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Abstract

Magnetohydrodynamics simulations performed in full general relativity
represent the ideal tool to unravel the dynamics of binary neutron star
(BNS) mergers as well as the post-merger evolution of the resulting rem-
nant object. This approach allows us to study in particular (i) the mag-
netic field amplification and the possible formation of collimated relativ-
istic outflows or jets, which is fundamental to make the connection with
the resulting short gamma-ray bursts (SGRBs), (ii) the associated grav-
itational wave (GW) emission, and (iii) the properties of the massive
and metastable neutron star remnant before it eventually collapses into
a black hole (BH), depending on the properties of the progenitor binary
system. In this Thesis we carry out this type of investigation for two
models (with mass ratio q = 0.9 and q = 1.0) consistent with the ob-
served properties of GW170817, the first BNS merger observed in GWs
by the Advanced LIGO and Virgo interferometers. Specifically, we use
the Lorene code to build the initial data for an irrotational BNS model
with the same total mass of GW170817, where we employ the APR4
equation of state for the description of matter at supra-nuclear densit-
ies. We further assume a high initial magnetization corresponding to
a maximum magnetic field strength of 5 × 1015 G. This system is then
evolved up to merger and beyond with the numerical relativity evolution
codes Einstein Toolkit and WhiskyMHD. Our results provide important
hints for the interpretation of the multi-messenger observation of this
breakthrough event.
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1 Introduction

On August 17, 2017 the LIGO-Virgo interferometers observed a gravitational
wave signal (GW170817), while a gamma-ray burst (GRB 170817A) was observed
independently by the Fermi Gamma-ray Burst Monitor. An extensive observing
campaign was launched across the electromagnetic spectrum leading to the discovery
of a bright optical transient (AT2017gfo) in the galaxy NGC 4993 less than 11
hours after the merger. These observations support the hypothesis that GW170817
was produced by the merger of two neutron stars followed by a short gamma-ray
burst and a so-called kilonova powered by the radioactive decay of r-process heavy
nuclei synthesized in the material ejected during the merger process. Combining
gravitational and electromagnetic signals, this event is not only the very first binary
neutron star merger gravitational wave observation in history but also the first
multi-messenger observation of a gravitational wave source.

Binary neutron star mergers have in fact always been the most prominent candid-
ate for a multi-messenger observation. These systems provide a very rich laboratory
to study physics at energies and conditions that are not reproducible on Earth.
The coalescence of two neutron stars, differently from two black holes, is expected
to produce strong electromagnetic counterparts to the gravitational wave signal.
An electromagnetic counterpart is of fundamental importance, beside the fact that
it allows for further tests of general relativity, as it let us infer key independent
information on the properties of the binaries and of the remnant.

The detector network is growing fast, both in the number of detectors and in
the sensitivity, and this will allow for more and more precise observations. The
expected binary neutron star merger detections per year are expected to increase
from the current 2+8

−2 to 8+42
−7 just with the addition of the KAGRA interferometer

to the Advanced LIGO and Virgo network.
However, even if this event is a great breakthrough, there are still open questions.

As an example, from GW170817 we finally managed to see the long awaited smoking
gun of the connection between compact binary mergers and short gamma-ray bursts,
but the mechanism through which a relativistic jet can be launched is still unclear.
Moreover, the impossibility to directly test the behaviour of matter at supra-nuclear
densities on Earth leaves the equation of state for neutron stars unknown. New
observations will help to shed some light on these unresolved questions, and now
more than ever we need theoretical models and simulations as they represent the
most powerful tool to study the dynamics of these catastrophic events.

In this work we perform binary neutron star merger simulations of a system
with properties consistent with those of GW170817. We consider two cases, one
with equal masses and one with different masses of the two neutron stars composing

1



2 1. Introduction

the binary. These simulations are performed in full general relativity, taking into
account magnetohydrodynamics and thus including the key role of magnetic fields.
The systems are evolved up to about 60ms after the merger.

The Thesis is organized as follows. We start with a brief introduction to the
physics of binary neutron star mergers, focusing on the expected signals. In partic-
ular, we will describe the gravitational wave emission, the short gamma-ray bursts
and their candidate central engines, and the kilonova. We will then discuss the
GW170817 event and its electromagnetic counterparts. After that we will review
some important concepts on numerical relativity, describing the formalism that is
employed in the codes we used and the numerical methods adopted. The models
setup, the parameters that we set and the tools we used to build the initial conditions
will follow. Lastly, we will present and discuss the results of the simulations.



2 The physics of binary neutron
star mergers

2.1 Neutron stars
Neutron stars (NSs) are compact objects in which the degeneracy pressure provided

by neutrons prevents the collapse into a black hole (BH). The idea of a neutron star
was first proposed by Baade and Zwicky in 1934 [1], but was mostly ignored until
1967, when Bell and Hewish observed [2] a repeating signal at a fixed point in the
sky. The signal was explained to be generated by a rotating NS (pulsar) by Gold
and Pacini [3, 4]. This collimated emission is due to very strong dipolar magnetic
fields (B ∼ 108 − 1015 G) which characterize these objects. NSs have densities as
high as ∼ 1015 g/cm3, and are formed by core-collapse of massive stars, but their
radius is much smaller (∼ 10 km) than an ordinary star.

Compact objects, and more generally static spherically symmetric bodies in gen-
eral relativity, are described by the Tolman-Oppenheimer-Volkoff equation. From
Einstein’s equations1

Rµν −
1
2gµνR = 8πTµν , (2.1.1)

with
T µν = (p+ ρ)uµuν + pgµν (2.1.2)

the stress-energy tensor of a perfect fluid, p being its pressure, ρ its density and uµ
its four-velocity, and assuming a static, spherically symmetric metric, one can find
[5, 6]

dm

dr
= 4πr2ρ (2.1.3)

and
dp

dr
= −ρm

r2

(
1 + p

ρ

)(
1 + 4πpr3

m

)(
1− 2m

r

)−1
. (2.1.4)

The function m (r) is the total mass inside the radius r. Equation 2.1.4 is known as
the Tolman-Oppenheimer-Volkoff (TOV) equation and describes a spherical sym-
metric body in hydrostatic equilibrium.

In addition to the TOV equation we need an equation of state (EOS), to relate
pressure and density (i.e. p = p (ρ)). For matter up to ρ = ρd = 4× 1011 g/cm3 the
properties of matter can be determined directly from experiments. As ρ increases,
inverse β-decay becomes more efficient, and neutrons are produced in large number,

1we will adopt a geometrized unit system, where G = c = 1.
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4 2. The physics of binary neutron star mergers

Figure 2.1: Neutron stars internal structure. [7]

while the associated neutrinos leave the star. When ρ reaches ρd, there are no
more free energy levels available for the neutrons, that must then drip out from the
nuclei, forming a neutron gas. This process is called neutron drip. For densities
ρd < ρ < ρ0 = 2.67× 1014 g/cm3, models of the EOS are based on extrapolations of
the available empirical data, as the extremely neutron rich nuclei are not observed
on Earth. For densities above the nuclear density ρ0, there is no data available,
and we must rely on theoretical models. The study of NSs systems in fact offers a
unique opportunity to test these models thus shedding some light on the properties
of matter at supra-nuclear density.

Employing different EOSs in the TOV equation we get different models of for
the interior structure of the NS. The EOSs can be divided into soft, moderate and
stiff; an EOS with higher pressure for a given density is said to be stiffer, while the
opposite is deemed as softer. A stiff EOS will generate a NS with larger radius and
lower central density as compared to a soft EOS with the same total mass.

2.1.1 Internal structure
The structure of a NS will depend on the EOS we adopt, but in general it can

be described as a series of layers with different composition and thickness. We can
see an illustration of these layers in Figure 2.1. Starting from the exterior we find:

- the surface, with densities of the order of 106 g/cm3, a region in which the
temperatures and the strong magnetic fields can significantly affect the EOS;
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- the outer crust, with densities up to the neutron drip density ρd. This is a
solid region where a lattice of heavy nuclei coexists in β-equilibrium with a
degenerate electron gas;

- the inner crust, with densities from ρd to the nuclear density ρ0. In this layer
we find a lattice of proton-rich nuclei together with a neutron gas and an
electron gas;

- the outer core, with density between ρ0 and ρcore. This region is far above the
neutron drip, so it contains mainly free neutrons, with a smaller concentration
of protons and electrons;

- the core is a region with density ρ = ρcore ∼ 1015 g/cm3. The physics of the core
is unclear and what lies in this region is still an open question. Such extremely
high densities may lead to the formation of hyperons, bosons condensates and
deconfined quark matter.

2.2 Binary neutron stars
The most promising scenario for a multi-messenger observation is a binary neut-

ron star (BNS) merger. A BNS is a system of two NS orbiting around their centre
of mass. The coalescence of such a system would generate a wide range of signals
as gravitational waves, electromagnetic emission and neutrinos. As we already an-
ticipated, NSs are the endpoint of the evolution of massive stars. In particular, the
fate of a star depends on its mass: for masses 8M� . M . 25M� the star will
undergo a supernova explosion, possibly leaving a NS remnant. In this section we
are interested in the evolution of BNS system from its formation to the merger.

2.2.1 Formation channels
The standard formation channel for a BNS system is illustrated in Figure 2.2.

We start from a system composed by a massive couple of stars (both with masses
between 8−25M� to ensure a pair of supernovae). The heavier one evolves reaching
its giant phase and finally undergoes a Type Ib, Ic or II supernova, leaving behind
what will become a NS. If the system is not destroyed by the explosion, the second
star evolves in turn overflowing its Roche lobe. The first NS starts accreting mat-
ter from the companion and later a common envelope phase can be established, if
the mass is transferred too fast to be accreted. Dynamical friction dramatically
shrinks the binary separation, until sufficient energy is released to expel the envel-
ope. Without this step the separation would be too wide to lead to a merger within
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Figure 2.2: Binary neutron star standard formation channel. [8]

a Hubble time. The core of the secondary will eventually undergo a supernova too,
either unbinding the system or leaving a tight binary.

2.2.2 Merger dynamics
A BNS merger is characterized by strong gravitational waves (GWs) emission,

with a typical form which is illustrated in Figure 2.3. The evolution of the system
can be divided into three stages, known as inspiral, merger and ringdown.

Inspiral: in this phase the two objects follow an inspiralling orbit around their
centre of mass. The orbit gradually shrinks due to energy loss through GWs emis-
sion. The inspiral phase starts when the binary is formed and it takes a long time
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Figure 2.3: Binary merger phases. [9]

(mainly depending on the initial separation) to get to the second stage. This is
due to the fact that during this phase the radiation emitted has very low power.
The GW signal produced by an inspiralling binary is a sinusoid with amplitude and
frequency varying in time while the separation decreases. In this phase we can treat
the object as point-masses and we can derive the waveform analytically.

Merger: the merger phase begins shortly before the two objects come into con-
tact. The point-mass approximation is no longer valid here, as the system is governed
by strong gravitational field and involves tidal deformation and disruption. To un-
derstand the dynamics in this phase we need full general relativistic simulations,
which are also predicting the GW emission. The merger of two NSs is not well
understood principally due to the uncertainty about the EOS and the effect of the
magnetic fields. Gravitational waves produced during this stage carry important in-
formation about the structure of the NS and thus about the EOS for supra-nuclear
density. This phase takes very short time: from milliseconds to seconds, depending
on the masses.

Ringdown: after the merger phase the emitted radiation can be computed by
perturbation theory. It consists of a superposition of quasi-normal modes of the
remnant, which can give information about the object: in case of a BH remnant,
the quasi-normal modes depend on the mass and angular momentum. For a NS
remnant instead there is a relation with the EOS. The remaining object will “ring”,
namely will be oscillating in shape around an equilibrium, emitting GWs due the
oscillation asymmetry. The oscillating modes are damped by the GW emission.
Signals in this stage are emitted in a very short time, varying from milliseconds to
seconds as the previous phase, depending again on the mass of the remnant.
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Figure 2.4: Post-merger scenarios for a binary neutron star system. [10]

2.2.3 Post-merger scenarios
While NS-BH mergers will unavoidably end up in a BH, possibly surrounded by

a massive accretion disk, after a NS-NS merger there are different possible scenarios
(Figure 2.4), depending on the EOS and the rate M/MTOV, with M the total mass
of the binary. The TOV mass MTOV is the maximum mass allowed for hydrostatic
equilibrium of an isolated non-rotating star.

- For M/MTOV & 1.5 we expect a prompt collapse to a BH surrounded by a
torus over a timescale of few ms. The torus will eventually disappear after a
few seconds or less after being entirely accreted onto the BH.

- For 1 . M/MTOV . 1.5, the binary NS will merge into a hypermassive NS
(HMNS), a NS with mass above the maximum mass allowed for uniformly ro-
tating configurations. Typically, HMNSs will collapse into a BH on a timescale
of 10− 100ms. HMNSs are believed to be supported by the rapid rotation of
the core, and undergo a collapse when enough differential rotation is carried
away by gravitational radiation emission or electromagnetic torque.

- ForM/MTOV . 1 the binaries will merge into a long-lived NS, which we assume
to be either supramassive (SMNS, a NS with mass above the maximum allowed
for non rotating configurations) or indefinitely stable. SMNSs can survive
for minutes or even longer, against the 10 − 100ms of the HMNS. They are
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believed to be supported by uniform rotation and to collapse when enough
angular momentum is removed via magnetic dipole radiation.

The mechanism leading to the collapse to a BH of HMNSs and SMNSs is still
poorly understood, since a growing number of simulations indicate that they both
have slowly rotating cores and that collapse is avoided because a significant amount
of matter in the outer layers approaches Kepler velocity [11, 12, 13]. Binary NS
mergers leading to a NS (hypermassive, supramassive or stable) are characterized
by a post-merger phase in which the GWs emission can be significant for several
milliseconds and much stronger than those emitted by a BH remnant ringdown
signal. The post-merger signal carries information about the remnant structure,
thus representing another promising way to constrain the NS EOS.

