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Introduction

Recent direct observations of gravitational waves have not only provided further confirmation of Ein-
stein general relativity but also paved the way for a new way of observing the sky. Since the beginning
of astronomy, the understanding of the universe was based only on the observation of the electromag-
netic components of the spectrum. While the strong interaction of photons with matter makes these
particles easily detectable, on the other hand the information they carry is easily polluted or blocked
by the presence of another matter / energy between the source and the observer. In this perspective,
the weakness of the gravitational interaction becomes an advantage because it allows you to probe
space-time regions of the universe that are normally inaccessible. The price to pay is the great diffi-
culty in making tools capable of revealing their passage. Indeed, the direct detection of gravitational
interaction involves resorting to unconventional types of observation. Today’s detection method is
mainly based on two principles: resonance of solid objects and the measurement of the contraction /
expansion of the distances between two or more masses.
To improve the signal-to-noise ratio of these detections, a new generation (third generation) of gravi-
tational interferometers has been devised.
The project in Europe that will deal with the development of these third-generation interferoemters is
the Einstein Telescope project (ET), a European Union project.
In order to fulfill the sensitivity requirements of a third generation detector, it will be necessary to
operate the Low Frequency interferometer of the Einstein Telescope in a cryogenic environment. This
will set a new technological challenge, as the substrate materials and coatings that are currently used
in optical elements of second generation GW interferometers will be made unusable in a cryogenic
environment due to increased mechanical losses.
Research in recent years has led to say that a suitable candidate to serve as substrate material in test
masses of the Low Frequency detector of ET could be crystalline silicon.

This thesis work will contribute to the charaterization of silicon optical properties in the same envi-
ronment that is designed for the ET-LF detector. In this document it will be illustrated the design and
construction of an experiment that allows to measure the optical absortion coefficient of crystalline
silicon at cryogenic temperatures at the foreseen ET operation wavelenght λ = 1550nm. This kind of
measurement is a non trivial task due to the very small magnitude of optical absorption in silicon, that
ultimately makes it a favourable candidate as a test mass substrate material. The absorption coefficient
of silicon αSi obtained in this work be compared to the only existing measurement of αSi in analogous
environmental conditions that is currently present in literature and the consequences of this results on
the Einstein Telescope design will be analyzed.
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Chapter 1

Gravitational wave background

The history of gravitational waves and their detection begins in 1916 [1]. They were initially theorized
similarly to the electromagnetical waves in an early work on Special Relativity by Henri Poincarè, but
they found their first rigorous mathematical description soon after the publication of the Theory of
General Relativity, thanks to the effort of Albert Einstein that was able to find a wave-like solution to
its field equations in a specific coordinate system. Yet Einsten himself was doubtful of the physicality
of his solutions and his feelings were confirmed few years later when Sir. Arthur Eddington proved
that two of the three of these wave solutions had a frame dependent propagation speed, so that they
were a mere artifact of a wavy coordinate system. Hence Einstein reinforced his belief that gravita-
tional waves were unphysical and went on to spread his opinion across the whole scientific community
during the decades preceeding World War II.
During 1930s Einstein and Rosen published various theoretical papers demonstrating the unphysi-
cality of wave-like solutions to the GR Equations that were eventually proven wrong by the work of
H.P. Robertson. Despite Einstein admitting his mistake, Gravitational Waves remained an exotic sub-
ject among the physics community. During ’50s the debate focused on whether or not Gravitational
Waves would carry energy, but the dispute remained on theoretical ground as there were no exper-
iment attempting at detecting them. This skewed state of affairs started to change after the Chapel
Hill conference on General Relativity in January 1957. During the meeting devoted to Gravitational
Waves, Richard Feynman persuaded the audience of their reality thanks to its famous ’Sticky Bead
Argument’1, finally settling the theoretical debate on the GW existence. One of the members of the
audience happened to be Joseph Weber, an engineer from Maryland University that, fascinated by the
topic, began to think about an experimental device that could achieve their detection.
Weber was the pioneer in the search for gravitational wave signals. In a 1960 paper [2] he summa-

