_128	Italia	FHB_GT23_175	Francia	FHB_GT23_222	Spagna
FHB_GT23_129	Italia	FHB_GT23_176	Francia	FHB_GT23_223	Italia
FHB_GT23_130	Italia	FHB_GT23_177	Francia	FHB_GT23_224	Polonia
FHB_GT23_131	Italia	FHB_GT23_178	Francia	FHB_GT23_225	Italia
FHB_GT23_132	Italia	FHB_GT23_179	Francia	FHB_GT23_226	Francia
FHB_GT23_133	Italia	FHB_GT23_180	Francia	FHB_GT23_227	Lussemburgo
FHB_GT23_134	Italia	FHB_GT23_181	Francia	FHB_GT23_228	Francia
FHB_GT23_135	Italia	FHB_GT23_182	Francia	FHB_GT23_229	Francia
FHB_GT23_136	Italia	FHB_GT23_183	Francia	FHB_GT23_230	Regno unito
FHB_GT23_137	Italia	FHB_GT23_184	Francia	FHB_GT23_231	Francia
FHB_GT23_138	Italia	FHB_GT23_185	Francia	FHB_GT23_232	Regno unito
FHB_GT23_139	Italia	FHB_GT23_186	Francia	FHB_GT23_233	Regno unito
FHB_GT23_140	Italia	FHB_GT23_187	Francia	FHB_GT23_234	Italia
FHB_GT23_141	Italia	FHB_GT23_188	Francia	FHB_GT23_235	Italia
FHB_GT23_142	Francia	FHB_GT23_189	Francia	FHB_GT23_236	Brasile
FHB_GT23_143	Italia	FHB_GT23_190	Francia	FHB_GT23_237	Brasile
FHB_GT23_144	Italia	FHB_GT23_191	Spagna	FHB_GT23_238	Brasile
FHB_GT23_145	Italia	FHB_GT23_192	Francia	FHB_GT23_239	Brasile
FHB_GT23_146	Francia	FHB_GT23_193	Italia	FHB_GT23_240	Brasile
FHB_GT23_147	Francia	FHB_GT23_194	Francia	FHB_GT23_241	Brasile
FHB_GT23_148	Italia	FHB_GT23_195	Italia	FHB_GT23_242	Brasile
FHB_GT23_149	Italia	FHB_GT23_196	Italia	FHB_GT23_243	Brasile
FHB_GT23_150	Francia	FHB_GT23_197	Francia	FHB_GT23_244	Brasile
FHB_GT23_151	Italia	FHB_GT23_198	Italia	FHB_GT23_245	Canada
FHB_GT23_152	Italia	FHB_GT23_199	Italia	FHB_GT23_246	Canada
FHB_GT23_153	Italia	FHB_GT23_200	Francia	FHB_GT23_247	Canada
FHB_GT23_154	Francia	FHB_GT23_201	Francia	FHB_GT23_248	Canada
FHB_GT23_155	Francia	FHB_GT23_202	Italia	FHB_GT23_249	Canada
FHB_GT23_156	Italia	FHB_GT23_203	Italia	FHB_GT23_250	Canada
FHB_GT23_157	Francia	FHB_GT23_204	Italia	FHB_GT23_251	Canada
FHB_GT23_158	Francia	FHB_GT23_205	Italia	FHB_GT23_252	Canada
FHB_GT23_159	Francia	FHB_GT23_206	Francia	FHB_GT23_253	Canada
FHB_GT23_160	Francia	FHB_GT23_207	Francia	FHB_GT23_254	Canada
FHB_GT23_161	Repubblica Ceca	FHB_GT23_208	Francia	FHB_GT23_255	Australia
FHB_GT23_162	Spagna	FHB_GT23_209	Francia	FHB_GT23_256	Australia
FHB_GT23_163	Francia	FHB_GT23_210	Italia	FHB_GT23_257	Australia
FHB_GT23_164	Italia	FHB_GT23_211	Italia	FHB_GT23_258	Australia
FHB_GT23_165	Italia	FHB_GT23_212	Italia	FHB_GT23_259	Australia
FHB_GT23_166	Germania	FHB_GT23_213	NA	FHB_GT23_260	Australia
FHB_GT23_167	Francia	FHB_GT23_214	Italia	FHB_GT23_261	Australia
FHB_GT23_168	Francia	FHB_GT23_215	Francia	FHB_GT23_262	Australia
FHB_GT23_169	Spagna	FHB_GT23_216	Germania	FHB_GT23_263	Australia
FHB_GT23_170	Francia	FHB_GT23_217	Francia	FHB_GT23_264	Australia

FHB_GT23_265	Italia	FHB_GT23_286	Italia	FHB_GT23_307	Francia
FHB_GT23_266	Francia	FHB_GT23_287	Italia	FHB_GT23_308	Francia
FHB_GT23_267	Italia	FHB_GT23_288	Italia	FHB_GT23_309	Francia
FHB_GT23_268	Italia	FHB_GT23_289	Italia	FHB_GT23_310	Francia
FHB_GT23_269	Italia	FHB_GT23_290	Italia	FHB_GT23_311	Francia
FHB_GT23_270	Italia	FHB_GT23_291	Italia	FHB_GT23_312	Francia
FHB_GT23_271	Italia	FHB_GT23_292	Italia	FHB_GT23_313	Francia
FHB_GT23_272	Italia	FHB_GT23_293	Italia	FHB_GT23_314	Italia
FHB_GT23_273	Italia	FHB_GT23_294	Italia	FHB_GT23_315	Italia
FHB_GT23_274	Italia	FHB_GT23_295	Francia	FHB_GT23_316	Italia
FHB_GT23_275	Italia	FHB_GT23_296	Francia	FHB_GT23_317	Italia
FHB_GT23_276	Italia	FHB_GT23_297	Francia	FHB_GT23_318	Italia
FHB_GT23_277	Italia	FHB_GT23_298	Francia	FHB_GT23_319	Italia
FHB_GT23_278	Italia	FHB_GT23_299	Francia	FHB_GT23_320	Francia
FHB_GT23_279	Italia	FHB_GT23_300	Francia	FHB_GT23_321	Francia
FHB_GT23_280	Italia	FHB_GT23_301	Francia	FHB_GT23_322	Francia
FHB_GT23_281	Italia	FHB_GT23_302	Francia	FHB_GT23_323	Francia
FHB_GT23_282	Italia	FHB_GT23_303	Francia	FHB_GT23_324	Francia
FHB_GT23_283	Italia	FHB_GT23_304	Francia	FHB_GT23_325	Francia
FHB_GT23_284	Italia	FHB_GT23_305	Francia	FHB_GT23_326	Francia
FHB_GT23_285	Italia	FHB_GT23_306	Francia		

Codice Univoco	Origine	Codice Univoco	Origine	Codice Univoco	Origine
FHB_GD23_T1	Italia	FHB_GD23_38	Italia	FHB_GD23_80	Francia
FHB_GD23_T2	Francia	FHB_GD23_39	Italia	FHB_GD23_81	Italia
FHB_GD23_T3	Italia	FHB_GD23_40	Francia	FHB_GD23_82	Italia
FHB_GD23_T4	Italia	FHB_GD23_41	Francia	FHB_GD23_83	Francia
FHB_GD23_1	NA	FHB_GD23_42	Italia	FHB_GD23_84	Italia
FHB_GD23_2	Canada	FHB_GD23_43	Francia	FHB_GD23_85	Italia
FHB_GD23_3	Canada	FHB_GD23_44	Italia	FHB_GD23_86	Spagna
FHB_GD23_4	Italia	FHB_GD23_45	Francia	FHB_GD23_87	Italia
FHB_GD23_5	Italia	FHB_GD23_46	Francia	FHB_GD23_88	Francia
FHB_GD23_6	Italia	FHB_GD23_47	Italia	FHB_GD23_89	Francia
FHB_GD23_7	Spagna	FHB_GD23_48	Italia	FHB_GD23_90	Francia
FHB_GD23_8	Messico	FHB_GD23_49	Italia	FHB_GD23_91	Spagna
FHB_GD23_9	Italia	FHB_GD23_50	Italia	FHB_GD23_92	Italia
FHB_GD23_10	Francia	FHB_GD23_51	Italia	FHB_GD23_93	Italia
FHB_GD23_11	Francia	FHB_GD23_53	Italia	FHB_GD23_94	Austria
FHB_GD23_12	Italia	FHB_GD23_54	Italia	FHB_GD23_95	Italia
FHB_GD23_13	NA	FHB_GD23_55	NA	FHB_GD23_96	Italia
FHB_GD23_14	Francia	FHB_GD23_56	Francia	FHB_GD23_97	Francia
FHB_GD23_15	Italia	FHB_GD23_57	Austria	FHB_GD23_98	Italia
FHB_GD23_16	Australia	FHB_GD23_58	Austria	FHB_GD23_99	Italia
FHB_GD23_17	Francia	FHB_GD23_59	Italia	FHB_GD23_100	Italia
FHB_GD23_18	Italia	FHB_GD23_59	Italia	FHB_GD23_101	Italia
FHB_GD23_19	Francia	FHB_GD23_60	Italia	FHB_GD23_102	Italia
FHB_GD23_20	Italia	FHB_GD23_61	Italia	FHB_GD23_103	Italia
FHB_GD23_21	Italia	FHB_GD23_62	Italia	FHB_GD23_104	Italia
FHB_GD23_22	Italia	FHB_GD23_63	Italia	FHB_GD23_105	Italia
FHB_GD23_23	Francia	FHB_GD23_64	Francia	FHB_GD23_106	Italia
FHB_GD23_24	Italia	FHB_GD23_65	Italia	FHB_GD23_107	Italia
FHB_GD23_25	Austria	FHB_GD23_66	Italia	FHB_GD23_108	Italia
FHB_GD23_26	Italia	FHB_GD23_67	Francia - Italia	FHB_GD23_109	Italia
FHB_GD23_27	Italia	FHB_GD23_68	Francia	FHB_GD23_110	Italia
FHB_GD23_28	Italia	FHB_GD23_69	Italia	FHB_GD23_111	Italia
FHB_GD23_29	Italia- Francia	FHB_GD23_70	Italia	FHB_GD23_112	Italia
FHB_GD23_30	Australia	FHB_GD23_71	Italia	FHB_GD23_113	Spagna
FHB_GD23_31	NA	FHB_GD23_72	Spain	FHB_GD23_114	Italia
FHB_GD23_32	Italia	FHB_GD23_73	Italia	FHB_GD23_115	Spagna
FHB_GD23_32	Italia	FHB_GD23_74	Italia - Francia	FHB_GD23_116	Italia
FHB_GD23_33	Italia	FHB_GD23_75	Italia	FHB_GD23_117	Italia
FHB_GD23_34	Italia	FHB_GD23_76	Francia	FHB_GD23_118	Italia
FHB_GD23_35	Italia	FHB_GD23_77	Francia	FHB_GD23_119	Italia
FHB_GD23_36	Austria	FHB_GD23_78	Italia	FHB_GD23_120	Italia
FHB_GD23_37	Italia	FHB_GD23_79	Italia	FHB_GD23_121	Italia

Tabella 2A: Elenco varietà di frumento duro oggetto di studio riportate mediante codice univoco e origine

FHB_GD23_122	Italia	FHB_GD23_167	Canada	FHB_GD23_209	NA
FHB_GD23_124	Italia	FHB_GD23_168	Germania	FHB_GD23_211	Italia
FHB_GD23_125	Italia	FHB_GD23_169	Australia	FHB_GD23_212	NA
FHB_GD23_126	Italia	FHB_GD23_170	Australia	FHB_GD23_213	Italia
FHB_GD23_127	Italia	FHB_GD23_171	Austria	FHB_GD23_214	Francia
FHB_GD23_128	Francia	FHB_GD23_172	Italia	FHB_GD23_215	Italia
FHB_GD23_129	Italia	FHB_GD23_173	Italia	FHB_GD23_216	Grecia
FHB_GD23_130	Italia	FHB_GD23_174	Italia	FHB_GD23_217	Marroco
FHB_GD23_131	Italia	FHB_GD23_175	Italia	FHB_GD23_218	Spagna
FHB_GD23_132	Italia	FHB_GD23_176	Italia	FHB_GD23_219	Italia
FHB_GD23_133	Italia	FHB_GD23_177	Italia	FHB_GD23_220	Austria
FHB_GD23_134	Francia	FHB_GD23_178	Francia	FHB_GD23_221	Italia
FHB_GD23_135	Francia	FHB_GD23_179	Francia	FHB_GD23_222	Italia
FHB_GD23_136	Italia	FHB_GD23_180	NA	FHB_GD23_223	NA
FHB_GD23_137	Italia	FHB_GD23_181	Spagna	FHB_GD23_224	Francia
FHB_GD23_138	Italia	FHB_GD23_182	Francia	FHB_GD23_225	Italia
FHB_GD23_139	Italia	FHB_GD23_183	Spagna	FHB_GD23_226	Italia
FHB_GD23_140	Italia	FHB_GD23_184	NA	FHB_GD23_227	Italia
FHB_GD23_141	Italia	FHB_GD23_185	Francia	FHB_GD23_228	Francia
FHB_GD23_142	Italia	FHB_GD23_186	Italia	FHB_GD23_229	Italia
FHB_GD23_143	Italia	FHB_GD23_187	Italia	FHB_GD23_230	Italia
FHB_GD23_144	Italia	FHB_GD23_188	Italia	FHB_GD23_231	USA
FHB_GD23_146	Italia	FHB_GD23_189	NA	FHB_GD23_233	Italia
FHB_GD23_147	Italia	FHB_GD23_190	Francia	FHB_GD23_234	Italia
FHB_GD23_148	Italia	FHB_GD23_191	Italia	FHB_GD23_235	Italia
FHB_GD23_149	Italia	FHB_GD23_192	Italia	FHB_GD23_236	Italia
FHB_GD23_150	Italia - Francia	FHB_GD23_193	Italia	FHB_GD23_237	Italia
FHB_GD23_152	Italia	FHB_GD23_194	Italia	FHB_GD23_238	Italia
FHB_GD23_153	Canada	FHB_GD23_195	Spain	FHB_GD23_239	Italia
FHB_GD23_154	Italia	FHB_GD23_196	Italia	FHB_GD23_240	Italia
FHB_GD23_155	Italia	FHB_GD23_197	Francia	FHB_GD23_241	Italia
FHB_GD23_156	Italia	FHB_GD23_198	NA	FHB_GD23_242	Italia
FHB_GD23_157	Italia	FHB_GD23_199	Francia	FHB_GD23_243	Italia
FHB_GD23_158	Italia	FHB_GD23_200	NA	FHB_GD23_244	Italia
FHB_GD23_159	Italia	FHB_GD23_201	Spain	FHB_GD23_245	Italia
FHB_GD23_160	Italia	FHB_GD23_202	Italia	FHB_GD23_246	Italia
FHB_GD23_161	Italia	FHB_GD23_203	Australia	FHB_GD23_247	Italia
FHB_GD23_162	Austria	FHB_GD23_204	NA	FHB_GD23_248	Francia
FHB_GD23_163	Messico	FHB_GD23_205	Spain	FHB_GD23_249	Francia
FHB_GD23_164	Italia	FHB_GD23_206	Francia - Italia	FHB_GD23_250	Francia
FHB_GD23_165	Australia	FHB_GD23_207	Italia	FHB_GD23_251	Francia
FHB_GD23_166	Italia	FHB_GD23_208	Italia	FHB_GD23_252	Francia

CAMPO INOCULO 2023 Sem. 21/11/2022

Figura 3A: Rappresentazione del campo coltivato con i genotipi oggetto di studio e inoculato con *Fusarium*; in basso il campo coltivato con frumento tenero e in alto con frumento duro; i numeri riportati in ogni casella corrispondono ai numeri dei genotipi delle Tabelle 1A (Allegato 1) e 2A (Allegato 2). I colori rappresentano le date d'inoculo; blu= prima data d'inoculo; rosso= seconda data d'inoculo; arancione= terza data d'inoculo; verde= quarta data d'inoculo; bianco= genotipi non inoculati (troppo tardivi).

Tabella 4A: Medie aggiustate di incidenza (INCID), gravità (GRAV), area sotto la curva di progressione della malattia per il carattere incidenza (AUDPC_i), area sotto la curva di progressione della malattia per il carattere gravità (AUDPC_g) e semi fusariati (FDK) per ogni genotipo di frumento tenero sottoposto all'inoculo artificiale di *Fusarium*.

