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Abstract

Thanks to hardware and software evolution, machine learning implementations
have become more viable. Nowadays the possibility to handle precise data
acquisition and high computational capabilities is available also for embedded
devices used in drones.
This thesis aims at implementing and comparing the results of an Adaptive
Nonlinear Model Predictive Controller (Adaptive+NMPC) and two Learning-
based NMPC (Lb-NMPC) methods, in a trajectory tracking task for a quadrotor,
where different types of disturbances and model mismatches need to be rejected.
The Lb-NMPC approaches are respectively based on Gaussian Processes and
Neural Networks.
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1
Introduction

1.1 Topic Introduction

In recent years, Nonlinear Model Predictive Control (NMPC) has widely
spread both in research and industrial contexts. This advanced control tech-
nique is in fact able to provide interesting control actions in several high perfor-
mance scenarios.
NMPC reliability, however, depends on the accuracy of the model description,
hence in case of model mismatches the system performances can be subject to
considerable uncertainty and can deteriorate significantly.

On the other hand, in the last years, a new approach has been tested in order
to mitigate this problem and to try making the control algorithm more robust.
This is the ℒ1 Adaptive Approach. The idea behind this technique is to com-
plement the basic NMPC with an adaptive controller in order to have an online
tool to reject model mismatches.
The structure of this adaptive controller is provided through the union of a
Model Reference Adaptive controller (MRAC) and a Low Pass Filter (LPF) in
order to create an explicit and easily tunable trade-off between robustness and
performance.

Another interesting aspect is provided by the advances of the machine learn-
ing techniques, that led to a renewed interest in data-driven control strategies
for complex systems, defining a novel research field, namely Learning-based
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1.2. THESIS STRUCTURE

NMPC.
In this field, there are two main approaches that are of interest for this thesis,
the first one is to use Gaussian Processes (GP), known and applied in this kind
of context for many years now.
The other one is Neural Networks (NN). NN have been studied for many years,
but only recently, thanks to hardware and software evolution, they had a growth
in terms of research, with several implementation that aim at learning different
elements (e.g. control inputs or model components) in different ways (e.g. dis-
parate types of neural).

In this thesis the objective is trying to establish a fair comparison among the
aforementioned approaches for a quadrotor control: ℒ1-NMPC, GP-NMPC and
NN-NMPC. The task will be a trajectory tracking one while trying to compen-
sate for model mismatches.
These methods will be directly inspired from the master thesis of Marco Con-
cetto Bonazza [18], that researched Adaptive-NMPC at UNIPD and the research
training on learning-based methods carried out by myself and Filippo Simonetti.
This colleague of mine wrote a master thesis [9] on the specific implementation
choices that we tested during the previously mentioned research training.

1.2 Thesis Structure

In the following a quick chapter guide is given:

• Chapter 2:

The mathematical description and formulation of the problem is provided
alongside with a table displaying quadrotor parameters used in the simu-
lations.

• Chapter 3:

The concepts behind Model Predictive Control (MPC) are provided start-
ing from Linear Quadratic Regulator and Receding Horizon Control. After
this, the Nonlinear version is presented in terms of concept, core ideas and
main elements regarding the Unmanned Aerial Vehicle (UAV) case in anal-
ysis.

• Chapter 4:

Starting from the concept behind adaptive controllers, ℒ1 approach and
its implementation in the control scheme is explained.

2



CHAPTER 1. INTRODUCTION

• Chapter 5:

This chapter aims at giving a quick introduction to a learning problem
applied to the considered setup. Then both the Gaussian Process and Neu-
ral Networks approaches are debated and implemented in the Nonlinear
Model Predictive Control (NMPC) structure.

• Chapter 6:

First the simulation setup and objectives are explained, then the results
are presented. In the end a high performance scenario is introduced in
order to underline some important differences among the adaptive and
learning-based methods.

• Chapter 7:

In the final chapter a brief summary and comment on the results is pro-
vided along with some proposals for possible continuations of this work.

3





2
Model Definition

In this chapter the quadrotor model used in the discussion and the simula-
tions for this thesis will be introduced. A complete mathematical model will be
provided, with a table that displays the model parameters used.

Figure 2.1: Quadrotor + Configuration

2.1 Mathematical Model

In order to implement the control system of the quadrotor, it is necessary to
start from the kinematic and dynamic models. These will be implemented in

5



2.1. MATHEMATICAL MODEL

the following.

The standard quadrotor configuration is a so called + configuration. This
name is due to the shape in which the arms are arranged, aligned with the
body axes, forming 90°angles. A propeller is placed at the end of each arm as
illustrated in Figure 2.1.

It is useful now to introduce the body frame ℱ𝐵, which has origin O𝐵 in the
Center of Mass (CoM) of the platform, and the inertia world frame ℱ𝑊 . It is
possible to appreciate these elements in Figure 2.2 (image source [13]).

Figure 2.2: Body and World Frame

In order to describe the quadrotor pose, the pair (p,R𝑊𝐵) ∈ R3 × SO(3) is
introduced. Respectively the vector p and the rotation matrix R𝑊𝐵 are used for
the representation of the origin position and the orientation of the body frame
with respect to (w.r.t.) the world frame. Other important elements that need to
be introduced are the linear velocity v∈ R3 of the O𝐵 and the angular velocity
𝜔𝐵∈ R3 of ℱ𝐵, both w.r.t. the ℱ𝑊 . The kinematic model of the quadrotor is then
given by:

p¤ = v

R¤𝑊𝐵 = R𝑊𝐵[𝜔𝐵]×
(2.1)

6



CHAPTER 2. MODEL DEFINITION

For what concerns the dynamic model, if gravity is not considered, most of
the remaining forces and torques on the quadrotor are generated by the four
propellers. Each propeller spins around its axis (parallel to the z body-frame
axis), with a controllable angular speed of 𝜔i (with i = 1, 2, 3, 4 that is the number
corresponding to each propeller).
If the propeller spins Counterclockwise (CCW) the velocity vector is pointing
towards the positive direction of the axis, while if the propeller spins Clockwise
(CW) the vector will be pointing towards the negative direction. The control
input will be defined 𝑢i = 𝜔2

i ∈ R meaning that the thrust of each propeller is
proportional to the square angular spinning velocity of its respective motor.
Several effects will act on the drone thanks to the propellers rotation.
A thrust force w.r.t. the ℱ𝐵 equal to

fi = 𝑐 𝑓i𝑢ik̂𝐵i ∈ R3 (2.2)

where 𝑐 𝑓i is the thrust coefficient, k̂𝐵i is a versor parallel to the z body-frame axis
and overlapped with the rotation axis.
This force generates a force moment equal to

𝜏i = pi × fi = pi × 𝑐 𝑓i𝑢ik̂𝐵i ∈ R3 (2.3)

where pi ∈ R3 is the vector that represents the position of the spinning axis w.r.t.
the O𝐵.
Due to the air friction a drag torque is generated w.r.t. the ℱ𝐵. This torque
opposes the angular velocity of each propeller and it is equal to:

𝜏𝑑i = 𝑐𝜏i𝑢ik̂𝐵i ∈ R3 (2.4)

where 𝑐𝜏i is the drag coefficient. This value will be positive if the rotor spins CW
and negative if it spins CCW.
By combining (2.2), (2.3) and (2.4) it is possible to obtain the expressions of the

7



2.1. MATHEMATICAL MODEL

total force 𝑓c ∈ R3 and total torque 𝜏c ∈ R3 applied on the CoM :

𝑓c =
4∑

i=1
𝑓i =

4∑
i=1

𝑐 𝑓i𝑢ik̂𝐵i

𝜏c =
4∑

i=1
(𝜏𝑡i + 𝜏𝑑i ) =

4∑
i=1
(𝑐 𝑓ipi × k̂𝐵i + 𝑐𝜏ik̂𝐵i)𝑢i

(2.5)

