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Abstract 

 

One of the main issues of wave energy nowadays is the oscillation of the 

generated power, which is due to the oscillating nature of the waves. These 

power fluctuations may have an important undesired impact on the electrical grid. 

In order to compensate the power oscillations, the research group of CIEMAT 

proposed a Power Smoothing System (PSS) consisting in the use of a 

supercapacitor-based energy storage. The control system of this PSS works with 

real time measurements, which means that it doesn’t see the oscillations until 

they are effectively happening. The aim of this thesis is to improve the operation 

of the whole system by adding a short-term prediction block to the control, so that 

it knows in advance when a power fluctuation is coming. 

For this purpose, autoregressive (AR) models have been studied, and a 

consistent part of the thesis is dedicated to the attempt to predict the power 

generated by a wave energy converter using AR models, especially in the case 

of real irregular waves. Afterwards, the obtained prediction is integrated in the 

control of the aforementioned power smoothing system. To evaluate the 

functioning of the system, simulations with the software Matlab-Simulink have 

been carried out. In addition, a laboratory test bench has been used to emulate 

wave power oscillations and to test the proposed PSS. The document includes 

the experimental results, that are analyzed and compared with the results 

obtained in the simulations. 
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1 - INTRODUCTION 

 

During the last decades, due to the increase in fossil fuel prices and to the 

environmental problems caused by the use of conventional fuels, a new and 

strong drive for many forms of renewable energy sources has been experienced. 

One of the big issues of most of the renewable energies is their high variability 

together with the lack of predictability. In the particular case of wave energy this 

variability, represented by the oscillating nature of the waves, leads to the 

oscillation of the generated power. These power fluctuations may have an 

important undesired impact on the electrical grid, such as instability problems and 

frequency and voltage deviations. 

The research group of CIEMAT has already developed a system which improves 

the quality of the power injected to the grid from a single Wave Energy Converter 

(WEC) or from a whole wave farm. This system uses a supercapacitor-based 

energy storage to smooth the power generated by the WEC, so that the power 

injected into the grid presents much smaller oscillations. The system performs 

correctly, but the aim of the work presented in this document is to improve it. At 

the moment the control system works with real-time measurements, which means 

that it doesn’t see the oscillations until they are effectively happening. The idea 

here is to add a prediction block to the control system so that it knows in advance 

when a power oscillation is coming. The above mentioned prediction is supposed 

to be a short-term prediction, around 15-20 seconds at least. More specifically, 

the prediction tool implemented in the work consists mainly of autoregressive 

(AR) models. 

The first part of the document will be an introduction to the wave energy 

production, with a presentation of the main technologies, their development and 

the future perspectives of this source of renewable energy. The intent of this first 

part is to become a little more familiar with the topic of wave energy, which will 

be the base of the work. 

After that, a more detailed explanation of the problem of the oscillation of power 

will be made, and the already discussed solution proposed by CIEMAT will be 

presented, consisting in the use of energy storage to smooth the power and a 
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control system based on a MA (Moving Average) criteria. Then the central part of 

the work will begin, with all the focus put on AR models. The theoretical and the 

mathematical concepts behind AR models will be first analyzed, and then applied 

to a real case of a sea wave in a specific location, with the attempt to make a 

short-term prediction of its height and of the power generated by the WEC. This 

prediction work will be carried out with the use of the software Matlab, and the 

codes written are collected in the appendix B at the end of the paper. 

The next step will be the implementation of the AR power prediction tool in a 

simulation model which contains a single WEC, a power smoothing system and 

a grid connection. All the simulations will be done with the software Simulink, 

integrated with Matlab. The simulations will be made both with a Moving Average 

(MA) control system and with a predictive control system, and the results of the 

two cases will be compared. 

The last part of the work consists in the implementation of the prediction tool in a 

laboratory test bench already built and specifically assembled for this project. 

Different tests will be made and presented, both with a MA and an autoregressive 

prediction criteria, and the results will be analyzed and compared with the results 

obtained by the simulations carried out with Simulink. After the analysis of the 

results, some conclusions will be drawn, together with some ideas and 

possibilities of future development.
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2 - WAVE ENERGY 

 

2.1 – Energy in the oceans 

 

Oceans and seas cover approximately the 72 % of the Earth’s surface, carrying 

with themselves a huge amount of energy. This energy can be considered free 

and inexhaustible, and this is why ocean energy is classified as a renewable 

source. There are many different ways to use and convert this energy, which can 

be classified into five main technologies [1]. 

Wave energy: it’s the kinetic energy transported by the wind waves, which is 

converted into electric power through some devices generally known as Wave 

Energy Converters (WECs). These devices are usually floating on the ocean 

surface or moored to the sea bottom, and present a wide variety of techniques to 

generate electricity, which will be discussed and analyzed later.  

Tidal stream: the marine current, which is basically ocean water moving in one 

direction, carries a certain amount of kinetic energy, which can be converted once 

again into electricity through submerged turbines. Although not widely used at 

present, marine current power has an important potential in regions with strong 

and powerful ocean currents, like the Gulf Stream which is mainly found off the 

coast of Florida. 

Tidal energy: the gravitational force of the moon causes a tidal cycle of 

approximately 12 hours, in which there’s an alternation of low tide and high tide 

states of the sea. The difference in height between low and high tide is potential 

energy which, with the same principles as conventional hydropower, can be used 

to generate electric power. The water can be stored with a barrier during high 

tide, and then forced through a hydro-turbine during low tide. To capture enough 

potential power the height of the high tide must be at least five meters more than 

the low one [2], and there are only twenty locations on our planet which satisfy 

this condition. 
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Ocean Thermal Energy Conversion (OTEC): exploits the temperature 

difference between the warm shallow water and the deep cold ocean water in 

order to produce electric power. There are two main OTEC technologies being 

investigated and developed [2], both consisting basically in a Rankine cycle but 

with some differences: 

 Closed cycle: a working fluid is pumped through a heat exchanger where 

it evaporates, and then runs a turbine. To close the cycle, the steam is 

refrigerated and condensed again into a fluid form by releasing heat to the 

cold deep ocean water. The fluid is then ready to pass again in the heat 

exchanger, restarting the cycle. 

 Open cycle: the main difference is that in this case the working fluid is the 

ocean water itself. The warm water from the surface is pressurized in a 

vacuum chamber and vaporized to run the turbine. Then again the steam 

is condensed using cold water from the depths of the ocean. 

Salinity gradient power generation: uses the difference in salt concentration 

between the sea saltwater and freshwater which comes from the rivers to produce 

electricity through different osmotic processes. This technology could be applied 

in areas as deltas or fjords, where both salty and fresh water can be found. 

All these technologies are still in a research or early commercial stage, but the 

energetic potential is absolutely significant. According to [3], there is a global 

potential to reach a value of 80,000 TWh of electric energy generated in one year 

with the combination of the technologies presented. More specifically, the 

generation potential of marine energy is shown in the table 2.1. 

Ocean energy’s first deployment in Europe was in 1966 when a 240 MW tidal 

range project was built in La Rance, France. For three decades there was little 

deployment of ocean energy technologies until 1999, when a wave energy device 

was tested in Portugal. By mid-2015, 11 MW of tidal stream and 8 MW of wave 

energy had been deployed, bringing cumulative deployed capacity in Europe to 

261 MW. [1] 
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Form Annual generation potential (TWh/year) 

Tidal energy >300 

Tidal stream (current power) >800 

Salinity gradient 2,000 

OTEC 10,000 

Wave energy 80,000 

Table 2.1 – Estimation of annual electric generation potential of ocean energy resources [3] 

As can be seen in table 2.1, the most promising form of ocean energy is wave 

energy, which will be the one investigated in the work presented in this 

dissertation. Therefore, no more focus will be put on the other possibilities just 

discussed. 

 

2.2 – Wave Energy 

 

Waves are formed by winds blowing over water, and will occur only in water near 

the sea surface. The size of the waves generated will depend upon the wind 

speed, its duration, and the fetch, that is distance of water over which it blows. 

The resultant movement of water carries kinetic energy which can be harnessed 

by wave energy devices. The main physical parameters describing waves are 

height and the period (or the wavelength). 

Once created, these waves can travel thousands of kilometers with little energy 

loss, a property that makes them very interesting from an energetic point of view. 

Moreover, the power density of waves is in the order of 40 kW/m2, about 10 times 

higher than wind energy and 100 times higher than solar radiation [4]. 

The common measure for wave power levels is the average annual power per 

meter of wave crest width parallel to the shoreline. The crest length is measured 
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from one crest to the next. Like most forms of renewable energy sources, wave 

energy is distributed unevenly around the world, as can be seen in figure 2.1. 

 

 

Figure 2.1 – Distribution of Wave Energy levels in KW/m of crest length [2] 

The best wave resources occur in areas where strong winds have travelled over 

long distances. Increased wave activity is found between the latitudes of 

approximately 30° and 60° in both the hemispheres [5], induced by the prevailing 

western winds blowing in these regions. For these reasons the countries best 

suited for wave energy conversion are Great Britain, Ireland, Norway, New 

Zealand, Southern Australia, Chile, followed by Northern Spain, France, Portugal, 

North and South American coasts and South Africa. The annual average power 

level is useful to compare the potential of different regions, but can be misleading 

if not interpreted together with the seasonal variability, which can be very high. 

 

 

2.3 – History and development of wave energy 

 

The interest in extracting energy from the ocean waves began in the 18th century, 

when the French Girard received the first recorded patent for wave energy 

conversion (1799) [6]. Together with his son, Monsieur Girard designed a device 

consisting of a ship attached to shore with waves driving pumps, saws and other 
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machineries. Between 1800 and the 1960s only occasional attempts to harness 

the ocean’s energy were made. For example, around 1910 Bochaux-Praceique 

constructed a wave power based device to light and power his house at Royan, 

near Bordeaux. This machine is considered the first oscillating water column type 

of wave energy device. 

The oil crises of 1973 led to a new interest in wave energy and in other types of 

renewable energies as well. A wide variety of wave energy devices were 

proposed and developed at this time, but the success was in general far below 

the expectations. In many cases the destructive forces of the ocean waves were 

largely underestimated, and the first devices did not show satisfactory results. As 

a consequence, when the oil crises came to an end the interest in wave energy 

decreased and in the early 1980s many of the trials were already interrupted. 

A revival in the interest and research about wave energy started again in 2000, 

due to the increase in oil prices and to the new drive for renewable energies. 

Since then, a big amount of devices have been developed and many projects 

have been carried out all around the world. In the following section the main 

modern technologies in this field will be presented. 

 

 

 

2.4 – Wave Energy Converters 

 

A great variety of different conversion techniques have been developed so far, 

which can be classified according to their location and to the method used to 

capture wave power [7]. 

 

2.4.1 – Classification by location 

According to the characteristics of their deployment sites, WECs can be divided 

into shoreline (or coastal), near-shore and offshore devices. The physical 

conditions relevant for wave energy conversion are different according to the 

water depth and distance from shore. 
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Offshore devices: They are generally located in deep water, although there are 

different definitions of what constitutes ‘deep’ water. Typical water depths for 

offshore technologies are in the range of 50 m [4]. In such deep water waves 

travel almost without energy losses, which is why offshore devices are expected 

to have the largest potential for large-scale implementation. On the other side, 

offshore WECs are more difficult to construct and maintain, and because of the 

greater wave height and energy content in the waves, need to be designed to 

survive to more extreme conditions, adding cost to construction. 

Near-shore devices: They are located in relatively shallow water. In these 

conditions, the waves suffer increasingly from bottom friction, making such sites 

less interesting from an energetic point of view. The advantage of near-shore 

WECs is that as they are closer to shore, mooring and grid connection costs 

decrease, and often it is also possible to attach these devices directly to the 

seabed. 

Shoreline devices: They are typically integrated in the shoreline or into an 

artificial coastal structure. Shoreline WECs have the advantage of being close to 

the utility network, are easy to maintain and have a reduced likelihood of being 

damaged. The main disadvantage is that shallow water leads to significantly 

lower incident power levels. In addition, by nature of their location, there are often 

site-specific requirements and characteristics that need to be taken into account, 

including shoreline geometry and geology and preservation of coastal scenery, 

so that shoreline devices can’t be designed for mass manufacturing [7]. 

 

 

 

 

2.4.2 – Classification by type 

Despite the large variations in design and concepts, WECs can be classified in 6 

main different technologies. 
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Attenuator: This device consists of multiple floating segments which lie parallel 

to the predominant wave direction (perpendicular to the wave front). The 

attenuator effectively rides the waves and captures the energy as the waves 

move past by selectively constraining the movement along its length. 

 

Figure 2.2 – Example of an Attenuator WEC [4] 

An example of attenuator is the Pelamis Wave Energy Converter, which so far is 

one of the most successful WEC technology, represented in figure 2.3. 

 

Figure 2.3 – Pelamis Wave Farm [7] 

Point absorber: A point absorber is a device that has small dimensions relative 

to the incident wavelength. It can be a floating structure that heave up and down 

on the surface of the water or submerged below the surface relying on pressure 
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differential. Because of their small size, wave direction is not important for this 

kind of WECs. Typically, but not necessarily, these devices are axisymmetric. 

 

Figure 2.4 – Example of Point Absorber [4] 

Oscillating Wave Surge Converter (OWSC): These devices typically have one 

end fixed to a structure or the seabed while the other end is free to move near 

the surface. The arm that connects the two parts oscillates as an inverted 

pendulum due to the movement of the water particles in the waves. 

 

Figure 2.5 – Example of Oscillating Wave Surge Converter [4] 

Oscillating Water Column (OWC): These devices can be located on shore or in 

deeper water offshore. They consist of a partially submerged structure which is 
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open to the sea below the water surface, so that it contains air trapped in a 

chamber above a column of water. Waves cause the column to rise and fall, 

acting like a piston, compressing and decompressing the air, which when 

compressed is forced through an air turbine to produce electricity. 

 

Figure 2.6 – Example and operating principle of an Oscillating Water Column device 

Overtopping device: An overtopping device captures sea water of incident 

waves in a reservoir above the sea level, then releases the water back to sea 

through turbines. Overtopping devices are typically large structures due to the 

space requirement for the reservoir, which needs to have a minimum storage 

capacity. They can be located either on shore or floating offshore. 

 

Figure 2.7 – Example of Overtopping Device 

Submerged Pressure Differential: This is a submerged device typically located 

near shore and attached to the seabed. The motion of the waves causes the sea 

level to rise and fall above the device, inducing a pressure differential which 
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causes the device to rise and fall with the waves. When properly designed for the 

sea state, this category also has significant point absorbing characteristics. 

 

Figure 2.8 – Example of Submerged Pressure Differential device [4] 

 

 

2.4.3 – Power Take Off Methods 

There are a number of different Power Take Off (PTO) systems that can be used 

to convert wave power into electricity: air or water turbines, hydraulic systems 

and electrical linear generators. Among the current WECs concepts developed 

so far, 42% use hydraulic systems, 30% direct-drive systems (mostly linear 

generators), 11% hydraulic turbines, and 11% air turbines [8]. 

 

Figure 1.9 – Alternative PTO mechanisms [7] 
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Air turbine: Using air as the working fluid has the advantage of increasing the 

slow velocities of waves to high air flow rate. The most popular air turbine design 

is the Wells turbine, because of its ability to rotate in the same direction, 

irrespective of airflow direction. Air turbines (also referred as pneumatic systems) 

are often used in OWC devices. The main disadvantage is the efficiency, which 

can only reach 50-60% [8]. 

Water turbine: The significant advantage of using sea water turbines is that 

leakage of fluid causes no environmental problems. The disadvantage is that sea 

water is a complex fluid with various unpredictable constituents. The efficiency in 

this case is higher, values of 70-90% can be reached. 

Hydraulic motors/generators: Waves apply large forces at slow speeds and 

hydraulic systems are well suited to absorb energy in these situations [9]. A 

simple hydraulic PTO system is shown in figure 2.10. The operating principle is 

basically that the relative motion of the WEC device caused by waves drives high 

pressure fluids through the hydraulic motor, mechanically connected to the power 

generator. 

 

Figure 2.10 – Typical hydraulic circuit for WEC [7] 

Electrical linear generator: A linear generator offers the possibility of directly 

converting mechanical energy into electrical energy, with no intermediate steps. 

During early wave power research, the possibility of use these generators was 

investigated but considered too expensive and inefficient. New magnetic 

materials and the reduced costs of frequency converting electronics mean that 

this technology may now be feasible. 
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2.5 – Advantages and disadvantages of using wave energy 

 

When comparing wave energy with other energy sources, in particular with 

renewable sources as solar and wind energy, there are both advantages and 

disadvantages to highlight. 

Speaking of advantages, the first and probably most relevant one is that ocean 

waves offer the biggest energy density among renewable energy sources [6]. In 

addition, waves have a unique feature, that they can travel large distances with 

little energy losses. Another important characteristic is the natural seasonal 

variability of wave energy, which follows the electricity demand in temperate 

climates [6]. It is also reported that wave power devices can generate power up 

to 90% of the time, which is a lot compared to the approximately 20-40% of wind 

and solar power devices [10]. Other positive aspects are the small visual impact 

on the shoreline, the negligible demand on land use [6], and that the 

environmental impacts, summarized in table 2.2, seem to be limited. The last one 

is a discussed topic, because even if it is recognized that small-scale wave 

energy plants are likely to have minimal environmental impacts, on the other side 

some of the proposed large-scale projects have the potential for harming ocean 

ecosystems. Therefore, this aspect should not be neglected and it requires a 

special attention. 

 

Table 2.2 – Summary of environmental impacts of wave energy conversion technologies [11] 
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Once listed and appreciated all the positive features of wave energy, it’s important 

as well to say something about the disadvantages and difficulties related with 

wave power development. First of all, the irregularity in wave amplitude, 

frequency, phase and direction makes it complicated to obtain maximum 

efficiencies from the WEC devices. Moreover, in case of extreme weather 

conditions, the structural loading may be up to 100 times higher than the average 

loading. This is a huge problem, not only technically, but also economically, and 

it has to be seriously taken into account in the design phase. Another problem is 

the coupling of the irregular, slow motion (frequency around 0.1 Hz) of a wave to 

electrical grids, which require typically about 500 times greater frequency 

(frequency around 50 Hz) [6].  It becomes apparent that the design of a wave 

energy converter has to be highly sophisticated to be operationally efficient and 

reliable on the one hand, and economically feasible on the other. 

 

 

2.6 – Current status and future perspectives of wave energy 

 

As already mentioned in the previous paragraphs, the most energetically 

promising application for WECs is the offshore. Despite this, almost all the first 

generation wave energy systems, based on the previously described 

technologies, have been placed at the shoreline or near shore. The main reason 

for this is economical, to avoid too high grid connection costs, and also because 

testing a new technology like this onshore is more safe and reasonable than 

doing it directly off-shore, at least for the first steps of its development. Although 

67% of the current WEC concepts are floating, and only 19% are fixed [8], 

experience so far has mostly been with: 

- OWCs placed on the shoreline, on natural cliffs or breakwaters. 

- Near-shore technologies based on bottom fixed solutions, often with 

           terminal absorbers. 

- Offshore technologies at specific testing or pilot emplacements. 

Since the beginning Europe has been the leading market in the field of wave 

energy, but also other countries and regions have been making fast progresses 
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in the last few years. Many research and development programs have been 

carried out in many countries all around the world, and many others are going to 

start in the next years. As estimated by some recent reviews [8], in 2013 there 

were more than a hundred projects at various stages of development. Obviously, 

the countries that are more active in this field are all located in regions with high 

wave energy resources, where wave power could cover a significant part of the 

energy demand in the country and even become a primary source of energy. 

Countries with moderate, though feasible resources, could utilize wave energy 

supplementary to other available renewable and/or conventional sources of 

energy. 

The next step for wave energy is to move from full-scale testing of individual 

technologies to the deployment of array and cost reduction measures. 

Furthermore, the next generation of WECs are expected to go further offshore, 

reaching bigger depths and higher waves. At the moment, existing wave test 

facilities are available for testing up to 5 km offshore, and up to 50 m in depth [8], 

but test facilities with 100 m water depth and 15 km offshore have already been 

planned. 

In order to reach those targets and to increase the penetration of wave energy 

technologies in the energy market, there are both technical and economic issues 

to face. The main technical challenges that need to be overcome and investigated 

are the following [7]-[8]: 

- As wave direction is highly variable, WEC devices have to align 

themselves accordingly on compliant moorings to be able to capture the 

energy from the waves. 

- There is a need to find new materials to reduce the device’s weight and 

biofouling effects on the marine environment. 

- To operate efficiently, the device and corresponding systems have to be 

rated for the most common wave power levels. Not only does this pose 

difficult structural engineering challenges, but it also presents one of the 

economic challenges as the normal output of the device (and hence the 

revenue) are produced by the most commonly occurring waves, but the 

capital cost of the device construction is driven by a need to withstand the 

high power level of the extreme, yet infrequent, waves [12]. 



2 – Wave Energy 

17 

- Develop new mooring systems for floating devices adapted to the wave 

energy needs for increased safety and or better interaction with the 

converter. 

