
Università degli Studi di Padova

Dipartimento di Matematica “Tullio Levi-Civita”

Corso di Laurea Magistrale in Matematica

Elaborato finale di Laurea Magistrale

Integer programming in the plane

Relatore: Prof. Michelangelo Conforti

Laureanda: Martina Gallato Matricola: 1179922

05 Luglio 2019
Anno Accademico 2018/2019

2

Contents

Introduction 5

1 Preliminaries 7
1.1 Euclidean Algorithm . 7
1.2 Continued Fractions . 9
1.3 Lattices . 11

1.3.1 Shortest vector . 13
1.4 Flatness theorem . 15

1.4.1 Computing the width of a triangle 17

2 A Fast Algorithm for IP in dimension 2 19
2.1 Upper and Lower Polygons . 19
2.2 Partitioning the Polygon . 20
2.3 Lower Polygons . 21
2.4 Upper Triangles . 24
2.5 Polygons with a fixed number of constraints 25
2.6 Upper Polygons . 26
2.7 Computational Analysis . 30

3 SVP in `∞-norm 31
3.1 Gaussian Algorithm . 31
3.2 A 2O(n)-time algorithm for the SVP 37

3.2.1 Some useful geometric insights 37
3.2.2 The algorithm . 40
3.2.3 Proofs for `∞-norm . 43

4 Ideas for IP in dimension 3 47

3

4 CONTENTS

Introduction

Integer programming is the problem of maximizing a linear function over a
set of integer vectors satisfying a set of linear constraints, namely:

max{ctx : Ax ≤ b, x ∈ Zn},

with c ∈ Zn, A ∈ Zm×n, b ∈ Zm.
Integer programming (IP) is a flourishing area of optimization, with ap-

plications that range from cryptography to production planning and telecom-
munication networks.

Although finite algorithms for bounded IPs were designed since the 50’s
and continuously improved upon, no algorithm is known for IP where the
running time is bounded by a polynomial function of the encoding length of
the problem (i.e. m× n× φ, where φ = logK and K is the largest entry in
A, b, c). Indeed the problem belongs to the class of NP-complete problems
for which no polynomial algorithm is known (and probably does not exist).

In this work we investigate structural and algorithmic questions in IP in
fixed dimension, with a particular focus on the problem in dimension 2.

IP in fixed dimension arises when the dimension n (i.e. the number of
variables) is fixed and it is accounted as a constant in the running time of an
algorithm. IP in fixed dimension has been investigated for several decades
and has many applications, mostly in computer science. The fundamen-
tal question is whether IP in fixed dimension can be solved efficiently, i.e.
whether there is a polynomial algorithm. The answer is yes, however, the
solution is highly non-trivial and uses several results in geometry of numbers.

The first one to prove polynomiality for IP in fixed dimension was Lenstra
in 1983 (see [1], [2]). He showed in an elegant way that when n, the number
of variables, is fixed, there is a polynomial algorithm to solve this problem.
The idea behind his algorithm is to solve the problem recursively, splitting
an n-dimensional problem into f(n) (n − 1)-dimensional subproblems, with
f(n) depending only on the dimension.

5

6 CONTENTS

The fundamental theorem behind Lenstra’s algorithm is Khinchine’s Flat-
ness Theorem. This theorem states that each n-dimensional polytope P con-
taining no integer point must be thin in some integral direction c: that is,
max{ct(x−y) : x, y,∈ P} is bounded by a function f(n) which depends only
on the dimension n.

A different proof for the polynomiality of IP in fixed dimension was given
by Barvinok in 1994 (see [3], [4]). His approach is completely different from
Lenstra’s and it is based on the theory of generating functions.

The generating function of P∩Zn is defined as the Laurent series g(P ; z) =∑
α∈P∩Zn

zα. Our aim is to identify it with a rational function, which will be

called the rational generating function of P ∩ Zn. Evaluating the rational
generating function in z = 1 enables us to count the integer points in P
quickly.

Barvinok proves that if the dimension n is fixed, there exists a polynomial
algorithm for computing the rational generating function of a rational poly-
hedron P ⊆ Rn. This result implies the existence of a polynomial algorithm
for counting the number of integer points in a rational polyhedron P ⊆ Rn.
Therefore, using Barvinok’s algorithm and binary search, one can solve an
integer problem in fixed dimension in polynomial time.

IP in dimension 2 is linked to elementary algorithmic number theory.
In particular, the problem of computing the greatest common divisor of 2
integers is a 2-dimensional IP (that clearly can be solved by the Euclidean
Algorithm). Many results in IP in dimension 2 have their foundation in the
theory of lattices and continued fractions.

IP in dimension 2 has been extensively studied and today many algo-
rithms are known to solve an integer problem in dimension 2 in polynomial
time. In this work we study the currently fastest algorithm which solves an
integer problem in dimension 2, due to Eisenbrand, Rote and Laue (see [5]
and [6]). The algorithm takes O(m + φ) arithmetic operations, where m is
the number of constraints and φ is the maximum binary encoding length of
the coefficients involved.

Chapter 1

Preliminaries

1.1 Euclidean Algorithm

The greatest common divisor of two given integral numbers a0 and a1 is

max{d ∈ N : d|a0, d|a1}. The problem of finding the greatest common

divisors of two integer numbers can be formulated as the following integer

program in two variables:

minxa0 + ya1

s.t. xa0 + ya1 ≥ 1

x, y ∈ Z.

In other words, it holds that gcd(a0, a1) = min{xa0 + ya1 : x, y,∈ Z, xa0 +

ya1 ≥ 1}.
Indeed, let’s call m = min{xa0 + ya1 : x, y,∈ Z, xa0 + ya1 ≥ 1}. If d | a0

and d | a1 then, d | xa0 + ya1 for every x, y ∈ Z, hence d | m. So we have

gcd(a0, a1) ≤ m. If gcd(a0, a1) < m, then m is not a common divisor of a0

and a1. Therefore we can assume that m - a0. Then we can write a0 = qm+r

with q, r ∈ Z and 1 ≤ r < m. If we call x̄ and ȳ the integers such that m =

x̄a0 + ȳa1, we can write r = a0− qm = a0− q(x̄a0 + ȳa1) = (1− qx̄)a0− qȳa1,

namely r ∈ {xa0 + ya1 : x, y,∈ Z, xa0 + ya1 ≥ 1}. But this is a contradiction

because r < m. Hence, we have m = gcd(a0, a1).

However, the greatest common divisor of two integer numbers can be

computed also using the Euclidean Algorithm (EA).

Without loss of generality we can assume that a0, a1 are positive integers,

since gcd(a0, a1) = gcd(|a0|, |a1|). Anyway, the EA works correctly also with

arbitrary integers, although it may return − gcd(a0, a1). We suppose that

a0 > a1 (otherwise we switch them). The first iteration of the EA computes

7

8 CHAPTER 1. PRELIMINARIES

two integers q0 and a2 such that a0 = a1q0 + a2 with 0 ≤ a2 < a1 and q0 ≥ 1.

The i-th iteration computes qi−1 and ai+1 such that ai−1 = aiqi−1 + ai+1. We

stop at k such that ak+1 = 0. Then, the greatest common divisor of a0 and

a1 is ak.

Indeed, it holds that gcd(a0, a1) = gcd(a1, a2) = gcd(ai−1, ai) ∀ 1 ≤ i ≤ k.

This is true because the equality a0 = q0a1 + a2 (where q0 ∈ Z) implies that

the set of common divisors of a0 and a1 is exactly the set of common divisors

of a1 and a2, and so on ∀ i ≤ k.

The running time of the EA is O(φ) where φ is the binary encoding length

of a0. Indeed, a0 = q0a1 + a2 > q0a2 + a2 ≥ 2a2 =⇒ a2 < a0/2.

We will be interested in knowing the two integers x, y ∈ Z such that

a0x+a1y = gcd(a0, a1). In order to find them we need the Extended Euclidean

Algorithm. We define

M (−1) =

(
1 0

0 1

)
and then,

M (j) =

(
q0 1

1 0

)
. . .

(
qj 1

1 0

)
for 0 ≤ j ≤ k − 1,

where the qj are such that aj = aj+1qj + aj+2 for 0 ≤ j ≤ k − 1.

It holds that

M (j)

(
aj+1

aj+2

)
=

(
a0

a1

)
.

In particular, for j = k − 1, it holds that

M (k−1)

(
ak
ak+1

)
=

(
a0

a1

)
.

The matrix M (k−1) is nonsingular because det

(
qj 1

1 0

)
= −1 for each j.

Therefore we have: (
ak
ak+1

)
= (M (k−1))−1

(
a0

a1

)
.

This implies that the coefficients in the first row of (M (k−1))−1 are x, y such

that a0x + a1y = gcd(a0, a1). Also, since det(M (k−1)) = (−1)k, x and y are

integer numbers.

These two integers can be used, for instance, to find an integer point in

a line. Suppose we have a line described by the equation {(x1, x2) ∈ R2 :

1.2. CONTINUED FRACTIONS 9

a0x1 + a1x2 = b}, where a0, a1 ∈ Z and gcd(a0, a1) = 1. This assumption

can be made without loss of generality since it is possible to put a general

inequality in this form through a gcd-computing and a constant number of

arithmetic operations.

Since gcd(a0, a1) = 1, we know that there exist two numbers x, y ∈ Z such

that a0x+ a1y = 1. So, if we take x̂ = bx, ŷ = by we get that a0x̂+ a1ŷ = b;

therefore the point (x̂, ŷ) belongs to the line. Then it is clear that for each

k ∈ Z the point (x̂− ka1, ŷ + ka0) belongs to the line too.

1.2 Continued Fractions

A continued fraction is defined as

a0 +
1

a1 +
1

a2 + . . .

,

where the ai ∈ R ∀i ≥ 0. We will deal with terminating continued fractions

with natural elements, that is to say:

a0 +
1

a1 +
1

a2 +
.. .

an−1 +
1

an

with a0 ∈ Z and a1, . . . , an ∈ N>0. We use the notation a = [a0, . . . , an].

We call fractions with an > 1 and the continued fraction a = [1] standard

continued fractions. There is a one-to-one correspondence between standard

continued fractions and rational numbers.

Theorem 1.1. To every rational number α there corresponds a unique stan-

dard continue fraction (whose value is α).

Moreover, we can use the Euclidean Algorithm applied to a0 and a1 to

find the continued fraction representing
a0

a1

. Indeed, the following proposition

holds.

Proposition 1.2. Let a0, a1 ∈ Z, a1 > 0. Let q0, . . . , qk−1 be the sequence of

quotients generated by the application of the Euclidean Algorithm to a0 and

a1. Then
a0

a1

= [q0, . . . , qk−1].

10 CHAPTER 1. PRELIMINARIES

Proof. As a first step we prove that for each j = 0, . . . , k − 1 it holds that

a0/a1 = [q0, . . . , qj−1, qj + aj+2/aj+1]. We observe that this is not necessarily

a continued fraction because qj + aj+2/aj+1 may not be integer. We prove

this property by induction. For j = 0 we have that a0/a1 = q0 + a2/a1 =

[q0 + a2/a1], so the relation is true. Now let’s assume it is true for j − 1. We

have aj/aj+1 = qj + aj+2/aj+1, so a0/a1 = [q0, q1, . . . , qj−2, qj−1 + aj+1/aj] =

[q0, q1, . . . , qj−2, qj−1, aj/aj+1] = [q0, . . . , qj−2, qj−1, qj + aj+2/aj+1]. Finally,

taking j = k − 1 we get the result.