It is possible to rewrite these equations in a more compact form thanks to the
introduction of the control force matrix F ∈ R3×4, the control momentum matrix
T ∈ R3×4 and the input vector u =

[
u1 u2 u3 u4

]𝑇 ∈ R4

𝑓c = Fu

𝜏c = Mu
(2.6)

Assuming that all arms of the quadrotor share the same length 𝐿 as well as
all the propellers share the same thrust and drag coefficients (i.e. 𝑐 𝑓 = 𝑐 𝑓 i and
𝑐𝜏 = 𝑐𝜏i ∀i = 1, 2, 3, 4) it is possible to express F and M like so:

F =


0 0 0 0
0 0 0 0
𝑐 𝑓 𝑐 𝑓 𝑐 𝑓 𝑐 𝑓


M =


0 𝑐 𝑓 𝐿 0 −𝑐 𝑓 𝐿
−𝑐 𝑓 𝐿 0 𝑐 𝑓 𝐿 0
−𝑐𝜏 𝑐𝜏 −𝑐𝜏 𝑐𝜏


(2.7)

For simplicity, additional aerodynamic phenomena and gyroscopic and in-
ertial effects will be considered as negligible. Now, thanks to the Newton-Euler
equations it is possible to write the dynamics of the drone w.r.t. the ℱ𝑊 :

𝑚p¥ = −𝑚𝑔k̂ + R𝑊𝐵 𝑓cu = −𝑚𝑔k̂ + R𝑊𝐵Fu

J𝜔¤ 𝐵 = −𝜔𝐵 × J𝜔𝐵 + 𝜏𝑐 = −𝜔𝐵 × J𝜔𝐵 +Mu
(2.8)

with 𝑔 gravitational acceleration, 𝑚 mass of the quadrotor and J ∈ R3×3 positive
definite inertia matrix.

8



CHAPTER 2. MODEL DEFINITION

By combining both kinematics (2.1) and dynamics (2.8), the full mathematical
model is obtained:

p¤ = v

R¤𝑊𝐵 = R𝑊𝐵[𝜔𝐵]𝑋
v¤ = −𝑔k̂ + 1

𝑚
R𝑊𝐵Fu

𝜔¤ 𝐵 = J−1(−𝜔𝐵 × J𝜔𝐵 +Mu)

(2.9)

As a conclusion of this section it is worth to point out how the system is
underactuated. This makes sense since the quadrotor is coplanar and every
coplanar drone is underactuated. In fact full actuation is reach when each of the
6 (DOFs) is accessible through the input, but

𝑟𝑎𝑛𝑘

[
1
𝑚R𝑊𝐵F
J−1M

]
= 𝑟𝑎𝑛𝑘

([
1
𝑚R𝑊𝐵F 03𝑥1

03𝑥1 J−1

] [
F
M

])
= 𝑟𝑎𝑛𝑘

[
F
M

]
= 4 < 6 (2.10)

It also results that 𝑟𝑎𝑛𝑘(M) = 3, hence rotational DOFs are all controllable
independently, but 𝑟𝑎𝑛𝑘(F) = 1, hence it is possible to control only the z com-
ponent translational Degree of Freedom (DOF). This means that in order to
move the drone on the x-y world plan it is necessary to change the quadrotor
orientation. In this way the z direction of the body changes towards the desired
acceleration direction.

2.2 Model Parameters

All the simulations carried out in the following chapters of this thesis will
consider the previous described mathematical model for the quadrotor. In the
Table 2.1 are reported the quadrotor parameters that are used in the simulations
in Chapter 6.

9



2.2. MODEL PARAMETERS

Element Symbol [Unit] Value

Mass m [𝑘𝑔] 1.5

Arm Length L [𝑚] 0.255

Moment of Inertia J [𝐾𝑔 · 𝑚2] diag[29, 29, 55]10−3

Saturation Level 𝑢𝑠𝑎𝑡 [(𝑟𝑎𝑑/𝑠)2] 91

Thrust Coefficient 𝑐 𝑓 [𝑁𝑚𝑠2] 0.06

Drag Coefficient 𝑐𝜏 [𝑁𝑠2] 4.28 10−6

Table 2.1: Quadrotor Parameters

10



3
Model Predictive Control

Let’s consider a continuous time dynamical system represented by the equa-
tion

x¤(𝑡) = f(x(𝑡), u(𝑡))
x(0) = x0

(3.1)

where x0 ∈ R𝑛 is the initial state, x ∈ R𝑛 is the state and u ∈ R𝑚 is the input
of the system.
The aim of the optimal control is to find the sequence of inputs (u*(𝑡) with
𝑡 ∈ [0,+∞[ in the infite horizon scenario) such that (s.t.) the cost function,
defined as follows, is minimized:

𝐽∞(x, u) =
∫ ∞

0
𝑉(x(𝑡), u(𝑡))𝑑𝑡 (3.2)

The problem may not be easy to solve, but it is possible to demonstrate that
if 𝑉(·) is positive definite and regular enough and f(·) is regular enough itself,
then the control u*(𝑡) that minimizes 3.2, stabilizes the origin of the system for
initial conditions (i.c.) in a neighborhood of x0.

11



3.1. LINEAR QUADRATIC REGULATOR

3.1 Linear Quadratic Regulator

In a linear time-invariant system, with A ∈ R𝑛𝑥𝑛 as state matrix and B ∈ R𝑛𝑥𝑚
as control matrix, the minimization problem becomes:

min
u(·)

∫ ∞

0
x𝑇(𝑡)Qx(𝑡) + u𝑇(𝑡)Ru(𝑡)𝑑𝑡

𝑠.𝑡. x¤(𝑡) = Ax(𝑡) + Bu(𝑡)
x(0) = x0

(3.3)

where Q ≥ 0 ∈ R𝑛 is the state weight matrix, while R > 0 ∈ R𝑛 is the control
cost weight matrix. Both these matrices are symmetric. Let Q

1
2 ∈ R𝑛 be a matrix

s.t. Q = Q
1
2𝑇Q

1
2 , if and only if (A, B) is stabilizable and (A,Q

1
2 ) is observable it

holds that the Algebraic Ricatti Equation (ARE)

A𝑇P +Q + PA − PBR−1B𝑇P = 0 (3.4)

has a unique solution P∞ > 0 while if the pair (A,Q
1
2 ) is detectable P∞ ≥ 0.

The feedback law solving 3.3 and making the sytem asymptoticallu stable is
given by

u*(𝑡) = −Kx(𝑡) 𝑤𝑖𝑡ℎ K = R−1B𝑇P∞ (3.5)

But this approach is not flawless. In fact, since the control loop is open-loop,
the control loses its optimality. This can happen if the true evolution of the
system differs from the predicted one even slightly, depending on the accuracy
of the model’s dynamics. Another problem is that this approach does not
work particularly well for nonlinear elements (e.g. systems or cost functions),
which could make the problem impossible to solve. Furthermore, even in the
linear model scenario, this type of control requires a, not always immediate to
implement, specific constraint management.

3.2 Receding Horizon Approach

In order to face these flaws Receding Horizon Control (RHC) was introduced.
The optimal control problem shifts from a infinite horizon to a finite one in
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CHAPTER 3. MODEL PREDICTIVE CONTROL

order to make numerical approximate solutions possible. Furthermore, to tackle
computational difficulties, dynamical systems are written in discrete-time.
The reformulation of 3.3 takes the following form:

min
u(·)

𝑁−1∑
𝑘=0

𝐽(x(𝑡), u(𝑡)) + 𝐽𝑁 (x(𝑡))

𝑠.𝑡. x(𝑡 + 1) = f(x(𝑡), u(𝑡))
x(0) = x(𝑡𝑠𝑡𝑎𝑟𝑡)
x(𝑘) ∈ X
u(𝑘) ∈ U

(3.6)

where the condition x(0) = x(𝑡𝑠𝑡𝑎𝑟𝑡) implies that the initial condition of the
problem must coincide with the system’s conditions at the beginning of each
control horizon. 𝐽(x(·), u(·)) is the new cost function considered at each time
step while 𝐽𝑁 (x(𝑡)) is the cost terminal cost function. Finally X andU represent
respectively the space and control acceptable spaces.
Only the first element of the control sequence that solves the problem (i.e.
u*(1), ...,u*(N)) is applied to the system, while the rest of the control inputs are
discarded. A graphical representation is displayed in Figure 3.1 (source [15]).
At the following step, the problem will be solved again with 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡 + 1.

Figure 3.1: Receding Horizon Control Concept
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In the following, Algorithm 1 is reported in pseudocode to highlight the
main ideas of this approach. RHC practically implements finite horizon Linear
Quadratic Regulator (LQR) recursively in order to diminish the effects of model
uncertainties.

Algorithm 1 Receding Horizon Control
Require: Control horizon length 𝑁 > 0

loop
x0← x(𝑡𝑠𝑡𝑎𝑟𝑡)
Update u*(·) in the interval [t, t+N] with new x0
Use first element of u*(𝑡)
𝑡𝑠𝑡𝑎𝑟𝑡 ← 𝑡𝑠𝑡𝑎𝑟𝑡 + 1

end loop

3.3 MPC

MPC is a particular implementation of RHC where the optimal control law
is computed online iteratively over the prediction horizon enforcing state and
control constraints. The computation is carried out at each time step, than only
the first element of the control series u* is applied to the system, while the rest
is discarded. A visual representation of this procedure is depicted in Figure 3.2
(source [22]) This control approach is able to achieve considerable performance
as well as constraint handling.

Figure 3.2: Model Predictive Control Visual Example
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On the other hand this type of control is very dependant on an accurate model
description and does not guarantee stability as well as robustness. Furthermore
the constraint introduced may lead the simulation to unfeasibility at some point
and the optimization problem needs to be solved in real-time, hence this implies
putting particular attention on the processing power of the chosen hardware.

3.4 Nonlinear MPC

Nonlinear MPC or NMPC is a translation of MPC concepts and strategies
into the nonlinear world. The approach is conceptually similar but nonlinear
dynamic models are used instead of linearized (or linear) ones. This grants
meaningful performance improvements. In the past, due to limitations in soft-
ware and hardware, NMPC industrial applications were basically limited to
slow dynamics systems. Nowadays, thanks to improvements in such technical
fields and to the introduction of brand new and more efficient algorithms, the
applications of NMPC are way more widespread.

3.5 NMPC Implementation Details

While the technical aspects (e.g. the toolbox used) will be discussed in
Chapter 6, in this section the implementation details, such as cost function and
constraints definitions, will be covered.

3.5.1 System Discretization

The discretization is carried out by MATMPC toolbox that will be describen
in Chapter 6. The algorithm selected to carry out this operation is explicit Runge-
Kutta, that is one of the state of the art approaches to tackle high nonlinearities.

15



3.5. NMPC IMPLEMENTATION DETAILS

3.5.2 Cost Function

In order to define a cost function it is necessary to design the state error term

e(𝑘) =



e𝑝(𝑘)
e𝑞(𝑘)
e𝑣(𝑘)
e𝜔(𝑘)
eu(𝑘)


∈ R17 (3.7)

where all the e·(𝑘) are the differences between the position, quaternions,
linear and angular velocities, controls and the respective references at time
instant 𝑘. In reality, such an error state definition would be actually meaningless
for the quaternion pose representation, making them lose their physical sense.
In this thesis this problem will be overcome by setting to zero the weights related
to the difference e𝑞(𝑘). This is done since the simulation provided satisfactory
results, even without this type of penalization.
Anyway, it is possible to take also the quaternion into account by the modification
of the pose error term. For example, if the Frobenius metrics is considered, the
error acquires the new meaning of the scaled-down measure of the arc length
that connects q𝑟𝑒 𝑓 and q.

3.5.3 Constraints

In a realistic scenario constraints are everywhere, from the unmovable walls
of a room to the actuator limits on the control action. The great advantage
in the use of a NMPC is the constraint handling on both the state and the
control signals. It is possible to specify them to the controller thanks to simple
lower/upper bound relationship.
The simple constraints taken into account in this thesis are:

1. Floor:
This is a basic state constraint imposing that the drone must not crush
on the ground.

0 < 𝑧 (3.8)

2. Saturations:
Each motor has physical limits that stop it from making a propeller spin
over a certain speed.

0 ≤ 𝑢𝑖 ≤ 𝑢𝑠𝑎𝑡 ∀𝑖 = 1, 2, 3, 4 (3.9)
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where 𝑢𝑠𝑎𝑡 is the maximum control output each motor can produce. Its
value is reported in Table 2.1.

3.5.4 Weights and Prediction Horizon

Both of the elements in this subsection are fundamental for the NMPC to
work properly. But contrary to the previous considerations, these require specific
tuning depending on the task, so they will be briefly introduced here and then
numerically made explicit in Chapter 6.

• Weight Matrix:
Q ∈ R17𝑥17 is a diagonal matrix that contains in each diagonal element
the weight of the corresponding state and control error. Higher the value,
greater the effort of the NMPC to bring the corresponding error to 0. While
the terminal Weight Matrix is similar, but does not take into account the
controls (Q𝑁 ∈ R13𝑥13).
Hence the cost function at step k will be:

𝐽(e(𝑘)) = e𝑇Qe (3.10)
While the terminal cost function is:

𝐽(e𝑁 ) = e𝑇𝑁Q𝑁e𝑁 (3.11)

• Prediction Horizon:
𝑇ℎ is given by the choice of the number of steps 𝑁 in a prediction horizon
and the time length 𝑇𝑠 of each step.

𝑇ℎ = 𝑁𝑇𝑠 (3.12)
Greater is the prediction horizon and the number of steps, better will be the
prediction of the system dynamics and heavier will be the computational
burden for the controller. Hence a fine tuning is necessary to choose the
best trade-off for the task.
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3.5.5 Final Problem Formulation

Combining the equations from the previous subsections it is possible to ob-
tain the final formulation of the NMPC optimization problem for the quadrotor:

min
u(·)

𝑁−1∑
𝑘=0
(e𝑇Qe) + e𝑇𝑁Q𝑁e𝑁

𝑠.𝑡. 0 < 𝑧

0 ≤ 𝑢𝑖 ≤ 𝑢𝑠𝑎𝑡 ∀𝑖 = 1, 2, 3, 4

(3.13)
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4
Adaptive+NMPC

Adaptive techniques are used to act on the controller in order to adapt it
to system’s variations or to find a more precise model online, starting from
an approximated one. Hence it is kind of obvious to understand how some
researchers thought that combining a MPC, which presents degrading perfor-
mance with a non-accurate model, with an adaptive mechanism would lead to
performance improvements [5].
In this chapter an adaptive ℒ1 control scheme will be introduced starting from
its core element: a Model Reference Adaptive Controller (MRAC).

4.1 Model Reference Adaptive Controller

Figure 4.1: Model Reference Adaptive Controller Configurations

MRAC is a control technique that considers the difference between the real
system’s output and the output obtained from an ideal mathematical model of
the system itself. From the result of this comparison the MRAC acts on the
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control signal.
The objective is trying to minimize the aforementioned difference. To do so
there are two possible types of MRAC to choose from. One that acts directly on
the control signal via a sum (Figure 4.1 on the right) and the other that aims at
the same result by changing the controller parameters (Figure 4.1 on the left).
The first approach will be the one used in the following.
Anyway these types of approaches are sensitive to adaptive gains, that are far
from banal to be tuned, hence they tend to produce high-frequency ringing in
the control signal, slow convergence rates or large transient errors.

4.2 ℒ1 Adaptive Approach

In order to prevent these problems a new strategy called ℒ1 is described in
this subsection.
The new structure is composed by the union of the previous adaptive signal
with a low pass filter that cuts off the undesired frequencies that may excite
unstable modes, regulating the balance between the adaptation contribution
and the robustness.
It is possible to prove the stability of the closed loop system with the ℒ1 control
[6]. From this proof derives also the name of the control method. It comes from
the fact that the adaptation error bounds depend on several elements among
which there is the L1 norm of the filter’s transfer function.