- Design challenge in order to mitigate the highly corrosive environment of 

devices operating at the water surface [6]. 

- Underwater power connectors that allow easy underwater operability and 

quick, easy and low cost maintenance interventions. 

- A significant challenge is the conversion of the slow (∼0.1 Hz), random, 

and high-force oscillatory motion into useful motion to drive a generator 

with output quality acceptable to the utility network. As waves vary in 

height and period, their respective power levels vary accordingly. This 

variable input has to be converted into smooth electrical output and hence 

usually necessitates some type of energy storage system or other means 

of compensation. 

In addition to all these technical challenges, another interesting perspective for 

offshore wave energy is represented by the new concept of multiplatform or 

hybrid devices, where wave energy technologies would be integrated or share 

the same infrastructure as other marine users, wind energy or aquaculture. The 

biggest advantage of these systems would be the reduced capital and operation 

costs, since the same structure or part of them would be shared for different 

technologies. 

As seen during this chapter, wave energy technology is still quite immature and 

there are many technical challenges to overcome in order to make it more 

attractive for the energy market. Despite the technical problems, the main 

obstacle to its spread is probably economic, even if in the end the two things are 

related. The actual estimated operational costs for a wave energy farm of 10 MW 

are between 330 and 630 €/MWh [8], considerably higher than other forms of 

renewables, including the expensive offshore wind and tidal current technologies. 

This is not surprising, as wave technologies are in an earlier stage of 

development. The latest estimates for European wave energy projects suggest 

that the PTO system accounts for 22% of the total lifetime project costs, 

installation 18%, O&M 17%, foundation and mooring 6%, and grid connection 5% 

[8].  
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As a matter of fact, a lot of work of Research & Development is still needed to 

reduce costs and to make the technology safer, more resistant and long-lasting. 

Given the big potential of wave energy, its costs are expected to significantly fall 

in the next years. In particular, the costs are expected to be reduced of 

approximately 70% by 2030, thanks to technologic progress and economies of 

scale in the sector. This would mean to reach an average cost of around 150-180 

€/MWh by 2030. 

The current estimated costs for wave energy are illustrated in table 2.3 taken from 

[8] and  showed in the following page, together with the estimated cost projections 

for the future, up to the year 2050.  

 

Table 2.3 – Current estimated costs and cost projections for wave energy until 2050 [8] 
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3 – THE PROBLEM OF OSCILLATION OF THE 

POWER GENERATED BY A WEC 

 

One of the main unsolved issues of wave energy is the oscillation of the 

generated power (also known as power ripple), which is due to the oscillating 

nature of the waves [13]. An example of a power profile generated by a wave 

energy converter (WEC) with a direct drive power take-off (PTO) is shown in 

figure 3.1 [14], which depicts the instantaneous power generated by a single 1-

body point absorber WEC. These fluctuations, whose period usually ranges from 

5 to 25 seconds, may have an important undesired impact on the electrical grid, 

especially in the case of weak grids. In addition, this problem is expected to be 

more acute once wave energy technologies reach maturity and expand 

massively. In this chapter the concept of weak grid and the problem of oscillation 

of power will be analyzed, trying to shed light on the effects on the grid caused 

by the fluctuations, and a possible solution to the problem will be presented. 

 

 

Figure 3.1 - Power generated by a single point absorber WEC under real wave conditions [14] 

 

3.1 – Weak Grids 

 

Weak power grids can be defined as electric grids where the variations in loads 

or generators produce important variations of the grid parameters such as 

frequency and voltage. Weak grids can be interconnected to the main grid, but 
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also isolated power systems with no connection to the main grid are included in 

the definition. 

In general, speaking about renewable energies, the best resources are often 

located at remote or even isolated regions. This is true also in the particular case 

of wave energy, as it is quite common to have high wave energy potential in 

regions with many islands or peninsulas. These kind of locations normally have 

a weak electric grid in the sense previously defined, and the integration of variable 

energy sources in such weak grids poses many technical and economical issues. 

Standard IEEE 1204 [15] defines a weak Alternating Current (AC) electric grid 

from two aspects, including static and dynamic performance: 

 AC system impedance may be high relative to AC power at the point of 

connection, which means that short-circuit power at the point of connection 

may be low. 

 AC system mechanical inertia may be inadequate relative to the AC power 

supply. 

The first condition is usually full-filled in weak power grids operated at medium 

voltage levels with long radial feeders and low X/R ratios, where X and R are 

respectively the reactance and the resistance of the grid. In small isolated power 

grids, both static and dynamic aspects do often apply. In addition, power is 

supplied by few generating groups, mostly fed by diesel or heavy oil, with small 

unit power and low inertia. Overall, generators are large with respect of the 

system load for economic reasons, thus higher reserve margins than in 

interconnected systems are necessary. 

Another way to evaluate the strength of a grid is through an index called Short-

Circuit Ratio (SCR), defined as: 

𝑆𝐶𝑅 =
𝑆𝑠𝑐

𝑆𝑛
                                                                   (1) 

Where Sn is the installed capacity (in terms of power) of the generation power 

plant and Ssc is the short circuit level at the Point of Common Coupling (PCC), 

that is defined as the interface between sources and loads on an electrical 

system. A power grid is considered strong for SCR values above 20 to 25 and 
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weak for SCR values below 6-10 [16], although other reference values might be 

found in the literature. 

As already said, the injection of oscillating power in weak grids causes many 

technical problems. In addition, the frequency and duration of unsafe situations 

is much greater than in high performance strong grids. These technical issues 

significantly affect the voltage, the frequency and therefore the stability of the 

system. As a result, strict performance obligations are imposed on to weak grids 

through the so called grid codes, which consist of minimum performance 

parameter and technical requirements that all the parties connected to the grid 

must follow. 

In the next paragraphs the effects of the integration of an oscillating power in the 

grid will be analyzed more in detail. 

 

3.2 – Grid integration of wave power generation 

 

In the development of wave energy converters, grid integration is usually the last 

stage and therefore the least explored, as a consequence not many devices have 

been tested grid-connected and most of the literature about wave energy does 

not consider this stage, at least under realistic conditions. However, the analysis 

of the grid integration of the device may provide feedbacks that help to improve 

the design of the WEC, so it should be always done. 

An important part of the challenge of connecting the grid to ocean wave power 

converters or farms is related to the physical connection to the on-shore electrical 

substation. This issue has important similarities and the same challenges than 

the offshore wind power farms and it’s not going to be discussed further in this 

thesis. 

The other critic aspect of the grid integration of wave energy is the negative 

impact produced by the oscillating power generated by WECs. This paper, and 

this chapter particularly, focuses on this specific issue. The main problems are 

related with voltage and frequency fluctuations and stability issues, and are going 

to be discussed one by one. 
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Frequency oscillations: The first impact here considered is the effect on grid 

frequency. When the WEC is directly connected to the grid, the power that it 

injects, having an oscillating profile, directly affects the behavior of the frequency 

signal of the system [17]. This phenomenon requires special attention as 

frequency is one of the most relevant index of the stability of power electric 

systems. The decrease of frequency is directly related to the amount of power 

injected into the system through the wave converter. Therefore, the more is the 

amount of oscillating power introduced, the more will be the drop of frequency, 

and its signal will present bigger oscillations, which means higher instability of the 

grid. 

Voltage fluctuations: The size of the voltage fluctuations produced by the 

oscillating WEC power in the electric grid depends on the short circuit power of 

the nodes, but in most of the situations the variation doesn’t break the limits 

imposed by the local grid codes. Only in the case of a very weak or isolated power 

grid this problem can be consistent, resulting in phenomenon as voltage dip or 

swell, overvoltage or undervoltage. 

Flicker: Voltage flicker is a phenomenon caused by fast voltage fluctuations and 

can be detected by the variation of the light intensity of various light sources [18]. 

Although not particularly harmful to the electrical network, flicker represents a 

visual disturbance to electricity customers. As small voltage variations can be 

induced by variable power output generators, this issue is of particular interest in 

wave energy grid integration research. Light intensity variation frequency is the 

double of voltage variation frequency, therefore components presenting twice the 

frequency of the voltage amplitude variations appear. In the case of a wave farm, 

there is also an aggregation effect that needs to be taken into account in the 

studies. Combining many WECs in a farm, indeed, may not only increase the 

frequency of light intensity variations but their magnitude as well. 

In general, all the problems just presented related to voltage, frequency and 

stability of a grid, can be troublesome especially in the case of weak grids. With 

the increasing penetration of renewable energy sources (and wave energy as 

well) experienced in the last decades, the impact of these issues is becoming 
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even more intense. In the following paragraph different solutions for this problem 

will be presented. 

 

3.3 – Solution: Power Smoothing System (PSS) 

 

In order to avoid the direct injection of oscillating power into the grid, different 

solutions have been explored. First of all, it is important to observe that this 

problem involves most of the WEC technology types, but not all of them. As a 

matter of fact, certain types of WECs, such as oscillating water columns and 

overtopping devices, do not suffer from power oscillations, since they have an 

intrinsic energy storage capability. However, for technologies like attenuators, 

point absorbers and oscillating wave surge converters, wave power conditioning 

is a real issue. In these cases, it is now evident that without a Power Smoothing 

System (PSS) of some kind the power fluctuations have a negative impact on the 

grid.  

The problem may be approached from different perspectives. In the case of a 

wave farm, the first option is to distribute the WECs along the farm considering 

the most predominant wave period and the main direction of propagation. With 

an optimal disposal, the power fluctuations of each single WEC could be naturally 

and partially compensated by the rest under most situations [19]. Another 

possibility is to control the system with a hybrid strategy that includes a DC-link 

voltage control and direct power control. A flywheel could also be added to the 

electric generator in those cases in which the type of WEC allows it (rotatory 

devices), so that the higher inertia reduces power ripple [14].  

Another option for conditioning the instantaneous power delivered to the grid, 

more promising than the previous ones, consists on the addition of an electrical 

Energy Storage System (ESS). This solution was first proposed for other 

renewable energy sources as photovoltaic systems or wind turbines, and only 

later for wave energy. Different storage technologies can be considered for this 

application: batteries, supercapacitors and flywheels. To choose among these 

options many specifications have to be considered, such as power level, energy 
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level, response speed, charge-discharge frequency, number of operation cycles, 

maintenance, environmental issues, costs, and so on. 

For the wave energy application several statements can be established [19]: 

 The amount of energy is low compared to power, so a high power and low 

energy system will be required. 

 The number of operation cycles is very high as well as the frequency since 

the energy storage system would be operating continuously. 

 The response time has to be very high. 

 Volume is more critical than mass, so a high power density is more 

convenient than energy density.  

 Maintenance has to be reduced due to the low accessibility of this 

application. 

According to these specifications, the more appropriate technologies are 

flywheels or supercapacitors, because of their high power density and electrical 

response, low maintenance required and their extremely high frequency and 

number of cycles. Some advantages can be found in each one of these two 

options, so the final choice will depend on the particular scenario considered. 

Independently of the ESS technology chosen, the principle of work consists of 

absorbing the exceeding energy when the instantaneous power produced by the 

WECs is above a certain value of average power, and returning this energy when 

the instantaneous power is below the average. Proceeding in this way, a very 

smooth output power can be delivered to the grid. 

A crucial aspect of the control system for the ESS is the concept of average 

power. In the case of regular waves this reference value can be easily calculated. 

Considering waves of fundamental period TF and assuming steady state, the 

average power is given by the algebraic mean of the instantaneous power 

generated by the WEC or the Wave Farm (WF) along a time interval equal to TF 

[14]: 

𝑃𝐴𝑉𝐺 =
1

𝑇𝐹
∙ ∫ 𝑃𝑊𝐸𝐶
𝑇𝐹
0

∙ 𝑑𝑡                                                 (2) 
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Real waves, however, are not regular and consequently don’t have a fundamental 

period. For irregular waves, therefore, the determination of the average reference 

power is more problematic. An option is to use a recent-history based method 

called Moving Average (MA). It consists of a moving window of width TW that 

contains a time register of the instantaneous power with sampling time TS. The 

average power can be then estimate as the algebraic mean of the instantaneous 

power samples contained in that moving window [14]: 

𝑃𝐴𝑉𝐺 ≈ 𝑃𝑊𝐼𝑁𝐷𝑂𝑊 =
1

𝑇𝑊
∙ ∑ 𝑃(𝑛)𝑁

𝑛=1                                        (3) 

In equation (3) n=1 and n=N refer respectively to the oldest and to the newest 

sample contained in the window. N is the total number of samples in the window: 

𝑁 =
𝑇𝑊

𝑇𝑆
                                                              (4) 

Another possibility for the estimation of the average power is to use a predictive 

method, such as Auto-Regressive (AR) models. AR models are going to be 

deeply explained and analyzed in the following chapters of this thesis. 

 

3.4 – Supercapacitor-based Power Smoothing System 

 

The solution proposed to smooth the WECs output power, that is going to be 

used in the simulations and in the laboratory tests presented in this paper, 

consists in the integration of a supercapacitor-based ESS in the system 

containing the wave farm and the connections to the electric grid. A schematic 

representation of the proposed PSS is showed in figure 3.2. 
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Figure 3.2 – Wave Farm with supercapacitor-based energy storage system for power smoothing 

 

The emulated wave farm is made of a group of Point Absorber WECs and is 

represented on the left side of the figure. In the scheme are included also some 

graphs, representing the oscillating power produced by the WECs, the power 

stored and released by the supercapacitors, and the consequently smoothed 

profile of grid power. Without the Power Smoothing System the same oscillating 

power profile would be injected into the grid, worsening its quality and potentially 

causing instability issues, as previously seen.  

The control system for the ESS in the proposed solution will initially use a Moving 

Average criteria to estimate the reference average power. The intent of this thesis 

is to investigate on the possibility of substituting this control system with another 

one based on Auto-Regressive models, in the attempt to improve the 

effectiveness of the smoothing system.
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4 – PREDICTION OF WAVE HEIGHT AND POWER 

USING AUTOREGRESSIVE MODELS 

 

The final aim of this chapter of the thesis is to have a good enough short-term 

prediction of the power produced by a group of WECs. The starting point for this 

work has been the study of various documents of the Italian researcher F. Fusco 

[20], [21], [22], [23], in which different techniques to predict the incident wave 

elevation are investigated, focusing on Auto Regressive (AR) processes. The 

attempt to use Fusco’s method and implement it into the software Matlab in order 

to predict a real wave profile has been one of the biggest challenge of this thesis, 

whose various steps will be shown and discussed during this chapter. The final 

part of the chapter investigates on the possibility to use the same method to 

predict the wave power instead of the wave height, as required by the control 

system for the Power Smoothing System introduced in the previous chapter. 

 

4.1 – Autoregressive Models 

 

In order to predict wave height or any other wave parameter, a forecasting model 

has to be used. Forecasting methods are procedures for computing future 

parameter trends from present and past values, and they can be classified into 

three main types [24]: 

 Judgemental forecasts, based on subjective judgement, intuition, inside 

commercial knowledge, and any other relevant information. 

 Univariate methods, where forecasts depend only on present and past 

values of the single series being forecasted. 

 Multivariate methods, where forecasts of a given variable depend, at 

least partly, on values of one or more additional time series variables, 

called predictor or explanatory variables.  
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Autoregressive models are included in the second category, univariate methods, 

and they will be used here to predict the height of an incident wave, as proposed 

by Fusco [23]. The approach commonly followed in the literature consists of a 

spatial prediction of the wave elevation, meaning that the wave field at a certain 

location is reconstructed from one or more observations at nearby locations. This 

means a big complexity of the model, which requires an array of spatial 

measurements and has to consider the possible multidirectionality of waves, the 

presence of radiated and refracted waves, and eventual non-linearities in the 

waves propagation.  

The solution used in this thesis is the prediction of the wave height based on its 

past history, but only at the same point of the sea surface. This alternative 

approach allows considering the short-term wave forecasting as a univariate time 

series problem, based on the collection of observations of the wave elevation 

made sequentially through time, but always at the same location. Moreover, this 

approach presents many advantages in terms of complexity of the model, since 

multi-directionality and all the associated issues do not need to be taken into 

account. It is also a cheaper solution because no additional instrumentation 

around the device is required. In addition, all the well established theory about 

univariate time series forecasting may be exploited, including the theory about 

AR models. 

The two just discussed different approaches are well illustrated in figure 4.1, 

taken from [20]. 

 

Figure 4.1 - Two main approaches to wave forecasting.  

(a) Prediction based only on local single-point measurements.  

(b) Prediction based on reconstruction of wave field from array of distant measurements [20] 
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The AR model used for the wave prediction is expressed by equation (5). The 

wave elevation H(k) at instant k is assumed to be linearly dependent on a 

number n of its past values, through the parameters ai [23]: 

𝐻(𝑘) =∑𝑎𝑖

𝑛

𝑖=1

𝐻(𝑘 − 𝑖) + 𝜁(𝑘)                                           (𝟓)     

where a disturbance term ζ(k) has been also included, representing a noise. The 

number n of past values corresponds to the order of the model. 

If the parameters ai are estimated and the noise is supposed to be white and 

Gaussian (normal distribution with zero mean value), the sum of the disturbance 

terms can be considered equal to zero, and the corresponding best l-step ahead 

prediction of the future wave elevation at instant k, Hpred(k+l|k), is given by: 

𝐻𝑝𝑟𝑒𝑑(𝑘 + 𝑙|𝑘) =∑𝑎𝑖(𝑘)

𝑛

𝑖=1

𝐻𝑝𝑟𝑒𝑑(𝑘 + 𝑙 − 𝑖|𝑘)                              (𝟔) 

For expressions in the form Hpred(a|b), which appear in equation (6) and in many 

following equations, the meaning of the terms contained in brackets need to be 

explained. The generic left term a corresponds to the instant of time to which the 

predicted value refers, while b is the moment in which the prediction is done. In 

other words, the expression means that in the instant b we are predicting the 

value that the variable H will have at instant a.  

To do a l-step ahead prediction of the height (or any other parameter) means to 

estimate what will be the value of this variable a number l of steps in the future, 

with respect to the present instant here indicated with k. The length of a single 

step (in terms of time) depends on the sampling period Ts, which is the time 

difference (in seconds) between one sample value and the following one. The 

sampling period in turn depends on the sampling frequency fs, which is defined 

as the number of samples obtained in one second, thus: 

𝑓𝑠 =
1

𝑇𝑠
                                                          (7) 
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Clearly, the sampling period has to be kept constant for the model to be 

considered valid.  

It is now clear how a l-step ahead prediction of a parameter corresponds to the 

estimation of its value a number of seconds l·Ts in the future. 

Equation (6) states that the l-step ahead prediction is calculated using not only 

past values (up to the instant k in which the prediction is done) but also the 

predicted values up to the instant k+l-1. Thus, if  k+l-i ≤ k,  then  Hpred(k+l-i|k) 

≡ H(k), which means that since the information for that instant is already 

acquired there is no need of prediction and the already known past value of H will 

be used. Therefore, for a 1-step ahead prediction all the needed values of height 

are already known, and the predicted value can be easily calculated as a 

combination of only past values, as shown by equation (8). 

𝐻𝑝𝑟𝑒𝑑(𝑘 + 1|𝑘) =∑𝑎𝑖(𝑘)

𝑛

𝑖=1

𝐻(𝑘 + 1 − 𝑖|𝑘)                              (𝟖) 

For a longer term prediction, we have to consider that a bad prediction implies 

someway a bad feedback to itself, in the sense that if the prediction of the first 

steps is not very accurate, the prediction of the further steps will be even worse, 

as it will use the bad predictive values of the first steps. Clearly, as we increase 

the horizon every AR prediction tends to deteriorate, but how fast this 

deterioration is realized depends on the accuracy of the prediction, and this is a 

crucial aspect for AR models. 

 

4.1.1 – Estimation of the AR coefficients 

AR models present a very simple mathematic expression, consisting in a linear 

combination of n values of wave elevation weighted through some coefficients ai. 

The estimation of these coefficients is not simple, and it is the main issue to solve 

for the implementation of AR processes. Many different approaches have been 

proposed in the literature and there is not a unique best option, as it strongly 

depends on the features of the specific case. Under the assumption of Gaussian 

error, a quite easy standard approach is to minimize the sum of squares of the 
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one-step ahead prediction error through regular Least Squares (LS), a classic 

method for regression analysis. Given a number N of batch wave elevation 

observations, the objective function to minimize with a standard LS approach 

would be the following: 

𝐽𝐿𝑆 =∑[𝐻(𝑘) − 𝐻𝑝𝑟𝑒𝑑(𝑘|𝑘 − 1)]
2
                                    (𝟗)

𝑁

𝑘=1

 

Hpred(k|k-1) is expressed as in equation (8), containing the unknown coefficients 

ai. 

Since the model will be utilized for multi-steps ahead forecasting, however, 

regular least squares is not an optimal solution. The reason is that there could be 

many models which are almost equivalent in terms of one-step ahead prediction, 

but show a quite different behavior in longer-term predictions [25]. 