Definition 1.3. For 0 ≤ j ≤ n, we call

cj = [a0, . . . , aj]

the convergent of order j of a = [a0, . . . , an].

We denote by Nj and Dj the numerator and denominator of the irre-

ducible fraction that represents cj. For c−1 we put N−1 = 1 and D−1 = 0.

Theorem 1.4. For j ≥ 1 it holds that:

Nj = ajNj−1 +Nj−2,

Dj = ajDj−1 +Dj−2.

Proposition 1.5. Let a0, a1 ∈ Z, a1 > 0. Let q0, . . . , qk−1 be the sequence of

quotients generated by the Euclidean Algorithm applied to a0 and a1 and let

M (1), . . . ,M (k−1) be the matrices generated by the extended version of the EA.

Then, for j = −1, . . . , k − 1 the irreducible representation of the convergent

of order j of a0/a1 cj is M
(j)
11 /M

(j)
21 .

Proof. The result clearly holds for j = −1. Then we have that cj = [q0, . . . , qj]

by definition of convergent and by Proposition 1.2. For j = 0 we have

M
(0)
11 /M

(0)
21 = q0 = c0 and M

(0)
12 /M

(0)
22 = c−1; both of these fractions are

irreducible. By induction let’s suppose that M
(j−1)
11 /M

(j−1)
21 = cj−1 and

M
(j−1)
12 /M

(j−1)
22 = cj−2 and that they are irreducible. In other words, we

can write M (j−1) =

(
Nj−1 Nj−2

Dj−1 Dj−2

)
. Then, we get

M (j) =

(
Nj−1 Nj−2

Dj−1 Dj−2

)(
qj 1

1 0

)
=

(
Nj Nj−1

Dj Dj−1

)
;

in the last equality we used the previous Theorem together with the Propo-

sition 1.2.

1.3. LATTICES 11

The following theorem holds:

Theorem 1.6. The convergents of even order form an increasing sequence,

whereas the convergents of odd order form a decreasing sequence. Further-

more, every even order convergent is less than a and every odd order conver-

gent is greater than a.

In other words, if n is even, it holds that

c0 < c2 < · · · < cn = a < cn−1 < · · · < c3 < c1,

otherwise

c0 < c2 < · · · < cn−1 < cn = a < · · · < c3 < c1.

Definition 1.7. Let a be a rational number and let x̄, ȳ ∈ Z with ȳ ≥ 1. We

say that the fraction ȳ/x̄ is a best approximation of the second kind of a if

|x̄a− ȳ| < |xa− y|

for every x, y ∈ Z with 0 < x ≤ x̄ such that ȳ/x̄ 6= y/x.

Theorem 1.8. Let y/x be a best approximation of the second kind of a. Then

y/x is a convergent of the standard continued fraction representing a.

1.3 Lattices

A lattice is a set { k∑
i=1

λibi | λ1, . . . , λk ∈ Z
}

where b1, . . . , bk ∈ Rn are linearly independent vectors.

Lattices are integral combinations of linearly independent vectors. We

can also say that they are a discrete subgroup of Rn, meaning that there

exists a small quantity ε such that all points in the lattice have at least

distance ε from each other.

If k = n then the lattice is said to be a full-rank lattice; since every lattice

has full rank when restricted to span{b1, . . . , bk} we will from now on assume

that we are dealing with full rank lattices.

If we call B the matrix that has as column the vectors b1, . . . , bn, then we

can abbreviate the notation:

Λ(B) =

{ n∑
i=1

λibi | λ1, . . . , λn ∈ Z
}

12 CHAPTER 1. PRELIMINARIES

The matrix B is called a basis of the lattice Λ(B). It is clear that by

adding an integral multiple of bi to bj for j 6= i we are not changing the

structure of the lattice. More formally:

Lemma 1.9. Let B1, B2 ∈ Rn×n non-singular. Then Λ(B1) = Λ(B2) if and

only if there is a unimodular matrix U such that B2 = B1U .

Proof. (⇐): U is unimodular, hence invertible. We need to observe that the

map f : Zn −→ Zn with f(x) = Ux is a bijection on the integer lattice as

Ux ∈ Zn ∀x ∈ Zn and any vector y ∈ Zn is such that UU−1y = y. So we can

write:

Λ(B2) = {B2λ | λ ∈ Zn} = {B1Uλ | λ ∈ Zn} = Λ(B1).

(⇒): Λ(B1) = Λ(B2) means that any column of B1 is an integral com-

bination of columns in B2 and vice versa. So we can find U and V ∈ Zn×n
such that B2 = B1U and B1 = B2V . Then

det(B1) = det(B2V) = det(B1UV)⇒ det(U), det(V) ∈ {−1, 1}.

Given two matrix B1 and B2 one can find out in polynomial time if they

generate the same lattice because the unimodular matrix U can be found in

polynomial time using the Gauss elimination.

An n×n matrix A is in Hermite normal form1 if A is an upper triangular

non-negative matrix, with aii > 0, and aii > aij for every 1 ≤ i < j ≤ n.

It holds that every rational matrix Q with full rank can be brought into

Hermite normal form through a unimodular matrix U , that is to say, there

exists a unimodular matrix U such that QU = H, where H is in Hermite

normal form. Furthermore, it holds that the Hermite normal form is unique.

From Lemma 1.9 it follows that every rational lattice has a unique basis

in Hermite normal form. In other words, given a basis A of a rational lattice,

there exists a unique H that is the Hermite normal form of A and it holds

that Λ(A) = Λ(H).

If we are dealing with a 2-dimensional rational lattice, its unique basis in

Hermite normal form can be written as

(
a b

0 c

)
∈ Q2×2 , where c > 0 and

1The Hermite normal form is defined also for rectangular matrices, but since we only

deal with full-rank lattices, we will work only with square matrices; hence, we need the

definition of Hermite normal form only for square matrices.

1.3. LATTICES 13

a > b ≥ 0.

1.3.1 Shortest vector

A shortest vector of a lattice Λ is a nonzero vector v ∈ Λ \ {0} of minimal

norm ‖v‖; this norm can be chosen among the `p-norms. The most studied

case is the one with respect to the `2-norm. However, the natural norm for

integer programming is the `∞-norm, and in particular, in the algorithm we

are going to study, we will be interested in finding the shortest vector with

respect to the `∞-norm. Namely, we are going to look for v ∈ Λ \ {0} which

minimizes ‖v‖∞ = max{|vi| : i = 1, 2}. There is a very quick way to find

this vector in a 2-dimensional rational lattice.

Proposition 1.10. Let Λ ⊆ Q2 be a rational lattice which is given by its

Hermite normal form

(
a b

0 c

)
. If neither

(
a

0

)
nor

(
b

c

)
are shortest vectors

of Λ, then there exists a shortest vector of the form

(
−xa+ yb

yc

)
where x/y

is a best approximation of the second kind of b/a.

Proof. First, observe that if

(
a

0

)
is not a shortest vector with respect to

the `∞-norm, then we can assume that a shortest vector has positive second

component; hence, the shortest vector can be written as

(
−xa+ yb

yc

)
with

x ∈ N≥0, y ∈ N>0. This fact is true also for any other norm that is invariant

under the replacement of components by their absolute values; for instance,

the `2-norm and the `1-norm.

Now, let (
−xa+ yb

yc

)
, x ∈ N>0, y ∈ N>0

be a shortest vector of Λ (with respect to the `∞-norm) with minimal `1-norm

among all shortest vectors. We suppose that x/y is not a best approximation

of the second kind of b/a. This means that there exist x′, y′ such that

x′/y′ 6= x/y, 0 < y′ ≤ y and | − x′a+ y′b| ≤ | − xa+ yb|.

Since

(
−xa+ yb

yc

)
minimizes the `1-norm, it holds that

y′ = y and | − x′a+ y′b| = | − xa+ yb|.

14 CHAPTER 1. PRELIMINARIES

This means that x and x′ satisfy

| − xa+ by| = | − x′a+ by| = min{| − za+ by| : z ∈ N>0}.

Thus, assuming that x′ > x (the opposite case is analogous), it holds that

x′ = x+ 1. So we have

| − xa+ by| = | − (x+ 1)a+ by| with x/y 6= x′/y,

that is to say,

−xa+ by = (x+ 1)a− by ⇒ by − ax = a/2.

Now, if y > 1 we can write |b(y − 1)− ax| = |a/2− b| ≤ a/2, but this would

contradict the minimality of the `1-norm of

(
−xa+ yb

yc

)
. Therefore we have

y = 1. Finally, y = 1, b < a and b − ax = a/2 imply that x = 0, which is

absurd because

(
b

c

)
is not a shortest vector by hypothesis. So x/y is a best

approximation of the second kind of b/a.

The following proposition will be of great utility.

Proposition 1.11. It’s given a lattice basis A ∈ Q2×2 and a sequence of

positive rational numbers α1, . . . , αk which reveal themselves one after the

other. A and each of the αi have binary encoding length O(φ). We want

to find a shortest vector with respect to the `∞-norm in each of the lattices

Λ(

(
1 0

0 αi

)
A). After a preprocessing step that requires O(φ) arithmetic op-

erations, each shortest vector query can be answered in O(logφ).

Proof. The preprocessing step consists in computing the Hermite normal

form

(
a b

0 c

)
of the matrix A. This can be achieved, for instance, by using

the extended Euclidean algorithm. Then we compute the convergents xj/yj
of b/a with the Euclidean algorithm (see Proposition 1.2).

It holds that the sequence |−xja+yjb| is monotonously decreasing and the

sequence yjc is monotonously increasing and non-negative. The Euclidean

algorithm terminates in O(φ) steps, and there are as many convergents as

those steps. Therefore, this preprocessing step requires O(φ) arithmetic op-

erations.

1.4. FLATNESS THEOREM 15

In each query (i.e. for every i = 1, . . . , k) we have to determine the

convergent xj/yj such that

∥∥∥∥(−xja+ yjb

yjαic

)∥∥∥∥
∞

is minimal. To do so, we look

for ji such that

| − xjia+ yjib| ≥ yjiαic and | − xji+1a+ yji+1b| < yji+1αic.

If |−xjia+yjib| ≥ yjiαic holds for all convergents, then ji will be the second-

last position. If | − xji+1a+ yji+1b| < yji+1αic holds for all convergents, then

ji will be the first position. The shortest vector will be one of the following

vectors: (
a

0

)
,

(
b

αic

)
,

(
−xjia+ yjib

yjiαic

)
,

(
−xji+1a+ yji+1b

yji+1αic

)
.

The ji can be computed by binary search in O(log(φ)) steps. Therefore each

query can be answered in time O(log(φ)).

1.4 Flatness theorem

Definition 1.12. The width of a convex body K along an integral direction

c ∈ Zn is defined as follows:

wc(K) := max{cTx : x ∈ K} −min{cTx : x ∈ K}.

Definition 1.13. The width of K is

w(K) := min{wc(K) : c ∈ Zn}.

It seems natural to think that if a certain body does not contain any

integer point, then it has to be thin in some direction. This is true and the

direction is exactly the direction we find searching for c ∈ Zn that minimizes

wc(K); it will be called a flat direction for K. More formally we have:

Theorem 1.14 (Flatness Theorem). There exists a constant f(n) depending

only on the dimension n, such that each full-dimensional convex body K ⊆ Rn

containing no integer point has width less than f(n).

For any convex body it holds that f(n) ≤ O(n
4
3 · logO(1)(n)). Hence, we

can state that 2.5 is a good value for f(2). Moreover, if K is a polytope, it

holds that f(n) ≤ 2O(n2).