4.3 Adaptive+NMPC Cascade

Figure 4.2: ℒ1+NMPC

In recent years due to the strong dependency from an accurate model of the
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NMPC the introduction of a ℒ1 approach in the control scheme has become a
new state of the art control system, able to combine long-term planning and fast
adaptation to modeling error and disturbances [14].
Figure 4.2 displays the cascaded control scheme. The quadrotor state is passed
through feedback both to the NMPC and to the ℒ1 block.
On the other hand there are some conceptual problems with this kind of im-
plementation. In fact the adaptive controller does not take into account NMPC
constraints while modifying the control output [4]. Furthermore, due to how
the implementation is done, there is a loss of the NMPC concept of optimal
control.
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5
Learning-based NMPC

Thanks to the increasing success of machine learning and due to the constant
developments of software and hardware, implementing data driven learning-
based approaches in automation systems has become a focus and a trend in
the control community. In fact these techniques usually require precise data
acquisition and high computational capabilities that were not available a short
time ago.
Since NMPC performance deteriorates quickly in case of model uncertainties,
there are two main Learning-based (Lb) approaches to complement the NMPC
structure in order to marginalize this problem [17]:

1. use machine learning in order to learn unmodeled system dynamics and
thus to provide a more refined model to be controlled through NMPC

2. learn directly the NMPC control law

For the purpose of this thesis, the first approach will be the one used to
complement the NMPC strategy.

5.1 Introduction to the Learning Problem

As previously mentioned, NMPC results are strictly related with the quality
and precision of the model. The problem is that physical models usually are not
accurate enough. In fact, in the UAV scenario, phenomena such as aerodynamics
or wind effects are often not considered in mathematical models [21].
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Thanks to Machine Learning it is possible to learn a more precise model
containing the previously mention unmodeled effects, starting from acquired
data.
Hence the system becomes:

𝑥¤ = 𝑓 (𝑥, 𝑢) + 𝑔(𝑥, 𝑢) (5.1)

where the 𝑓 (𝑥, 𝑢) component represents the nominal model while 𝑔(𝑥, 𝑢)
represents the learned dynamics.

In the following some major leaning topics and key decisions for the problem
formulation will be introduced.

5.1.1 Learning Methods

For such a task, the two main approaches referenced in literature are Gaussian
Process (GP) and Neural Network (NN):

• Gaussian Process:

given two quantities 𝑧1 and 𝑧2 with 𝑧 =
(𝑧1
𝑧2

)
∼ N(𝜇,Σ) (where N stands

for a Gaussian distribution with mean 𝜇 and variance Σ), it is possible to
obtain an estimation of 𝑧1 from measurements of 𝑧2 thanks to the mathe-
matical relation:

𝑧1 |𝑧2 ∼ N(𝐸(𝑧1 |𝑧2), 𝑉𝑎𝑟(𝑧1 |𝑧2)) (5.2)

Where 𝐸(·) is the expected value and 𝑉𝑎𝑟(·) is the variance.

• Neural Network:
having the brain as source of inspiration, a "node" is the basic unit of
a NN and it links an input vector x to an output one y = 𝜎(𝜔𝑇x), where
𝜔 in a trainable weight vector and 𝜎 is a function (often nonlinear) called
"activation function". A group of nodes create a "layer", a NN can be com-
posed of several layers and the output of each node of the previous layer
serves as an input of each node of the following one.

In this thesis both the Lb approaches will be considered.

5.1.2 Gray-box and Black-box

The most desirable thing would be carrying out test with an accurate white-
box, i.e. the full knowledge of a model, but as it was previously introduced, it is
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almost impossible to obtain a perfect accurate model. Thanks to leaning methods
it is possible to start from previous knowledge of the model and complete it
via learning (gray-box) or learn the full model from data, without any prior
knowledge on the model (black-box).

A visual scheme of this distinction is provided by Figure 5.1 (source [20])

Figure 5.1: Concept behind different boxes approach

In this thesis the gray-box approach will be the chosen, since it is also the
most common in literature. This is because it makes possible to obtain a fine
model with a smaller number of training data, compared to the black-box case.
In fact, with sufficient number of data, gray-box and black-box tend to produce
similar results [8], but the computational burden of some Lb approaches is
strictly related to the number of training data used.

5.1.3 Off-line Learning

In this thesis an off-line approach will be considered. Even though this may
be a limiting choice for some scenarios, it is a more simple to implement and
straightforward approach, coherent with the aim of this thesis.
Off-line learning consist in acquiring the training data through an UAV flight
with only a basic NMPC control strategy. Only after this step, the model will be
learned and feed to the system in order to implement a Lb-NMPC strategy.

5.1.4 Continuous and Discrete Formulation

A final decision to be taken is whether to implement the system in a contin-
uous or a discrete formulation [7]:
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• Discrete: with this approach the learning is based on the error given by
the difference of the nominal speed and the measured one, i.e. the one
the system think should be the correct one and the actual speed at which
the drone is moving. This approach is considered more efficient, but it
is unhandy since it requires to modify the code in case of changes in the
NMPC shooting time. Another drawback is that its implementation is
complex.

• Continuous: with this approach the learning is based on the error given
by the difference of the nominal acceleration (of both the linear and the
angular components) and the measured one. Incorporating the learning-
based modeling within the accelerations ensures that both the obtained
model and the regression process are independent on the time step, hence
regression can be accomplished with available data at any frequency. This
line of action is more intuitive and easier to implement. For this reason it
will be the one chosen for this thesis.

5.1.5 Lb Final Setup

In this subsection all the previously introduced implementation details will
be summarize in order to make explicit the final learning setup used in this
thesis:

• Both GP and NN will be taken into account

• Gray-box approach

• Off-line learning

• Continuous Implementation

Such an approach should grant a performance improvement for the NMPC
by providing a more precise model, even in case of extreme and agile manoeu-
vres [12].
However the choice of an off-line implementation make the controller robust
only for mismatches that are learned during the training, hence if a new mis-
match appears during the test flight, these kind of Lb approaches are unable to
intervene.
Furthermore, Lb methods tend to introduce high computational burdens for the
systems [3], this will imply that a precise trade-off between performance and
cost needs to be carefully chosen.
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5.2 Gaussian Process

Consider the previously described system

x¤ = 𝑓 (𝑥, 𝑢) (5.3)

Denoting the model of the system evolution (i.e. nominal dynamics) by

x̃¤ = �̃� (𝑥, 𝑢) (5.4)

A physical description is normally used for the derivation of the model,
hence the state can be written as:

x = [q, q¤ ]𝑇 (5.5)

and where q are the position and q¤ the velocities of the physical system.
From here, it is possible to define the general grey-box model of the system
dynamics as follows:

x̂¤(𝑡) = x¤(𝑡) + 𝜑(𝑡)[
q̂¤
q̂¥

]
=

[
q̃¤
q̃¥

]
+

[
0

𝜑𝑞¥ (𝑡)

]
(5.6)

where 𝜑𝑞¥ (𝑡) is the estimate of the acceleration prediction errors.

5.2.1 Gaussian Process Regression Theory

The idea is to derive an estimator of the mismatch between the measurements
and the nominal dynamics, thanks to Gaussian Process Regression (GPR). A
different and independent GP will be modeled for each acceleration vector q¥ .
At time 𝑡𝑘 , each GP takes as input the selected states and the control inputs and
outputs 𝑦 𝑖𝑘 = 𝑞¥ 𝑖𝑘 − �̃�¥

𝑖
𝑘 , where 𝑞¥ 𝑖𝑘 is the measured i-th component of q¥ while �̃�¥ 𝑖𝑘 is

the predicted one.
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GPR considers the probabilistic model reported as follows:

y𝑖 =


𝑦 𝑖1
...