The approach that seems to be more suitable for a short-term prediction of the 

wave height is the one firstly introduced by Shook-Mohtadi-Shah [26] and 

proposed by Fusco for the same application [23]. This method is called Long-

Range Predictive Identification (LRPI) and consists in the minimization of a multi-

steps ahead cost function, JLRPI : 

𝐽𝐿𝑅𝑃𝐼 =∑ ∑ [𝐻(𝑘) − 𝐻𝑝𝑟𝑒𝑑(𝑘|𝑘 − 𝑗)]
2

𝑁2

𝑗=𝑁1

                            (𝟏𝟎)

𝑁

𝑘=1

 

where N1 and N2 are respectively the minimum and the maximum prediction 

horizon. The value of N1 is usually set equal to 1, while the value of N2 depends 

on the specific application and on the sampling period. The term Hpred(k|k-j) is 

expressed as in equation (6), as a linear combination of wave elevation values 

weighted through the coefficients ai. 

The minimization of JLRPI  is quite problematic as it is a nonlinear function usually 

containing a huge number of terms. This issue will be treated later, showing how 

to implement equation (10) in Matlab. 

It is important to observe that the estimation of the parameters ai is done in a 

specific instant of time, with a certain sea state and a wave profile of specific 
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conditions. These conditions are likely to change with time, thus also the optimal 

values of ai should change and be recalculated, instant by instant, adapting the 

model to the momentary conditions. However, as shown in [23], a static AR model 

keeps its validity for a quite long time after being estimated, even more than two 

hours, in spite of wave spectral variations. Consequently, very complex adaptive 

models are not necessary in this case, it is enough to repeat the offline estimation 

of the coefficients every one or two hours to have good results. 

 

4.2 – Data Analysis 

 

The wave forecasting AR models are tested with a data set containing real wave 

observations at a specific sea location. The location where the data were 

collected is the Biscay Marine Energy Platform (BIMEP), an offshore 

infrastructure for the demonstration and proving of wave energy generation 

devices over a sustained period of time. 

 

Figure 4.2 – General layout and geographical coordinates of the BIMEP platform [29] 
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The site is located in the Cantabrian Sea, about 1,7 km from the coast of 

Armintza, a small village of the Basque Country in the Northern Spain, at a water 

depth between 45 m and 95 m approximately. The BIMEP covers a total sea 

surface of about 5,3 km2, delimited by six different vertices. The map of figure 

4.2, taken from the BIMEP website [29], shows the general layout of the platform 

and the geographical coordinates of the six vertices. The installed power capacity 

of the platform is 20 MW, with four connection point for WECs, connected to the 

onshore substation through four static submarine cables and to the WECs 

through dynamic submarine cables. 

In the test area there is also an oceanographic buoy, equipped with several 

different sensors to monitor atmospheric and wave conditions and provide 

information on the marine climate. This buoy is the one were the data used in this 

work were collected, and it is registered on the website of the Spanish Ministry of 

Public Works and Transport [30] as the buoy n° 3159035. 

The data refers to a specific sea state, characterized by: 

 Significant wave height Hs = 2 m; 

 Peak wave period Tp = 12 s. 

The sea state is the general condition of a free sea surface, and Hs and Tp are 

the main parameters characterizing a certain sea state. The significant wave 

height Hs is approximately equal to the mean wave height (from trough to crest) 

of the one third highest waves, and it is considered the most representative 

parameter of a sea state. The peak wave period Tp is the time period of the wave 

with the highest energy. Other significant parameters are the mean wave period 

Tm, defined as the mean of all the wave periods in a time series representing a 

certain sea state, and the mean wave direction θm, which is the mean of all the 

individual wave directions. 

From here on out, the wave profile extrapolated from the observations collected 

by the BIMEP will be called Wave1, and all the information about wave height 

and other parameters defining these profiles is available in the form of a Matlab 

file, Wave1.mat. This file will be used to carry out the Matlab and Simulink 

simulations for the prediction of wave elevation and power. 
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4.2.1 – Choice of cut-off frequency 

One characteristic that emerges from many wave predictability analysis [21]-[22] 

is that the low frequency components of the wave spectra are the most interesting 

from an energetic point of view, as a very significant portion of the wave energy 

is usually concentrated at low frequencies. In addition, with respect to high 

frequency components, low frequency waves are more regular and less affected 

by nonlinearities, so they can be predicted more accurately and further into the 

future. For these two reasons it is reasonable to low-pass filter the wave elevation 

and focus the prediction only on the low frequencies, in order to get an 

improvement in the accuracy and in the length of the forecast. On the other side, 

with a low-pass filter all the high frequency components of the waves are totally 

neglected, and this means a loss of information and a small loss of energy as 

well. 

Another thing that needs to be considered is that the use of a real time filter 

introduces an error, in terms of signal amplitude and time delay. The effects on 

the forecast of these errors could be significant, so it is important to select an 

appropriate filter among the several possibilities, with performance good enough 

to limit the errors. 

From what explained above, it is evident that the choice of the cut-off frequency 

fc represents a compromise between an improvement in the forecasts and the 

loss of energy of the neglected waves. Thus, the choice of fc should be made 

carefully, accordingly to the spectral distribution of the specific sea state. 

As described later, this low-pass filtering functionality has also been introduced 

in the Matlab simulations, using different values of cut-off frequencies to check 

the system response. 

 

4.2.2 – Choice of the sampling frequency 

If a wave elevation time series is low-pass filtered before the prediction, this 

means that it can be sampled without any loss of information [20] if: 

𝑓𝑠 ≥ 𝑓𝑐 2⁄                                                                  (𝟏𝟏) 
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where fs is the sampling frequency and fc is the cut-off frequency of the filter. 

Lower sampling frequencies would give raise to the aliasing phenomenon, 

causing the sampled time series not to be uniquely representative of the original 

signal. 

In theory, once (11) is respected and aliasing is avoided, the information that the 

past of a signal has about its future will not be affected by the sampling frequency.  

Therefore, a proper forecasting model that manages to extract all the information 

to produce the prediction, should not perform differently by changing the sampling 

frequency. In [20] this fact is also demonstrated in practice.   

As a consequence, the choice of the sampling frequency will not represent a 

problem during the simulations once the above mentioned condition is respected. 

 

4.3 – Prediction of wave height 

 

The task carried out in this section of the chapter is the prediction of the height of 

the wave using autoregressive models, through simulations with the software 

Matlab, version R2015b. The work has been done in different steps, starting from 

a very simple example of a regular wave with only 3 harmonic components, and 

finishing with a more complex case of a real wave profile, using the data 

introduced in the previous section.  

To check the accuracy of the predictions, in addition to a graphic evaluation, the 

following index of fitness (FIT) [23] will be used: 

𝐹𝐼𝑇(𝑙) =

(

 1 −
√∑ [𝐻(𝑘 + 𝑙) − 𝐻𝑝𝑟𝑒𝑑(𝑘 + 𝑙|𝑘)]

2
𝑘

√∑ 𝐻(𝑘)2𝑘
)

 ∙ 100%               (𝟏𝟐) 

Here H(k+l) is the wave elevation at the instant k+l, and Hpred(k+l|k) is its 

prediction based on the information up to instant k. The value of the index is a 

percentage, and represents a measure of the accuracy of the forecast. A 100% 

value for FIT(l) means that the wave height is perfectly predicted l steps into the 
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future. Therefore, the smaller is the percentage, the worse is the prediction 

precision. 

In this section, the concepts behind every Matlab simulation and its results will be 

discussed, while all the scripts are collected in the appendix B at the end of the 

thesis. 

 

4.3.1 – Example 1: simple wave with 3 harmonic components 

In this first example a simple ideal wave with only 3 harmonic components has 

been assessed. The script of the Matlab code is saved as AR_example.m, and it 

can be found in the appendix B, section B.1. 

The main difficulty in the implementation of the autoregressive method is the 

estimation of the coefficients ai. The other troublesome part, once the coefficients 

are estimated, is to predict the future wave using those coefficients. 

In order to solve these issues, the idea has been to start from this simple example 

and then to proceed increasing step by step the complexity of the model. 

For this reason a basic wave, not representative of a real one, has been initially 

used. The amplitudes Ai and the frequencies fi of the three components have 

been chosen arbitrarily, and the resulting wave height profile consists in the 

combination of the three harmonics: 

𝐻 = 𝐴1 ∗ sin(2𝜋𝑓1𝑡) + 𝐴2 ∗ sin(2𝜋𝑓2𝑡) + 𝐴3 ∗ sin(2𝜋𝑓3𝑡)                 (𝟏𝟑) 

For this simulation a time span of 100 s has been assessed, with a sampling 

frequency fs of 1 Hz. This means that we have a sample every second, and that 

the length of the single steps of the prediction is also 1 s. Thus, the total number 

of samples is N=101, and they have to be used for the estimation of the 

coefficients. 

The chosen values of amplitude are in order: A1 = 1 m, A2 = 0,5 m, A3 = 0,3 m. 

The frequencies for the three harmonics are: f1 = 0,03 Hz, f2 = 0,12 Hz, f3 = 0,015 

Hz. The resulting wave profile is depicted in figure 4.3. 
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Figure 4.3 – Wave elevation profile and samples 

 

To do the prediction we have to implement the formula of equation (6), already 

explained in section 4.1 and repeated here for convenience: 

𝐻𝑝𝑟𝑒𝑑(𝑘 + 𝑙|𝑘) =∑𝑎𝑖(𝑘)

𝑛

𝑖=1

𝐻𝑝𝑟𝑒𝑑(𝑘 + 𝑙 − 𝑖|𝑘) 

Therefore, an estimation of the coefficients ai is required, through the 

minimization of the Long Range Predictive Identification objective function of 

equation (10): 

𝐽𝐿𝑅𝑃𝐼 =∑ ∑ [𝐻(𝑘) − 𝐻𝑝𝑟𝑒𝑑(𝑘|𝑘 − 𝑗)]
2

𝑁2

𝑗=𝑁1

 

𝑁

𝑘=1

 

As the implementation of this formula in Matlab is quite complicated, for this first 

case to simplify the procedure the maximum prediction horizon N2 has been set 

equal to 1. In this way, the LRPI approach corresponds exactly to a standard least 

squares minimization, as equation (10) with N2=1 turns out to be identical to 

equation (9): 

𝐽𝐿𝑅𝑃𝐼 = 𝐽𝐿𝑆 =∑[𝐻(𝑘) − 𝐻𝑝𝑟𝑒𝑑(𝑘|𝑘 − 1)]
2
  

𝑁

𝑘=1
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This formula has been implemented through the function onepred.m, which can 

be found in section B.2 of the appendix B.  

The objective function JLRPI has been minimized through the solver fminunc, 

already implemented in the software Matlab, which is normally used to find the 

minimum of unconstrained multivariable function. Given a fixed starting point, this 

solver proceeds iteratively until it finds the solution. The choice of the starting 

point could be problematic, since a bad starting point could lead to a non-

converging solution or to find a local minimum and not a global one. If the starting 

point is changed, indeed, the solution may change. In the attempt to solve this 

problem also the Matlab tool MultiStart has been used, which using information 

from the minimization problem, creates a chosen and fixed number of random 

different starting points. In this case we chose 50 starting points: the program will 

then run the solver fminunc from each of the 50 points, giving as final solution the 

minimum among all the 50 solutions calculated. In this way, the likelihood of 

finding a global minimum increases. 

Regarding the order of the model, since the wave only has three harmonic 

components, a high order is not necessary. Thus, simulations have been made 

twice, once with order n=5 and once with order n=10. The order of the model 

corresponds also to the dimension of the vectors of parameters, for the starting 

points and for the final solutions as well. In both cases, repeating the optimization 

process many times shows that results (parameters values) are not always the 

same (they depend on the starting points, which are chosen randomly). But while 

in the first case (order 5) the solutions are always similar, with order 10 the values 

of the parameters are sometimes very different. Figures 4.4 and 4.5 illustrate this 

fact. They show the distribution in space of the values of starting points (blue 

circles) and the solution (red crosses), considering only the first two components 

a1 and a2 of the vectors ā = (a1, a2, … an). 
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Figure 4.4 – Space distribution of the first two coefficients of the starting points and the solution 
vectors, n= 5 

 

Figure 4.5 – Space distribution of the first two coefficients of the starting points and the 
solutions, n=10 

These graphs have been made for two reasons mainly: to check how the 

Multistart algorithm works when it generates the starting points, and to see if the 

solution remains the same when the calculations are repeated. Regarding the 

first issue, we can see that the blue circles are randomly distributed and all the 

space is investigated. 
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About the second problem, with order 5 (figure 4.4) there is only one red cross 

and this means that the solution is always approximately the same and it probably 

represents a global minimum. With order 10, on the other hand, the solution 

changes substantially every time, the red crosses of figure 4.5 are quite far one 

from each other and they represent local minimums. This can be explained by 

the fact that when the order is too high, too many coefficients are used, and the 

system of equations becomes more and more dependent. As a consequence, 

more solutions appear. This, however, should not affect the accuracy of the 

model. 

Both with order 5 and 10, the estimated coefficients have then been used to do 

the prediction as in equation (6). As we are considering a simplified model with a 

regular least squares estimation that is not optimal for a multi-steps prediction, 

only a 1 step forecast has been made here. Since the sampling period is 1 s, this 

means we are predicting the wave height only one second in advance. 

A graphic evaluation of how good is the prediction is possible through figure 4.6, 

that shows in blue the real wave and in red the 1-step prediction of the same 

wave with order 10. 

 

Figure 4.6 – Comparison between the real wave and the 1-step prediction with order 10 

Every point of the red profile of figure 4.6 is predicted one step (i.e. one second) 

ahead, and the curve is built connecting these points. As expected, for such a 

short-term forecast the precision seems to be quite good. No big differences can 
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be noticed between the graph for order 5 and the one for order 10, that is why 

only one of them has been reported here. 

In order to try to solve the problem of the different local minimums, some bounds 

have been applied to the multistart algorithm, restricting the searching space for 

the generated started points. The reason is that the values of wave height are in 

the order of a couple of meters (positive or negative) and not more, so it is 

reasonable to expect coefficients values of the same order of magnitude. 

Therefore, it seems not worth to search the solution outside of a certain range of 

values. Without any fixed bounds, the limits are automatically set to [-1000,1000] 

for both axis, as can be seen in figures 4.4 and 4.5. In the script AR_example-

bound.m [appendix B.3], these bounds have been reduced to -100 for the 

minimum value and 100 for the maximum.  

Now the minimization problem is constrained and the algorithm fminunc is not 

valid anymore. Thus, in this program it has been replaced by the solver fmincon, 

which is used to find the minimum of constrained nonlinear functions. Apart from 

this substitution, the syntax of the Matlab code remains the same of the previous 

unconstrained one. Introducing these bounds, the searching space for the 

starting points is reduced, and the result in the order 10 case is that the solutions 

are closer than they were with the unconstrained method, as depicted by figure 

4.7. 

 

Figure 4.7 – Space distribution of starting points and solutions with order 10 and bounds            
[-100,100] 
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The positive contribution of introducing some constraints is apparent in figure 4.7, 

as running the program multiple times the solutions are always similar, so we are 

closer to find a global minimum. On the other side, the calculation time in this 

case is significantly longer, as the optimization process now is more complex. 

Instead of introducing some constraints, provided that all the solutions are similar 

in terms of accuracy, we can choose among the solutions with smaller 

coefficients, not considering solutions with larger coefficients values that cancel 

each other. Moreover, the choice of a proper order for the AR model should make 

this issue less relevant, eliminating the need of introducing some bounds in the 

minimization problem. For all these reasons, this approach seems not to be totally 

worth it, and it will not be used further in the following simulations. 

 

4.3.2 – Example 2: wave with 9 harmonic components 

In this second example the number of harmonic components of the regular wave 

has been increased from three to nine, with the intent to add a level of complexity 

to the model and make it a little bit more similar to a real case. The wave has 

been created like in the previous case, fixing the values of amplitude and 

frequency of the harmonics and combining them  as showed by equation (13). 

The code written for this simulation can be found in the appendix B.4, entitled 

AR_example2.m. 

The number of samples is again N=101, sampled every one second (sampling 

frequency of 1 Hz). The generated wave profile is represented in figure 4.8. 

 

Figure 4.8 – Example 2: wave height profile and samples 
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From a first look, this profile looks more irregular than the one of the first example. 

With the samples taken from this new profile, exactly the same procedure of the 

previous simulation has been repeated, using the multistart approach to generate 

the starting points for the minimization process, realized with the solver fminunc. 

The simulation has been done both with order n=5 for the autoregressive model, 

and with order n=10. Every time we run the program the multistart algorithm 

generates 50 different starting points for the iterative minimization process. 

Again, to have an idea of how these points are distributed in the multidimensional 

space, we can take a look at figure 4.9 and 4.10, for order 5 and 10 respectively. 

 

Figure 4.9 – Space distribution of the first two coefficients of the starting points and the solution 
vectors, n= 5 
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Figure 4.10 – Space distribution of the first two coefficients of the starting points and the 
solutions, n=10 

In figure 4.9 and 4.10 only the first two values of the vector of parameters are 

considered, and this approximation is done only to have a visual two-dimensional 

idea of their distribution in the space. The blue circles represent the starting 

points, while the red crosses represent the solution, which is the vector of 

parameters that will be used for the prediction. Each time the program is run, 50 

more blue circles and one red cross appear on the graph. In this case we can see 

that in both cases there is only one red cross, which means that the solution is 

always the same and it is very likely to be a global minimum. 

Once estimated the coefficients ai, they have been used for a single step 

prediction of the wave height. Also in this example the only method used to 

evaluate if the prediction is good is to compare graphically the predicted wave 

and the real one. The comparison between the real wave and its 1-step prediction 

made with order 5 is showed in figure 4.11, while figure 4.12 in the next page is 

the same but for the prediction made with the AR model of order 10. 

As the wave is more complex than in the previous example, it is also expected to 

be harder to predict. With n=5, indeed, even a single step prediction is not 

perfectly accurate, as can be seen from figure 4.11. This means that the order is 

too low, a higher order is required for this wave and the results should be better. 

Doubling the order, in figure 4.12 we can clearly see that the prediction is 
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significantly better, as the two wave profiles (the real wave in blue and the 

predicted in red) are almost coinciding. In the next paragraph this procedure will 

be repeated using the data of real ocean waves. 

 

Figure 4.11 – Comparison between the real wave and the 1-step prediction with order 5 

 

Figure 4.12 – Comparison between the real wave and the 1-step prediction with order 10 

 

4.3.3 – One-step prediction of a real wave profile 

In this simulation the same procedure successfully implemented for a single-step 
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paragraph 4.2. These data have been loaded in the Matlab file Wave1.mat and 

used to run the Simulink model of figure 4.13. 

 

Figure 4.13 – Hydrodynamic Simulink model of a point absorber WEC 

This Simulink model represents the hydrodynamic model of a point absorber type 

of wave energy converter. Given a set of wave profile data, the model calculates 

all the hydrodynamic parameters and the power generated by the WEC in those 

conditions. In this simulation the model will be used only to extrapolate the values 

of wave height needed for the estimation of the autoregressive coefficients in the 

predictive Matlab code. Therefore, its functioning will not be analyzed in detail.  

The total simulation time for this application is 20 minutes, which is representative 

enough as the wave profile presents many peaks and troughs during this time. 

The data extracted from the model are used in the Matlab code AR3.m (appendix 

B.5) to build an offline autoregressive process for the one-step prediction of the 

profile. Apart from using a real wave profile instead of an ideal one, the code 

works exactly as in the previous examples. Figure 4.14 shows a portion 

(comprised between 600 s and 800 s from the begin of the simulation) of the 

complete 20 minutes wave profile extracted from Simulink. 
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Figure 4.14 – Real wave height profile and samples 

 

The simulations have been repeated using different values for the order of the 

AR process: 10, 20, 25, and 30. In all of the four cases the estimation of the AR 

coefficients has given a unique result, in contrast with what happened in the first 

example of wave made by three harmonics. Regarding the prediction part, again 

the accuracy is only evaluated through the value of the minimized function JMIN 

and through a graphic comparison between the predicted profile and the real one. 

Generally, it looks apparent that increasing the order the two profiles are more 

similar, so the forecast is better. To illustrate this, figure 4.15 a) and b) compares 

the original wave with the 1-step prediction resulting from a 10 order model and 

a 30 order model, respectively. 