rized his ideas about the most promising strategies for their detection and during the following years
he worked on the construction of the first Gravitational Wave Antenna, the ’Weber Bar’, that begun the
first data taking attempt in 1966 [3]. The Weber Bar consisted in a big aluminum cylinder with 66 cm
diameter and 153 cm lenght, for a total wheight of around 3 tons, suspended to a system aimed to in-
sulate the mass from enviromental vibrations. The bar was enveloped by a strip of quartz transducers
that converted mechanical strains to voltage signals and the whole system was sealed in a vacuum
chamber.
This particular type of detector takes advantage of the resonance frequency of a mechanical system:
if a gravitational wave with frequency that match exactly the resonant frequency of the bar passes
through the detector with direction of propagation that is non-parallel to the bar axis, one could hope
that the induced strain on the bar will be amplified enough to overcome the enviromental noises, hence

1In Feynman’s thought experiment, a gravitational wave detector simply consist of two beads sliding freely on a rigid
rod, oriented transversely to the propagation direction of the wave. As the gravitational wave passes, it exerts tidal forces
on the objects respect to the center of the bar. Atomic forces hold the length of the rod fixed, instead nothing prevents
the beads from sliding. If there’s friction between the rod and the beads, heat will be dissipated in the process. Then, the
energy source can only be the gravitational wave.

3
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Figure 1.1: Up: Joseph Weber at work on one of his early resonant bar detector prototypes.
Down: Scheme of the apparatus of the first Weber Bar [3]

becoming detectable. Unfortunately, this approach proved to be inefficient at detecting gravitational
signals. The main problem with a resonant bar detector is the fact that its sensitivity is peaked only in
a narrow frequency region around the mechanical resonant frequencies of the system, so that, in order
for a gravitational signal to be detectable, not only it should have large amplitude, but it should also
peak its power at the exact frequency requested by the detector. Moreover, the technologies that were
implemented in this early prototype detectors were inadequate to achieve a sufficient peak sensitivity
to detect even the most optimistic gravitational wave event. Despite this fact, Weber was the first to
understand the importance of having a global array of detectors that permits to reject local spurious
signals based on coincidences, as he built two copies of his first prototype that were placed in two
laboratories at a distance of 950 km. Moreover his attempts prompted a fast development in the ex-
perimental field of gravitational wave searches in the following decades as many groups of scientists
rushed to indepentely check Weber’s measurement that claimed several Gravitational Wave signals
that conflicted with the contemporary understanding of astronophysical processes, eventually ruling
them out. The peak sensitivity for resonant bar detectors was reached in the late-’90s/early-2000s
with the NAUTILUS and AURIGA ultracryogenic bar antennae at the INFN laboratories, Frascati and
Legnaro respectively, in Italy (Fig.1.2).

As the sensitivity of resonant bar detectors was improving, it became clear that Weber’s method wasn’t
the optimal one for gravitational wave detection. There was a more promising strategy instead that
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Figure 1.2: Left: Sensitivity of the AURIGA Detector, 2004. Right: Open Section of the AURIGA at
the Laboratori Nazionali di Legnaro.

started developing in the 1970s: laser interferometry. The interferometric idea was nothing new be-
tween experimental physicist but it was applied for the first time to gravitational wave serches only
in the early 70’s, thanks to the independent efforts of Robert L. Forward [4] and Rainer Weiss [5].
In particular it was Weiss that, after having worked on an initial 1.5-m prototype at MIT and having
contributed to the 30-m interferometer realized by the Garching group in Munich, Germany, laid the
foundation for the LIGO (Laser Interferometer Gravitational-Wave Observatory) Project, a set of two
4-km long Michelson interferometers placed more than 3000 km apart at Hanford, WA and Living-
stone, LA.
The LIGO large-scale interferometers were the first one to be built, as their construction started in
1994, but they were followed soon after by the VIRGO detector, a 3-km long Michelson interferometer
built in Cascina, IT by a INFN-CNFR collaboration starting from the late ’90s. These three detectors,
togeter with the german GEO600 and the japanese TAMA, constituted the first generation of Gravita-
tional Wave Interferometers, with the respective arm lengths of 600m and 300m. The initial version
of the two LIGO interferometers started data acquisition in 2002, while VIRGO was fully operating
for the first time in 2007. These early 2000s observation runs had the aim of testing a range of new
technologies that were applied for the first time to large-scale interferometers and did not succeded in
gravitational wave detection. Consequently the detectors were shut down between 2010 and 2011 to
allow for the upgrade to their improved version, aLIGO (Advanced LIGO) [6] and AdV (Advanced
VIRGO) [7] respectively. The upgraded detectors aimed for a factor 10 sensibility improvement re-
spect to the initial versions, establishing the second generation of Gravitational Wave Interferometers.
Sensitivities of these advanced gravitational wave detector reached values below 10−23