𝑦 𝑖𝑇

 =


𝑞¥ 𝑖1 − �̃�¥

𝑖
1

...

𝑞¥ 𝑖𝑇 − �̃�¥
𝑖
𝑇

 =


�̄�𝑖𝑞¥ (x𝐺𝑃1 )

...

�̄�𝑖𝑞¥ (x𝐺𝑃𝑇 )

 +

𝑒 𝑖1
...

𝑒 𝑖𝑇

 = �̄�𝑖𝑞¥ + e𝑖 (5.7)

where �̄�𝑖𝑞¥ ∼ N(0, 𝐾 𝑖) is a Gaussian process and e𝑖 is zero-mean independent
gaussian noise with standard deviation 𝜎𝑛 . A kernel function 𝑘 𝑖(·, ·) defines 𝐾 𝑖 .
Now, let x𝐺𝑃∗ be a general input, its maximum a posteriori estimator is the
posterior mean of �̄�𝑖𝑞¥ (x𝐺𝑃∗ ), since the posterior distribution of �̄�𝑖𝑞¥ (x𝐺𝑃∗ ) itself is
Gaussian.
The closed form expression becomes:

�̄�𝑖𝑞¥ (x𝐺𝑃∗ ) = k𝑖∗𝛼𝑖 (5.8)

where

k𝑖∗ = [𝑘 𝑖(x𝐺𝑃∗ , x𝐺𝑃1 ), . . . , (x𝐺𝑃∗ , x𝐺𝑃𝑇 )]
𝛼𝑖 = (𝐾 𝑖 + 𝜎2

𝑛I)−1y𝑖

where I is the identity matrix of dimension 𝑇𝑥𝑇.
Finally, one of the most important steps in GPR is the kernel selection, since it
determines a priori the characteristics of �̄�𝑖𝑞¥ .
In this thesis, the kernel will be the Squared Exponential function:

𝑘(𝑥𝐺𝑃𝑖 , 𝑥𝐺𝑃𝑗 ) = 𝑠 𝑓 𝑒−
(𝑥𝐺𝑃𝑖 ,𝑥𝐺𝑃𝑗 )𝑇𝑃−1(𝑥𝐺𝑃𝑖 ,𝑥𝐺𝑃𝑗 )

2 (5.9)

where 𝑠 𝑓 is the signal variance and 𝑃 is the length-scale matrix of the process.

5.2.2 Variational Free Energy

GPR provides excellent results if many training data are used. The problem
is that high number or training data implies high computational burden for the
GP. A possible solution is given by Sparse GP Approximations [10].
The technique chosen for this thesis is Variational Free Energy (VFE) [19] approx-
imation. The basic idea behind it is that the training dataset can be compressed
in a reduced number of so called inducing points, without loosing information
(inducing point assumption).
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Considering 𝑚 inducing points 𝑋𝑢 with their corresponding target values 𝑓𝑢
and assuming that training values 𝑦 and test target 𝑓∗ are independent:

𝑝( 𝑓 , 𝑓∗ | 𝑓𝑢) = 𝑝( 𝑓 | 𝑓𝑢)𝑝( 𝑓∗ | 𝑓𝑢) (5.10)

Through the choice of these inducing points, VFE aims at minimizing the
distance between the exact GP posterior and a variational approximation based
on the inducing point themselves.

In Figure 5.2 an example is shown in order to display the effectiveness of VFE.
Considered a case of mass mismatch, "Learned Mismatch" is obtained thanks
to the GP algorithm with a dataset of 7000 training points, while "Learned Mis-
match VFE" is produced via VFE approximation based on only 35 inducing
points.
As it is possible to see, the two plot almost overlap, proving the actual effective-
ness of VFE.

Figure 5.2: Comparison: Learning With and Without VFE. The first row plots
are mismatches of linear accelerations along the three directions, while in the
second row the angular accelerations are shown
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5.2.3 GP-NMPC

In order to implement GP to make the NMPC benefit from the leaning-based
component it is sufficient to:

1. Save the training data from a run on the training trajectory and split them
in order to keep a small percentage for validation data

2. GP parameters are then obtained maximising the marginal likelihood

3. In the end, training data and GP parameters are used in a new model
written in a gray-box formulation like (5.6)

5.3 Neural Networks

Neural Network is a brain inspired technique, where the basic element is
called a "node" (or neuron). A group of nodes create a "layer". Each neuron is
based on the perceptron algorithm [11], where instead of using a sign function,
a non-linear "activation" is chosen (Figure 5.3).

Figure 5.3: Artificial Neuron

In the following a quick theoretical background is provided and structural
choices are introduced.
A more in-depth discussion can be found in "Learning based Nonlinear MPC
for quadrotor control" [9].

5.3.1 Possible NN Choices

These days Neural Networks are a vast research field in control. For this
reason many different types of approaches to NN control have been proposed
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in these last few years.
Some of these networks aim at learning different targets [3], some try to exploit
previous information to strengthen the learning [1], some other proposals are
not about the network structures themselves but about optimization methods
in order to avoid the computational complexity when several weights are used
[23].
In this thesis project a basic Feedforward NN structure has been selected and
the leaning target is the same as the GP in order to guarantee a fair comparison.
In the following subsections some more hyperparameter and implementation
details about the network at hand are provided.

5.3.2 Feedforward NN Basics

Feedforward Neural Network (FFNN) is the basic network structure, the
idea behind it is to stack multiple layers one after the other, hence developing
the network in terms of depth. The input vector is fed to a so called hidden
layer where each neuron applies an affine transformation (𝑎 = 𝑊 𝑖𝑛𝑥 + 𝑏 𝑖𝑛) and
a non-linear activation (𝑜 = 𝑓 (𝑎) applied element-wise). Hence the output is
obtained by:

𝑦 = 𝑓 (𝑊 𝑖𝑛𝑜 + 𝑏 𝑖𝑛) (5.11)

The output is then fed as input to the next hidden layer (Figure 5.4).
The final layer will use an specific output function, chosen depending on the
learning problem. In this case the task is regression and a good output function
is the Mean Squared Error (MSE) [16]:

𝑀𝑆𝐸 =

∑𝑛
𝑖=1 𝑥𝑖 − �̂� 𝑖

𝑛
(5.12)

The training of a FFNN produces as outputs: learned weights and biases.
With these new learned elements, the network is able to predict the desired out-
puts of the regression task, that (in this scenario) are the quadrotor accelerations
mismatches.
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Figure 5.4: Feedforward Neural Network Structure

5.3.3 Network Structure and Specifications

In this subsection several parameter and hyperparameter choices will be
introduced.

• Structure: 3 layers with 8-16-32 nodes

Differently from GP the computational weight of the Neural Network is
not dependent from the number of training data but by the dimension
of the network itself. Theoretically, deeper and wider networks should
provide better results, but firstly this is not always true and secondly big
networks will cause computational slowdowns or even infeasibility for the
setup at hand.

• Initializer: narrow-normal

Choosing the right initializer helps the network to learn easier the weights.
For example, initializing all the weights at 0 will make it difficult for the
network to learn values different from zero itself.

• Activation: Leaky-ReLU

One of the most crucial choices from which depends the quality of the NN
learning.

• Regularization: L2 (with a parameter of 10−4)

L2 regularization is one of the most common regularization methods.
It imposes the minimization of the squared norm of the weights to the
learning process.

• Training Trajectory: hand-crafted trajectory with data augmentation
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There are several possible picks to train a Neural Network, from random
generated to hand-crafted ones. Data augmentation implies the choice
of a trajectory and its subsequent expansion (e.g. through some scaling
techniques).

• Normalization: input normalization

Normalization is usually carried out in order to help the network learn
better equally important mismatches, that usually would have different
magnitude scales.

• Number of Networks: 2 Networks (one for linear accelerations and one
for angular ones)

While the optimal choice for GP is to learn the mismatch for each accelera-
tion separately, a single NN has proven able to learn multiple mismatches.