2.3 Gravitational wave emission
Gravitational waves arise as solutions to the linearized Einstein’s field equations.

In the weak field limit we can decompose the metric as

gµν = ηµν + hµν , (2.3.1)

where hµν is a small perturbation (i.e. |hµν | � 1) over the flat background metric
η = diag (−1, 1, 1, 1). To simplify the expressions we introduce the trace-reversed
metric

h̄µν = hµν −
1
2ηµνh (2.3.2)

and we impose the gauge condition

∂ν h̄
µν = 0. (2.3.3)

From 2.1.1, at first order in hµν , we find

�h̄µν = −16πTµν , (2.3.4)

with � = ∂µ∂µ and h = ηµνhµν . Equations 2.3.4 are the linearized field equations.
In empty space, where Tµν = 0, the solution is a monochromatic plane-wave

h̄µν = Cµνe
ikαxα , (2.3.5)

where Cµν and kµ satisfy the conditions kµkµ = 0 and Cµνkν = 0.
The solution of equation 2.3.4 is given by [14]

h̄µν (t,x) =
∫ 4T µν (t− |x− y|,y)

|x− y|
d3y, (2.3.6)
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and is obtained in analogy with electrodynamics by the convolution of the source
term with the Green function

G (x− y) = − 1
4π|x− y|

δ
(
|x− y| − x0 − y0

)
.

Equation 2.3.6 shows that the metric perturbation at time t depends on the stress-
energy tensor evaluated at the retarded time tr = t− |x− y|.

For the sake of conciseness, we will state some results without further details,
which can be found for example in [14] and [15].

Let’s consider our source to be isolated, far away and slowly moving, at distance
r from the observer. We define the quadrupole moment tensor of the energy density
as

I ij =
∫
yiyjT 00 (t,y) d3y, (2.3.7)

and the reduced mass quadrupole as

Iij = Iij −
1
3δijI, (2.3.8)

with I = Ikk the trace of Iij. These quantities allow us to drastically simplify the
equations. The metric h̄µν is related to the quadrupole moment by the relation

h̄ij (t,x) = 2
r
Ïij (tr) . (2.3.9)

As one can notice, in the previous equations we considered only the spatial compon-
ents of the tensors involved. This is a consequence of the fact that the constraint
∂µh̄

µν = 0 implies a relation between the 0ν-components and the iν-components,
such that we can derive the former from the latter.

A useful gauge which is usually imposed when dealing with GWs in empty space
(e.g. at the detector, far from the source) is the transverse-traceless gauge (TT-
gauge), in which h̄µν = hµν . In this gauge (for a GW propagating along the z-axis)
the metric takes the simple form

hTTij =

h+ h× 0
h× −h+ 0
0 0 0


ij

cos [ω (t− z)] , (2.3.10)

where ω = k0 is the frequency of the wave. The TT-gauge is interesting as it removes
all but the physical degrees of freedom, showing that in fact gravity waves have two
polarization states. The effect of h+ and h× polarizations on a ring of particle can
be seen in Figure 2.5. To extract the transverse-traceless part of a second order
tensor we can use the transverse-traceless projector P , defined as

Pjkmn ≡ PjmPkn −
1
2PjkPmn, (2.3.11)
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Figure 2.5: Effect of a gravitational wave on a ring of points in the xy-plane.
[16]

where Pjk ≡ δjk − njnk is the operator which projects a vector onto the plane
orthogonal to nµ, which is the propagation direction of the wave (a GW from 2.3.9
is a spherical wave, but locally and far from the source can be seen as a plane-wave
propagating along nµ).

Finally, it is possible to calculate the power emission by GW radiation, which is
given by

P = 1
5
〈...
I ij

...
I ij

〉
, (2.3.12)

where 〈 . . . 〉 denotes an average over several wavelength; this expression is valid as
long as the slowly moving condition is satisfied.

2.3.1 Gravitational waves from inspiralling binaries
As an example we consider a system of two point masses in circular orbit around

their common centre of mass. Let m1 and m2 be the masses of the two objects,
with M = m1 + m2 the total mass and µ = m1m2/ (m1 +m2) the reduced mass,
and l = r1 + r2 (with reference to Figure 2.6). The orbital frequency is given by
ω =

√
M/l3. In the reference system depicted in Figure 2.6 the coordinates for m1

and m2 are given by

x1 = m2

M
l cos (ωt) x2 = −m1

M
l cos (ωt) (2.3.13)

y1 = m2

M
l sin (ωt) y2 = −m1

M
l sin (ωt) (2.3.14)

and z1 = z2 = 0, and the 00-component of stress-energy tensor is

T 00 =
2∑

n=1
mnδ (x− xn) δ (y − yn) δ (z) . (2.3.15)
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Figure 2.6: Centre of mass frame for binary system. Angular velocity is per-
pendicular to the xy-plane.

The time-varying part of the reduced quadrupole moment then follows from the
definition 2.3.8, and it can be written as

Iij = µ

2 l
2Aij, (2.3.16)

with the matrix Aij (t) given by

Aij (t) =

cos (2ωt) sin (2ωt) 0
sin (2ωt) − cos (2ωt) 0

0 0 0


ij

(2.3.17)

In the TT-gauge ITTij = PijklIkl = PijklIkl, so from Equation 2.3.9 we have

hTTij (t,x) = 2
r
ÏTTij (t− r) = h0A

TT
ij (t− r) , (2.3.18)

where ATT
ij = Aij if the line of sight coincide with the z-axis, and h0 = 4µM

rl
is the

wave amplitude. From Equation 2.3.18 we see that the radiation is emitted at twice
the orbital frequency.
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Figure 2.7: Example of an inspiral waveform.[17]

Consider now the time-evolution of the system. The power emitted is given by
Equation 2.3.12

WGW = 32
5
µ2M3

l5
. (2.3.19)

Supposing that the system has the time to adjust the orbit to compensate the energy
loss by gravitational radiation, i.e. Ėorbital + WGW = 0, where Eorbital is the sum
of kinetic and potential energy, one can derive how the orbital separation l changes
with time due to the emission of GWs:

l (t) = l0

(
1− t

tcoal

) 1
4
, (2.3.20)

where l0 = l (t = 0) and tcoal = 5
256

l40
µM2 is the time at which the separation becomes

null. Since in a realistic case the two masses are not point-like, the merger starts
before tcoal. Furthermore, when the two objects are close enough, the weak field
approximation and the slow motion assumption are not satisfied, making the quad-
rupole formalism failing. However, tcoal gives an indication of the time that the
system needs to merge starting from an orbital distance l0.

From the definition of the orbital frequency we can compute how it changes in
time:

ω =
√
M/l (t)3 = ω0

(
1− t

tcoal

)− 3
8
, (2.3.21)

where ω0 =
√
M/l30. The GW frequency νGW = ω/π is twice the orbital frequency.

The amplitude can be written as

h0 (t) = 4π 2
3M 5

3

r
ν

2
3

GW (t) , (2.3.22)
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whereM = µ3/5M2/5 is the so-called “chirp mass”. We then see that the amplitude
and frequency emitted by a coalescing binary system increase with time, with a
characteristic signal similar to the chirping of bird. An example of such signal is
depicted in Figure 2.7.

2.4 Short gamma-ray bursts
Gamma-ray bursts (GRBs) are among the brightest events known in the Uni-

verse. They consist of highly energetic photon beams (observable in the gamma-ray
band) that light up a tiny region in the sky, with a duration from a fraction of
second up to hundreds or even thousands of seconds. They are characterized by a
random distribution, and a current rate of the order of few hundreds per year.

Two classes of GRBs have been identified based on duration and spectral hard-
ness. We refer to the long-soft bursts as long GRBs, while the short-hard bursts
are known as short GRBs (SGRBs). The distinction from long to short is given by
T90 ≷ 2 s, where T90 is the time window containing the 90% of the energy released.
This distinction is indicative of two types of GRBs, associated with different pro-
genitor systems. Observational results allowed to link long GRBs with the death
of massive stars [18]. In particular, these events have only been observed in star-
forming galaxies and often found in the brightest star-forming regions of the host
galaxy [19, 20]. Moreover, starting with the supernova 1998bw [21], there are a
number of direct associations of long GRBs with type Ic core-collapse supernovae
that have been collected over the last 20 years, confirming the connection between
the two phenomena.

On the other side, SGRBs’ progenitor has not been confidently identified until
2017 (see Section 2.6). While the association with supernovae seemed to be ex-
cluded by the observations, the leading candidates as a source of SGRBs were in
fact compact binary systems composed of two NSs or a NS and a BH. This idea
was supported by a broadly consistent event rates and the fact that these systems
are compatible with short-duration and powerful central engine, having dynamical
timescales of milliseconds, and baryon-poor environments [22]. In addition, the lack
of supernova associations, the observation in all type of host galaxies, and the larger
offset from the centre of the host galaxies, which suggests a progenitor system with
large natal kick and significant time delay between its formation and the SGRB,
strengthened the hypothesis of a binary merger as a central engine while on the
other side disfavoured the connection with core-collapse supernovae [23].

Another fact supporting the binary merger scenario was provided by the obser-
vation of an optical/infrared afterglow emission in the GRB event 130603B, which
was interpreted as a signature of a binary merger [24, 25]. BNS and NS-BH systems
eject a significant amount of matter in the surroundings, in particular neutron-rich
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nuclei. In this environments r-process nucleosynthesis is expected to take place
[26, 27, 28], and the radioactive decay of the produced elements could lead to a
potentially observable thermal emission [29]. The resulting signal is known as “kilo-
nova” or “macronova” (which will be discussed in Section 2.5), and is a possible EM
counterpart to the GW signal expected from a compact binary merger. The GRB
130603B was compatible with a kilonova, suggesting a merger event as a progenitor
system for the burst.

The August 17th 2017 event (see Section 2.6) proved the binary merger hypo-
thesis on SGRB progenitors. The long-awaited smoking gun evidence was a SGRB
detection in coincidence with a GW signal from the merger. While this discov-
ery represents a great breakthrough, the mechanism by which a binary merger can
power a SGRB is still unclear. In the following, we will focus on three main scenarios
leading to the formation of a relativistic jet.

2.4.1 Central engine scenarios
While numerous GRB observations provided information on the jet structure and

evolution, as well as constraints on the mechanisms responsible for the gamma-ray
emission and the multi-wavelength afterglows, much less observational constraints
exist on the nature of the central engine, on the launching mechanism and on the
initial properties of the incipient jet. This lack of information, together with the
very rich but yet partially unknown physics, makes this investigation extremely
challenging.

In the most prominent scenario the role of central engine is played by a BH
surrounded by a massive accretion disk (BH-disk). This is a very natural outcome
of a BNS merger, and can also be the outcome a NS-BH merger under certain
(realistic) conditions. These systems offer an almost baryon-free environment along
the BH spin axis, which allows the launch of a relativistic outflow; moreover, the
merger dynamical timescales are consistent with the requested duration of the SGRB
central engine. The prompt SGRB emission, assuming an opening angle of θjet ∼
10◦, results in luminosities of the order of L ∼ 1049 − 1050 erg/s. We then need a
mechanism which can produce such energies. There are two leading mechanisms
that have been proposed: the νν̄ annihilation along the BH spin axis [26] and
magnetohydrodynamics effects possibly including the Blandford-Znajek mechanism
[30].

Massive disks around hyperaccreting stellar-mass BHs are expected to emit a
large number of neutrinos and antineutrinos. The cumulative energy deposition at
the poles of the BH via νν̄ annihilation is of the order of ∼ 1049 erg, as found by
recent simulations [31, 32], thus being at the lower bound of the energy budget. An
additional problem may be the baryon pollution along the spin axis of the BH. For a
BNS the surroundings of the merger site can be polluted by dynamical ejecta, post-
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Figure 2.8: Simulation of a BNS merger showing the formation of a jet-like
structure in the magnetic field lines. [34]

merger baryon winds and possibly metastable NS remnant. Simulations studying
the jet-ejecta interaction seem to agree that a neutrino-powered jet would not have
enough energy to successfully emerge from the environment, nor to explain a typical
SGRB. For a NS-BH merger (where there is less pollution) the neutrino-powered jet
energy would only be sufficient to explain SGRBs of relatively low luminosity. Due
to above difficulties this mechanism is not the most promising one.

Although there are different magnetohydrodynamics mechanisms, the most dis-
cussed is the Blandford-Znajek mechanism. The energy to launch a jet comes from
a Kerr BH threaded by a strong magnetic field connected to an external load of
material (e.g. a magnetized accretion disk). This combination can power a Poyn-
ting flux dominated outflow, at the expense of the BH rotational energy, which is
extracted via magnetic torque. The resulting luminosity is approximately given by
[33]

LBZ ∼ 1051 (χ/0.8)2 (MBH/6M�)2
(
BBH/1015 G

)2
erg/s, (2.4.1)

where χ and MBH are the dimensionless spin and mass of the BH and BBH is the
characteristic magnetic field strength close to the BH. As we can see strong magnetic
fields are necessary. This mechanism has been already seen at work in numerical
simulations; in Figure 2.8 we see the magnetic field lines forming a jet structure
along the spin axis of the BH.

As we already pointed out, a BNS can merge into a metastable or even stable
NS. A HMNS will collapse into a BH within few to about 100 milliseconds, falling
in the BH-disk scenario already described. A long-lived NS instead is the central
engine of the so-called magnetar scenario. A suggestion that a fraction of SGRBs
might be produced by a NS remnant comes from specific features in the soft X-ray
emission detected from the Swift satellite [35]. These features possibly indicate an
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Figure 2.9: Evolution of a BNS merger in the time-reversal scenario. Phase
I: A BNS merger forms a differentially rotating NS that emits a baryon-loaded
wind. Phase II: the NS eventually settles down to uniform rotation and inflates
a pulsar wind nebula that sweeps up all the ejecta material into a thin shell.
Phase III: the NS collapses into a BH, and a jet is launched. [36]

ongoing activity on timescales greater that the typical accretion timescale of a disk
onto a BH.

In the magnetar scenario the jet is expected to be launched by a strongly magnet-
ized NS. In particular, the mechanism by which the jet is produced is still unclear,
but the large rotational energy of the magnetar, if efficiently channelled via its strong
magnetic field, would in principle be sufficient to power a SGRB. This model is in-
teresting as it can explain the X-ray plateaus in the afterglow that accompanied a
significant fraction of the observed SGRBs. In fact, these X-ray transients can be
produced by the EM spin-down radiation of the magnetar, as after launching the
jet there is still a very large energy reservoir given by the NS rotational energy that
can be extracted via the magnetic field.

