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A B S T R A C T

In this thesis a solution is developed to the problem of improving the
metagenomic classification trying to boosting the reference k-mers.
The purpose of this report is to understand if increasing the infor-
mation available to the classifier help improving the classification at
genus and species level.
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1
I N T R O D U C T I O N

It is known that only a small part of the microbial life has been iden-
tified. Metagenomic, the direct sequencing and characterization of
genes and genomes present in a complex environment, has completely
changed the microbiological practices, bypassing the obstacle of pure
cultural isolation and cultivation. Metagenomic has shown the possi-
bility of increasing the knowledge of diversity, functions and evolution
of the uncultivated part of a sample.

Metagenomic as a field arose in the 1990s after the application
of molecular biology techniques to the genomic material directly
extracted from microbial assemblies present in different habitats, in-
cluding the human body. The application of metagenomic approaches
allows the acquisition of genetic/genomic information from complex
assemblies formed by bacteria, viruses, archaea, fungi and protists.
The metagenomic field addresses the fundamental questions of which
microbes are present and what they do in the environment sample.

In the mid-2000s, the availability of high-throughput and next-
generation sequencing technologies gave a boost to the metagenomic
field by reducing the financial and temporal limits imposed by the tra-
ditional DeoxyriboNucleic Acid (DNA) sequencing technologies. This
progress allows the scientific community to examine microbial commu-
nities from different habitats/environments, following the structural
community changes in the space and in the time and studying the
community responses to environment changes.

In 2012, the publication of the characterization of the microbiome of
healthy humans has created great expectations about the microbiome’s
influence on human health and diseases. With the publication of the
Human Microbiome Project results, the metagenomic is emerged as
an important field of research in microbiology. In particular, when it
comes to the characterization of the microbiome in complex human
disorders.

A lot of research in the metagenomic field has been done and many
tools have been developed for the classification of unknown sequences.

The metagenomic classification tools look for a correspondence be-
tween sequences (generally reads or assembly contigs) and a reference
database of microbial genomes to identify the taxonomy of those
sequences. In the early days of metagenomic, the best strategy was
to use the Basic Local Alignment Search Tool (BLAST) [1] to compare
each read with all the sequences in the GenBank. But as the reference
database and the sequencing datasets dimensions increase, the use of

1



2 introduction

BLAST became computationally difficult, leading to the development
of new metagenomic classification tools that give results in a short
time, although usually with a lower sensitivity than BLAST. Some tools
return for each read an assignment, instead other provide the overall
composition of the sample. For the matching phase a lot of strategies
is used: reads alignment, k-mer mapping, use of complete genomes,
marker genes alignment and protein sequence alignment. Recent stud-
ies have tried to compare the metagenomic classifiers performance
based on both accuracy and speed [2, 3], although these studies are
limited by their dependence on simulated data.

It is seen that the metagenomic classifiers work very well up to
genus level, unlike the species level in which they have the most
difficulty in classifying the unknown genomes.
This report explains a method to try to improve the classification at
genus and species level by boosting the reference k-mers set.
The report is structured as described below.

Chapter 2 provides a definition of metagenomic, the description
of the metagenomic project and a brief description of the National
Center for Biotechnology Information (NCBI) [4].

Chapter 3 provides a detailed description of the main tool used.
Chapter 4 provides the idea and its implementation details to resolve

the task of this report.
Chapter 5 provides a description of the experiments conducted and

the results obtained.
Appendix A provides a brief introduction to the use of the Blade

Computing Cluster at the Department of Information Engineering and
the tables with the results obtained.



2
M E TA G E N O M I C

Metagenomic is the application of modern genomic techniques to the
study of communities of microbial organisms directly in their natural
environments, bypassing the need for isolation and lab cultivation
of individual species [5]. In its approaches and methods, metage-
nomic goes beyond the individual genome and allows to study all the
genomes of a community as a whole and quantifying its diversity in
terms of species abundance. The analysis of sequences of an ecosystem
is performed without know the microorganisms that the ecosystem
contains. For this reason, the metagenomic information allow a more
detailed comprehension of the ecological role, the metabolism and
the evolutionary history of microorganisms in a given context and
how the environment influences the genomic composition of entire
species. Combined with the modern sequencers capacity of obtain
DNA fragments very quickly, the metagenomic studies can generate
huge amounts of data. Many genomic sequences have similarity with
those already studied and can be identified through the use of align-
ment algorithms with high sensitivity. The problem of classifying
and determining the origin of a DNA sequence, given a set of known
genomes, is common to many fields of the molecular computational
biology. The metagenomic allows to assess the abundance of each
organism present in a system, as well as the abundance of the genes
present within it that encode enzymes and proteins active in metabolic
pathways present in the sample being analyzed. Metagenomic has the
potential to advance knowledge in a wide variety of fields, such as
agriculture, biofuel, biotechnology, ecology and medicine. In clinic
field, metagenomic is widely used in the study of oral and intestinal
microflora, genetic diseases and neoplasms.

2.1 metagenomic project

A metagenomic project differs respect to a genomic project in many
aspects. In fact, the metagenomic project uses an environment sample
that contains a community composed by different species of microor-
ganisms. Many of these microorganisms can not be cultivated in
laboratory and so they can not be studied. Since the sample contains
many different organisms, it is possible to have DNA contaminations
that make genomic sequences difficult to obtain. Often the real scope
of metagenomic is not the generation of complete genomes, but un-
derstanding the composition of the microorganisms community and
the iterations between the community and the environment.

3



4 metagenomic

The metagenomic project steps are illustrated in Figure 2.1 and
briefly explained below.

Figure 2.1: Flow diagram of a typical metagenomic project. The dashed
arrows indicate steps that can be omitted. (Based on figure in [6].)

Sampling is the first and most crucial step in any metagenomic
project addressed to preserve the DNA quality. The DNA extracted
should be representative of all the species present in the sample and
sufficient amounts of high-quality of nucleic acids must be obtaining
for a subsequent use in sequencing and library production. During
this phase can be collected the so-called metadata.

Metadata are additional data, strongly dependent on the sample
type, that include biochemical data, geographical data and sample-
processing data.

After sampling, the physical separation and isolation of the species
from the sample is done in order to maximize the DNA production or
avoid coextractions of microorganisms or substances that might inter-
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fere with the next steps of the metagenomic project. After separation,
the DNA extraction is performed.

DNA extraction is the process by which DNA is separated from pro-
teins, membranes and other cellular material contained in the cell
from which it is recovered [7].
The DNA extraction generally follows three basic steps:

1. Lyse (break open) the cells.

2. Separate the DNA from the other cell components.

3. Isolate the DNA.

Cell lysis or cellular disruption is a method in which the cell membrane
is broken down or destroyed in order to release inter-cellular materials
such as DNA, RNA, protein or organelles from a cell [8]. The lysis
procedure must be strong enough to fragment the basic material,
obtained from the sample, but not too much. If the lysis is too strong,
one risk to losing the integrity of the DNA fragments. For a review of
the cell lysis methods see [8]. After the lysis procedure, a complex
mixture is obtained. This mixture is composed of cellular components
such as proteins, lipids, carbohydrates, DNA, RiboNucleic Acid (RNA).
These additional components can interfere with the subsequent steps
of the metagenomic project. Therefore, the DNA extraction is required.
Specific chemical compounds are used to isolate the DNA fragments
from the other cellular components which, in water solution, can
aggregate with the DNA and create a precipitate.
There are four commonly used extraction procedures for DNA [9]:

1. Organic (variations of phenol/chloroform): use of a multistep liq-
uid chemical process that is labor intensive but produces a high
yield and very-clean double-stranded extracted DNA sample.

2. Inorganic Chelex or silica methods: simple and cheap one-tube
extraction process in which Mg2+ binds to resin beads and yields
a single-stranded DNA product.

3. Solid phase extraction methods: simple extraction process in
which the DNA binds to paramagnetic or silica beads; example of
these methods are Promega’s DNA IQ [10], Applied Biosystems’
PrepFiler [11] and Qiagen’s QIAamp kits [12, 13].

4. Differential extraction: a multistep process used to separate
sperm from other cells using DithioThreitol (DTT); used for ana-
lyzing biological evidence from sexual assault cases [14].

With some types of sample are possible to produce only a very
small amount of DNA, but most sequencing technologies require high
amount of data. Therefore, the amplification of such data is required.
A widely used amplification is the Multiple Displacement Ampli-
fication (MDA) that can produce an amplification of nine order of
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magnitude [15, 16]. As happens in any amplification, one can have
problems associated with reagent contaminations, chimera formation
and sequence bias. These problems depend on the amount and type of
the initial sample and the number of amplification rounds needed to
produce the sufficient amount of DNA bases. Once the DNA extraction
phase ends, the sequencing phase starts.

Sequencing is the process of determining the nucleic acid sequence,
so in determing the order of nucleotides in DNA strand. It includes
any method or technology that is used to determine the order of the
four canonical bases of the DNA, i. e., adenine, guanine, cytosine and
thymine. The advent of rapid DNA sequencing methods has greatly
accelerated biological and medical research and discovery [17].
For decade the Sanger sequencing technology was used in the first-
generation sequencers. Sanger sequencing [18] was developed by
Sanger and colleagues in 1977. Is a sequencing technique based on
the chain-terminating inhibitors method. This method has been so
successful at that time thanks to its efficiency and the non-use of ex-
pensive and dangerous radioactive reagents as required by the Gilber
method [19]. Other advantages that led to the use of sequencers based
on the Sanger method are the low error rate, the long read length (>
700 base pairs (bps)) and the large insert sizes. A drawback of these
sequencers is the labor-intensive cloning process in its associated bias
against genes toxic for the cloning host [20] and the overall cost. These
tools have made an important contribution to the completion of the
“Human Genome Project” [21].
Although first generation technologies have been fundamental to suc-
cess in the Human Genome Project, this project has led to an important
push for the development of new sequencing platforms. The Next-
Generation Sequencing (NGS) stand out from the first-generation tools
for the parallel analysis and the high throughput. They are also more
advantageous in terms of costs. The most used NGS tecnologies are
Roche 454 System, AB SOLiD System and Illumina HiSeq System.
Roche 454 was the first commercially successful next generation sys-
tem. This sequencer uses pyrosequencing technology. Instead of using
dideoxynucleotides to terminate the chain amplification, pyrosequenc-
ing technology relies on the detection of pyrophosphate released
during nucleotide incorporation. The read length of Roche 454 was
initially 100-150 bps in 2005, 200000 and more reads and could output
20 Mb per run [22, 23]. In 2008 454 GS FLX Titanium system was
launched; through upgrading, its read length could reach 700 bps with
accuracy 99.9% after filter and output 0.7 G data per run within 24

hours. In late 2009 Roche combined the GS Junior a bench top system
into the 454 sequencing system which simplified the library prepara-
tion and data processing, and output was also upgraded to 14 G per
run [24, 25]. In 2013 Roche announced the disposal of the project. The
main advantages of the 454 systems are the read length and the high
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speed for every single run, in only 10 hours the machine can complete
the entire sequencing process. However, the reagents used by this
technology for the sequencing procedure are more expensive than the
other two technologies. In addition to that, the reads produced are
subject to errors.
The Sequencing by Oligo Ligation Detection (SOLiD) sequencer was
introduced in 2006. The sequencer adopts the technology of two-base
sequencing based on ligation sequencing. On a SOLiD flow cell, the
libraries can be sequenced by 8 base-probe ligation which contains
ligation site (the first base), cleavage site (the fifth base) and 4 different
fluorescent dyes (linked to the last base) [23]. The pair bases are identi-
fied with a color code. The advantage of SOLiD is the extreme accuracy
of the procedure thanks to the multiple analysis of each base. The read
length of the first SOLiD sequencers was of 35 bps and the output data
was of 3 G of data represented in color-scheme. In 2010, the SOLiD