Treatment	Origin	Block	INCID	GRAV	AUDPC_i	AUDPC_g	FDK
FHB_GT23_T1	Italia - Francia		26,0	6,9	205,7	53,1	20,0
FHB_GT23_T2	Italia - Francia		86,1	27,7	688,6	220,0	10,0
FHB_GT23_T3	Italia		72,7	25,0	580,0	197,1	7,4
FHB_GT23_T4	Cina		1,0	1,0	8,0	8,0	3,7
FHB_GT23_1	Francia	1	45,0	10,1	313,6	65,6	15,4
FHB_GT23_2	Francia	1	80,0	58,1	638,6	460,6	55,4
FHB_GT23_3	Francia	1	55,0	23,1	438,6	180,6	26,4
FHB_GT23_4	Francia	1	50,0	10,1	398,6	80,6	22,4
FHB_GT23_5	Italia	1	20,0	0,0	158,6	0,0	30,8
FHB_GT23_6	Francia	1	28,0	10,1	218,6	80,6	41,6
FHB_GT23_7	Italia - Francia	1	20,0	5,1	158,6	40,6	9,4
FHB_GT23_8	Francia	1	40,0	10,1	278,6	65,6	17,2
FHB_GT23_10	Italia	1	33,0	3,1	258,6	20,6	19,0
FHB_GT23_11	Italia - Francia	1	100,0	65,1	798,6	520,6	35,4
FHB_GT23_12	Spagna	1	85,0	33,1	678,6	260,6	30,8
FHB_GT23_13	Italia	1	60,0	13,1	478,6	100,6	24,0
FHB_GT23_15	Italia	1	50,0	33,1	398,6	260,6	18,1
FHB_GT23_16	Spagna	1	60,0	10,1	478,6	80,6	1,8
FHB_GT23_17	Italia	1	100,0	20,1	798,6	160,6	16,6
FHB_GT23_18	Italia	1	100,0	83,1	798,6	660,6	43,8
FHB_GT23_19	Italia	1	70,0	0,0	558,6	0,0	4,5
FHB_GT23_20	Francia	1	55,0	25,1	383,6	170,6	40,3
FHB_GT23_21	Italia	1	100,0	33,1	798,6	260,6	7,2
FHB_GT23_23	Francia	1	60,0	45,1	418,6	310,6	49,0
FHB_GT23_26	Italia	1	100,0	33,1	798,6	260,6	41,7
FHB_GT23_27	Francia	1	40,0	10,1	278,6	65,6	20,8
FHB_GT23_28	Bulgaria	1	60,0	10,1	478,6	80,6	48,1
FHB_GT23_29	Argentina	1	10,0	0,0	78,6	0,0	0,0
FHB_GT23_30	NA	1	100,0	45,1	698,6	310,6	43,3
FHB_GT23_33	Francia	1	75,0	25,1	598,6	200,6	28,9
FHB_GT23_34	Italia	1	40,0	1,1	318,6	8,6	18,1
FHB_GT23_36	Italia	1	90,0	45,1	718,6	360,6	19,9
FHB_GT23_37	NA	1	70,0	13,1	558,6	100,6	17,2
FHB_GT23_38	Italia	1	90,0	33,1	718,6	260,6	16,3
FHB_GT23_39	Italia	1	73,0	25,1	578,6	200,6	9,9
FHB_GT23_40	Italia	1	50,0	3,1	398,6	20,6	9,5
FHB_GT23_41	Francia	1	25,0	25,1	198,6	200,6	9,9
FHB_GT23_42	Italia	1	25,0	33,1	198,6	260,6	10,8
FHB_GT23_43	Italia - Francia	1	25,0	3,1	198,6	20,6	17,7
FHB_GT23_44	Italia	1	40,0	1,1	278,6	2,6	29,0
FHB_GT23_45	Italia	1	73,0	45,1	506,6	310,6	32,0
FHB_GT23_46	Italia - Francia	1	78,0	38,1	618,6	300,6	30,5
FHB_GT23_47	Francia	1	33,0	9,1	258,6	68,6	31,4
FHB_GT23_48	Francia	1	70,0	33,1	488,6	223,6	23,3

FHB_GT23_49	Spagna	2	91,7	36,9	733,6	292,6	40,6
FHB_GT23_51	Francia	2	71,7	28,9	573,6	232,6	42,9
FHB_GT23_52	Francia	2	44,7	26,9	301,6	185,6	47,5
FHB_GT23_53	Australia	2	31,7	23,9	253,6	192,6	0,5
FHB_GT23_54	Italia	2	91,7	23,9	733,6	192,6	44,8
FHB_GT23_55	Francia	2	36,7	28,9	293,6	232,6	38,8
FHB_GT23_56	Francia	2	19,7	12,9	126,6	87,6	47,0
FHB_GT23_57	Francia	2	41,7	26,9	283,6	185,6	18,4
FHB_GT23_58	Italia	2	81,7	48,9	653,6	392,6	13,4
FHB_GT23_59	Italia	2	26,7	16,9	213,6	132,6	15,8
FHB_GT23_60	Spagna	2	71,7	36,9	573,6	292,6	10,8
FHB_GT23_62	Italia	2	91,7	23,9	733,6	192,6	55,3
FHB_GT23_63	Francia	2	81,7	28,9	653,6	232,6	17,0
FHB_GT23_64	Francia	2	81,7	41,9	653,6	332,6	31,9
FHB_GT23_65	Francia - Italia	2	66,7	16,9	533,6	132,6	14,3
FHB_GT23_68	Francia	2	91,7	61,9	733,6	492,6	15,4
FHB_GT23_69	Francia	2	31,7	2,9	253,6	20,6	19,6
FHB_GT23_70	Italia	2	76,7	36,9	613,6	292,6	55,2
FHB_GT23_71	Italia	2	91,7	36,9	733,6	292,6	35,2
FHB_GT23_72	Italia	2	31,7	12,9	253,6	100,6	15,2
FHB_GT23_73	Italia	2	76,7	61,9	613,6	492,6	35,9
FHB_GT23_74	Italia	2	21,7	3,9	173,6	32,6	8,3
FHB_GT23_75	Francia	2	41,7	12,9	333,6	100,6	25,2
FHB_GT23_76	Spagna	2	21,7	6,9	173,6	52,6	7,6
FHB_GT23_77	Francia	2	21,7	6,9	173,6	52,6	12,0
FHB_GT23_80	Francia	2	91,7	48,9	733,6	392,6	27,0
FHB_GT23_85	Francia	2	81,7	48,9	653,6	392,6	28,2
FHB_GT23_86	Francia	2	41,7	16,9	283,6	115,6	19,7
FHB_GT23_87	Francia	2	1,7	0,9	13,6	8,6	17,8
FHB_GT23_89	Spagna	2	91,7	48,9	733,6	392,6	0,0
FHB_GT23_90	Italia	2	46,7	6,9	373,6	52,6	18,8
FHB_GT23_91	Francia	2	36,7	28,9	248,6	202,6	22,0
FHB_GT23_92	Spagna	2	9,7	2,9	73,6	20,6	5,3
FHB_GT23_93	Spagna	2	76,7	73,9	613,6	592,6	24,7
FHB_GT23_96	Italia	2	81,7	61,9	653,6	492,6	58,6
FHB_GT23_97	Francia	2	66,7	48,9	533,6	392,6	53,6
FHB_GT23_98	Francia	2	49,7	16,9	393,6	132,6	26,6
FHB_GT23_99	Francia	2	4,7	4,9	33,6	40,6	15,3
FHB_GT23_100	Italia	2	49,7	38,9	393,6	312,6	29,7
FHB_GT23_101	Spagna	2	51,7	6,9	413,6	52,6	0,0
FHB_GT23_102	Italia	3	88,0	11,4	703,6	90,6	10,1
FHB_GT23_105	Italia	3	86,0	51,4	683,6	410,6	36,1
FHB_GT23_106	Spagna	3	78,0	51,4	623,6	410,6	28,2
FHB_GT23_108	Italia	3	58,0	39,4	463,6	310,6	14,1
FHB_GT23_110	Francia	3	68,0	19,4	483,6	133,6	26,1
FHB_GT23_111	Francia	3	73,0	19,4	518,6	133,6	24,2
FHB_GT23_112	Grecia	3	66,0	44,4	523,6	350,6	12,2
FHB_GT23_113	Francia	3	103,0	19,4	823,6	150,6	15,8
FHB_GT23_114	Francia	3	108,0	19,4	863,6	150,6	11,3
FHB_GT23_115	Francia	3	88,0	16,4	703,6	130,6	27,0
FHB_GT23_116	Italia	3	103,0	31,4	823,6	250,6	35,2
FHB_GT23_117	Italia	3	28,0	6,4	223,6	50,6	4,3

FHB_GT23_118	Italia	3	83,0	39,4	588,6	273,6	17,0
FHB_GT23_119	Francia	3	108,0	19,4	863,6	150,6	22,4
FHB_GT23_120	Francia	3	88,0	31,4	703,6	250,6	29,4
FHB_GT23_121	Italia	3	63,0	16,4	503,6	130,6	19,7
FHB_GT23_122	Italia	3	61,0	31,4	483,6	250,6	61,5
FHB_GT23_125	Italia	3	33,0	9,4	263,6	70,6	13,0
FHB_GT23_127	Francia	3	93,0	26,4	743,6	210,6	10,6
FHB_GT23_128	Italia	3	53,0	7,4	423,6	58,6	9,7
FHB_GT23_129	Italia	3	98,0	51,4	783,6	410,6	27,9
FHB_GT23_130	Italia	3	108,0	51,4	863,6	410,6	16,4
FHB_GT23_131	Italia	3	46,0	16,4	363,6	130,6	16,8
FHB_GT23_132	Italia	3	58,0	7,4	413,6	52,6	3,5
FHB_GT23_133	Italia	3	23,0	7,4	183,6	58,6	12,4
FHB_GT23_134	Italia	3	88,0	19,4	703,6	150,6	26,1
FHB_GT23_135	Italia	3	78,0	19,4	623,6	150,6	15,0
FHB_GT23_136	Italia	3	38,0	9,4	303,6	70,6	17,0
FHB_GT23_137	Italia	3	73,0	39,4	583,6	310,6	18,1
FHB_GT23_138	Italia	3	78,0	39,4	623,6	310,6	26,9
FHB_GT23_139	Italia	3	71,0	19,4	501,6	133,6	22,0
FHB_GT23_140	Italia	3	66,0	26,4	523,6	210,6	14,4
FHB_GT23_141	Italia	3	53,0	31,4	423,6	250,6	14,3
FHB_GT23_142	Francia	3	93,0	39,4	743,6	310,6	29,7
FHB_GT23_143	Italia	3	68,0	19,4	543,6	150,6	15,2
FHB_GT23_144	Italia	3	93,0	19,4	743,6	150,6	17,9
FHB_GT23_145	Italia	3	38,0	9,4	303,6	70,6	13,8
FHB_GT23_146	Francia	3	46,0	19,4	363,6	150,6	24,5
FHB_GT23_147	Francia	3	73,0	31,4	583,6	250,6	22,2
FHB_GT23_148	Italia	3	86,0	31,4	606,6	220,6	49,7
FHB_GT23_149	Italia	4	53,0	21,9	423,6	172,6	10,8
FHB_GT23_150	Francia	4	93,0	41,9	743,6	332,6	25,6
FHB_GT23_151	Italia	4	103,0	78,9	823,6	632,6	38,0
FHB_GT23_152	Italia	4	48,0	18,9	338,6	137,6	16,2
FHB_GT23_153	Italia	4	93,0	53,9	743,6	432,6	28,2
FHB_GT23_154	Francia	4	58,0	18,9	463,6	152,6	19,7
FHB_GT23_155	Francia	4	48,0	18,9	338,6	137,6	29,1
FHB_GT23_156	Italia	4	48,0	17,9	383,6	140,6	26,1
FHB_GT23_157	Francia	4	58,0	11,9	463,6	92,6	13,1
FHB_GT23_158	Francia	4	93,0	53,9	743,6	432,6	43,5
FHB_GT23_159	Francia	4	103,0	21,9	723,6	155,6	23,4
FHB_GT23_160	Francia	4	103,0	21,9	823,6	172,6	22,4
FHB_GT23_161	Repubblica Ceca	4	58,0	53,9	408,6	382,6	31,9
FHB_GT23_162	Spagna	4	41,0	41,9	323,6	332,6	33,7
FHB_GT23_163	Francia	4	63,0	21,9	503,6	172,6	27,0
FHB_GT23_164	Italia	4	76,0	53,9	531,6	382,6	26,8
FHB_GT23_165	Italia	4	61,0	11,9	483,6	92,6	31,4
FHB_GT23_167	Francia	4	83,0	33,9	583,6	242,6	27,6
FHB_GT23_169	Spagna	4	51,0	18,9	403,6	152,6	23,0
FHB_GT23_170	Francia	4	21,0	9,9	163,6	80,6	29,9
FHB_GT23_171	Francia	4	76,0	46,9	531,6	330,6	35,9
FHB_GT23_172	Francia	4	56,0	33,9	391,6	242,6	29,3
FHB_GT23_173	Spagna	4	61,0	21,9	483,6	172,6	22,1
FHB_GT23_174	Francia	4	76,0	33,9	603,6	272,6	22,4

FHB_GT23_175	Francia	4	78,0	33,9	548,6	242,6	26,7
FHB_GT23_176	Francia	4	83,0	33,9	583,6	242,6	28,5
FHB_GT23_177	Francia	4	88,0	33,9	618,6	242,6	29,6
FHB_GT23_178	Francia	4	83,0	41,9	663,6	332,6	24,7
FHB_GT23_179	Francia	4	53,0	21,9	423,6	172,6	12,0
FHB_GT23_180	Francia	4	68,0	53,9	543,6	432,6	40,4
FHB_GT23_181	Francia	4	103,0	33,9	823,6	272,6	26,5
FHB_GT23_182	Francia	4	58,0	18,9	463,6	152,6	21,3
FHB_GT23_183	Francia	4	73,0	31,9	583,6	252,6	27,7
FHB_GT23_184	Francia	4	53,0	18,9	373,6	137,6	23,1
FHB_GT23_185	Francia	4	43,0	18,9	303,6	137,6	15,1
FHB_GT23_186	Francia	4	53,0	21,9	423,6	172,6	18,6
FHB_GT23_187	Francia	4	78,0	53,9	548,6	382,6	22,2
FHB_GT23_188	Francia	4	73,0	41,9	583,6	332,6	23,5
FHB_GT23_189	Francia	4	73,0	33,9	583,6	272,6	18,3
FHB_GT23_190	Francia	4	53,0	21,9	423,6	172,6	15,9
FHB_GT23_191	Spagna	5	98,5	39,9	788,6	315,6	15,2
FHB_GT23_193	Italia	5	88,5	51,9	708,6	415,6	53,2
FHB_GT23_194	Francia	5	88,5	51,9	708,6	415,6	23,1
FHB_GT23_195	Italia	5	58,5	16,9	468,6	135,6	21,5
FHB_GT23_196	Italia	5	38,5	19,9	268,6	138,6	25,2
FHB_GT23_197	Francia	5	76,5	51,9	531,6	365,6	22,0
FHB_GT23_198	Italia	5	43,5	15,9	303,6	110,6	24,9
FHB_GT23_199	Italia	5	36,5	19,9	288,6	155,6	15,5
FHB_GT23_200	Francia	5	93,5	39,9	748,6	315,6	24,8
FHB_GT23_201	Francia	5	76,5	39,9	531,6	278,6	15,2
FHB_GT23_202	Italia	5	61,5	31,9	488,6	255,6	45,8
FHB_GT23_203	Italia	5	23,5	9,9	188,6	75,6	13,3
FHB_GT23_204	Italia	5	28,5	7,9	228,6	63,6	18,8
FHB_GT23_205	Italia	5	48,5	29,9	388,6	235,6	38,1
FHB_GT23_206	Francia	5	68,5	19,9	548,6	155,6	13,3
FHB_GT23_207	Francia	5	83,5	19,9	668,6	155,6	17,1
FHB_GT23_208	Francia	5	86,5	31,9	688,6	255,6	13,0
FHB_GT23_209	Francia	5	46,5	9,9	368,6	75,6	18,8
FHB_GT23_210	Italia	5	98,5	39,9	788,6	315,6	17,0
FHB_GT23_211	Italia	5	43,5	11,9	348,6	95,6	8,5
FHB_GT23_212	Italia	5	98,5	11,9	788,6	95,6	2,5
FHB_GT23_214	Italia	5	93,5	39,9	748,6	315,6	23,3
FHB_GT23_215	Francia	5	43,5	11,9	348,6	95,6	30,6
FHB_GT23_217	Francia	5	88,5	51,9	708,6	415,6	27,9
FHB_GT23_219	Francia	5	23,5	7,9	163,6	57,6	4,9
FHB_GT23_220	Francia	5	48,5	16,9	388,6	135,6	14,4
FHB_GT23_221	Francia	5	83,5	51,9	668,6	415,6	27,4
FHB_GT23_222	Spagna	5	73,5	51,9	588,6	415,6	14,4
FHB_GT23_223	Italia	5	51,5	44,9	408,6	355,6	18,8
FHB_GT23_225	Italia	5	98,5	39,9	788,6	315,6	23,8
FHB_GT23_226	Francia	5	38,5	29,9	268,6	208,6	22,3
FHB_GT23_228	Francia	5	23,5	16,9	163,6	120,6	20,6
FHB_GT23_229	Francia	5	88,5	51,9	618,6	365,6	15,0
FHB_GT23_234	Italia	5	68,5	39,9	548,6	315,6	43,7
FHB_GT23_235	Italia	5	38,5	15,9	308,6	123,6	28,8
FHB_GT23_236	Brasile	5	0,0	4,9	0,6	39,6	0,0