A major issue with this scenario is the presence of a baryon polluted environment,
which is expected to be of higher density as compared to the BH-disk, and can thus
prevent the jet from escaping. A recently proposed scenario which can overcome
the difficulties of the magnetar model and at the same time can explain the X-ray
afterglows is the time-reversal scenario [36]. In this scenario the BNS merge into a
long-lived but metastable NS (i.e. a SMNS). At some point the centrifugal support
will become insufficient to prevent the collapse into a BH. The time-reversal assumes
that after the collapse we have a BH surrounded by an accretion disk, which can
launch a jet as described in the BH-disk scenario. Conversely to the magnetar,
the jet here is launched after the spin-down radiation has been emitted. At this
time, the surroundings is no longer heavily baryon polluted, and therefore the jet
finds no obstacles to its propagation. Because of the high optical depth of both
the nebula and the ejecta, the spin-down energy remains trapped for a long time
before emerging and producing the X-ray plateau. This means that the SGRB and
the X-ray transient are observed in a reverse order with respect to their respective
energy emission from the central object. In Figure 2.9 we see the evolution of the
system in the time-reversal scenario.
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2.5 Kilonovae
Kilonovae are isotropic thermal transients at optical/infrared wavelengths lasting

days to weeks, providing a robust EM counterpart to the GW signal. They are
expected to accompany essentially all BNS mergers and a fraction of BH-NS mergers.
To understand the physics of kilonovae we start considering the merger ejecta of total
massM , expanding at a constant mean velocity v, with mean radius R ≈ vt at time
t after the merger. The ejecta is extremely hot immediately after being ejected,
however this thermal energy cannot escape as radiation because of the high optical
depth at early times, and correspondingly long photon diffusion timescales. As the
ejecta expands, the diffusion time decreases, until radiation can escape, determining
the characteristic timescale at which the light curve peaks. This timescale can be
written as [37]

tpeak ≡
(

3Mκ

4πβv

) 1
2

≈ 1.6 d
(

M

10−2M�

) 1
2 ( v

0.1 c

)− 1
2
(

κ

1 cm2g−1

) 1
2

, (2.5.1)

where β ≈ 3 is a constant and depends on the precise density profile of the ejecta and
κ is the opacity (cross section per unit mass). For values of κ ∼ 0.3 − 30 cm2g−1,
which characterize the range from lanthanide-free to lanthanide-rich matter (the
reason to do this distinction will be clear later), Equation 2.5.1 predicts timescales
from 1 day to 1 week. The freshly ejected matter has temperatures which in general
exceed 109 − 1010 K, but without a source of heating, this matter will cool through
adiabatic expansion, loosing almost all of its initial thermal energy before reaching
the radius at which the ejecta becomes transparent. These losses would leave the
ejecta too cold to be visible at large distances. In a realistic situation the ejecta will
be heated by the radioactivity of newly synthesized heavy elements, with the peak
luminosity of the observed emission depending on the heating rate. At this point it
is clear that we need to know three main ingredients: the mass and velocity of the
ejecta, its opacity, and the heating source.

In BNS (and BH-NS) mergers there are mainly three important sources of ejecta.
First, the matter is ejected on dynamical timescales of milliseconds either by tidal
forces or due to compression-induced heating at the interface between merging bod-
ies. Secondly, if there is a massive NS remnant phase (only for BNS), neutrino or
magnetically induced baryon winds can be launched. Finally, further mass ejec-
tion is expected from the accretion disk surrounding the final BH. The properties
of these different types of ejecta are well described in literature (see [37] and ref-
erences therein). Typical values of mass and velocity for BNS merger ejecta are
M ∼ 10−3 − 10−2M� and v ∼ 0.1− 0.3 c, thus the parametrization in 2.5.1.

The opacity of the ejecta will depend on its conditions after the merger. In Figure
2.10 we can see a schematic illustration of the opacity of the ejecta as function of the
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Figure 2.10: Schematic and approximate illustration of the opacity of a BNS
merger ejecta as function of photons energy. See the text for a more detailed
description. [37]

photon energy at a fixed epoch near the peak light. At the lowest frequencies the free-
free absorption dominates. After the ejecta has expanded, the decreasing density and
the fewer number of free electrons (as the ejecta cools down and recombination takes
place) make the free-free opacity decrease rapidly, leaving the IR band transparent.
At optical wavelength the opacity depends sensitively on the ejecta composition,
i.e. on the outcome of the heavy element nucleosynthesis (more details below).
To simplify, we can distinguish between lanthanide-free and lanthanide-rich. For
lanthanide-free ejecta the opacity follows the dashed line of Fe. A lanthanide-rich
ejecta follows the solid line La, and the opacity can be orders of magnitude higher.
Throughout the far UV and X-ray bands the bound-free transitions of the partially
neutral ejecta dominates the opacity. This prevents radiation from escaping at these
frequencies. At hard X-rays and gamma-ray energies the electron scattering provides
an important opacity, while for gamma-ray energies greater than 106 GeV the opacity
is due to electron/positron pair production on nuclei. The low opacity in the ≈ MeV
energy range implies that gamma-rays largely escape before the optical/NIR peak.
Gamma-rays with energies up to ≈ TeV (not shown in figure) can also undergo pair
production by interacting with lower energy optical or X-ray photons. The optical
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Figure 2.11: Schematic representation of the different components of the ejecta
leading to either a red or a blue kilonova. [37]

depth for these energies shows ([37]) that ∼ GeV−TeV photons will be trapped for
days to weeks after the merger. We can then conclude that a prompt gamma-ray
emission (e.g. GRBs) is unlikely to come from the merger ejecta.

The ejecta material is very hot and highly neutron rich (Ye ≡ np/ (nn + np) .
0.25). This creates the ideal conditions for r-process nucleosynthesis, with the form-
ation of heavy unstable isotopes. The radioactive decay of these nuclei can act as a
dominant heating source for the ejecta [37]. The luminosity and color evolution of
kilonovae encode information on the quantity of r-process ejecta and, in principle,
the abundance of lanthanide/actinide elements. The ejected matter with Ye . 0.25,
capable of forming heavy r-process nuclei, will produce a high-opacity lanthanide-
rich layer within the equatorially focused tidal tail, or in more spherical outflows
from the accretion disk. The emission will peak at NIR wavelength on timescale
of several days, while the UV/optical wavebands are suppressed due to the high
lanthanide opacity (see Figure 2.10). This results in a “red” kilonova. Some ejected
matter may also contain a lower neutron abundance (i.e. Ye & 0.30), being then
low-opacity and lanthanide-free, as the r-process nucleosynthesis is not efficient as in
the first case. This matter can reside in the polar regions, due to dynamical ejection,
or in more isotropic outflows from the massive NS remnant or the accretion disk. As
shown in Figure 2.10, this condition leaves the optical (up to UV) band transparent,
which is where the emission now peaks. The timescale of this “blue” kilonova is
about 1 day, and can be 2 − 3 magnitudes brighter than the red one. Figure 2.11
shows the different components of the ejecta and their kilonova emission. In general
both the blue and red components can be present at the same time, so the total
kilonova can be though as a combination of the two.
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2.6 The first multi-messenger observation of a bin-
ary neutron star merger

On August 17, 2017, the LIGO-Virgo detector network observed a gravitational
wave signal from the inspiral of two objects consistent with a BNS. This event
was also accompanied by a multi-wavelength emission of photons across the whole
EM spectrum. Being the first observation combining GW and EM signals, this
breakthrough event marked the beginning of multi-messenger astrophysics with GW
sources. In the following we discuss the most important signals associated with this
merger: GW signal, SGRB, and kilonova.

2.6.1 The gravitational wave signal GW170817
The gravitational wave signal [38] had a duration of about 100 s (calculated

starting from 24Hz, when it emerged from the instrumental noise), and it was
identified as a BNS merger inspiral by matched filtering the data against post-
Newtonian waveform models. With a combined signal-to-noise ration of 32.4, it
is the loudest yet observed. Thanks to the combination of the data from LIGO
and Virgo detectors, the event was localized with relatively high precision. The
first localization enabled an EM follow-up campaign that ultimately identified a
counterpart near the galaxy NGC 4993, consistent with the localization and distance
inferred from the GW signal. In Figure 2.12 we see the time-frequency representation
of GW170817. The signal is clearly visible in the LIGO data, while it does not appear
in the Virgo panel due to the disfavourable direction of the source with respect to
the detector’s antenna pattern. The Virgo data however contributed to the sky
localization of the source in a sky area of about 28 deg2 at a luminosity distance of
∼ 40Mpc. The chirp mass is well constrained from the data, while the masses of the
two object are affected by the degeneracy between the mass ratio and the aligned
spin components. For high-spin assumption the mass ration q can be restricted to
q ∈ (0.53− 1.0), while for the low-spin case q ∈ (0.73− 1.0), while the chirp mass
isM = 1.186+0.001

−0.001M� [39]. The GW signal carries information about the internal
structure (i.e. on the EOS). In particular, the tidal deformability Λ = 2/3 k2 (R/m)5,
where k2 is the second Love number, which is an EOS-sensitive quantity, affects the
waveform inducing a mass-quadrupole moment and accelerating the coalescence.
The tidal deformability parameters inferred from the data of GW170817 allowed to
rule out some stiff EOS [40], deeming soft EOS as the APR4 used in our simulations
more favourable (motivating our choice).
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Figure 2.12: Time-frequency representation of GW170817. [38]

2.6.2 The gamma-ray burst GRB 170817A
After about 1.7 s after the BNS merger a signal in the gamma-ray band was

detected [41]. The combined constraints on the sky position of the event from GW
and gamma-ray signals was fundamental for the optical follow-up search that even-
tually identified the host galaxy, NGC 4993, at a distance consistent with the GW
estimate. The duration (T90 = 2.0 ± 0.5 s) and the spectrum of GRB 170817A are
compatible with a SGRB event, enforcing the idea of BNS mergers as central en-
gine for SGRBs. At the beginning, however, it was not possible to firmly establish
the nature of GRB 170817A for several reasons. Considering the distance of the
event, the observed burst resulted in a much less energetic (∼ 1046 erg) and lumin-
ous (∼ 1047 erg/s) than expected in a canonical SGRB. Moreover, X-ray and radio



2.6. The first multi-messenger observation of a binary neutron star merger 23

Figure 2.13: Proper motion of the radio counterpart of GW170817. [43]

afterglows emerging 9 and 16 days after the merger were inconsistent with an ultra-
relativistic jet pointing towards us. Further modelling of the prompt and afterglow
emission suggested that the observed event was produced by a mildly relativistic
outflow along the line of sight, allowing for different interpretations.

Two main ideas were proposed [42]. One possibility is that the event produced
a canonical SGRB jet pointing away from us. The jet core has not been observed,
while we detected a sub-energetic prompt gamma-ray emission produced by the
mildly relativistic and wide angle cocoon formed around the jet by the interaction
of the latter with the baryon polluted environment. This hypothesis is broadly
compatible with the BH-disk scenario, while the magnetar scenario is disfavoured,
but it cannot be completely excluded.

Another possible interpretation is that the incipient jet launched by the mer-
ger was not powerful enough to escape the baryon-polluted surroundings, forming a
choked jet. This resulted into a jet-less, wide angle and mildly relativistic outflow.
The main difference with the canonical SGRB is that the choked jet is more favour-
able for the magnetar scenario, as the difficulty in the production of a successful jet
would be in agreement with the observations.

Further investigations [43, 44] allowed to solve the puzzle. In Figure 2.13 we see
that the position of the radio source associated with GW170817 changed in time.
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Figure 2.14: Time evolution of the AT2017gfo spectrum. [45]

This is not compatible with an isotropic emission, as we would expect an expanding
but fixed source, implying that the choked jet scenario is unlikely. Moreover Ghir-
landa et al. [44] found that the radio source remained rather compact over time,
also disfavouring a choked jet scenario. In conclusion, GRB 170817 is most likely a
canonical GRB observed off-axis by about 15− 30 degrees.

2.6.3 The kilonova AT2017gfo
After 11 hours from the merger a UV-optical-NIR transient (named AT2017gfo)

was detected in association with GW170817. The signal rapidly evolved from blue
colours peaked at UV wavelength on a timescale of a day to red colours peaked
around 1.5µm on a timescale of several days. This transient is consistent with cur-
rent models for thermal emission from kilonovae, with the peaks timescale matching
the expected ones given by Equation 2.5.1. The time evolution of the AT2017gfo
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Figure 2.15: Overview of the phenomenology of a BNS merger, highlighting
the most likely path for GW170817. [47]

spectrum is shown in Figure 2.14.
At the beginning the spectrum is peaked at blue wavelength. The blue com-

ponent is characterized by a total luminosity of 3.2× 1041 erg/s [45], ejecta mass of
∼ 10−2M�, velocity ∼ 0.2 c and opacity ∼ 0.5 cm2/g. Such values are indicative
of a lanthanide-poor ejecta. Further modelling of the event showed that the blue
emission of AT2017gfo is compatible with magnetically driven winds ejecta in the
early post merger phase (e.g. [46]).

The red component emerged after few days, with mass of ∼ 10−2 and velocity
of 0.1 c and showed an opacity increasing with time up to 10 cm2/g, indicating a
lanthanide-rich ejecta originating from disk outflows [47].

The most likely evolution path of GW170817 is depicted in Figure 2.15. To
produce magnetically driven winds the BNS should have merged into a meta-stable
NS, but the lifetime of this remnant should not be too long. In fact, if the remnant
NS survives too much (more than a few hundred ms), strong neutrino emission
would raise the electron fraction of the disk outflows, turning their kilonova blue.
In conclusion, while the GW data alone cannot exclude a prompt collapse to a BH
nor a very long-lived NS remnant, the properties of the kilonova AT2017gfo strongly
favour a short-lived massive remnant NS collapsing to a BH within a few hundreds
of ms.
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3 Numerical approach to General
Relativity

General Relativity is a very challenging framework to work within. In fact, very
few analytical solutions to Einstein’s equations (EE) are known, and they can be
found only in ideal cases (e.g. the Schwarzschild solution for a non-rotating black
hole). Since we want to explore the extreme physics of a BNS merger, we should
be able to write down the initial conditions of the system and evolve it through
EE. While we will focus on the initial conditions in Chapter 4, here we want to
understand how to perform the evolution of a system in General Relativity without
knowing the explicit solutions of EE. Thanks to modern supercomputers we are
able to numerically solve EE, but first we need to write them in a suitable way for
numerical integration.

In the following we will derive the fundamental equations governing the evolution
of spacetime in the 3+1 formalism. We will find a different but equivalent form
for EE, which is more suitable for integration. In particular we will present the
BSSNOK formalism, which is the one implemented in the code we use. After that
we will introduce the fundamental equations of magnetohydrodynamics and the
Valencia formulation. In the last section we will review some numerical methods of
our interest.