√
1/Hz accross

a wide range of frequencies (Fig.1.3), a value that was expected to be comparable to the amplitudes
of GW signals coming from nearest compact object inspiral events. More importantly, this was the
frequency range inside which gravitational wave signals from most of Bynary systems of Black Holes
(BBH) and Neutron Stars (BNS) peaked their amplitude during mergers, so that the first gravitational
wave event was eventually detected on September 14, 2015 by the aLIGO detector2 [8], in the exact
year of the 100th anniversary of the General Relativity Theory publication.
In the few years following the first gravitational wave detection a variety other signal were observed.
A total of three observation runs has been conducted between 2015 and 2020, the last two of which the
three detectors were able to operate simultaneously. To have at least three working interferometers is

2The first gravitational wave signal, GW150914, was observed by the aLIGO detector only, while it was still in ’en-
geneering’ operational mode (its first official observation run would have started four days later, on September 18, 2015).
The AdV detector started its first observation run on August 1, 2017.



6 CHAPTER 1. GRAVITATIONAL WAVE BACKGROUND

Figure 1.3: Left: Noise Spectral Density of the LIGO and VIRGO Detectors, September 2017.
Right: Aerial View of the VIRGO interferometer in Santo Stefano a Macerata, IT.

crucial for triangulating the position in the sky of the signal source and it also allows to perform a bet-
ter noise rejection based on multiple coincidences. During the first two runs a total of 11 gravitational
wave events have been succesfully observed and the results of the first half of the third observation
run has just been published, confirming the observation of 39 more GW signals, adding to a total of
50 detected merger events [9]. The majority of this events are Black Hole-Black Hole Mergers, but
also two Neutron Star-Neutron Star Mergers were detected, for the first of which (GW170817) it was
also detected the Electro-Magnetical counterpart of the gravitational wave signal, starting the era of
multimessenger (EM-GW) astronomy [10].
Then, the Advanced LIGO and VIRGO detectors culminated the lenghty and winding hunt for gravita-
tional waves, proving the physical existence of the fascinating space-time ripples. The number of GW
events that are being digged out from the noisy interferometrical read-out signal of the three detectors
is constantly increasing and this experimental findings are stimulating a multitude of theoretical and
numerical reasearch to extensively test the General Relativity Theory along with expanding the current
knowledge in the fields of Astrophysics, Cosmology and Fundamental Physics by directly observing
the most powerful cosmic collisions.
In the coming years a new upgrade that will take the aLIGO and AdV detectors to their maximal design
sensitivity is scheduled, but the three detector are already approaching their physical upper sensitivity
bound. In order to understand where do the physical limitations to the aLIGO and AdV detector sen-
sitivities come from and which strategies should be pursued to overcome them in a new generation of
Gravitational Wave Interferometers, it is necessary to understand the theoretical framework of gravi-
tational wave signals and their consequences on massive systems and the space-time fabric itself.



Chapter 2

Gravitational Waves in General Relativity

2.1 Einstein field equation

Einstein’s special relativity describes the motion of bodies in inertial frames of reference; space-time
is described with a flat metric by the Minkowsky tensor ηµν . In this perspective, the space-time interval
between two separate events is given by:

ds2 = ηµνdx
µdxν

. In general relativity the non-inertiality of the reference systems results in a curvature in space-time,
induced by the presence of matter-energy. This manifests itself in the form of the force of gravity; in
Einstein’s perspective, the gravitational field is given by the tensor equation that bears his name:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (2.1)

where Rµν is the Ricci Tensor, R the Ricci Scalar1, G the universal gravitational constant, c the speed
of light, gµν(x) is the symmetric Metric Tensor and Tµν is the Energy-Momentum tensor
The proportionality coefficient that relates Energy-Momentum to Spacetime Curvature is actually so
small (8πG

c4
≈ 2× 10−43 s2m−1kg−1) that the attention can be focused on studying the linearization of