To prove the flatness theorem we need one of the most important results in

convex geometry, which states that any convex body ’resembles’ an ellipsoid.

This result is known as the John’s theorem.

16 CHAPTER 1. PRELIMINARIES

Theorem 1.15 (John’s theorem). For any convex body K ⊆ Rn there exists

an ellipsoid E such that

c+ E ⊆ K ⊆ c+ nE ,

where c is an appropriate translation.

c+ E c+ nE
K

Figure 1.1: John’s Theorem

As a first step, the flatness theorem is proved in the case of a unit ball.

This is equivalent to proving the theorem for ellipsoids as an ellipsoid E
becomes a unit ball through an appropriate linear transformation. More

specifically, we have that E = {x ∈ Rn | ‖H−1x − H−1a‖2 ≤ 1} = {a +

Hy | ‖y‖2 ≤ 1} where a is the center of the ellipsoid and H is a non-singular

matrix ∈ Rn×n. So to prove the flatness theorem for ellipsoids we apply the

flatness theorem for balls to the ball B(H−1a, 1) with the lattice Λ(H−1).

Finally, since for any convex body K we can find an ellipsoid E such that

c+ E ⊆ K ⊆ c+ nE , and since we know that the flatness theorem holds for

an ellipsoid, it is possible to prove the flatness theorem also in the case of a

general convex body K.

For the special case of a rational polytope, the ellipsoid E can be computed

in polynomial time. Also, if the matrix H−1 and the center a defining the

ellipsoid are rational, it is possible to compute either an integer point in the

ellipsoid, or a flat direction for the ellipsoid, in polynomial time. Hence, the

flatness theorem for rational polytopes can be reformulated as follows.

Theorem 1.16. Let K = {x ∈ Rn | Ax ≤ b} be a rational polytope. Then

in polynomial time one can find:

1. Either a point x∗ ∈ K ∩ Zn;

2. Or a direction c ∈ Zn with wc(K) ≤ f(n) and f(n) ≤ 2O(n2).

The application of the flatness theorem goes as follows: once we have

found a flat direction c for K, we can have two cases. Either w(K) ≤ f(n) or

w(K) ≥ f(n). In the first case, K ∩Zn can be empty, whereas in the second

1.4. FLATNESS THEOREM 17

case we know for sure that K ∩ Zn 6= ∅. Moreover, in both cases, all the

integer points contained in K lie in at most wc(K) + 1 hyperplanes. These

hyperplanes are of the form

K ∩ {x ∈ Rn : cTx = δ},

where

δ ∈ Z ∩ [min{cTx : x ∈ K},max{cTx : x ∈ K}].
The Flatness theorem plays an important role in the algorithm we are

going to study. Our aim is to apply these ideas to the polygon P ⊆ R2

in which we are optimizing. Computing the flat direction and the width

of a general polygon is not immediate; on the contrary, computing the flat

direction and the width of a triangle is quite simple.

Therefore, instead of computing the width of the polygon P , we partition

P into a certain number of polygons Pi. For each Pi, we find a triangle Ti
included in Pi and such that Pi is included in a scaled copy (translated, if

needed) of Ti. Namely: Ti ⊆ Pi ⊆ kTi + t, with k homothety ratio and

t a translation. We will see in details how to partition P and how to find

these triangles. Once we have found them, we are going to study these

triangles in order to bound their width between two values u and l (i.e.

l ≤ w(Ti) ≤ u). In the next paragraph we explain this procedure. Finally,

from Ti ⊆ Pi ⊆ kTi + t it holds that w(Ti) ≤ w(Pi) ≤ kw(Ti); therefore, we

have found an upper and a lower bound for w(Pi), namely l ≤ w(Pi) ≤ ku,

and we are ready to apply the Flatness Theorem.

1.4.1 Computing the width of a triangle

A triangle is the convex hull of three points. Since we are interested in

computing its width and since the width is invariant under the effect of

translations, we can assume that one of the vertices of the triangle is the

origin. Therefore we can write T = conv(0, u, v) with u, v ∈ R2. It holds:

wc(T) = max{0, cTu, cTv} −min{0, cTu, cTv}
= max{0, cTu, cTv}+ max{0,−cTu,−cTv}.

=⇒max{
∣∣cTu∣∣ , ∣∣cTv∣∣} ≤ wc(T) ≤ 2 max{

∣∣cTu∣∣ , ∣∣cTv∣∣}. (1.1)

Now we define a matrix AT associated with the triangle T : AT =

(
uT

vT

)
.

The inequalities expressed in the last line of (1.1) can be rewritten as:

‖AT c‖∞ ≤ wc(T) ≤ 2‖AT c‖∞.

18 CHAPTER 1. PRELIMINARIES

Taking the minimum over c ∈ Z2 yields

SV (Λ(AT)) ≤ w(T) ≤ 2SV (Λ(AT)),

where Λ(AT) is the lattice generated by the matrix AT , namely Λ(AT) =

{ATx : x ∈ Z2} and SV (Λ(AT)) is the length of the shortest vector in that

lattice with respect to the `∞-norm. With this procedure, we also find a flat

direction for T . Indeed, we have that the c ∈ Z2 such that v = AT c is the

shortest vector in Λ(AT) is a flat direction fot the triangle T .

Chapter 2

A Fast Algorithm for IP in

dimension 2

We are going to see an algorithm that solves the following problem:

max{cTx : Ax ≤ b, x ∈ Z2},

where c ∈ Z2, A ∈ Zm×2, b ∈ Zm. This algorithm solves this problem in

O(m+φ) where m is the number of constraints and φ is the maximal encoding

length of the coefficients involved in the description of the problem (A, b, c).

We assume that the polygon P = {x ∈ R2 : Ax ≤ b} is bounded. We

also assume that we are optimizing only one variable, namely x2 (this can be

done via an unimodular transformation). Therefore, our problem becomes

max{x2 : Ax ≤ b, x ∈ Z2}.

2.1 Upper and Lower Polygons

We deal with two classes of polygons: upper and lower polygons. A lower

polygon has a horizontal edge such that the whole polygon lays under it and

through the endpoints of this edge we can draw two parallel lines enclosing

the polygon.

19

20 CHAPTER 2. A FAST ALGORITHM FOR IP IN DIMENSION 2

ba x2

Figure 2.1: Lower polygon

An upper polygon has an horizontal edge such that the whole polygon

lays above it and through the endpoints of this edge we can draw two parallel

lines that enclose the polygon.

a b

x2

Figure 2.2: Upper polygon

2.2 Partitioning the Polygon

We want to work with these classes of polygons, therefore we partition P .

First of all we look for the point e in P with maximum x2 and the point f

with minimum x2 and draw a line ef . This line divides the polygon into two

parts: a right part and a left part. In each of these parts we search for the

vertex that maximizes the distance from the line ef and from it we draw an

horizontal line. At this point we have two upper polygons that we will call

Ul, Ur, namely Upper left and Upper right, and two lower polygons that we

will call Ll, Lr, namely Lower left and Lower right. This partition can be

done in O(m).

We are going to solve the problem in each of these polygons. Actually, we

see first how to solve the problem in one of the lower polygons, specifically

Lr. Solving in Ll is analogous.

Before seeing how to solve the problem in an upper polygon, we see how

to optimize in an upper triangle. Then, we briefly see the resolution in a

2.3. LOWER POLYGONS 21

polygon with a fixed number of constraints. Finally, taking into considera-

tion all these assumptions, we will optimize in an upper polygon.

e

f

Ul Ur

LrLl

x2

Figure 2.3: Partitioning of the polygon

2.3 Lower Polygons

f

ba

T

x2

Figure 2.4: Lower-right polygon

We are now going to solve the problem in Lr. The first thing we are going

to do is to find a triangle T such that T ⊆ Lr ⊆ kT + t, with k a certain ho-

mothety ratio and t an appropriate translation. Since Lr is a lower polygon,

this triangle is abf , where a, b are the endpoints of the edge that lies above

the polygon and f is the point with minimal x2 in Lr. We have already

found f in the partition of the original polygon; this point f is the vertex

different from a of the edge that bounds the polygon on its left side.

This procedure works also in the case of a general lower polygon. In this

case we actually have to search for the point with minimum x2.

It holds that T ⊆ Lr ⊆ 2T ; here we do not need any translation of

the triangle. This is true because from b we can draw a line r (parallel to

af) which enclose the polygon (we can do it because Lr is a lower polygon

by construction) and f is the point with minimal x2. Therefore, we have

that the whole polygon is enclosed in the parallelepiped abfv where v is

the intersection between r and an horizontal line starting from f . When we

22 CHAPTER 2. A FAST ALGORITHM FOR IP IN DIMENSION 2

draw 2T we double the length of the sides af and ab, getting two new points

f ′, b′. The new triangle ab′f ′ touches the parallelepiped in v and therefore

the whole polygon is included in it (see Figure 2.5).

f

ba b′

f ′

r

v

Figure 2.5: Building 2T

Because of the inclusions T ⊆ Lr ⊆ 2T , we have w(T) ≤ w(Lr) ≤ 2w(T).

To get an approximation of w(T) we first find the matrix AT as defined in

section 1.4. Then we look for the shortest vector with respect to the `∞-

norm in the lattice Λ(AT). This can be done using Proposition 1.10. Once

we know the length of the shortest vector we can have two cases.

I First case: SV (Λ(AT)) ≤ f(2).

In this case we have that w(Lr) ≤ 4f(2). This means that the integer

points of Lr (if they exist) lie in at most d4f(2)e segments of the form:

Lr ∩ {x ∈ R2 : cTx = δ},

where

δ ∈ Z ∩ [min{cTx : x ∈ Lr},max{cTx : x ∈ Lr}],

and c is a flat direction for T found through the query for the shortest vector

in Λ(AT). We use the same c as a flat direction for Lr.

Some of these segments may be empty, meaning that there are no integer

points laying on them. If Lr does not contain any integer point, then all of

these segments will be empty. This case is possible because we don’t know

if w(Lr) ≥ f(2). In any case, we optimize in each of these segments; this

procedure (which can be done for instance by using the Euclidean algorithm,

as seen in section 1.1), requires O(φ) arithmetic operations for each segment.

These segments are at most d4f(2)e = O(1), so the whole procedure costs

O(φ). Finally, we take the optimum of the optima which we have found or,

if none was found, we state that the problem is infeasible.

I Second case: SV (Λ(AT)) > f(2).

2.3. LOWER POLYGONS 23

f

ba

x2 = l

Tl
fl

x2

Figure 2.6: Truncated lower-right polygon

In this case we cannot conclude as quickly as in the first case. Indeed

we have no upper bound on the width of Lr. So we are going to take a

different approach. We look for a parameter l such that f(2) ≤ w(Lrl) ≤
4f(2), where Lrl = Lr ∩ {x2 ≥ l}. If we can build a triangle Tl such that

w(Tl) ≤ w(Lrl) ≤ 2w(Tl) (namely, Tl ⊆ Lrl ⊆ 2Tl + t), this is equivalent to

looking for l such that SV (Λ(ATl)) = f(2).

This Tl will be the triangle abfl, where fl is the intersection between the

edge af and the line x2 = l (see Figure 2.6). We observe that Tl differs from

the triangle T just for one vertex. Therefore we have that ATl =

(
1 0

0 αl

)
AT

for an appropriate αl ∈ Q.

Our aim is to delete, through the introduction of the constraint x2 ≥ l,

the lower part of the polygon, and we want this part to be as big as possible.