3.1 The 3+1 decomposition of Einstein’s Equa-
tions

The problem we are facing can be posed in terms of a traditional Cauchy problem.
The evolution of a general relativistic gravitational field is determined by the metric
quantities gµν and their time derivative ∂tgµν , as in classical dynamics for a given
system it is determined by the initial positions and velocities of its constituents. We
have then to specify those metric quantities on every point in space at a given initial
time. Then, provided we can obtain from EE expressions for ∂2

t gµν , we can compute
gµν and ∂tgµν on a new spacelike hypersurface at some time t+ δt integrating them.
To obtain such expressions for ∂2

t gµν is not so trivial. We need 10 second derivatives,
and it seems we have 10 field equations, but recalling the Bianchi identity for which
DνG

µν = 0, we see that

∂tG
µ0 = −∂iGµi −GνρΓµνρ −GµνΓρνρ.

27
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Figure 3.1: A foliation of the spacetime M [48].

Since on the right hand side there are not third time derivatives nor higher, Gµ0

cannot contain second time derivatives, so the 4 equations Gµ0 = 8πT µ0 will not
furnish any information required for the dynamical evolution. They will rather sup-
ply constraints for the initial data, giving four relations between gµν and their time
derivatives which have to be fulfilled on the initial hypersurface. The information
we need are then to be extracted from the six Gij = 8πT ij equations. Apparently
there is a mismatch between the number of required quantities (10), and the number
of dynamical field equations (6), but since we are free to choose four different co-
ordinates to label the points in our spacetime we can adopt, for example, Gaussian
normal coordinates, and set g00 = −1 and g0i = 0, reducing to six metric variables
gij to evolve.

At this point we see that formulating the Cauchy problem in General Relativity
logically involves the decomposition of spacetime into a three-dimensional space plus
a one-dimensional time.

3.1.1 Foliations of spacetime
Let us consider a four-dimensional manifoldM with metric gµν . We assume that

the spacetime (M , gµν) can be foliated into a family of non-intersecting spacelike
three-surfaces Σ, which arise, at least locally, as the level surfaces of a scalar function
t that can be interpreted as a global time function (Figure 3.1). From the function
t we can define the 1-form

Ωµ = ∇µt, (3.1.1)
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which is closed by construction (∇[µΩν] = 0). We can compute the norm of Ω as

||Ω||2 = gµν∇µt∇νt ≡ −
1
α2 . (3.1.2)

We will see that α measures how much proper time elapses between neighboring
slices along the normal vector Ωµ to the slice, and is therefore called lapse function.
We assume α to be positive such that Ωµ is timelike and Σ is spacelike everywhere.
We then define the unit normal vector to the slices as

nµ ≡ −gµνων , (3.1.3)

where ωµ ≡ αΩµ. The negative sign has been chosen so that nµ points in the
direction of increasing t. By construction nµ is normalized and timelike, and thus
can be thought as the four-velocity of an observer whose worldline is always normal
to the slices Σ.

With nµ we can proceed constructing the spatial metric γµν induced by gµν on
Σ:

γµν = gµν + nµnν . (3.1.4)
The tensor γµν is then a projector which projects out all geometric objects lying along
nµ. We see by contracting with nµ that γµν is purely spatial, in fact nµγµν = 0.

We now introduce two projection operators; the first one projects a 4-dimensional
tensor into a spatial slice, and can be found raising one index of the spatial metric
γµν

γµν = gµν + nµnν = δµν + nµnν . (3.1.5)
The second one is the normal operator, defined as

Nµ
ν ≡ −nµnν = δµν − γµν (3.1.6)

To project a higher rank tensor we have to contract any free index with a projection
operator. By mean of these projectors we can split any tensor into a purely spatial
part, which lies in the hypersurfaces Σ, and a timelike part, normal to the spatial
surface.

We will also need a 3-dimensional covariant derivative, and it can be constructed
by projecting all the indices of a 4-dimensional covariant derivative into Σ. For a
generic tensor it is

DµT
ν1...νn

ρ1...ρn = γ κ
µ γ ν1

σ1 ...γ νn
σn γη1

ρ1 ...γ
ηn
ρn∇κT

σ1...σn
η1...ηn . (3.1.7)

Then, the 3-dimensional Riemann tensor associated with γµν , is given by

2D[µDν]vρ = Rσ
ρνµvσ (3.1.8)

Rσ
ρνµnσ = 0, (3.1.9)
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for any spatial vector vµ.
At this point we need to introduce another quantity called extrinsic curvature.

In fact, from the 3-dimensional Riemann tensor we can extract information about
the spatial slice Σ and its intrinsic curvature, but we have no information about
its shape in the spacetime M . The extrinsic curvature can be found by projecting
gradients of the normal vector into the slice Σ. We define it as

Kµν = −γ ρ
µ γ

σ
ν ∇ρnσ. (3.1.10)

By definition, the extrinsic curvature is symmetric and purely spatial. It can be
easily seen that the extrinsic curvature is the Lie derivative along nµ of the spatial
metric γµν :

Kµν = −1
2Lnγµν . (3.1.11)

The metric γµν and the extrinsic curvature Kµν cannot be chosen arbitrarily, but
they have to satisfy certain constraints so that the spatial slices fit into the spacetime
M . To find the relations that they must fulfil, we have to relate the 3-dimensional
Riemann tensor of Σ to the four-dimensional one of M . For this purpose we take
a completely spatial projection of (4)Rµ

νρσ, a projection with one index projected
in the normal direction and a projection with two indices projected in the normal
direction. Thanks to the symmetries of the Riemann tensor all the other projections
vanish. This three projections give rise to the equations of Gauss, Codazzi and Ricci.

We start writing the definition of the 3-dimensional Riemann tensor

Rσρ
νµvσ = 2D[µDν]v

ρ. (3.1.12)

Given that

DµDνv
ρ = γaµγ

b
νγ

ρ
c∇a∇bv

c −Kµνγ
ρ
cn

a∇av
c −K ρ

µ Kνav
a, (3.1.13)

we can substitute this expression into Equation 3.1.12 to find

Rσρνµv
σ = γaµγ

b
νγ

c
ρ

(4)Rσcbav
σ − 2Kρ[µKν]σv

σ, (3.1.14)

where we used the fact that Kµν is symmetric and we inserted the definition of the
4-dimensional Riemann tensor. Since this relation must hold for any spatial vector
vµ, we have

Rµνρσ +KµρKνσ −KµσKνρ = γaµγ
b
νγ

c
ργ

d
σ

(4)Rabcd. (3.1.15)

Equation 3.1.15 is called Gauss’ equation. It relates the full spatial projection of
(4)Rµ

νρσ to the 3-dimensional Riemann tensor and terms quadratic in the extrinsic
curvature.
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The next equation we need can be derived considering a spatial derivative of the
extrinsic curvature

DµKνρ = γaµγ
b
νγ

c
ρ∇aKbc = −γaµγbνγcρ (∇a∇bnc +∇a (nbac)) , (3.1.16)

where aµ = nν∇νnµ, and we wrote Kµν as Kµν = −∇µnν−nµaν . Antisymmetrizing
the previous equation, and noting that γµνnµ = 0, we get

DνKµρ −DµKνρ = γaµγ
b
νγ

c
ρn

d (4)Rabcd. (3.1.17)

This is known as the Codazzi’s equation. Equations 3.1.15 and 3.1.17 depends only
on the spatial metric, the extrinsic curvature and their spatial derivative; they can
be thought as the integrability conditions which allow the embedding of a spatial
slice inside a 4-dimensional manifold. It is clear that we need one more equation to
describe the time evolution of our quantities.

Let’s consider the remaining projection of the 4-dimensional Riemann tensor,
the one with two indices projected in the normal direction. We begin with the Lie
derivative of Kµν

LnKµν = nρ∇ρKµν + 2Kρ(µ∇ν)n
ρ. (3.1.18)

Inserting the definition of (4)Rµ
νρσ and of Kµν as we did in Equation 3.1.16, we can

simplify the expression on the right-hand side to obtain

LnKµν = −nσnρ (4)Rσνµρ−∇µaν−nρnµ∇ρaν−aµaν−Kρ
νKµρ−Kρµnνa

ρ. (3.1.19)

This expression can be further simplified projecting the two free indices and using
the fact that Dµaν = −aµaν + 1

α
DµDνα, with α the lapse function. Since the

left-hand side is purely spatial, the projection leaves it unchanged. We finally get

LnKµν = nσnργaµγ
b
ν

(4)Rσaρb −
1
α
DµDνα−Kρ

νKµρ. (3.1.20)

Equation 3.1.20 is Ricci’s equation, which relates the time derivative of the extrinsic
curvature to a projection of the 4-dimensional Riemann tensor with two indices
projected in the time direction.

At this point we have the three fundamental equations that we need to cast
Einstein’s field equations in the 3+1 formalism. What we have to do then is to use
the equations of Gauss, Codazzi and Ricci to rewrite the 4-dimensional Riemann
tensor in terms of the 3-dimensional one into EE. We need to use EE as we were
dealing only with geometry, while now we want to link the geometry of spacetime
to physics. After some steps one finds

R +K2 −KµνK
µν = 16πρ, (3.1.21)
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DνK
ν
µ −DµK = 8πJµ, (3.1.22)

LtKµν = −DµDνα + α (Rµν − 2KµρK
ρ
ν +KKµν)

−8πα
(
Sµν −

1
2γµν (S − ρ)

)
+ LβKµν (3.1.23)

and
Ltγµν = −2αKµν + Lβγµν . (3.1.24)

Equation 3.1.21 is the Hamiltonian constraint. We have defined the energy density
ρ to be the total energy density as measured by a normal observer nµ, ρ ≡ nµnνT

µν .
Equation 3.1.22 is the momentum constraint. The quantity Jµ is the momentum
density, also measured by a normal observer, and it is defined as Jµ ≡ −γνµnρTνρ.
Equation 3.1.23 is the evolution equation for the extrinsic curvature, and Sµν ≡
γρµγ

σ
νTρσ is the spatial stress-energy tensor, with S being its trace.

Equation 3.1.24 is the evolution equation for the spatial metric.
Note that in both the evolution equations 3.1.23 and 3.1.24 the Lie derivative is

not along n, which would not lead to a “natural” time derivative. We use instead
tµ = αnµ + βµ, such that tµΩµ = 1 for any vector βµ, which is called shift vector.
In this way we are connecting neighbouring spatial slices (i.e. Σt with Σt+dt), as the
change in t along the vector tµ is dt = tµ∇µt = 1 for every point on Σt.

Equations 3.1.21, 3.1.22, 3.1.23 and 3.1.24 together are completely equivalent to
Einstein’s field equations.

3.1.2 ADM equations
The equations we derived in the previous section can be simplified choosing

a particular coordinate basis. We introduce a basis of three spatial vectors eµ(i)
(i = 1, 2, 3) that reside in a particular time slice Σ, such that

Ωµe
µ
(i) = 0. (3.1.25)

To extend them to other slices we Lie drag them along tµ. As the fourth basis vector
we pick eµ(0) = tµ = (1, 0, 0, 0). This means that the Lie derivative along tµ reduces
to a partial derivative with respect to t: Lt = ∂t.

As eµ(i) span Σ, Equation 3.1.25 implies that the covariant spatial components of
the normal vector have to vanish, ni = 0. This also means that all components of a
spatial tensor with a contravariant index equal to zero must vanish, for example

βµ =
(
0, βi

)
. (3.1.26)

From the definition of tµ = αnµ + βµ we find

nµ =
(
α−1,−α−1βi

)
, (3.1.27)
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and since nµnµ = 1
nµ = (−α, 0, 0, 0) . (3.1.28)

It follows that
γij = gij, (3.1.29)

so the metric on Σ is the spatial part of the full metric. As the zeroth components
of a spatial contravariant tensor have to vanish we also have γµ0 = 0. The inverse
metric is then

gµν = γµν − nµnν =
(
−α−2 α−2βi

α−2βj γij − α−2βiβj

)
. (3.1.30)

Inverting the previous expression we find the components of the four dimensional
metric

gµν =
(
−α2 + βλβ

λ βi
βj γij

)
. (3.1.31)

Moreover, as γikγkj = δij , γij can be used to raise and lower spatial indices of spatial
tensors.

The line element then can be written as

ds2 = −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
, (3.1.32)

which is the metric in the 3+1 form.
As a consequence of the choice of the coordinate basis we did, the entire content

of any spatial tensor is available from their spatial components. This is obviously
true for contravariant components, as the 0-component vanishes, but it holds for
covariant components too. By mean of these considerations, we can rewrite EE in
the 3+1 formalism in a simplified form. The Hamiltonian constraint 3.1.21 becomes

R +K2 +KijK
ij = 16πρ, (3.1.33)

while the momentum constraint 3.1.22 is

Dj

(
Kij − γijK

)
= 8πJ i. (3.1.34)

The evolution equation for the extrinsic curvature 3.1.23 can be rewritten as

∂tKij = −DiDjα + α
(
Rij − 2KikK

k
j +KKij

)
−8πα

(
Sij −

1
2γij (S − ρ)

)
+ βkDkKij (3.1.35)

+KikDjβ
k +KkjDiβ

k, (3.1.36)

while the evolution equation for the spatial metric 3.1.24 becomes

∂tγij = −2αKij +Diβj +Djβi. (3.1.37)

Equations 3.1.33, 3.1.34, 3.1.35 and 3.1.37 are called ADM equations after Arnowitt,
Deser and Misner.
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3.1.3 BSSNOK formalism
The ADM formulation of EE unfortunately does not behave very well on long

simulations. If fact, due to the mathematical structure of the equations, they tend
to form instabilities and lead the code to crash. In the 80s and 90s several groups
worked to new formalism to develop a formulation of the EE more stable for long
term simulations. The new formalism is known as the BSSNOK from its authors
(Baumgarte, Shapiro, Shibata, Nakamura, Oohara and Kojima). To derive this
formulation we start introducing the conformal metric γ̄ij defined as

γ̄ij = e−4φγij. (3.1.38)

We require the determinant of the conformal metric to be equal to the determinant
of the flat metric ηij, i.e.