FHB_GT23_237	Brasile	5	3,5	3,9	28,6	31,6	1,5
FHB_GT23_238	Brasile	5	2,5	3,9	16,6	31,6	0,6
FHB_GT23_239	Brasile	5	4,5	3,9	36,6	31,6	7,0
FHB_GT23_240	Brasile	5	3,5	3,9	28,6	31,6	0,0
FHB_GT23_241	Brasile	6	1,0	2,4	3,6	18,6	4,9
FHB_GT23_242	Brasile	6	0,0	2,4	0,0	18,6	3,9
FHB_GT23_243	Brasile	6	6,0	2,4	43,6	18,6	3,1
FHB_GT23_244	Brasile	6	18,0	10,4	143,6	82,6	13,1
FHB_GT23_245	Canada	6	58,0	25,4	463,6	202,6	11,2
FHB_GT23_246	Canada	6	0,0	2,4	0,0	18,6	6,7
FHB_GT23_247	Canada	6	3,0	2,4	23,6	18,6	3,1
FHB_GT23_249	Canada	6	6,0	4,4	43,6	30,6	6,7
FHB_GT23_251	Canada	6	33,0	30,4	223,6	212,6	20,4
FHB_GT23_253	Canada	6	61,0	38,4	483,6	302,6	18,9
FHB_GT23_254	Canada	6	0,0	2,4	0,0	18,6	3,1
FHB_GT23_255	Australia	6	73,0	30,4	583,6	242,6	6,7
FHB_GT23_256	Australia	6	83,0	50,4	663,6	402,6	6,7
FHB_GT23_257	Australia	6	63,0	38,4	503,6	302,6	6,5
FHB_GT23_258	Australia	6	56,0	30,4	443,6	242,6	4,9
FHB_GT23_259	Australia	6	83,0	50,4	663,6	402,6	15,6
FHB_GT23_260	Australia	6	93,0	38,4	743,6	302,6	9,2
FHB_GT23_261	Australia	6	93,0	30,4	743,6	242,6	9,5
FHB_GT23_262	Australia	6	93,0	38,4	743,6	302,6	7,8
FHB_GT23_263	Australia	6	93,0	50,4	743,6	402,6	3,1
FHB_GT23_264	Australia	6	93,0	63,4	743,6	502,6	13,8
FHB_GT23_265	Italia	6	43,0	18,4	343,6	142,6	25,8
FHB_GT23_266	Francia	6	16,0	43,4	101,6	300,6	19,3
FHB_GT23_267	Italia	6	78,0	38,4	623,6	302,6	21,3
FHB_GT23_268	Italia	6	63,0	30,4	503,6	242,6	16,2
FHB_GT23_269	Italia	6	53,0	50,4	363,6	352,6	23,3
FHB_GT23_270	Italia	6	73,0	43,4	583,6	342,6	22,6
FHB_GT23_271	Italia	6	86,0	38,4	683,6	302,6	24,2
FHB_GT23_272	Italia	6	63,0	25,4	503,6	202,6	28,6
FHB_GT23_273	Italia	6	28,0	8,4	223,6	62,6	12,2
FHB_GT23_274	Italia	6	63,0	43,4	433,6	300,6	19,3
FHB_GT23_275	Italia	6	28,0	8,4	223,6	62,6	14,9
FHB_GT23_276	Italia	6	31,0	8,4	243,6	62,6	21,6
FHB_GT23_277	Italia	6	43,0	15,4	343,6	122,6	15,8
FHB_GT23_278	Italia	6	38,0	8,4	303,6	62,6	NA
FHB_GT23_279	Italia	6	53,0	18,4	423,6	142,6	10,9
FHB_GT23_280	Italia	6	61,0	18,4	483,6	142,6	10,4
FHB_GT23_282	Italia	6	23,0	6,4	183,6	50,6	4,0
FHB_GT23_283	Italia	6	73,0	25,4	583,6	202,6	4,8
FHB_GT23_284	Italia	6	38,0	18,4	303,6	142,6	14,8
FHB_GT23_285	Italia	7	106,0	48,4	848,6	385,6	23,8
FHB_GT23_286	Italia	7	66,0	36,4	528,6	285,6	23,8
FHB_GT23_287	Italia	7	19,0	4,4	148,6	33,6	9,1
FHB_GT23_288	Italia	7	49,0	16,4	388,6	125,6	26,4
FHB_GT23_289	Italia	7	46,0	12,4	328,6	80,6	NA
FHB_GT23_290	Italia	7	64,0	28,4	508,6	225,6	19,1
FHB_GT23_291	Italia	7	39,0	4,4	308,6	33,6	19,1
FHB_GT23_292	Italia	7	56,0	16,4	448,6	125,6	NA

FHB_GT23_293	Italia	7	101,0	36,4	808,6	285,6	39,4
FHB_GT23_294	Italia	7	96,0	36,4	768,6	285,6	22,9
FHB_GT23_295	Francia	7	61,0	28,4	433,6	195,6	42,9
FHB_GT23_296	Francia	7	66,0	13,4	468,6	90,6	19,1
FHB_GT23_297	Francia	7	51,0	13,4	363,6	90,6	21,0
FHB_GT23_298	Francia	7	54,0	28,4	381,6	195,6	28,2
FHB_GT23_299	Francia	7	86,0	28,4	608,6	195,6	39,1
FHB_GT23_300	Francia	7	96,0	28,4	768,6	225,6	47,3
FHB_GT23_301	Francia	7	59,0	13,4	468,6	105,6	35,6
FHB_GT23_302	Francia	7	96,0	48,4	768,6	385,6	22,7
FHB_GT23_303	Francia	7	59,0	16,4	416,6	108,6	20,0
FHB_GT23_304	Francia	7	76,0	48,4	538,6	335,6	26,9
FHB_GT23_305	Francia	7	56,0	28,4	398,6	195,6	28,1
FHB_GT23_306	Francia	7	96,0	36,4	678,6	248,6	37,7
FHB_GT23_307	Francia	7	84,0	16,4	668,6	125,6	34,3
FHB_GT23_308	Francia	7	96,0	41,4	678,6	283,6	35,9
FHB_GT23_309	Francia	7	56,0	13,4	448,6	105,6	18,2
FHB_GT23_310	Francia	7	12,0	2,4	96,6	13,6	20,0
FHB_GT23_312	Francia	7	19,0	4,4	136,6	27,6	26,8
FHB_GT23_314	Italia	7	46,0	6,4	368,6	45,6	18,5
FHB_GT23_315	Italia	7	71,0	28,4	568,6	225,6	25,5
FHB_GT23_316	Italia	7	51,0	12,4	363,6	80,6	14,4
FHB_GT23_317	Italia	7	51,0	6,4	408,6	45,6	32,5
FHB_GT23_318	Italia	7	66,0	26,4	468,6	178,6	35,2
FHB_GT23_319	Italia	7	61,0	41,4	433,6	283,6	24,6
FHB_GT23_320	Francia	7	46,0	12,4	368,6	93,6	NA
FHB_GT23_321	Francia	7	76,0	16,4	538,6	108,6	34,2
FHB_GT23_322	Francia	7	91,0	48,4	643,6	335,6	36,8
FHB_GT23_323	Francia	7	61,0	16,4	433,6	108,6	39,1
FHB_GT23_324	Francia	7	81,0	26,4	648,6	205,6	12,6
FHB_GT23_325	Francia	7	84,0	26,4	668,6	205,6	40,0
FHB_GT23_326	Francia	7	101,0	41,4	808,6	325,6	34,6

I valori evidenziati in colore verde corrispondono al circa 33% dei genotipi con i migliori valori per ogni singolo carattere; i valori evidenziati in arancione corrispondono a quelli intermedi (circa 33% dei genotipi), mentre i valori in rosso sono i valori più alti che indicano quindi i genotipi (circa 33%) con una maggior sensibilità alla malattia. NA= dati mancanti.

Tabella 5A: Elenco marcatori KASP individuati per la resistenza a Fusarium head blight, resistenza alla ruggine e differenti caratteri di qualità nel frumento

Category	Gene	Chr	Marker Name	FAM primer	HEX primer	Common primer	SNP	Reference
Fusarium	Fhb1	3BS	snp3BS-8	CACATGCATTTGCAAGGTTGTTAT CC	CACATGCATTTGCAAGGTTGTTAT CG	CAAAGCAGCCTTAGGTCAATAGT TTGAAA	C/G	Bernardo et al., 2012
Fusarium	Fhb1	3BS	Fhb1-TaHRC	GAAGGTGACCAAGTTCATGCTTT GTCTGTTTCGCTGGGATG	GAAGGTCGGAGTCAACGGATTGC TCACGTCGTGCAAATGGT	CTTCCAGTTTCTGCTGCCAT	G/T	Su et al., 2018
Fusarium	Fhb1	3B	PFT	AGCTGGGAATGAAGGAACCTGT	AGCTGGGAATGAAGGAACCTGC	GTGATTATCTCTCCCATCTTATGT TTGCAA	A/G	Singh et al., 2019
Fusarium	Fhb1	3B	UMN10_SNP	GAATTACTCATTTTTAGATTTGTC TACATACA	GAATTACTCATTTTTAGATTTGTC TACATACG	GAAGTTCATGCCACGCATATGCT AGTA	A/G	integratedbreedin g.net
Fusarium	QTL 3BSd	3BS	KASP GBS2377	GAAGGTGACCAAGTTCATGCTGG CGCAACGTGATCACAC	GAAGGTCGGAGTCAACGGATTGG CGCAACGTGATCACAT	TGTGAATCTCCATGCCTCCTT	C/T	Cai et al., 2019
Fusarium	QTL 3BSd	3BS	KASP GBS1989	GAAGGTGACCAAGTTCATGCTGA TCGCCACCGTCCTTCCA	GAAGGTCGGAGTCAACGGATTGA TCGCCACCGTCCTTCCG	CGTGAACGGGCCTGATTGAA	A/G	Cai et al., 2019
Fusarium	QTL 3BSd	3BS	KASP GBS0800	GAAGGTGACCAAGTTCATGCTTG ACCTCGGACACTGCAGCA	GAAGGTCGGAGTCAACGGATTTG ACCTCGGACACTGCAGCG	GTGACGGCAATCGAGCACAC	A/G	Cai et al., 2019
Fusarium	QTL3BSc	3BS	KASP GBS2882	GAAGGTGACCAAGTTCATGCTGT TTGGTTTGTATCTCAGTGGTA	GAAGGTCGGAGTCAACGGATTGT TTGGTTTGTATCTCAGTGGTG	CAGATCTGGTGAAATAGCAGTC	A/G	Cai et al., 2019

Fusarium	QTL3BSc	3BS	KASP GBS2285	GAAGGTGACCAAGTTCATGCTCC CGCGTTGCGGGTCTC	GAAGGTCGGAGTCAACGGATTCC CGCGTTGCGGGTCTT	CCAGGCTCTCGTTTTCCTCGT	C/T	Cai et al., 2019
Fusarium	Qfhb-5AS	5AS	IWA7777	GAAGGTGACCAAGTTCATGCTTC AGCATACATTTGTGCAACTTTA	GAAGGTCGGAGTCAACGGATTTC AGCATACATTTGTGCAACTTTG	ATTAACTTCTTCAAAGACACCGTC	A/G	Pandurangan et al., 2021
Fusarium	QFhb-5A	5AS	KASP-Qfhb- 5A	CGACTAATTTAAACTTGGAGCTGT GAT	GACTAATTTAAACTTGGAGCTGT GAG	GTTCATACCTACACCCGTACTGAC AA	T/G	Jiang et al., 2019
Fusarium	QFhb.hbaas- 5AS	5AS	FHB-5AS- KASP	GAAGGTGACCAAGTTCATGCTAT CGACAATTACATCAAATGACTGA	GAAGGTCGGAGTCAACGGATTAT CGACAATTACATCAAATGACTGG	AATAACGTGGCTATCAGTGGT	A/G	Zhu et al., 2020
Fusarium	Fhb7	7E	Fhb7-KASP1	CTTATAAGGTGGTGCACATCT	CTTATAAGGTGGTGCACATCA	TTAGTCCCACATGGCTAGTT	T/A	Zhao et al., 2022
Fusarium	Fhb7	7E	Fhb7-KASP2	GGCGAGAGCCTGCCACGGG	GGCGAGAGCCTGCCACGGA	CTCGGCATACTTCATCTCC	G/A	Zhao et al., 2022
Fusarium	Qclu.yas-2D	2D	KASP.2D.1	GAAGGTGACCAAGTTCATGCTAG AAAATGAAGCGGTAGTTTGATC	GAAGGTCGGAGTCAACGGATTAG AAAATGAAGCGGTAGTTTGATT	GAGAAACTGAACGTGCGCAG	C/T	Hu et al., 2023
Fusarium	Qclu.yas-2D	2D	KASP.2D.2	GAAGGTGACCAAGTTCATGCTTT GTTGTGTACTCGATATGCTCTT	GAAGGTCGGAGTCAACGGATTTT GTTGTGTACTCGATATGCTCTA	ACCTCCTGGCCTCTGCATAT	T/A	Hu et al., 2023
Fusarium	QFhb-2DL	2DL	KASP10238	GAAGGTGACCAAGTTCATGCT GGTAGGACCTGCAGGAGCGA	GAAGGTCGGAGTCAACGGATT GGTAGGACCTGCAGGAGCGG	TCTCTCTGTTGGGCAACGGA	A/G	Li et al., 2022
Fusarium	QFhb-2DL	2DL	KASP12056	GAAGGTGACCAAGTTCATGCT TCGCTGCAGCTTAACATATGT	GAAGGTCGGAGTCAACGGATT TCGCTGCAGCTTAACATATGC	TGGAAGGCAGATCTGCCACG	T/C	Li et al., 2022
Fusarium	Qfhb.3AL	3AL	GBS17928	TCCGTCCACTCCCACGCG	TCCGTCCACTCCCACGCA	AGCAGTGCCTCAGTAGCAG	C/T	Zhang et al., 2021

Fusarium	QTL3A	3A	KASP GBS260 0	GAAGGTGACCAAGTTCATGCTGC TTGACCATACTCCCGCA	GAAGGTCGGAGTCAACGGATTGC TTGACCATACTCCCGCT	TTGGCGAGCATCTGCTGGTA	A/T	Cai et al., 2019
Fusarium	QTL3DL	3DL	KASP GBS078 1	GAAGGTGACCAAGTTCATGCTGT GCCTCATAGCACTTAGCAGC	GAAGGTCGGAGTCAACGGATTGT GCCTCATAGCACTTAGCAGT	TCCCATCCACTCTGTTCACAT	C/T	Cai et al., 2019
Fusarium	QTL3DL	3DL	KASP GBS2710	GAAGGTGACCAAGTTCATGCTAG GTGCAGGGCCGTGGC	GAAGGTCGGAGTCAACGGATTAG GTGCAGGGCCGTGGT	ACCTGGACGCGGAGGCTAC	C/T	Cai et al., 2019
Fusarium	QTL2D	2D	KASP GBS148 7	GAAGGTGACCAAGTTCATGCTGC AGCGCCCCTATATATTTGC	GAAGGTCGGAGTCAACGGATTGC AGCGCCCCTATATATTTGT	TTGCAGTCAAGGGAGTGAGTG	C/T	Cai et al., 2019
Fusarium	QTL4D	4D	KASP GBS3012	GAAGGTGACCAAGTTCATGCTTG CAGTCGTCCATCTTCA	GAAGGTCGGAGTCAACGGATTTG CAGTCGTCCATCTTCG	GACTTCCAAACAATCAGACACG	A/G	Cai et al., 2019
Fusarium	QFHB. vt-1B	1B	IWA6259	AACAATAACAGCGCACCAGCACT	ACAATAACAGCGCACCAGCACC	GGTGGCAATAAATCTGTGTCATTC AGTAT	T/C	Carpenter et al., 2020
Fusarium	QFHB. vt-1B	1B	IWA7594	ACGGTGTTAGATATGTCACATACT CA	CGGTGTTAGATATGTCACATACTC C	GGCACTCTTGAAAGGAAGGGTGC A	A/C	Carpenter et al., 2020
Fusarium	QFHB. vt-1B	1B	IWB43992	CATTACTGTCGATATGGATCTTGT GC	ACATTACTGTCGATATGGATCTTG TGT	TGCTGCTTGAAAAGAAATGCAGG ATACTT	C/T	Carpenter et al., 2020
Fusarium	Qfhb.nc-1A	1A	IWA3805	AACTTTGCTGTCAACTTTGAGGA	CTAACTTTGCTGTCAACTTTGAGG G	TTACTGCAACTGATGGGTGCACTT TATAT	A/G	Petersen et al., 2016
Fusarium	Qfhb.nc-1A	1A	IWA1587	СТАТСТАТАТТСТТТGTТСТТСАА GTCCA	CTATCTATATTCTTTGTTCTTCAA GTCCG	GATTGTTGCAACTAGCAACAGCT GTTTAT	A/G	Petersen et al., 2016

Fusarium	Qfhb.nc-1A	1A	IWA886	GGAAGTGATATTCTTGCAAGAGC A	AAGTAAGCTGCTAGGTCTTGTAG CA	TACGTGCACGGTCGATCAGTTTCT A		Petersen et al., 2016
Fusarium	Qfhb.nc-1B	1B	IWA7977	GGTACTGTGAATCTTTGAGAAGT GTG	GGAAGTGATATTCTTGCAAGAGC G	GCTGGAATGCAAAATGCAGCAGT CTT		Petersen et al., 2016
Fusarium	Qfhb.nc-1B	1B	IWA6448	GGTACTGTGAATCTTTGAGAAGT GTG	AGGTACTGTGAATCTTTGAGAAG TGTA	TCTAGGTTGCCTGGAAGAACTGG AA	G/A	Petersen et al., 2016
Fusarium	Qfhb.nc-1B	1B	IWB43992	ACATTACTGTCGATATGGATCTTG TGT	CATTACTGTCGATATGGATCTTGT GC	TGCTGCTTGAAAAGAAATGCAGG ATACTT	T/C	Petersen et al., 2016
Fusarium	Qfhb.nc-1B	1B	IWA4987	CCTGCAGAACAAGATAGCTTTGA AC	ATCCTGCAGAACAAGATAGCTTT GAAT	CCGGCCGCGCAGAGTTGCAT	C/T	Petersen et al., 2016
Fusarium	Qfhb.nc-6A	6A	IWA3483	GGTGTTAGCACTGGTTTATCCACA AA	GTGTTAGCACTGGTTTATCCACAA G	ACGGAAATCATTGTAACCAGATG GTTGAA	A/G	Petersen et al., 2016
Fusarium	Qfhb.nc-6A	6A	IWA4036	CCATTTTCCCATTGAACGAAGCAT TAA	CATTTTCCCATTGAACGAAGCATT AG	CTCAGGGAGAATAACACGGGATC AT	A/G	Petersen et al., 2016
Fusarium	QFhb.yaas- 2DL	2DL	KASP-QFhb- 2DL	GAAGGTGACCAAGTTCATGCTCC AGCTAGGCTCTTCACACT	GAAGGTCGGAGTCAACGGATTCC AGCTAGGCTCTTCACACC	CGAGCCTCCCATATCCGTCT	T/C	Hu et al., 2022
Fusarium	QFhb.yaas- 3BL	3BL	KASP-QFhb- 3BL	GAAGGTGACCAAGTTCATGCTCG GTCTCACAATGACATCAACG	GAAGGTCGGAGTCAACGGATTCG GTCTCACAATGACATCAACA	CTTGCAAACGATGAAGACGGC	G/A	Hu et al., 2022
Fusarium	Fhb2	6B	GBS0158	GCCTCAGCCCCCTTGAT	GCCTCAGCCCCCCTTGAC	CGTGGGTTTGGGGATCTAGG	T/C	Toth et al., 2018; Cai et al., 2016