In order to ignore this part, we must be sure that there still is at least one

integer point in the upper part of the polygon.

This means that we want to find l as big as possible (equivalently αl as

small as possible) and such that SV (Λ(ATl)) is still greater than f(2). As we

have stated above, this exactly means looking for l such that SV (Λ(ATl)) =

f(2).

Now, practically, we have to look for the shortest vector in Λ(ATl). From

Proposition 1.10 we know how to find the shortest vector in Λ(AT) very

quickly, once we have found the Hermite normal form of AT .

Let’s see how we find the shortest vector in Λ(ATl).

If the Hermite normal form of AT is

(
a b

0 c

)
, we compute the convergents

xj/yj of b/a. Then we look for the first j such that | − xja+ yjb| < f(2); αl

will be such that αlyjc = f(2), that is to say αl = f(2)/yjc.

Indeed, if |−xja+yjb| < f(2) and αlyjc = f(2), then |−xja+yjb| < αlyjc.

From the proof of Proposition 1.11 we know that the shortest vector in Λ(ATl)

24 CHAPTER 2. A FAST ALGORITHM FOR IP IN DIMENSION 2

will be either

(
−xja+ yjb

αlyjc

)
or

(
−xj+1a+ yj+1b

αlyj+1c

)
. It can’t be

(
a

0

)
because

SV (Λ(AT)) > f(2).

Now,

| − xj+1a+ yj+1b| < | − xja+ yjb| < αlyjc ≤ αlyj+1c.

So,

f(2) =

∥∥∥∥
(
−xja+ yjb

αlyjc

)∥∥∥∥
∞
≤
∥∥∥∥
(
−xj+1a+ yj+1b

αlyj+1c

)∥∥∥∥
∞
.

With this αl we have that SV (Λ(ATl)) = f(2). From αl we can find the l we

were looking for.

Once we have found this parameter l we have that f(2) ≤ w(Lrl) ≤ 4f(2).

Since w(Lrl) ≥ f(2), by the Flatness Theorem we know that the problem

is feasible in Lrl. And since w(Lrl) ≤ 4f(2), then all the integer points

contained in Lrl lie on at most d4f(2)e segments included in Lrl.

From the first observation and since we are maximizing x2 we know that

we can solve only in Lrl, instead of solving in the entire polygon Lr. From

the second observation we know that solving on Lrl is equivalent to solving

at most d4f(2)e 1-dimensional sub-problems. These sub-problems can each

be solved in O(φ) arithmetic operations using, for instance, the Euclidean

algorithm and they are d4f(2)e = O(1). So the problem can again be solved

in O(φ) arithmetic operations.

2.4 Upper Triangles

e

a b

x2 = l
Tl

x2

Figure 2.7: Upper triangle

We now move forward to the resolution of integer problems in upper triangles.

We will use the same technique seen for lower polygons. First of all we

compute the matrix AT associated with the triangle T . Then we look for the

2.5. POLYGONS WITH A FIXED NUMBER OF CONSTRAINTS 25

shortest vector in Λ(AT). Now again we can have two cases.

I First case: SV(Λ(AT)) ≤ f(2).

In this case we know that w(T) ≤ 2f(2) and consequently all the integer

points in T will lie in at most d2f(2)e segments of the form T ∩ {x ∈ R2 :

ctx = δ} with δ ∈ Z ∩ [min{ctx : x ∈ T},max{ctx : x ∈ T}]. The vector

c ∈ Z2 is a flat direction for T , and it is found through the query for the

shortest vector in Λ(AT): c is the vector such that v = AT c is the shortest

vector in Λ(AT).

I Second case: SV(Λ(AT)) > f(2).

In this case we have no upper bound for w(T), so we will proceed as in

the previous case by looking for an l such that f(2) ≤ w(Tl) ≤ 2f(2), where

Tl is the truncated triangle T ∩ {x2 ≥ l}, see Figure 2.7. As we have seen

before, we can look for this l by searching for the shortest vector in Λ(ATl)

and imposing that its length is equal to f(2), namely SV (Λ(ATl)) = f(2). In

this case, this is almost immediate because we see that Tl is exactly a scaled

copy of T , i.e. there exists a constant βl such that ATl = βlAT . Therefore

SV (Λ(ATl)) = βlSV (Λ(AT)).

Since we have already computed SV (Λ(AT)) we find βl by putting βl =

f(2)/SV (Λ(AT)). From the computation of SV (Λ(AT)) we find the flat

direction c for the triangle T , which is a flat direction also for the triangle Tl
since the matrices associated to the triangles are scaled copies. Therefore we

can optimize only in Tl and we can do it by solving at most d2f(2)e = O(1)

1-dimensional problems.

2.5 Polygons with a fixed number of constraints

x2

Figure 2.8: Triangulation of a polygon

In the case of a polygon defined by a fixed number of constraints, the first

thing we are going to do is to triangulate the polygon, for example by drawing

26 CHAPTER 2. A FAST ALGORITHM FOR IP IN DIMENSION 2

a line from one fixed vertex to all the others, except for the two adjacent

vertices. In this way we get O(1) triangles (they would be O(m) but here m

is constant).

We divide each triangle into an upper triangle and a lower triangle by

drawing an horizontal line from one of its vertices (which has been properly

selected). At this point we have a fixed number of upper and lower triangles.

We know how to solve in upper triangles and we know how to solve in

lower polygons, therefore also in lower triangles. Each resolution can be done

in O(φ) yielding a total cost of O(φ).

Observe that this algorithm works also for a general polygon, but its cost

will be O(mφ), whereas the cost we strive to achieve is O(m+ φ).

2.6 Upper Polygons

The last case we have to investigate is the case of an upper polygon.

a b

e

Tl

x2

x2 = l

Figure 2.9: Upper-right polygon

Here the procedure will be slightly more complicated. First of all we

approximate the polygon Ur with the triangle T = abe. It holds that T ⊆
Ur ⊆ 2T , with no translation required for the same reasons as in section 2.3.

At this point we build the matrix AT and we compute SV (Λ(AT)). We can

have two cases.

I First case: SV (Λ(AT)) ≤ f(2).

In this case we know that w(Ur) ≤ 4f(2). Then we can solve the problem

by optimizing over at most d4f(2)e 1-dimensional subproblems. This will

take O(φ) operations.

I Second case: SV (Λ(AT)) > f(2).

In this case we have no upper bound for w(Ur); we will look for an l

such that f(2) ≤ w(Url) ≤ 4f(2), where Url = Ur ∩ {x2 ≥ l}. As in the

other cases, this means looking for an l such that SV (Λ(ATl)) = f(2) where

2.6. UPPER POLYGONS 27

the triangles Tl are built as in Figure 2.9. When we build the triangles Tl,

we observe that two vertices are changing. Therefore we have that ATl =

βl

(
1 0

0 αl

)
AT , with βl, αl ∈ Q.

In the case of a lower polygon and in the case of an upper triangle we

could find l quickly, whereas here we can’t. Here we look for l by trials and

we need to limit the number of trials, so that our algorithm is still efficient.

We achieve this goal by pruning constraints while we look for l; we will

prune constraints such that the solution of the problem remains invariant.

To do so, we add two new constraints that will somehow take the place

of the constraints that will be deleted. These constraints are of the form

v ≤ x2 ≤ u.

Observe that if we delete a certain number of constraints at each iteration,

for example 1/n of them with n a fixed integer, then in O(logm) we will end

with a polygon defined by a fixed number of constraints (and therefore we

will know how to solve the problem quickly, see Section 2.5).

In particular our algorithm discards 1/4 of the constraints at each iter-

ation, therefore we will end with a polygon described by 4 constraints in

O(logm) steps. Indeed, at the i-th iteration we are left with
(

3
4

)i
m con-

straints. If we stop at k such that
(

3
4

)k
m = 4 it holds that k = O(logm).

At the beginning of the algorithm we have v = x2-coordinate of the edge

ab, and u = x2-coordinate of the vertex e. Observe that adding these two

constraints does not change the polygon.

Also, observe that, a part from the edges ab and ae, all the other edges,

from left to right, have slopes which start from maximum 0, decrease to a

minimum of −∞ and then possibly decrease again from +∞ until reaching

minimum the slope of ae. This is true because e was the point maximizing

the x2-coordinate, and because b was the point maximizing the distance from

ef .

In the first step of the algorithm we pair up the m original constraints

defining the polygon and we intersect them, getting m/2 intersection points.

We compute the median of the x2-coordinates of these points and we call

this value lmed. This is a candidate for the parameter l we are looking for.

We can have three cases.

1. First case: lmed ≤ v.

Since lmed is the median of the x2-coordinates, we have m/4 intersection

points that lie under the line x2 = lmed. We use these points to select the

28 CHAPTER 2. A FAST ALGORITHM FOR IP IN DIMENSION 2

constraints to prune.

Each of these points is defined by the intersection of a pair of constraints.

We look at the slopes of these two constraints. If both the slopes are negative

we prune the constraint with bigger slope in absolute value; if both the slopes

are positive then we prune the constraint with smaller slope in absolute value;

if one is positive and the other negative we prune the constraint with positive

slope.

Visually we are pruning the constraints which lie lower; because of the

constraint x2 ≥ v, the removal of these constraints does not change the

solution of the problem.

In this operation we are removing 1/4 of the constraints. Since lmed < v,

we do not change the bounds v ≤ x2 ≤ u.

2. Second case: lmed ≥ u.

This case is analogous to the previous one. Here we have m/4 points

lying above the line x2 = lmed and therefore above the line x2 = u. These

points are each defined by a pair of constraints.

If the slopes of the two constraints are both negative we prune the con-

straint with smaller slope in absolute value; if the slopes are both positive

we prune the constraint with greater slope; if one slope is negative and the

other is positive we prune the constraint with negative slope.

Also in this case no changes are made to the constraints v ≤ x2 ≤ u.

3. Third case: v < lmed < u.

This is the most interesting case; here we modify the constraints v ≤
x2 ≤ u. We narrow them by replacing either v or u with the value of lmed .

To decide how to proceed we first compute the triangle Tlmed . Then, we

compute the matrix associated to it:

ATlmed = βlmed

(
1 0

0 αlmed

)
AT

for certain βlmed , αlmed ∈ Q. We compute the shortest vector in Λ(ATlmed).

We can have three cases.

• First case: SV (Λ(ATlmed)) < f(2).

In this case we replace the value of u with the value of lmed. The constraint

x2 ≤ u becomes x2 ≤ lmed. Our algorithm always modifies the values of u in

order to have SV (Λ(Au)) < f(2). This makes sense because it means that

we are ignoring a flat part of the polygon: Ur ∩ {x2 ≥ u}; in this part of

the polygon we can always solve the problem in O(φ). A part from changing

2.6. UPPER POLYGONS 29

this constraint we will also remove 1/4 of the original constraints defining

the polygon. We will look at the points laying above x2 = lmed and we will

prune constraints as in 2.

• Second case: SV (Λ(ATlmed)) > f(2).

In this case we replace the value of v with the value of lmed. The constraint

x2 ≥ v becomes x2 ≥ lmed. The value of v is always modified in order to

have SV (Λ(Av)) > f(2). This inequality enables us to ignore the lower part

of the polygon Ur ∩ {x2 ≤ v}. Indeed, by the flatness theorem, the problem

is feasible in the upper part Ur ∩ {x2 ≥ v}; since we are maximizing x2 we

can solve the problem only in this part. Also in this case we will have m/4

points laying under the line x2 = lmed. We will prune constraints as in 1.