φ = 1
12 ln

(
γ

η

)
. (3.1.39)

We will adopt a Cartesian coordinate system, such that γ̄ = η = 1.
We define the traceless extrinsic curvature as

Aij ≡ Kij −
1
3γijK, (3.1.40)

and its conformally related tensor as

Āij = e−4φAij. (3.1.41)

From Equations 3.1.37 and 3.1.35 we find the evolution equations for φ and K,
which are

∂tφ = −1
6αK + βi∂iφ+ 1

6∂iβ
i (3.1.42)

and

∂tK = −γijDjDiα + α
(
ĀijĀ

ij + 1
3K

2
)

+ 4πα (ρ+ S) + βi∂iK. (3.1.43)

Subtracting 3.1.42 from 3.1.37 and 3.1.35 from 3.1.23 leaves the traceless part of the
evolution equations for γ̄ij and Āij:

∂tγ̄ij = −2αĀij + βk∂kγ̄ij + γ̄ik∂jβ
k + γ̄kj∂iβ

k − 2
3 γ̄ij∂kβ

k, (3.1.44)

∂tĀij = e−4φ [− (DiDjα) + α (Rij − 8πSij)]TF + α
(
KĀij − 2ĀilĀlj

)
+βk∂kĀij + Āik∂jβ

k + Ākj∂iβ
k − 2

3Āij∂kβ
k. (3.1.45)
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The superscript TF denotes the trace-free part of a tensor, e.g. TTF
ij = Tij − γijT/3.

Finally, to complete the BSSNOK formulation, we introduce a new quantity Γi,
defined as

Γ̄i ≡ γ̄jkΓ̄ijk, (3.1.46)

where Γ̄ijk are the connection coefficients associated with γ̄ij. From the definition
of the Ricci tensor, using the transformation law 3.1.38, we find that Rij can be
written as

R̄ij = R̄ij +Rφ
ij, (3.1.47)

where R̄ij is the conformal Ricci tensor and Rφ
ij is a function of φ only. If we formally

compute the Ricci tensor from the definition we would end up with mixed second
derivatives which we want to avoid to maintain the stability of the code. Thanks
to the new variable Γ̄i we can write the Ricci tensor masking the second derivatives
behind first derivatives of Γ̄i. The Ricci tensor then becomes

R̄ij = −1
2 γ̄

lm∂m∂lγ̄ij + γ̄k(i∂ j)Γ̄k + Γ̄kΓ̄(ij)k + γ̄lm
(
2Γ̄kl(i Γ̄ j)km + Γ̄kimΓ̄klj

)
. (3.1.48)

Having introduced a new independent variable, we need an evolution equation to
evolve it. As in Cartesian coordinates it holds that

Γ̄i = −∂j γ̄ij, (3.1.49)

we can easily derive the evolution equation for Γ̄i, inverting spatial with time deriv-
ative in 3.1.44 and using the momentum constraint 3.1.34 to simplify. We find

∂tΓ̄i = −2Āij∂jα + 2α
(

Γ̄ijkĀkj −
2
3 γ̄

ij∂jK − 8πγ̄ijJj + 6Āij∂jφ
)

+βj∂jΓ̄i − Γ̄j∂jβj + 2
3Γ̄i∂jβj + 1

3 γ̄
li∂l∂jβ

j + γ̄lj∂j∂lβ
i. (3.1.50)

Evolution equations 3.1.42, 3.1.43, 3.1.44, 3.1.45 and 3.1.50, together with the
constraint 3.1.33, 3.1.34 and 3.1.49, make the BSSNOK formulation of EE. As
already pointed out, this formulation in completely equivalent to the ADM for-
mulation, but it performs better in numerical implementation and remains stable
where the other fails.

3.1.4 Gauge conditions
In the previous sections we derived the Einstein’s field equations in the 3+1

formalism, and we have seen that these can be split into two constraint equations
and two evolutions equations. The constraint equations relate quantities on a given
t = constant spacelike hypersurface, while the evolution equations contain first-order
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time derivatives and they describe how the fields change from one hypersurface to
the next one. By the way these equations are not ready for numerical integrations;
we note that the evolution equations depend on the lapse function α and the shift
vector βµ, which must be specified. In fact, we have to impose coordinate conditions,
since α and βµ are two gauge variables that need to be chosen arbitrarily. The choice
we make will affect the performance of the code. In particular, we have to avoid
singularities. If a singularity arises in our spacetime, the result will be one or more
field variables blowing up to infinities, leading to underflows and overflows in the
output and eventually causing the code to crash (unless the code is designed to
managed singularities).

As an example let’s consider the simplest possible choice:

α = 1, βi = 0. (3.1.51)

This gauge choice is called geodesic slicing, and the resulting coordinates are known
as Gaussian normal coordinates. The coordinate observers move with four-velocity
uµ = tµ and, since βi = 0, they coincide with normal observers (as uµ = nµ). Since
their acceleration in given by aµ = Dµ lnα and thus is equal to zero, normal observers
are freely falling and so they follow geodesics, hence the name of this gauge. The
problem of this choice is evident as geodesics tend to focus in the presence of a
gravitational field source. Observers approach to each other and collide, forming a
coordinate singularity. This can be see from the evolution equation for the trace of
the extrinsic curvature (assuming geodesic slicing and a comoving perfect fluid)

∂tK = KijK
ij + 4π (ρ+ 3P ) ≥ 0, (3.1.52)

from which we see that K grows monotonically in time. The expansion of normal
observers

∇µn
µ = −K, (3.1.53)

then decreases in time. The evolution equation for the metric gives

∂t ln γ1/2 = −K, (3.1.54)

which shows that the coordinate volume element goes to zero with the growth of K.
This will result in a coordinate singularity.

Modern numerical simulations adopt a hyperbolic slicing condition knows as
Bona-Massò slicing [49], which in general can be written as

∂tα− βk∂kα = −f (α)α2 (K −K0) , (3.1.55)

whereK0 ≡ K (t = 0) and f (α) > 0. For f = p/α we get the so-called “1-log” slicing
condition, where p is an integer (an usual choice is p = 2) and α = h (xi) + ln γp/2,
with h (xi) a positive function.
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For the shift vector an usually implemented condition is the hyperbolic Gamma-
driver [50], given by

∂2
t β

i = k∂tΓ̄i − (η − ∂tk) ∂tβi, (3.1.56)

where η is a damping term introduced to avoid strong oscillations in the shift vector
due to rapid and large gauge variations.

3.2 The sources of gravitational field
In the previous section we dealt with the geometry of spacetime. Now we need

to consider the source term and develop a set of equations to evolve it in numerical
simulations. Many properties of relativistic stars are described by a hydrodynamic
fluid, and since our framework consists into two highly magnetized NSs, we will need
a general relativistic formulation of magnetohydrodynamics.

3.2.1 Relativistic hydrodynamics
Let’s consider the stress-energy tensor of a perfect gas

T µν = ρ0hu
µuν + pgµν , (3.2.1)

where uµ is the fluid 4-velocity, ρ0 is the rest-mass density, p is the pressure and
h = 1 + ε + p/ρ0 is the specific enthalpy, with ε being the specific internal energy
density. The total mass-energy density as measured by a comoving observer is given
by ρ = ρ0 (1 + ε).

The equations of motion governing the fluid can be derived by the local conser-
vation laws for energy-momentum

∇µT
µν = 0, (3.2.2)

and for rest mass
∇µ (ρ0u

µ) = 0. (3.2.3)

The solutions of these equations can be cast in different forms, depending on
the variables chosen for numerical integration. One of the most straightforward
schemes is the Wilson scheme, introduced by Wilson in 1972 [51]. It easily lends
itself to numerical integration, however it is a non-conservative formulation and it
needs to be modified to handle the appearance of shock discontinuities, which arise
for example in stellar collapses.

Wilson introduced a rest-mass density variable

D ≡ ρ0u
t, (3.2.4)
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an internal energy density variable

E ≡ ρ0u
tε, (3.2.5)

and a momentum density variable

Sµ ≡ ρ0hu
tuµ. (3.2.6)

The conservation laws can be recast in terms of these new variables as
1√
−g

∂t
(√
−gD

)
+ 1√
−g

∂i
(√
−gDvi

)
= 0 (3.2.7)

and
∂t
(√
−gE

)
+ ∂i

(√
−gEvi

)
+ p∂µ

(√
−gutvµ

)
= 0, (3.2.8)

1√
−g

∂t
(√
−gSµ

)
+ 1√
−g

∂i
(√
−gSµvi

)
+ ∂µp+ 1

2
(
∂µg

αβ
)(SαSβ

St

)
, (3.2.9)

where vi = ui/ut is the fluid 3-velocity with respect to a coordinate observer and
v0 = 1. As pointed out previously, this formalism requires the addition of an artificial
viscosity term to lead to stable solutions in the presence of discontinuities like shock
waves. Due to the non-linear coupling of the artificial viscosity with the fluid velocity,
the addition of such term could not be sufficient to produce satisfactory results for
ultra-relativistic flows.

A different approach to handle shocks involves recasting the equations in a flux-
conservative form, adopting a “high resolution shock-capturing scheme” [52]. Such
schemes can manage shock waves without the need of introducing artificial viscosity.
One divides the spatial domain into a set of contiguous cells, keeping track of the
fluid variables at the centre of each cell as they evolve. The variables are treated as
constants in each cell, while the discontinuous fluid variables at the grid interfaces
serve as initial conditions for a local Riemann shock tube problem. The solution
to this idealized problem is known [53], and this has motivated the development of
flux-conservative schemes.

In such formalisms the conservation laws are written as

∂tU + ∂iF i = S, (3.2.10)

where U is the state vector of conserved variables built out of the primitive fluid
variables (ρ0, v

i, p), F i are the flux vectors and S is the source vector which does
not contain any derivatives of the fluid variables, which is a key feature of flux-
conservative schemes.

To evolve the system we have to integrate Equations 3.2.10 from the time t to
t + ∆t, and extract the primitive fluid variables at the new time from the evolved
conserved variables. This has to be done simultaneously with the integration of the
3+1 EE to determine a self-consistent background gravitational field.
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Valencia formulation A useful choice of conserved variables was introduced by
Martí, Ibáez and Miralles [54] and is known as the “Valencia” formulation. This
formulation is the one implemented in the Whisky code used in our simulations [55].
The primitive variables (the rest mass-density ρ0, the pressure p, the fluid 3-velocity
vi, the internal energy ε and the Lorentz factor W ) are mapped into the following
conserved quantities

D ≡ √γWρ0, (3.2.11)
Sj ≡

√
γαT 0

j , (3.2.12)
and

τ = √γα2T 00 −D, (3.2.13)
where γ is the determinant of the spatial metric and T µν is the stress-energy tensor
for a perfect fluid (Equation 3.2.1). The Lorentz factor between the normal and fluid
observer W is defined as W = −nµuµ and satisfies W = (1− γijvivj)−1/2. With this
choice the equations of motions are described by 3.2.10 with

U =

DSj
τ

 (3.2.14)

and the flux vectors F i and the source vector S given by

F i =

 Dvi

α
√
γT ij

α2√γT 0i −Dvi

 (3.2.15)

S =


0

1
2α
√
γT ρσ∂jgρσ

α
√
γ
(
T ρ0∂ρα−(4) Γ0

ρσT
ρσα

)
.

 (3.2.16)

This formulation provides robustness and stability, and thus is widely implemented
in modern numerical simulations.

3.2.2 Electromagnetic field dynamics
Another contribution to the sources of gravitational field comes from the electro-

magnetic (EM) field, which play a crucial role in NSs and BNSs dynamics. The EM
field is completely described by the Faraday tensor F µν and Maxwell’s equations

∇νF
µν = 4πJ µ (3.2.17)

and
∇ν

∗F µν = 0, (3.2.18)
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where J µ is the charge current and ∗F µν is the dual of F µν defined as

∗F µν = 1
2ε

µνρσFρσ, (3.2.19)

with εµνρσ being the Levi-Civita tensor. The charge current J µ in general can be
written as

J µ = quµ + σF µνuν , (3.2.20)
where q is the charge density of the fluid moving with 4-velocity uµ and σ is the
electric conductivity. In our model we assume perfect conductivity (σ → ∞) such
that F µνuν = 0 (i.e. the electric field measured by a comoving observer is zero). In
this limit the Faraday tensor can be expressed exclusively in term of the magnetic
field bµ measured in the comoving frame

F µν = εαβµνbαuβ, (3.2.21)

∗F µν = bµuν − bνuµ, (3.2.22)
and Maxwell’s equations become

∇ν
∗F µν = 1

√
g
∂ν (√g (bµuν − bνuµ)) = 0. (3.2.23)

We need a relation between the magnetic field measured by a comoving observer
and the quantities measured by a normal observer (with 4-velocity nµ), which are
given by

Eµ = F µνnν (3.2.24)
and

Bµ = ∗F µνnν . (3.2.25)
The relation we look for is [56]

Bi =
√

4πγW
(
bi − vibt

)
, (3.2.26)

in which Bi = √γBi, vi = ui/ut and v0 = 1. The time component of Equation
3.2.23 yields the divergence-free condition for the magnetic field

∂iBi = 0, (3.2.27)

while the spatial part gives

∂tBi = ∂j
(
viBj − vjBi

)
, (3.2.28)

which is the magnetic field evolution equation.



3.3. Relativistic magnetohydrodynamics 41

3.3 Relativistic magnetohydrodynamics
Now that we have a relativistic formulation for both hydrodynamics and EM

field dynamics we can write down the complete set of equation that we need to
evolve our system. We consider a perfect fluid in the ideal conductor limit, and we
adopt the metric 3.1.32. The stress-energy tensor will be given by

T µν = T µνperfect fluid + T µνEM, (3.3.1)

with
T µνperfect fluid = ρ0hu

µuν + pgµν (3.3.2)
and

T µνEM = b2uµuν + 1
2b

2gµν − bµbν . (3.3.3)

The evolution equations follow from 3.2.2, 3.2.3 and 3.2.28. As in [57], we will
rewrite them in the conservative form

1√
−g

[
∂t (√γU) + ∂i

(√
−gF i

)]
= S, (3.3.4)

with U , F i and S given by

U =


D
Sj
τ
Bk

 , (3.3.5)

F i =


Dvi/α

Sjv
i/α + (p+ b2/2) δij − bjBi/W

τvi/α + (p+ b2/2) ṽi − αb0Bi/W
Bkvi/α−Bivk/α

 , (3.3.6)

S =


0

T µν
(
∂µgνj − Γρνµgρj

)
α
(
T µ0∂µ lnα− T µνΓ0

νµ

)
0k

 , (3.3.7)

where we have defined the conserved variables

D ≡ ρ0W, (3.3.8)

Sj ≡
(
ρ0h+ b2

)
W 2ṽj − αb0bj, (3.3.9)

τ ≡
(
ρ0h+ b2

)
W 2 −

(
p+ b2

2

)
− α2

(
b0
)2
−D, (3.3.10)

and 0k = (0, 0, 0)T. The quantity ṽi = (giµ+ninµ)uµ
−uµnµ is the 3-velocity of the fluid as

measured by a normal observer.
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Figure 3.2: Schematic representation of the discretization of spacetime for an
initial value problem. On the left: continuous spacetime with solutions Ω, with
edges ∂Ω marking the limits of the region of influence. On the right: discretized
spacetime and space of solutions Ωh, whose edges δΩh are timelike boundaries in
causal contact with the solution [48].