5.3.4 NN-NMPC

Similarly to GP, in order to make the NMPC benefit from the mismatches
learned from NN it is sufficient to:

1. Save the training data from a basic NMPC run on the training trajectory
and split them in order to keep a small percentage for validation data.

2. NN weights and bias are obtained through the network training.

3. In the end, both NN weights and biases are used in a new model written
in a gray-box formulation like (5.6).
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6
Simulation

In this chapter the simulation setup and results will be introduced. In the
first part all the elements that make the final comparison fair (such as trajectory
to track, mismatches to reject) are proposed. The same logic will be applied in
the Learning-based section, introducing a common training trajectory for both
the methods.
The technical setup (e.g. Simulink schemes) will be provided.
In the end the results will be displayed both in the standard, aforementioned
case and in a high performance scenario.
The task at hand for these simulation is a trajectory tracking task for the quadro-
tor, while trying to reject a model mismatch.
For this job three main control schemes are tested and compared. Following
the order in which they will be considered, the three approaches are: Adaptive-
NMPC, GP-NMPC and NN-NMPC.

6.1 Test Trajectory

The test trajectory is introduced in order to force the quadrotor to perform
all the three UAV main manoeuvres: pitch, roll and yaw.
The "Infinity trajectory" is an approximated lemniscate, inclined with respect to
the x-y plane (Figure 6.1), obtained thanks to a MATLAB command that gener-
ates trajectories based on specified waypoints. The purpose of the modification
of the original lemniscate is to introduce a vertical linear acceleration along the
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z axis.
The trajectory can be inscribed in a parallelepiped of dimension 5𝑚𝑥8𝑚 of basis
and 5𝑚 of height and is defined as a fuction of time in order to be completed in
exactly 40 seconds.

Figure 6.1: Test Trajectory

6.2 Mismatch Introduction

While performing the trajectory tracking task, the quadrotor will have to face
some mismatches.
The mismatches are inserted in order to simulate real life scenarios in which
the nominal model provided to the NMPC is not the real one due to some
uncertainties, wrong data in the datasheet or damaged components.
The two mismatches considered in this thesis are:

• Mass Mismatch:

A Mass Mismatch is used to simulate the case in which there is an error
in the estimated value of the mass (whether it is smaller or grater than the
actual one) or to simulate a change of mass, e.g. if a payload is attached to
the quadrotor.
In this thesis a mismatch of 0, 25𝑘𝑔 (i.e. an increase of a sixth of the original
mass) is considered.
In Figure 6.2 a run with basic NMPC, considering the previously described
mass mismatch, is plotted.
The NMPC trajectory is color coded emphasizing the average trajectory
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Figure 6.2: NMPC run with Mass Mismatch

Figure 6.3: Trajectory error of NMPC with Mass Mismatch

error. The color pink represents the parts of the flight where the controller
is more distant from the desired trajectory and light blue, the parts where
nominal trajectory and flight trajectory are almost the same.
As it is possible to notice, since the NMPC thinks the quadrotor mass is
lighter than the actual one, it is producing a thrust smaller than the one
required, hence the flight trajectory is below the desired one.
In Figure 6.3 the error variations along the trajectory are plotted. The
dashed red line emphasizes the highest value for the error. As it is possi-
ble to see in Figure 6.4 the error is greater when the drone gains altitude.
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Figure 6.4: Trajectory coordinates of NMPC run with Mass Mismatch

• Motor Voltage Mismatch:

Figure 6.5: NMPC run with Motor Voltage Mismatch

Motor Voltage Mismatch (MVM) is meant to simulate a condition in which
a motor does not work at its full potential. A simple example of such a case
is a difference between the nominal and the real electrical power a motor
is able to handle.
For the purpose of this thesis the mismatch has been modeled by dimin-
ishing one of the four propeller control output by 20%, hence causing a
thrust deficit that the controller will need to reject.
As it is possible to see in Figure 6.5 the missing knowledge about the lack
of power for the first propeller, stops the quadrotor from following the
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Figure 6.6: Trajectory error of NMPC with Motor Voltage Mismatch

requested trajectory.
As it is possible to notice in Figure 6.6 the error is consistent along the tra-
jectory. This happens since this type of mismatch influences both altitude
increases and drone turns as shown in Figure 6.7.

Figure 6.7: Trajectory coordinates of NMPC run with Motor Voltage Mismatch

In this thesis the two mismatches will be considered separately.
The results of the previous runs in terms of average error on the trajectory (i.e.
the average distance of the quadrotor from the desired trajectory) are reported
in the following Table (6.1)
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Mismatch Average Error 𝑒𝑚

Mass Mismatch 4, 38 𝑐𝑚

Motor Voltage Mismatch 14, 68 𝑐𝑚

Table 6.1: NMPC Mismatches

6.3 Training Setup

In the following subsections two elements fundamental for a correct learning
process are introduced.

6.3.1 Training Trajectory

Due to the method’s structure, a random trajectory is sufficient to train the
model thanks to the GP approach. On the other hand, NN require a more
precise training dataset that contains almost all the manoeuvres that the drone
might face during its flight.
In order to make the comparison between the two methods fair, a common
training trajectory has been chosen (Figure 6.8).

Figure 6.8: Training Trajectory

This trajectory has been created by combining several smaller trajectories,

40



CHAPTER 6. SIMULATION

each one with a specific intent of reproducing a particular manouvre at different
acceleration ranges, that the drone might face during its flight.

6.3.2 Training Input Data

The previously required trajectory is needed in order to acquire input data
for the training procedure. In order to avoid spurious correlations during the
regression process, some elements of the state are not considered. In particular
𝑥,𝑦,𝑧 and both the linear and the angular velocities are not considered. This is
because these state values do not appear in the model definition, hence they do
not represent meaningful data to learn from for the Lb methods.
In conclusion, the regression input becomes:

[𝑞, 𝑢] (6.1)

where 𝑞 is the drone pose represented in Euler angles form, while 𝑢 is the
control input vector.

6.4 Simulink Setup

Experiments are carried out using Simulink, a block diagram environment
used to design and simulate systems.
The NMPC block is implemented thanks to the MATMPC toolbox explained in
the next subsection (6.4.1). The GP and NN components are added directly into
the matlab code provided by MATMPC itself, necessary to setup the simulation.
A switch is inserted in the simulink scheme in order to enable and disable the
adaptive controller intervention (Figure 6.9). This way, the same setup can be
useful to carry out all the desired tests with just quick adjustements.

6.4.1 MATMPC

MATMPC [24] is an open source toolbox developed by the Deparment of
Information Engineering of the University of Padua. This software, built in
MATLAB, for NMPC handling is designed in order to make modeling, controller
design and simulation accessible for a wide class of NMPC applications.
All the functions are written in the MATLAB API for C in order to exploit at the

41



6.4. SIMULINK SETUP

Figure 6.9: Full Control Scheme

same time the accessibility of MATLAB and the great performances of C. The
optimal control is discretized via multiple shooting through fixed step Runge-
Kutta method. Derivatives are obtained thanks to CasADi [2], state of the art
toolbox for these types of needs.
Furthermore, this toolbox provides a NMPC Simulink block that requires the
reference and the state as inputs and produces the control signal as output.

6.4.2 Parameters and Tuning

As anticipated in the theoretical chapters, in this subsection technical values
will be provided:

1. In order to define the length prediction horizon the knowledge of time
length of each step 𝑇𝑠 = 0.1 𝑠 (that coincides with the control frequency)
and the number of steps in a prediction horizon 𝑁 = 10 are required

2. The weight matrix for the NMPC is given by the following values:

• [70 70 300] respectively for the 𝑥, 𝑦 and 𝑧 coordinates.
• [1 1 10] for the linear velocities.
• [1 1 1] for the angular velocities.
• [10−4 10−4 10−4 10−4] for the control inputs.

an easy intuition behind these numbers is the desire to highly weight the
error in the position coordinates to punish the system when the quadcopter
is away from the desired trajectory. While the control inputs are very lightly
penalized, since in this way the controller is able to push the drone to its
limits.