• Third case: SV (Λ(ATlmed)) = f(2).

In this case lmed is exactly the l we were looking for from the beginning.

Therefore the algorithm stops and we solve the problem in Urlmed . We have

that f(2) ≤ w(Urlmed) ≤ 4f(2).

So the problem is feasible in Urlmed and we have to solve at most d4f(2)e
1-dimensional sub-problems. Specifically we have to optimize in the segments

{x ∈ R2 : cTx = δ} ∩ Urlmed with c flat direction for Urlmed and δ ∈ Z ∩
[min{cTx : x ∈ Urlmed},max{cTx : x ∈ Urlmed}]. The flat direction c was

actually a flat direction for the triangle Tlmed , and it was found through the

search for the shortest vector in Λ(ATlmed).

This is the procedure of one step of our algorithm. If we didn’t stop,

namely SV (Λ(AT)) > f(2) and we didn’t end up in case (c) (SV (Λ(ATlmed)) =

f(2)), then we are going to repeat the procedure again with the new set of

constraints that we are left with at the end of this iteration. We are go-

ing to repeat this procedure until we end in case (c) or we are left with a

fixed number of constraints defining the intermediate part of the polygon

Ur∩{v ≤ x2 ≤ u}. If we terminate by ending up in case (c) we have already

seen how to solve the problem. In the other case we have to solve the problem

in (
Ur ∩ {v ≤ x2 ≤ u}

)
∪
(
Ur ∩ {x2 ≥ u}

)
.

For the first term of this union we have a description with a fixed number

of constraints, and so we are going to solve the problem using the method

described in section 2.5. The problem is solved in O(φ). Regarding the

second term of this union, we know that it is flat by construction. Indeed, u

was modified in order to keep this part of the polygon flat. So in O(φ) we

can find out whether this part contains or not integer points and if so, we

30 CHAPTER 2. A FAST ALGORITHM FOR IP IN DIMENSION 2

can find a flat direction by using the triangle Tu and then solve the problem

in at most d4f(2)e 1-dimensional subproblems.

2.7 Computational Analysis

We have seen that partitioning the polygon costs O(m), and that solving on

a lower polygon, on an upper triangle and on a polygon with a fixed number

of constraints costs each O(φ). So the last step we have to make is studying

the computational cost of the resolution in an upper polygon.

We have already seen that we are sure that the algorithm ends in at most

O(logm) steps. But how much does each iteration cost?

Let’s say that at the i-th iteration we are left with mi constraint. In

this iteration we have to pair them up, compute their intersections, compute

the median and then find the shortest vector in the lattice Λ(ATlmed). Let’s

ignore for one moment the query for the shortest vector. The remaining

cost is O(mi) at each iteration. Now at every step of the algorithm we are

removing 1/4 of the constraints, so in fact we have mi =
(

3
4

)i
m. Therefore

the total cost (ignoring the query for the shortest vector) is:

log(m)∑
i=1

(3

4

)i
m = m

(
1− 3

4

log(m)+1

1− 3
4

)
= O(m).

Concerning the costs for the query for the shortest vector, Proposition

1.11 comes in our help. Indeed we can see AT as the matrix A of the Propo-

sition; moreover it holds that the shortest vector of Λ
(
βl

(
1 0

0 αl

)
AT
)

is βl

times the shortest vector of Λ
((1 0

0 αl

)
AT
)
. The αl are rationals which re-

veal themselves one after the other and so the queries for the shortest vector

are exactly as the ones described in Proposition 1.11. We are iterating maxi-

mum logm times, therefore the total cost for the queries is O(φ+log φ logm).

With this last analysis we can finally state the following theorem.

Theorem 2.1. A two-variable integer programming problem max{ctx : Ax ≤
b, x ∈ Z2} with A ∈ Zm×2, b ∈ Zm, c ∈ Z2 involving coefficients of maxi-

mal binary encoding length O(φ), can be solved with O(φ + m) arithmetic

operations.

Chapter 3

SVP in `∞-norm

3.1 Gaussian Algorithm

It is now clear how strongly connected is the shortest vector problem in

`∞-norm with integer programming. For this reason, and many others, the

problem of finding the shortest vector in a lattice has been extensively stud-

ied. One approach to the problem is to find a reduced basis for the given

lattice, where a reduced basis satisfies some specific properties which allow

us to find the shortest vector, or at least an approximation of it.

The first algorithm for lattice basis reduction was developed by Gauss and

it works in dimension 2. It was originally built to work with the `2-norm;

however, we are going to see an extended version of this algorithm which

works with any efficiently computable norm. Hence, this version works also

with the `∞-norm.

It takes as input a pair of vectors a, b which are the basis of the lattice.

It returns a′, b′ where a′ is the shortest vector in the lattice with respect to

the chosen norm ‖ · ‖.
This algorithm can be seen as an extension of the Euclidean algorithm,

as it subtracts integer multiples of the shorter vector between a and b from

the larger one, reducing its length. This step resembles the division with

remainder in the Euclidean algorithm.

We give some definitions.

Definition 3.1. Let [a, b] be a lattice basis. This basis is reduced if

‖a‖, ‖b‖ ≤ ‖a+ b‖, ‖a− b‖.

Definition 3.2. We define the i-th successive minimum as the value λi such

31

32 CHAPTER 3. SVP IN `∞-NORM

that

λi(Λ) := min{r ≥ 0 | dim(span(B(0, r) ∩ Λ)) ≥ i},

meaning that we have i many linearly independent vectors of length at most

λi. Of course it holds that λ1 = SV (Λ).

The following theorem holds:

Theorem 3.3. Let [a, b] be a lattice basis and let λ1 and λ2 be the successive

minima of the lattice generated by a, b. Then, [a, b] is reduced if and only if

a and b have norm λ1 and λ2.

To prove this theorem we need a lemma:

Lemma 3.4. Suppose we have three vectors on a line x, x + y, x + αy with

α ∈ (1,∞). If ‖x‖ ≤ ‖x+y‖, then ‖x+y‖ ≤ ‖x+αy‖ and if ‖x‖ < ‖x+y‖,
then ‖x+ y‖ < ‖x+ αy‖.

Proof. We define δ = 1/α. Then, we can write

x+ y = (1− δ)x+ δ(x+ αy).

This implies

‖x+ y‖ ≤ (1− δ)x+ δ(x+ αy).

For the hypothesis of the Lemma, we have

‖x+ y‖ < (1− δ)‖x+ y‖+ δ(x+ αy),

which implies

δ‖x+ y‖ < δ‖x+ αy‖.

By definition δ > 0 so we can divide by δ and conclude.

We are now ready to prove the theorem:

Proof. (⇐=) First let’s assume, without loss of generality, that ‖a‖ = λ1.

This implies that ‖a− b‖, ‖a+ b‖ ≥ ‖a‖. Since a, b were linearly independent

vectors, also a− b and a+ b are linearly independent from a. So by definition

of λ2 we have that

λ2 ≤ max{‖a‖, ‖a− b‖} = ‖a− b‖

and

λ2 ≤ max{‖a‖, ‖a+ b‖} = ‖a+ b‖.

3.1. GAUSSIAN ALGORITHM 33

This implies

‖a‖, ‖b‖ ≤ ‖a+ b‖, ‖a− b‖.
(=⇒) Now assume that ‖a‖, ‖b‖ ≤ ‖a + b‖, ‖a − b‖ and without loss of

generality that ‖a‖ ≤ ‖b‖. Let us build an arbitrary lattice vector ra + sb

where r, s ∈ Z. We want to show that

‖a‖ ≤ ‖ra+ sb‖ ∀ (r, s) 6= (0, 0)

and

‖b‖ ≤ ‖ra+ sb‖ ∀ s 6= 0.

There are three cases:

• If s = 0: ‖a‖ ≤ ‖ra‖ = ‖ra+ sb‖ proving the first inequality;

• If r = 0: ‖a‖ ≤ ‖b‖ ≤ ‖sb‖ = ‖ra+ sb‖ proving both inequalities;

• If r 6= 0 and s 6= 0 let’s assume r ≥ s ≥ 0. We can write

‖(r/s)a+ b‖ = ‖ra+ sb

s
‖ ≤ ‖ra+ sb‖.

Notice that ‖b‖ ≤ ‖b + a‖ and r/s ≥ 1, therefore by the previous

lemma,

‖a‖, ‖b‖ ≤ ‖a+ b‖ ≤ ‖b+ (r/s)a‖ ≤ ‖ra+ sb‖.

We give another definition.

Definition 3.5. A basis [a, b] is well ordered if ‖a‖ ≤ ‖a− b‖ < ‖b‖.

The first part of the algorithm tries to transform the input basis into

a well ordered one. It could happen that already in this phase we find a

reduced basis. In this case, we return it and we are done. Otherwise, with

a well ordered basis, we enter the second part of the algorithm, which is a

loop that we exit when we have found a reduced basis.

• First part:

if ‖a‖ > ‖b‖ then swap(a, b);

if ‖a− b‖ > ‖a+ b‖ then let b := −b;
if ‖b‖ ≤ ‖a− b‖ then return [a, b];

if ‖a‖ ≤ ‖a− b‖ then go to the second part;

if ‖a‖ = ‖b‖ then return[a, a− b];
let [a, b] := [b− a,−b];

34 CHAPTER 3. SVP IN `∞-NORM

• Second part (loop):

Find µ ∈ Z such that ‖b− µa‖ is minimal;

if ‖a− b‖ > ‖a+ b‖ then let b := −b;
if [a, b] is reduced:

then return [a, b);

else swap(a, b) and go to loop.

Thanks to the first two lines we can assume that ‖a‖ ≤ ‖b‖ and that

‖a− b‖ ≤ ‖a+ b‖. Then if ‖b‖ ≤ ‖a− b‖, the basis [a, b] is already reduced

and we are done. So it holds ‖b‖ > ‖a − b‖. If ‖a‖ ≤ ‖a − b‖, the basis is

well-ordered and we can access the second part of the algorithm. So assume

‖b‖ > ‖a − b‖ and ‖a‖ > ‖a − b‖. We can have that ‖a‖ < ‖b‖ or that

‖a‖ = ‖b‖. In the first case, (i.e. ‖a‖ < ‖b‖), the basis [a − b,−b] is well-

ordered. Indeed, ‖b− a‖ ≤ ‖a‖ < ‖b‖; therefore we can access the loop with

this basis. In the second case, (i.e. ‖a‖ = ‖b‖), the basis [a, a− b] is reduced

and we return it; indeed ‖a− (a− b)‖ = ‖b‖ = ‖a‖ , ‖a+a− b‖ = ‖2a− b‖ ≥
|‖2a‖− ‖b‖| = ‖a‖ = ‖b‖ and ‖a− b‖ ≤ ‖2a− b‖ because ‖a− b‖ < ‖a‖ and

‖a‖ ≤ ‖2a − b‖, whereas ‖a − b‖ ≤ ‖b‖ comes directly from the hypothesis

of this case.

In the second part of the algorithm we have a well-ordered basis [a, b]

and the first thing we are going to do is to make b as short as possible

by subtracting an integer multiple of a. Then we make sure that it holds

‖a− b‖ ≤ ‖a+ b‖, by changing the sign of b if needed. If the basis is reduced

we return it, otherwise we swap the roles of a and b and we enter again the

loop.

Let’s see in details how we find µ ∈ Z such that ‖b−µa‖ is minimal. The

following lemma tells us that we can find such a µ efficiently if the basis [a, b]

is well-ordered.