Einstein’s Field Equation around the flat-space metric ηµν = diag(−1, 1, 1, 1). The expansion of the
Metric Tensor in the linearized theory is defined as:

gµν = ηµν + hµν ; |hµν | << 1 (2.2)

1The Ricci Tensor and Scalar are defined in respect to the Riemann Tensor Rµ
νρσ, which is in turn defined upon the

Christoffel Symbol Γρ
µν , a tensorial set of coefficients that refers directly to the Metric Tensor. The definition of these four

quantities can be stated as follows:
Γρ
µν =

1

2
gρσ(∂µgσν + ∂νgσµ − ∂σgµν);

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γµ

αρΓ
α
νσ − Γµ

ασΓ
α
νρ;

Rµν = Rα
µαν ;

R = gµνRµν .

7
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After choosing this almost Minkowskyian frame of reference one should proceed at linearizing all the
quantites that are defined upon the Metric Tensor:

Γσ
µν =

1

2
(∂µh

σ
ν + ∂νh

σ
µ − ∂σhµν) (2.3a)

Rσ
µνρ =

1

2
(∂ν∂µh

σ
ρ + ∂ρ∂

σhµν − ∂ν∂σh
σ
µ − ∂σ∂µh

σ
ν ) (2.3b)

Rµν =
1

2
(∂ν∂µh+2hµν − ∂ν∂σh

σ
µ − ∂σ∂µh

σ
ν ) (2.3c)

R = 2h− ∂µ∂σh
µσ (2.3d)

where it was denoted 2 = ∂σ∂
σ the D’Alembertian operator and h = hσ

σ the trace of the linear term
of the Metric Tensor expansion. Then, defining the quantity:

h̄µν = hµν −
1

2
ηµνh (2.4)

a trivial algebraic substitution of Eqs.2.3 into Eq.2.1 leads to the linearized version of Einstein’s Field
Equations:

2h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ =

16πG

c4
Tµν . (2.5)

Having choosed a frame of reference where Eq.2.2 is valid, still leaves the freedom to perform a gauge
transormation under which the equations will remain covariant. The wisest choice for the residual
transformation is the Lorenz Gauge:

∂ν h̄µν = 0 (2.6)

which immediately simplify the linearized field equations to a tensorial wave equation:

2h̄µν =
16πG

c4
Tµν . (2.7)

In order to study the propagation of the wave-like perturbations that arise from this equation and their
interaction with test masses, Eq.2.7 should be analyzed in vacuum, that is the condition that surround
the source, where Tµν = 0:

2h̄µν = 0. (2.8)

A solution to this type of equation can be found with the Green Functions Method, that yelds:

h̄µν = Aµνe
ikρzρ . (2.9)

By inserting this wave-like solution into Eq.2.6 and Eq.2.8, two constraints on the h̄µν tensor are
obtained:

Aµνkµ = 0 (2.10a)
kσk

σ = 0 (2.10b)

wich lower its degrees of freedom from 10 to 6. In particular the first condition implies that the h̄µν

tensor will be transverse in this specific gauge, the second one that the wave-like perturbation will
travel at the speed of light.
Starting from the current frame of reference it can be performed a further transformation that simplify
the form of the h̄µν tensor, without spoiling the Lorenz Gauge2. Then the 4 components of the new

2It is trivial to show that a coordinate trasformationxµ → xµ+ζµ with2ζµ = 0, where ζµ is an infinitesimal quantity, is
compatible with the Lorenz Gauge ∂ν h̄µν .This condition further implies 2ζµν = 0, where ζµν ≡ ∂µζν+∂νζµ−ηµν∂σζ

σ .
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gauge transformation can be used to set 4 more constraints on h̄µν , reducing the number of its degrees
of freedom from 6 to 2. This gauge freedom was used to find a solution that satisfies the equations:

h̄0i
TT = 0; h̄TT = 0. (2.11)