5500xl sequencing system was released. This sequencer improved the
read length to 85 bps and the output to 30 G. As mentioned, SOLiD

allows a high read accuracy, reaching a value of 99.99%. However, this
level of accuracy occurs at the expense of the read length which is
extremely limited. The most recent SOLiD sequencer run takes 7 days
to complete and generates around 4 T of raw data.
In 2006 the Genome Analyzer (GA) was released by Solexa. In 2007

the company was purchased by Illumina. The company continues
the evolution of this sequencer. The GA sequencer adopts the tech-
nology of Sequencing By Synthesis (SBS). Since the first versions, the
sequencer distinguished itself for the high throughput. The first GA

released by Solexa generates in output 1 G of data. In 2009, thanks to
improvements in polymerase, buffer, flow cell and software the output
increased around 50 G per run. In early 2010, Illumina releases HiSeq
2000. This sequencer uses the same sequencing techniques used by
the previous GA. The output generated was around 200 G per run and
later incremented to around 600 G. The read length is between 50 and
200 bps with the possibility of single-end or paired-end sequencing.
Respect to the other technologies analysed, the HiSeq system is char-
acterized by the high throughput and by the lower cost of the reagents
used during the procedure. This happens at the expense of the length
of the reads and the accuracy, which in this system is confirmed on
98% [21]. Obtained the reads from the DNA extracted, the assembly
phase starts.

Assembly is the process of combining sequence reads into contigu-
ous traits of DNA, called contigs, in order to reconstruct the original
sequence. The assembly process, as illustrated in Figure 2.2, starts
with the reads obtained by the sequencing phase. With these reads the
assembly process produces the contigs, based on sequence similarity
between reads. The consensus sequence for a contig is either based
on the highest quality in any given reads at each position or based



8 metagenomic

on majority rule (i. e., the most frequently encountered nucleotide at
each position). Two contigs can be linked into a larger not continuous
DNA sequence, called scaffold, if the paired reads are present in two
different contigs.

Figure 2.2: Example of an assembly process.

For the sequence assembly, two strategies can be employed:

• reference-based assembly.

• de novo assembly.

The reference-based assembly aligns reads and/or contigs to a known
reference genome of a closely releated organism. As one can guess,
this strategy works well if the reads/contigs are closely related to the
reference genome sequences. If the reference-based assembly founds
differences between the sample and the reference genome, this leads
to fragmentations of the assembly or the non-coverage of the divergent
regions.
The de novo assembly assembles short reads to create full-length
(sometimes novel) sequences without using a known reference genome.
These types of assembler require a larger amount of computational
resources than the reference-based assembler, just see the assembler
Velvet [26] or SOAP [27] requirements. For handle a large amount of
data, a class of assembly tools was developed based on the de Bruijn
graphs [28, 29].
However, assembly remains a very expensive computational prob-
lem because the reads can contain errors or have low quality, DNA

repetitions and non-covered regions that make gaps.
After assembly or sequencing phase the binning can be done. Bin-

ning is the process of sorting DNA sequences into groups that represent
a genome or genomes from related organisms. Since the amount of
reads contained in a metagenomic sample is high and the incomplete
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nature of the obtained sequences make it hard to assemble individual
genes [30] (much less recovering the full genome of each organism)
binning helps to identify reads or contigs with certain groups of organ-
isms designated as Operational Taxonomic Units (OTUs) [6]. (An OTU

is an operational definition used to classify groups of closely related
individuals.)
Modern binning techniques employ two types of information:

1. Compositional information.

2. Similarity information.

The composition-based binning makes use of the fact that genomes
have conserved nucleotide composition (e. g., a certain CG composi-
tion or a particular abundance distribution of the k-mers) and will be
also reflected in sequence fragments of the genomes. The composition-
based binning can be divided in two procedure types: supervised and
unsupervised.
The supervised procedure classify DNA fragments against models
trained on classified reference sequences. Examples of supervised
approaches are the Bayesian classifiers [31] and the Support Vector
Machine (SVM) based phylogenetic classifier Phylopythia [32].
The unsupervised method clusters the metagenomic fragments with-
out the need to train models on reference sequences database. This
procedure includes self-organizing maps [33] and the program TETRA
[34]. The similarity-based binning makes use of the fact that unknown
sequences of DNA might encode to a gene and the similarity of this
gene with known genes (present in a reference database) can be used
to bin the sequence.
For a review of the methodologies, advantages, limitations and chal-
lenges of various methods available for binning see [35] or [36].
Some compositional-based binning algorithms are MEGAN [37], Phy-
lopythia [32], S-GSOM [38], PCAHIER [39, 40] and TACOA [40]. Purely
similarity-based binning algorithms are IMG/M [41], MG-RAST [42],
MEGAN [37], CARMA [43], SOrt-ITEMS [44] and MetaPhyler [45].
There are also hybrid binning algorithms that use both composition
and similarity, such as PhymmBL [46] and MetaCluster [47].

After the sequencing, assembly or binning the annotation phase
starts. Annotation is the process of identifying the locations of genes
and all of the coding regions in a genome and determining what those
genes do. An annotation is a note added by way of explanation or
comment. Once a genome is sequenced, it needs to be annotated to
make sense of it.
For DNA annotation, a previously unknown sequence representation of
genetic material is enriched with information such as genomic position,
regulatory sequences, repeats, gene names and protein products. This
annotation is stored in genomic databases.
In metagenomic, the annotation process can be taken two pathways:
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1. If the objective of the study are the reconstructed genomes and
assembly has produced large amount of data (minimum contigs
length required is 30000 bps), then is preferable to use existing
pipelines for genome annotation; for example RAST [48] or IMG
ER [49].

2. If annotation can be preformed on a entire community and relies
on not assembled reads or short contigs, then is more useful
use annotation tools specifically developed for metagenomic
analyses then tools for genomic annotation.

In general, metagenomic annotation process has two steps:

1. Feature prediction, where it is identified the features of interest
(genes).

2. Functional annotation, where it is assigned putative gene func-
tion and taxonomic neighbors. An example of metagenomic
functional annotation workflow is shown in Figure 2.3.

Currently, metagenomic annotation relies on classifying sequences
to known functions or OTUs based on homology searches against
available annotated data.

Figure 2.3: A metagenomic functional annotation workflow. A metagenome
(colored lines, left) can be annotated by subjecting each reads to
gene prediction and functional annotation. In gene prediction,
various algorithms can be used to identify subsequences in a
metagenomic read (blue line) that may encode proteins (gray
bars). In some situations, coding sequences may start (arrow) or
stop (asterisk) upstream or downstream the length of the read,
resulting in partial gene predictions. Each predicted protein can
then be subject to functional annotation, wherein it is compared
to a database of protein families. Predicted peptides that are clas-
sified as homologs of the family are annotated with the family’s
function. Conducting this analysis across all reads results in a
community functional diversity profile [50].

Obtained all possible information from the genes, the statistical
analysis starts. The statistical analysis aims to reduce the overall vari-
ability of the data by removing systematic errors. This is followed by
identification of the genes that are differentially abundant between
the studied experimental conditions using statistical models. The sta-
tistical analysis starts with the quantified gene abundances and aims
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to pinpoint the specific differences between the studied microbial
communities.
The statistical analysis of gene abundances, in metagenomic data, is
separated into two main steps:

1. Normalization, that aims to remove unwanted variation, such
as differences in sequencing depth between samples and other
forms of noise that systematically affect genes or samples.

2. Identification of differentially abundant genes, that applies sta-
tistical models to identify the genes that significantly change
between experimental conditions.

Once all the information and DNA strands have been processed,
the obtained data need to be stored. Then the data storage phase
and, subsequently, the data sharing phase start. The data sharing of
metagenomic data requires a level of organization and collaboration
to provide metadata and centralized services as well as sharing of
both data and computational results. In order to enable sharing of
computed results, a standardization is necessary. These is currently
piked up by the Genomic Standards Consortium (GSC). Once this
has been achieved, researchers will be able to download interme-
diate and processed results from any one of the major repositories
for local analysis or comparison. A suite of standard languages for
metadata is currently provided by the Minimum Information about
any (x) Sequence checklists (MIxS) [51]. This is a term to describe
the Minimum Information about a Genome Sequence (MIGS), the
Minimum Information about a Metagenome Sequence (MIMS) and
the Minimum Information about a MARKer Sequence (MIMARKS)
[51] and contains standard formats for recording environmental and
experimental data.
The storage of all metagenomic data is piked up by the United
States (US) NCBI.

2.2 national center for biotechnology information

The NCBI is part of the US National Library of Medicine (NLM), a branch
of the National Institutes of Health (NIH). NCBI assumed responsibility
for the GenBank DNA sequence database in October 1992. NCBI has the
task of building the database from sequences submitted by individual
laboratories and by data exchange with the international nucleotide
sequence databases, European Molecular Biology Laboratory (EMBL)
[52] and the DNA Data Bank of Japan (DDBJ) [53]. The NCBI major
databases include GenBank (an open access, annotated collection of all
publicly available nucleotide sequences and their protein translations),
PubMed (bibliographic database for the biomedical literature) and
Reference Sequence (RefSeq) database (a public database of nucleotide
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and protein sequences with corresponding feature and bibliographic
annotation [54]). All these databases are available online through the
Entrez search engine. Entrez is a molecular biology database and
retrieval system developed by the NCBI that presents an integrated
view of biomedical data and their interrelationships (Figure 2.4) [55].

Nucleotide sequence

Nucleotide

sequence

similarity

GCAGCCGGTTAAGGC

ACTGCTGCCATAGCGA

AGCAGTCACTCTAAAC

TCCCGTCGATTGATTA

ACTAAAGACCGGCTAT

TCTACGTTTTTAGCGG

MTSRRSVKSGPREVPR

DEYEDLYYTPSSGMAS

PDSPPDTSRRGALQTR

SRQRGEVRFVQYDESD

YALYGGSSSEDDEHPE

VPRTRRPVSGAVLSGPP

Protein sequence

Protein

sequence

similarity

MEDLINE

Text

similarity

3D structure

Structural

similarity

Cross-references

Figure 2.4: Different classes of documents available for browsing in Entrez are
linked by both intrinsic cross-reference information and computed
relationships [55].

In addition to the databases described above, the NCBI includes a
taxonomy database. Taxonomy is the process of naming and classi-
fying organisms, such as animals and plants, into groups within a
larger system, according to their similarities and differences. The clas-
sification of organisms has various hierarchical categories, also called
taxonomy ranks. These categories gradually shift from being very
large and including many different organisms to very specific and
identifying single species. An example of taxonomy ranks is shown in
Figure 2.5.
The NCBI Taxonomy database is a curated set of names and classifica-
tions for all of the organisms that are represented in GenBank. The
NCBI taxonomy maintains a phylogenetic taxonomy. In a phylogenetic
classification scheme, the structure of the taxonomic tree approximates
the evolutionary relationships among the organisms included in the
classification. Like genome database, the taxonomy database can be
queried using the Entrez search engine.