For the case of order n=10, fig.4.15 a), it is possible to notice that in some points 

the predicted curve deviates from the real wave, while with order n=30, fig.4.15 

b), the two profiles are almost overlaid. 
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Figure 4.15 – Comparison between a portion of the real wave and its prediction for order 10 (a) 
and 30 (b) 

 

4.3.4 – Multi-step ahead prediction of a real wave profile 

In this code (AR7.m, appendix B.6) the information about the wave profile is taken 

from the same Simulink model of figure 4.13, again for a total time of 20 minutes 

and with sampling period Ts = 1 s. Therefore, the resulting wave height profile 

and the number of samples are exactly the same that we used in the one-step 

prediction code, shown in figure 4.14. 
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With respect to the previous simulation, in this code two things have been added: 

- The estimation of the autoregressive parameters through the minimization 

of the Long Range Predictive Identification (LRPI) JLRPI function of 

equation (10), which is more appropriate for a multi-step prediction than 

the regular least squares approach used so far. The objective function JLRPI 

has been implemented as a Matlab function, longpred5.m (appendix B.7), 

and the maximum prediction horizon N2 has been set equal to 20 steps, 

which means 20 seconds, as the length of a single step is 1 second. The 

value of N2 has been chosen because the prediction will not be made for 

more than 20 seconds ahead (the maximum will be 15 steps, as we will 

see later), and also because a higher value implies a longer calculation 

time. Regarding the minimization process, again the solver fminunc will be 

used, initialized with the results of the standard Least Squares estimation. 

- The calculation of the index of fitness (equation (12)) that gives a 

numerical measure of the accuracy of the prediction. The index has been 

implemented in the code through the Matlab function fitness.m (appendix 

B.8). 

The simulation for the l -step ahead prediction of the wave height profile has been 

repeated many times, changing the order n of the AR model and the lead time l. 

For the order the values of 10-15-20-25-30 have been tested, while for l the 

values 1-5-10-15 have been used. 

The results of all the simulations, in terms of index of fitness, are showed in table 

4.1. 

Index of fitness for the l-steps ahead prediction, N2=20 

 n 
l 

10 15 20 25 30 

1 65,55% 67,00% 83,48% 89,42% 91,83% 

5 32,45% 33,04% 38,90% 44,62% 57,65% 

10 11,94% 13,36% 17,49% 20,63% 25,32% 

15 2,98% 4,66% 8,45% 10,54% 12,38% 

Table 4.1 – Index of fitness of the predictions, AR parameters estimated with LRPI approach 
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Looking at the results, it is evident how the accuracy of the prediction increases 

with the order of the autoregressive model, with the maximum values achieved 

for n=30, with an index of fitness FIT = 91,83% for a 1 second-ahead prediction, 

and a FIT of 12,38% for a 15 seconds-ahead prediction. An order higher than 30 

has not been tested because it would require a too long calculation time. The 

index of fitness also shows clearly that, increasing the lead time l, the forecast 

gets worse. This is totally logical and expected, the further in the future we try to 

predict, the less accurate will be the prediction, as it will be based on the use of 

less measured past values and more estimated values. The maximum forecast 

horizon tested in this work is 15 seconds, and as the values of FIT are already 

very small it does not seem reasonable to predict further. 

The estimation of the parameters has been done also with the simpler least 

squares (LS) approach used in the previous examples for the one-step forecast. 

These parameters have been used also for a longer-term prediction, to compare 

with the LRPI method which is supposed to be more appropriate, and the results 

of the simulations are showed in table 4.2. 

Index of fitness for the l-steps ahead prediction, N2=1 

 n 
l 

10 15 20 25 30 

1 67,79% 71,38% 86,31% 94,49% 96,85% 

5 30,75% 31,42% 35,89% 46,50% 51,48% 

10 8,17% 8,77% 11,18% 16,83% 21,16% 

15 -1,07% -0,36% 0,92% 4,92% 7,98% 

Table 4.2 – Index of fitness of the predictions, AR parameters estimated with LS approach 

Comparing the results of table 4.2 with those of table 4.1, we can notice that for 

a 1-step ahead prediction the regular least squares method works better, while 

for longer-term forecasts the estimation done with the Long Range Predictive 

Identification function gives better results. This is consistent with what presented 

in the paragraph 4.1.1, as the LS approach is optimized only for a 1-step 

prediction. 
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The values of FIT are an index of the goodness of the forecast, but they are not 

exhaustive, also a graphic evaluation is important. Just to have an example, 

figure 4.16 shows the difference between a portion of the real wave height profile 

and its 10-steps ahead prediction of order 25, that has an index of fitness of 

approximately 20%.. 

 

 

Figure 4.16 – Comparison between the real wave and the 10-steps ahead prediction with order 
25 

 

4.3.5 – Multi-step ahead prediction of a low-pass filtered real 

wave 

As discussed in paragraph 4.2.1, the low frequency components of a wave 

spectra are more energetic and regular than the high frequency’s ones. As a 

consequence, they are also more predictable, and this is the reason why low-

pass filter the wave profile could lead to an improvement in the accuracy of the 

prediction without losing too many information on the signal. To verify the validity 

of this concept in the practice, a low-pass filter was added to the Simulink model 

of the point absorber (figure 4.13). This was done through an “Analog Filter 

Design” block, available in the Simulink’s library. With this type of blocks we can 

decide the filter typology and set the filter order and the cut-off frequency. For this 

simple application, a standard Butterworth low-pass filter of order 1 has been 
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chosen. Regarding the cut-off frequency ωc, two different simulations have been 

done, one with a cut-off frequency of 1,5 rad/s and the other with ωc = 1 rad/s. 

The Simulink Model with the addition of the filter is shown in figure 4.17. Each 

simulation lasts 20 minutes, and the values of wave height (both filtered and 

unfiltered) are saved in the Matlab workspace through some “To Workspace” 

blocks. These values are then used in the Matlab code ARfilt.m (appendix B.9) 

to estimate the autoregressive parameters and predict the wave height. The code 

is equivalent to the previous one, apart from the fact that it uses the information 

of filtered wave height for the estimation of the coefficients ai. 

 

 

Figure 4.17 – Simulink model of a point absorber WEC with the addition of a low-pass filter to the 
wave height 

For the first simulation, with cut-off frequency ωc = 1,5 rad/s, the difference 

between a part of the filtered profile and the unfiltered one is illustrated in figure 

4.18. 
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Figure 4.18 – Unfiltered wave height profile (blue) and filtered with ωc of 1,5 rad/s (red) 

 

From the picture we can see that the filtered signal presents a loss of amplitude 

and a time delay when compared to the unfiltered one, but their magnitude is not 

very significant for the purposes of this study. As done in the simulation of the 

previous paragraph, the prediction code is run many times changing the order n 

of the AR model and the lead time l. The results, in terms of index of fitness, are 

shown in table 4.3: 

Index of fitness for the l-steps ahead prediction, N2=20 

 n 
l 

10 15 20 25 30 

1 74,17% 74,40% 86,03% 91,31% 88,24% 

5 39,70% 40,73% 46,01% 52,79% 53,86% 

10 14,47% 16,98% 21,19% 24,88% 25,35% 

15 3,57% 5,60% 10,03% 12,57% 12,77% 

                                  Table 4.3 – Index of fitness of the predictions, ωc = 1,5 rad/s 

Comparing these results with those of table 4.1, obtained without any filter, we 

can see that the values of the index are higher of a few percentage units, around 

a 4-5% on average. This is not true for order 30, that presents almost the same 
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values that it had without filtering the signal. Obviously, in this case filtering the 

wave height signal is not worth it. 

Figure 4.19 shows a portion of the predicted wave profile for a 10-steps ahead 

forecast of order 25.  

 

Figure 4.19 – Comparison between the filtered wave and the 10-steps prediction with n = 25,   
ωc = 1,5 rad/s 

The prediction of fig.4.19 has an index of fitness of 24,88%, while the prediction 

of fig.4.16 (same order and lead time but without filter) had a value of 20,63%. 

Thus, the improvement is clear, but not very large. 

With a lower value of cut-off frequency, the improvement is expected to be higher. 

If we set the value of ωc equal to 1 rad/s, the resulting profile is the following: 

 

Figure 4.20 – Unfiltered wave height profile (blue) and filtered with ωc of 1 rad/s (red) 
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As the value of ωc is lower than in the previous case, more frequency components 

of the wave are filtered, and this is why the loss of amplitude from the original 

signal is larger, and the delay is becoming more significant. 

If we run the Matlab code with this cut-off frequency many times, changing the 

order and the prediction horizon, the results are illustrated in table 4.4. 

Index of fitness for the l-steps ahead prediction, N2=20 

 n 
l 

10 15 20 25 30 

1 77,09% 77,01% 87,23% 92,01% 88,79% 

5 43,67% 45,15% 50,44% 57,38% 57,87% 

10 16,09% 19,40% 24,09% 28,00% 28,35% 

15 3,96% 6,32% 11,39% 13,99% 14,49% 

Table 4.4 – Index of fitness of the predictions, ωc = 1 rad/s 

As expected, with a lower cut-off frequency the values of the index are higher. 

For the particular case of 10 steps of prediction with order 25, the value of FIT is 

28%, compared to the 24,88% with a ωc of 1,5 rad/s and with the 20,63% with no 

filter. The accuracy improves, but not in a very significant way. The predicted 

profile for the case under consideration is depicted in fig.4.21. 

 

Figure 4.21 – Comparison between the filtered wave and the 10-steps prediction with n = 25,  
ωc = 1 rad/s 
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4.4 – Prediction of wave power 

 

In paragraph 4.3 we have seen the development of a predictive method based 

on AR models and applied to the prediction of the wave height of a real sea wave 

profile. However, it is necessary to remind that the final aim of the work is to 

smooth the oscillating power produced by the wave energy converter through a 

storage system, and that the control of the smoothing system that we want to 

develop requires the prediction of the produced power, and not of the wave 

height. For this reason, the autoregressive predictive method will be used in this 

section to try to predict the power generated by the WEC. If for a wave height 

profile the validity of the AR method has been demonstrated, for a power profile 

it is not obvious and it has to be tested. 

Two different approaches were tried: 

- Direct prediction of the power through an autoregressive model, replying 

exactly what previously done with the height of the waves. 

- Indirect prediction of the power: the AR method is applied to predict the 

oscillation velocity of the point absorber WEC and the force induced by the 

PTO (Power Take-Off) equipment, and the power is calculated as the 

product of these two variables. 

 

4.4.1 – Direct prediction of the power 

As already seen in the previous paragraphs for the height, the l -step ahead 

prediction of the power with an AR model of order n is calculated as: 

𝑃𝑝𝑟𝑒𝑑(𝑘 + 𝑙|𝑘) =∑𝑎𝑖(𝑘)

𝑛

𝑖=1

𝑃𝑝𝑟𝑒𝑑(𝑘 + 𝑙 − 𝑖|𝑘)                              (𝟏𝟒) 

The coefficients ai need to be estimated through the minimization of the following 

objective function: 

𝐽𝐿𝑅𝑃𝐼 =∑ ∑ [𝑃(𝑘) − 𝑃𝑝𝑟𝑒𝑑(𝑘|𝑘 − 𝑗)]
2

𝑁2

𝑗=𝑁1

                            (𝟏𝟓)

𝑁

𝑘=1
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Equations (14) and (15) are equivalent to equations (6) and (10) respectively, 

with the only difference that the values of wave height have been replaced by the 

values of power. 

The data of power are extracted from the Simulink model of figure 4.13, 

representing a point absorber WEC. The model is run for 20 minutes always with 

the same sea state used previously, and the values of power are sent directly to 

the workspace of Matlab, to be used in the code ARpower.m of appendix B.10. 

The resulting WEC power profile is illustrated in fig. 4.22. The values of power 

are sampled again every one second (sampling frequency of 1 Hz), and they are 

used for the estimation of the coefficients of the AR model. 

In this case the power signal has not been low-filtered, also because the use of 

a filter for the wave height prediction didn’t lead to a very significant improvement 

in the accuracy of the prediction. In addition, the smaller improvements induced 

by the filter with respect to a prediction without filter were obtained in the case of 

order 30 of the AR model, which is the same order that will be used here for 

power. 

 

Figure 4.22 – Profile of the power absorbed by a point absorber WEC 

 

Running the code with order 30, the prediction by the use of an autoregressive 

model has given, in terms of index of fitness, the results shown in table 4.5. 
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prediction  
steps 

1 5 10 

lead time 1 s 5 s 10 s 

index of 
fitness 

55,84% 26,11% 15,67% 

                                        Table 4.5 – Index of fitness of the direct power prediction 

The results are considerably worst compared with those of the unfiltered 

prediction of wave height made with the same order (table 4.1). For example, for 

the 1-second ahead prediction we have a fitness index of 55,84%, very low 

compared to the approximately 90% that we had for the wave elevation in the 

same condition. This is not unexpected, since the shape of the power profile is 

very different from the height’s one. In the wave height case, indeed, the profile 

presents many oscillations of small amplitude around a near to zero mean value, 

while in this case the power curve is almost completely above zero and it shows 

much bigger oscillations in terms of relative amplitude. As a matter of fact, height 

is a combination of sinusoidal waveforms, but power is more similar to a 

combination of squared sinusoidal waveforms. Therefore, AR models seem to be 

not very appropriate for the direct prediction of power. 

 

 

4.4.2 – Indirect prediction of the power 

Because of the not very good results achieved with the direct prediction, another 

approach has been tested. It consists in an indirect prediction of power, in the 

sense that power is calculated from a combination of other predicted variables. 

More specifically, the instantaneous mechanical power absorbed by the WEC 

can be calculated as the product of the oscillation velocity v of the point absorber 

and the PTO force FPTO [31]: 

𝑃 = 𝐹𝑃𝑇𝑂 ∙ 𝑣                                                                  (𝟏𝟔) 

This mechanical power differs from the electric power generated by the WEC only 

because of the power losses in the generator.  
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Both force and velocity have an oscillating profile more similar to the behavior of 

the wave height profile with respect to the power, that has a quadratic behavior 

compared to them. Thus, it is reasonable to think that autoregressive models are 

more suitable for the prediction of these two variables than in the case of the 

direct prediction of power. For this reason, the prediction of power in this section 

is done indirectly, as the variables predicted with AR models are force and 

velocity, and power is calculated only in the second place. 

The values of force and velocity are taken, coherently with the previous 

simulations, from a 20 minutes run of the point absorber Simulink model of fig.13, 

and imported in the Matlab workspace. Thereafter, they are used in a Matlab 

code identical to the one used already for the prediction of height and power. 

The curves representing the profile of the PTO force and the oscillation velocity 

are illustrated respectively in figures 4.23 and 4.24. As we can see from the 

figures, their shape is more similar to the wave height profile with respect to 

power, so they look more suitable for the use of AR models. 

 

Figure 4.23 – Shape of the PTO force profile 
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Figure 4.24 – Shape of the WEC oscillation velocity profile 

Again with a sampling period of one second and order 30 of the AR model, the 

prediction of force and power has given the values of index of fitness shown in 

table 4.6. 

Prediction steps l 1 5 10 

PTO force 80,79% 37,66% 11,64% 

velocity 83,57% 38,44% 11,98% 

                                   Table 4.6 – Index of fitness of the prediction of force and velocity 

We can see that the values of the index are very similar in the two cases, and 

better than the values obtained for power, although the decrease with time is 

relatively fast. As previously said the predicted force and velocity are then 

multiplied to find the indirect forecast of the power absorbed by the WEC. 

Calculating the index of fitness of the indirect power prediction with respect to the 

real power profile, we achieve the results of table 4.7. 

Prediction steps l 1 5 10 

Power: P = FPTO·v 76,66% 30,92% 8,07% 

Table 4.7 – Index of fitness of the indirect prediction of power 

Comparing the results of the direct and the indirect power prediction, we can 

notice that in the short horizon the indirect method is significantly more accurate, 
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while the FIT value for a 10 seconds-ahead prediction is better in the case of 

direct forecast. The fact that the indirect method loses precision faster makes 

sense. The multiplication of two estimated variables, indeed, means that also 

their relative errors are multiplied, and therefore the resulting error for power will 

be larger than the single errors of force and velocity. When the prediction steps 

are increased, the errors in the forecast get larger, and this is why the quality of 

the indirect prediction decreases rapidly.  

The results obtained in terms of length and accuracy of the prediction clearly 

show how none of the two analyzed methods are optimal for the forecast of the 

power of a wave energy converter. However, the aim of this work is not the power 

prediction in itself, but to use someway this prediction to mitigate the fluctuations 

of the power sent to the grid by the WEC. Therefore, the achieved results could 

be good enough for this application. This will be analyzed in the next chapter, 

where the AR predictive method will be integrated in a supercapacitor-based 

Power Smoothing System (PSS).  
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5 – INTEGRATION OF AR PREDICTION IN THE 

SIMULINK MODEL OF A POWER SMOOTHING 

SYSTEM 

 

In this part of the work, the predictive code developed in the previous chapter will 

be integrated in the control of a Simulink model of a supercapacitor-based PSS 

(Power Smoothing System). The model, that was already built by the CIEMAT 

research group, is known as “APOGEO model”. The name APOGEO comes from 

a project based on an energy storage device to compensate the power 

oscillations in an electric generation system from the wave energy. This model 

will be presented in the first section of the chapter. Afterwards, different 

simulations will be done with it, using at first a control system based on a Moving 

Average (MA) criteria, and then trying to replace it with the AR approach. 

 

5.1 – The APOGEO model 

 

The APOGEO Simulink model represents basically a wave farm producing power 

and supplying it to the electric grid, with an energy storage based on Electric 

Double-Layer Capacitors (EDLC), commonly called supercapacitors, used to 

smooth the output power. The model includes also the control system and all the 

power electronic components. The main view of the model is depicted in fig 5.1. 
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Figure 5.1 – Main view of the APOGEO Simulink model 

Three main sections can be identified in the model, each of which includes in turn 

different subsystems: 

 Power system (fig. 5.2), composed by the wave farm and the grid, with a 

DC-Link capacitor between them. The wave farm block comprises the 

point absorber hydrodynamic model used in the previous chapter, to get 

the power produced by the WECs starting from a certain set of data of 

regular or irregular sea waves, and also the control for the power take-off. 

 

Figure 5.2 – APOGEO model: power system 
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 Energy Storage System, fig 5.3, including the supercapacitors and their 

connections. The model contains also the calculation of the power losses 

for conduction and the switching. 

 

Figure 5.3 – APOGEO model: Energy Storage System 

 Control subsystems, fig. 5.4, including two controls: the control for the 

power converter (which is supposed to keep constant the voltage on the 

DC-Link) and, more importantly, the control for the ESS, which is the 

subsystem where the focus is put and that will be modified for our 

simulations in order to implement the autoregressive prediction. 

 

 

Figure 5.4 – APOGEO model: control subsystems 

The controls included in the two boxes of fig. 5.4 are shown in fig. 5.5 a) and 

b).The first one is the control for the converter, while the second one is the control 

system for the supercapacitors implemented by CIEMAT group, which works with 

a Moving Average (MA) criteria. 
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Figure 5.5 – APOGEO control systems: a) control of the power converter, b) control of the ESS 

The input for the ESS control is the power Pwec produced by the wave energy 

converters, taken from the wave farm subsystem. With the MA approach, in a 

certain moment a buffer extracts a fixed number n of past values of Pwec. The 

arithmetic mean Pavg of those n values is then calculated, using a block “Sum of 

Elements” and a block “Divide”: 

𝑃𝑎𝑣𝑔 =
∑ 𝑃𝑤𝑒𝑐,𝑖
𝑛
𝑖=1

𝑛
                                                                (𝟏𝟕) 

This procedure is repeated and updated in every step of the simulation, and the 

buffer extracts always the n most recent values of Pwec. Thus, the constant n can 

be considered as the width of a moving window, which instant by instant moves 

forward, calculating the average Pavg of the last n values of Pwec. The value of Pavg 

is used as a reference value of power for the storage system, because in every 

instant it is compared with the instantaneous power Pwec produced in that moment 

through a simple calculation of the difference between them, Pess*. 

𝑃𝑒𝑠𝑠
∗ = 𝑃𝑎𝑣𝑔 − 𝑃𝑤𝑒𝑐                                                              (𝟏𝟖) 

a) 

b) 
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When the instantaneous power produced by the WECs is bigger than the average 

reference value (Pwec > Pavg), the value of Pess* is negative. In this case the WECs 

are producing a power bigger than Pavg, which is the value that we want to provide 

to the grid, keeping it as constant as possible. Therefore, the negative value of 

Pess* represents a surplus of power, and it will be used to charge the 

supercapacitors. 

On the other hand, when Pess* is positive (Pwec < Pavg), it means that the power 

produced by the WECs is less than the reference, and in order to maintain a 

certain power level in the grid, an additional power has to be released by the 

supercapacitors. During this phase, thus, the superconductors are partially 

discharged, as a certain amount of energy is taken from them and injected into 

the grid. 

The power generated by the wave energy converters presents many oscillations, 

as seen in the previous chapters, so there will be many short cycles of partial 

charge and discharge of the supercapacitors in order to compensate the 

fluctuations. However, the power provided to the grid will not be perfectly 

constant, as the value of the arithmetical average power Pavg is not always the 

same, but it changes with time. 

In the next paragraph some simulations will be carried out with this control based 

on a moving average approach, changing the width of the moving window to see 

how the system reacts. 

 

5.2 – Simulations with Moving Average approach 

 

Before integrating the autoregressive prediction code in the APOGEO model, 

some simulations have been made using the control system for the ESS of fig. 

5.5 b), based on the MA approach explained in the previous section. 