3.4 Numerical methods
In this section we will review some numerical methods usually employed in sim-

ulations. As we pointed out at the beginning of this chapter, the non-linear nature
of the Einstein’s field equations, together with the magnetohydrodynamics equa-
tions, does not allow us to find analytical solutions. Moreover, the non-linearity of
the equations results in the natural onset of discontinuities during the evolution.
Discontinuities represent an issue in some numerical approaches; in fact, we need
appropriate methods to manage them, otherwise our code will produce unphysical
results. We will focus on the so called grid-based methods, which compute and
evolve hydrodynamical equations on a discretized spacetime.

We start introducing the discretization of spacetime and some useful concepts.
For the spacetime, discretization is performed on space and time separately after

the foliation process (Figure 3.2). We have

tn ≡ t0 + n∆t, n = 0, 1, . . . , Ny (3.4.1)

and
xj ≡ x0 + j∆x, j = 0, 1, . . . , J, (3.4.2)

where ∆t is the separation between two spacelike slices, ∆x is a function of space
and time and the set xj makes the gridpoints. A continuous function u (x, t) can be
discretized to a set of values unj , such that

unj ≈ u
(
xnj
)

= u (xj, tn) ≡ Un
j . (3.4.3)
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This means that we take a discrete set of values unj that approximate the exact value
Un
j of the function u at the gridpoints xnj . For a continuous differential operator we

have L (u)→ Lh
(
unj
)
. The discretized one-norm is defined as

||u (tn)||1 = 1
J

J∑
j=0

∣∣∣unj ∣∣∣ , (3.4.4)

Before introducing the concept of convergence we want to define consistency and
stability. Let us consider a generic system of PDE in the form

L (u) = F , (3.4.5)

described by a given grid-scheme (∆x,∆t), such that

L (u) = F → Lh
(
unj
)

= Fh. (3.4.6)

The scheme is globally consistent [58] if

εh =
∣∣∣∣∣∣Lh (Un

j

)
− Fh

∣∣∣∣∣∣
1
→ 0 for ∆x,∆t→ 0. (3.4.7)

In the previous expression, εh is called truncation error. With h ≡ ∆x ∼ ∆t
we indicate a generic discretization interval as most discretization methods require
that time and spatial discretization are comparable. We then say that a scheme is
consistent if the truncation error is zero in the limit of vanishing grid-spacing. The
scheme is said to be stable if there exists a constant K and a value h0 such that

||Lnh||1 ≤ K, for all nh ≤ T ; h < h0 (3.4.8)

for each time T = tn, where with Lnh we indicate the n-th application of the operator
Lh. What we require for a scheme to be stable is that the application of this operator
should be such that the error accumulated does not grow unbounded.

Finally, Lh satisfies the global convergence criterion if

lim
h→0

∣∣∣∣∣∣E(h)
j

∣∣∣∣∣∣
1

= lim
h→0

Khp = 0, (3.4.9)

where p is the global convergence order, K is a real constant and E
(h)
j = Uj −

u
(h)
j is the global error. The Lax equivalence theorem states that for a consistent

finite difference method for a well-posed linear initial value problem, the method is
convergent if and only if it is stable.
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3.4.1 Finite differences methods
The most used grid-based methods are finite difference methods. This class of

methods are based on the fact that the solution to the PDE at a specific point of
spacetime can be Taylor expanded around the point itself; all the derivatives can
then be expressed as differences between values at neighbouring gridpoints.

To ensure stability of a finite difference method, we have to choose an appropriate
time-step ∆t. In fact, the numerical domain of dependence of any point in space and
time must include the analytical domain of dependence to assure that the scheme
can access the information required to form the solution. This choice is regulated
by the Courant–Friedrichs–Lewy (CFL) condition, which in one dimension is

C = u∆t
∆x ≤ Cmax, (3.4.10)

where u is the propagation speed of the solutions of the PDE. C is called the Courant
factor, while Cmax depends on the method employed (usually Cmax = 1).

The first finite difference scheme we discuss is the upwind scheme. Let’s consider
the one-dimensional scalar advection equation

∂tu+ λ∂xu = 0, (3.4.11)

where λ is the advection velocity and u = u0 (x− λt) a general solution. By Taylor
expanding the solution around (xj, tn) we find

u (xj, tn + ∆t) = u (xj, tn) + ∂tu (xj, tn) ∆t+O
(
∆t2

)
, (3.4.12)

and after discretization it becomes

un+1
j = unj + ∂tu|nj ∆t+O

(
∆t2

)
. (3.4.13)

Equation 3.4.13 yields the first-order finite difference approximation for the time
derivative as

∂tu|nj =
un+1
j − unj

∆t +O (∆t) . (3.4.14)

In the same way we can obtain a first-order approximation for the spatial derivative;
we find

∂xu|nj =
unj+1 − unj

∆x +O (∆x) . (3.4.15)

∂xu|nj =
unj − unj−1

∆x +O (∆x) . (3.4.16)

Here we have an ambiguity, unlike the time derivative, as the first-order term can be
expressed in terms of unj+1 or equivalently in terms of unj . In the case in exam, since
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the transport properties are known, the ambiguity is easily removed considering
that each point in the initial solution translates to a new one x + λ∆t over the
time interval ∆t. Depending on the sign of λ we have then two finite-difference
representation of Equation 3.4.11

un+1
j − unj

∆t = −λ
(
unj − unj−1

∆x

)
+O (∆t,∆x) for λ > 0, (3.4.17)

un+1
j − unj

∆t = −λ
(
unj+1 − unj

∆x

)
+O (∆t,∆x) for λ < 0. (3.4.18)

Then, the finite-difference algorithms to determine the solution at a new time-level
will be

un+1
j = unj − C

(
unj − unj−1

)
+O

(
∆t2,∆x∆t

)
for λ > 0, (3.4.19)

un+1
j = unj − C

(
unj+1 − unj

)
+O

(
∆t2,∆x∆t

)
for λ < 0, (3.4.20)

where C ≡ λ∆t
∆x is the Courant factor. We will briefly see other examples of finite-

difference scheme.
The Lax-Friedrichs scheme was proposed as a modification of the FTCS (Forward-

Time-Centered-Space) scheme, which is proven to be unstable. The idea is to replace
in the FTSC algorithm unj with its spatial average, i.e. unj → unj =

(
unj+1 + unj−1

)
/2+

O (∆x2), finding

un+1
j = 1

2
(
unj+1 + unj−1

)
− C

2
(
unj+1 − unj−1

)
+O

(
∆x2

)
. (3.4.21)

This makes the Lax-Friedrichs a stable first-order scheme.
The leapfrog scheme is a stable second-order scheme. With a similar approach

to the advection equation, but employing a higher-order discretization of the time
derivative, i.e.

∂tu|nj =
un+1
j − un−1

j

2∆t +O
(
∆t2

)
, (3.4.22)

we find the algorithm

un+1
j = un−1

j − C
(
unj+1 − unj−1

)
O
(
∆x2

)
. (3.4.23)

An interesting second-order scheme is the Lax-Wendroff scheme. This is a two-
level scheme obtained from a combination of the Lax-Friedrichs and the leapfrog
schemes. For the advection equation the first step is

u
n+ 1

2
j± 1

2
= 1

2
(
unj + unj±1

)
∓ C

2
(
unj±1 − unj

)
+O

(
∆x2

)
, (3.4.24)



46 3. Numerical approach to General Relativity

which is a Lax-Friedrichs “half step” at a fictitious intermediate position j ± 1/2
and time-level n+ 1/2. The second step is given by

un+1
j = unj − C

(
u
n+ 1

2
j+ 1

2
− un+ 1

2
j− 1

2

)
+O

(
∆x2

)
, (3.4.25)

which is a leapfrog “half step”. This scheme can be cast as a one-level scheme as

un+1
j = unj −

C

2
(
unj+1 − unj−1

)
+ C2

2
(
unj+1 − 2unj + unj−1

)
+O

(
∆x2

)
, (3.4.26)

where only quantities at real time-levels and spatial positions appear.

3.4.2 High-resolution shock capturing methods
An important class of methods is represented by the Godunov methods. In the

original approach, formulated by Godunov in 1959 to manage discontinuities [59],
one approximate continuous solutions with a piecewise constant function, creating a
series of Riemann problems, which consist of determining the proper state value of a
variable at a discontinuous interface. For a linear system Godunov’s method reduces
to the upwind scheme, yielding a simple solution to the Riemann problems. For a
nonlinear set of equations instead, accurate Riemann solvers are needed. The main
problem with Godunov’s method is that, due to the piecewise constant function,
it is only first-order accurate. Modern Godunov methods combine sophisticated
strategies for the computation of the left and right states of the local Riemann
problems with approximate solutions of such Riemann problems. The resulting
methods are now widely adopted and are known as high-resolution shock capturing
(HRSC) methods. Three common blocks are behind every HRSC method based on
Godunov methods:

- reconstruction of the left and right state of a local Riemann problem at each
cell boundary;

- use of an approximate Riemann solver;

- use of a time-update algorithm of at least second-order accuracy.

The reconstruction method employed in our simulations is a piecewise-parabolic
method. This method adopts a parabolic interpolation of the variables inside the
cells. We start considering the initial averaged values of the general quantity U
between xj−1/2 and xj+1/2 over a uniform spatial grid

Un
j = 1

∆x

∫ xj+1/2

xj−1/2

U (x, tn) dx, (3.4.27)
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where ∆x = xj+1/2 − xj−1/2. We then build an interpolating parabola inside each
cell with equation

Φ (ξ) = aξ2 + bξ + c, (3.4.28)
with ξ =

(
x− xj−1/2

)
/∆x, x ∈

[
xj−1/2, xj+1/2

]
, and a, b and c constants to be

determined. The interpolation must be conservative, so

Un
j =

∫ 1

0
Φ (ξ) dξ. (3.4.29)

Another constraint is that no new extrema appear in the parabola which did not
already appear in Un

j . So together with the condition 3.4.29 we can choose the
values U−j and U+

j of the interpolating parabola at the left and right edges of the
j-th numerical cell. They are found by imposing that (i) they do not fall outside the
range of two adjacent values Un

j and Un
j+1, (ii) in smooth parts U−j+1 = U+

j = Un
j+1/2,

so the interpolating function is continuous at xj+1/2, (iii) the interpolating parabola
is monotone in each cell.

The second step involves the use of an approximate Riemann solver. We adopt
approximate solvers as exact Riemann solvers requires very high computational re-
sources thus making its application in present multidimensional codes unrealistic.
Approximate solvers can be divided into complete and incomplete; complete solvers
contain all the characteristic fields of the exact solution, while incomplete solv-
ers contain only a subset of them. Our simulations employs the HLLE solver [60,
61], which is a widely used approximate incomplete Riemann solver. The solver
is based on the assumption that after the decay of the initial discontinuity of the
local Riemann problem only two waves propagate in two opposite directions, with
velocities λL and λR, generating a single and constant state between them as

U (x, t) =


UL if x/t < λL

UHLLE if λL < x/t < λR

UR if x/t > λR

. (3.4.30)

If we consider the conservation equation ∂tU +∇F (U) = 0, with FL = F (UL) and
FR = F (UR), it can be found that

UHLLE = λRUR − λLUL + FL −FR

λR − λL
, (3.4.31)

FHLLE = λRFR − λLFL + λRλL (UR − UL)
λR − λL

, (3.4.32)

where FHLLE is the HLLE flux to be used in the Godunov method according to

FHLLE =


FL if x/t < λL

FHLLE if λL < x/t < λR

FR if x/t > λR

. (3.4.33)
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This solver is effective for its simplicity, and performs well at critical sonic rarefac-
tions, but produces excessive smearing at contact with discontinuities as the middle
waves are ignored in the solution. It also needs to be coupled with an algorithm for
the calculation of the wave speeds.

The last step regards the time evolution of the system. The most widely adopted
methods for time-update are the Runge-Kutta methods. Let’s consider an equation
in the form ∂tU = −∂xF (U) + S (U) = Q (U). Integrating in space we obtain

d

dt
Uj (t) = 1

∆x
(
F
[
U
(
xj−1/2, t

)]
− F

[
U
(
xj+1/2, t

)])
+ Sj ≡ L (Uj) + Sj, (3.4.34)

where Uj and Sj are the spatial averages of the solution and of the source term,
given by

Uj = 1
∆x

∫ xj+1/2

xj−1/2

U (x, t) dx, Sj = 1
∆x

∫ xj+1/2

xj−1/2

S (x, t) dx. (3.4.35)

At first-order Equation 3.4.34 can be integrated as (we will drop the j index)

Un+1 = Un + ∆tQ (Un) . (3.4.36)

The i-th substep is

U (i) =
i−1∑
k=0

(
αikU

(k) + ∆tβikQ
(
U (k)

))
, i = 1, . . . , n+ 1, (3.4.37)

U (0) = Un, (3.4.38)

with αik and βik constant coefficients. The second-order Runge-Kutta (RK2) is
given by

U (1) = Un + ∆tQ (Un) , (3.4.39)

Un+1 = 1
2
[
Un + U (1) + ∆tQ

(
U (1)

)]
, (3.4.40)

while the third-order update (RK3) is

U (1) = Un + ∆tQ (Un) , (3.4.41)

U (2) = 1
4
[
3Un + U (1) + ∆tQ

(
U (1)

)]
, (3.4.42)

Un+1 = 1
3U

n + 2
3U

(2) + 2
3∆tQ

(
U (2)

)
. (3.4.43)
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As mentioned in the previous chapter, in order to start a simulation we need
to establish the initial conditions of the system, i.e. we have to build a physically
consistent representation of the BNS at the starting point of the evolution we want
to follow. This translates into giving the positions, masses, gravitational fields,
velocities etc. of the two NSs at a given initial separation, which will then be
evolved in time. In this chapter we focus on this aspect, discussing the NS EOS
employed in our models, the tools to generate the initial conditions, and the specific
choices made for the simulations we performed.