The frame of reference in which this conditions are valid is named Transverse Traceless Gauge (TT ).
The last two remaining degrees of freedom of the gravitational wave solution in the TT Gauge can be
manifestly shown for a plane wave propagating along the z axis k⃗ = (1, 0, 0, 1):

h̄TT
µν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 eiω(t−z/c). (2.12)

The above equation is expressed in terms of the retarded time t−z/c as the gravitational information is
constrained to propagate at speed of light. The two Gravitational Wave Polarizations are named respec-
tively Plus (+) and Cross (×) Polarization. Then it can be immediately seen that, due to the passage
of a Gravitational Wave, the invariant infinitesiaml space-time interval is periodically modulated:

ds2 =gµν dx
µ dxν =

=− c dt2 + dz2 + {1 + h+ cos[ω(t− z/c)]} dx2

+ {1− h+ cos[ω(t− z/c)]} dy2 + 2h× cos[ω(t− z/c)] dx dy

(2.13)

As the ds2 is invariant, that is it’s independent of the refence frame choice, the above equation man-
ifestly shows that the Gravitational Wave solution has ’physical’ effects and it’s not an artifact of the
specific Gauge choices that has been made to obtain Eq.2.12.

2.2 Geodesics and Newtonian Forces
Despite the general result obtained in Eq.2.13, if one is intrested at analyzing the effects of a Gravita-
tional Wave on an array of test masses, the system should be studied in a (Local) Free Falling Reference
Frame3, as this reference frame is ideally inertial with the test masses of the interferometer, which are
isolated from external non-gravitational forces. Moreover the oscillating coordinates of the TT Gauge
does not reflect the experimental situation in which scientists hope to detect a displacement of the free
falling test masses respect to a rigid ruler, that is a measurment apparatus so small that the modification
induced on it by the passage of a Gravitational wave can be neglected4. The Free Falling Reference
Frame of the experimental test masses is often referred as the Proper Detector Frame.
The equation of motion for a point mass in a background described by the metric gµν in absence of
external forces is described by the Geodesic Equation5:

d2xµ

d2τ
+ Γµ

ρσ(x)
dxρ

dτ

dxσ

dτ
= 0. (2.14)

The above equation was parametrized in terms of the Proper Time τ , that is the time measured by a
free falling clock following the given geodesic:

c2 dτ 2 = −ds2 = −gµν dx
µ dxν . (2.15)

3In theory, a Local Free Falling Reference Frame is defined by requiring that, in the neighborhood of the origin, the
Christoffel Symbols vanish: Γµ

νρ(x) = 0.
4More precisely, when taking a resonant bar as a ruler, it can be considered rigid respect to the passage of a GW of

frequency ω if its resonance frequency ω0 >> ω.
5For a complete derivation of the Geodesic Equation, see for instance [14].
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As the aim of the analysis is to compare the geodesics of different free falling masses, the first thing
to do is to fix a free falling reference frame that is inertial with a specific particle. In this reference
frame, that is usually called Fermi Local Coordinate System, the metric is flat at first order even in the
presence of Gravitational Waves:

ds2 ≈ c2 dt2 − δij dx
i dxj. (2.16)

Then, expanding the metric at second order around the origin of the free falling frame and expressing
the second derivatives of gµν in terms of the Riemann Tensor, the following result is obtained6:

ds2 ≈− c2 dt2[1 +R0i0jx
ixj]

− 2c dt dxi
(2
3
R0ijkx

jxk
)
+ dxi dxj

[
δij −

1

3
Rikjlx

kxl
]
.