Leaf Rust	Lr47	7A	Lr47-1	GCAGCCTGGTAAGTTATCTGAC	GCAGCCTGGTAAGTTATCTGAG	GCCTGGATTCAAGAGAACAT	C/G	Rasheed et al., 2016
Leaf Rust	Lr68	1DS	Lr68-2	CGTGTCTTGGACCTGAGCAAT	CGTGTCTTGGACCTGAGCAAC	TGACCTGAGTCCCGTCAAGA	T/C	Rasheed et al., 2016
Leaf Rust	Lr34	7D	Lr34_TCCIND	GGTATGCCATTTAACATAATCATG AA	GGTATGCCATTTAACATAATCATG AT	TACTATATGGGAGCATTATTTTT TCC	WT/ DE L	Lagudah et al., 2009
Leaf Rust	Lr34	7D	Lr34jagger	TGTAATGTATCGTGAGAGATTTGC AG	ATTGTAATGTATCGTGAGAGATTT GCAT	GATCATTATCTGACCTGTGCGAAT GAATA	C/A	Lagudah et al., 2009
Leaf Rust	Lr37/Yr17/Sr 38	2AS	CSTM4_67G	GAAGGTGACCAAGTTCATGCTTC ATCATCGGCAGGATCCTGCTTC	GAAGGTCGGAGTCAACGGATTTC ATCATCGGCAGGATCCTGCTTG	AACGTACGTAATCTTGCTTACTG A	C/G	Khalid et al., 2019
Leaf Rust	Lr34	7DS	Lr34E11- KASP	GGGAGCATTATTTTTTTCCATCA	GGGAGCATTATTTTTTTCCATCT	AGCGAATCCAGTATGGAAAT	A/T	Fang et al., 2020
Leaf Rust	Lr34	7DS	Lr34-E22- KASP	AATGTATCGTGAGAGATTTGCAG	AATGTATCGTGAGAGATTTGCAT	AGGTGAATAAATATGAGCATCAG T	G/T	Fang et al., 2020
Leaf Rust	Lr21	1DS	Lr21_ GQ5048 19_2175	GATGTTTATGCATTATGCGCTAAG TGG	GATGTTTATGCATTATGCGCTAAG TGA	CAAGAATTTGAACAAGTTGGGAG AGAG	G/A	Neelam et al., 2013
Leaf Rust	Lr21	1DS	Lr21_ GQ5048 19_1346	CCTTGTTTATTATTATTATTACACTTT AATACTATTTC	CCTTGTTTATTATTATTACACTTT TAATATTATTTT	CAAATGGGTATGTCTGTCACATGT CTA	C/T	Neelam et al., 2013
Leaf Rust	Lr64	6AL	K-IWB59855	TGAGGAATCGTCGCTGAAAGT	TGAGGAATCGTCGCTGAAAGG	GCCGCTGCCAAAAATCCTAC	A/C	Kolmer et al., 2019

Leaf Rust	LrX	1DL	K-IWB38437	GCTACAATGGCTAGTGTGATCT	GCTACAATGGCTAGTGTGATCC	ACAAATAGGGCATGGTACCTTT	T/C	Kolmer et al., 2019
Leaf Rust	Lr48	2B	IWB70147	AATCGCCCTACACCCTTATGTACT	CGCCCTACACCTTATGTACC	TACCAATCTAGAGTAACATTACC GCCAAA	T/C	Nsabiyera et al., 2015
Leaf Rust	Lr 42	1DS	SNP113325	GGTGTTTGGCAGCATCATCACG	GGTGTTTGGCAGCATCATCACC	GACAACTTGAGACACTAGATATC AGAGAT	G/C	Gill et al., 2019
Leaf Rust	Lr 42	1DS	TC387992	TTGGATCTGCATTCCTTCTCCCA	GGATCTGCATTCCTTTCCCCCG	CTTTGGGATGTTGCTGCTGGAGAT	A/G	Gill et al., 2019
Leaf rust	Lr16	2B	2BS- 5175914_kwm 847	GTAACCACGGTGAAGCTGGCG	GTAACCACGGTGAAGCTGGCA	TTGTTGTGCCGCCAGCCTCCAT	G/A	Kassa et al., 2017
Leaf rust	Lr16	2B	2BS- 5192454_kwm 677	GTGTGCACCCCAATCCCTGC	AAGTGTGCACCCCAATCCCTGT	GAGTGTTAAGTCGCTTCCAACTTA GATAT	C/T	Kassa et al., 2017
Leaf rust	Lr16	2B	2BS- 5194460_kwm 747	AATAGCTGGAGGAAAGCTTATCG G	GAATAGCTGGAGGAAAGCTTATC GA	CTTCTTGGTGCACAATGCTTTGAA ATGAT	G/C	Kassa et al., 2017
Leaf rust	Lr16	2B	2BS- 5203447_kwm 742	GCCATCACTGCCAGTTTAGGG	GCCATCACTGCCAGTTTAGGC	GCATTTTTTCAAGTCGCTTGCATT TGGAA	G/C	Kassa et al., 2017
Leaf rust	Lr16	2B	BS00108724_k wm461	CACCGCATTCGCGCAGCTC	GCACCGCATTCGCGCAGCTT	GAGGTAGCTCCCTGCCGCGAT	C/T	Kassa et al., 2017

Leaf rust	Lr16	2B	2BS- 5175914_kwm 849	TGGCTTCGCGATGTCCACA	GGCTTCGCGATGTCCACG	AGCGCCAAGTAGGCCATGCAGA	A/G	Kassa et al., 2017
Leaf Rust	Lr23	2B	sunKASP_16	CGGTCCGGTGTAATACTTTCG	GACGGTCCGGTGTAATACTTTCT	TACATGGGCCGAGCTAGAAC	G/T	Chhetri et al., 2017
Leaf Rust	Lr23	2B	sunKASP_48	CCGAGCTAGAACAATGAAAACA	CCGAGCTAGAACAATGAAAACC	GGTGACGGTCCGGTGTAATA	A/C	Chhetri et al., 2017
Leaf Rust	Lr23	2B	sunKASP_47	GAACTCCAGGCAAGCGAAT	GAACTCCAGGCAAGCGAAC	TCATATATAAACTGATCGCACGT AA	T/C	Chhetri et al., 2017
Leaf rust	Lr80	2DS	KASP_17425	CTCTAGTGGTAAGGACATTGCA	CTCTAGTGGTAAGGACATTGCG	ATACTTTGGTGGAAGCATAAGT	A/G	Kumar et al., 2020
Leaf rust	Lr80	2DS	KASP_17148	TCCCTTTCATTCTTATTTTCAAGGT	TCCCTTTCATTCTTATTTTCAAGG C	GGGGTGTAAGAATTGGCATAAAT A	T/C	Kumar et al., 2020
Stem Rust	Sr36/Pm6	2B	Sr36/Pm6_806 8	CATTGTCATTCTCATCATTATACG CATCA	GTCATTCTCATCATTATACGCATC G	AAAGGGCAGTGCTTATGACGACG AT	T/C	Khalid et al., 2019
Stem rust	Sr26	6AL	sunKASP_224	GAGCAGATGAGGAAAAGAGGC	GAGCAGATGAGGAAAAGAGGA	CTTCCGCCCTGTGTATTTCG	G/T	Qureshi et al, 2018
Stem Rust	Sr26	6AL	sunKASP_225	CCAAGAATCACACACCATAGGTG	CCAAGAATCACACACCATAGGAT	CCCTACAACTGCACCGATGT	G/T	Qureshi et al., 2018
Stem Rust	Sr2	3B	Sr2_ger9 3p	GTGCGAGACATCCAACACTCAC	GTGCGAGACATCCAACACTCAT	CTCAAATGGTCGAGCACAAGCTC TA	G/A	Rasheed et al., 2016

Stripe rust and leaf rust	Lr76 e Yr70/ Lr57- Yr40/LrAc e YrAc/LrP e Y rP	5DS	XTa5DS- 2754099_kasp2 3	AGTTTCTGACCGCCTACACCAA C	GTTCCTGACCGCCTACACCAA T	ACCGAGCGGATTACGACG	С/Т	Bansal et al., 2021
Yellow Rust	Yr28	4DS	BS00108770_5 1	CTCCTGCCCCTTGGCGGT	CTCCTGCCCCTTGGCGGC	CTGAGGGGGGAGAGTTTGCCCTA	A/G	Zhang et al., 2019
Yellow Rust	Qyr- 4B.4	6AL	Tdurum_contig 76677_1142	AGGTCCATCAGCAGCGGA	AGGTCCATCAGCAGCGGG	GAAGGACGAGCTCAATCCAATA	A/G	Jiang et al., 2023
Yellow Rust	Qyr- 5B.2	7DS	BS00085890_5 1	CGCCACGTTTTATTACATCACCT	CGCCACGTTTTATTACATCACCC	CTACCATGTACCCACTCGCC	T/C	Jiang et al., 2023
Yellow Rust	QYr.AYH- 5BL	5BL	KASP_AX- 109337325	GAAGGTGACCAAGTTCATGCTCT GTGCAAGACATGAATCGATAA	GAAGGTCGGAGTCAACGGATTCT GTGCAAGACATGAATCGATAC	TCCACCTCTGGAAAATTATTTCTC T	A/C	Li et al., 2021
Yellow Rust	QYr.AYH- 5BL	5BL	KASP_AX- 110400764	GAAGGTGACCAAGTTCATGCTTC CCCGATGCCTCATTTCATT	GAAGGTCGGAGTCAACGGATTTC CCCGATGCCTCATTTCATC	ACCCAGGACAACACACTGTG	T/C	Li et al., 2021
Yellow Rust	YrPak	5B	sunKASP_338	AAATTAGCATATGAACTGAGGAA AAAA	AAATTAGCATATGAACTGAGGAA AAAC	AGCTCATTTTGGCCTGTGAG	A/C	Maryam Tariq et al., 2021
Yellow Rust	YrPak	5B	sunKASP_341	AACAGTTCTGTTTTCATCTCAGTG	ACAGTTCTGTTTTCATCTCAGTA	GGACAAATACTTAATGAGCATAT ACGA	G/A	Maryam Tariq et al., 2021
Yellow Rust	YrAS2388R	4DS	KASP-E5	ATCACTTCTTGCAGACTG G	ATCACTTCTTGCAGACTG A	CATGAGACATAAGTCCTGG	G/A	Hu, Y. et al., 2021

Yellow Rust	YrAS2388R	4DS	KASP-E6	TGGAAGAAGAGGACTAGAC T	TGGAAGAAGAGGACTAGAC C	CTAAACTCGTTCCGTAGG	T/C	Hu, Y. et al., 2021
Yellow Rust	Yr34	5AL	sunKASP_109	GGATGTAGTTTGTCACCAGCC	AGGATGTAGTTTGTCACCAGCA	GGATTAACATATTCCTCGAATGC	C/A	Qureshi et al., 2017
Yellow Rust	Yr34	5AL	sunKASP_112	AGCGCGCTCTCTTAGCAG	AGCGCGCTCTCTTAGCAA	AAAGAGGTAATGTGCTGACCTG	G/A	Qureshi et al., 2017
Yellow Rust	Yr71	3D	KASP_16434	CAACATGCCATTACATCTGCCACA T	AACATGCCATTACATCTGCCACA G	CTTGAGACTGAAAGCCGTTAGTC CTT	T/G	Bariana et al., 2016
Yellow Rust	Yr15	1BS	Yr15_R8	CAGATCCCCGGTTCTCTCAAG	CAGATCCCCGGTTCTCTCAAA	CCCCCAAATGATCGAGAATA	G/A	Ramirez- Gonzalez et al., 2015
Yellow Rust	Yr15	1BS	Yr15_R5	AGTCAACTTGGATTACACTGAAG TT	AGTCAACTTGGATTACACTGAAG TC	AGATATCACACTGAACATACTGA TGAG	T/C	Ramirez- Gonzalez et al., 2015
Yellow Rust	Yr82	3BL	KASP_8775	GACATTGAGGAACCTGAAACCA	GACATTGAGGAACCTGAAACCG	CACCATGAATGCCAAAGGTCG	A/G	Pakeerathan et al., 2019
Yellow Rust	Yr 82	3BL	sunKASP_300	GAAGTCCCAAAAGCAGCAATTC	CCTCGATGTGTGAACAATCTTCAC T	CATTCTCTATTGTAAAGCAGTGCC A	C/T	Pakeerathan et al., 2019
Yellow Rust	Yr81	6A	KASP_3077	ATTCCAAAGTAATTGGCAACAGG TTCA	CCAAAGTAATTGGCAACAGGTTC G	TGTGGAGCGTGACAATGAGGAAG TT	A/G	Gessese et al., 2019

Yellow Rust	Yr26	1B	CM1461	GAAGGTCGGAGTCAACGGATTAG TAGGTATGGTGAAGGCTATTTTG	GAAGGTGACCAAGTTCATGCTAG TAGGTATGGTGAAGGCTATTTTA	GCAGAGATCAAGCTCCAACTC	G/A	Wu, J. et al., 2018
Yellow Rust	Yr26	1B	CM501	GAAGGTGACCAAGTTCATGCTGC AGTGGATGCGTACTGGA	GAAGGTCGGAGTCAACGGATTGC AGTGGATGCGTACTGGG	CGAGTGTGTCAACAGTTCTTC	A/G	Wu, J. et al., 2018
Yellow Rust	Yr26	1B	WRS467	GAAGGTGACCAAGTTCATGCTTTT GTACAACACATCAGCTATTACA	GAAGGTCGGAGTCAACGGATTTT TGTACAACACATCAGCTATTACC	AAGTGCAAAGAAAACCAATTGC	A/C	Wu, J. et al., 2018
Yellow Rust	Yr66	3DS	KASP_48179	AGTACATATCCCCAGCTGCTT	AGTACATATCCCCAGCTGCTC	AGCTGGACATGGTGCTGTTT	T/C	Bariana et al., 2022
Yellow Rust	Yr66	3DS	KASP_18087	AAAGAAGGCCTCAGTTTGACGAT ATT	AAGAAGGCCTCAGTTTGACGATA TC	GGTCATTGTCAAGCGCTTCCTTGT A	T/C	Bariana et al., 2022
Yellow Rust	Yr67	7BL	KASP_2239	CTCTAGGGTGGCGAGGCA	CTCTAGGGTGGCGAGGCG	CATACAGCTAACCGGGCGAG	A/G	Bariana et al., 2022
Drought tolerance	TaDreb-B1	3B	TaDreb_SNP	CCTGCGCACTTTCTTCTTCCTGT	CTGCGCACTTTCTTCTTCCTGG	TTTCACCTTGTGATATGGATTGCC TTGAT	A/C	Rasheed et al., 2016
Drought tolerance	1-feh-w3	6BS	1fehw3	CTCCCCCCTTCCTTCTGTCC	CTCCCCCCTTCCTTCTGTCT	AGGAAGACGGCCCGAGCTTT	C/T	Rasheed et al., 2016
Drought tolerance	TaSAP-7B	7B	TaSAP-7B- KASP-8	GAGCTGACCGGATCGATCCAGAA GCC	GAGCTGACCGGATCGATCCAGAA GCT	GAACGTGATGGAGACGGCTGGCC ACG	C/T	Rehman et al., 2021
Drought tolerance	TaSnRK2.3- 1A	1A	TaSnRK2.3- 1A-KASP-1	GGCAGCAGAACATTGGTAAGCGA ATCCG	GGCAGCAGAACATTGGTAAGCGA ATCCA	CAACATAGAACTTTAGTAATGGA C	C/T	Rehman et al., 2021

Drought tolerance	TaSnRK2.3- 1A	1A	TaSnRK2.3- 1A-KASP-2	TTCTTGTTTCAGCAAACCGTACTC T	TTCTTGTTTCAGCAAACCGTACTC C	GCAGGTGCAGCCGCGTAGCTGTT TCG	A/G	Rehman et al., 2021
Drought tolerance	TaSnRK2.3- 1B	1B	TaSnRK2.3- 1B-KASP-3	GGATTCTCTGTCAAGTGTCACAAG ACG	GGATTCTCTGTCAAGTGTCACAA GACA	GCGTGAAACTCTGATCTGAACAC G	C/T	Rehman et al., 2021
Drought tolerance	TaSnRK2.3- 1B	1B	TaSnRK2.3- 1B-KASP-4	CGACGCGGCGCTGCTCGCG	CGACGCGGCGCTGCTCGCC	CTCCTCATCGCTCTGCAGCTC	G/C	Rehman et al., 2021
Drought tolerance	TaSnRK2.9- 5A	5A	TaSnRK2.9- 5A-KASP-5	CTTGGCACCAGACCAGAGCCACG GC	CTTGGCACCAGACCAGAGCCACG GT	ACGCATCATCAAACTTGTAAATA CC	C/T	Rehman et al., 2021
Drought tolerance	TaSnRK2.9- 5A	5A	TaSnRK2.9- 5A-KASP-6	TGAATGTAGTCCGGAATCGAGTA CG	TGAATGTAGTCCGGAATCGAGTA CT	CCGAGCTCAACTTTTTCAGAAAA	C/A	Rehman et al., 2021
Grain hardness	Pina-D1	5D	Pina-D1_INS	AACTGCCAACAACTTCGCTA	TTGTCTAGTACCCCGCTCTG	ATGAAGGCCCTCTTCCTCATAGG	A/G	Rasheed et. al., 2016
Grain hardness	Pinb-D1	5D	Pinb-D1_INS	CTCATGCTCACAGCCGCC	CCTCATGCTCACAGCCGCT	GTCACCTGGCCCACAAAATG	C/T	Rasheed et al., 2016
Grain hardness	Pinb2-V	5D	Pinb2-v2-3	GCACCTAGCAATAAATAAACGGG AG	AGAAAAAAGCCATTAAATAAACG GGAC	TGTTTTGGTGGTGGTGAAGATGA		
Grain protein	Gpc-B1	6BS	GCP_DUP	CAAGAGGGGAGAGAGACATGTTACT	CAAGAGGGGGAGAGACATGTTACT TT	GATTATGGGAGTAGGTTGGTGAG ATAAAA	A/T	Rasheed et al., 2016
Grain size	TaGS-D1	7DS	TaGS-D1_SNP	GCCAAGAAATGTCGCTCTCAG	GCCAAGAAATGTCGCTCTCAT	CAAGAATTTTGGGACGGAGGGA	G/T	Rasheed et al., 2016