Lemma 3.6. Let a and b be two vectors such that ‖b‖ > ‖b− a‖. Then, one

can efficiently find an integer µ such that ‖b−µa‖ is minimal. Furthermore,

it holds that 1 ≤ µ ≤ 2
‖b‖
‖a‖

.

Proof. Let us define c :=

⌈
2
‖b‖
‖a‖

⌉
. It holds that

‖b− ca‖ ≥ |‖b‖ − c‖a‖| ≥ c‖a‖ − ‖b‖ ≥ ‖b‖,

3.1. GAUSSIAN ALGORITHM 35

and so by Lemma 3.4 it holds that ‖b− ca‖ ≤ ‖b− (c+ 1)a‖. Therefore we

have that the following inequality

‖b− ka‖ ≤ ‖b− (k + 1)a‖

is true for k = c, but it is false for k = 0. We can find, using for instance

binary search, an integer 1 ≤ µ ≤ c such that

‖b− (µ− 1)a‖ > ‖b− µa‖ ≤ ‖b− (µ+ 1)a‖.

This value minimizes ‖b−µa‖. Indeed, by Lemma 3.4, it holds that ‖b−µa‖ ≤
‖b− (µ+ 1)a‖ ≤ ‖b− ka‖ for every k ≥ µ+ 1. And in the same way it holds

also that ‖b− µa‖ < ‖b− (µ− 1)a‖ < ‖b− ka‖ for every k ≤ µ− 1.

We have seen that, in order to find µ efficiently, it is sufficient to have a

well-ordered basis at the beginning of each iteration. Therefore we need to

prove the following:

Lemma 3.7. In any execution of the Gauss algorithm, at the beginning of

each iteration the basis [a, b] is well-ordered.

Proof. We know that the first time we enter the loop the basis is well-ordered.

We have to see that at the end of each iteration the basis is either reduced

or well-ordered. If [a, b] is the basis which enters the loop, we call [a′, b′] the

basis which exits the loop. It holds that a′ = ±(b − µa) and b′ = a. We

know that ‖a′− b′‖ ≤ ‖a′ + b′‖ and also that ‖a′− b′‖ = ‖± (b− µa)− a‖ =

‖b−(µ±1)a‖ ≥ ‖b−µa‖ = ‖a′‖. So we have that ‖a′‖ ≤ ‖a′−b′‖ ≤ ‖a′+b′‖.
At this point we can have two cases: either ‖b′‖ ≤ ‖a′ − b′‖ and then [a′, b′]

is reduced, or ‖b′‖ > ‖a′ − b′‖ and then [a′, b′] is well-ordered.

Observe that at each iteration we are shortening the length of the vectors

by a constant factor, therefore the algorithm will certainly terminates. More

precisely:

Theorem 3.8. For any choice of two linearly independent vectors [a, b], the

algorithm always terminates and correctly computes a reduced basis for the

lattice Λ generated by a and b.

Proof. We already know that if the algorithm terminates then the basis [a, b]

is reduced. Moreover, we are subtracting lattice vectors from each other,

therefore [a, b] is still a basis of the original lattice. We need to see that the

algorithm does not loop forever. This cannot happen because we know that

at the beginning of each iteration, ‖b−a‖ < ‖b‖ . Therefore, b is replaced by

a new vector which is strictly shorter. This implies that the algorithm must

stop after a finite number of iterations.

36 CHAPTER 3. SVP IN `∞-NORM

The last thing we want to prove is the fact that the number of iterations

is polynomial in the size of the input. Let us call this number k and let

[ak, ak+1] be the well-ordered basis at the beginning of the loop. Then the

reduced basis will be [a1, a2]. It holds that:

Lemma 3.9. For every i ≥ 3, ‖ai‖ < 1/2‖ai+1‖.
Proof. Let us call the subsequence (ai−1, ai, ai+1) = (a, b, c). It holds that

both [a, b] and [b, c] are well-ordered, ‖a‖ < ‖b‖ < ‖c‖ and a = ±(c− µb). If

we call ε = ±1, we get that c = εa+µb. Our goal is to prove that ‖c‖ > 2‖b‖.
• Case µ = 1. It would mean ‖c−b‖ = ‖a‖ < ‖b‖, but this is not possible

as the basis [b, c] is well-ordered. Hence, this case is excluded.

• Case µ = 2, ε = −1. In this case we have ‖c−b‖ = ‖−a+b‖ and this is

not possible because it also holds that ‖a−b‖ < ‖b‖ and ‖b‖ ≤ ‖b−c‖.

• Case ε = −1, µ > 2. We have ‖c‖ = ‖ − a + µb‖ ≥ µ‖b‖ − ‖a‖ >
(µ− 1)‖b‖ ≥ 2‖b‖.

• Case µ ≥ 2, ε = 1. In this case ‖c‖ = ‖a + µb‖. First, ‖b − a‖ < ‖b‖
as [a, b] is well-ordered. This implies that ‖b‖ < ‖b+ a‖. Then, ‖a‖ ≤
‖a− b‖ implies ‖a‖ < ‖b+ a‖, and so

‖a‖ < ‖a+ b‖ < ‖a+ 2b‖ < ‖a+ µb‖.

So we have just proved that ‖c‖ = ‖a + µb‖ ≥ ‖a + 2b‖. We need to

prove that ‖a+ 2b‖ > 2‖b‖. It holds that

‖2b− a‖ ≤ ‖b‖+ ‖b− a‖ < ‖b‖+ ‖b‖ = 2‖b‖.

This implies

‖2b− a‖ < ‖2b‖ < ‖2b+ a‖,
and therefore ‖c‖ > 2‖b‖.

By induction, this lemma implies that

‖ai‖ ≥ 2i−3‖a3‖,

and in particular

2k−2 ≤ 2k−2‖a3‖ ≤ ‖ak+1‖ ≤ ‖a‖+ ‖b‖.

Therefore, k ≤ 2 + log2(‖a‖ + ‖b‖), that is to say, the running time of the

algorithm is polynomial in the size of the input. Equivalently, the shortest

vector problem in dimension 2 can be solved in polynomial time.

3.2. A 2O(N)-TIME ALGORITHM FOR THE SVP 37

3.2 A 2O(n)-time algorithm for the SVP

We describe the randomized algorithm from Ajtai, Kumar and Sivakumar

which solves the shortest vector problem in dimension n in time 2O(n)· poly(input)

(see [2], [12], [13]). Similarly to the Gaussian algorithm, this algorithm uses

the idea of iteratively subtract lattice vectors from each other in order to

reduce their length. A random factor is needed in order to avoid the scenario

in which the algorithm ends with only zero vectors.

The problem is the following: it’s given a lattice Λ(B) with B ∈ Qn×n,

and the goal is to find a vector x ∈ Λ(B) \ {0} which minimizes ‖x‖2. The

norm has been chosen as the `2-norm, but we will prove that the algorithm

works also with the `∞-norm.

3.2.1 Some useful geometric insights

First, we assume to work with a lattice Λ(B) such that 2 ≤ SV (Λ(B)) ≤ 3.

Indeed the following lemma holds.

Lemma 3.10. Given an algorithm A that finds a shortest non-zero vector in

lattices Λ(B) for which 2 ≤ SV (Λ(B)) ≤ 3, we can find a shortest non-zero

vector in any lattice in time that is greater by a factor of at most O(n).

We give a series of useful results.

Lemma 3.11. Let X ⊆ B(0, R) ⊆ Rn be a finite set of points. Then, one

can find a subset of centres C ⊆ X with |C| ≤ 5n so that d(x,C) 6
R

2
for

all x ∈ X.

0

R

R/2

Proof. We start with C := ∅ and we greedily add a point x from X to C if

d(x,C) > R/2. In this way we get a set of clusters such that d(x,C) 6
R

2

38 CHAPTER 3. SVP IN `∞-NORM

for all x ∈ X; we need to prove that |C| ≤ 5n. It holds that ‖c− c′‖ > R/2

for c, c′ ∈ C, c 6= c′. Hence, B(c,
R

4
) ∩ B(c′,

R

4
) = ∅ for all c, c′ ∈ C, c 6= c′.

0

R

All these balls are fully contained in B(0,
5

4
R) and it holds that

vol(B(0,
5

4
R))

vol(B(0,
R

4
))

= 5n.

Therefore there are maximum 5n centres.

Lemma 3.12. Let v ∈ Rn be a vector of length 2 ≤ ‖v‖2 ≤ 3. Let Q :=

B(0, 2) ∩ B(v, 2). Then
vol(Q)

vol(B(0, 2))
≥ 2−2n

0 v

Q

B(v
2
, 1

2
)

Proof. If a ball B(
v

2
,
1

2
) is contained in Q, then the volume ratio is at most

22n because

2−2n =
vol
(
B(
v

2
,
1

2
)
)

vol
(
B(0, 2)

) ≤ vol
(
Q
)

vol
(
B(0, 2)

)

3.2. A 2O(N)-TIME ALGORITHM FOR THE SVP 39

Let’s see that B(
v

2
,
1

2
) ⊆ Q, that is to say, if x is such that d(x,

v

2
) ≤ 1

2
, then

x satisfies d(x, 0) ≤ 2 and d(x, v) ≤ 2.

This is true because d(x, 0) ≤ d(x,
v

2
)+d(

v

2
, 0) ≤ 1

2
+

3

2
= 2 and d(x, v) ≤

d(x,
v

2
) + d(

v

2
, v) ≤ 1

2
+

3

2
= 2.

The following lemma implies that there are not too many short vectors

in a lattice.

Lemma 3.13. Let Λ ⊆ Rn be a lattice with SV (Λ) ≥ 2. Then |Λ∩B(0, 8)| ≤
24n.

Proof. Since the shortest vector has length greater than two, we can put a

ball of radius 1 around each lattice point in Λ ∩ B(0, 8) and these balls will

not overlap. All these balls are contained in B(0, 9), therefore they cannot

be more than 9n < 24n.

For the sake of completeness, we give an interesting extension of the

previous lemma, even though it is not used in the algorithm.

Lemma 3.14. Let Λ ⊆ Rn be a lattice and let λ be the length of its shortest

vector. It holds that

|Λ ∩ B(0, kλ)| ≤ (2k + 1)n for any k ≤ 1.

Proof. We can put a ball of radius
λ

2
around each lattice point in Λ∩B(0, kλ)

and these balls will not overlap. It also holds that all these balls are contained

in B(0, kλ+
λ

2
). It holds that:

vol(B(0, kλ+
λ

2
))

vol(B(0,
λ

2
))

=

(
kλ+

λ

2

)n
(
λ

2

)n =
λn
(
k +

1

2

)n
λn

1

2n

=
(
2k + 1

)n
,

therefore, there cannot be more than (2k+ 1)n lattice points in B(0, kλ).

40 CHAPTER 3. SVP IN `∞-NORM

3.2.2 The algorithm

The initialization of the algorithm goes as follows:

• First compute R0 := n · maxi=1,...,n ‖bi‖2, where bi are the columns

of the matrix B which generates the lattice Λ(B). Set R := R0.

• Sample N := 28n log(R0) random points x1, . . . , xN from B(0, 2).

• For each xi compute zi ∈ Λ(B).

The computation of zi can be done in polynomial time. To do so, let’s

recall the definition of fundamental parallelepiped of Λ(B):

P(B) := {
n∑
i=1

λibi | 0 ≤ λi ≤ 1 ∀ i ∈ [n]}.

For x ∈ Rn we define the remainder of x as remB(x) ∈ P(B) such that

x− remB(x) ∈ Λ(B).