(2.17)

Then we can consider two nearby geodesics each parametrized by its own proper time, the coordinate
distance that separates the two free falling particles on the geodesics is the space-time vector Eµ(τ)
that connect points with the same value of τ on the two geodesics. The Geodesic Equation 2.14 will
be valid along the first geodesic xµ(τ), while on the second goedesic xµ(τ) + Eµ(τ) it will take the
form:

d2(xµ + Eµ)

d2τ
+ Γµ

ρσ(x+ E)
d(xρ + Eρ)

dτ

d(xσ + Eσ)

dτ
= 0. (2.18)

Assuming |E(τ)| is much smaller than the typical scale of variation of the gravitational field, its evo-
lution can be studied by taking the first order difference between Eq.2.14 and Eq.2.18, obtaining the
Geodesic Deviation Equation:

d2Eµ

d2τ
+ 2Γµ

ρσ(x)
dxρ

dτ

dEσ

dτ
+ Eν∂νΓ

µ
ρσ(x)

dxρ

dτ

dxσ

dτ
= 0. (2.19)

Near the Proper Detector Frame (PDF) origin Γµ
ρσ(x) vanishes and dxi/dτ can be neglected respect

to dx0/dτ as the detector is moving non-relativistically:

d2Ei

d2τ
+ Eσ∂σΓ

i
00(x)

(dx0

dτ

)2

= 0. (2.20)

The Geodesic Deviation Equation in the Proper Detector Frame can be further rewritten by noting
that near the origin only the both-spatial double derivatives of the metric are non vanishing, thus
Eσ∂σΓ

i
00 = Ej∂jΓ

i
00. Moreover, in the PDF we have by definition ∂0Γ

i
0j = 0, then it is also valid

Ri
0j0 = ∂jΓ

i
00 − ∂0Γ

i
0j = ∂jΓ

i
00. Therefore Eq.2.20 becomes7:

d2Ei

d2τ
= −Ri

0j0E
j
(dx0

dτ

)2

. ⇒ Ëi = −c2Ri
0j0E

j. (2.21)

In order to compute Ri
0j0, one can take advantage of the fact that in the linearized theory the Riemann

Tensor is invariant rather than covariant, so that it can be equivalently computed in TT Gauge, where
its derivation is easier due to the simpler form of Gravitational Waves in this reference frame. From
the Riemann Tensor definition it follows immediately Ri

0j0 = Ri0j0 = − 1
2c2

ḧTT
ij , and the Geodesic

Deviation Equation in the Proper Detector Frame eventually becomes:

Ëi =
1

2
ḧTT
ij Ej. (2.22)

6For an Earthbound detector one should also account for the fact that the laboratory frame is accelerated and rotating.
This would yeld various additional terms to the ds2 expression (Centrifugal acceleration, Coriolis Effect, ecc.). This terms
actually have much bigger amplitudes respect to the Riemann Tensor terms that are explicited in Eq.2.17 at low frequencies,
but at sufficiently high frequencies this contributions are highly suppressed and we can neglect them.

7At first order in h we have t = τ and dx0/dτ = c. We also denote with Ė the derivative with respect to the coordinate
time t of the Proper Detector Frame.
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The physical meaning of this simple equation is that, in the Proper Detector Frame, the effect of a
Gravitational Wave on an array of point particles can be described in terms of a Newtonian Force.
It’s important to underline that in the Proper Detector Frame at first order coordinate distances Ei are
equal to proper distances si. Then, upon verification that the first order approximation is satisfied in
the experimental set-up, the result 2.22 has general validity and it describes the physical response of
the system to a GW passage in every possible non-relativistic frame, included the TT Gauge.

2.3 GW’s Effect on an Array of Test Masses
As an example it can be studied the effect of a Gravitational Wave propagating along the z-axis on a
ring of test masses laying on the xy-plane8. The two GW polarizations can be studied separately.
Starting from the Plus polarization (h× = 0) and remembering the h̄TT

ab expression from Eq.2.12, the
proper distance variation between the ring particles and the origin of the plane can be studied upon
defining Ea(t) = (x0 + δx(t), y0 + δy(t)). Then Eq.2.22 becomes:

Ë1
a = δẍ =− h+

2
(x0 + δx)ω2 sin(ωt)

Ë2
a = δÿ =+

h+

2
(y0 + δy)ω2 sin(ωt).

(2.23)

The δx and δy terms on the right side of the above equations can be neglected to the first order in h as
they have dimension O(h+), so that the differential equation can be directly integrated:

δx(t) = +
h+

2
x0 sin(ωt)

δy(t) =− h+

2
y0 sin(ωt).