Grain size	TaCKX-D1	3D	TaCKX-D1	CGTCGATAGTCTCATGCATATGC	ATGCATGCATGCATGCGT	AACTTTTCACGGTGAACAG	DE L/I NS	Rasheed et al., 2016
Grain size	TaGASR7- A1	7A	TaGASR	CACGGTAGAGGAGCCGGTTC	ATAACTGCTCACCCCCACC	ATATGTAGGGCAGGAAGGGC	INS/ DE L	Rasheed et al., 2016
Grain size	QGW.yz.2D/ QGL.yz.2D	2D	KASP_2D	GAAGGTGACCAAGTTCATGCTTG AAGAGCATGGTGAAGGCG	GAAGGTCGGAGTCAACGGATTTG AAGAGCATGGTGAAGGCC	GCTCTCGGGTGGTAGTTCCA	G/C	Wenjing Hu et al., 2022
Grain size	QGW.yz.4B/ QGL.yz.4B	4B	KASP_4B	GAAGGTGACCAAGTTCATGCTGC GTTTGTGTGTGTGCCCTC	GAAGGTCGGAGTCAACGGATTGC GTTTGTGTGTGTGCCCTG	ATGATTGGTGCGCAATTGGC	C/G	Wenjing Hu et al., 2022
Grain size	QGL-yz-5A	5A	KASP_5A	GAAGGTGACCAAGTTCATGCTCC CAGATGTCGTGTTTTTGGAATG	GAAGGTCGGAGTCAACGGATTCC CAGATGTCGTGTTTTTGGAATA	GAAAGATGTGTCCAAATGTCAGT T	G/A	Wenjing Hu et al., 2022
Grain yield	TaMoc-A1	7A	TaMoc-2433	CGGAAAGCTTAGAAATGCACGG	CGGAAAGCTTAGAAATGCACGT	CACCTCTAATCCAATGCGATCC	G/T	Rasheed et al., 2016
Grain yield	TaSus1-7A	7A	TaSus1-7A	GAAGGTGACCAAGTTCATGCTGA TTTGATCCATGCCCTCTC	GAAGGTCGGAGTCAACGGATTGA TTTGATCCATGCCCTCTT	CTGTCGTTCAACATCATTGTCTG	C/T	Junjie Ma et al., 2021
Grain yield	TaSus1-7B	7B	TaSus1-7B	GAAGGTGACCAAGTTCATGCTCA ATTGCTTATGTTCTGTTGTATGG	GAAGGTCGGAGTCAACGGATTCA ATTGCTTATGTTCTGTTGTACAT	ATGGTTATGCTTGAATGGAAGAG C		Junjie Ma et al., 2021
Grain yield	TaGS5-A1	3AS	TaGS5-A1	GAAGGTGACCAAGTTCATGCTGT GCAATCTTGGACAAACATCAG	GAAGGTCGGAGTCAACGGATTGT GCAATCTTGGACAAACATCAT	AGTGCTTTGTCAACAACAGATGC		Junjie Ma et al., 2021

Grain yield	TaGW2-6A		TaGW2-6A	GAAGGTGACCAAGTTCATGCTTC CCGCTCCAGCTATCTGGTGAAC	GAAGGTCGGAGTCAACGGATTTC CCGCTCCAGCTATCTGGTGAAA	TTCCCAGTCTTTGACATGTTCCGC C		Junjie Ma et al., 2021
Grain yield	TaGW2-6B		TaGW2-6B	GAAGGTGACCAAGTTCATGCTTG AGATCCCGTGCAGTAGCTCG	GAAGGTCGGAGTCAACGGATTTT GAGATCCCGTGCAGTAGCTCA	TGGCGTGAGCTAGGGTTTGTTG		Junjie Ma et al., 2021
Grain yield		6A	AX-94518269	ACCAAGAAGAACCTCATGTCCTTT	ACCAAGAAGAACCTCATGTCCTT A	CGTGCCGAAGAAAGGGAAGA	T/A	CIMMYT - Susanne Dreisigacker
HMW-GS	Glu-A1	1AL	Glu-Ax2_IND	ATTCTTGTTGTCCTTGTCCTGGCT	CTTGTTGTCCTTGTCCTGGCC	GGTTTCATACTATCCAGGCCAAG CTT	INS/ DE L	Liu et al., 2008
HMW-GS	GluD1	1D	Glu-D1d_SNP	ATAGTATGAAACCTGCTGCGGAG	ATAGTATGAAACCTGCTGCGGAC	TACTAAAAAGGTATTACCCAAGT GTAACTT	C/G	Ishikawa e Nakamura, 2007
HMW-GS	Glu-A1	1AL	Glu- Ax1/x2*_SNP	AAGTGTAACTTCTCCGCAACG	ACCTAAGTGTAACTTCTCCGCAAC A	CGAAGAAGCTTGGCCTGGATAGT AT	G/A	Liu et al., 2008
HMW-GS	Glu-B1	1B	Bx13_SNP	CAACGACCGGGACAAGGGCAAC	CAACGACCGGGACAAGGGCAAT	CTGTGGAGAGGGTTGGGTAGTACC C		Rasheed et al., 2016
HMW-GS	Glu-B1	1B	BX7OE_866_S NP	GTGGAATATTAGTGATGGCGTGA G	GTGGAATATTAGTGATGGCGTGA C	TTCTTCTCTCGTTGGCCTTATCGC	G/C	Rasheed et al., 2016
HMW-GS	Glu-B3	3B	Glu-B3	GAAGGTGACCAAGTTCATGCTCT GTTGGGGTTGGGAAACG	GAAGGTCGGAGTCAACGGATTCT GTTGGGGTTGGGAAACA	AGCAGCAGCAACCGCAAC	G/A	Junjie Ma et al., 2021

lipoxygenas e activity	Lox-B1	4BS	LoxB1_SNP	TCCTCGGCGGCAGCGCCGAG	TCCTCGGCGGCAGCGCCGAC	TCGGGTCGTTGGCGTTGGGCTT	G/C	Rasheed et al., 2016
Lycopene	TaLyc-B1		LYCB1_3765_ SNP	GGATCGATCTCCTGAACAGGATG TG	GGATCGATCTCCTGAACAGGATG TC	CGAAAGCGTCGAACCAAGGAATC CTC	G/C	Rasheed et al., 2016
peroxidase activity	TaPod-A1	3A	PODA1_462_S NP	TTCGACGACCGGCTCTTCCCG	TTCGACGACCGGCTCTTCCCA	AAGGAAGTCCGGGCTCATGGTGG GGTCA	G/A	Rasheed et al., 2016
Phytoene desaturase	TaPds-B1		Pds-B1_2002	CATATTGCAATCTCTATGAGGCTA C	CATATTGCAATCTCTATGAGGCTA G	GGCAGAAATGTATTAGCAAACAA AACC	C/G	Rasheed et al., 2016
Phytoene synthase	Psy-B1	7B	PsyB1c	GTGAAGAATAAAGGCCTCAT	GTGAAGAATAAAGGCCTCAC	GCCTAATTTGATTCTTCCACAC	T/C	Rasheed et al., 2016
Phytoene synthase	Psy-A1	7B	PsyA1-IND	GCCATCTACGGTAATCTGAAAATT CG	GCCATCTACGGTAATCTGAAAAT TCA	CAATGGAGGGTCCAAACCAGGCA T		Rasheed et al., 2016
Plant height	Rht-B1	4B	Rht-B1_SNP	CCCATGGCCATCTCCAGCTG	CCCATGGCCATCTCCAGCTA	TCGGGTACAAGGTGCGGGCG	C/T	Rasheed et al., 2016
Plant height	Rht-D1	4D	Rht-D1_SNP	CATGGCCATCTCGAGCTGCTC	CATGGCCATCTCGAGCTGCTA	CGGGTACAAGGTGCGCGCC	G/T	Rasheed et al., 2016
Plant height	Rht-B1	4B	Rht- B1_197IND	CATGCCCTAACTTGTCTATC	CAGCACGAATATTTACCAAGG	CACGCAAGTACTTGAAATGT	INS/ DE L	Rasheed et al., 2016

Plant height	Rht-B1	4B	Rht- B1_160IND	TGTCGTGTGCGTAGCAGCGCTCT	TGGTGGGCTCAGGATTTGTA	AGACAAACTTCGCCATCCAG	INS/ DE L	Rasheed et al., 2016
Plant height	Rht-5	3BS	Kasp-25	GAAGGTGACCAAGTTCATGCTCA GGAGGGTCTTACACGCA	GAAGGTCGGAGTCAACGGATTCA GGAGGGTCTTACACGCG	AGAGCAAACGAGAAATCTATCCA GG	A/G	Cui, C. et al., 2022
Plant height	Rht-5	3BS	Kasp-23	GAAGGTGACCAAGTTCATGCTAT TGGACGTTCACTTTCGCG	GAAGGTCGGAGTCAACGGATTAT TGGACGTTCACTTTCGCA	CCCGTCTTTGTTGTTCTTTTCC	G/A	Cui, C. et al., 2022
Polyphenol oxidase	Ppo-A1	2A	PPO-A1	GACGACCTGCACCTTTCTGT	GACGACCTGCACCTTTCTGA	CAAACCCACGCAGGGACAAGT	T/A	Rasheed et al., 2016
Polyphenol oxidase	Ppo-D1	2D	PPO-D1_SNP	AAGAGACCAGCAGATCGATG	AAGAGACCAGCAGATCGATC	TACTGGCCTGGCGGTACATGAT	G/C	Rasheed et al., 2016
spike length	QSI.cib-2D	2D	K_2D- 20925377	GCCACAACGTACGCCTTCAAT	GCCACAACGTACGCCTTCAAC	GATCGTCCCATCTACTAGTGGC	T/C	Li, T. et al. 2022
TGW and grain lenght	QTgw.cib- 6A.1; QGl.cib-6A	6A	K_6A- 83647812	CAATTGCACCAAGTCTGTTAGAA	CAATTGCACCAAGTCTGTTAGAG	ACCCCGTCATTTTACTTGTCAG	A/G	Li, T. et al., 2022
TGW and grain width	QTgw.cib- 6A.2; QGw.cib-6A	6A	K_6A- 54337781	CATTCAAATCAGTGACCCCTGT	CATTCAAATCAGTGACCCCTGG	TAATTGGCCGCACACAACTGTA	T/G	Li, T. et al., 2022
Vernalizati on	Vrn-A1	5A	Vrn- A1_9K0001	AGAGTTTTCCAAAAAGATAGATC AATGTAAAT	GAGTTTTCCAAAAAGATAGATCA ATGTAAAC	GTTAGTAGTGATGGTCCAATAAT GCCAAA	A/G	Yan et al., 2004

Vernalizati on	Vrn-A1	5A	Vrn-A1b-Marq	GTTTTGGCCTGGCCATCCTCC	GTTTTGGCCTGGCCATCCTCA	TATCAGGTGGTTGGGTGAGGACG T	C/A	Yan et al., 2004
Vernalizati on	Vrn-A1	5A	Exon 4_C/T_Vrn-A1	CAACTCCTTGAGATTCAAAGATTC AAG	GCAACTCCTTGAGATTCAAAGAT TCAAA	CATCCTGCATCTGCAGGCATCTC	C/T	Chen et al., 2009
Vernalizati on	Vrn-A1	5A	Exon7_C/T_Vr n-A1	GAGTTTGATCTTGCTGCGCCG	CTGAGTTTGATCTTGCTGCGCCA	CTTCCCCACAGCTCGTGGAGAA	C/T	Diaz et al., 2012
Vernalizati on	Vrn-D1	5D	Vrn-D1-D1a_A	ATCATTCGAATTGCTAGCTCCGG	ATCATTCGAATTGCTAGCTCCGC	GCCTGAACGCCTAGCCTGTGTA	G/C	Fu et al., 2005
Vernalizati on	Vrn-B3	7BS	Vrn-B3_1279	CCACCATTAATTTGCGTGGTGATC ATG	CCACCATTAATTTGCGTGGTGATC ATT	CTGTCTGCCGTAATAAGCTCCTGA T	G/T	Yan et al., 2006
Zeta- carotene	Zds-A1	2A	Zds-A1_SNP	CCATGCACTTGGACCTAATAG	CCATGCACTTGGACCTAATAC	AAGCCGACGCGGATTTTGAA	G/C	Rasheed et al., 2016

Tabella 6A: Elenco dei marcatori con le	sequenze estr	apolate per lo	sviluppo del	panel Agriseq-IonS5
---	---------------	----------------	--------------	---------------------

MarkerName	Sequences	Strand	Gene	Chr
1fehw3	CCACACTATACATCCTATCGCTCTCCTCCCCCCCCCCCC	plus	1-feh-	6BS
	TCTGTCCCCGAGGCCCAAAGCTCGGGCCGTCTTCCTCCTCCTC	P-m-	w3	
	СТСАТСТТСТТСТА			
2BS-	ATGTCGTAGATGGGGACTAGCACGAGCGTGGTAACCACGGTG	plus	Lr16	2B
5175914_kwm	AAGCTGGCGATGGAGGCTGGCGGCACAACAAATGGCCCCACG	-		
847	CGGTTGTCCATTATCAT			
2BS-	GCTACCGCGAGCCGGTTCCTCTCGAGCAGCGCCAAGTAGGCC	minus	Lr16	2B
5175914_kwm	ATGCAGAGTGTGGACATCGCGAAGCCAATGCCGAGGCGCTGT			
849	GACTGCGTGAGGCCTCG			
2BS-	TTAAATACTCATCGCTCTTTATAAGCTGGAAGTGTGCACCCCA	plus	Lr16	2B
5192454_kwm	ATCCCTGCAATTTTTGGTGTCCATGCCAGCAATTTTTGATATCT			
677	AAGTTGGAAGCGAC			
2BS-	AATACCAGAAGAGTTCTTCTTATTTGGAATAGCTGGAGGAAAG	plus	Lr16	2 B
5194460_kwm				
747		•	I 16	20
2BS-		minus	Lr16	2 B
5203447_KWM				
/42 AV 04519260		alus		61
AA-94318209		pius	-	0A
B\$00085890_5		minus	Ovr.	7DS
1		mmus	5B 2	705
1	GCGTCACCGGTGTAC		50.2	
BS00108724 k	GCGACAACGCCCAGCGCTGCCGAGTTGAGGTAGCTCCCTGCC	minus	Lr16	2B
wm461	GCGATGGCGAGCTGCGCGAATGCGGTGCACATGCTCCTCATGT	mmus	LIIU	20
	TGTCCGGAGCCCGGTC			
BS00108770 5	AATGTTCAAACGGCCTTTTATTTTATTTTTCCTCTCCTGCCCCTT	plus	Yr28	4DS
1	GGCGGTTAGGGCAAACTCTCCCCCTCAGGCTTGGCCGGCGAGT	P-m-		
	CTGTGGATTCGGT			
BX7OE_866_	CCTGGCCTCCATAGACGACGCACTTCTTCTCTCGTTGGCCTTAT	minus	Glu-B1	1B
SNP	CGCTTGGTCACGCCATCACTAATATTCCACTGTAACTAGATGT			
	ACCCCACAAGTTGT			
CM1461	CTGAAGGAACCCTCAGATTTAAGGTTAGTAGGTATGGTGAAG	plus	Yr26	1B
	GCTATTTTATAGGCTGTGATCGACATCCGAAGTGCAAGTATGA			
	TCTTGTTATCCCTACT			
CM501	TGACTGGGAGAGGAAGTCAATTTCTGTGGATCGCAGTGGATG	plus	Yr26	1B
	CGTACTGGATAATGGTAAGTTTTCTAGAAAGTACAAAGTTAGG			
	CACAAGGCCTTGGGTG			
CSTM4_6/G		plus	Lr3//Yr	2AS
			1//Sr38	
Even 4 C/T Va		alus	Van A1	5 1
$EX0II4_C/1_VI$		pius	VIII-AI	JA
11-71	TAGAAATTCAGTCCC			
Exon7 C/T Vr		nlus	Vrn- 41	54
n-A1	GCTGCGCCGCATGGGCCTTCTGCTTCTCCACGAGCTGTGGGGGA	pius	VIII-731	511
	AGGGACACGGACCTCT			
FHB-5AS-	GCTTCAACAATACTTTGCTCAATGCCATCGACAATTACATCAA	plus	OFhb.h	5AS
KASP	ATGACTGACGAACAAACCCAAGTGATGTGATAATATAGACTA	r	baas-	
	CATACTGCAGATAACC		5AS	
Fhb1-TaHRC	ATCATTTCACGGCCCTGCAGGTTTTGAGCTTTTGTCTGTTTCGC	plus	Fhb1	3BS
	TGGGATGGATGCCAAGAAGTTCCTGCAGATGGTCGAAGACAA			
	GAAGAAGAGACTCCT			
Fhb1-TaHRC	AGGAGTCTCTTCTTGTCTTCGACCATCTGCAGGAACTTCTT	minus	Fhb1	3BS
	GGCATCCATCCCAGCGAAACAGACAAAAGCTCAAAACCTGCA			
	GGGCCGTGAAATGAT			1