In addition to store and update the genome and taxonomy databases,
the NCBI develops bioinformatics tools. The most famous is BLAST.



2.2 national center for biotechnology information 13

Domain
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Figure 2.5: The basic scheme of modern classification [56].

BLAST uses a local alignment method, namely uses a subset of a
sequence and attempts to align it to subset of other sequences.





3
T O O L D E S C R I P T I O N

The main tool used in this work is the Derrick E. Wood, Jennifer Lu
and Ben Langmead’s software Kraken 2 [57].

Kraken 2 is a new version of Kraken [58] that aims to reduce the
time and the amount of memory necessary to build the database from
reference sequences (~85% [57]) and less time and memory usage
during the classification phase.
As mentioned on [59], Kraken 2 differs from Kraken in the following
features:

1. Only minimizers of the k-mers in the query sequences are used
as database queries. Similarly, only minimizers of the k-mers in
the reference sequences in the database’s genomic library are
stored in the database. We will also refer to the minimizers as
l-mers, where l ≤ k. All k-mers are considered to have the same
Lowest Common Ancestor (LCA) as their minimizer’s database
LCA value.

2. Kraken 2 uses a Compact Hash Table (CHT) that is a probabilistic
data structure. This means that occasionally, database queries
will fail by either returning the wrong LCA, or by not result-
ing in a search failure when a queried minimizer was never
actually stored in the database. By incurring the risk of these
false positives in the data structure, Kraken 2 is able to achieve
faster speeds and lower memory requirements. Users should be
aware that database false positive errors occur in less than 1%
of queries, and can be compensated by the use of confidence
scoring thresholds.

3. Kraken 2 has the ability to build a database from amino acid se-
quences and perform a translated search of the query sequences
against that database.

4. Kraken 2 utilizes spaced seeds in the storage and querying of
minimizers to improve classification accuracy.

5. Kraken 2 provides support for "special" databases that are not
based on NCBI’s taxonomy. These are currently limited to three
popular 16S databases.

In Figure 3.1 is shown the algorithm and data structure differences
between Kraken 2 and Kraken 1.

The CHT mentioned above uses a fixed-size array with 32 bit hash
cells. Each cell stores a key-value pair. In a cell, the number of bits

15
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Figure 3.1: Algorithm and data structure differences between Kraken 2 and
Kraken 1 [60].

used to store the key-value pair will vary. It depends on the number of
bits necessary to represent all unique taxonomy ID numbers (values)
found in the reference sequences. In Figure 3.2 is shown the content
and partition of a CHT cell.

Taxonomy IDMinimizer key

btaxID32 - btaxID

32 bit

Figure 3.2: The Compact Hash Table (CHT) cell. The most significant bits of
the minimizer key is inserted in the 32− btaxID most significant
bits of the CHT cell. 32 is the dimension (in bit) of one CHT cell
and btaxID is the number of bits necessary to store the internal
taxonomy ID of the LCA associated to the minimizer.

For the full running, Kraken 2 needs the BLAST software because
it uses dustmasker [61] and segmasker [62] functions. These functions
are used by Kraken 2 to mask the low-complexity sequences. A low-
complexity sequence is simple repeats (i. e., ATATATATAT) or regions
that are highly enriched for just one letter (e. g., AAACAAAAAAA-
GAAAAAAC). Protein segments with only a few amino acids are also
considered to be low complexity (e. g., PPCDPPPPPKDKKKKDDGPP).

Once Kraken 2 is installed, using the install_kraken2.sh script,
the user can use kraken2-build and kraken2 main scripts. With the
first script the user can build the Kraken 2’s database from one or
more databases of reference sequences. The second script classifies
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the user input file containing the unknown sequences (reads). Before
classifying it is necessary the construction, and therefore the presence,
of the database.

3.1 database building

Database building is the most time consuming Kraken 2’s phase and
is strongly dependent on the amount of data to be processed. Kraken
2 has two database building types: standard and custom. For both
types is necessary to download the taxonomy data and the reference
sequences.

The standard database building type builds the database from the
reference genomes, downloaded from the NCBI RefSeq database. The
Kraken 2’s reference genomes database includes the archaeal, bacte-
rial, viral and human (GRCh38) [63] genomes and the UniVec_Core of
the UniVec database [64]. The last two databases are downloaded to
make the classification of reads containing the human genome easier
and for improve the precision of reads containing vector sequences.
Another reason why Kraken 2 downloads these two more databases
than Kraken is for the lesser use of memory and the shorter building
time.
To build a standard database with Kraken 2, the kraken2-build

--standard --db $DBNAME command is used, where the $DBNAME must
be replace with the database name or location.

The custom database building type creates the Kraken 2’s database
from the reference sequences databases chosen by the user. This is
useful when the user wants to classify from a specific database, he has
not sufficient amount of memory to build the standard database or he
wants to add reference genomes not from the NCBI database.
First, the user has to download the NCBI taxonomy with the kraken2-

build --download-taxonomy --db $DBNAME command. After having
downloaded the taxonomy, the user can choose which database to
download with the kraken2-build --download-library $REFDBNAME

--db $DBNAME command, where $REFBDNAME can be one of the follow-
ing databases:

• archaea: RefSeq complete archaeal genomes/proteins.

• bacteria: RefSeq complete bacterial genomes/proteins.

• plasmid: RefSeq plasmid nucleotide/protein sequences.

• viral: RefSeq complete viral genomes/proteins.

• human: GRCh38 human genome/proteins.

• fungi: RefSeq complete fungal genomes/proteins.

• plant: RefSeq complete plant genomes/proteins.
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• protozoa: RefSeq complete protozoan genomes/proteins.

• nr: NCBI non-redundant protein database.

• nt: NCBI non-redundant nucleotide database.

• env_nr: NCBI non-redundant protein database with sequences
from large environmental sequencing projects.

• env_nt: NCBI non-redundant nucleotide database with sequences
from large environmental sequencing projects.

• UniVec: NCBI-supplied database of vector, adapter, linker, and
primer sequences that may be contaminating sequencing projects
and/or assemblies.

• UniVec_Core: A subset of UniVec chosen to minimize false posi-
tive hits to the vector database.

If the user wants to add sequences not present in the previous list
or not from the NCBI database, he can do it with the kraken2-build

--add-to-library $FILE --db $DBNAME, where $FILE is the file to add
in the database. Kraken 2 requires this file has the following character-
istics:

• The file containing the genomes must be in a FASTA format
(multi-FASTA is allowed).

• Each sequence’s ID must contain either an NCBI accession num-
ber or an explicit assignment of the taxonomy ID in kraken:taxid
format (see Example 3-1).

In Example 3-1 is shown a sequence format of a known adapter
sequence in taxonomy 32630 ("synthetic construct") to add to Kraken
2’s database.

Example 3-1

>sequence16|kraken:taxid|32630 Adapter sequence
CAAGCAGAAGACGGCATACGAGATCTTCGAGTGACTGGAGTT...

�

Once the user downloads/adds the necessary files, for build the
database he must uses the kraken2-build --build --db $DBNAME

command.
The database (both standard and custom) building process is shown

in Figure 3.3 and is divided in three steps:

1. Step 1: creates sequence ID to taxonomy ID map.

2. Step 2: estimates required capacity.

3. Step 3: builds database files.
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taxonomyprotein library

KRAKEN2XFLAG
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hash.k2d
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Figure 3.3: Kraken 2 database building steps.

As mentioned above, before the database building, the user needs to
download the necessary files. When Kraken 2 starts the download of
the files from the NCBI database, it downloads the assembly_summary.txt
files for each genome types. This file contains all the information
relating to the files that belong to the selected database, such as the
sequence file name, the taxonomy ID, the scientific name, the file
path and other information. Kraken 2 downloads and parses the
sequence files and, if enabled, removes the low-complexity sequences.
The low-complexity sequences are known to occur in a lot of different
organisms and are typically less informative for sequences alignment.
Kraken 2 uses the dustmasker [61] and the segmasker [62] tools for
masking the low-complexity sequences from nucleotide and protein
sequences respectively. Using low-complexity sequences masking can
help prevent false positives in Kraken 2’s results. If the user does not
want to install BLAST or not want to mask low-complexity sequences,
he can use the --no-masking option.

Downloaded the taxonomy and reference sequences and created
the necessary files, step 1 starts. This step has the task of create the
sequence ID to taxonomy ID map. The first step is to search for
prelim_map.txt files in the directories containing the downloaded
genome databases. These files are concatenated and the result is
stored in the prelim_map.txt file in the taxonomy directory. Subse-
quently, Kraken 2 divides the prelim_map.txt file in two temporary
files seqid2taxid.map.tmp and accmap_file.tmp. These two temporary files
contain the reference sequences taxonomy ID list and the accession
number list respectively. Created the latest two files, Kraken 2 verifies
the presence of the *.accession2taxid files in the taxonomy directory. If
there are, Kraken 2 creates a new file containing the sequence ID and
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the taxonomy ID obtained from accmap_file.tmp and *.accession2taxid
files. Once obtained the sequence ID to taxonomy ID map, the map is
stored in the seq2taxid.map file and the step 1 ends.

Ended the step 1, the step 2 starts. This step has the task of estimate
the CHT capacity. Firstly, Kraken 2 estimates then number of distinct
minimizers in the reference sequences for selected values of k, l and
s, where k and l are the k-mer and minimizer length respectively.
Kraken 2 default values for k, l and s are 35, 31 and 7 respectively.
The parameter s indicates the number of positions, from the second
position from the right, of the minimizer that are masked. The pa-
rameter is part of the spaced k-mers approach (a similar concept of
spaced seeds). With these approach is verified an improvement in the
reads classification ability [65]. To obtain the estimate of the number
of distinct sequences in the reference database, Kraken 2 uses a form
of zeroth frequency moment estimation [66] that creates a small set
structure (Q) implemented with a traditional hash map. In Q is added
the distinct minimizers that verify the following inequality:

h(m) mod F < E (3.1)

where h(m) is the hash code of the minimizer m, F is the section range
(must be a power of two) and E is the maximum quantification hash
code. E must be much smaller than F, Kraken 2 default values of E and
F are 4 and 1024 respectively. Subsequently, Kraken 2 estimates the
total number of distinct minimizers (D) with the following equation:

D = |Q| · F
E

(3.2)

with |Q| is the number of distinct minimizers that satisfied Equa-
tion 3.1. Obtained D, Kraken 2 computes the amount of memory to be
allocated, in byte, with the following formula:

4 · D
0.7

(3.3)

where 4 is the number of bytes of a CHT cell, D is the value computed
with Equation 3.2 and 0.7 is the amount, in percentage, of cells occu-
pied in the CHT. The CHT is not completely filled for efficiency reasons
and due to the low probability of errors. The amount of memory is
store in the max_db_flag variable and the step 2 ends.

Ended the step 2, the step 3 starts. This step has the task of create all
the database files that will be used in the classification phase. Firstly,
Kraken 2 generates the internal taxonomy tree. To do this, Kraken 2

begins by taking the sequence ID to taxonomy ID mapping data from
seqid2taxid.map file and saves the content in a hash map. Subsequently
the internal taxonomy tree is builded. This representation is different
from the one provided by the user (in this case by the NCBI). In fact,
firstly Kraken 2 finds a minimal set of nodes. This set consists of all



3.1 database building 21

the nodes that have both themselves and their ancestors a non-zero
taxonomy ID. The taxonomy structure of the nodes contained in the
set is maintained as it is in the user-provided taxonomy. At this point,
Kraken 2 assigns to each node previously found an increasing taxon-
omy ID according to the Breadth-First Search (BFS) approach starting
from the root of the tree, with ID equal to 1. An example of internal
taxonomy ID is shown in Figure 3.4.