(2.24)

Proceeding analogously for the Cross polarization case (h+ = 0), the resulting evolution of the test
mass displacement is:

δx(t) = +
h×

2
y0 sin(ωt)

δy(t) = +
h×

2
x0 sin(ωt).

(2.25)

The periodical modulation effect of each GW poarization on a ring of test masses is shown in Fig.2.1.
In the general case where both polarizations are present the resulting effect is a superposition of the two
single-polarization modulations. It’s important to note few aspects of the results obtained in Eq.2.24
and Eq.2.25. The test mass displacements are proportional to the distance between the particle and
the origin of the frame of reference. This means that the effect of GW passage is a constant relative
deformation of the detector along the perpendicular direction to the the wave-vector:

δl

l
= ±

h+/×

2
sin(ωt). (2.26)

It can be seen that the only free parameters that govern the relative detector deformation are the po-
larization amplitude h+/x and the GW frequency ω. The parameters are dictated both by the source
properties and its distance and orientation respect to the detector. Then, if one is intrested in studying

8As GWs are transverse waves, there are no effects of their passage manifesting along the parallel direction to the wave
vector. Then we can fix the test mass array on the perpendicular plane to the direction of propagation and their effect will
be maximized.
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Figure 2.1: Effects of Plus (left) and Cross (right) polarization on a ring of test masses (white). The
tidal field of the waves on the ring is indicated by light dotted lines. The direction of the force

reverses sign each half-period of the wave as indicated by the red and green arrows.

the feasibility of Gravitational Wave detection it is necessary to estimate the magnitude of this quan-
tities at source and after propagation. Nowadays, in order to extract the waveform and sky location
parameters from the interferometer mirror displacement, the acquired signal is compared with a de-
tailed catalogue of waveform templates obtained via Numerical Relativity to find the set of parameters
that best match the observation. Nevertheless it is still possible to gain an useful insight on Gravita-
tional Wave generation and propagation by trying to solve analitically GR’s linearized field equations
under certain approximations and simmetry assumptions. In particular, for a system of two point-
like masses in circular orbit around the center of mass of the system with non-relativistic velocities,
expanding to the leading quadrupole radiation term at large distances from the source, the following
result for the Gravitational Wave Amplitude can be obtained9:

h ≈ 1

r

Gµω2
S R

2

c4
(2.27)

where µ = m1m2/(m1 + m2) is the reduced mass of the system, ωS is the orbital frequency and
R the orbital radius. The most important aspect of this equation is the 1/r GW Strain dependence
upon propagation, that is analogous to multipole radiation instead of an usual spherical wave, which
amplitude decreases as 1/r2. This desirable amplitude proportionality has a remarkable consequence
for the detector upgrade design; in fact, an order 10 improvement in the detector sensibility translates
in a 103 increase of the space-time volume that could be explored with the instrument. Then, as the
LIGO and VIRGO detectors are close to achieving their maximal design sensitivity, it is advantageous
to start researching and designing a new generation of Earthbound interferometrical detectors that will
be capable of exceeding at least of an order of magnitude the sensitivity of the current detectors.

9See [13] for a detailed derivation.



Chapter 3

The Interferometric Method for GW
Detection

3.1 Michelson Interferometers
The basic concept at the core of the modern antennae that succeded in the first gravitational wave
detections in the last few years is the simple one of the Michelson Interferometer. A Michelson In-
terferometer is, in its simplest configuration, an array of two mirrors and one beam splitter together
with a monocromatic light source that allows to sense a variation in the differential length between
the two interferometer arms exploiting the phenomenon of interference of Electro-Magnetical Waves.
The operating principle of a Michelson interferometer and its interactions with a Gravitational Wave
are summarized in the following section.

Figure 3.1: Basic Michelson interferometer scheme. Monocromatic Source (S), Beam Splitter (BS),
Mirrors (Mx,My), Photodiode (PD).