	CATGAGGAGGTGGCCGCGTGGGTTTGGGGGATCTAGGGTTTCG	minus	Fhb2	6B
	AGGGAATAATCAAGGGGGGGCTGAGGCTTGCTTCCAGAAGTTC		1.102	012
	TCTGGGGTTCTGCAGAT			
GBS17928	GTAGCAGCAGGTGCGGGCGCCGTCGGGCAGCGGCTGCAGGCG	minus	Ofhh 3A	3AL
00017920	GGACCACGCGCGTGGGGGGGGGGGGGGGGGGGGGGGGGG	mmus	I	57112
	GGTGGTGGCGTCCTTCG		L	
CCP DUP		plus	Gpc B1	685
OCF_DUF		pius	Орс-вт	005
Cla				1 4 1
		minus	Glu-Al	IAL
AX1/X2*_SNP				
		1	<u>C1</u> 11	1 4 7
Glu-Ax2_IND		plus	Glu-Al	IAL
<u> </u>				
Glu-B3	TGAGGTTGTTGCCCGAGTTGCTGCTGTGACTGCTGTTGGGGTT	plus	Glu-B3	3B
	GGGAAACGCATTGGCCCAACTGTTGCGGTTGCTGCTGCTGAGT			
	TTGGATGGAACCCCG			
Glu-D1d_SNP	CTGGCCGTTGCGGAGAAGCTTGGCCTGGATAGTATGAAACCTG	plus	GluD1	1D
	CTGCGGAGAAGTTACACTTGGGTAATACCTTTTTAGTAGTGCA			
	GGTATTCCCCAAAAT			
IWA1587	CCTGAAGATTGTGTTCTATTATCTATCTATATTCTTTGTTCTTC	plus	Qfhb.nc	1A
	AAGTCCGTATGCATAATCGATCTTTGACCAGTAAATAAACAGC	•	-1A	
	TGTTGCTAGTTGCA			
IWA3483	GGAAATCATTGTAACCAGATGGTTGAACATAACCATGATTGG	minus	Ofhb.nc	6A
100100	AAGAAGAGTTTGTGGATAAACCAGTGCTAACACCTATCTGGG		-6A	011
	GCCTCCAATTATAATGA		011	
IWA3805	ΑCCTGATCATTTGTTCCATCACAATGCTAACTTTGCTGTCAACT	nlus	Ofhh nc	1.4
10113003	TTGAGGACTGGTTTATTTCCCATATAAAGTGCACCCATCAGTT	pius	-14	171
	GCAGTAAGGGAATC		-171	
IWA/087	CCAAGTCTCCATCCTTCCTCTAGGATCCTGCAGAACAAGATAG	nlus	Ofhh nc	1B
1 W A4907		pius		ID
			-1D	
IWA (250			OFUD	1D
TW A6259		minus	QFHB.V	IB
			l-1B	
WY A C 4 4 0			0.01	10
IWA6448	GATGCTGCTTCTAGGTTGCCTGGAAGAACTGGAACAAGAGCT	minus	Qfhb.nc	IB
	GATGITTGCACACTICICAAAGATTCACAGTACCTAAATCATG		-1B	
	CAGAATCCAATAAAGA			
IWA7594	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA	minus	QFHB.v	1B
IWA7594	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA	minus	QFHB.v t-1B	1B
IWA7594	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT	minus	QFHB.v t-1B	1B
IWA7594 IWA7777	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC	minus minus	QFHB.v t-1B Qfhb-	1B 5AS
IWA7594 IWA7777	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC	minus minus	QFHB.v t-1B Qfhb- 5AS	1B 5AS
IWA7594 IWA7777	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT	minus minus	QFHB.v t-1B Qfhb- 5AS	1B 5AS
IWA7594 IWA7777 IWA7977	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG	minus minus plus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc	1B 5AS 1B
IWA7594 IWA7777 IWA7977	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA	minus minus plus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B	1B 5AS 1B
IWA7594 IWA7777 IWA7977	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA	minus minus plus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B	1B 5AS 1B
IWA7594 IWA7777 IWA7977 IWB28643	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTTGATGTTGCTGGAGATGTTCTCGTCG	minus minus plus minus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL-	1B 5AS 1B 2DL
IWA7594 IWA7777 IWA7977 IWB28643	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGACCTTGTCACCGTTCATGTAGTTCGAGG	minus minus plus minus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB-	1B 5AS 1B 2DL c
IWA7594 IWA7777 IWA7977 IWB28643	ATTGGTTAGTTTACAAGATGAGGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCGAGG CACCGTGTGGGAGAA	minus minus plus minus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc	1B 5AS 1B 2DL c
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992	ATTGGTTAGTTTACAAGATGAGGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCCGAGG CACCCGTGTGGGAGAA ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA	minus minus plus minus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc OFHB.v	1B 5AS 1B 2DL c
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992	ATTGGTTAGTTTACAAGATGAGGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCCGAGG CACCCGTGTGGAGAA ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAAATCGAAGCCAAGTATCCTGCGATATGGA	minus minus plus minus plus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B	1B 5AS 1B 2DL c 1B
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992	ATTGGTTAGTTTACAAGATGAGGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCCGAGG CACCCGTGTGGAGAA ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAAATCGAAGCCAAGTATCCTGCATTTCTCA AGCAGCAACTTGCA	minus minus plus minus plus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B	1B 5AS 1B 2DL c 1B
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCCGAGG CACCCGTGTGGAGAA ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAACGAAGCAAGCAAGTATCCTGCATTTCCA AGCAGCAACTTGCA	minus minus plus minus plus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B	1B 5AS 1B 2DL c 1B
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992 IWB43992	ATTGGTTAGTTTACAAGATGAGGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCCGACG CACCCGTGTGGAGAA ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAAATCGAAGCAAGTATCCTGCATTTCCA AGCAGCAACTTGCA TGTAAGTTGCTGCTTGAAAAGAAATGCAGGATACTTGGCTTCG ATTTGACGCACAAGATCCATATCGACAGTAATGTAG	minus plus minus plus minus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B QFHB.v t-1B	1B5AS1B2DLc1B1B
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992 IWB43992	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCCGAGG CACCCGTGTGGAGAA ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAACTGAAGCCAAGTATCCTGCATTTCTCA AGCAGCAACTTGCA TGTAAGTTGCTGCACGAAGAAGCAAGTACTTGGCTTCG ATTTGACGCACAAGATCCATATCGACAGTAATGTTGAAGTAC GAAATACCTGACCAT	minus minus plus plus plus minus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B QFHB.v t-1B	1B 5AS 1B 2DL c 1B 1B
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992 IWB43992	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCGAGG CACCCGTGTGGAGAA ATGGTCAGGTATTTCGTTCTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAAATCGAAGCCAAGTATCCTGCATTTCTCA AGCAGCAACTTGCA TGTAAGTTGCTGCTTGAAAAGAAATGCAGGATACTTGGCTTCG ATTTGACGCACAAGATCCATATCGACAGTAATGTTGAAGTAC GAAATACCTGACCAT	minus plus minus plus minus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B QFHB.v t-1B	1B 5AS 1B 2DL c 1B 1B
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992 IWB43992	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCGAGG CACCCGTGTGGAGAA ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAAATCGAAGCCAAGTATCCTGCATTTCTTCA AGCAGCAACTTGCA TGTAAGTTGCTGCTTGAAAAGAAATGCAGGATACTTGGCTTCG ATTTGACGCACAAGATCCATATCGACAGTAATGTTGAAGTAC GAAATACCTGACCAT ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAAAGACCATTCCAATGCAGGATACTTGGCTTCG ATTTGACGCACAAGATCCATATCGACAGTAATGTTTGAAGTAC GAAATACCTGACCAT	minus plus minus plus plus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B	1B 5AS 1B 2DL c 1B 1B
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992 IWB43992 IWB43992	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCGAGG CACCCGTGTGGAGAA ATGGTCAGGTATTTCGTTCTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAAATCGAAGCCAAGTATCCTGCATTTCTTCA AGCAGCAACTTGCA TGTAAGTTGCTGCTTGAAAAGAAATGCAGGATACTTGGCTTCG ATTTGACGCACAAGATCCATATCGACAGTAATGTTGAAGTAC GAAATACCTGACCAT ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAAAGAACAAGAAATGCAGGATACTTGGCTTCG ATTTGACGCACAAGATCCATATCGACAGTAATGTTTGAAGTAC GAAATACCTGACCAT	minus plus minus plus plus plus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B	1B 5AS 1B 2DL c 1B 1B 1B
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992 IWB43992 IWB43992	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCTGGAG CACCCGTGTGGAGAA ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAACGAAGCCAAGTATCCTGCATTTCTTTC	minus plus minus plus minus plus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B	1B 5AS 1B 2DL c 1B 1B 1B
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992 IWB43992 IWB43992 IWB43992 IWB43992	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCTGGCG CACCCGTGTGGAGAA ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAACGAAGCCAAGTATCCTGCATTTCTTTC	minus minus plus minus plus minus minus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B	1B 5AS 1B 2DL c 1B 1B 1B 2DL 2DL
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992 IWB43992 IWB43992 IWB43992	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCGAGG CACCCGTGTGGAGAA ATGGTCAGCGAAGAGAGCCTTGTCTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAACGAAGCCAAGTATCCTGCATATGGA TCTTGTGCGTCAAATCGAAGCCAAGTATCCTGCATATGGA TGTAAGTTGCTGCTTGAAAAGAAATGCAGGATACTTGGCTTCG ATTTGACGCACAAGATCCATATCGACAGTAATGTTGAAGTAC GAAATACCTGACCAT ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAAATCGAAGACAATGCAGGATACTTGGCTTCG ATTGGACGCACAAGATCCATATCGACAGTAATGTTTGAAGTAC GAAATACCTGACCAT ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGTGTCAAATCGAAGCCAAGTATCCTGCATTTCTTTTCA AGCAGCAACTTACA GCTCTGACTGACTTGATTGCATGTATAATGTTCTCCGCTTGTC CACTACTGTGATGTCTCCTCTAGCAGAACTGCATCCAGCAACA	minus plus minus plus plus plus minus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B	1B5AS1B2DLc1B1B2DLc
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992 IWB43992 IWB43992 IWB43992 IWB43992 IWB43992	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGCCTTGTCACCGTTCATGTAGTTCTGGAG CACCCGTGTGGAGAA ATGGTCAGGCAAGAGAGCCTTGTCACCGTTCATGTAGTTCGAGG CACCCGTGTGGAGAA ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAAATCGAAGCCAAGTATCCTGCATTTCTTTTCA AGCAGCAACTTGCA TGTAAGTTGCTGCTTGAAAAGAAATGCAGGATACTTGGCTTCG ATTTGACGCACAAGATCCATATCGACAGTAATGTTTGAAGTAC GAAATACCTGACCAT ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGTGTCAAATCGAAGCCAAGTATCCTGCATATGGA TCTTGTGTGTCAAATCGAAGCCAAGTATCCTGCATATGGA TCTTGTGTGTCAAATCGAAGCCAAGTATCCTGCGTTTTTTCA AGCAGCAACTTACA GCTCTGACTGACTTGATTGCATGTATAATGTTCTCCGCTTGTTC CACTACTGTGATGTCTCCTCTAGCAGAACTGCATCCAGCAACA AAGGCCTCAACATC	minus plus minus plus minus plus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B	1B5AS1B2DLc1B1B2DLc
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992 IWB43992 IWB43992 IWB43992 IWB43992 IWB43992 IWB44589 IWB70147	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGGCCTTGTCACCGTTCATGTAGTTCTGGAG CACCCGTGTGGGAGAA ATGGTCAGGCAAGAGAGCCTTGTCACCGTTCATGTAGTTCGAGG CACCCGTGTGGGAGAA ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAAATCGAAGCCAAGTATCCTGCATTTCTTTC	minus plus minus plus minus plus minus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B	1B 5AS 1B 2DL c 1B 1B 2DL c 2DL 2B
IWA7594 IWA7777 IWA7977 IWB28643 IWB43992 IWB43992 IWB43992 IWB44589 IWB70147	ATTGGTTAGTTTACAAGATGAGGGCTGGCACTCTTGAAAGGAA GGGTGCAGGAGTATGTGACATATCTAACACCGTCAAGGAGAA CAACAACAAATATCCT TCATTTTCAGAATCATCCATTGTGATTAACTTCTTCAAAGACAC CGTCCGCAAAGTTGCACAAATGTATGCTGATCTCCTAGCGAAC ACAACCGTTACTGT GAAGAAAGCATTCCAATTGCTCTAACTGGAAGTGATATTCTTG CAAGAGCGAAAAACGGCACCGGGAAGACTGCTGCATTTTGCA TTCCAGCACTCGAAAA GGGGTCGTCACCGAATTTGATGTTGCTGGAGATGTTCTCGTCG AGCTCGGCGAAGAGAGACCTTGTCACCGTTCATGTAGTTCGAGG CACCCGTGTGGAGAA ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGCGTCAAATCGAAGCCAAGTATCCTGCATTTCTCA AGCAGCAACTTGCA TGTAAGTTGCTGCTTGAAAAGAAATGCAGGATACTTGGCTTCG ATTTGACGCACAAGATCCATATCGACAGTAATGTTTGAAGTAC GAAATACCTGACCAT ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGTGTCAAAATCGAAGCCAAGTATCCTGCATTTGTAGTAC AAATACCTGACCAT ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGATATGGA TCTTGTGTGTCAAATCGAAGCCAAGTATCCTGCATTTGTAGAGTAC GAAATACCTGACCAT ATGGTCAGGTATTTCGTTCTTCGAACATTACTGTCGCATATGGA TCTTGTGTGTCAAATCGAAGCCAAGTATCCTGCATTTCTTTC	minus minus plus minus plus minus plus minus plus minus plus	QFHB.v t-1B Qfhb- 5AS Qfhb.nc -1B QTL- FHB- 2DLc QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B QFHB.v t-1B	1B 5AS 1B 2DL c 1B 1B 1B 2DL c 2B

K_2D- 20925377	ATCTTCCGCTTGGCCCGTGGGTACGCGCTGGCCACAACGTACG CCTTCAATATTAGCACCGGCGACGCCACAGTCGAGTACAACGT CTTCATCCGCCACTA	plus	QSl.cib- 2D	2D
K_6A- 54337781	GGCCACAGGAACGCATGGGCGACGCCGGCCATTCAAATCAGT GACCCCTGTCTGATTTGATATGACGTGCTGCCGGCTACAGTTG TGTGCGGCCAATTAGT	plus	QTgw.ci b- 6A.2;Q Gw.cib- 6A	6A
K_6A- 83647812	CATGCAGTGACTCATGTTTCATGCGCAGCAATTGCACCAAGTC TGTTAGAACAAGCAGCACGAGCACTATTATTTTACAGAACTGT AGTTACAGGTAAGAA	plus	QTgw.ci b- 6A.1;Q Gl.cib- 6A	6A
K-IWB38437	AAACTGGAAGAGAAAAAACCCTTCACCTAGCTACAATGGCTA GTGTGATCTATAACATGGTAAAGGTACCATGCCCTATTTGTTT GATCATGTCCATGTAT	plus	LrX	1DL
K-IWB59855	TGCTCAGCAGCAGCAGCCTCCGGGATCAAGTGAGGAATCGTC GCTGAAAGGAGGACAAGGAGTAGGATTTTTGGCAGCGGCTGG GAATGGGGTCACGAAGG	plus	Lr64	6AL
KASP_16434	CCCCATCTGTATATGTTATGTTACAACAACATGCCATTACATCT GCCACATGACAGAAAATTAAAAGGACTAACGGCTTTCAGTCT CAAGTAGGTTACAGC	plus	Yr71	3D
KASP_17148	CAGTAGCACACAGGCACACACAGTCATCCCTTTCATTCTTATT TTCAAGGTAATGTTTAGCACAAAAAACCTTTTTATTTATGCCAA TTCTTACACCCCCTT	plus	Lr80	2DS
KASP_17148	AAGGGGGGTGTAAGAATTGGCATAAATAAAAAGGTTTTTGTGC TAAACATTACCTTGAAAATAAGAATGAAAGGGATGGATGTGT GTGCCTGTGTGCTACTG	minus	Lr80	2DS
KASP_18087	AAGGATGGGTCATTGTCAAGCGCTTCCTTGTAGCCCTCGAGGA CCGTGACAATATCGTCAAACTGAGGCCTTCTTTCTGGGTTTGT CGCCCAGCACTGAGA	minus	Yr66	3DS
KASP_2239	GCGAGCGCGGATCAGAGCGCCACCATGCGCCAGGGCGGAAGG AAGGGGTCTGCCTCGCCACCCTAGAGAAGCGGAAAGATGTTG CCGCCGTCATCATCATC	minus	Yr67	7BL
KASP_2D	CGTCTAGCCAGCTCAGCCTTGCTCTCGGGTGGTAGTTCCAGTG GCCATAACGCCTTCACCATGCTCTTCATGGCCTTCCAAGCTCTC TCATGCGCCTTGGT	minus	QGW.y z.2D/Q GL.yz.2 D	2D
KASP_3077	ATTACCGTGGTCTCTTGTCCAGTAATTCCAAAGTAATTGGCAA CAGGTTCACCAACTTCCTCATTGTCACGCTCCACAAAGACAAA TAAAAGCTGCATTTG	plus	Yr81	6A
KASP_48179	AATCAAGATATTATCAGTTCAGCTGGACATGGTGCTGTTTTAT ACCATGGGAGCAGCTGGGGGATATGTACTTCGTCTGGCGGGATC TCCCCATCGATCCCA	minus	Yr66	3DS
KASP_4B	AAGAGCTTGCGTACAGCATGATTGGTGCGCAATTGGCGAAAA GAATCATGGAGGGCACACACAAACGCAATGTATTCCGTTTTCT AATTGTTCTGGAAGAG	minus	QGW.y z.4B/Q GL.yz.4 B	4B
KASP_5A	CACAACAAAACGACAGAGAGGGCAGAAAGATGTGTCCAAATGT CAGTTGGGCATTCCAAAACACGACATCTGGGCAGGGGCCGCA ACGGTAGCAGACCAGAT	minus	QGL- yz-5A	5A
KASP_8775	GCTATAAGGTAGACAGTAGTGTCACCATGAATGCCAAAGGTC GGGTCATACGGTTTCAGGTTCCTCAATGTCGACTTTTCAGCAA TAGCAAGCCACTGAGA	minus	Yr82	3BL
KASP_AX- 109337325	TTCACTGCATTACTCTTTCTTCTTTTACCTGTGCAAGACATGAA TCGATACATATCATAT	plus	QYr.AY H-5BL	5BL
KASP_AX- 110400764	GGCATTTACCTCTTGAAATAGCTCATCCCATCCCGATGCCTC ATTTCATTAAGTTTAATGGTACAAATTAGATATTCGCTGTGCA ACACAGTGTGTTGTC	plus	QYr.AY H-5BL	5BL
Kasp-23	CCCGTCTTTGTTGTTGTTCTTTTCCGTGCCCCATGTCCGACGGTCAT GAGGCCCGCGAAAGTGAACGTCCAATTGCCGGTGAGGTAGAG TGAGACATGGGATAC	minus	Rht-5	3BS
Kasp-25	TGGTCCGGGATGGACTTTCGAGAAGAAGGTAGCAGGAGGGTC TTACACGCAAGTGCGCCTGGATAGATTTCTCGTTTGCTCTACA TGGGCGTCGCTGTTTC	plus	Rht-5	3BS