Let’s see that we can compute remB(x) in polynomial time.

Lemma 3.15. For any point x ∈ Rn, the remainder remB(x) can be com-

puted in polynomial time.

Proof. For any point x ∈ Rn, there is a unique choice of λi such that∑n
i=1 λibi = x, as the bi are n linearly independent vectors. This linear

combination can be computed in polynomial time, for instance using the

Gaussian elimination. Then, we have that remB(x) =
∑n

i=1(λi−bλic)bi.

For i = 1, . . . , N we call yi the remainder of xi, i.e. yi := remB(xi). Then

the points zi ∈ Λ(B) will be computed as zi = yi − xi. So, at the beginning

of our algorithm we start with a list (x1, z1), . . . , (xN , zN).

This list satisfies two invariants:

• zi ∈ Λ(B) for all i = 1, . . . , N ;

• ‖yi‖2 ≤ R for all i = 1, . . . , N ;

This is true because zi ∈ Λ(B) for all i = 1, . . . , N by construction, and

‖yi‖2 ≤ R0 for all i = 1, . . . , N because ‖yi‖2 = ‖remB(xi)‖2 ≤
∑n

j=1 ‖bj‖2 ≤
R0.

3.2. A 2O(N)-TIME ALGORITHM FOR THE SVP 41

The algorithm will modify the list (x1, z1), . . . , (xN , zN) in order to keep

these two invariants valid. The idea is to iteratively subtract the lattice vec-

tors from each other in order to reduce their length. This happens because,

since we have taken N = 28n logR0 >> 5n, there must exist some points

yi, yj such that ‖yi − yj‖2 ≤
R

2
for Lemma 3.11. This implies

‖zi − zj‖2 = ‖yi − xi − (yj − xj)‖2 ≤ ‖yi − yj‖2 + ‖xj − xi‖2 ≤
R

2
+ 4.

At the beginning we had

‖zi‖2 = ‖yi − xi‖2 ≤ ‖yi‖+ ‖xi‖ ≤ R + 2.

Hence putting zi := zi − zj, we are shortening the length of zi.

Notice that we may incur in the problem of having only zero vectors at

the end of our algorithm. To avoid this scenario we will introduce the random

factor.

The sieving algorithm is the following:

• Initialize a list Z of N points satisfying both invariants for R = R0.

• While R > 6:

– Perform a clustering as described in Lemma 3.11 for yi := xi+zi
and call C the set of cluster centers. Call σ(i) the index such

that ‖yi − yσ(i)‖2 ≤
R

2
.

– Delete from the initial list Z the points associated with the

cluster centers.

– For each remaining pair, set zi := zi − zσ(i).

– Set R :=
R

2
+ 2.

• Return the shortest non-zero vector among all pairs zi − zj.

First of all let’s prove that the two invariants are maintained:

1. zi ∈ Λ(B) since we are always adding or subtracting lattice vectors.

2. We have to check that ‖y′i‖2 ≤
R

2
+2, where y′i = xi+z

′
i = xi+zi−zσ(i) =

yi − zσ(i).

‖y′i‖2 = ‖yi − zσ(i)‖2 ≤ ‖yi − yσ(i)‖2 + ‖xσ(i)‖2 ≤
R

2
+ 2.

42 CHAPTER 3. SVP IN `∞-NORM

Now we explain how we avoid ending only with zero vectors (with high

probability). Let’s call v ∈ Λ(B) the shortest lattice vector. We define the

regions

C1 := B(0, 2) ∩ B(v, 2) and C2 := B(0, 2) ∩ B(−v, 2).

We define a ’flipping’ map τ : Rn −→ Rn as follows:

τ(x) =

x+ v if x ∈ C2

x− v if x ∈ C1

x otherwise

Observe that in the initialization we take the points xi uniformly at ran-

dom from B(0, 2). This procedure is equivalent to choosing the points uni-

formly at random from B(0, 2) and then, with probability
1

2
(for instance

tossing a coin) flipping each xi, that is to say, substituting xi with τ(xi). We

use this trick only to analyse the algorithm, therefore the fact that we do

not know v is not a problem. We imagine to change the algorithm and to

perform this ’tossing procedure’ exactly before the first time that it actually

matters whether xi is flipped or not. With this in mind, we can prove the

following.

Lemma 3.16. With high probability, the shortest vector v is among the pairs

zi − zj for some surviving indices i, j.

Proof. Observe that remB(x) = remB(x + v) = remB(x − v); thus, the yi
do not depend on the ’flipping’ procedure. On the other hand, zi depends

directly on xi; therefore we need to know whether xi was flipped or not in

order to work with zi. This means that as long as the algorithm can work

with the yi we do not need any information about the flipping of xi.

In the clustering we work with the yi, but when we update the list we

are performing z′i = zi − zσ(i), which can be written as y′i = yi − zσ(i). This

means that we need to know the side of xσ(i). This is the reason why we get

rid of the cluster centers at each iteration. In this way we can go on working

with points for which we do not need any information.

We call a point good if it belongs to C1 ∪ C2. At the beginning of the

algorithm we have at least 26n−1 logR0 good points with high probability.

Indeed, thanks to Lemma 3.12, each point in B(0, 2) is good with probability

greater than p := 2−2n. Thus, the expected number of good points is pN =

2−2n28n logR0 = 26n logR0 and the variance of this number is at most pN .

3.2. A 2O(N)-TIME ALGORITHM FOR THE SVP 43

By Chebyschev’s inequality1, the probability that there are less than pN/2

points is at most 4/pN which is a very small probability.

During the entire algorithm we remove at most O(logR0)25n points, since

the number of iterations is O(logR0) and in each iteration we remove at most

5n < 25n points. Thus, when we exit the while-loop we still have more than

(26n−1 − 2 · 5n) logR0 > 25n good points for which we have not decided the

side.

Before being tossed, these zi satisfy ‖zi‖2 ≤ ‖yi‖2 + ‖xi‖2 ≤ 6 + 2 = 8.

For Lemma 3.13 it holds that |Λ ∩ B(0, 8)| ≤ 24n; therefore there exists

w ∈ Λ ∩ B(0, 8) such that zi = w for at least
25n

24n
= 2n points. So, when

flipping these points zi, with probability
1

2
some of them will remain w, and

with probability
1

2
some others will become w+ v or w− v. Therefore, when

we take the differences between them, with high probability we will find the

shortest vector v.

3.2.3 Proofs for `∞-norm

We want to show that this algorithm works also with the `∞-norm. In this

case it’s given a lattice Λ(B) with B ∈ Qn×n and the goal is to find a vector

x ∈ Λ(B)\{0} which minimizes ‖x‖∞. We will see that the results displayed

in Sections 3.2.1 and 3.2.2 can be proved equivalently with respect to the

`∞-norm.

First of all, also in this case we can assume to work with lattices Λ(B)

such that

2 ≤ SV∞(Λ(B)) < 3,

where SV∞(Λ(B)) denotes the length of the shortest vector with respect to

the `∞-norm. Indeed, if Lemma 3.10 holds for the shortest vector in `2-norm,

then a similar result has to hold for the `∞-norm. Let’s see how we can get

some information about the shortest vector in `∞-norm from the the shortest

vector in `2-norm.

1If we have a random variable X with E[X] = µ and V ar(X) = σ2 the probability

that this variable assumes value in the interval [µ − λσ, µ + λσ] is greater than 1 − 1

λ2
,

where λ is a positive real parameter. In this case we apply this inequality to the random

variable X representing the number of good points, E[X] = pN , V ar(X) ≤ PN and we

take λ =

√
pN

2
.

44 CHAPTER 3. SVP IN `∞-NORM

We know that

‖ · ‖∞ ≤ ‖ · ‖2 ≤
√
n‖ · ‖∞,

and from these inequalities we get that

SV∞(Λ(B)) ≤ SV2(Λ(B)) ≤
√
nSV∞(Λ(B)).

Indeed, let’s call v2 the shortest vector in Λ(B) with respect to the `2-norm

and v∞ the shortest vector in Λ(B) with respect to the `∞-norm. We know

that

‖v2‖∞ ≤ ‖v2‖2 ≤
√
n‖v2‖∞,

and

‖v∞‖∞ ≤ ‖v∞‖2 ≤
√
n‖v∞‖∞.

It also holds that

‖v∞‖∞ ≤ ‖v2‖∞ and ‖v2‖2 ≤ ‖v∞‖2

So we get

‖v∞‖∞ ≤ ‖v2‖∞ ≤ ‖v2‖2 =⇒ SV∞(Λ(B)) ≤ SV2(Λ(B))

and

‖v2‖2 ≤ ‖v∞‖2 ≤
√
n‖v∞‖∞ =⇒ SV2(Λ(B)) ≤

√
nSV∞(Λ(B)).

So, we assume to work with lattices Λ(B) such that

2 ≤ SV∞(Λ(B)) < 3.

We need to see that the other results hold.

In the proof of Lemma 3.11 we use the definition and the properties of a

distance d, which don’t change if we are referring to the `∞-norm instead of

the `2-norm. Furthermore, the ratio between the volume of two balls is the

same for any `p-norm. In particular,

V ∞n (R) := (2R)n and V 2
n (R) :=

π
n
2Rn

Γ(
n

2
+ 1)

,

so we have that

V ∞n (R1)

V ∞n (R2)
=

2n ·Rn
1

2n ·Rn
2

=

(
R1

R2

)n
and

V 2
n (R1)

V 2
n (R2)

=
π
n
2Rn

1

Γ(
n

2
+ 1)
·
Γ(
n

2
+ 1)

π
n
2Rn

2

=

(
R1

R2

)n
.

3.2. A 2O(N)-TIME ALGORITHM FOR THE SVP 45

Therefore, the proof is the same. Of course we cannot visualize the balls as

in the previous case. In the case of the `∞-norm, the balls can be visualized

as squares. An instance is displayed in the following figure.

0

R

R/2

Concerning Lemma 3.12, we have already proved that B(
v

2
,
1

2
) ⊆ Q using

only the triangle inequality which is valid for any distance, including the

distance with respect to the `∞-norm. Then, we use again an argument

involving the volume ratio between two balls and we have just seen that the

ratio doesn’t change if we change the norm. Therefore also this proof is still

valid. We can visualize one instance as in the following picture.

0

v
Q

B(v
2
, 1

2
)

For the same reasons, also the proof of Lemma 3.13 is valid with respect

to the `∞-norm.

The algorithm that finds the shortest vector with respect to the `∞-norm

can be defined as follows.

Initialization:

46 CHAPTER 3. SVP IN `∞-NORM

• Compute R0 := n ·maxi=1,...,n ‖bi‖∞, where bi are the columns of the

matrix B which generates the lattice Λ(B). Set R := R0.

• Sample N := 28n log(R0) random points x1, . . . , xN from B(0, 2)

(where this ball is defined with respect to the `∞-norm).

• For each xi compute zi ∈ Λ(B)

The observations about the last step of this initialization and the com-

puting of the remainder still hold.

The invariants will be:

1. zi ∈ Λ(B) for all i = 1, . . . , N ;

2. ‖yi‖∞ ≤ R for all i = 1, . . . , N ;

After the initialization, the first one is satisfied by construction; the sec-

ond one is true because ‖yi‖∞ = ‖remB(xi)‖∞ ≤
∑n

j=1 ‖bj‖∞ ≤ R0.

The sieving algorithm is the following:

• Initialize a list Z of N points satisfying both invariants for R = R0.