Figure 3.4: An example of Kraken 2’s reduced internal representation of the
taxonomy with sequential ID numbering via breadth-first search
[57].

The internal taxonomy representation leads to the following advan-
tages:

• Provides a guarantee that ancestor nodes will have smaller inter-
nal ID numbers than their descendants [57].

• Space reduction for store the taxonomy ID, thus increasing the
space for the CHT hash code with a probability reduction of
errors (hash table collision).

• Simplifies the LCA computation of two nodes as their taxonomy
IDs give information on how deep they are in the tree.

Kraken 2 during the internal taxonomy ID assignment creates a inter-
nal taxonomy ID to external taxonomy ID map so the user can have
understandable results.
Completed the internal taxonomy construction, Kraken 2 initializes
and populates the CHT. To do this, Kraken 2 scans every genome in
the reference database. All the genomes that have a taxonomy ID can
be inserted in the CHT (as Kraken 2 can compute, if necessary, the
LCA), while the genomes without taxonomy ID are not processed. For
each genome G, Kraken 2 computes its minimizer and, one by one,
tries to insert the key computed for minimizer M (h(M)) in CHT with
the taxonomy ID T associated. The minimizer key h(M) is obtained
from the finalization function of MurmurHash3 [67]. The key h(M) is
inserted in the 32− btaxID most significant bits of the CHT cell, where
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32 is the dimension of one CHT cell and btaxID is the number of bits
necessary to store the internal taxonomy ID of the LCA associated
to the minimizer M. btaxID is computed by choosing the number of
left shifts of 1 that gives the smallest power of two necessary to store
the number of nodes (than the biggest internal taxonomy ID) of the
Kraken 2’s taxonomy tree.
If during the insertion of the key h(M) not result its presence in the
CHT, then the < h(M), T > pair is added to the CHT, indicating that T
is the LCA of the minimizer M. If h(M) is in the CHT with taxonomy
ID T∗, then the LCA is updated with the LCA of T and T∗. An example
of insertion in the CHT is shown in Figure 3.5.

Figure 3.5: Sequential examples of Kraken 2’s insertion of minimizer/LCA
pairs into a compact hash table [57].

Once all the reference genomes (and so all the minimizers) are
processed, all the LCAs are correctly set for each minimizer and step
3 ends. Just before finishing, step 3 produces the following essential
files:

• hash.k2d containing the minimizer to taxon mappings.

• opts.k2d containing the information about the options used to
build the database.

• taxo.k2d containing the taxonomy information used to build the
database.

With the end of step 3 the database building process is complete.
After building the database, the user can reduce the disk space

occupied by the database using the kraken2-build --clean $DBNAME

command. This command removes intermediate and useless files from
the database directory $DBNAME.

3.2 classification

For classify an unknown sequence (read) S, Kraken 2 finds, for each
k-mers in S, its minimizer and, if it is distinct from the previous
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minimizer, uses it as key for querying the CHT. For probe the CHT,
Kraken 2 computes the key h(M), then linearly scans the table starting
from position h(M) mod |T| for a matching key, where |T| is the
number of cells in the table. If during the querying of the CHT there
is a match with a key in the table, Kraken 2 considers the LCA value
associated with the key as the k-mer’s LCA. An example of querying
the CHT is shown in Figure 3.6.

Figure 3.6: Sequential examples of Kraken 2’s querying of a compact hash
table with a minimizer [57].

After performing the sequence analysis, its LCA and their ancestors
(in a taxonomy tree shape) form what the authors of [58] call a classi-
fication tree. This is a pruned tree used to classify S. In fact, this tree
contains all the nodes, and their ancestors, found in the sequence clas-
sification. The classification tree nodes are weighted with the number
of minimizers (therefore k-mers) that are mapped to that LCA node.
Subsequently, a score for each Root-To-Leaf (RTL) path is computed by
summing all the weights of the nodes in the selected path. The path
with the highest score is called by the authors of [58] the classification
path. To sequence S is assigned the LCA of the deepest node in the
classification path. If there is more than one leaf, then their LCA is
chosen. An example of the sequence classification algorithm is shown
in Figure 3.7.

If the Kraken 2’s database is reduced by the user during the database
building phase, only the minimizers with hash code smaller or equal
than a maximum allowable hash code and the minimizers from k-mers
with not ambiguous nucleotide code are searched in the CHT.

3.3 protein case

In order to classify protein sequences, firstly Kraken 2X builds the
protein database in the same manner that Kraken 2 does for nu-
cleotide (see Section 3.1). The only differences are the masking tool
used (segmasker) and the alphabet used to represent the basic unit
(i. e., amino acids). In fact, protein alphabet uses 20 characters to repre-



24 tool description

Figure 3.7: The Kraken 2 sequence classification algorithm. (Based on figure
in [58].)

sent the amino acids. Kraken 2X reduces this alphabet to 16 using the
15-character alphabet of Solis [68] plus a single additional value, to
represent the selenocysteine and pyrrolysine and a translation termi-
nation (stop codons). The minimizer computation is the same used for
the nucleotide sequence; the only differences are the not computation
of the reverse complements and the default parameters are k=15, l=12

and s=0.
When searching against a protein minimizer database, Kraken 2X
translates all six reading frames of the input query DNA sequences
into the reduced amino acid alphabet. Minimizers from all six frames
are pooled and used to query the CHT, and therefore all contribute to
the Kraken 2X classification of a query sequence.
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I M P L E M E N TAT I O N D E TA I L S

The objective of this work is improving the reads classification. This
goal is obtained by trying to increasing the number of classified reads
and incrementing the number of reads classified to species level. To
achieve these objectives, Kraken 2 was equipped with memory on the
results of the previous classifications. To obtain this memory effect a
data structure was added to Kraken 2 so it can store which taxonomy
ID is associated to minimizers not present in its database. From here
on Kraken 2 with the additional data structure is called Kraken 2 plus.
This additional data structure is a simple not ordered map that stores
a minimizer-taxonomy ID pair. This map is implemented with the
unordered_map class, member of the Container C++ library. An un-
ordered map is an associative container that contains key-value pairs
with unique key. The choice of this structure is due to the fact that
search, insertion and removal of elements have average constant-time
complexity [69]. Internally, the elements are not ordered in any partic-
ular order, but are organized in buckets. Which bucket an element is
placed into depends entirely on the hash of its key. This allows a fast
access to the single element, once the hash is computed, it refers to
the exact bucket where the element has been inserted.

The additional map is managed with the AdditionalMap class,
defined in the additional_map.h file and implemented in the
additional_map.cc file. The class contains the data member ump,
the unordered map that stores the minimizer-taxonomy ID pair. The
key and the value are 64 bit unsigned integer (uint64_t). This choice
was made to keep all the information obtained during the classifica-
tion.
The AdditionalMap class contains the following function members:

• void ReadFile(const char *filename).
This method is used to populate the additional map with the
data contained in the filename file given in input. This file stores,
for each line, the key-value pairs contained in the additional map
spaced by a tab character. The method reads each line in the file
and the elements in the line is saved in the additional map using
the private method Add(uint64_t minimizer, taxid_t

tax_id).

• void AddPair(uint64_t minimizer, taxid_t tax_id, Taxonomy &

taxonomy).
This method is used to add a key-value pair to the additional
map. The inputs of the method are the minimizer not present in
the Kraken 2’s database and not present in the additional map,

25
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the taxonomy ID obtained after the read classification and the
Kraken 2’s taxonomy generated in the database building phase.
When the method is called, firstly, it verifies if the minimizer
is in the additional map or not. If is present, the associated
taxonomy ID is returned and the LCA of the returned taxonomy
ID and the input taxonomy ID (tax_id) is computed. After that,
the taxonomy ID of the minimizer minimizer is updated with
the computed LCA. Instead, if the minimizer minimizer is not in
the additional map the minimizer-tax_id pair is added to the
map.

• taxid_t GetTax(uint64_t minimizer).
This method returns the taxonomy ID associated to the mini-
mizer minimizer. To do this, the minimizer is searched in the
additional map. If it is present the taxonomy ID value is returned
otherwise, gives back zero.

• size_t GetSize().
This method returns the number of pairs in the additional map.

• void WriteMap(const char *filename).
This method writes the additional map content to the file
filename. Firstly, the method verifies the map size. If it is empty,
the method do nothing. Otherwise, for each pair between the
key and value a tabular character is added and after the pair a
new line character is added.

• bool IsEmpty().
The method verifies if the additional map does not have pairs
saved. If is the case, the method returns true. Otherwise, it
returns false.

• void Add(uint64_t minimizer, taxid_t tax_id).
This private method adds the minimizer-tax_id pair to the ad-
ditional map. To do this, the emplace unordered_map’s member
function is used. It was chosen because it automatically creates
and adds to the map the key-value pair if the key is not present
in the map.

The additional map file is saved in the Kraken 2’s taxonomy directory
in the add_hash.k2d file.

For run Kraken 2 plus one must use the script kraken2-plus. This
script is very similar to kraken2 script with some additional options
to allow the user a variety of use combinations according to his needs.
The additional options are the following:

• --build-new-map.
This option allows the user to remove the old additional map
file, if created before, and creates a new empty additional map.
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If max-iteration is greater than one, the map is maintained and
populated during the subsequent classifications. If the option
is not used the additional map file is maintained and, before
starting the population of the map with the new read file, Kraken
2 plus reads the additional map file in the taxonomy directory.
The data contained in the file is used by Kraken 2 plus during
the population of the map or during the read classification.

• --max-iteration.
This option allows the user to choose the number of times Kraken
2 plus does the classification for populate the additional map.
The default value is 1 (i. e., when the option is not used).

• --disable-additional-map.
This option allows the user to not update/create the additional
map for classify the read file. In case the additional map is not
created before, Kraken 2 plus classifies only with its database,
so it does the classification that does kraken2 script.

• --disable-classification.
This option allows the user to create and populate the additional
map or update the map, if a file exists, without execute the last
classification of the read file. The last classification only uses the
database and the additional map, without update the last data
structure.

Once the user runs kraken2-plus script with the correct options,
the additional map population starts. An empty unordered map is
initialized and, if the file add_hash.k2d exists and is not empty, the map
is populated with the data containing in the add_hash.k2d file using
the method ReadFile. Otherwise, the map remains empty. After the
initialization of the additional map, the classification for populate the
map starts. Figure 4.1 shows the additional map population steps.
During the read classification its minimizers are computed one at
a time and, for each of them, the CHT is queried (1). If it returns a
taxonomy value equal to zero, then the additional map is queried if
it is not empty (2). If the additional map is empty, this means that
the minimizer is not in the Kraken 2’s database and no taxonomy ID
has been assigned to it or is the first time the minimizer is found. In
that case, the minimizer is added to a temporary list of not taxonomy
assigned minimizers (3). Instead, if the database or additional map
querying returns a taxonomy ID not equal to zero, then the taxonomy
ID count is updated (4). Once the read is classified, then obtained the
deeper LCA (5) in the classification path (as explained in Section 3.2),
is verified if it is classified at species level or below (6). If it is, then
the minimizers in the list are added to the additional map using the
AddPair method with key the minimizer and value the taxonomy ID
obtained by the read classification. If the minimizer is in the additional
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Figure 4.1: Schema of the additional map population steps.

map the LCA of the input and stored taxonomy IDs value is saved.
Instead, if the taxonomy ID obtained after the read classification is in
a level above the species the minimizers are not added and the list is
emptied.
This procedure is repeated for all the reads in the input file. Once all
the reads are classified, the additional map content is saved in the
add_hash.k2d file using the WriteMap method.
Once the population of the additional map ends, another classifica-
tion starts. This classification only uses the Kraken 2’s database and
the additional map to classify the reads in the same input file but
without updates the additional map content. After this classification,
kraken2-plus ends and generates the same output files as kraken2

script.
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E X P E R I M E N T S A N D R E S U LT S

In this chapter the performance of Kraken 2 plus is analyzed. Firstly,
there is a description of the strain exclusion experiment, the datasets
and the accuracy measures used to evaluate Kraken 2 plus. Follows
an analysis of the obtained results.