4.1 The equation of state
The EOS is a fundamental ingredient to build models of NSs, yet affected by big

uncertainties. Since the extreme conditions in the inner regions of a NS cannot be
reproduced on Earth, the EOS is essentially unknown. In turn, NSs are excellent
laboratories for studying the behaviour of matter at such high densities, allowing
us to test different theoretical EOS against the observational data (e.g. see Figure
4.1).

An EOS can be parametrized specifying the stiffness of the star at different
density intervals measured by the adiabatic index Γ = d log p/d log ρ, where p is the
pressure and ρ the density of the star. When Γ is taken as a constant the EOS is
called polytrope, while the parametrized EOS becomes piecewise-polytropic when
assuming different Γ values in different density intervals, i.e.

p = Ki ρ
Γi
i for ρi ≤ ρ ≤ ρi+1, (4.1.1)

where the pressure is still determined for every density (continuity is required between
two adjacent intervals). A wide collection of EOS candidates exist, mainly obtained
from relativistic mean field theory (RMFT) and non-relativistic many body theory
(NMBT) with relativistic corrections. In RMFT the strong interaction is modelled
as mesons exchange between nucleons. In NMBT an effective hamiltonian for the
two- and three-body interaction is employed. The free parameters in these effective
models are defined by low-energy experiments and extrapolated to higher nuclear
densities. Regarding the particle content, we can distinguish two classes of EOSs,
the first including only plain nuclear matter (n, p, e, µ), while the second including
hyperons, pion and kaon condensates, or quarks. In our simulations we adopt a
piecewise-polytropic parametrization of the APR4 EOS [62], which includes only
plain nuclear matter. The parameters defining each layer are listed in Table 4.1.

49
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Figure 4.1: Mass in function of central density (left) and radius (right) for
different EOSs. The green strip sets the range for the largest NS mass reported.
In the left panel inset we see the difference between the baryonic mass and the
gravitational mass for the APR EOS, the latter being smaller as it accounts for
the gravitational binding energy.

The values from i = 0 to i = 6 are taken from [63]. The causality condition in the
APR4 EOS holds up to ρc = 1.45 × 1015 g/cm3, above which the sound speed be-
comes superluminal. The segments i = 7, 8 have been introduced by [12] to preserve
causality even above ρc. The resulting modified EOS is fully causal but it may not
be completely realistic in the very high density regime. In Figure 4.2 we can see the
pressure (given by Equation 4.1.1) as function of the rest mass density for the APR4
EOS and other popular EOSs. The pressure profile shows important differences in
the high-density parts (i.e. in the NS core) as shown in the inset of the figure. In
order to include thermal effects (e.g., shock heating), an additional component is
added via an ideal-fluid EOS with adiabatic index Γth = 1.8, which gives the final
EOS

p (ρ, ε) = pcold (ρ) + (Γth − 1) (ε− εcold (ρ)) ρ, (4.1.2)

where ε is the specific internal energy.
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i ρi Ki Γi
0 - 6.801× 10−09 1.584
1 2.440× 107 1.062× 10−06 1.287
2 3.784× 1011 5.327× 10+01 0.622
3 2.628× 1012 3.999× 10−08 1.357
4 1.513× 1014 5.174× 10−29 2.830
5 5.012× 1014 4.713× 10−38 3.445
6 1.000× 1015 1.344× 10−36 3.347
7 1.400× 1015 2.507× 10−31 3.000
8 1.610× 1015 4.036× 10−16 2.000

Table 4.1: Parameters for the piecewise-polytropic parametrization of the APR4
EOS. Γi is dimensionless, ρi is in g/cm3, K is in cgs units such that p results in
dyne/cm2.

Figure 4.2: Pressure in function of rest mass density for the APR4 EOS com-
pared with other EOS. [12]
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4.2 The LORENE code
The initial configuration of the BNS is computed by means of the publicly avail-

able code LORENE (Langage Objet pour la RElativité NumériquE). The code con-
sists of a set of C++ classes to solve various problems in numerical relativity, provid-
ing tools to solve the related partial differential equations.

We considered a fixed chirp mass of valueM = 1.186M�, according to GW170817.
The chirp mass can be written in terms of the masses of the two objects and the
mass ratio q = m1/m2 as

M =
[

q

(q + 1)2

]3/5

(m1 +m2) . (4.2.1)

In our simulations we investigated the equal mass case, i.e. q = 1.0, and the case
q = 0.9. From 4.2.1 we can then calculate the mass of the two companions, obtaining
two NSs with mass mNS = 1.36M� for q = 1.0 and m1 = 1.44M�, m2 = 1.29M�
for q = 0.9. The “Rot_star” code (which stands for rotating star) in the LORENE
library let us build a single NS with the required parameters. In particular, we tune
the central enthalpy input value in order to obtain a gravitational mass equal to the
ones calculated above. As in our simulations we want to consider irrotational NSs, we
set the angular frequency to zero. The APR4 EOS is set by giving the parameters for
each polytropic segment, as shown in Table 4.1. The output parameters computed
by the code include the baryonic mass, which is equal to the gravitational mass plus
the absolute value of the gravitational binding energy, the mean and circumferential
radius (Rm and Rc), the compactness parameter (mNS/Rc), the moment of inertia,
the surface area and more.

To build a binary system LORENE includes the code “Bin_star” (binary star).
As input we give the initial conditions of the binary, in particular the calculated
baryonic masses (calculated via Rot_star) and the required coordinate separation
distance, which we set to 45 km. The configuration given as output is then evolved
by the Einstein Toolkit and WhiskyMHD codes.

4.3 Magnetic field implementation
The LORENE code cannot compute equilibrium configurations for a magnetized

system. The magnetic field has to be added manually to the initial configuration of
the BNS. Since the magnetic field structure in NSs is not well-known, we adopt an
analytical prescription for the vector potential, i.e.

Aφ = ω̄2Ab max (p− pcut, 0)ns , (4.3.1)
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where ω̄ is the coordinate distance from the NS spin axis, Ab is a constant, max (p)
is the maximum pressure in the NS, pcut = 0.04 max (p) determines the cut-off where
the magnetic field becomes zero inside the NS, and ns = 2 sets the degree of differ-
entiability of the magnetic field strength. This prescription generates a dipole-like
field confined inside the NSs while the field value remains zero on the outside. The
constant Ab is set to ∼ 1191 such that the corresponding initial maximum mag-
netic field strength is 5 × 1015 G. The magnetic field acts as a small perturbation
even at such high values, and the impact on the NS structure can be neglected at
first approximation. The resulting initial magnetic field strength is 102 − 104 times
higher than the actual values in NSs binaries. High resolution GRMHD simula-
tions of BNS mergers confirmed that magnetic field amplification mechanisms such
as Kelvin-Helmholtz instability, if well-resolved, can produce magnetic strength of
order 1015 G and higher. Since our simulations are run in a low-resolution mode
we cannot resolve these instabilities, thus resulting in lower magnetic field ampli-
fication. The choice of such high values for the initial magnetic field strength is
intended to partially compensate for this lack of resolution, allowing us to explore
more realistic post merger magnetic fields. We point out that this approach is by
no means equivalent to evolving lower and more realistic initial field strengths with
the appropriate resolution (which is computationally prohibitive given the current
capabilities of the available HPC clusters).

4.4 Final setup and evolution codes
The initial conditions, as we discussed above, are generated with the LORENE

code and evolved with the Einstein Toolkit and WhiskyMHD codes. The Einstein
Toolkit is a framework devoted to solving the Einstein’s equations in the BSSNOK
formalism (see Chapter 3). A “moving box” mesh refinement is implemented via
the Carpet driver, employing six refinement levels. During the inspiral phase, the
two finest levels follow the NSs. During the merger, it switches to a fixed-mesh
refinement centred at the merger site. The grid spacing in the finest refinement is
dx = dy = dz = 255m. In order to save computational resources we assume a
reflection symmetry across the z = 0 plane.

WhiskyMHD is used to solve the GRMHD equations, i.e. to inform the right-
hand side of Einstein equations. The GRMHD equations are written in a flux
conservative form, following the so-called Valencia formulation, already discussed
in Section 3.3. Moreover, WhiskyMHD implements high-resolution shock-capturing
schemes (see 3.4.2).
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5 Results

Our simulations extend up to 60ms after the merger, making them the longest
simulations ever done in GRMHD for BNS mergers ending up in a long-lived except
for one simulation of 100ms recently published by Ciolfi et al [64]. Exploring the
evolution of these systems several tens of milliseconds after the merger allowed us
to reveal effects that one could not see with shorter simulations.

5.1 General dynamics
We start by looking at the general dynamics. Figures 5.1 and 5.2 show the

rest-mass density in the meridional and equatorial plane for the q10 and q09 models
respectively. The ejected material, i.e. the thrown away material that has sufficient
velocity to leave the system, is highlighted by the contours. To determine which
material is effectively unbound we adopt the geodesic criterion (see e.g. [65]). We
consider as unbound each point that has |ut| > 1, where ut is the t-component of
the four-velocity. We can immediately distinguish the q10 model from the q09 in the
first frame at 1ms before the merger. The q10 model in fact exhibits a symmetric
distribution of the tidal ejecta, as the system is completely symmetric. The q09 model
instead shows an asymmetric distribution, with the bigger tidal tail corresponding
to the lighter NS. This is due to the fact that in the q09 case the lighter NS is in
part tidally disrupted by the companion, i.e. it partially “spreads” on the heavier
one. In the q10 case on the contrary the two stars experience a symmetric collision.
The differences between the two models are even more evident in the second frame,
at 1ms after the merger. Here we see the shock-wave ejecta that assume a more
symmetric distribution in the q10 case, while in the q09 case they are expelled by
asymmetric shock-waves. The third box is a snapshot at 60ms after the merger.
Here the differences in the rest-mass density distribution is almost gone, and the
remnant stabilizes in a nearly axisymmetric state.

Figure 5.3 shows the time evolution of the rest-mass density distribution with
respect to the distance from the centre of the grid. The red line indicates the average
radius of the matter distribution. The two models present a similar behaviour, with
the q09 case showing a slightly more expanded lower density outer layers after merger.

Figure 5.4 shows instead the maximum rest-mass density evolution for the two
models. A significant jump is observed at merger, showing how the central density
of the remnant object is in general higher than that of the two progenitor NSs.
The oscillations triggered at merger indicate radial oscillations of the newly-formed
remnant NS.
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Figure 5.1: Rest-mass density evolution snapshots in the meridional (top pan-
els) and equatorial (bottom panels) planes for model q10, before, during and after
the merger. The contours highlight unbound matter. Here t = 0 corresponds to
the time of merger.
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Figure 5.2: Rest-mass density evolution snapshots in the meridional (top pan-
els) and equatorial (bottom panels) planes for model q09, before, during and after
the merger. The contours highlight unbound matter. Here t = 0 corresponds to
the time of merger.
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Figure 5.3: Time vs. radius diagram of the baryon mass density (angle-averaged
on spherical shells). Radial distance is represented using the function sinh−1 to
show both small and large scales. The red line marks the average radius of the
matter distribution.
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Figure 5.4: Time evolution of maximum rest mass density. The vertical line
indicates the merger time.
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5.2 Magnetic field evolution
We now turn to discuss the magnetic field evolution. During our discussion we

should keep in mind that in the ideal MHD limit (i.e. infinite conductivity), in
which we are working, the magnetic field lines are “frozen” inside the fluid, in other
words they can be thought as “painted” on the fluid itself. This peculiar property
of ideal MHD gives rise to interesting effects in the magnetic field evolution that we
will discuss, as a motion of a fluid element will the magnetic field with it.

We start by looking at Figure 5.5, that shows the magnetic energy and the
maximum magnetic field strength respectively, for both q10 and q09 models. The
pre-merger amplification that is present also in other simulations (e.g. [64]) is still
under debate. In fact the physical mechanism responsible for such amplification is
still unclear, and we cannot exclude possible non physical effects due to the numerical
setup or the initial data. A possible physical explanation, on the other hand, could
be that the amplification is due to fluid motions (and consequent magnetic field
rearrangement) inside the NSs caused by the tidal deformation to which they are
subject in the pre-merger phase, at distances small enough the tidal effects of the
gravitational field are not negligible.
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Figure 5.5: Time evolution of the magnetic energy (top) and of the maximum
magnetic field strength (bottom). The vertical line indicates the merger time.
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Figure 5.6: Time evolution of the maximum magnetic field strength, with tor-
oidal and poloidal components, for model q10. The vertical line indicates the
merger time.

The early post-merger amplification is dominated by the Kelvin-Helmholtz in-
stability (KHI), that is active for about 10ms after the merger. The KHI is a purely
hydrodynamic effect that can appear at the interface between two fluids with op-
posite velocities. This mechanism produces twist-like structures at the interface,
that in our case will correspond to creating the same structures in the magnetic
field lines. This will result in an amplification of the magnetic field, and we expect
in particular an amplification in the toroidal component. In fact Figure 5.6 shows
that the amplification in this phase involves mostly the toroidal component of the
magnetic field. This mechanism is not well resolved in modern simulations, and we
would expect a higher amplification in comparison to the one we get. For this reason
we need to start with higher than typical magnetic fields for the single NSs to reach
the expected level of post-merger magnetization (that have been studied in other
simulations with higher resolution [66]).

After the two stars have merged into a single object the KHI gradually becomes
less relevant. The dominating effect in the magnetic field amplification is then the
magnetorotational instability (MRI). This mechanism relies on a particular property
of the magnetic field in the ideal MHD limit, briefly, that the force between two fluid
elements has a spring-like nature. It requires differential rotation with decreasing
angular velocity with increasing radial distance, which excludes, as we will see, the
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Figure 5.7: Number of grid points covering the characteristic length of the
magnetorotational instability, λMRI. Inner black contour marks the extension of
the finest refinement boundary.

central core of the remnant NS. The MRI is well resolved if the wavelength of its
fastest growing mode λMRI ≈ 2π

Ω
B√
4πρ , where Ω is the angular velocity and B the

magnetic field strength, is covered by at least 10 gridpoints. Figure 5.7 shows that
this condition is fulfilled in almost all the domain (except for the central region,
in which however the MRI does not take place) at t = 40ms, so we can trust
the evolution of the magnetic field at least from this point on. An interesting
feature that was not revealed in previous simulations (as they were too short) is the
saturation that wee see in the magnetic energy and the maximum magnetic field.
Both models reach similar values of about 1051 erg. The fact that q10 reaches the
plateau earlier can be due to the fact that the more symmetric configuration fasten
up the rearrangement of the remnant.