KASP-E5	TGAAATCTATGCCCTTATTAGAGGACCTTCGTATCACTTCTTGC AGACTGGGTCGTATGCCTCCAGGACTTATGTCTCATGCGATGG CGTTGAAGAAGCTA	plus	YrAS23 88R	4DS
KASP-QFhb- 2DL	GGACGCCTGGTCACTGACCATAAAAAAAGATCCAGCTAGGCT CTTCACACTGGTCCTAAATGCCCGGCTAGACCGATACCCCTTA AATCCAGGTCAAATCT	plus	QFhb.ya as-2DL	2DL
KASP-QFhb- 3BL	GGATTTGACATTCTTTCTTTGGCATCCCTCGGTCTCACAATGAC ATCAACATGTTGTCGCCGTCTTCATCGTTTGCAAGGTTGTATGT GGGCGAAGCTCCT	plus	QFhb.ya as-3BL	3BL
KASP-Qfhb- 5A	GCATGTCTGCAGTTTGACTGACGACGACTAATTTAAACTTGGA GCTGTGAGATTGTCAGTACGGGTGTAGGTATGAACATCTCAGA TGTATGCGAACGTGT	plus	QFhb- 5A	5AS
KASP.2D.1	GTGTGTGAAGACTGGGGTTTTCTGGAGAAACTGAACGTGCGC AGCCAATCGATCAAACTACCGCTTCATTTTCTTAGAATAATCG AATGAGCAGAGCCCGA	minus	Qclu.yas -2D	2D
KASP.2D.2	ATGATTTGATTAAAATTGGCACAAAGCAACGAGTCTAAAACA TCCATAATAAGAGCATATCGAGTACAACAACGTAGAACCA AGACAAAGACGCAACCT	minus	Qclu.yas -2D	2D
KASP10238	TCTGCTTCTCTGTTGGGCAACGGAGCGTAGTACTGGCGGGT CTCCTTTCCGCTCCTGCAGGTCCTACCGCCGCCGTGGTGAACA GGTGAAGGAGAGGAG	minus	QFhb- 2DL	2DL
KASP12056	TGACATGGCAATGAAGCTGGTATTTTATCATCGCTGCAGCTTA ACATATGCCAAACATTGCCACCGTGGCAGATCTGCCTTCCAAA ACCACCTTGGAGTTA	plus	QFhb- 2DL	2DL
KASPGBS080 0	GACGAGGACACGGCCGTGACGGCAATCGAGCACACGGTAATG ACGGCGATTGCTGCAGTGTCCGAGGTCAAAACGCTCCAAAGG GGTGCCCCCCGTGGGGT	minus	QTL3B Sd	3BS
KASPGBS148 7	TCTGCTTTGGATGTTGCAGTCAAGGGAGTGAGTGTACCATGAA AGTGTTGGCAAATATATAGGGGGCGCTGCAGGATTGGAGTAGA GTGGCGGGCAAGTAAG	minus	QTL2D	2D
KASPGBS198 9	TTAAGAAGCCGTGAACGGGCCTGATTGAAGGTAGGGAACGGG TTTTGCATCGGAAGGACGGTGGCGATCACCTGGCATCGATGTG AAAGACCTCGCAGAAG	minus	QTL3B Sd	3BS
KASPGBS198 9	CTTCTGTGAGGCCTCTCACGCCGATGCCAGGTGATCGCCACCG TCCTTCCGATGCAAAACCCGTTCCCTACCTTCAATCAGGCCCG TTCACGGCTTCTTAA	plus	QTL3B Sd	3BS
KASPGBS228 5	CAATCTCCTGAGGAAGGAAAGCCAGCCCCAGGCTCTCGTTTTC CTCGTCCAAGACCCGCAACGCGGGATTCCAGACGGACGTATG CCTGCAGCCGAGCGCG	minus	QTL3B Sc	3BS
KASPGBS237 7	TGCCTAATCACATGTCTGTGAATCTCCATGCCTCCTTTGAACTC TCTGTTATGTGATCACGTTGCGCCTGCAGGTGGAAGGCCGTGG CGAAAACCTCCGGC	minus	QTL3B Sd	3BS
KASPGBS260 0	GTAAAGCTCTTCAAGAGAGGAACTTGGCCTTAGATTACTCGGT CCGAAGCAGCGGGAGTATGGTCAAGCAAAGTCCTTGAGCTGC	minus	QTL3A	3A
KASPGBS271	TGTGATGAAGATGGTT			
0	TGTGATGAAGATGGTT GACGGTGGTGGTGGTGCGGGGCGCGGGGACGCTGCAGGTGCAG GGCCGTGGCGGTAGCCTCCGCGTCCAGGTCCAGGCGAAGGTT GCCGCTGCGAGAAAGAA	plus	QTL3D L	3DL
0 KASPGBS288 2	TGTGATGAAGATGGTT GACGGTGGTGGTGGTGCGGGGCGCGGGGACGCTGCAGGTGCAG GGCCGTGGCGGGAGACCCCCGCGCCCAGGCCAAGGTT GCCGCTGCGAGAAAGAA TTCTCGGCAGAAACTGCTGCGTCTTAAACCAGATCTGGTGAAAT AGCAGTCTACCACTGAGATACAAACCAAACTACTGCAGAAAC TACTAAGTTTTGCCAA	plus minus	QTL3D L QTL3B Sc	3DL 3BS
0 KASPGBS288 2 KASPGBS301 2	TGTGATGAAGATGGTT GACGGTGGTGGTGGTGCGGGGCGCGGGGACGCTGCAGGTGCAG GGCCGTGGCGGGAAAGCTCCGCGCCCAGGTCCAGGCGAAGGTT GCCGCTGCGAGAAAGAA TTCTCGGCAGAAACTGCTGCGTCTTAAACCAGATCTGGTGAAAT AGCAGTCTACCACTGAGATACAAACCAAACTACTGCAGAAAC TACTAAGTTTTGCCAA GGCAGTTGGAGAGATGGACGACTGCTGCAGACTTCCAAACAATCA GACACGACGAAGATGGACGACTGCAGAAGATCTGCTGCGAGC GAAAGAGCTTCATTGC	plus minus minus	QTL3D L QTL3B Sc QTL4D	3DL 3BS 4D
0 KASPGBS288 2 KASPGBS301 2 LoxB1_SNP	TGTGATGAAGATGGTT GACGGTGGTGGTGGTGCGGGGCGCGGGGACGCTGCAGGTGCAG GGCCGTGGCGGTAGCCTCCGCGTCCAGGTCCAGGCGAAGGTT GCCGCTGCGAGAAAGAA TTCTCGGCAGAAACTGCTGCGTCTTAAACCAGATCTGGTGAAAT AGCAGTCTACCACTGAGATACAAACCAAACTACTGCAGAAAC TACTAAGTTTTGCCAA GGCAGTTGGAGAGAGTTTATGTTGTTGATGACTTCCAAACAATCA GACACGACGAAGATGGACGACTGCAGAAGATCTGCTGCGAGC GAAAGAGCTTCATTGC GTCTACAACGACCTCGGCGAGGGCCGCCCCGTCCTCGGCGGC AGCGCCGAGCACCCCTATCCGCGGCCGCGCGCCACCGGGCGC AGCCCAACGCCAACGA	plus minus minus plus	QTL3D L QTL3B Sc QTL4D Lox-B1	3DL 3BS 4D 4BS
0 KASPGBS288 2 KASPGBS301 2 LoxB1_SNP Lr34_TCCIND	TGTGATGAAGATGGTT GACGGTGGTGGTGGTGCGGGCGCGGGGACGCTGCAGGTGCAG GGCCGTGGCGGTAGCCTCCGCGTCCAGGTCCAGGCGAAGGTT GCCGCTGCGAGAAAGAA TTCTCGGCAGAAACTGCTGCGTCTTAAACCAGATCTGGTGAAAT AGCAGTCTACCACTGAGATACAAACCAAACTACTGCAGAAAC TACTAAGTTTTGCCAA GGCAGTTGGAGAGATGGACGACTGCAGAAGATCTGCTGCGAGC GACACGACGAAGATGGACGACTGCAGAAGATCTGCTGCGAGC GACACGACGAAGATGGACGACGCGCCCCGTCCTCGGCGAGC GACACGACGACCCCTATCCGCGCGCGCGCCGCCGCGCGC AGCCCAACGCCAACGA TCTCCCAATCTGCATGCTCATCTCTGGTATGCCATTTAACATAA TCATGATGGAAAAAAAAAAAAAAAATAATGCTCCCATATAGTAATTTGCATG AGTGAAACTTATTG	plus minus minus plus plus	QTL3D L QTL3B Sc QTL4D Lox-B1 Lr34	3DL 3BS 4D 4BS 7D
0 KASPGBS288 2 KASPGBS301 2 LoxB1_SNP Lr34_TCCIND Lr34-E22- KASP	TGTGATGAAGATGGTT GACGGTGGTGGTGGTGCGGGCGCGGGGACGCTGCAGGTGCAG GGCCGTGGCGGTAGCCTCCGCGTCCAGGTCCAGGCGAAGGTT GCCGCTGCGAGAAAGAA TTCTCGGCAGAAACTGCTGCGTCTTAAACCAGATCTGGTGAAAT AGCAGTCTACCACTGAGATACAAACCAAACTACTGCAGAAAC TACTAAGTTTTGCCAA GGCAGTTGGAGAGAGTTTATGTTGTTGATGACTTCCAAACAATCA GACACGACGAAGATGGACGACTGCAGAAGATCTGCTGCGAGC GAAAGAGCTTCATTGC GTCTACAACGACCTCGGCGAGGGCCGCCCCGTCCTCGGCGGC AGCCCAACGCCAACGA TCTCCCAATCTGCATGCTCATCTCTGGTATGCCATTTAACATAA TCACAACGACACCCTGTGCGAATGAATATGACCAAGATGAA TCATGATGGAAAAAAAAAAAAAAAATAATGCTCCCATATAGTAATTTGCATG AGTGAAACTTATTG TGATCATTATCTGACCTGTGCGAATGAATATGACCAAGATGAA TACATTCCTGCAAATCTCTCACGATACATTACAATACGCTCAG TGTACAATGGTA	plus minus plus plus minus	QTL3D L QTL3B Sc QTL4D Lox-B1 Lr34	3DL 3BS 4D 4BS 7D 7DS

		1		1
Lr34jagger	TGATCATTATCTGACCTGTGCGAATGAATATGACCAAGATGAA TACATTCCTGCAAATCTCTCACGATACATTACAATACGCTCAG TTGTACTGAATGGTA	minus	Lr34	7D
Lr47-1	TGAGTGCTGAAGTGGACATAGATATATGTTGCCTTTGTTTCTA TTTGACGGTCAGATAACTTACCAGGCTGCGGTACTTCAGGGCG TAGAACATCTCAAGG	minus	Lr47	7A
Lr68-2	CTCAGATGTCGCAGGGTGCCGACGGATTTTGGGAGGGCCTCTA TTCCTGTGTTGCTCAGGTCCAAGACACGCAGGCAGGTGGCTGA CTCGAGAAGAAGATT	minus	Lr68	1DS
LYCB1_3765_ SNP	ATATTTCCTTGCGCGTGATTTTTGATGGATCGATCTCCTGAACA GGATGTGGCGAGGATTCCTTGGTTCGACGCTTTCGTCAGCGGA TCTCATGCTGTTTG	plus	TaLyc- B1	-
Pds-B1_2002	TCATTTAGCCTCGTCACTGTAGTAAACATATTGCAATCTCTATG AGGCTAGGTTGTAACGAGGTTTTGTTTGCTAATACATTTCTGC CTTTTATTGTCATA	plus	TaPds- B1	-
Pina-D1_INS	TTCCTCATAGGACTGCTTGCTCTGGTAGCGAGCACCGCCTTTG CGCAATATAGCGAAGTTGTTGGCAGTTACGATGTTGCTGGCGG GGGTGGTGCTCAACA	minus	Pina-D1	5D
Pinb2-v2-3	TTAGCCAAAGCGTCACACAATGGCAGAAAAAAGCCATTAAAT AAACGGGACTCTTATCTCTTCAGTTCATCTTCACCACCACCAA AACAACATTGATAACA	plus	Pinb2-V	5D
PODA1_462_ SNP	GTCCGCTTCAGCCTGCCAAGGAAGTCCGGGCTCATGGTGGGGT CAGGGCGTGGGAAGAGCCGGTCGTCGAAGGATGTGCAGTGCC CGAGCCCCACGGTGTG	minus	TaPod- A1	3A
PPO-A1	ACGTTCAGCAAACCCACGCAGGGACAAGTGACGGCTCCTTGA CGTTCAGCACAGAAAGGTGCAGGTCGTCCCATCCATAACCCAT TGACCATACGAACAAT	minus	Ppo-A1	2A
PPO-D1_SNP	TTGTTAGTATATAGTACTACTGGCCTGGCGGTACATGATCTTG AGGTTCTCATCGATCTGCTGGTCTCTTGGGATATTGGCGTCGG TCCCACTGGAGTCAA	minus	Ppo-D1	2D
PsyA1-IND	ACTGATACCACAACAGGGGAGCAACAATGGAGGGTCCAAACC AGGCATGGTGAATTTTCAGATTACCGTAGATGGCCCATATGGC GCGCCGCCGCTCCTCG	minus	Psy-A1	7B
PsyB1c	AAAGCCTAATTTGATTCTTCCACACATAATGGCATATAAAAAA GTGTTATATGAGGCCTTTATTCTTCACCAACTGTGTCTATGTAT ACATGGCATGCAAG	minus	Psy-B1	7B
PsyB1c	AAGCCTAATTTGATTCTTCCACACATAATGGCATATAAAAAAA GTGTTATGTGAGGCCTTTATTCTTCACTGACTATACTAT	minus	Psy-B1	7B
Rht- B1_160IND	TTTTTTCTCTAATTTGCGGGGGATTTCTGGGGTGGGGGGCTCAGG ATTTGTAACTGGATGGCGAAGTTTGTCTGGTGATAAAGACGCG CGCGACGAATCCGT	plus	Rht-B1	4B
Rht- B1_197IND	TGTCACGTGAGGCAAAATCACGCAAGTACTTGAAATGTTGGTT GTTATATCCTTGGTAAATATTCGTGCTGGATTCAATCCTACAA ACTAAACGACCAGCA	minus	Rht-B1	4B
Rht-B1_SNP	GGTACAAGGTGCGGGCGTCCGACATGGCGGACGTGGCGCAGA AGCTGGAGCAGCTGGAGATGGCCATGGGGATGGGCGGCGTGG GCGCCGGCGCCGCGCC	minus	Rht-B1	4B
Rht-D1_SNP	TCGGGTACAAGGTGCGCGCCTCCGACATGGCGGACGTGGCGC AGAAGCTGGAGCAGCTCGAGATGGCCATGGGGATGGGCGGCG TGGGCGCCGGCGCCGCC	minus	Rht-D1	4D
SNP113325	AGATATTGTAGCTTCCGAAGCTTGATAATGGTGTTTGGCAGCA TCATCACCTGGGTATCTCTGATATCTAGTGTCTCAAGTTGTCTT AGGTCACCCAATGA	plus	Lr42	1DS
snp3BS-8	GAAACAAAGCAGCCTTAGGTCAATAGTTTGAAATTTTCATATC AACACAAGGATAACAACCTTGCAAATGCATGTGCATTATAAT GGCAGACTACAATCTT	minus	Fhb1	3BS
Sr36/Pm6_806 8	CCCTCAAGACAAAAGAAGTCGACAAAGGGCAGTGCTTATGAC GACGATGATGATGCGTATAATGATGAGAATGACAATGACGAC GATGATGACGATGACGC	minus	Sr36/Pm 6	2B
sunKASP_109	GAGAAATTTATAGGCACTACCACTTCCAAATAAAGCCATACAC TTTCCGTGGCTGGTGACAAACTACATCCTACCATTGCGCAAAA AACTGCATCATAGAG	minus	Yr34	5AL
sunKASP_109	CTCTATGATGCAGTTTTTTGCGCAATGGTAGGATGTAGTTTGTC ACCAGCCACAGAAAGTGTATGGCTTTATTTGGAAGTGGTAGTG CCTATAAATTTCTC	plus	Yr34	5AL