5.1 strain exclusion experiment

The strain exclusion experiment’s data were generated as done by the
Kraken 2’s author in [57]. Specifically, the generation of these data
occurs in the way explained below.
It stars by downloading the reference genomes and the taxonomy from
the NCBI’s database (October 2019 release). The reference genomes are
generated from the archaeal, bacteria and viruses genomes, down-
loaded from the ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/

old_refseq/Bacteria/all.fna.tar.gz and ftp://ftp.ncbi.nlm.

nih.gov/genomes/Viruses/all.fna.tar.gz URLs respectively. From
the NCBI’s taxonomy the taxdump.tar.gz and the gi_taxid_nucl.tar.gz
files are downloaded. These files contain the taxonomy tree nodes
data and the GenBank identifier of nucleotide record to taxonomy ID
association respectively. Obtained the taxonomy data, for each NCBI’s
library (bacteria and viruses) a set containing all the nucleotide and
taxonomy data is generated from the complete genomes, excluding
plasmids and the 2nd/3rd chromosomes, so to have a list containing
only one entry for each genome. From this set a subset is builded that
contains both two sister sub-species taxa and two sister species taxa
present in the set of reference genome. The subset is ordered by genus,
then by species and lastly by strain taxonomy ID. From this subset
the first n elements are extracted, n = 40 for the bacteria and n = 10
for the viruses. These elements will be the origin strains for the strain
exclusion experiment. The selected bacteria and viruses origin strains
are listed in Table A.1 and Table A.2 respectively. At this point a
reference genomes set is created taking all the data downloaded from
the NCBI and removing the origin strains previously chosen. Once the
reference genomes set is created, Mason 2 [70] is used for simulate 100

bps paired-end Illumina sequence data from the origin strains, with a
number of simulated fragments for each strain ( f ) chosen by the user.
Specifically, the Mason 2’s mason_simulator command is used with
default options for the simulation of the sequence’s errors. That means
that the generated sequences contain a error rate of 0.4% mismatches,
0.005% insertions and 0.005% deletions. The reads obtained from the
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origin strains are concatenated in a single file and the truth file of the
simulated reads is generated for each downloaded library.

5.2 datasets

Different metagenomic datasets are used to compare and evaluate
Kraken 2 plus’s accuracy.

10 datasets were created using the origin strains obtained from
the strain exclusion experiment explained in Section 5.1. Of these
datasets, 7 are builded by varying the number of contained reads;
precisely 50000, 3125000, 6250000, 12500000, 25000000, 50000000 and
100000000. The other 3 have the same number of reads (100000000)
but the mismatch error rate varies; precisely 2%, 5% and 10% are the
error rates chosen.

In addition to the datasets above, 74 real read datasets is created
using data from the NCBI’s Sequence Read Archive (SRA). To build
the datasets, firstly the SraRunInfo.csv file is downloaded from the
NCBI’s site. To obtain this file the following query is used in the search
bar of the site: ("2015/1/1"[PDAT] : "2015/9/23"[PDAT]) AND ("Bacte-
ria"[Organism] OR "Bacteria"[Organism] OR "bacteria"[All Fields]) AND
("biomol dna"[Properties] AND "strategy wgs"[Properties]). On the result
page the SRA link is followed and the list of items is returned. From
this page the Send to: menu’s File option is selected. Subsequently, the
RunInfo option in the drop down list is selected and the Create File
button is clicked. At the end of these steps the SraRunInfo.csv file is cre-
ated and downloaded. Once the download finishes, 74 SRA file names
are selected from the Centrifuge [71] experiment. A script downloads
the files from the NCBI’s SRA database and with the fasterq-dump tool,
from the NCBI’s SRA Toolkit, the FASTQ data from the SRA-accessions
are extracted. When the data extraction is finished, a truth file for each
SRA dataset is generated. After the truth files creation, the datasets
generation process finishes. The selected real datasets are listed in
Table A.3.

5.3 evaluation measures

The measures used to comparing and evaluating Kraken 2 plus with
the other tools are: the sensitivity, the PPV, the F-measure and the PCC.
To compute these measures, firstly the number of reads that belong to
the following categories must be counted. These categories are:

• True Positive (TP).

• False Negative (FN).

• Vague Positive (VP).

• False Positive (FP).
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To compute such numbers the user must has the truth file of the
dataset to classify, the classifier’s result and the taxonomy rank to
which the user want to conduct the evaluation . Once the user has
these data the count of the number of reads in each category can be
done.

A read belongs to the TP category if its taxonomy classification rank
is the same or is a descendant of the truth rank. A read belongs to
the FN category if the classifier fails to classify the sequence. A read
belongs to the VP if its taxonomy classification rank is an ancestor
of the truth rank. Lastly, a read belongs to FP if its classification is
incorrect; that is, it is not in the true taxonomy of origin, it is not an
ancestor or a descendant of the truth rank.

Once these values are computed, the evaluation measures men-
tioned above can be calculated as explained below.

The sensitivity or recall is computed as the proportion of the number
of reads correctly classified among the total number of reads classified.

sensitivity =
number o f reads correctly classi f ied

number o f reads classi f ied

=
TP

TP + VP + FN + FP
.

(5.1)

The Positive Predictive Value (PPV) or precision is computed as the
proportion of the number of reads correctly classified among the
number of positive calls.

PPV =
number o f reads correctly classi f ied

number o f positive calls

=
TP

TP + FP
.

(5.2)

In the PPV computation the VP reads are excluded, since it is not certain
to which truth taxonomy ID the taxonomy ID given by the classifier
belongs.

The F-measure is computed as the harmonic mean of sensitivity and
PPV.

F1 =
2 · sensitivity · PPV

sensitivity + PPV

=
2 · TP

2 · TP + VP + FN + 2 · FP
.

(5.3)

The Pearson Correlation Coefficient (PCC) measures the linear corre-
lation between two variables X and Y. This measure returns values
between −1 and 1. Where 1 is total positive linear correlation, 0 is
no linear correlation and −1 is total negative linear correlation. In
metagenomic is used to evaluate the species abundance. The PCC is
computed in the following manner:
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Given paired data {(x1, y1), . . . , (xn, yn)} consisting of n pairs, PCC is
defined as:

rxy =
∑n

i=1(xi − x) · (yi − y)√
∑n

i=1(xi − x)2 ·
√

∑n
i=1(yi − y)2

. (5.4)

Where: n is the sample size, xi, yi are the individual sample points
indexed with i and x and y is the sample mean of x and y respectively.
The sample mean of x (analogously of y) is computed as: x = 1

n ·
∑n

i=1 xi. Rearranging Equation 5.4 provides the single-pass algorithm
formula for calculating the PCC:

rxy =
∑n

i=1 xi · yi − n · x · y√
∑n

i=1 x2
i − n · x2 ·

√
∑n

i=1 y2
i − n · y2

. (5.5)

Where: n, xi, yi, x, y are defined as above.
In this work the (xi, yi) pair contains the classifier’s taxonomy ID
assigned and the truth taxonomic ID of sequence i respectively.

5.4 results

Kraken 2 plus is compared with the tools briefly described in Ta-
ble 5.1. For each tool its database is builded using the strain exclusion

Table 5.1: Metagenomic classifiers used for the strain exclusion experiment.

tool brief description

Centrifuge [71] Taxonomic classifier using database

compressed with BWT and FM index.

CLARK [72] Taxonomic classifier using in-memory k-mer

search of metagenomic reads against a specific

taxonomy level database built from completed

genomes.

Kraken [58] Taxonomic classifier using in-memory k-mer

search of metagenomic reads against a

database built from multiple genomes.

Kraken 2 [57] Taxonomic classifier using in-memory

minimizer search of metagenomics reads

against a database built from multiple

genomes.

KrakenUniq [73] Taxonomic classifier using in-memory unique

k-mer search of metagenomic reads against a

database built from multiple genomes.
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genomes without the origin strains. The classifiers are run in the Blade
Computing Cluster using 16 threads. The tools are compared using
the evaluation measures explained in Section 5.3 and are splitted in
different groups as to better understand the performance without
overcrowding the graph. The analysis starts with a specific case where
Kraken 2 plus’s performance is studied at genus and species level
for bacteria and only species level for viruses. After, is analyzed the
performance as the number of reads in the dataset changes. Follow
the performance analysis as the mismatch errors rate varies for the
100000000 reads dataset. This method of analysis was chosen because
the behavior of Kraken 2 plus and the other tools is very similar for
all the cases studied and to not overcrowd the results section. Finally,
the performance of Kraken 2 plus is analyzed with the real datasets
described in Section 5.2. To not overcrowd the graphics and the results
table, the evaluation measures means was computed and Kraken 2

plus is compared with Kraken and Kraken 2. All the evaluation’s
graphics and tables can be found in Section A.4.

reads from origin strains As seen in Figure 5.1, at genus
level Kraken 2 plus with bacteria gets a sensitivity improvement of at
least 1 percentage point (pp) respect to the best of other tools (Kraken
2). This sensitivity improvement has led to a worsening of the PPV
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Figure 5.1: Bacteria evaluation at genus level on the 6250000 reads dataset.

of at least 0.3 pps respect to the worst tool (Centrifuge). Despite this
worsening of the PPV, Kraken 2 plus has the best F-measure values
with an increment of at least 0.5 pps respect to Kraken 2. Moreover,
Kraken 2 plus obtains the best result in genus level abundance (PCC)
with an improvement of at least 0.1 pps respect to Centrifuge.

As seen in Figure 5.2, at species level Kraken 2 plus with bacteria
gets the best results only in sensitivity with improvement of at least
1 pp. While for all the other evaluation measures Kraken 2 plus gets
worst results respect to the other tools, in particular Centrifuge. This
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worsening at species level can be due to the fact that the new mini-
mizers (not present in the Kraken 2’s database) found are classified at
genus level or above.
From Figure 5.1 and Figure 5.2 we note that Kraken 2 plus gets better
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Figure 5.2: Bacteria evaluation at species level on the 6250000 reads dataset.

results than Kraken 2 in all the evaluation measures except for the
PPV.
For knowledge of the reader, Kraken 2 plus’s performance are ana-
lyzed for viruses at species level. As seen in Figure 5.3, Kraken 2 plus
gets the best performance in all the evaluation measures; with notice-
able improvement of sensitivity, F-measure and PCC and a slightly
improvement of PPV. In summary, Kraken 2 plus gets excellent results
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Figure 5.3: Viruses evaluation at species level on the 6250000 reads dataset.

with the viruses improving all the evaluation measures and gets good
improvements with the bacteria except for the PPV.