The wave data set used to run the model is the same used in chapter 4, coming 

from the observations taken from a buoy in the Biscay Marine Energy Platform 

(BIMEP), in the Cantabrian Sea, at the North coast of Spain. The data are loaded 

through the file Wave1.mat, and they will be used for the calculation of the power 

generated by the WECs, Pwec. The values of power are quite big, and in these 
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simulations they have been reduced by the multiplication for a scale factor, called 

MB, of 0,02, in order to allow us to compare the results with those obtained in the 

CIEMAT laboratory test bench, in which it is not possible to work with a too high 

level of power, without affecting the simulation results. 

The values of all the variables needed in the model are fixed in a Matlab code, 

Datos_VM.m (appendix B.11). In this script the electric variables of the 

components included in the model are defined, together with other parameters 

required by the model.  

The most relevant of them are resumed in the following table. 

Wave farm       

MB = 0,02  (scale factor)     

DC-link         

Udc0 = 120 V  (initial and rated DC voltage)  

Cdc = 12*10-3 F  (capacitance)     

Supercapacitors       

Uuc = 80 V  (total operating voltage)   

Cuc = 90 F  (total capacitance)     

Table 5.1 – Values of some of the parameters required for the APOGEO model 

To check the efficiency of the moving average control system in smoothing the 

WEC output power we have done multiple simulations of 10 minutes, changing 

for each of them the width of the moving window. The width of the window is 

defined in terms of time: a moving window of 10 seconds, for example, means 

that in every instant of the simulation the control system calculates the average 

value of the instantaneous power produced by the WECs in the last 10 seconds, 

and uses this value as a reference for the storage system, as previously 

explained. The number of values contained in the window depends on the 

sampling time. According to the resulting value of average power, the 

supercapacitors used for the energy storage will be charged or discharged. 

The first simulation has been done with a moving window of 12 seconds, and 

then the width has been gradually increased. To have a numerical evaluation of 

the efficiency of the system in terms of smoothing power, we introduced an index 

that has been called Smooth Index (SI). It is based on the statistic concept of 

Standard Deviation (SD), normally used to quantify the dispersion of a set of data 

values from the mean. 
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The standard deviation is calculated as follows: 

𝑆𝐷 = √
∑ (𝑃𝑔𝑟𝑖𝑑,𝑖 − 𝑃𝑔𝑟𝑖𝑑,𝑎𝑣𝑔)
𝑁
𝑖=1

𝑁
      [𝑊]                                 (𝟏𝟗) 

The terms Pgrid,i and Pgrid,avg refer respectively to the instantaneous power 

provided to the grid and to the arithmetic average power supplied in the 10 

minutes period of the simulation, while N is the total number of discrete values 

contained in that period of time. 

Once calculated the standard deviation SD, the smooth index is determined as: 

𝑆𝐼 = (1 −
𝑆𝐷

𝑃𝑔𝑟𝑖𝑑,𝑎𝑣𝑔
) ∙ 100                                                  (𝟐𝟎) 

While SD gives a measure in Watts of the mean distance of the values of 

instantaneous power from the average, the smooth index SI is a measure in 

percentage of how much the profile of power provided to the grid is smoothed. 

The bigger is the value of SI, the more smoothed is the profile. A value of 100% 

would mean to have a perfectly smoothed profile, which would be the case of a 

constant value of power. 

The results of the simulations are collected in table 5.2. In the table we can find 

the width of the moving window, the maximum and minimum values of 

instantaneous power supplied to the grid (Pgrid,max and Pgrid,min) during ten minutes 

of simulation time, the average power provided in the same period, the standard 

deviation, and finally the smooth index. 
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width of the 
 window 

Pgrid,max Pgrid,min Pgrid,avg SD 
Smooth 
 Index 

[s] [W] [W] [W] [W] [%] 

12 1191,3 27,5 372,3 236,2 36,57% 

16 1003,6 45,1 371,8 207,7 44,06% 

20 1020,5 68,2 370,4 189,1 48,94% 

24 1010,1 66,2 369,4 176,5 52,22% 

28 905,9 63,1 368,1 166,7 54,72% 

32 874,1 61,7 366,9 158,1 56,92% 

36 831,9 83,6 366,0 150,4 58,91% 

40 779,1 100,0 365,2 143,5 60,70% 

44 722,8 119,2 364,4 137,5 62,26% 

48 684,3 118,1 363,6 132,2 63,64% 

52 640,9 120,5 362,5 127,4 64,85% 

56 634,3 120,9 361,3 123,4 65,84% 

60 617,8 118,3 360,2 119,9 66,70% 

64 589,9 147,8 359,2 117,0 67,42% 

68 579,0 169,9 358,2 114,4 68,06% 

72 577,7 169,3 357,4 112,0 68,66% 

76 581,0 167,3 356,5 109,8 69,20% 

80 569,2 162,6 355,7 107,9 69,66% 

84 570,5 181,7 354,9 106,3 70,04% 

88 565,5 190,0 354,0 105,1 70,32% 

92 557,5 181,4 352,8 104,1 70,49% 

96 544,4 173,8 351,4 103,2 70,63% 

100 523,7 166,9 350,1 102,4 70,76% 

104 508,2 160,4 348,8 101,8 70,81% 

108 514,2 154,5 347,4 101,6 70,75% 

112 515,9 148,9 346,1 101,7 70,62% 

116 507,3 143,8 344,8 101,8 70,47% 

120 504,1 139,0 343,5 102,1 70,27% 

150 467,7 111,0 334,7 107,6 67,83% 

Table 5.2 – Results of the simulations with different values of the width of the moving window 

For increasing values of width, the tendency showed by the results is that also 

the smooth index increases, reaching a maximum value of 70,81% with a window 

of 104 s (highlighted in yellow in table 5.2). This seems perfectly reasonable, as 

a bigger window means that the average power Pavg calculated as a reference for 

the MA control will have a more constant value, implying that also the power 

provided to the grid is more constant. Coherently with this statement, we can see 

that the maximum and minimum values of power supplied to the grid respectively 
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decreases and increases as the width increases. As a consequence, the profile 

of the instantaneous power absorbed by the grid will be more smoothed. 

At the end of each simulation some graphs are also generated to help to the 

evaluation and analysis of how the system worked. In fig. 5.6 some of these 

graphs are illustrated, for the case of moving window of 24 seconds. From the 

top of fig 5.6. to the bottom, we can see the graphs of the DC-link voltage, the 

WEC output power, the power injected to the grid, the power absorbed or 

released by the ESS, and the state of charge (SoC) of the supercapacitors. 

 

  Figure 5.6 – Graphical results in the case of width of the window = 24 s 

In the first graph the red line represents the DC-link voltage, controlled to be 

maintained equal to the reference of 120 V. The voltage presents some 

fluctuations, but in general it doesn’t move too far from the reference. In the 

second graph, in yellow there is the oscillating power produced by the WECs, 

while the black line represents the values of the average power Pavg of the moving 

window. As in this case the width of the window is small, the value of Pavg changes 

significantly during the total time of the simulation, increasing strongly when there 

are peaks of produced power. The third graph, in the center, is the most 

interesting for the purpose of these simulations, as it shows the profile of the 
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power supplied to the grid. Without the energy storage, this profile would be 

identical to the yellow one of the WEC power, but in this case it is evidently more 

smoothed, and this is exactly what the supercapacitor-based Power Smoothing 

System is supposed to do. In addition, it is important to notice how the blue curve 

representing the instantaneous power delivered to the grid has a shape very 

similar to the black curve of Pavg. The reason is that Pavg is the reference value of 

power that we want to provide to the grid, so Pgrid follows this reference. 

To draw a comparison, in figure 5.7 the same graphs are reported for the case of 

width of the window of 104 seconds, in which the value of the smooth index is the 

maximum registered among all the simulations carried out. 

 

 Figure 5.7 – Graphical results in the case of width of the window = 104 s 

 

Looking at the graph of the grid power (blue curve), it looks immediately evident 

that in this case the power is clearly more smoothed than in the previous one, 

without any large fluctuation around the mean value. As a consequence, the 

likelihood of having stability problems or other grid integration issues (discussed 

in chapter 3) is significantly reduced. 
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On the other hand, the average value of power delivered to the grid decreases 

as the width of the moving window increases, as we can see from the results of 

table 5.2. The reason is that with a larger window, more power is exchanged with 

the storage system, and hence, the losses are bigger. Moreover, since more 

energy needs to be stored, the state of charge of the supercapacitors increases 

with a bigger moving window width. This implies a bigger storage capacity 

required and therefore a higher cost for the storage system. The best choice for 

the width, thus, will be a compromise between these considerations and the 

improvement of the power quality of the grid, as usually happens in engineering’s 

problems. 

 

5.3 – Integration of the AR prediction in the APOGEO model 

 

The purpose here is to replace the control system for the ESS of fig. 5.5, based 

on the moving average approach, with another one that uses the prediction of 

WEC power made with an autoregressive model. In chapter 4, two different 

methods have been assessed for the prediction of power: the direct prediction 

through AR models, and an indirect forecast obtained from the multiplication of 

the AR predictions of the power take-off force Fpto and the oscillation velocity of 

the WEC v.  

In the APOGEO model we will use the indirect approach, which has shown a 

higher accuracy in the very short term compared to the direct prediction. The 

Simulink model for the implementation of the indirect power prediction is shown 

in figure 5.8, and it will be included as a part of the control system. 

To integrate in Simulink the prediction code developed in the previous chapter it 

is necessary to use a block “S-Function Builder”, which works with the 

programming language C. Therefore, the code written in Matlab language has 

been translated in C so that it can be read by this type of block. In the model of 

fig. 5.8 there are two S-Function Builder blocks, one for the prediction of velocity 

(the upper one) and one for the prediction of force (the one on the bottom). 

Velocity and force (that in the model are called respectively vPablo and Fm) are 
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taken from the hydrodynamic model of the WEC contained in the wave farm block 

of fig. 5.2, using two “From” blocks.  

 

      Figure 5.8 – Simulink model of the indirect prediction of WEC power 

The two yellow blocks are “Rate Transition” blocks and they are responsible for 

changing the sampling time. Consistently with what was done so far, for the 

prediction we will use a sampling time of one second and an order of 30 for the 

AR process.  

The two Buffers collect a fixed number of values of velocity and force, that has 

been set equal to the order of the AR model. As a consequence, at each step of 

the simulation the Buffer extracts the last 30 values of the concerned variable, 

and sends it to the S-function Builder as a first input. The other inputs for this 

block are the autoregressive coefficients ai, the order and the horizon, defined as 

the number of steps in the future that we want to predict. The AR coefficients 

have to be estimated offline before running the APOGEO model, through the 

optimization procedure presented in chapter 4. As already seen, an online 

adaptive estimation, extremely more difficult to implement, is not necessary, as it 

is proved that a static offline AR process keeps its validity for more than two hours 

[23].  

Regarding the horizon, we will repeat the simulation with a 5, 10 and 15 steps-

ahead prediction respectively. The outputs of the two S-Function Builder blocks 

are the predicted force and velocity, in the form of vectors of 5, 10 or 15 values 
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depending on the chosen forecasting horizon. The two vectors (force and 

velocity) are then multiplied to each other to finally get the WEC power indirect 

prediction. 

Now that we have a prediction of the power produced by the wave farm, the next 

issue to deal with is to use it in the control system of the supercapacitors with the 

aim of smoothing the power provided to the grid. More specifically, the purpose 

is to use the predicted profile to get a reference average value of power to deliver 

to the grid, and regulate the cycles of charge and discharge of the storage system 

according to this reference value. 

The adopted solution is to proceed similarly to the case of moving average, 

calculating the average of n past values of instantaneous power and l predicted 

values, where n is now the order of the model and l is the prediction horizon. 

Thus, the reference value of power will be calculated as the arithmetical mean of 

n+l values. With a 10 steps-ahead prediction of order 30, for example, the control 

will calculate the average power Pavg of the last 30 values and the 10 predicted 

values of power. From here on out, the control system works exactly as in the 

moving average case. Pavg is the value of power that has to be supplied to the 

grid: when the WEC power is bigger than Pavg, the surplus of power will be used 

to charge the supercapacitors, while when Pwec is smaller than Pavg, the 

supercapacitors will release an additional amount of power to the grid. 

The new control system working with the autoregressive prediction is depicted in 

fig. 5.9. 

 

   Figure 5.9 – Simulink model of the predictive control system of the energy storage 
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The control system of the above picture is the only part that has been modified of 

the APOGEO model presented at the beginning of the chapter. With this new 

control, three different simulations of 10 minutes each have been made, changing 

the prediction horizon. It is important to underline that in this case the power level 

has been also reduced by a scale factor of 0,02, to adapt the power generation 

levels to the power values later tested in the CIEMAT laboratory during the 

experimental part of the work. Working always with the same wave profile and 

maintaining the same values for the functioning parameters of the 

supercapacitors, the DC-Link and the other components, the results of the three 

simulations are those collected in table 5.3. The table shows the values of the 

maximum and minimum instantaneous power delivered to the grid, the average 

power, the standard deviation, and the Smooth Index, calculated with the use of 

equation (20). 

pred. steps Pgrid,max Pgrid,min Pgrid,avg 
standard 
deviation 

smooth index 

/ [W] [W] [W] [W] [%] 

5 835,8 75,1 358,7 148,3 58,64% 

10 747,7 70,4 330,3 133,1 59,70% 

15 667,.4 64,8 298,7 119,3 60,00% 

Table 5.3 – Results of the simulations with different prediction horizon for the AR model 

The values of the smooth index for the three cases are very similar, around 60%, 

while with the moving average control a maximum value of approximately 71% 

was reached. Increasing the prediction horizon, the smooth index improves a little 

bit, but the average power provided to the grid decreases significantly. 

To have also a graphical evaluation of the results, the same graphs already 

analyzed in the moving average case have been produced. In fig. 5.10 we can 

see these graphs for the 10 seconds-ahead prediction. 
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Figure 5.10 – Graphical results in the case of control system based on a 10 steps-ahead 

prediction 

Looking at the third graph, in the middle, it looks clear that this control system 

works, in the sense that the profile of the power supplied to the grid looks deeply 

smoothed compared to the WEC power (yellow curve), but it does not improve 

the control system based on the moving average approach already implemented 

by the research group of CIEMAT. 

In the next chapter, the operation of both the controls will be practically tested in 

laboratory. 

 

 

 

 

 

 

 

 

 

 



5 – Integration of AR prediction in the Simulink model of a Power Smoothing System 

78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

79 
 

6 – LABORATORY TESTS 

 

In chapter 5 the validity of the supercapacitor-based power smoothing system 

has been verified through different simulations with the software Matlab-Simulink. 

In this chapter, the practical operation of the system will be tested in the CIEMAT 

laboratory, where a test bench is used to emulate wave power oscillations and to 

partially suppress them by means of an energy storage system before being 

supplied to a load.  

First of all, the laboratory test bench will be presented, with its main components 

and characteristics. After that, different tests will be carried out with a moving 

average control system and changing the width of the moving window. Finally, 

the control based on the autoregressive prediction will be tested, and the results 

of all these tests will be analyzed and compared. 

 

6.1 – Laboratory Test Bench 

 

The laboratory platform used in the work, whose scheme is depicted in fig. 6.1, 

consists of three different power subsystems: the wave energy converter (WEC) 

or the wave farm (WF), the energy storage system based on the use of 

supercapacitors, and the electrical grid. Each subsystem is circled with a different 

color in the scheme, to be easily distinguished. 

 

Figure 6.1 – Scheme of the laboratory test bench 
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In the test bench, some of these subsystems are real, while others are emulated. 

The WEC/WF part, for example, needs to be emulated so that different sea 

states, types, number and distribution of WECs, as well as different working 

conditions can be tested. Conversely, the electrical grid and the ESS are real. In 

particular, the ESS is a completely real system capable to be installed in a WEC 

or WF. 

All of the aforementioned subsystems are illustrated in the scheme of fig. 6.1, 

together with the DC-link, referring to the DC connection between the different 

power electronics converters that represent the system parts. The DC-link, 

however, is not a physically distinguishable element, but it actually comprises all 

the capacitors of all the power electronic converters connected together. 

The main specifications of the test bench are collected in table 6.1. 

Subsystem 
Specifications 

Subsystem 
Specifications 

Magnitude Value [units] Magnitude Value [units] 

DC-link 
Capacity 6 mF 

ESS 

Type EDLC 

Rated voltage 100 VDC Rated volt. (1 module) 16 VDC 

WEC 
emulator 

Grid voltage 400 V Rated volt. (total) 80 VDC 

Transf. ratio 400:50 Capacity 430 F 

Transf. power 80 kVA Inductive link 3 mH 

Table 6.1 – Laboratory platform technical specifications 

More specifications about the supercapacitors or EDLC (Electrochemical Double-

Layer Capacitor) can be found in the manufacturer datasheet (table 6.2). 

 

Table 6.2 – Datasheet of the supercapacitors 
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Concerning the power electronic converters, as shown in the scheme of fig. 6.1 

there are three converters, one for each subsystem. All of the three converters 

are three-phase IGBT’s power converters, but they have different functions in the 

test bench. The specifications of these converters are contained in table 6.3, 

taken again from the manufacturer datasheet. 

 

Table 6.3 – Datasheet of the power converters 

In the following subsections more specific information for all the three subsystems 

involved will be given. An overall view of the laboratory test bench is illustrated in 

fig. 6.2, in the next page. 

 

6.1.1 – Wave farm emulator 

The WF is emulated using an AC/DC power converter, which is connected to the 

400 V grid by means of a transformer with ratio 400:50 V. Thus, the converter 

works in this case as a controlled rectifier, receiving alternate current from the 

transformer as an input, and providing direct current as output. The rectifier is 
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operated with an active power reference given by a certain profile in the time 

domain. This subsystem could emulate different types of WECs. For the tests 

presented later in this chapter, however, we will refer only to the case of point 

absorber WECs, whose reference power profile is taken from the Simulink 

hydrodynamic model used in chapter 4. This subsystem, therefore, is responsible 

for generating an oscillating profile of power comparable to the one that would be 

generated by a real point absorber, and for providing it to the grid or to the ESS. 

 

Figure 6.2 – Overall view of the laboratory test bench 

 

6.1.2 – Grid connection emulator 

This subsystem comprises also a power electronic converter, connected in DC to 

the common DC-link and in AC connected to the electric grid, that can withdraw 

some power from the DC-link and send it to the 400 V electrical grid through a 

transformer. If the power smoothing system works correctly, the profile of power 

delivered to the grid by means of this subsystem will not have all the fluctuations 

that normally characterize a wave power profile. Instead of being transmitted to 
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the grid, the power oscillations are partially absorbed by the third subsystem, the 

supercapacitor-based ESS. 

 

 

6.1.3 – Energy Storage System 

This subsystem comprises three elements: the supercapacitors, a DC/DC power 

converter, and an inductive link with inductance of 3 mH placed between the first 

two. Consistently with the observations made in chapter 3, the supercapacitors 

were chosen as storage system for this application because of their power density 

and energy efficiency, their higher useful life (in terms of number of cycles) 

compared to batteries, and their easiness of installation. 

There are 5 modules of supercapacitors of 16 V each and they are connected in 

series, for a total rated voltage of 80 V and a capacity of 430 F. Each module is 

in turn composed by the series of 6 cells with a voltage of 2,7 V each. In fig. 6.3 

a photo of the used supercapacitors is shown. 

 

Figure 6.3 – Supercapacitors used in the test bench (5 modules connected in series) 

The process of charge and discharge of the supercapacitors is controlled by the 

bidirectional DC/DC converter. This converter has also the function of controlling 
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the DC-link voltage and keeping it constant, adapting consequently the ESS 

voltage. 

The control system for the DC/DC converter is depicted in the scheme of fig. 6.4 

and it corresponds to the one used also in the simulations of the APOGEO model. 

The upper part is the power smoothing loop, which calculates a current reference 

Iess* using a PI controller whose input is the power error, defined as the average 

power Pavg minus the instantaneous power Pwec. The average power Pavg can be 

calculated either with the moving average approach or the autoregressive 

prediction, as seen in the previous chapter. 

 

Figure 6.4 – Control scheme for the ESS with SoC compensator 

The bottom part, the State of Charge (SoC) compensator, generates a second 

current reference ΔIess* so that the supercapacitors voltage does not go below a 

certain value Uuc* in steady state. Ensuring a certain amount of minimum Uuc is 

convenient to keep the power capability without increasing the current over the 

limits. The resulting current reference Iess** is calculated as the difference 

between the first two (Iess* minus ΔIess*). Finally, an overcharge/overdischarge 

protection block is added at the end of the scheme, which applies some limits to 

the current reference depending on the state of charge. 
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6.2 – Laboratory tests and results 

 

In the previous section the main components of the test bench have been 

described. In addition to them, it is important to underline that also the devices 

for the electric and thermal measurements have been integrated in the laboratory 

platform. Moreover, the laboratory is equipped with a refrigeration system as well, 

that is activated when the temperature of elements as the supercapacitors or the 

converters, rising during system operation, goes beyond certain limits. 