3. The adaptation gain is 𝐴 = −0, 1
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6.5 Results

In the following sections all simulations results regarding the three methods
(adaptive, GP and NN) and the two mismatches (mass and motor voltage) at
hand will be presented and discussed.
In subsection 6.5.4 a summary table of the results will be provided and analyzed.

6.5.1 A+NMPC

Figure 6.10: Adaptive+NMPC with Mass Mismatch

As it is possible to see in Figure 6.10, the adaptive component is able to reject
the mismatch. In fact, the orange line represents the flight of the basic NMPC
that is below the desired trajectory, this is because the mass has been increased,
hence the required trust is higher than the one provided by the controller. On
the other hand the light blue one is the flight with ℒ1+NMPC and it is almost
superimposed perfectly to the requested trajectory.

A similar result is obtained in the case of motor voltage mismatch (Figure
6.11). The only difference is that in this scenario is a little defiance at the
beginning of the trajectory.

The reason must be sought in the control signals. Figure 6.12 displays the ex-
pected control signals before and after saturation, for the four rotors. Expected
control signal means that it is the one produced by the controller without know-
ing that due to the presence of the mismatch the first rotor will receive a smaller
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Figure 6.11: Adaptive+NMPC with Motor Voltage Mismatch

Figure 6.12: Expected Control Signals during the take off phase

amount of power. In this scenario it is possible to notice how the adaptive
controller during the first second of flight tries to increase the signal of the first
rotor, both trying to compensate for the imbalance and to reach the required
altitude fastly. This happens because the Adaptive component does not take
into account NMPC constraints.
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6.5.2 GP-NMPC

Figure 6.13: Mass Mismatch GP Learned Accelerations. The first row plots are
the linear accelerations along the three directions, while in the second row the
angular accelerations are shown

In Figure 6.13 the results of the GP learning are displayed in order to show-
case the learning goodness. The range depicted (points from 𝑡 = [5000, 5040])
correspond to the test trajectory. The plots in the first row showcase linear ac-
celerations, while in the second row there are the angular ones. The dashed line

Figure 6.14: GP-NMPC with Mass Mismatch
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represents the estimated acceleration in the case the mismatch is assumed to be
known (the desired acceleration), the orange line is the actual acceleration of the
basic NMPC flight, while the light blue line is the final acceleration given by the
sum of the nominal acceleration and the leaned GP mismatch.
As it is possible to notice, a mismatch such as the mass one interferes only with
the linear accelerations.

The GP is able to learn perfectly the mismatch and this is also corroborated
by the resulting flight shown in Figure 6.14.

Figure 6.15: MVM GP Learned Accelerations

In Figure 6.15 it is possible to notice how the MVM affect the system kinemat-
ics. In this scenario even the angular accelerations present a consistent mismatch
between the expected and the nominal one.
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Figure 6.16: GP-NMPC with Motor Voltage Mismatch

Also in this case the GP seems to learn a very accurate description of the
model and the NMPC makes good use of this new information in order to track
very precisely the requested trajectory (Figure 6.16).

6.5.3 NN-NMPC

Figure 6.17: Mass Mismatch NN Learned Accelerations

From Figure 6.17 it is immediate to see how Neural Networks learn differently
from Gaussian Processes. In fact, being the image structure the same described
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in the previous subsection, it is possible to notice how the network used for
learning the linear accelerations has leaned with accuracy the mismatch on the
third plot (i.e. the z component), while has completely ignored the mismatches
on the x and y components (i.e. the first two plots in the first row, where the
light blue graph is superimposed with the orange one).
This behaviour is due to the network structure used for this project, resulting in
a strong attention on higher magnitude mismatches and less interest in learning
the ones reputed (by the network) to be less relevant. It may be compensated
with a different network, for example by considering more nodes.

Figure 6.18: NN-NMPC with Mass Mismatch

Nevertheless the results in terms of performance for the trajectory tracking
task seem quite noteworthy. The numerical results in terms of average trajectory
error will be displayed and discussed in section 6.5.4, but from Figure 6.18 the
the network learned component is a significant addition to the original model
in order to reject the mismatch.

Figure 6.19 confirms the previous results. In fact, even in the case of MVM,
where also mismatches on the angular accelerations come into play, the network
still learns with more accuracy the most significant mismatches in terms of
magnitude, e.g. the second angular component (i.e. the second plot in row
number two).

The result is that even NN is able to provide to the NMPC a mismatch
description accurate enough. Figure 6.20 displays the comparison between the
two flights of the quadrotor afflicted by the MVM, the controller is the basic
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Figure 6.19: MVM NN Learned Accelerations

Figure 6.20: NN-NMPC with Motor Voltage Mismatch

NMPC for the orange trajectory and the NN-NMPC approach for the light blue
one.

6.5.4 Comparison of the results

Table 6.2 reports the average trajectory error (i.e. the average distance of the
quadrotor from the desired trajectory), while the displayed percentages repre-
sent the quantity of error reduction carried out by each control method, with
respect to the value of the average trajectory error of the standard NMPC.
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As it is possible to see from the table, all the three methods are really effective
in the track following task and in the mismatch rejection.
NN-NMPC performs slightly better than the other two control strategies, but
the difference is smaller than a quarter of a centimeter, hence resulting almost
meaningless in case of standard control tasks.

Mismatch NMPC 𝑒𝑚 A+NMPC 𝑒𝑚 GP-NMPC 𝑒𝑚 NN-NMPC 𝑒𝑚

Mass 4, 38 𝑐𝑚 1, 09 𝑐𝑚 0, 78 𝑐𝑚 0, 58 𝑐𝑚

−75, 11 % −82, 19 % −86, 76 %

Motor Voltage 14, 68 𝑐𝑚 0, 85 𝑐𝑚 0, 76 𝑐𝑚 0, 72 𝑐𝑚

−94, 21 % −94, 82 % −95, 10 %

Table 6.2: Results: Average Trajectory Error

But performance is not the only validation metric to take into account, also
computational burden is a crucial aspect in quadrotor control.
In the following, the burden is considered in terms of average Computational
Time (CPT) of the controller for each iteration. The simulations are carried out
on a PC with 10𝑡ℎ generation i7 CPU and a 16 GB RAM.

Control Method Average CPT

A+NMPC 0,58 ms

GP-NMPC 5 ms

NN-NMPC 2 ms

Table 6.3: Results: Average Computational Time

Looking at Table 6.3 is possible to notice how the addition of an adaptive
component to the control scheme does not represent a burden in terms of com-
putational time.
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On the other hand both the learning-based methods considered in this thesis
slow down the process in a significant way, as expected. In fact, the addition of
NN make the CPT three times the one with standard NMPC, while the addition
of GP slows down the system to almost nine times the basic NMPC CPT.

Considering the chosen task and the tested methods, these simulation results
seem to crown Adaptive-NMPC as the best pick so far. In fact, it reaches very
competitive values in terms of average trajectory error and by far the smaller
average computational time.
Moreover, the adaptive addition to the control loop is more straightforward and
easier to tune, compared to the learning-based methods.

6.6 Dangerous Manoeuvre Introduction

As just mention in subsection 6.5.4, the test carried out until now provide
very close results in terms of performance. In this scenario the Adaptive-NMPC
control scheme seems to be almost the best possible pick, since it achieves
similar results with a smaller computational burden and easier procedures for
implementation and tuning.
For this reason, in the following, a new type of trajectory tracking task is taken
into account.
As previously anticipated and very well documented in literature, Lb-NMPC is
often used for agile and high performance manoeuvre.
This is why the Dangerous Manoeuvre (DM) (Figure 6.21) is introduced.