The Kraken 2 plus’s results, at genus level, obtained with bacteria
varying the number of reads in the dataset are now analyzed. As seen
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Figure 5.4: Bacteria F-measure evaluation at genus level.

in Figure 5.4, Kraken 2 plus gets better F-measure values than the other
tools as the number of reads increases; obtaining improvements up to
almost 1 pp. This improvement is given mainly from the increasing of
the sensitivity (Figure A.2).

Regarding the PCC, as seen in Figure 5.5, Kraken 2 plus gets the best
results for all the datasets, except for the 50000 reads dataset where
Centrifuge goes better, with improvement of at least 0.1 pps. It can be
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Figure 5.5: Bacteria PCC evaluation at genus level.

guessed that the greater the amount of data that Kraken 2 plus has
available the better its classification results.

The results obtained by Kraken 2 plus with the 100000000 reads
dataset as the mismatch errors rate changes are now analyzed. The
default mismatch error rate values are added to have a point of com-
parison. As seen in Figure 5.6, Kraken 2 plus gets the best F-measure
values in all the cases. We note a gap increasing (to 25 pps) between
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Figure 5.6: Bacteria F-measure evaluation at genus level with mismatch er-
rors.

Kraken 2 plus and the other tools as the mismatch errors rate increases.
The same applies to the PCC, as can be seen in Figure 5.7, where there
is a smaller gap increasing than the F-measure (to 2.4 pp). As expected,
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Figure 5.7: Bacteria PCC evaluation at genus level with mismatch errors.

the change in the mismatch error rate leads to a worsening in all tools
performance. However, Kraken 2 plus is the tool that has less suffered
from the presence of errors in the dataset.
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real datasets Kraken 2 plus was tested with the real datasets
generated as explaned in Section 5.2. As seen in Figure 5.8 and Ta-
ble 5.2 Kraken 2 plus gets the best F-measure value with an improve-
ment of about 0.1 pp. This improvement is due to the increase in
sensitivity of about 0.3 pp. Also for these datasets Kraken 2 plus gets
the worst PPV, with a decrease of about 0.1 pp.
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Figure 5.8: Real datasets evaluation measures means at genus level.

Table 5.2: Evaluation measures means at genus level on real datasets.

tool sensitivity ppv f-measure

Kraken 1 0.880941 0.887200 0.884017

Kraken 2 0.880434 0.887072 0.883705

Kraken 2 plus 0.883841 0.886128 0.884982

Kraken 2 plus 2 it 0.883899 0.886080 0.884988

The same applies to the species level, as can be seen in Figure 5.9
and Table 5.3.

Table 5.3: Evaluation measures means at species level on real datasets.

tool sensitivity ppv f-measure

Kraken 1 0.866725 0.874150 0.870388

Kraken 2 0.866397 0.874088 0.870203

Kraken 2 plus 0.869713 0.873062 0.871383

Kraken 2 plus 2 it 0.869796 0.873010 0.871398

It is noted that, with the real datasets, the tools performance are
lower than those with datasets generated from the origin strains.
This is due to the fact that with 10% of the datasets Kraken 2 plus
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Figure 5.9: Real datasets evaluation measures means at species level.

and the other tools correctly classify only a small amount of reads.
Probably due to the fact that the reads contained in these datasets are
very different from the sequences used to build the databases or the
taxonomy ID is not present in the databases. Despite this, Kraken 2

plus gets classification improvements respect to Kraken and Kraken 2,
as can be seen in Table 5.4.

Table 5.4: Evaluation measures means at genus level on ERR915393 real
dataset.

tool sensitivity ppv f-measure

Kraken 1 0.968126 0.990403 0.979138

Kraken 2 0.970141 0.994990 0.982408

Kraken 2 plus 0.992824 0.993408 0.993116

Kraken 2 plus 2 it 0.993064 0.993642 0.993353
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execution time and memory usage The execution time and
memory usage of each tool during the datasets classification are now
analyzed. For the analyzed cases that use the datasets generated from
the origin strains the execution time and memory usage means are
computed to not overcrowding the graphics.
Regarding the execution time, as expected, Kraken 2 plus has an
increase in classification time of at least double respect to Kraken 2

with all analyzed datasets as can be seen in Figure 5.10 and Figure 5.11.
If the reader is interested in the specific data of each case analyzed,
see Figure A.30, Figure A.31 and Figure A.32. This increment is due
to the population of the additional map.
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Figure 5.10: Tools execution time means on datasets obtained from the origin
strains.
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Figure 5.11: Kraken tools execution time means on real datasets.

About memory usage, as can be seen in Figure 5.12 and Figure 5.13,
Kraken 2 plus uses more memory than Kraken 2, as expected, due to
the fact that a new map is added.
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Figure 5.12: Tools memory usage means on datasets obtained from the origin
strains.
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Figure 5.13: Kraken tools memory usage means on real datasets.

The difference in memory usage is strongly affected by the number
of unknown minimizers found by Kraken 2 plus during the population
of the additional map If the reader is interested in the specific data of
each case analyzed, see Figure A.33, Figure A.34 and Figure A.35.



6
C O N C L U S I O N S

In this thesis work the improvement of metagenomic classification by
boosting the reference k-mers was analyzed and a resolution approach
was studied, through the use of an additional map that equips Kraken
2 with memory from previous classifications. The additional map was
implemented and the new tool was tested, together with other tools,
executing one or two classification for populate the map. This is done
for the purpose to see if the tool returns better results than the other
tools and if increasing the number of classifications to populate the
map improve a lot or not the final classification.

In general, the proposed solution returns good results for the sensi-
tivity, F-measure and PCC in most of the analyzed datasets. Conversely,
this solution returns a worsening in PPVs, probably caused by the in-
crease in the number of classified reads. In fact, is not guaranteed that
with an increment of the classified reads there will also be a correct
assignments. With the proposed solution it may happen that a read
assignment moves to a higher taxonomy level or a propagation of
classification errors. Even these facts can reduce the PPV.

The obtained results show that a further classification to populate
the additional map does not lead to great improvements in the final
classification given the execution times used. Therefore, is sufficient
only one classification to populate the additional map.

As possible future developments one could try to increasing PPVs

at genus and species level (e. g., using unique k-mers), improving the
population algorithm to obtain a reduction in the classification time
and try to use other data structure (e. g., counting quotient filter [74])
to decrease the tool’s memory usage.
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A P P E N D I X

The appendix contains a brief introduction to the use of the Blade
Computing Cluster at the Department of Information Engineering
and the tables containing the genomes used for the strain exclusion
experiment and all the test results obtained.

a.1 running programs on the blade computing cluster

As the data quantity and the amount of memory required for the
metagenomic classification is a lot, the use of the Blade Computing
Cluster is necessary. Blade uses the Sun Grid Engine to manage the
queue. This is a queueing system that allows one to run a job according
to the requirements specified (it reads the requirements and then
queues it based on the priority given by the requirements themselves).

basic commands and file transfer In order to connect to
the computing cluster one needs to use ssh. This is something that is
provided with every major Linux distribution:

$ ssh username@login.dei.unipd.it

Running this command will then prompt the input of the password
and allow to start an ssh communication with the server. Here it
is possible to access the space on the server’s machine and issue
commands like the ones required to queue jobs or compile the code.
To transfer files from the local machine to the cluster there are a
number of alternatives but are used mainly two of them. The first one
is the scp command, which can be used to transfer files between any
two hosts via ssh, but is use it to upload files from the local machine.
To achieve this, the basic syntax of the command is:

$ scp [ options ] source_dir/source_filename username@login.dei.

unipd.it_host:directory/filename

An alternative is using FileZilla which provides an easy-to-use GUI,
as shown in Figure A.1. Installation is straightforward by using:

$ sudo apt-get install filezilla

The interface is self explanatory, there are four fields at the top which
are filled with the same information used for the ssh command, the
only thing to note is that in the Host field it should be specified that we
are trying to establish an SFTP connection with the server, by writing:
sftp://login.dei.unipd.it.
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Figure A.1: Interface of FileZilla.

a.2 genomes used for the strain exclusion experiment

The tables below (Table A.1 and Table A.2) list the bacteria and viruses
genomes used as origin strains for the generation of the simulated
reads with Mason 2. These strains are obtained during the strain
exclusion data generation explained in Section 5.2.

Table A.1: Bacteria genomes used as origin stains in the strain exclusion
experiment.

tax id scientific name

706191 Pantoea ananatis LMG 20103

698969 Corynebacterium diphtheriae HC03

1105098 Rickettsia prowazekii str. GvV257

300852 Thermus thermophilus HB8

759913 Streptococcus dysgalactiae subsp. equisimilis AC-2713

401614 Francisella tularensis subsp. novicida U112

272559 Bacteroides fragilis NCTC 9343

1096995 Acinetobacter baumannii BJAB07104

882096 Listeria monocytogenes SLCC5850

863638 Clostridium acetobutylicum EA 2018

Continued on next page
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Table A.1 – Continued from previous page

tax id scientific name

366649 Xanthomonas citri pv. fuscans

1117943 Sinorhizobium fredii HH103

1173064 Anaplasma phagocytophilum str. JM

354242 Campylobacter jejuni subsp. jejuni 81-176

1161918 Brachyspira pilosicoli WesB

1244085 Klebsiella pneumoniae CG43

936153 Enterococcus faecalis 62

591020 Shigella flexneri 2002017

243276 Treponema pallidum subsp. pallidum str. Nichols

374930 Haemophilus influenzae PittEE

1042876 Pseudomonas putida S16

395492 Rhizobium leguminosarum bv. trifolii WSM2304

909420 Neisseria meningitidis H44/76

1392476 Staphylococcus aureus subsp. aureus 6850

257310 Bordetella bronchiseptica RB50

336982 Mycobacterium tuberculosis F11

644042 Lactobacillus plantarum JDM1

138677 Chlamydia pneumoniae J138

402882 Shewanella baltica OS185

634997 Mycoplasma hyorhinis DBS 1050

1053692 Methanococcus maripaludis X1

224326 Borreliella burgdorferi B31

592021 Bacillus anthracis str. A0248

573059 Desulfovibrio vulgaris RCH1

1116391 Paenibacillus mucilaginosus 3016

434271 Actinobacillus pleuropneumoniae serovar 3 str. JL03

956149 Cronobacter sakazakii SP291

290847 Helicobacter pylori 51

386656 Yersinia pestis Pestoides F

1300259 Alteromonas mediterranea UM4b
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Table A.2: Viruses genomes used as origin stains in the strain exclusion
experiment.

tax id scientific name

1070413 Human papillomavirus 140

41856 Hepatitis C virus genotype 1

1087109 Canis familiaris papillomavirus 10

981431 Pseudomonas phage PAK_P3

1156769 Porcine kobuvirus

57579 Adeno-associated virus - 4

12524 Junonia coenia densovirus

11801 Moloney murine leukemia virus

89623 Snow goose hepatitis B virus

1458710 Mycobacterium phage Badfish

a.3 real datasets used

The table below (Table A.3) lists the real datasets from sequencing
reads of bacterial genomes used for evaluate Kraken 2 plus.