The measures taken with the aforementioned devices are then acquired by the 

control software, that consists in the control platform dSpace MicroAutoBox II 

1401/1503, connected to a personal computer. The control software is 

responsible for the measurements filtering and postprocessing, and also for the 

data recording. The computer interface makes it possible to start and stop a test, 

to regulate and modify the parameters involved, to monitor the operation of the 

system during the test and to record data and variables in order to be analyzed 

at a later stage. A screenshot of the mentioned interface is depicted in fig. 6.5. 

  

 

Figure 6.5 – Screenshot of the control software interface 

In this section, five laboratory tests are presented: four with MA and different 

width of the moving window, and one with the AR prediction. The data of WEC 
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power are imported as a file .mat, consisting in a matrix of two columns: time and 

power. The values are taken from the point absorber model used in chapter 4, for 

a total time of twenty minutes and with a sampling time of 0,1 s. Thus, the wave 

profile is the same already used in chapters 4 and 5. As already explained, this 

profile of power in the time domain is used as a reference for the rectifier of the 

WEC emulator subsystem, and we will refer to this power as Pref, while the 

measured power effectively provided to the DC-link by the rectifier will be called 

Pwec. If everything works correctly, the curves of Pref and Pwec should be very 

similar, as it will be verified in the analysis of the tests results. 

 

Figure 6.6 – A phase of the laboratory work 

 

6.2.1 – Tests with Moving Average Window 

In this case the value of power Pavg that is required as a reference for the control 

scheme of fig. 6.4 is calculated as the mean value of Pwec in a moving window of 

a certain width, as explained in the previous chapters. Four tests are presented 

here, 900 seconds of duration each, with a moving window of different width, 25, 

50, 100 and 150 seconds respectively. 

During the tests the control software records all the required data. More 

specifically, at the end of each test the recorded values of 15 variables are 

available, listed in table 6.4. 



6 – Laboratory Tests 
 

87 

Variable Description Unit 

Idref Current reference in the first converter (WEC emulator subsystem) A 

Id Real current in the first converter A 

Id2ref Current reference in the second converter (grid connection subsystem) A 

Id2 Real current in the second converter A 

Udcref Voltage reference in the DC-link V 

Udc Real voltage in the DC-link V 

Udcfilt Filtered voltage in the DC-link V 

Pref WEC power reference W 

Pwec Effective power provided by the WEC emulator W 

Pavg Average value of power for the ESS control system W 

Pgrid Instantaneous power injected to the grid W 

Iucref Current reference in the supercapacitors A 

Iuc Real current in the supercapacitors A 

Uuc Voltage in the supercapacitors V 

Puc Power absorbed or released by the supercapacitors W 

Table 6.4 – Variables recorded by the control software during the tests with MA window 

These variables are then analyzed and post-processed with the Matlab code 

Postprocesado_MA.m (appendix B.12). This code generates some graphs to 

evaluate the behavior of the assessed variables, and also calculates the average 

power delivered to the grid Pgrid,avg and the Smooth Index. 

As the values of WEC power are too high to operate in this laboratory, they have 

been reduced by the multiplication by a scale factor (named in this case power 

gain) of 0,025, in order to not go beyond a few kW as maximum power level in 

the test bench. 

After having verified the correspondence between the reference variables and 

the measured ones, the results for the first test with a window of 25 seconds are 

shown in the graphs of figure 6.7. 
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Figure 6.7 – Results of the first test (Moving Average with window of 25 s) 

The first graph at the top shows in blue the reference voltage Udc,ref in the DC-

link, which is a constant value of 100 V, and in red the measured one Udc. The 

voltage Udc should be kept constant and equal to the reference by the DC/DC 

converter, and in fact we can see that, although there are some fluctuations 

(especially in correspondence with the power peaks), the voltage is kept in a 

range of a few Volts from the value of 100 V. 
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In the second graph the currents in the two AC/DC converters are represented. 

The fact that one of them is positive and the other is negative is because of their 

opposite direction: from the grid towards the DC-link for the first converter, and 

from the DC-link back to the grid for the second one. 

The third graph shows the oscillating WEC power Pwec (in green), the average 

power in the moving window Pavg (in red), and the smoothed power effectively 

supplied to the grid Pgrid (in blue). Pavg is the reference value for Pgrid, and it is 

evident how the two profiles are almost coinciding, with Pgrid shifted below 

because of the power losses. We can notice also the very significant difference 

between the WEC power, which presents very strong oscillations, and the 

smoothed profile of Pgrid. The ESS control strategy is responsible for this, as it 

keeps the power injected to the grid (output power) as constant as possible. As 

aforementioned, this is done by absorbing power from the DC-link when there is 

an energy surplus. Reciprocally, energy is supplied to the DC-link when the 

generated power is below the average. 

It is interesting to notice how much the grid converter could be reduced in terms 

of power considering that the maximum power peaks obtained from the wave 

converter do not need to be supplied to the grid directly. As we can observe from 

the third graph of fig. 6.7, the maximum value of power delivered to the grid is 

less than the half of the maximum power produced by the WEC during the peaks. 

The last three graphs show, respectively, the current Iuc, the voltage Uuc and the 

power Puc of the supercapacitors. As we can see, Puc can be either positive or 

negative, depending on whether the supercapacitors are absorbing or releasing 

energy. 

For the other three tests with the MA control only the graphs of power are reported 

here, as they are the most interesting for the purposes of the tests. In figures 6.8, 

6.9 and 6.10 we can find these graphs respectively for the cases of moving 

window of 50, 100 and 150 seconds. 
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Figure 6.8 – Results of the second test (Moving Average with window of 50 s) 

From a visual comparison between the two graphs of fig. 6.8, it is easy to notice 

that when the WEC produces a lot of power, the power Puc of the supercapacitors 

assumes negative value. Therefore, a negative sign for the power Puc means that 

the supercapacitors are charging, absorbing the surplus of energy. On the other 

side, when Puc is positive, the WEC is producing less power and the 

supercapacitors are discharging, as they inject energy into the grid providing 

additional power.  

 

Figure 6.9 – Results of the third test (Moving Average with window of 100 s) 
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Figure 6.10 – Results of the fourth test (Moving Average with window of 150 s) 

Looking at figures 6.7, 6.8, 6.9 and 6.10, and comparing the graphs of power, it 

is evident that increasing the width of the window the power Pgrid delivered to the 

grid becomes more constant, as the profile looks more smoothed. The same fact 

was observed also in the simulations with the APOGEO model. In table 6.5 some 

numerical results of the four tests have been collected, including the value of 

Smooth Index. 

Test 
Width of the  
window [s] 

Duration  
[s] 

Power 
gain 

Udcref  
[V] 

Pgridavg 

 [W] 
Smooth 

Index 

1 25 900 0,025 100 407 43,0% 

2 50 900 0,025 100 402 58,0% 

3 100 900 0,025 100 386 69,6% 

4 150 900 0,025 100 372 71,7% 

                Table 6.5 – Numerical results of the four tests with control based on Moving Average 

Coherently with what observed in the graphs, the values of the Smooth Index are 

increasing with the enlargement of the moving window, meaning that the 

efficiency of the system in terms of smoothing the output power gets gradually 

better. The average power supplied to the grid, Pgrid,avg, calculated as the 

arithmetical mean of the instantaneous power supplied during the test, decreases 

with larger windows, due to the fact that more power is exchanged with the ESS 

and consequently the losses are bigger. 
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The same fact was observed also in the simulations of chapter 5. It is actually 

interesting to compare the results obtained in those simulations (table 5.2) with 

the results obtained in the laboratory tests. The values of the smooth index are 

generally similar, but while in the simulations the maximum value was reached 

with a window of 104 s (70,8%) and for larger windows it started to decrease, 

here the maximum value of 71,7% is obtained with the window of 150 s, the 

largest used. It is important, though, to notice that the power gain used in the 

simulation (previously named scale factor) was 0,02, while in the tests a value of 

0,025 was set. 

To have a direct comparison between computer simulations and laboratory tests, 

in table 6.6 we can find the respective results for the particular case of 50 s 

window and same evaluation time of 900 seconds and gain factor of 0,025. 

Description 
Width of the  
window [s] 

Duration  
[s] 

Power 
gain 

Udcref  
[V] 

Pgridavg 

 [W] 
Smooth 

Index 

Simulation 50 900 0,025 120 439 60,3% 

Laboratory 50 900 0,025 100 402 58,0% 

Table 6.6 – Comparison between the results obtained in the simulations and in laboratory 

The Smooth Index is almost equal, thus there is a good correspondence between 

simulation and laboratory results. The only appreciable difference regards the 

average power delivered to the grid, Pgrid,avg: the value calculated in laboratory is 

lower than in the simulations (402 W instead of 439 W). The reason for this is that 

the model for the calculation of the losses in the simulations is incomplete. 

 

6.2.2 – Tests with Autoregressive predictive control 

The ten seconds-ahead prediction of the WEC power profile, made with an AR 

model of order 30, is used here to generate a reference value of power for the 

ESS control, with the same criteria used in chapter 5. Thus, this reference power 

is calculated as the arithmetical average of the last 30 past values of Pwec plus 

the 10 predicted values. Therefore, the difference is that while here the obtained 

power, Pavg, is calculated as the mean of both past and predicted values, in the 

case of the moving average (MA) only past values were used.  
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Pavg is used in the same control scheme of fig. 6.4, with the only difference that 

in this case the SoC compensator (bottom part) has been removed. The approach 

used for the prediction of power is again the already presented indirect method, 

based on the multiplication of the predicted PTO force and WEC oscillation 

velocity. 

Only one test is presented in this section, related to the case of AR model of order 

30 and 10 steps of prediction. The duration of the test is again 900 seconds. 

During the test the control software records all the required variables. In addition 

to the 15 variables contained in table 6.4, now there are five more, listed in table 

6.7, for a total of 20 recorded variables. 

Variable Description Unit 

F Force applied on the Power Take-Off system N 

v Oscillation velocity of the WEC m/s 

F_5 5 steps-ahead prediction of the force N 

v_5 5 steps-ahead prediction of the velocity m/s 

P_5 5-steps-ahead prediction of power W 

Table 6.7 – Additional variables recorded by the control software during the tests with the 

autoregressive prediction 

The recorded data are loaded in the Matlab code Postprocesado_AR.m 

(appendix B.13) in order to be post-processed. The code generates some graphs 

to evaluate the results and calculates the Smooth Index. 

In addition to the ones of fig. 6.7, three more graphs are generated in this case, 

showing the comparison between the real force, velocity and power and the 5 

steps-ahead prediction of the same variables, just to have an idea of how good 

the prediction is. All the graphs are collected in fig. 6.11. In the last three graphs, 

related to the prediction, we can see that the predictions of force, velocity and 

power generally fit quite correctly the real values, but during the biggest peak of 

power (registered approximately after 840 seconds), the prediction accuracy gets 

significantly worst. In particular, the prediction of power assumes even negative 

values in correspondence to this peak. 



6 – Laboratory Tests 

94 
 

 

 

 

Figure 6.11 – Graphical results of the test with AR prediction 
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The graph of Pgrid, the third from the top in fig. 6.11, shows that also with the AR 

control the output power supplied to the grid is significantly smoothed, as it 

doesn’t present all the wide fluctuations that the WEC power has. 

The numerical results of this test, together with the results obtained in the 

simulation with the same conditions, are collected in table 6.8. 

Description 
Duration 

[s] 
order of the 

AR model 
steps of  

prediction 
Power gain 

Udcref  
[V] 

Pgridavg 

 [W] 
Smooth 

Index 

Simulation 900 30 10 0,025 120 392 54,1% 

Laboratory 900 30 10 0,025 100 352 52,0% 

Table 6.8 – Comparison between the results obtained in the simulations and in laboratory for 
the AR case 

The Smooth Index obtained in laboratory is 52%, while in the simulation of the 

APOGEO model it is 54,1%. The difference is small, also in this case the main 

discrepancy is in the value of Pgrid,avg, that is lower in the laboratory test due to 

the aforementioned fact that the model of power losses in the simulations is 

incomplete. 

The results show that the predictive control system for the ESS, based on AR 

models, satisfies the purpose of smoothing the output power, although it does not 

improve the control based on the moving window. Only with a window of 25 

seconds, indeed, the AR method has a higher value of Smooth Index, while with 

a larger width the MA control system works better. 
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7 – CONCLUSIONS AND FURTHER WORKS 

 

One of the first objectives of this thesis was to make a short-term prediction of 

the power generated by a wave energy converter (WEC), and a lot of effort was 

put into this. The forecasting method used for this purpose is the one based on 

autoregressive (AR) models. 

The AR prediction method was implemented in the software Matlab and first 

tested for the prediction of the wave height of a real wave profile, using the 

observations coming from the Biscay Marine Energy Platform (BIMEP), in the 

Spanish Cantabrian Sea. The coefficients of the AR model were estimated 

through the Long Range Predictive Identification (LRPI) optimization process 

[26]. The prediction of wave elevation offered quite good results in terms of 

accuracy (measured through the Index of Fitness), at least up to 10 seconds of 

forecast. It was also shown that low-pass filtering the data can partially improve 

the accuracy of the prediction, as the low-frequency components of the wave 

spectra are the most regular and energetic, thus, more predictable as well. 

When applied to the prediction of power, however, AR models didn’t show equally 

good results. The reason is that AR models are well suited for profiles like the 

wave elevation one, made by a combination of sinusoidal waveforms, while the 

power profile has a very different shape, as it is more similar to a combination of 

squared sinusoidal waveforms. This is why the WEC output power, instead of 

being directly predicted by means of an AR model, was derived indirectly from 

the prediction of the WEC oscillation velocity v and the Power Take-Off (PTO) 

force Fpto. These two variables have a shape more similar to the wave height, so 

they are more adequate to be predicted through an AR process, and their product 

gives the value of power absorbed by the WEC. The indirect forecast of power 

gave significantly better results in the short term when compared to the direct 

prediction, but it showed also a faster degradation in terms of accuracy. 

The next step of the work consisted in the attempt to use the predicted power in 

the control system of a supercapacitor-based Power Smoothing System (PSS), 

with the aim of smoothing the WEC output power before supplying it to the grid. 
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In this way, grid power quality problems such as voltage and frequency 

fluctuations as well as instability issues are avoided.  

More specifically, the indirect prediction of the WEC output power was used to 

generate an instantaneous reference value Pavg of power to be delivered to the 

grid. This reference value is calculated instant by instant as the arithmetical 

average of both past and predicted values. When the WEC produces more power 

than the average, the surplus is used to charge the supercapacitor-based Energy 

Storage System (ESS). On the other hand, when the WEC produces less power 

than the average, the required additional power is supplied by the 

supercapacitors, which are partially discharged as they inject an amount of 

energy into the grid. 

This procedure was at first simulated with the use of the software Simulink, in a 

model named APOGEO, and then replied in practical laboratory tests. This model 

represents basically a wave farm that produces oscillating power, an ESS that 

absorbs and releases energy with the purpose of reducing the power fluctuations, 

and the electrical grid to which the power is delivered. The APOGEO model was 

developed by the CIEMAT research group and it was originally working with a 

Moving Average (MA) criteria for the ESS control system. Here, this control 

system was replaced with the predictive one, using AR model to predict power 

and generate the aforementioned reference value Pavg.  

The results of the simulations showed that the system performs well, in the sense 

that the proposed PSS based on predictive techniques effectively and 

significantly reduces the WEC power oscillations, reaching a value of Smooth 

Index (SI) of approximately 60%. On the other side, however, the prediction 

control system does not improve the already implemented MA-based one, that 

reached in particular conditions values of SI of more than 70%. 

Very similar results were obtained in the tests conducted in the CIEMAT 

laboratory, by means of a test bench that comprises a WEC emulator subsystem, 

the grid connections and the ESS, consisting in the series of five 16V modules of 

supercapacitors. Tests were conducted both with the MA and the predictive 

control logic. Coherently with the simulations results, also in the laboratory tests 

the proposed predictive control obtained good results in terms of reducing power 

oscillations, but still worse than the already existent moving average method. 
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The analysis of the obtained results has led to draw up the following 

considerations, together with some ideas for further works: 

- None of the two methods used for the prediction of power seemed to be 

optimal for this application. On the one hand, in fact, AR models didn’t 

show a very good accuracy in predicting this kind of profile, especially in 

comparison with the good results obtained in the prediction of wave height. 

On the other hand, the indirect method showed better results in the very 

short term, but a faster decreasing in the accuracy for longer terms 

prediction. Therefore, other forecasting method could be studied and 

developed, in order to get a more accurate prediction of the WEC power 

profile. 

- The AR prediction of power was used here to calculate an average value 

of power to deliver to the grid, and this is the only information that has been 

used. But the prediction gives much other information apart from an 

average value of power, it shows the shape and the evolution of the profile 

of power, the peaks and the troughs. Somehow there could be the 

possibility to take advantage of this additional information and improve the 

control system. 

- It seems that, for the case of energy storage of big size, even a very 

accurate short-term prediction of power could not improve the moving 

average control in the efficiency in smoothing the WEC output power. The 

point is that the period of the power fluctuations usually ranges from 5 to 

25 seconds, thus in a short-term prediction of 15-20 seconds only a few 

fluctuations are involved. This means that only a couple of cycles of partial 

charge and discharge of the storage system are predicted, and the amount 

of energy that needs to be stored or released during this period of time will 

be a small percentage of the capacity of the ESS. Thus, since enough 

capacity will be available in wide range storage, no significant benefits in 

predicting power can be obtained.  

On the other side, the contribution of the power prediction could be very 

positive when the size of the storage system is limited. In this case, in fact, 

the amount of energy involved in one period of the predicted WEC power 

profile becomes clearly more significant in relative terms.  
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To help understanding the benefits that the prediction could give, in fig. 

7.1 it is illustrated a possible application. 

 

 

Figure 7.1 – Possible utilization of the power prediction for the dimensioning of the ESS 

In fig. 7.1 it is depicted a portion of predicted WEC power profile. Let’s 

imagine that in the instant A we are predicting up to one period (one peak 

and one trough) of the power profile, finding the curve that goes from A to 

B. If we calculate the average value of power produced in this period 

(called Pref in the figure), then we can use this value as the reference 

power that we want to supply to the grid or to the load. Thus, when the 

WEC is producing more power than Pref, the surplus will be used to charge 

the ESS, and when it is producing less power than the reference, the ESS 

will discharge releasing some additional power. The blue and red areas of 

the figure represent respectively the amount of energy stored and released 

in the two stages of charge and discharge of the storage system. It is 

possible to select the reference value Pref in a way that the two areas are 

equal, and the process can be repeated now predicting the next cycle of 

charge and discharge (from B to C), generating another value of Pref. 

Using the prediction in this way, and assuming that it is accurate enough, 

it could be possible to dimension or select the storage system according 

to the amount of energy that needs to be stored only in a few cycles. By 

doing this, the investment costs for the ESS could be significantly reduced, 

although the risk of using a smaller storage capacity is not negligible.  
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According to these considerations, a possible specific application of the 

short term AR prediction is the case of storage in the DC-link of a back to 

back power converter, like the one illustrated in fig. 7.2. 

 

 

Figure 7.2 – Scheme of a back-to-back power converter 

For the small amounts of energy required when the short-term prediction 

is used as in fig.7.1, it could be possible to store energy directly in the DC-

link capacitor of a back-to-back power converter. In this system, the 

rectifier would convert from AC to DC the power coming from the WEC 

generator, the DC-link capacitor would act as power smoothing system 

and the inverter would do the conversion from DC to AC in order to deliver 

the power to the electric grid. With this application, the significant amount 

of money required by the installation of an additional storage system could 

be saved. 
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APPENDIX A – WAVE DYNAMICS 

 

A.1 – Regular Waves 

 

When the wind blows across a smooth water surface, air particles from the wind 

grab the water molecules they touch. The friction between air and water stretches 

the water surface, resulting in small ripples, known as capillary waves. As the 

wind continues to blow the waves grow bigger. When the waves propagate 

outside their region of generation, they are called swells, and when the water is 

deep, swells can travel very large distances with negligible losses of energy. 

Although waves can occasionally be formed by other means, such as naval traffic 

or seismic activity, wind is the main direct source. The indirect source is the sun, 

that is responsible for creating winds through local heating of the earth surface. 

The characteristics of a wind-generated wave depend on: 

- the fetch, defined as the distance the wind blows over open water; 

- the length of time the wind blows; 

- the speed of the wind; 

- the water depth. 

With the process of conversion of wind energy into waves, below the ocean’s 

water surface there is a concentration of energy flow. Sea waves are, indeed, a 

form of energy. It is energy, not water, that moves along the ocean’s surface, 

water particles only travel in small circles when a wave passes, as illustrated by 

fig. A.1. 

 

Figure A.1 – Movement of water particles in ocean waves 

The dark dots on each circles of fig. A.1 indicate the position of the considered 

water particle at the snapshot instant. At later instants, as water particles move 

in the clockwise direction along their circular orbits, wave crests and wave troughs 

Wave direction 
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move from left towards right. The circles representing the orbits of the water 

particles’ movement get smaller as the water depth increase. 