Figures 5.9 and 5.10 confirm the evolution described above, showing that during
and shortly after the merger we have a toroidal component that is emerging, while at
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Figure 5.8: Magnetic field line structure in 3D for both models at 60ms after
the merger, with colour-coded field strength. The vertical extension of the frames
covers about ±100 km along the z-axis.

later time the poloidal and toroidal components reach similar values. Moreover, as
we can see better in Figure 5.8, the magnetic field strength is higher in the equatorial
plane. In the right panels of Figures 5.9 and 5.10, in the equatorial plane, we see
that the magnetic field strength in the central core of the remnant is ∼ 2 orders
of magnitude higher in the q09 case. This difference may be possibly attributed to
the fact that the q09 model has a steeper rotational profile in the central region (see
Figure 5.13), which is responsible for a stronger magnetic field amplification.

A closer look at Figure 5.8 reveals that an ordered structure is emerging in the
field lines, even though the field is still largely incoherent. We will come back to
this figure in the next section.

Figures 5.11 and 5.12 show the magnetic-to-fluid pressure ratio, i.e. the ratio
between the magnetic pressure and the fluid pressure. The first frame, before the
merger, shows that (as expected) the magnetic pressure is negligible. In the second
frame the magnetic pressure is starting to dominate in the meridional plane, while
in the equatorial plane it is still negligible. The third frame shows that after the
merger the magnetic pressure becomes important in certain regions, especially in
the meridional plane. In particular, this shows how the slow and continuous matter
outflow around the remnant NS, a nearly isotropic post-merger baryon wind, is in
fact magnetically-driven.
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Figure 5.9: Magnetic field strength evolution snapshots in the meridional (top
panels) and equatorial (bottom panels) planes for model q10, before, during and
after the merger. Here t = 0 corresponds to the time of merger.
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Figure 5.10: Magnetic field strength evolution snapshots in the meridional (top
panels) and equatorial (bottom panels) planes for model q09, before, during and
after the merger. Here t = 0 corresponds to the time of merger.
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Figure 5.11: Magnetic-to-fluid pressure ratio β evolution snapshots in the me-
ridional (top panels) and equatorial (bottom panels) planes for model q10, before,
during and after the merger. Here t = 0 corresponds to the time of merger.
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ridional (top panels) and equatorial (bottom panels) planes for model q09, before,
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5.3 Remnant structure and rotational profile
We now focus the attention on the remnant properties. Figure 5.13 shows the

rotational profile of the remnant in the two cases. Both exhibit differential rotation
in the core, while above about 10 km distance from the rotation axis we have a
nearly keplerian profile, thus it is not “weighing” on the star but orbiting around
it. As we anticipated before, the MRI requires decreasing angular velocities with
increasing radius, so it does not take place for r . 10 km, that is also the region in
which λMRI is not well resolved. In both models we expect the differential rotation
to fade away and the core reaching uniform rotation in about 120ms.

Figures 5.14 and 5.15 show the rest mass density in the meridional plane at
10 and 60 milliseconds after the merger, for q10 and q09 models respectively. The
contours highlight selected iso-density surfaces. In the q09 plot, on the 60ms frame,
the central region appears less dense. This is a consequence of the motion acquired
by the remnant after the merger, that in the q09 case was along the y-axis and
thus the xz-plane does not cut anymore through the centre of the object. Anyway,
both figures suggest that shortly after merger a torus-like structure is forming, but
within few tens of milliseconds this structure disappears and the remnant with its
surroundings acquires a more spherical shape. This behaviour is in agreement with
[64], and overturns the common idea that a NS remnant would be surrounded by
an accretion disk (see, e.g., [67]).
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Figure 5.13: Rotational profile on the equatorial plane at different times for
model both models.
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Figure 5.14: Remnant profile for model q10 at different times. The contours
highlight iso-density surfaces, at ρ = 3.0× 1010 (yellow), ρ = 3.0× 1013 (red) and
ρ = 4.0× 1010 (blue).
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Figure 5.15: Remnant profile for model q09 at different times. The contours
highlight iso-density surfaces, at ρ = 3.0× 1010 (yellow), ρ = 3.0× 1013 (red) and
ρ = 4.0× 1010 (blue).
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5.4 Prospects of SGRB jet formation
One on the main purpose of our simulations was to determine whether or not a

long-lived NS remnant generated in a merger event compatible with GW170817 is
able to power a SGRB. From the magnetic energy evolution we saw that after the
merger the energy saturates reaching magnitudes of 1051 erg. This suggests that in
principle our systems have sufficient energy to power a relativistic jet. Considering
the three-dimensional representation in Figure 5.8 of the magnetic field lines, how-
ever, we see that even if a sort of ordered structure is emerging, the typical helicoidal
structure along the rotation axis that is needed to accelerate an outflow along the
rotational axis is not present, as the field is still rather incoherent after 60ms. The
q09 model looks more ordered, so it could be that on longer timescales it will have
better chances to launch a jet.

The density plot in the meridional plane for q10 as seen in Figure 5.17 shows that
the environment is dense, with a baryon wind expanding from the merger site, and a
tail left by dynamical ejecta during the merger process outside the wind. This slow
wind represents a potential obstacle for the propagation of a jet, assuming that the
latter could emerge at later times. At 60ms after merger, we have anyway no signs
that a jet is forming.

Figure 5.16 shows the velocity of the fluid for q10 , and this also excludes the
formation of any jet-like structure. Furthermore, as the remnant is not surrounded
by an accretion disk, as we saw in Figure 5.14 and Figure 5.15, we can exclude the
possibility to launch a jet via accretion.

While there is still a possibility for a magnetically driven mechanism, up to now
we have no evidence of SGRB formation, and we can conclude that the systems in
these conditions cannot launch a jet.
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Figure 5.17: Rest-mass density distribution in the xz-plane for model q10.
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5.5 Gravitational waves
In this final section we discuss the gravitational wave signal. To extract the

GW signal a widely used technique, that is implemented in our code, is based on
the Newmann-Penrose scalars (see [68] for a detailed description of the different
methods for the GW signal extraction). The quantity of our interest is calculated
from the Weyl tensor

Cαβµν = Rαβµν − gα[µRν]β + gβ[µRν]α + 1
3gα[µgν]βR, (5.5.1)

contracting it appropriately with an orthonormal null tetrad lµ, nµ, mµ, m̄µ. The
tetrad choice for the computation is described in [69]. For our purpose we are
interested into the Weyl scalar ψ4, which is defined by

ψ4 = −Cαβµνnαm̄βnµm̄ν , (5.5.2)

that in the asymptotic limit describes the outgoing gravitational radiation. In par-
ticular, in the TT-gauge it holds that

ψ4 = ḧ+ − ḧ×. (5.5.3)

It can be proven that the Weyl tensor can be written in terms of spatial quantities
only (to be consistent with the 3+1 formalism), and it takes the form

ψ4 =
(
Rij −KKij +K k

i Kij − iε kli ∇lKjk

)
m̄im̄j, (5.5.4)

where Kij is the extrinsic curvature. While from this expression one could estimate
ψ4, results are rarely reported in this form. In fact, ψ4 is usually decomposed into
spin-weighted spherical harmonics, as

ψ4 =
∑

l≥2,|m|≤l
ψlm4 − 2Y

lm, (5.5.5)

where ψlm4 =
∫
S2 ψ4 − 2Ȳ

lmdΩ. Einstein Toolkit code framework provides the
routines to perform this decomposition and then integrates twice ψlm4 to obtain
hlm. We then compute the h22 component of the gravitational wave strain as it
provides the dominant contribution to the signal.

Figure 5.18 and 5.19 show the GW signal for both models. Before the merger,
indicated by the vertical dashed line, we can clearly see the inspiral waveform and
its characteristic chirp (i.e. amplitude and frequency increasing with time), with
the maximum amplitude corresponding to the merger. The merger exhibits a rapid
decreasing in the amplitude, while the frequency keeps increasing. In fact, the
post-merger signal is characterized by a single dominant frequency, above 3 kHz,
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Figure 5.18: Gravitational wave signal for model q10. The top panel shows the
strain at a nominal distance of 100Mpc. The lower panel shows the instantaneous
frequency.
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Figure 5.19: Gravitational wave signal for model q09. The top panel shows the
strain at a nominal distance of 100Mpc. The lower panel shows the instantaneous
frequency.

that is significantly higher than the GW frequency prior to merger. The post-
merger amplitude oscillations correlate with the first, strong radial oscillations of the
remnant, that can be seen in the first ∼ 3ms in the plot. Just after the merger we
notice that the amplitude reaches the zero. This is due to an over-modulation of the
phase that can occur during the remnant oscillations, i.e. the remnant is oscillating
in shape and this induces rapid changes (jumps) in the phase of a perturbation
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propagating on it. These jumps in turn cause a rapid change in the frequency of
the signal, that can be see in the bottom row. The peaks in the frequency (or phase
velocity) associated with these phase jumps are not physical, and one should take
into account this effect when employing simulated signals like these as a test case
for data analysis pipelines. As this is beyond the scope of this Thesis, we refer to
[70] for further information on this phenomenon and on the techniques to clean up
the signal.

Figure 5.20 shows the power spectrum for both models. The profile in the top left,
descending from left to right, is associated with the inspiral phase and is suppressed
at a certain initial frequency (< 1 kHz) simply because our simulation starts from a
specific initial separation (45 km). After the merger, which happens around 2 kHz
tick in this case, we note a dominant peak in the signal for both models. This post-
merger peak corresponds to the characteristic oscillation frequency of the remnant,
and thus carries important information about the EOS. While the dominant effect
on the position of the peak is given by the EOS, we find that also the mass ratio
has an impact on it.



6 Conclusions

The main purpose of this work was to investigate the binary neutron star merger
event GW170817 via general relativistic magnetohydrodynamics simulations, trying
to understand in particular (i) if such system can launch a short gamma-ray burst
before the massive neutron star remnant has collapsed into a black hole, (ii) the role
of magnetic fields in the dynamical evolution and the structure and rotational profile
of the remnant, (iii) how the evolution depends on the mass ratio of the progenitor
binary neutron star, which we consider either q = 1 (equal-mass) or q = 0.9. Our
simulations provide extensive insights on these topics, also because we managed to
explore longer timescales than previous simulations. In this section we summarize
our results.

6.1 What we learned
The magnetic field evolution is rather similar for the two models. We saw that

the magnetic energy exhibits a small rise in the pre-merger phase, that is almost
equal for both models, even if the cause of this amplification is still under debate.
The Kelvin-Helmholtz instability develops at merger, dominating the magnetic field
amplification up to about 10ms after merger. Later on, the magnetorotational
instability sets in and provides further magnetic field amplification. From ∼ 15ms
over, the two models showed a different evolution path for the magnetic energy.
Our results seem to suggest that, due to the higher level of symmetry, the q10 model
saturates earlier that the q09. This is, however, in contrast with other simulations
(e.g., [11]), in which the q09 saturates earlier. So we can conclude that the evolution
of the magnetic field in the 15 − 40ms time-window is not mainly determined by
the mass ratio but instead it depends on the particular case, while what is certain
is that both models saturate at some point around a similar order of magnitude
(∼ 1051 erg). These energies are enough to power a relativistic outflow, but so far
we had no signs of jet formation. The three-dimensional plot of the magnetic field
lines in fact showed that in neither models the field acquired a coherent structure
along the rotation axis, which is required to launch a jet. We also pointed out that
in the q09 case a coherent structure is more likely to emerge on longer timescale,
comparing the same time snapshots of the field lines for the two models.

Further investigations on the properties of the remnant and its surroundings
after the merger indicate that the environment is baryon polluted, a condition that
lowers the chances to launch a successful jet, and the velocity plot confirmed that
there are no jet-like structures forming along the rotation axis. An interesting result,
which overturns the common idea that a neutron star remnant will be surrounded
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by an accretion disk, is that in both our simulations we start with the well known
early remnant structure characterized by a torus-shaped “disk-like” outer envelope,
but in a few tens of ms the remnant acquires a nearly isotropic shape, with no
disk whatsoever. This excludes the possibility to power a short gamma-ray burst
on longer timescales via an accretion mechanism. The magnetic-to-fluid pressure
ratio plots indicate that the baryon winds in the surroundings are magnetically
driven, and this is compatible with the possible explanation of the blue kilonova
that was observed 11 hours after the GW170817 merger based on a fast, massive,
and relatively neutron-poor ejecta component.

Finally, we showed that the mass ratio has a non negligible impact on the post-
merger peak frequency in the power spectrum of the gravitational wave signal, even
though the unknown equation of state could easily produce similar or larger dis-
placements, making it impossible to distinguish the effect of the mass ratio, at least
at present stage.

6.2 Outlook
Binary neutron star mergers represent the ultimate target for multi-messenger

astrophysics, as they provide an extraordinary physics laboratory, and the break-
through discovery of GW170817 paved the way for more observations of these events.

Numerical relativity simulations are the most powerful tool to unravel the dy-
namics of these systems and the associated mechanisms. In this Thesis we per-
formed state-of-the-art simulations of highly magnetized binary neutron star systems
evolving them on timescales that are significantly longer than most of the simula-
tions reported in literature, and this allowed us to gain novel hints on a variety of
aspects.

However, there is still ample room for improvements. For example, one could
develop numerical codes to allow for initial magnetic fields extending outside the
neutron stars, which represents a more realistic configuration, and perform simula-
tions with higher resolution to better resolve and understand the different magnetic
field amplification mechanisms. It would be also interesting to further evolve these
systems in time to monitor the structure of the magnetic field and determine if they
will be able to launch a jet. Moreover, one could perform the same simulations
with different equations of state, and compare the results with our work. Finally,
including the contribution of neutrinos would allow for a more precise study of the
environment properties and the kilonova emission.

With the increasing sensitivity of the gravitational wave detectors and the en-
largement of the network (KAGRA is about to join LIGO/Virgo), we expect a num-
ber of new multi-messenger observations of binary neutron star mergers. Therefore,
the further advancement of theoretical modelling and simulations of these systems,
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necessary to exploit the richness of information coming from the forthcoming detec-
tions, has never been as urgent as today.
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