Table A.3: List of real datasets from sequencing reads of bacterial genomes.

sra file tax id scientific name

ERR657992 83333 Escherichia coli K-12

ERR738806 818 Bacteroides thetaiotaomicron

ERR738813 37734 Enterococcus casseliflavus

ERR757411 195 Campylobacter coli

ERR760539 485917 Pedobacter heparinus DSM 2366

ERR760543 222523 Bacillus cereus ATCC 10987

ERR760549 419947 Mycobacterium tuberculosis H37Ra

ERR915393 446 Legionella pneumophila

SRR1183746 1243618 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20110353

SRR1183769 1412472 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA19980677

SRR1183771 1412474 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA19970769

SRR1183773 1412476 Salmonella enterica subsp. enterica

Continued on next page
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Table A.3 – Continued from previous page

sra file tax id scientific name

serovar Enteritidis str. SA20094682

SRR1183775 1412478 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20084824

SRR1183788 1412491 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20094352

SRR1183790 1412493 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA19942384

SRR1183792 1412495 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20123395

SRR1183794 1412497 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA19961622

SRR1183796 1412499 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA19994216

SRR1183799 1412502 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA19982831

SRR1183801 1412504 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20094350

SRR1183803 1412506 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20083456

SRR1183805 1412508 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20092320

SRR1183807 1412510 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20093977

SRR1183809 1412512 Salmonella enterica subsp. enterica

erovar Enteritidis str. SA20093430

SRR1183811 1412514 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20093421

SRR1183813 1412516 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20094383

SRR1183815 1412518 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20094642

SRR1183817 1412520 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20093543

SRR1183819 1412522 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20093538

Continued on next page
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Table A.3 – Continued from previous page

sra file tax id scientific name

SRR1183821 1412524 Salmonella enterica subsp. enterica

serovar Enteritidis str. SA20094079

SRR1183823 1412526 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20121825

SRR1183825 1412528 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120213

SRR1183827 1412530 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20121004

SRR1183829 1412532 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120776

SRR1183831 1412534 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120685

SRR1183833 1412536 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120544

SRR1183835 1412538 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20111515

SRR1183837 1412540 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20121751

SRR1183839 1412542 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120970

SRR1183841 1412544 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120505

SRR1183843 1412546 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120240

SRR1183845 1412548 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120219

SRR1183847 1412550 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120722

SRR1183849 1412552 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120469

SRR1183851 1412554 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20121744

SRR1183854 1412557 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20121542

SRR1183856 1412559 Salmonella enterica subsp. enterica

Continued on next page
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Table A.3 – Continued from previous page

sra file tax id scientific name

serovar Enteritidis str. EC20120677

SRR1183858 1412561 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20121672

SRR1183860 1412563 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20121746

SRR1183862 1412565 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20121671

SRR1183864 1412567 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20111554

SRR1183866 1412569 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120994

SRR1183868 1412571 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20121812

SRR1183870 1412573 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20122045

SRR1183872 1412575 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20122031

SRR1183874 1412577 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20122022

SRR1183876 1412579 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20121989

SRR1183878 1412581 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20121976

SRR1183880 1412583 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20121969

SRR1183882 1412585 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20090530

SRR1183884 1412587 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20090195

SRR1183886 1412589 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20130346

SRR1183888 1412591 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20130348

SRR1183896 1412599 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20100089

Continued on next page
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Table A.3 – Continued from previous page

sra file tax id scientific name

SRR1183898 1412601 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120051

SRR1183900 1412603 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120580

SRR1183902 1412605 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120590

SRR1183904 1412607 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120686

SRR1183906 1412609 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120734

SRR1183908 1412611 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120773

SRR1183910 1412613 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120917

SRR1183912 1412615 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120925

SRR1183914 1412617 Salmonella enterica subsp. enterica

serovar Enteritidis str. EC20120927

SRR1290758 882 Desulfovibrio vulgaris str. Hildenborough
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a.4 additional graphics and results tables

The section contains the remainder graphics and tables not inserted
in the results section (Section 5.4) obtained by executing the tools in
Table 5.1 with the datasets described in Section 5.2.

0.930000

0.935000

0.940000

0.945000

0.950000

0.955000

0.960000

0.965000

0.970000

0.975000

S
e

n
s
it
iv

it
y

Number of reds

Centrifuge

CLARK (genus)

Kraken 1

Kraken 2

Kraken 2 plus

Kraken 2 plus 2 it

KrakenUniq

Figure A.2: Bacteria sensitivity evaluation at genus level.
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Figure A.3: Bacteria sensitivity evaluation at species level.
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Figure A.4: Viruses sensitivity evaluation at genus level.
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Figure A.5: Viruses sensitivity evaluation at species level.
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Figure A.6: Bacteria PPV evaluation at genus level.
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Figure A.7: Bacteria PPV evaluation at species level.
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Figure A.8: Viruses PPV evaluation at genus level.
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Figure A.9: Viruses PPV evaluation at species level.
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Figure A.10: Bacteria F-measure evaluation at species level.
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Figure A.11: Viruses F-measure evaluation at genus level.
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Figure A.12: Viruses F-measure evaluation at species level.
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Figure A.13: Bacteria PCC evaluation at species level.
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Figure A.14: Viruses PCC evaluation at genus level.
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Figure A.15: Viruses PCC evaluation at species level.
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Figure A.16: Bacteria sensitivity evaluation at genus level with mismatch
errors.
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Figure A.17: Bacteria sensitivity evaluation at species level with mismatch
errors.
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Figure A.18: Viruses sensitivity evaluation at genus level with mismatch
errors.
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Figure A.19: Viruses sensitivity evaluation at species level with mismatch
errors.
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Figure A.20: Bacteria PPV evaluation at genus level with mismatch errors.
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Figure A.21: Bacteria PPV evaluation at species level with mismatch errors.
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Figure A.22: Viruses PPV evaluation at genus level with mismatch errors.
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Figure A.23: Viruses PPV evaluation at species level with mismatch errors.
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Figure A.24: Bacteria F-measure evaluation at species level with mismatch
errors.
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Figure A.25: Viruses F-measure evaluation at genus level with mismatch
errors.
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Figure A.26: Viruses F-measure evaluation at species level with mismatch
errors.
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Figure A.27: Bacteria PCC evaluation at species level with mismatch errors.
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Figure A.28: Viruses PCC evaluation at genus level with mismatch errors.
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Figure A.29: Viruses PCC evaluation at species level with mismatch errors.
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Figure A.30: Execution time obtained varying the number of reads.
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Figure A.31: Execution time obtained varying the mismatch error rate.
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Figure A.32: Execution time with real datasets.
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Figure A.33: Memory usage obtained varying the number of reads.
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Figure A.34: Memory usage obtained varying the mismatch error rate.
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Figure A.35: Execution time with real datasets.
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Table A.4: Bacteria (on top) and viruses (on bottom) sensitivity values at genus level obtained varying the number of reads.

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.949450 0.947215 0.947169 0.947139 0.947198 0.947247 0.947244

CLARK (genus) 0.945225 0.943750 0.943744 0.943719 0.943754 0.943819 0.943789

Kraken 1 0.946175 0.944840 0.944853 0.944833 0.944871 0.944928 0.944911

Kraken 2 0.950225 0.949301 0.949342 0.949330 0.949366 0.949416 0.949395

Kraken 2 plus 0.950600 0.960094 0.963803 0.967148 0.969280 0.970341 0.971013

Kraken 2 plus 2 it 0.950600 0.962242 0.966447 0.969148 0.970453 0.970967 0.971117

KrakenUniq 0.946175 0.944840 0.944853 0.944833 0.944871 0.944928 0.944911

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.949450 0.947215 0.947169 0.947139 0.947198 0.947247 0.947244

CLARK (genus) 0.945225 0.943750 0.943744 0.943719 0.943754 0.943819 0.943789

Kraken 1 0.946175 0.944840 0.944853 0.944833 0.944871 0.944928 0.944911

Kraken 2 0.950225 0.949301 0.949342 0.949330 0.949366 0.949416 0.949395

Kraken 2 plus 0.950600 0.960094 0.963803 0.967148 0.969280 0.970341 0.971013

Kraken 2 plus 2 it 0.950600 0.962242 0.966447 0.969148 0.970453 0.970967 0.971117

KrakenUniq 0.946175 0.944840 0.944853 0.944833 0.944871 0.944928 0.944911
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Table A.5: Bacteria (on top) and viruses (on bottom) sensitivity values at species level obtained varying the number of reads.

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.799550 0.798099 0.797955 0.797981 0.798021 0.798089 0.798111

CLARK(species) 0.792850 0.791318 0.791310 0.791330 0.791397 0.791427 0.791394

Kraken 1 0.793875 0.792989 0.792976 0.793011 0.793075 0.793102 0.793079

Kraken 2 0.793925 0.792220 0.792240 0.792277 0.792325 0.792346 0.792333

Kraken 2 plus 0.794400 0.804552 0.808305 0.811603 0.813772 0.815043 0.816338

Kraken 2 plus 2 it 0.794400 0.806001 0.809982 0.812932 0.814523 0.815530 0.816379

KrakenUniq 0.793875 0.792989 0.792976 0.793011 0.793075 0.793102 0.793079

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.289500 0.286277 0.286610 0.286511 0.286557 0.286586 0.286609

CLARK(species) 0.220600 0.223506 0.223394 0.223092 0.223115 0.223207 0.223180

Kraken 1 0.260500 0.265174 0.265302 0.265085 0.265096 0.265159 0.265073

Kraken 2 0.311900 0.318674 0.318594 0.318425 0.318571 0.318512 0.318445

Kraken 2 plus 0.559900 0.622315 0.602976 0.600083 0.640747 0.629426 0.613541

Kraken 2 plus 2 it 0.567900 0.592822 0.607621 0.583407 0.613895 0.591608 0.590771

KrakenUniq 0.260500 0.265174 0.265302 0.265085 0.265096 0.265159 0.265073
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Table A.6: Bacteria (on top) and viruses (on bottom) PPV values at genus level obtained varying the number of reads.

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.993486 0.993534 0.993481 0.993458 0.993499 0.993497 0.993498

CLARK (genus) 0.996075 0.996423 0.996413 0.996411 0.996424 0.996425 0.996418

Kraken 1 0.996079 0.996303 0.996281 0.996276 0.996294 0.996302 0.996301

Kraken 2 0.994141 0.994661 0.994653 0.994666 0.994703 0.994721 0.994714

Kraken 2 plus 0.994066 0.991928 0.990156 0.988215 0.986420 0.984934 0.984404

Kraken 2 plus 2 it 0.994066 0.990921 0.988776 0.986529 0.985248 0.984593 0.984328

KrakenUniq 0.996079 0.996303 0.996281 0.996276 0.996294 0.996302 0.996301

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.993493 0.992882 0.992781 0.992866 0.992847 0.992929 0.992935

CLARK (genus) 0.996053 0.996084 0.996186 0.996119 0.996172 0.996217 0.996191

Kraken 1 0.996852 0.996241 0.996314 0.996302 0.996315 0.996372 0.996366

Kraken 2 0.995536 0.994732 0.994807 0.994781 0.994828 0.994872 0.994845

Kraken 2 plus 0.972845 0.995018 0.963691 0.983259 0.998156 0.987827 0.997113

Kraken 2 plus 2 it 0.974248 0.994250 0.966532 0.973951 0.974035 0.974149 0.974174

KrakenUniq 0.996852 0.996241 0.996314 0.996302 0.996315 0.996372 0.996366
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Table A.7: Bacteria (on top) and viruses (on bottom) PPV values at species level obtained varying the number of reads.