In figure A.2 it is shown a simple sinusoidal wave propagating from left to right. 

 

                           Figure A.2 – Example of simple sinusoidal wave 

At a fixed position in space, if we measure the time interval between the arrival 

of two consecutive crests we get the period T of the sinusoidal wave. The 

frequency f is the reciprocal of the period: 

𝑓 = 1 𝑇⁄    [𝐻𝑧]                                                          (𝟐𝟏) 

Related to the expression of frequency is also the definition of the angular 

frequency ω:  

𝜔 = 2𝜋𝑓 = 2𝜋 𝑇⁄    [𝑟𝑎𝑑 𝑠⁄ ]                                     (𝟐𝟐) 

The angular wave number represents the number of wavelengths L per unit 

distance, that is: 

𝑘 = 2𝜋 𝐿⁄    [𝑚−1]                                                     (𝟐𝟑) 

The phase velocity, c, is the travel velocity of the individual waves, defined as: 

𝑐 =
𝜔

𝑘
=
𝐿

𝑇
   [𝑚 𝑠]                                                    (𝟐𝟒)⁄  

Waves of different wavelengths travel at different phase velocities, and this 

phenomenon is usually called wave dispersion. Due to dispersion it is not 

sufficient to characterize the wave velocity by the phase velocity. Therefore, it is 

necessary to introduce a new concept, called group velocity, that is the velocity 
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with which the overall shape of the waves' amplitudes (known as the envelope of 

the wave) propagates through space. The group velocity, cg, is defined by: 

𝑐𝑔 =
𝑑𝜔

𝑑𝑘
   [𝑚 𝑠⁄ ]                                                       (𝟐𝟓) 

The energy in the waves travel with a velocity equal to cg. Since the group velocity 

is proportional to the period, low-frequency waves move faster than high-

frequency ones. 

As previously seen, the orbit of the movement of water particles depends on the 

water depth. In deep water the water particles travel in vertical circles, while in 

shallow water the motion is elliptical.  

This motion of water, illustrated in fig. A.3, also happens underwater, but the 

particles velocity and thereby the circle radius decrease quickly as we go deeper 

in water. 

 

Figure A.3 – Decay of water particles’ motion radius with the depth 

In deep waters there is almost only oscillating motion, with no mass transport, 

and most of the motion is closed to the free surface. In these conditions, as 

already mentioned, waves can travel for long distances with almost no energy 

losses. 

In shallow waters, on the other side, waves have smaller wavelengths and phase 

velocity, and there is a higher horizontal motion of water. In addition, due to the 

friction with the sea bed, the rate of energy dissipation is also higher. 

For a sinusoidal wave of height H, the average energy E stored on a horizontal 

square metre of the water surface is: 

𝐸 = 𝐸𝑘 + 𝐸𝑝 =
𝜌𝑔

8
𝐻2  [𝐽 𝑚2⁄ ]                                         (𝟐𝟔) 
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Where ρ is the density of sea water and g the acceleration of gravity. A part of 

this energy is potential energy (Ep) due to the weight of the water lifted from wave 

troughs to wave crests. The other part is kinetic energy (Ek), due to the motion of 

the water. 

The energy transport J per meter width of the wave front is: 

𝐽 = 𝑐𝑔𝐸   [𝑊 𝑚⁄ ]                                                     (𝟐𝟕) 

 

A.2 – Irregular waves 

 

The waves on the ocean are more irregular than a sinusoidal wave. Real sea 

waves contain a mixture of waves with different directions, frequencies and wave 

heights. Hence, statistical versions of wave parameters are used to describe the 

waves. 

To record the sea wave parameters, appropriate measurement buoys are used 

in different locations. A typical wave measurement lasts for about twenty minutes, 

and it is repeated every three hours. The acceleration of the buoy is measured 

once or twice every second. The data are recorded, and the vertical excursion of 

the water surface from its mean position can be derived, as well as the direction 

of wave propagation. An example of measurement buoy is shown in figure A.4. 

 

Figure A.4 – Measurement buoy (photo taken from OCEANOR, Norway) 
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The main parameter used to describe real ocean waves is the significant wave 

height (Hs), defined as the average height of the one third highest recorded values 

of the individual heights Hi, considered from trough to crest. If N is the number of 

consecutive recorded values of individual wave height, the value of Hs is 

calculated through the following equation: 

𝐻𝑠 =
𝐻𝑗,1 +𝐻𝑗,2+. . . +𝐻𝑗,𝑁 3⁄

𝑁 3⁄
                                           (𝟐𝟖) 

The index j is used to mark the wave heights contained in the highest one third. 

Another significant parameter is the average zero up-cross time Tz, that is the 

average over a certain time of the individual zero up-cross times Ti, defined as 

the time interval between two consecutive instants where the wave elevation 

crosses the zero level in the upward direction. Tz provides a useful measure of 

the real sea wave period, and its definition is expressed by equation (29): 

𝑇𝑧 =
𝑇1 + 𝑇2+. . . +𝑇𝑁

𝑁
                                                  (𝟐𝟗) 

A very important quantity derived from wave measurements is the so-called 

energy spectrum S(f), which tells us how much energy is carried by the different 

frequency (f) components in the real sea “mixture” of waves. 

With the value of significant wave height (Hs) taken from measurements, the 

energy spectrum is derived as: 

∫ 𝑆

∞

0

(𝑓)𝑑𝑓 = 𝐻𝑠
2 16⁄                                                      (𝟑𝟎) 

Ant the average energy stored on a horizontal square metre of the water surface 

is: 

𝐸 = 𝜌𝑔∫ 𝑆

∞

0

(𝑓)𝑑𝑓 ≡ 𝜌𝑔𝐻𝑠
2 16⁄                                           (𝟑𝟏) 
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Often the buoys also measure the wave direction (angle ), and then we get the 

directional wave spectrum S(f, ), which gives all the information about wave 

periods, heights, directions and energy transport. 

The energy transport by real sea waves is now calculated by: 

𝐽 = (𝑘𝐽 2⁄ )𝑇𝐽𝐻𝑠
2                                                         (𝟑𝟐) 

The so-called wave energy period Tj, typically 15-25 % longer than Tz, may be 

derived as well from the wave spectrum S(f), while kj is a coefficient of 

proportionality. 

The average values of wave energy transport J usually don’t vary so much from 

one year to another, they vary more between seasons. For example, on the 

northern hemisphere the average values for November and May might differ by 

a factor of two or more. Generally, the wave energy production is facilitated in 

winter, because of the stronger winds in comparison with the other seasons. 

However, as there may be waves (swells) even in the absence of wind, wave 

energy is more persistent than wind energy. 

 

A.3 – Interaction between waves and a point absorber WEC 

 

The hydrodynamic interaction between wave energy converters (WECs) and 

ocean waves is a complex high order non-linear process, which might be 

simplified under particular conditions. Here, the following assumptions will be 

considered: 

- All the external forces acting on the WEC captor are linear; 

- The considered WEC is a heaving axisymmetric point absorber oscillating 

with the frequency of the incident wave; 

- The motions of the waves and the device are of small amplitude. 

Under these assumptions, the hydrodynamic modeling of the WEC becomes a 

linear problem, and the equation of motion of the oscillating body of the WEC can 

be expressed with the use of Newton’s second law: 

𝐹(𝑡) = 𝑚 ∙ 𝑎(𝑡)                                                              (𝟑𝟑) 
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Where m is the body mass, a is the body acceleration, and F is the total force 

acting on the WEC. The total force can be split in two main components: the 

hydrodynamic forces Fhd and the external forces Fex. 

𝐹(𝑡) = 𝐹ℎ𝑑(𝑡) + 𝐹𝑒𝑥(𝑡)                                                    (𝟑𝟒) 

The hydrodynamic forces, resulting from the interaction between the WEC and 

the sea, can in turn be decomposed into: 

- Excitation force, Fexc:  force induced by the incident waves on the captor. 

- Radiation force, Frd: force associated with the water moved and the waves 

generated by the body motions. 

- Hydrostatic force, Fhs: force that acts to restore the initial position of the 

body. 

- Friction, Ff: dissipative force due to the viscous effects. 

Also the external forces Fex, imposed as constraints to the free floating motion, 

can be split into different components: 

- Power take-off (PTO) force, Fpto: force induced on the captor by the PTO 

equipment. 

- Anchoring force, Fm: force exerted by the mooring system. 

The total force is then expressed as: 

𝐹(𝑡) =  𝐹𝑒𝑥𝑐(𝑡) + 𝐹𝑟𝑑(𝑡) + 𝐹ℎ𝑠(𝑡) + 𝐹𝑓(𝑡) + 𝐹𝑝𝑡𝑜(𝑡) + 𝐹𝑚(𝑡)          (𝟑𝟓) 

The average mechanical power absorbed by the WEC during a certain time T 

can be calculated as: 

�̅� = ∫ 𝐹𝑝𝑡𝑜(𝑡)𝑣(𝑡)
𝑇

0

 𝑑𝑡                                                 (𝟑𝟔) 

where v is the oscillation velocity of the WEC body. This equation has been used 

in this thesis for the indirect prediction of the WEC power. 
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APPENDIX B - MATLAB CODES 

 

B.1 – AR_example.m 

%% SCRIPT 1 - AR example: wave with 3 harmonic components 
% Michele Pasquotto 
% April, 2016 

  
clear all  
clc 
close all 

  
% Wave 
A1=1;   % amplitude [m] 
A2=0.5; 
A3=0.3; 
f1=0.03;  % frequency [Hz] 
f2=0.12; 
f3=0.015; 

  
t=0:0.01:100; 
H=A1*sin(2*pi*f1*t)+A2*sin(2*pi*f2*t)+A3*sin(2*pi*f3*t); 
figure('position',[46 363 560 420]) 
plot(t,H) 
hold on, grid on, 

  
t2=1:100; 
H2=A1*sin(2*pi*f1*t2)+A2*sin(2*pi*f2*t2)+A3*sin(2*pi*f3*t2); 
plot(t2,H2,'.','markersize',8) 
hold off 

  
xlabel('time [s]') 
ylabel('wave height [m]') 
legend('wave','samples') 
 

  
%% Estimation of coefficients, 1 step prediction (N2=1), Multistart 
% Michele Pasquotto 

  
N=100; % number of samples 
n=10; % order 
npoint=50; % number of starting points 
Jlpri= @(a)onepred(a,n,N,H2); 

  

  
x0=ones(1,n); 
options = optimoptions('fminunc','Algorithm','quasi-newton'); 
problem = 

createOptimProblem('fminunc','objective',Jlpri,'x0',x0,'options',optio

ns); 
ms = MultiStart; 
[a,Jmin,exitflag,output,solutions] = run(ms,problem,npoint) 
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% figure; 
z=max(size(solutions)); 
for i=1:z 
    plot (solutions(1, i).X0{1, 1}(1),solutions(1, i).X0{1, 

1}(2),'bo'); 
    hold on; 
end 
grid on; 
plot(a(1),a(2),'rx'); 
title(['order: ',num2str(n),'   start points: ',num2str(npoint),'   

Jmin = ',num2str(Jmin)]); 
%text(a(1),a(2),['  a1= ',num2str(a(1)),'  a2= ',num2str(a(2))]); 
xlabel('a1'); 
ylabel('a2'); 

  

  
%% 1-step prediction with the parameters estimated 

  
for k=n:N; 
    Hp(k+1)=0; 
    for q=1:n 
        ETA = a(q)*H2(k+1-q); 
        Hp(k+1) = Hp(k+1)+ETA; 
    end 
end 

  
t1=1:101; 
figure; 
plot(t1,Hp,'r--.') 
hold on, grid on, 
plot(t,H) 
title(['1 STEP PREDICTION OF WAVE HEIGHT','      order:',num2str(n)]) 
xlabel('time [s]') 
ylabel('wave height [m]') 
legend('predicted wave','real wave') 
 

 

 

B.2 – onepred.m 

% FUNCTION 1 - 1 Step Predictive Identification 
%Michele Pasquotto 

  
function f = onepred(a,n,N,H) 
f=0; 
for k=(n+1):N 
    Hp=0; %Wave height predicted 
    for i=1:n 
        H1=a(i)*H(k-i); 
        Hp=Hp+H1; 
    end 
    r=(H(k)-Hp)^2; 
    f=f+r; 
end 

  
end 
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B.3 – AR_example_bound.m 

 

%% SCRIPT 2 - AR example with bounds 
% Michele Pasquotto 
% April, 2016 

  
clear all  
clc 
close all 

  
% Wave 
A1=1; 
A2=0.5; 
A3=0.3; 
f1=0.03; 
f2=0.12; 
f3=0.015; 

  
t=0:0.01:100; 
H=A1*sin(2*pi*f1*t)+A2*sin(2*pi*f2*t)+A3*sin(2*pi*f3*t); 
%figure('position',[46 363 560 420]) 
%plot(t,H) 
%hold on, grid on, 

  
t2=1:101; 
H2=A1*sin(2*pi*f1*t2)+A2*sin(2*pi*f2*t2)+A3*sin(2*pi*f3*t2); 
%plot(t2,H2,'.','markersize',8) 
%hold off 

  
%% Jlpri, 1 step prediction (N2=1), Multistart 
% Michele Pasquotto 

  
N=100; % number of samples 
n=10; % order 
npoint=50; % number of starting points 
Jlpri= @(a)onepred(a,n,N,H2); 

   
x0=ones(1,n); 
options = optimoptions('fmincon','Algorithm','interior-point'); 
l = -100*x0; 
u = 100*x0; 
problem = 

createOptimProblem('fmincon','objective',Jlpri,'x0',x0,'lb',l,'ub',u,'

options',options); 
ms = MultiStart('StartPointsToRun','bounds'); 
[a,Jmin,exitflag,output,solutions] = run(ms,problem,npoint) 

   
z=max(size(solutions)); 
for i=1:z 
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    plot (solutions(1, i).X0{1, 1}(1),solutions(1, i).X0{1, 

1}(2),'bo'); 
    hold on; 
end 
grid on; 
plot(a(1),a(2),'rx'); 
title(['order: ',num2str(n),' start points: ',num2str(npoint),' Jmin = 

',num2str(Jmin)]); 
%text(a(1),a(2),['  a1= ',num2str(a(1)),'  a2= ',num2str(a(2))]); 
xlabel('a1'); 
ylabel('a2'); 
hold on; 

  
%% 1-step prediction with the parameters estimated 

  
for k=n:N; 
    Hp(k+1)=0; 
    for q=1:n 
        ETA = a(q)*H2(k+1-q); 
        Hp(k+1) = Hp(k+1)+ETA; 
    end 
end 

  
figure; 
plot(t2,Hp,'r--.') 
hold on, grid on, 
plot(t,H) 
title(['1 STEP PREDICTION OF WAVE HEIGHT','      order:',num2str(n)]) 
xlabel('time [s]') 
ylabel('wave height [m]') 
legend('predicted wave','real wave')        

 

 

 

B.4 – AR_example2.m 

%% SCRIPT 3 - AR example 2: wave with 9 harmonic components 
% Michele Pasquotto 
% April, 2016 

  
clear all  
clc 
%close all 

  
% Wave 
A1=0.2;  
A2=0.5; 
A3=0.3; 
A4=0.8; 
A5=1; 
A6=0.5; 
A7=1.3; 
A8=0.2; 
A9=0.6; 
f1=0.05; 
f2=0.21; 
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f3=0.13; 
f4=0.03; 
f5=0.15; 
f6=0.07; 
f7=0.02; 
f8=0.3; 
f9=0.12; 

  
t=0:0.01:100; 
H=A1*sin(2*pi*f1*t)+A2*sin(2*pi*f2*t)+A3*sin(2*pi*f3*t)+A4*sin(2*pi*f4

*t)+A5*sin(2*pi*f5*t)+A6*sin(2*pi*f6*t)+A7*sin(2*pi*f7*t)+A8*sin(2*pi*

f8*t)+A9*sin(2*pi*f9*t); 
figure('position',[46 363 560 420]) 
plot(t,H) 
hold on, grid on, 

  
t2=1:100; 
H2=A1*sin(2*pi*f1*t2)+A2*sin(2*pi*f2*t2)+A3*sin(2*pi*f3*t2)+A4*sin(2*p

i*f4*t2)+A5*sin(2*pi*f5*t2)+A6*sin(2*pi*f6*t2)+A7*sin(2*pi*f7*t2)+A8*s

in(2*pi*f8*t2)+A9*sin(2*pi*f9*t2); 
plot(t2,H2,'.','markersize',8) 
hold off 

  
xlabel('time [s]') 
ylabel('wave height [m]') 
legend('wave','samples') 

  
 

%% Jlpri, 1 step prediction (N2=1), Multistart 
% Michele Pasquotto 

  
N=100; % number of samples 
n=10; % order 
npoint=50; % number of starting points 
Jlpri= @(a)onepred(a,n,N,H2); 

   
x0=ones(1,n); 
options = optimoptions('fminunc','Algorithm','quasi-newton'); 
problem = 

createOptimProblem('fminunc','objective',Jlpri,'x0',x0,'options',optio

ns); 
ms = MultiStart; 
[a,Jmin,exitflag,output,solutions] = run(ms,problem,npoint) 

   
% figure; 
z=max(size(solutions)); 
for i=1:z 
    plot (solutions(1, i).X0{1, 1}(1),solutions(1, i).X0{1, 

1}(2),'bo'); 
    hold on; 
end 
grid on; 
plot(a(1),a(2),'rx'); 
title(['order: ',num2str(n),' start points: ',num2str(npoint),' Jmin = 

',num2str(Jmin)]); 
text(a(1),a(2),['  a1= ',num2str(a(1)),'  a2= ',num2str(a(2))]); 
xlabel('a1'); 
ylabel('a2'); 
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%% 1-step prediction with the parameters estimated 

  
for k=n:N; 
    Hp(k+1)=0; 
    for q=1:n 
        ETA = a(q)*H2(k+1-q); 
        Hp(k+1) = Hp(k+1)+ETA; 
    end 
end 

  
t_1=1:101; 
figure; 
plot(t_1,Hp,'r--.') 
hold on, grid on, 
plot(t,H) 
title(['1 STEP PREDICTION OF WAVE HEIGHT','      order:',num2str(n)]) 
xlabel('time [s]') 
ylabel('wave height [m]') 
legend('predicted wave','real wave') 

 

 

B.5 – AR3.m 

%% SCRIPT 4 - AR3: one-step prediction of a real wave 
% Michele Pasquotto 
% April, 2016 

  
clear all  
clc 
%close all 

  
% Wave 
load('samples20.mat') 
load('wave20.mat') 
t=wave.time; 
H=wave.signals.values; 
t2=samples.time; 
H2=samples.signals.values; 

  
figure; 
plot(t,H) 
hold on, grid on, 

  
plot(t2,H2,'.','markersize',8) 
hold off 

  
xlabel('time [s]') 
ylabel('wave height [m]') 
legend('wave','samples') 
  

 
%% Jlpri, estimation of parameters (N2=1), Multistart 
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% Michele Pasquotto 

  
N=max(size(H2)); % number of samples 
n=30; % order 
npoint=50; % number of starting points 
Jlpri= @(a)onepred(a,n,N,H2); 

   
x0=ones(1,n); 
options = optimoptions('fminunc','Algorithm','quasi-

newton','MaxIter',1000,'MaxFunEvals',10000); 
problem = 

createOptimProblem('fminunc','objective',Jlpri,'x0',x0,'options',optio

ns); 
ms = MultiStart; 
[a,Jmin,exitflag,output,solutions] = run(ms,problem,npoint) 

  
z=max(size(solutions)); 
for i=1:z 
    plot (solutions(1, i).X0{1, 1}(1),solutions(1, i).X0{1, 

1}(2),'bo'); 
    hold on; 
end 
grid on; 
plot(a(1),a(2),'rx'); 
title(['order: ',num2str(n),' start points: ',num2str(npoint),' Jmin = 

',num2str(Jmin)]); 
text(a(1),a(2),['  a1= ',num2str(a(1)),'  a2= ',num2str(a(2))]); 
xlabel('a1'); 
ylabel('a2'); 

  

  
%% 1-step prediction with the parameters estimated 

  
for k=n:N; 
    Hp(k+1)=0; 
    for q=1:n 
        ETA = a(q)*H2(k+1-q); 
        Hp(k+1) = Hp(k+1)+ETA; 
    end 
end 

  
t_1=0:max(size(t2)); 
figure; 
plot(t_1,Hp,'r--.') 
hold on, grid on, 
plot(t,H) 
axis([0 1210 -2 2]); 
title(['1 STEP PREDICTION OF WAVE HEIGHT','      order: ',num2str(n)]) 
xlabel('time [s]') 
ylabel('wave height [m]') 
legend('wave predicted','real wave') 

 

 

B.6 – AR7.m 
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%% SCRIPT 5 – AR7: Multistep prediction of a real wave 
% Michele Pasquotto 
% May, 2016 

  
clear all  
clc 
%close all 

   
% Wave 
load('samples20.mat') 
load('wave20.mat') 
t=wave.time; 
H=wave.signals.values; 
t2=samples.time; 
H2=samples.signals.values; 

  
figure; 
plot(t,H) 
hold on, grid on, 

  
plot(t2,H2,'.','markersize',8) 
hold off 

  
xlabel('time [s]') 
ylabel('wave height [m]') 
legend('wave','samples') 
  