This new trajectory is defined to be completed in 10𝑠 and requires a quick
and aggressive control to the system. The structure of this trajectory can be
divided in three main section: a first sudden 4 meters take off, an high speed
dive and a final passage near the ground before gaining altitude again.
This structure is obviously a gimmick scenario, but it should not be considered
restrictive, since it is conceptually similar to a trajectory that passes close to a
wall or near an obstacle, hence a great example of common high performance
scenarios.
The learning carried out for this task will be based again on the training trajectory,
previously introduced.
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Figure 6.21: Dangerous Manoeuvre Trajectory

6.7 Dangerous Manoeuvre Results

The standard NMPC with the previously described mass mismatch crashes
on the floor (Figure 6.22).

Figure 6.22: DM: NMPC with Mass Mismatch

This is because the Model Predictive Controller is not able to recognize the
additional mass that pushes the quadrotor flight below the desired trajectory.
Also the simulation with motor voltage mismatch ends up with infeasibility. In
this scenario the cause must be sought in another problem, in fact the reason
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for this is the incapability to lift off. Since this scenario is less graphically
interesting, even if the results are similar, in this section only the mass mismatch
will be considered.
In the following subsections the results for Adaptive-NMPC and Lb-NMPC are
presented.

6.7.1 A+NMPC

As it is possible to see in Figure 6.23 the cascade of NMPC and adaptive
controller still leads to infeasibility.
Also in this scenario the quadrotor crashes in the same spot as for the basic
NMPC, but this time the reason is different.

Figure 6.23: DM: Adaptive+NMPC with Mass Mismatch

The crash is caused by the incapability of the adaptive controller of knowing
the system constraints. In this case the breached constraint is the control input
saturation.

In Figure 6.24 the actual control signal and the control signal before saturation
are displayed. The constraint is violated in two time segments. The first one is
during the take off task (time segment [0 − 1, 5] 𝑠), the system does not see this
violation as a problem since it is just an attempt of the adaptive controller to
make the quadrotor lift faster. The second violation is at six seconds, the idea
is that the controller is trying to react at the dive, but it acts too late asking a
control effort that the drone is not able to produce, hence leading to a fatal crash.
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Figure 6.24: DM: Adaptive+NMPC Control Input

6.7.2 GP-NMPC

The Gaussian Process contribution is different from the adaptive controller
one and thanks to this difference the drone is able to complete the requested
trajectory.

Figure 6.25: DM: GP-NMPC with Mass Mismatch

In fact, GP intervention aims at learning the mismatch and in this way
complementing the imprecise model that is used by the basic NMPC. This type
of modification is directly made inside the NMPC model, hence, as expected
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from theory, no model constraint will be violated.

Figure 6.26: DM: GP-NMPC Control Input

It is possible to verify this fact by looking at the control input displayed in
Figure 6.26. Differently from Adaptive+NMPC (Figure 6.24), in this graph the
control input produced by the controller and the saturated version are exactly
the same

6.7.3 NN-NMPC

Also Neural Networks are able to learn an accurate acceleration mismatch,
making possible for the drone to complete the trajectory thanks to the NMPC
control action.

In Figure 6.27 is also possible to notice that the learning via Neural Networks
is different from the Gaussian Process one. In fact it is possible to visually
grasp how the dive is more precise in this plot, while the moment in which
the quadrotor regains altitude (around coordinate [1, 75; 2; 0]) is slightly more
precise in the GP learning case (Figure 6.25)

Exactly as for GP, also NN acts directly on the model provided to the NMPC,
hence the saturation constraints are respected. This is proven by Figure 6.28
where the superposition of the control signal before and after saturation is
perfect.
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Figure 6.27: DM: NN-NMPC with Mass Mismatch

Figure 6.28: DM: NN-NMPC Control Input

6.7.4 Comparison of the results

The dangerous manoeuvre proves several aspects discussed in the theory
section.
For such a task, basic NMPC reaches infeasibility since it is not able to recognize
that the actual mass of the quadrotor is heavier than expected, this will lead the
drone to fly lower than it should and hence to crash when the trajectory reaches
heights that are close to the ground.
Adding the adaptive component to the control scheme in theory should im-
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prove the results, but the simulation is still infeasible. As previously mentioned
in Subsection 4.3, the adaptive controller does not take into account NMPC con-
straints, hence when the quadrotor gets closer to the ground the adaptive action
increases the control input in order to reject the mass mismatch. In this way the
control signal reaches saturation and the drone crashes again.
On the other hand, both the learning-based approaches are able to complete
the tasks of trajectory tracking and mismatch rejection. Gaussian Processes and
Neural Networks are able (in two different ways) to learn the model, hence help-
ing the NMPC in developing a long term control strategy perfectly fitting for the
new learned model.
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Conclusions and Future Works

7.1 Conclusions

With this work, a fair introductory comparison between advanced control
techniques has been carried out.
The task was a trajectory tracking for a coplanar quadrotor that needed to reject
different types of mismatches during the flight.
The basic control action was carried out by a NMPC that presented a per-
formance deterioration due to the model quality dependence of this type of
controller.
In order to overcome this problem, three strategies were proposed: the cascaded
addition of a ℒ1 adaptive controller (Chapter 4) and two learning-based meth-
ods (Chapter 5), the first one exploit Gaussian Processes techniques, while the
second makes use of Neural Networks.
In a non aggressive scenario, like the one presented in section 6.1 with the "In-
finity trajectory", the three proposed approaches performed similarly in terms
of average trajectory error both in the case of mass mismatch and the case of
motor voltage mismatch.
The main difference here were found in the average computational time at each
iteration. In fact the A-NMPC (𝐶𝑃𝑇 = 0, 58𝑚𝑠) had a computational time that
was almost one third of the one obtained with NN and one ninth of the GP one.
This scenario seemed to be pretty favorable to the adaptive controller but this
control technique presented some non-negligible limits.
When, a new, more aggressive test case was introduced in section 6.6, the results
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changed.
With this manoeuvre, the standard NMPC reached infeasibility since the differ-
ence in mass leaded the quadrotor to a fatal crash. The same outcome happened
also with the ℒ1+NMPC strategy. The cause this time was due to the fact that
the adaptive addition to the original control signal did not take into account
NMPC constraints, hence the crash happened because saturation was reached
while trying to regain altitude.
The outcome was different when the learning-based component were then taken
into account. Both Gaussian Processes and Neural Networks showed their ability
in learning the rotor acceleration mismatch. Since the learning-based compo-
nent was directly added inside the model provided to the NMPC, the control
respected the original constraints, being able to complete the aggressive trajec-
tory.

In conclusion, depending on the setup and the scenario, different control
techniques are proven to be more valid then others. ℒ1-NMPC is a straightfor-
ward method, perfect for the non-aggressive control task considered during this
project. While for the dangerous manoeuvre scenario, the more complex (both
computationally and in terms of setup) Lb methods prove themselves to be a
valid pick when high-performances come into play.

7.2 Future Works

There are many possibilities to expand the work carried out in this thesis.
First of all a more thorough evolution should be performed: here just some
model mismatches and disturbances have been investigated, but there would
be need for a Monte Carlo evolution in order to provide a significant sensitivity
analysis.
Furthermore it is possible to introduce a task of trajectory planning for the
NMPC.
From the adaptive controller perspective, new methods for robustness improve-
ment could be researched.
From the learning point of view, an interesting upgrade could lead towards the
implementation of on-line learning. In this way the quadrotor should learn
mismatches during the flight, being able to adapt to changing model conditions
(e.g. partial motor failures during the flight or sudden and in flight change of
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mass).
Another interesting research field gravitates towards the choice of the network
structure. As mentioned in Subsection 5.3.1, several paper come out each day
proposing new approaches and structures for Neural Networks. These imple-
mentations could be further investigated in order to improve the current results.
A final possibility could be real life, laboratory testing. This kind of approach
should validate even further the data presented in this thesis, facing brand new
challenges, such as having noisy data to be filtered, several differences between
the mathematical and the real model, the necessity to make the code run on a ac-
tual microcontroller or even having more unmodeled disturbances, for example
the presence of gusts of wind.
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