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.937531 0.936420 0.936270 0.936288 0.936383 0.936387 0.936426

CLARK(species) 0.937785 0.936234 0.936105 0.936093 0.936107 0.936095 0.936075

Kraken 1 0.937472 0.936188 0.936054 0.935991 0.936003 0.935986 0.935993

Kraken 2 0.928975 0.927732 0.927628 0.927603 0.927716 0.927709 0.927712

Kraken 2 plus 0.928851 0.917575 0.912840 0.908678 0.905689 0.903514 0.902534

Kraken 2 plus 2 it 0.928851 0.915281 0.909964 0.905948 0.903884 0.902888 0.902200

KrakenUniq 0.937472 0.936188 0.936054 0.935991 0.936003 0.935986 0.935993

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.649686 0.646244 0.646539 0.647034 0.647107 0.647207 0.647314

CLARK(species) 0.657722 0.662011 0.661734 0.661482 0.661371 0.661434 0.661368

Kraken 1 0.631975 0.637978 0.637710 0.637695 0.637563 0.637675 0.637602

Kraken 2 0.667594 0.670677 0.670030 0.670321 0.670410 0.670449 0.670398

Kraken 2 plus 0.660727 0.701923 0.677203 0.670131 0.712166 0.696412 0.670195

Kraken 2 plus 2 it 0.646590 0.667355 0.681554 0.650995 0.682310 0.651243 0.637936

KrakenUniq 0.631975 0.637978 0.637710 0.637695 0.637563 0.637675 0.637602
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Table A.8: Bacteria (on top) and viruses (on bottom) F-measure values at genus level obtained varying the number of reads.

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.970969 0.969822 0.969772 0.969746 0.969796 0.969821 0.969820

CLARK (genus) 0.969984 0.969371 0.969364 0.969349 0.969374 0.969409 0.969390

Kraken 1 0.970486 0.969889 0.969886 0.969873 0.969901 0.969935 0.969925

Kraken 2 0.971687 0.971452 0.971469 0.971470 0.971506 0.971541 0.971526

Kraken 2 plus 0.971847 0.975751 0.976802 0.977568 0.977775 0.977583 0.977663

Kraken 2 plus 2 it 0.971847 0.976371 0.977484 0.977761 0.977795 0.977732 0.977678

KrakenUniq 0.970486 0.969889 0.969886 0.969873 0.969901 0.969935 0.969925

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.732576 0.731234 0.731255 0.731170 0.731162 0.731253 0.731240

CLARK (genus) 0.599706 0.602016 0.602200 0.601963 0.601935 0.602095 0.602049

Kraken 1 0.699091 0.701949 0.702137 0.702012 0.702049 0.702207 0.702174

Kraken 2 0.750374 0.755320 0.755424 0.755247 0.755413 0.755429 0.755397

Kraken 2 plus 0.957277 0.994695 0.963367 0.982795 0.998049 0.986713 0.996907

Kraken 2 plus 2 it 0.973273 0.994002 0.965769 0.973144 0.973189 0.973296 0.973311

KrakenUniq 0.699091 0.701949 0.702137 0.702012 0.702049 0.702207 0.702174
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Table A.9: Bacteria (on top) and viruses (on bottom) F-measure values at species level obtained varying the number of reads.

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.863060 0.861744 0.861597 0.861620 0.861683 0.861724 0.861754

CLARK(species) 0.859248 0.857698 0.857639 0.857646 0.857691 0.857703 0.857676

Kraken 1 0.859719 0.858659 0.858595 0.858589 0.858632 0.858640 0.858630

Kraken 2 0.856157 0.854638 0.854605 0.854616 0.854692 0.854701 0.854695

Kraken 2 plus 0.856381 0.857355 0.857398 0.857401 0.857274 0.857001 0.857275

Kraken 2 plus 2 it 0.856381 0.857172 0.857067 0.856923 0.856880 0.856988 0.857146

KrakenUniq 0.859719 0.858659 0.858595 0.858589 0.858632 0.858640 0.858630

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.400526 0.396784 0.397159 0.397158 0.397215 0.397263 0.397305

CLARK(species) 0.330388 0.334185 0.334025 0.333655 0.333667 0.333778 0.333739

Kraken 1 0.368928 0.374633 0.374714 0.374495 0.374484 0.374565 0.374467

Kraken 2 0.425164 0.432055 0.431848 0.431753 0.431906 0.431859 0.431787

Kraken 2 plus 0.606149 0.659726 0.637938 0.633176 0.674571 0.661226 0.640618

Kraken 2 plus 2 it 0.604696 0.627884 0.642467 0.615350 0.646297 0.619995 0.613448

KrakenUniq 0.368928 0.374633 0.374714 0.374495 0.374484 0.374565 0.374467



A
.
4

a
d

d
i
t

i
o

n
a

l
g

r
a

p
h

i
c

s
a

n
d

r
e

s
u

l
t

s
t

a
b

l
e

s
6

9

Table A.10: Bacteria (on top) and viruses (on bottom) PCC values at genus level obtained varying the number of reads.

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.995753 0.995309 0.995285 0.995276 0.995298 0.995305 0.995313

CLARK (genus) 0.993812 0.993746 0.993731 0.993734 0.993744 0.993762 0.993762

Kraken 1 0.994127 0.994092 0.994083 0.994087 0.994101 0.994116 0.994120

Kraken 2 0.995181 0.995139 0.995129 0.995135 0.995148 0.995159 0.995165

Kraken 2 plus 0.995182 0.995917 0.996138 0.996361 0.996499 0.996601 0.996666

Kraken 2 plus 2 it 0.995182 0.995992 0.996244 0.996440 0.996554 0.996634 0.996690

KrakenUniq 0.994127 0.994092 0.994083 0.994087 0.994101 0.994116 0.994120

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.854613 0.854449 0.854281 0.854237 0.854303 0.854323 0.854385

CLARK (genus) 0.865418 0.818611 0.818673 0.818646 0.818718 0.818759 0.818793

Kraken 1 0.878367 0.835279 0.835342 0.835313 0.835370 0.835403 0.835439

Kraken 2 0.857767 0.860560 0.860612 0.860649 0.860726 0.860677 0.860675

Kraken 2 plus 0.994830 0.999962 0.994402 0.999012 0.999991 0.999367 0.999980

Kraken 2 plus 2 it 0.997190 0.999962 0.995364 0.997359 0.997351 0.997334 0.997334

KrakenUniq 0.878367 0.835279 0.835342 0.835313 0.835370 0.835403 0.835439
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Table A.11: Bacteria (on top) and viruses (on bottom) PCC values at species level obtained varying the number of reads.

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.944028 0.944179 0.944075 0.944125 0.944147 0.944181 0.944203

CLARK (species) 0.935192 0.935872 0.935853 0.935870 0.935894 0.935908 0.935910

Kraken 1 0.935754 0.936706 0.936678 0.936696 0.936705 0.936724 0.936727

Kraken 2 0.937134 0.937111 0.937090 0.937132 0.937136 0.937134 0.937143

Kraken 2 plus 0.937236 0.939643 0.940693 0.941733 0.942504 0.942967 0.943458

Kraken 2 plus 2 it 0.937236 0.939787 0.940921 0.941983 0.942660 0.943074 0.943500

KrakenUniq 0.935754 0.936706 0.936678 0.936696 0.936705 0.936724 0.936727

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 0.741954 0.744939 0.745584 0.745571 0.745527 0.745573 0.745740

CLARK (species) 0.727502 0.692492 0.692554 0.692370 0.692158 0.692201 0.692432

Kraken 1 0.752380 0.720837 0.721086 0.721111 0.720928 0.720863 0.721038

Kraken 2 0.741940 0.745632 0.745860 0.745709 0.745803 0.745749 0.745855

Kraken 2 plus 0.828260 0.865824 0.855394 0.845886 0.873407 0.875420 0.849358

Kraken 2 plus 2 it 0.827058 0.836933 0.853804 0.833081 0.863925 0.842294 0.840689

KrakenUniq 0.752380 0.720837 0.721086 0.721111 0.720928 0.720863 0.721038
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Table A.12: Real datasets evaluation measures means at genus level.

tool sensitivity ppv f-measure

Centrifuge 0.881150 0.886673 0.883866

CLARK (genus) 0.885083 0.890147 0.887558

Kraken 1 0.880941 0.887200 0.884017

Kraken 2 0.880434 0.887072 0.883705

Kraken 2 plus 0.883841 0.886128 0.884982

Kraken 2 plus 2 it 0.883899 0.886080 0.884988

KrakenUniq 0.880939 0.887200 0.884016

Table A.13: Real datasets evaluation measures means at species level.

tool sensitivity ppv f-measure

Centrifuge 0.867786 0.873600 0.870656

CLARK (species) 0.870643 0.876981 0.873757

Kraken 1 0.866725 0.874150 0.870388

Kraken 2 0.866397 0.874088 0.870203

Kraken 2 plus 0.869713 0.873062 0.871383

Kraken 2 plus 2 it 0.869796 0.873010 0.871398

KrakenUniq 0.866724 0.874150 0.870387
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Table A.14: Classification execution time (in s) for each classifier as the number of reads varies.

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 59.27 669.30 1052.20 2145.24 3936.77 7433.35 14745.77

CLARK (genus) 106.51 320.58 500.30 911.59 1786.05 3396.09 6975.98

CLARK (species) 116.36 321.60 523.61 927.91 1817.10 3474.33 6999.22

Kraken 1 164.83 330.48 423.76 754.65 1466.89 2895.39 5801.03

Kraken 2 11.35 118.78 211.56 321.43 638.26 1247.18 2747.47

Kraken 2 plus 25.44 320.91 570.77 939.07 1687.85 3268.46 6417.73

Kraken 2 plus 2 it 26.51 327.56 634.34 1238.99 2501.33 4919.90 9563.64

KrakenUniq 168.34 502.62 637.69 1094.57 1839.69 3511.36 7214.12
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Table A.15: Memory usage (in GB) for each classifier as the number of reads varies.

tool 50 ,000 3 ,125 ,000 6 ,250 ,000 12 ,500 ,000 25 ,000 ,000 50 ,000 ,000 100 ,000 ,000

Centrifuge 4.0355 4.0997 4.1053 4.1282 4.1436 4.1670 4.1871

CLARK (genus) 54.6579 55.3893 56.1325 57.6778 60.5775 66.5089 78.4228

CLARK (species) 54.0860 54.8175 55.5580 57.0732 60.0580 65.9371 77.8522

Kraken 1 72.2466 72.2519 72.2520 72.2518 72.2524 72.2518 72.2519

Kraken 2 9.4466 9.8596 9.8976 9.9653 9.9525 9.9767 9.9811

Kraken 2 plus 9.4658 10.2143 10.4789 10.8964 11.7671 12.5985 15.0666

Kraken 2 plus 2 it 9.4756 10.2633 10.5374 11.0149 11.8550 12.8080 15.2328

KrakenUniq 72.7134 72.7576 72.7660 72.7737 72.7848 72.8043 72.8440
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Table A.16: Real datasets execution time (in s) and memory usage (in GB) for
each classifier.

tool execution time memory usage

Centrifuge 495.73 4.0291

CLARK (genus) 313.52 55.2437

CLARK (species) 293.61 54.6511

Kraken 1 328.83 72.2428

Kraken 2 93.68 10.2497

Kraken 2 plus 286.72 11.1128

Kraken 2 plus 2 it 388.16 11.1651

KrakenUniq 328.05 72.7239
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