 
%% Jlpri, estimation of parameters with regular least squares (N2=1), 

Multistart 
% Michele Pasquotto 

  
N=max(size(H2)); % number of samples 
n=30; % order 
npoint=50; % number of starting points 
Jlpri= @(a1)onepred(a1,n,N,H2); 

  
x0=ones(1,n); 
options = optimoptions('fminunc','Algorithm','quasi-

newton','MaxIter',1000,'MaxFunEvals',10000); 
problem = 

createOptimProblem('fminunc','objective',Jlpri,'x0',x0,'options',optio

ns); 
ms = MultiStart; 
[a1,Jmin,exitflag,output,solutions] = run(ms,problem,npoint) 

  

  
%% Jlpri, estimation of parameters with Long Range Predictive 

Identification function (N2=20), Multistart 
% Michele Pasquotto 

  
N=max(size(H2)); % number of samples 
n=30; % order 
N2=20; % maximum prediction horizon 
Jlpri= @(a)longpred5(a,n,N,N2,H2); 

   
x0=a1; 
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options = optimoptions('fminunc','Algorithm','quasi-

newton','MaxIter',1000,'MaxFunEvals',10000); 
problem = 

createOptimProblem('fminunc','objective',Jlpri,'x0',x0,'options',optio

ns); 
[a,Jmin,exitflag,output] = fminunc(problem) 

  

   
%% l-step prediction with the parameters estimated 

  
l=15; %range of prediction 

  
% (k+l|k) prediction 

  
for k=n:N; 
    for j=1:l 
        for q=1:n 
            if (k+j-q)<=k 
                ETA(q) = a(q)*H2(k+j-q); 
            elseif (k+j-q)>k 
                   ETA(q) = a(q)*Hp(k+j-q); 
            end 
        end 
        Hp(k+j)=sum(ETA); 
    end 
    Hstep(k+l)=Hp(k+l); 
end 

  
M=max(size(Hstep));  
 

 

% Index of  fitness 

  
load('samplestot') 
H_kl=samplestot.signals.values((n+l):M); 
Z=max(size(H_kl)); 
Htrasp=Hstep'; 
Hpred=Htrasp((n+l):M); 
H_k=samplestot.signals.values(n:(M-l)); 
FITN = fitness(Z,H_kl,Hpred,H_k) 

  
%Graph 

  
load('nu_time') 
treal=nu_time(:,1); 
Hreal=nu_time(:,2); 
t_1=0:(M-1); 
figure; 
plot(t_1,Hstep,'r--.','markersize',10) 
hold on, grid on 
plot(treal(1:((M-1)*10)),Hreal(1:((M-1)*10))) 
title(['order: ',num2str(n),'   prediction steps: ',num2str(l),'   

FITNESS: ',num2str(FITN),'%']); 
xlabel('t[s]'); 
ylabel('H[m]'); 
axis([0 1220 -2 2]); 
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B.7 – longpred5.m 

%FUNCTION 2 - Long Range Predictive Identification 
%Michele Pasquotto 

  
function f = longpred5(a,n,N,N2,H) 
f=0; 
for k=n:(N-N2) 
    r=0; 
    for j=1:N2  
        for i=1:n 
            if (k+j-i)<=k 
                ETA(i) = a(i)*H(k+j-i); 
            elseif (k+j-i)>k 
                   ETA(i) = a(i)*Hp(k+j-i); 
            end 
        end 
        Hp(k+j)=sum(ETA); 
        J=(H(k+j)-Hp(k+j))^2; 
        r=r+J; 
    end 
    f=f+r; 
end 

  
end 

 

 

 

 

B.8 – fitness.m 

%FUNCTION 3 - Index of fitness 
%Michele Pasquotto 

  
function f = fitness(Z,Hkl,Hpred,Hk) 
NUM=0; 
DEN=0; 
for k=1:Z 
    NUM=NUM+(Hkl(k)-Hpred(k))^2; 
    DEN=DEN+(Hk(k))^2; 
end 
f=(1-(sqrt(NUM)/sqrt(DEN)))*100; 
end 

 

 

B.9 – ARfilt.m 

%% SCRIPT 6 - AR example with filter 
% Michele Pasquotto 
% June, 2016 
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clear all  
clc 
%close all 

  
% Real wave 
load('wave20.mat') 
t_int=wave.time; 
H_int=wave.signals.values; 

  
% Wave filtered 
load('samples20filt1.mat') 
load('wave20filt1.mat') 
t=wave20filt1.time; 
H=wave20filt1.signals.values; 
t2=samples20filt1.time; 
H2=samples20filt1.signals.values; 

  
figure; 
plot(t_int,H_int) 
hold on, grid on, 
plot(t,H) 
hold on, grid on, 
plot(t2,H2,'r.','markersize',8) 
hold off 
xlabel('time [s]') 
ylabel('wave height [m]') 
legend('real wave','filtered wave','samples') 
title('cut-off frequency: 1 rad/s') 
  

 
%% Jlpri, estimation of parameters with regular least squares (N2=1), 

Multistart 
% Michele Pasquotto 

  
N=max(size(H2)); % number of samples 
n=30; % order 
npoint=50; % number of starting points 
Jlpri= @(a1)onepred(a1,n,N,H2); 

  
x0=ones(1,n); 
options = optimoptions('fminunc','Algorithm','quasi-

newton','MaxIter',1000,'MaxFunEvals',10000); 
problem = 

createOptimProblem('fminunc','objective',Jlpri,'x0',x0,'options',optio

ns); 
ms = MultiStart; 
[a1,Jmin,exitflag,output,solutions] = run(ms,problem,npoint) 

  

  
%% Jlpri, estimation of parameters with Long Range Predictive 

Identification function (N2=20), Multistart 
% Michele Pasquotto 

  
N=max(size(H2)); % number of samples 
n=30; % order 
N2=20; % maximum prediction horizon 
Jlpri= @(a)longpred5(a,n,N,N2,H2); 
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x0=a1; 
options = optimoptions('fminunc','Algorithm','quasi-

newton','MaxIter',1000,'MaxFunEvals',10000); 
problem = 

createOptimProblem('fminunc','objective',Jlpri,'x0',x0,'options',optio

ns); 
[a,Jmin,exitflag,output] = fminunc(problem) 

  

 
%% l-step prediction with the parameters estimated 

  
l=15; %range of prediction 

  
% (k+l|k) prediction 

  
for k=n:N; 
    for j=1:l 
        for q=1:n 
            if (k+j-q)<=k 
                ETA(q) = a(q)*H2(k+j-q); 
            elseif (k+j-q)>k 
                   ETA(q) = a(q)*Hp(k+j-q); 
            end 
        end 
        Hp(k+j)=sum(ETA); 
    end 
    Hstep(k+l)=Hp(k+l); 
end 

  
M=max(size(Hstep)); 

  
% Index of  fitness 

  
load('samplestotfilt1.mat') 
H_kl=samplestotfilt1.signals.values((n+l):M); 
Z=max(size(H_kl)); 
Htrasp=Hstep'; 
Hpred=Htrasp((n+l):M); 
H_k=samplestotfilt1.signals.values(n:(M-l)); 
FITN = fitness(Z,H_kl,Hpred,H_k) 

  
%Graph 

  
load('wavetotfilt1.mat') 
treal=wavetotfilt1.time; 
Hreal=wavetotfilt1.signals.values; 
t_1=0:(M-1); 
figure; 
plot(t_1,Hstep,'r--.','markersize',10) 
hold on, grid on 
plot(treal(1:((M-1)*10)),Hreal(1:((M-1)*10))) 
title(['order: ',num2str(n),'   prediction steps: ',num2str(l),'   

FITNESS: ',num2str(FITN),'%']); 
xlabel('t[s]'); 
ylabel('H[m]'); 
axis([0 1220 -2 2]); 
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B.10 – ARpower.m 

%% SCRIPT 7- AR prediction of power 
% Michele Pasquotto 
% June, 2016 

  
clear all  
clc 
%close all 

  
Ts= 1; %Sampling Time 

  
% Wave 
load('Pwec20.mat') 
load('Pwec20_s.mat') 
t=Pwec20.time; 
P=Pwec20.signals.values; 
t2=Pwec20_s.time; 
P2=Pwec20_s.signals.values; 

  
figure; 
plot(t,P) 
hold on, grid on, 

  
% plot(t2,P2,'.','markersize',8) 
% hold off 

  
xlabel('time [s]') 
ylabel('WEC power [W]') 
legend('power profile') 
  

 
%% Jlpri, estimation of parameters with regular least squares (N2=1), 

Multistart % Michele Pasquotto 

  
N=max(size(P2)); % number of samples 
n=30; % order 
npoint=50; % number of starting points 
Jlpri= @(a1)onepred(a1,n,N,P2); 

  

  
x0=ones(1,n); 
options = optimoptions('fminunc','Algorithm','quasi-

newton','MaxIter',1000,'MaxFunEvals',10000); 
problem = 

createOptimProblem('fminunc','objective',Jlpri,'x0',x0,'options',optio

ns); 
ms = MultiStart; 
[a1,Jmin,exitflag,output,solutions] = run(ms,problem,npoint) 

  

  
%% Jlpri, estimation of parameters with Long Range Predictive 

Identification function (N2=20), Multistart 
% Michele Pasquotto 
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N=max(size(P2)); % number of samples 
n=30; % order 
N2=20; % maximum prediction horizon 
Jlpri= @(a)longpred5(a,n,N,N2,P2); 

  
x0=a1; 
options = optimoptions('fminunc','Algorithm','quasi-

newton','MaxIter',1000,'MaxFunEvals',10000); 
problem = 

createOptimProblem('fminunc','objective',Jlpri,'x0',x0,'options',optio

ns); 
[a,Jmin,exitflag,output] = fminunc(problem) 

  

   
%% l-step prediction with the parameters estimated 

  
l=10; %range of prediction 

  
% (k+l|k) prediction 

  
for k=n:N; 
    for j=1:l 
        for q=1:n 
            if (k+j-q)<=k 
                ETA(q) = a1(q)*P2(k+j-q); 
            elseif (k+j-q)>k 
                   ETA(q) = a1(q)*Pp(k+j-q); 
            end 
        end 
        Pp(k+j)=sum(ETA); 
    end 
    Pstep(k+l)=Pp(k+l); 
end 

  
M=max(size(Pstep)); 

  
% Index of  fitness 

  
load('Pwec_s.mat') 
P_kl=Pwec_s.signals.values((n+l):M); 
Z=max(size(P_kl)); 
Ptrasp=Pstep'; 
Ppred=Ptrasp((n+l):M); 
P_k=Pwec_s.signals.values(n:(M-l)); 
FITN = fitness(Z,P_kl,Ppred,P_k) 

  
%Graph 

  
load('Pwec.mat') 
treal=Pwec.time; 
Preal=Pwec.signals.values; 
t_1=0:Ts:(Ts*(M-1)); 
figure; 
plot(t_1,Pstep,'r--.','markersize',10) 
hold on, grid on 
plot(treal(1:((M-1)*(Ts/0.1))),Preal(1:((M-1)*(Ts/0.1)))) 
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title(['order: ',num2str(n),'   prediction steps: ',num2str(l),'   

FITNESS: ',num2str(FITN),'%']); 
xlabel('t[s]'); 
ylabel('P[W]'); 

 

 

B.11 – Datos_VM.m 

%% Data for APOGEO model 

  
%% General 
fixed=500e-6; 
tend=600; 
decimation=5; % of the block to workspace 

  
%% Moving Average window 

ancho=24; 
downsampling=10; 
n=ancho/fixed/downsampling; 

  
%% AR model 

  
Ts=1; %sampling time 
order=30; %order 
horizon=10; %prediction horizon 
load('avel1.mat') 
load('afor1.mat') 

  
%% Wave farm 

  
% Regular wave 
a1=10000; 
f1=1/10; 
t=0:0.1:ancho; 
p=a1*sin(2*pi*f1*t); 
% p=p+a2*sin(2*pi*f2*t); 
% p=p+a3*sin(2*pi*f3*t); 
p=abs(p); 
% plot(t,p) 

  
% Irregular Wave 
MB=0.02; 

  
%% DC-link 
Udc0=120;   % tensión inicial y nominal bus DC [V] 
Cdc=12e-3; 

  
%% Supercapacitors 
s=1; 
p=1; 
Uuc=80;     % V totales 
Cuc=90;     % F totales 
Ruc=18e-3;  % ohm totales  
Uuc0=60;    % V inicial 
Ilim=200; 
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%% Converters 
fpwm=5000; 
slave= 4e-6*5000/fpwm; 
muestras=floor((1/fpwm)/slave/2); 

  
% Interleaving 
ram_int = 2; 

  
%%%%%% Pérdidas %%%%%% 
p    = 1;    % perdidas ON u OFF 
pe   = 1;    % perdidas Eon, Eoff y Err ON u OFF 

  
% Bobinas 
Rind = 1e-2*p;% [ohm] a 25ºC 
Lind = 2e-3;  % [H] a 25ºC 

  
% Condiciones nominales para el resto de datos 
Ic_nom  = 200;     % [A] 
Vcc_nom = 600;     % [V] 

  
% IGBT 
Eon  = 21e-3*p*pe; % [J] a 25ºC 
Eoff = 27e-3*p*pe; % [J] a 25ºC 
rce  = 5.00e-3*p;  % [ohm] a 25ºC 
Vce0 = 0.80*p;     % [V] a 25ºC 
Rsnubber = 1e5; 
% tf = [107e-9 2*107e-9]; 

  
% Diodo 
Err  = 13e-3*p*pe; % [J] a 25ºC 
rf   = rce; 
Vf0  = 1.30*p;     % [V] a 25ºC 

  
% Valores medios 
Von0 = (Vce0+Vf0)/2; 
ron  = (rce+rf)/2;  

 

 

B.12 – Postprocesado_MA.m 

%% Postprocessing of the results for the laboratory tests with Moving 

Average 
 

close all 
clear all 
clc 

  
figure1 = figure('position',[30 20 1391 800]); 
figure2 = figure('position',[30 20 1391 800]); 
load('20160901_002.mat') 
time=rec.X.Data; 
t=time+0.002; 

   



   APPENDIX B – Matlab Codes 
 

127 

Id_ref=rec.Y(1).Data; 
Id=rec.Y(2).Data; 
Pref=rec.Y(3).Data; 
Id2_ref=rec.Y(5).Data; 
Id2=rec.Y(6).Data; 
F=rec.Y(8).Data; 
vel=rec.Y(9).Data; 
F_5=rec.Y(10).Data; 
P_5=rec.Y(11).Data;  
vel_5=rec.Y(12).Data;  
Pavg=rec.Y(13).Data; 
Iuc_ref=rec.Y(14).Data;   
Udc_ref=rec.Y(15).Data;  
Pwec=rec.Y(16).Data; 
Pgrid=rec.Y(17).Data; 
Iuc=rec.Y(18).Data; 
Puc=rec.Y(19).Data; 
Uuc=rec.Y(20).Data; 
Udc=rec.Y(22).Data; 
Udc_filt=rec.Y(23).Data; 

  
dev_Pgrid; 

  
figure(figure1); 

  
subplot(4,1,1) 
plot(t,Udc_ref,t,Udc,t,Udc_filt) 
axis ([0 900 -inf inf]) 
ylabel ('Voltage [V]') 
legend('Udc_r_e_f','Udc','Udc_f_i_l_t','Location','eastoutside') 
grid on, 

  
subplot(4,1,2) 
plot(t,Id_ref,t,Id,t,Id2_ref,t,Id2) 
axis ([0 900 -inf inf]) 
ylabel ('Current [A]') 
legend('Id_r_e_f','Id','Id2_r_e_f','Id2','Location','eastoutside') 
grid on, 

  
subplot(4,1,3) 
plot(t,Pwec,t,Pgrid,t,Pavg) 
axis ([0 900 -inf inf]) 
ylabel ('Power [W]') 
xlabel('time [s]') 
legend('Pwec','Pgrid','Pavg','Location','eastoutside') 
grid on, 

  
subplot(4,1,4) 
plot(t,Pwec,t,-Pref) 
axis ([0 900 -inf inf]) 
ylabel ('Power [W]') 
legend('Pwec','Pref','Location','eastoutside') 
grid on, 

  
figure(figure2); 

  
subplot(3,1,1) 
plot(t,Iuc_ref,t,Iuc) 
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axis ([0 900 -inf inf]) 
ylabel ('Current [A]') 
legend('Iuc_r_e_f','Iuc','Location','eastoutside') 
grid on, 

  
subplot(3,1,2) 
plot(t,Uuc) 
axis ([0 900 -inf inf]) 
ylabel ('Voltage [V]') 
legend('Uuc','Location','eastoutside') 
grid on, 

  
subplot(3,1,3) 
plot(t,Puc) 
axis ([0 900 -inf inf]) 
ylabel ('Power [W]') 
legend('Puc','Location','eastoutside') 
grid on, 

 

 

B.13 – Postprocesado_AR.m 

%% Postprocessing of the results for the laboratory test with AR 

prediction 
 

close all 
clear all 
clc 

  
figure1 = figure('position',[30 20 1391 800]); 
figure2 = figure('position',[30 20 1391 800]); 
figure3 = figure('position',[30 20 1391 800]); 

  
load('20160914_pred_001.mat') 
time=pred_001.X.Data; 
t=time+0.002; 
t5=t+5; 

  
Id_ref=pred_001.Y(1).Data; 
Id=pred_001.Y(2).Data; 
Pref=pred_001.Y(3).Data; 
x3=pred_001.Y(4).Data; 
Id2_ref=pred_001.Y(5).Data; 
Id2=pred_001.Y(6).Data; 
x2=pred_001.Y(7).Data; 
F=pred_001.Y(8).Data; 
vel=pred_001.Y(9).Data; 
F_5=pred_001.Y(10).Data; 
P_5=pred_001.Y(11).Data;  
vel_5=pred_001.Y(12).Data;  
Pavg=pred_001.Y(13).Data; 
Iuc_ref=pred_001.Y(14).Data;   
Udc_ref=pred_001.Y(15).Data;  
Pwec=pred_001.Y(16).Data; 
Pgrid=pred_001.Y(17).Data; 
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Iuc=pred_001.Y(18).Data; 
Puc=pred_001.Y(19).Data; 
Uuc=pred_001.Y(20).Data; 
x1=pred_001.Y(21).Data; 
Udc=pred_001.Y(22).Data; 
Udc_filt=pred_001.Y(23).Data; 

  
dev_Pgrid; 

  
figure(figure1); 

  
subplot(3,1,1) 
plot(t,Udc_ref,t,Udc,t,Udc_filt) 
axis ([0 900 -inf inf]) 
ylabel ('Voltage [V]') 
legend('Udc_r_e_f','Udc','Udc_f_i_l_t','Location','eastoutside') 
grid on, 

  
subplot(3,1,2) 
plot(t,Id_ref,t,Id,t,Id2_ref,t,Id2) 
axis ([0 900 -inf inf]) 
ylabel ('Current [A]') 
legend('Id_r_e_f','Id','Id2_r_e_f','Id2','Location','eastoutside') 
grid on, 

  
subplot(3,1,3) 
plot(t,Pwec,t,Pgrid,t,Pavg) 
axis ([0 900 -inf inf]) 
ylabel ('Power [W]') 
xlabel('time [s]') 
legend('Pwec','Pgrid','Pavg','Location','eastoutside') 
grid on, 

  

  
figure(figure2); 

  
subplot(3,1,1) 
plot(t,Iuc_ref,t,Iuc) 
axis ([0 900 -inf inf]) 
ylabel ('Current [A]') 
legend('Iuc_r_e_f','Iuc','Location','eastoutside') 
grid on, 

  
subplot(3,1,2) 
plot(t,Uuc) 
axis ([0 900 -inf inf]) 
ylabel ('Voltage [V]') 
legend('Uuc','Location','eastoutside') 
grid on, 

  
subplot(3,1,3) 
plot(t,Puc) 
axis ([0 900 -inf inf]) 
ylabel ('Power [W]') 
legend('Puc','Location','eastoutside') 
grid on, 
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figure(figure3); 

  
subplot(3,1,1) 
plot(t,Pwec,t,-Pref,t,P_5) 
axis ([0 900 -inf inf]) 
ylabel ('Power [W]') 
legend('Pwec','Pref','P-5steps','Location','eastoutside') 
grid on, 

  
subplot(3,1,2) 
plot(t,F,t5,F_5) 
axis ([0 900 -inf inf]) 
ylabel ('Force [N]') 
legend('F','F-5steps','Location','eastoutside') 
grid on, 

  
subplot(3,1,3) 
plot(t,vel,t5,vel_5) 
axis ([0 900 -inf inf]) 
ylabel ('Velocity [m/s]') 
legend('vel','vel-5steps','Location','eastoutside') 
grid on, 
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