• While R > 6:

– Perform a clustering for yi := xi+zi and call C the set of cluster

centers. Call σ(i) the index such that ‖yi − yσ(i)‖∞ ≤
R

2
.

– Delete from the initial list Z the points associated with the

cluster centers.

– For each remaining pair, set zi := zi − zσ(i).

– Set R :=
R

2
+ 2.

• Return the shortest non-zero vector among all pairs zi − zj.

The success of this algorithm, following the proofs for the previous one,

can be showed using the triangle inequality and Lemmas 3.11, 3.12, 3.13.

Therefore this algorithm finds with high probability the shortest vector with

respect to the `∞-norm.

Chapter 4

Ideas for IP in dimension 3

We start seeing how to use the ideas developed in the last sections to solve

the problem in dimension 3. Namely, we would like to solve

max{ctx |Ax ≤ b, x ∈ Z3},

where

c ∈ Z3, A ∈ Zm×3, b ∈ Zm.

First of all, let’s recall Doignon’s theorem and a corollary (see [15]).

Theorem 4.1 (Doignon’s Theorem). Let P = {x ∈ Rn |Ax ≤ b} be a system

such that P ∩ Zn = ∅. Then, there exists a subset of at most 2n inequalities

which are already integer infeasible.

Corollary 4.2. Let Ax ≤ b be a system of linear inequalities in n variables,

and let c ∈ Qn. If max{ctx |Ax ≤ b, x ∈ Zn} is finite, then there exists a

subsystem of at most 2n − 1 inequalities A′x ≤ b′ such that

max{ctx |Ax ≤ b, x ∈ Zn} = max{ctx |A′x ≤ b′, x ∈ Zn}.

This means that the optimum is determined by a smaller subset (whose

size cannot exceed 2n − 1) of inequalities.

We can use Clarkson’s algorithm (see [14]) to reduce our problem to a

problem with a fixed number of constraints. Therefore, from now on, we will

assume to work with problems with a fixed number of constraints.

Clarkson claims that an integer program defined by m constraints can be

solved with O(m) arithmetic operations and O(logm) calls to an algorithm

which solves an integer program defined by a fixed size subset of constraints.

Hence, if we can solve the problem with a fixed number of constraints in O(φ)

47

48 CHAPTER 4. IDEAS FOR IP IN DIMENSION 3

arithmetic operations, where φ is the maximum binary encoding length of

the input data, then the original problem with m constraints can be solved

in O(m+ logmφ).

We are given an integer program

max{ctx |Ax ≤ b, x ∈ Z3}.

We can assume that P = {x ∈ R3|Ax ≤ b} is bounded and full-dimensional,

and that the objective is to maximize one component, let’s say the second.

We are going to partition the polygon P in order to work only with two-

layer simplices. A simplex is a full-dimensional polytope Σ ⊆ Rn with n+ 1

vertices. A two-layer simplex is a simplex whose vertices can be partitioned

into two sets V and W such that for all v, v′ ∈ V we have v2 = v′2 and for all

w,w′ ∈ W we have w2 = w′2, namely, the second components of the elements

in V and in W agree.

To do this partition, we list the second components of the vertices of P

in decreasing order: α1, . . . , αl. Then, we partition P into the polygons Pi
described by:

Pi = P ∩ {x2 ≤ αi} ∩ {x2 ≥ αi+1} i = 1, . . . , l − 1.

Thanks to Caratheodory’s theorem1, each Pi can be partitioned into two-

layer simplices, which are spanned by the vertices of Pi.

Indeed, for each Pi it holds that

Pi = conv(X),

where X ⊆ Q3 denotes the set of vertices of Pi; this set contains the vertices

v of P such that v2 = αi or v2 = αi+1 and it may contain some other points

arising from the intersection of P with the plane x2 = αi or with the plane

x2 = αi+1. So, if we take p ∈ Pi, it holds that p ∈ conv(X).

By Caratheodory’s theorem, there exists a set S ⊆ X of at most 4 points

such that p ∈ conv(S). This means that for each point p ∈ Pi there exists

a simplex Σ (which will be a two-layer simplex because of the properties of

Pi) such that p ∈ Σ; equivalently, this means that Pi can be partitioned into

two-layer simplices.

At this point, our problem has become

max{x2 |x ∈ Σ ∩ Z3},
1If S ⊆ Rn and x ∈ conv(S), then x is the convex combination of at most n+ 1 points

in S, see also [15].

49

where Σ = {x ∈ R3 |Ax ≤ b}, with A ∈ Z4×3, b ∈ Z4.

We can have three cases, which can be visualized as follows:

1)

w
w′

v v′

2)

w
w′

v

w′′

3)

w

v′′ v v′

Let’s consider case 1). Similarly to what we have seen for a triangle,

it holds that Σ = conv(v, v′, w, w′). We want to study the width of this

simplex, so we can translate it and assume that v = 0. Then, we have

Σ = conv(0, v′, w, w′). So,

wc(Σ) = max{0, cTv′, cTw, cTw′} −min{0, cTv′, cTw, cTw′}
= max{0, cTv′, cTw, cTw′}+ max{0,−cTv,−cTw,−cTw′}.

=⇒max{
∣∣cTv′∣∣ , ∣∣cTw∣∣ , ∣∣cTw′∣∣} ≤ wc(Σ) ≤ 2 max{

∣∣cTv∣∣ , ∣∣cTw∣∣ , ∣∣cTw′∣∣}.
(4.1)

Now we define a matrix AΣ associated with the simplex Σ: AΣ =

v′TwT
w′T

.

The inequalities expressed in the last line of (4.1) can be rewritten as:

‖AΣc‖∞ ≤ wc(Σ) ≤ 2‖AΣc‖∞.

Taking the minimum over c ∈ Z3 yields

SV (Λ(AΣ)) ≤ w(Σ) ≤ 2SV (Λ(AΣ)),

where Λ(AΣ) is the lattice generated by the matrix AΣ, namely Λ(AΣ) =

{AΣx : x ∈ Z2} and SV (Λ(AΣ)) is the length of the shortest vector in that

lattice with respect to the `∞-norm. With this procedure, we also find a flat

direction for Σ. Indeed, we have that the c ∈ Z3 such that v = AΣc is the

shortest vector in Λ(AΣ), is a flat direction for the simplex Σ.

We would like to have an upper bound on the width of Σ. Namely,

w(Σ) ≤ kf(3),

50 CHAPTER 4. IDEAS FOR IP IN DIMENSION 3

with k some constant.

The first thing we are going to check is if SV (Λ(AΣ)) ≤ k
2
f(3). If this

inequality holds, than w(Σ) ≤ kf(3), and so we can solve the problem by

solving at most dkf(3)e 2-dimensional sub-problems with a fixed number of

constraints, which can be solved in O(φ) arithmetic operations each, as we

have seen in section 2.5.

In the other case, that is to say if SV (Λ(AΣ)) > k
2
f(3), we don’t have an

upper bound for the width of Σ. Therefore, we will look for a parameter π

such that f(3) ≤ w(Σπ) ≤ kf(3), where Σπ = Σ ∩ {x2 ≥ π}.

w
w′

0
v′

µw
µw′
µw′ + (1− µ)v′

µw + (1− µ)v′

We can see that

Σπ = conv(0, v′, µw, µw′, µw + (1− µ)v′, µw′ + (1− µ)v′),

where µ = π/w2. If we define Σ′π = conv(0, v′, µw, µw′) we can prove that

Σ′π ⊆ Σπ ⊆ 2Σ′π. More generally, it holds the following.

Lemma 4.3. Let Σ = conv(V ∪W) ⊆ R3 be a two-layer simplex with 0 ∈ V
and w2 < 0 for all w ∈ W and let 0 ≥ π ≥ w2 for w ∈ W . It holds that the

truncated simplex Σπ = Σ ∩ {x2 ≥ π} ⊆ 2conv(V ∪ µW), where µ = π/w2,

for w ∈ W . Therefore,

w(conv(V ∪ µW)) ≤ w(Σπ) ≤ 2w(conv(V ∪ µW)).

51

w
w′

0 v′

µw
µw′
µw′ + (1− µ)v′

µw + (1− µ)v′

Let’s call ΣV,µW := conv(V ∪ µW). We will study its width. We want to

find µ ∈ [0, 1] such that

f(3) ≤ w(ΣV,µW) ≤ k

2
f(3).

If Σ = conv(0, w, w′, w′′) we have that Σπ is already a simplex and it is a

scaled copy of Σ. In particular it holds that AΣπ = µAΣ. This means that

SV (Λ(AΣπ)) = µSV (Λ(AΣ)). So, we simply take µ = f(3)/SV (Λ(AΣ)) and

we are done. Here, the shortest vector can be computed with the algorithm

seen in section 3.2.

In the other cases (Σ = conv(0, v′, v′′, w) or Σ = conv(0, v′, w, w′)) there

is at least one row of AΣ which remains the same. So we cannot conclude as

quickly as in the previous case. We have to look for µ by trials and we need

to find a way to bound the number of trials.

52 CHAPTER 4. IDEAS FOR IP IN DIMENSION 3

Bibliography

[1] Jr. Lenstra, H. W.: Integer programming with a fixed number of variables,

Mathematics of Operations Research, 8(4):pp. 538–548, 1983.

[2] Rothvoss, T.: Integer Optimizations and Lattices, University of Wash-

ington, Spring 2016.

[3] A. I. Barvinok, A. I.: Polynomial time algorithm for counting integral

points in polyhedra when the dimension is fixed, Math. Oper. Res.,

19:769–779, 1994.

[4] De Loera, J. and Hemmecke, R. and Köppe, M.: Algebraic and Geometric

Ideas in the Theory of Discrete Optimization, Society for Industrial and

Applied Mathematics, Philadelphia, PA, 2012.

[5] Eisenbrand, F., Rote, G.: Fast 2-variable integer programming. In: In-

teger Programming and Combinatorial Optimization, IPCO 2001, K.

Aardal, B. Gerards (eds.), vol. 2081 of LNCS, Springer, pp. 78-89, 2001.

[6] Eisenbrand, F., Laue, S.: A linear algorithm for integer programming in

the plane. Math. Program.. 102. 249-259, 2005.

[7] Eisenbrand, F.: Short vectors of planar lattices via continued fractions.

Inf. Proc. Lett. 79 (3), 121–126, 2001.

[8] Khinchin, A.: Continued Fractions, Dover Publications, 1997.

[9] Chrystal, G.: Algebra - An Elementary Text-Book - Part II, Adam and

Charles Black, Edinburgh, 1889.

[10] Micciancio, D. and Goldwasser, S. : Complexity of Lattice Problems:

a cryptographic perspective, Kluwer Academic Publishers, Boston, Mas-

sachusetts, 2002.

53

54 BIBLIOGRAPHY

[11] Dadush, N. D. : Integer Programming, Lattice Algorithms, and Deter-

ministic Volume Estimation, H. Milton Stewart School of Industrial and

Systems Engineering, Georgia Institute of Technology, May 2012.

[12] Oded, R.: Lecture notes on lattices, 2009.

[13] Ajtai, M., Kumar, R., Sivakumar, D. : A Sieve Algorithm for the Short-

est Lattice Vector Problem, Almaden Research Center, San Jose, 2001.

[14] Clarkson, Kenneth L. : Las Vegas Algorithms for Linear and Integer

Programming when the Dimension is Small, J. ACM, Vol. 42 (2), pp.

488-499, New York, March 1995.

[15] Schrijver, A. : Theory of Linear and Integer Programming, John Wiley

& Sons, Inc., New York, 1986.