sunKASP 112	ACAACGCTCAATACGCAGACACCAAAACTTTCCAGCGCGCTCT	plus	Yr34	5AL
Summer of _112	CTTAGCAAAGGTATCGTGCATATTTATCTCAAGCTATGTATAC	prus	1151	57 HL
	ATCTTTCGGCCGTTA			
sunKASP 112	ТААССССССАААСАТСТАТАСАТАССТТСАСАТАААТАТСТА	minus	Vr34	5AL
Summer of _112	CGATACCTTTGCTAAGAGAGCGCGCTGGAAAGTTTTGGTGTCT	mmus	1151	5712
	GCGTATTGAGCGTTGT			
sunKASP 16	GAAACAGGAGAAAAAGTTCAAATACATGGGCCGAGCTAGAACA	minus	I r23	2B
sunkasi_10		mmus	L123	20
WACD 224			5-26	6 4 1
sunkasp_224		plus	Sr20	OAL
	GAAAAGAGGCCGCGACGTCCCCGCCGACACGAAATACACAGG			
	GCGGAAGCGGAAAACCCG		~ ~ ~ ~	
sunKASP_225	TATGTTCCTTCCTGCACGCCCTACAACTGCACCGATGTGTTCGT	minus	Sr26	6AL
	CAGCAACACCTATGGTGTGTGTGATTCTTGGGCATCATTATTAGC			
	AGGTGATCTAACAG			
sunKASP_338	ACTGCGACGTTGTGAACCTCCAGAAAATTAGCATATGAACTGA	plus	YrPak	5B
	GGAAAAAAGTCTCACAGGCCAAAATGAGCTAGCTAAAGCAT			
	CATTGTTCGGAATGAT			
sunKASP_47	GCAGGCCAACACATAACGAACAGGGGGGAAACAGAACTCCAG	plus	Lr23	2B
	GCAAGCGAACGGAGTTACGTGCGATCAGTTTATATATGACGTC			
	ATCTGACTTAGACTTCG			
sunKASP 48	GAAACAGGAGAAAAGTTCAAATACATGGGCCGAGCTAGAACA	plus	Lr23	2B
	ATGAAAACAGAAAGTATTACACCGGACCGTCACCCAAAACGG	P-00		
	ACGAATAAAGCCCTGAC			
T ₂ CKX ₋ D1		nlus	TaCKX-	3D
TachA-D1	GCATATGCATATGCATGCATGCATGCGTAAAAACTGTTCACCGT	pius	D1	50
	GAAAACTTAATTTT		DI	
T ₂ CVV D1		alua	TOCVY	2D
Tacka-DI		plus	Tacka-	50
	GCALAGACTCTCAAAA		DI	
		1	T D 1	20
TaDreb_SNP		plus	TaDreb-	3B
	CITCCIGITCATCAAGGCAATCCATATCACAAGGIGAAAACAC		BI	
	Ι (ψι") (ψΑ Α Α (Υ ' Α Α Α Α Α ('			
	UTUAAACCAAAAAC			
TaGASR	AGGAAGGGCAGCTGGGGGCACGAGGCGGGGGAGAGGTGGCG	minus	TaGAS	7A
TaGASR	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus	TaGAS R7-A1	7A
TaGASR	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus	TaGAS R7-A1	7A
TaGASR TaGS-D1_SNP	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus	TaGAS R7-A1 TaGS-	7A 7DS
TaGASR TaGS-D1_SNP	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus	TaGAS R7-A1 TaGS- D1	7A 7DS
TaGASR TaGS-D1_SNP	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus	TaGAS R7-A1 TaGS- D1	7A 7DS
TaGASR TaGS-D1_SNP TaGS5-A1	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus	TaGAS R7-A1 TaGS- D1 TaGS5-	7A 7DS 3AS
TaGASR TaGS-D1_SNP TaGS5-A1	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus	TaGAS R7-A1 TaGS- D1 TaGS5- A1	7A 7DS 3AS
TaGASR TaGS-D1_SNP TaGS5-A1	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus	TaGAS R7-A1 TaGS- D1 TaGS5- A1	7A 7DS 3AS
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus plus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6	7A 7DS 3AS A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus plus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6	7A 7DS 3AS A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus plus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6	7A 7DS 3AS A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus plus minus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-6	7A 7DS 3AS A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus plus minus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6	7A 7DS 3AS A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus plus minus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6	7A 7DS 3AS A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus plus minus minus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-6	7A 7DS 3AS A A B
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus plus minus minus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-6	7A 7DS 3AS A A B
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus minus minus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-6	7A 7DS 3AS A B
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus minus minus nlus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-6	7A 7DS 3AS A A B
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaMoc-2433	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus minus minus plus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-6 TaGW2-6	7A 7DS 3AS A A B 7A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaMoc-2433	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus minus minus plus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-6 TaGW2-6	7A 7DS 3AS A A B 7A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaMoc-2433	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus minus minus plus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6	7A 7DS 3AS A A B 7A 7B
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaMoc-2433 TaSAP-7B- KASP-8	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus minus minus plus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6	7A 7DS 3AS A A B 7A 7B
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaMoc-2433 TaSAP-7B- KASP-8	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus minus minus plus minus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6	7A 7DS 3AS A A B 7A 7B
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGGAGAGGTGGCG GTGGACGGTGGTGGGGGGGGGG	minus plus plus minus minus minus minus minus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6	7A 7DS 3AS A A B 7A 7B
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B	AGGAAGGGCAAGAGAGGGGGGGCACGAGGCGGGGGGGGG	minus plus plus minus minus minus minus minus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6 TaGW2-6	7A 7DS 3AS A A B 7A 7B 1A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaGW2-6B TaMoc-2433 TaSAP-7B- KASP-8 TaSnRK2.3- 1A-KASP-1	AGGAAGGGCAACTGGGGGGCACGAGGCGGGGGGGGGGGG	minus plus plus minus minus minus minus minus	TaGAS R7-A1TaGS- D1TaGS5- A1TaGW2-6 <td>7A 7DS 3AS A A B 7A 7B 1A</br></br></td>	7A 7DS 3AS A A B 7A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaSAP-7B- KASP-8 TaSAP-7B- KASP-8 TaSARK2.3- 1A-KASP-1 TaSAPK2.2	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGGGGGGG	minus plus plus minus minus minus minus minus minus	TaGAS R7-A1TaGS- D1TaGS5- A1TaGW2-6 <td>7A 7DS 3AS A A B 7A 7B 1A</br></br></td>	7A 7DS 3AS A A B 7A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6A	AGGAAGGGCAGCTGGGGGGCACGAGGCGGGGGGGGGGGG	minus plus plus minus minus minus minus minus minus	TaGAS R7-A1TaGS- D1TaGS5- A1TaGW2-6 <td>7A 7DS 3AS A A B 7A 7B 1A 1A</br></br></br></td>	7A 7DS 3AS A A B 7A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6A	AGGAAGGCAGGTGGGGGGGGGGGGGGGGGGGGGGGGGGG	minus plus plus minus minus minus minus minus minus minus	TaGAS R7-A1TaGS- D1TaGS5- A1TaGW2-6 <td>7A 7DS 3AS A A A B 7A 7B 1A 1A</br></br></br></td>	7A 7DS 3AS A A A B
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B	AGGAAGGCAGCTGGGGGGGCACGAGGCGGGGGAGAGGGTGCG GTGGACGGCGGGTGGGGGGGGGG	minus plus plus minus minus minus minus minus minus	TaGAS R7-A1 TaGS- D1 TaGS5- A1 TaGW2-6 TaGW2-7 TAGW2-7	7A 7DS 3AS A A A B 7A 7B 1A 1A
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6A	AGGAAGGCAGCTGGGGGGGCACGAGGCGGGGGAGAGGGTGCG GTGGACGGTGGTGGGGGGGGGAGACGAGCGTTATGGAAGCGTTACTG TGGAGAGGACGGGCCTGC AAAACCTCTAAATAGAAGTTTCGCGTTTTAGCCAAGAAATGTC GCTCTCAGTGGAAGATTTATACAATAATACTCCCTCCGTCCCAA AATTCTTGTCTTAGA TCGACATATACAACATTTATGGGCCCAAGTGCAATCTTGGACA AACATCAGCAGCATCTGTTGTTGACAAAGCACTCAAATATAGT GACCATGTAAGGGAC CTTCCCTTCTGCTGCAACTTGACGCTATCCCGCTCCAGCTATCT GGTGAACTCTCCACAGCAACATGCTTCCACCAGCAATGTTGC ACGGTCGGCGGAAC GTTCCGCCGACCGTGCAACATTGCTGGTGGAAGCATGGGTGCT GTGGAGAGTTCACCAGAAAGCTGGGTGGAAGCATGGGTGCT GTGGAGAGTTCACCAGATAGCTGGAGGCGGGATAGCGCCAAGT TGCAGCAGAAGGGAAG CTTTGATCTGAACATCCCTTCTCTCTCTCTGGCGTGAGCTAGGGT GTGGGAGGTTCACCAGCACGGGATCTCATCAACCCGCTAGGCC TCCTGCCGCTCCGC TGGTTGGTTATTTACTGTTGATTTAAGATCGGAAAGCTTAGAA ATGCACGTGGATCGCATTGGATGAGAGCGGCGGGACCCGCC TTGTTTGCGAAGAAGAACGTGATGGAGACGGCTGGCCACGC TTGTTGGGGTTCTTGGATCGGATC	minus plus plus minus minus minus minus minus minus minus minus minus	TaGAS R7-A1TaGS- D1TaGS5- A1TaGW2-6 <td>7A 7DS 3AS A A A B 7A 7B 1A 1A 1A</br></br></br></td>	7A 7DS 3AS A A A B
TaGASR TaGS-D1_SNP TaGS5-A1 TaGW2-6A TaGW2-6A TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6B TaGW2-6A TaGW2-7 Ta	AGGAAGGCAGCTGGGGGGGCACGAGGCGGGGGAGAGGGTGGCG GTGGACGGTGGTGGGGGGGGGAGACGAGCGTTATGGAAGCGTTACTG TGGACAGGACGGGCCTGC AAAACCTCTAAATAGAAGTTTCGCGTTTTAGCCAAGAAATGTC GCTCTCAGTGGAGATTTATACAATAATACTCCCTCCGTCCAA AATTCTTGTCTTAGA TCGACATATACAACATTTATGGGCCCAAGTGCAATCTTGGACA AACATCAGCAGCATCTGTTGTTGACAAAGCACTCAATATAGT GACCATGTAAGGGAC CTTCCCTTCTGCTGCAACTTGACGCTATCCCGCTCCAGCTATCT GGTGAACTCTCCACAGCAACATGCTTCCACCAGCAATGTTGC ACGGTCGGCGGAAC GTTCCGCCGACCGTGCAACATGCTGGTGGAAGCATGGGTGCT GTGGAGAGTTCACCAGAACATGCTGGTGGAAGCATGGGTGCT GTGGAGAGTTCACCAGATAGCTGGGAGCGGGATAGCGCCAAGT TGCAGCAGAAAGGGAAG CTTTGATCTGAACATCCCTTCTCTCTCTCGGCGGAGCAGGGGT TTGTTGCGAGCAACATCGCACGGGATCTCATCAACCGGCTAGGGT TTGTTGCGAGCTACTGCACGGGATCTCATCAACCCGCTAGGGT TGGTGGTTATTTACTGTTGATTTAAGATCGGAAAGCTTAGAA ATGCACGTGGATCGCATTGGATCAAGAGGTGTCAAAACTTGTGA GGCTGCTACAACGTA CTTATTGTGCAAGAAGAACGTGATGGAGAGCGGCGGCGCC TTGGTTGGTTCTTCTGTGGATCGAACGGCGGCAGCC CTTTGCTTAGGGATCGCATTGGATCGAACGGCGCGCC CTTGCTTAGGGATCGCATTGGATCGAAGCGCCGCC CTTTGTTTGGGCTTCTGGATCGAACGTGAGGACGGCTGGCCACGC TTGTTTGGGCTTCTGGATCGATCGGAGCGCCGCCCCGC CTTTGCTTAGGGGAGG CAGTATCAGGTTCCGCTTACCAATGTAGAACTTTAGTAATGG ACAGTGCGGATTCGCTTACCAATGTTCGCCACGGAAGCTTAGAAACTTTAGTAATGG ACAGTGCGGATTCGCTTACCAATGTTCGTCGCCACGCACG	minus plus plus minus minus minus minus minus minus minus minus minus	TaGAS R7-A1TaGS- D1TaGS5- A1TaGW2-6 <td>7A 7DS 3AS A A A B 7A 7B 1A 1A 1B</br></br></br></td>	7A 7DS 3AS A A A B

TaSnRK2.3-	AAGGCCCCCGGCGACATGTCCAAGTCGTCGGCCGACGCGGCG	plus	TaSnRK	1B
1B-KASP-4	CTGCTCGCCGAGCTGGCCGAGCTGCAGAGCGATGAGGAGGAG	-	2.3-1B	
	GAGGAGCCGGGAGCCGA			
TaSnRK2.9-	CCAAACATCTAAATACCGAGCTCAACTTTTTCAGAAAATATTA	minus	TaSnRK	5A
5A-KASP-6	GGTGTTCCGTACTCGATTCCGGACTACATTCACATACCAATGG		2.9-5A	
	ACTGCCGAAACCTTC			
TaSus1-7A	TTCTGTCGTTCAACATCATTGTCTGTAATTGAAAATGACATTTC	minus	TaSus1-	7A
	ATTATCGAGAGGGCATGGATCAAATCATTACGCGGTTCTTTCT		7A	
	AGCATGTCATGTTC			
TaSus1-7B	ACAAATCTGTAGAAAAACAAATTTAAAAATGGTTATGCTTGAATG	minus	TaSus1-	7B
	GAAGAGCATGTACAACAGAACATAAGCAATTGTTCAAAACAT		7B	
	TGAAAGCACTACTGTA			
TC387992	TAGTACGCCTGGCTTGAGGACCCCATGTTTGGATCTGCATTCC	plus	Lr42	1DS
	TTCTCCCACCGGCCATCTCCAGCAGCAACATCCCAAAGCTGTA			
	CACATCAGACTTGCT			
Tdurum_contig	TTAACTGGAGAAGACGTTTGCATGGTTCGGATGGCAAATTGAC	minus	Qyr-	6AL
76677_1142	TTTGGTCTCCGCTGCTGATGGACCTCACATCCTCCCTCTGGACC		4B.4	
	TCAGGAAGCATTTC			
Vrn-	TTTGCTTTCCTGTTAGTAGTGATGGTCCAATAATGCCAAACTA	minus	Vrn-A1	5A
A1_9K0001	CAGTTTTATTTACATTGATCTATCTTTTTGGAAAACTCTGATCT			
	TACTTTGGTGTGCT			
Vrn-A1b-Marq	GCTATCAGGTGGTTGGGTGAGGACGTGAGGTGGAAGAGAGGG	minus	Vrn-A1	5A
	GAGGAGAGGGAGGATGGCCAGGCCAAAACGAGGATTCCGGC			
	AGGGGGGGGGGGGTTTTT	_		
Vrn-B3_1279	CACGCCAGCAGGCACGGACAGAAACCACCATTAATTTGCGTG	plus	Vrn-B3	7BS
	GTGATCATGATCAGGAGCTTATTACGGCAGACAGATGCATCCA			
Vrn-B3_1279	GCAGAAGCGAGACCGATGGATGCATCTGTCTGCCGTAATAAG	minus	Vrn-B3	7BS
	CICCIGATCATGATCACCACGCAAATTAATGGIGGITTCIGIC			
Vrn-DI-	GCCTGTGTAAGGCGTCTTCATTTGCCTAAGGCGGAAAGAATGG	minus	Vrn-D1	5D
Dla_A	TGCCTAGGCGGAGCTAGCAATTCGAATGATAGCAAAGCCTGT			
	GGAACAAAATTCTGGA	_		
WRS467	TGTACATAGGGGCTGCTTCTCCCATATTTGTACAACACATCAG	plus	Yr26	1B
	CTATTACACAAACCATCIGAACTATGTAGCCATGCAATTGGT			
	TICITIGCACITITC			
Yr15_R5	AGGCATTCCACATTAGTAAAAGTCTTCATGCAGCCTGGTTCGC	minus	Yr15	1BS
	AGCAGATAACTTCAGTGTAATCCAAGTTGACTGCACCATAACA			
		_		
Yr15_R8	CTCCGTTGAGCAGATAAATGATCAGAATACCAGATCCCCGGTT	plus	Yr15	1BS
	CTCTCAAATTACAGATCACCATCAGTATATTCTCGATCATTTG			
	GGGGTTTCAGGAAAA			
Zds-A1_SNP	ACACATGICCIGACAAGCCGACGCGGATTITGAATTTTCATGG	minus	Zds-A1	2A
	CTAAGGAGTATTAGGTCCAAGTGCATGGGCTATGAAATAGAG			
1	ΙΑΤΑΑGTTGCATCCATA	1		1