The scheme of a basic Michelson Interferometer configuration can be seen in Fig.3.1. The monochro-
matic light source is nowadays always provided by a laser device. The beam is splitted in two orthog-
onal arms and after having travelled twice along each arm it recombines at the beam splitter, partly
heading toward the output port and partly directed back to the input source.
The input beam can be represented with the complex notation for electromagnetical fields:

Ein = E0e
−i(ωlt−k⃗l·x⃗) (3.1)

where ωl is the laser frequency and k⃗l the laser beam wave vector (|k⃗l| = 2π/λl = ωl/c). After being
divided and recombined, the output beam amplitude can be obtained by the superposition of the two

13
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x/y-arm beams, properly accounting for the ϕx/y phase picked up upon reflection:

Ex =
E0√
2
ei(klLx−ωlt+ϕx), Ey =

E0√
2
ei(klLy−ωlt+ϕy) (3.2)

where the factor 2 at denominator is due to the double transmission through the beam splitter. Then
the output intensity is immediately obtained from the output amplitude expression:

IOut = |EOut|2 = |Ex + Ey|2 =
E2

0

2

(
1 + cos

(
k(Lx − Ly) + (ϕx − ϕy)

))
. (3.3)

The electromagnetical wave acquires a ϕ = π extra-phase at each reflection. Then the acquired phases
for the two input and output directed recombined beams can be explicitely computed: the output
directed beam (Out1) acquires a total phase ϕ1 = ϕx − ϕy = (π + π) − (π + π) = 0; the input
directed beam (Out2) acquires a total phase ϕ2 = ϕx − ϕy = π − (π + π + π) = −2π. Then the
intensities of the two recombining beams become:

IOut1 =
E2

0

2

(
1− cos

(
k(Lx − Ly)

))
= E2

0 sin
2
(k
2
(Lx − Ly)

)
;

IOut2 =
E2

0

2

(
1 + cos

(
k(Lx − Ly)

))
= E2

0 sin
2
(k
2
(Lx − Ly) + π

)
.

(3.4)

Therefore a variation in the differential length of the two interferometer arms results in a power vari-
ation at the output port that could be properly detected with a photodiode, while the remaining power
is sent back to the input port, consistently with energy conservation principle.

If one then desires to analyze the response of a Michelson Interferometer to a Gravitational Wave
passage, the TT Gauge is the most convenient frame in which conducting the analysis, as the coor-
dinate of the free falling interferometrical test masses are fixed by definition in this reference frame.
Instead it is the light beam propagation time across the interferometer arms that is affected from the
Gravitational Wave passage in TT Gauge.
Assuming for simplicity that the Gravitational Wave is composed only of Plus polarization (h× = 0)
and that it is traveling along the z direction, for an interferometer laying in the z = 0 plane the metric
gravitational wave amplitude becomes:

h+(t) = h0 cos(ωgwt) (3.5)

where ωgw is the frequency of the incoming Gravitational Wave. Then, for a photon travelling along a
null geodesic, the invariant space-time interval results:

ds2 = −c2 dt2 +
(
1 + h+(t)

)
dx2 +

(
1− h+(t)

)
dy2 + dz2 = 0. (3.6)

The above equation can be projected to a single coordinate to calculate the total photon travel time
along each arm. Starting from the x arm, at first order in h0:

dx = ±

√
c2 dt2

1 + h+(t)
≈ ±c dt

(
1− 1

2
h+(t)

)
(3.7)

where the + sign distinguish the back and forth trips. Starting from the beam splitter at instant t0, the
time t1 at which the photon reaches the x arm mirror is obtained by integrating Eq.3.7 with the plus
sign the two endpoints x = 0 and x = Lx:∫ Lx

0

dx = +c

∫ t1

0

dt
(
1− 1

2
h+(t)

)
⇒ Lx = c(t1 − t0)−

c

2

∫ t1

t0

dth+(t). (3.8)



3.1. MICHELSON INTERFEROMETERS 15

An analogous integration with the minus sign for the return trip from the mirror x = Lx to the beam
splitter x = 0, gives:∫ 0

Lx

dx = −c

∫ t2

t1

dt
(
1− 1

2
h+(t)

)
⇒ Lx = c(t2 − t1)−

c

2

∫ t2

t1

dth+(t). (3.9)

The sum of Eq.3.8 and Eq.3.9 gives the total travel time for the photon that is moving along the x arm:

t2 − t0 =
2Lx

c
+

1

2

∫ t2

t0

dth+(t). (3.10)

As the integrand in Eq.3.10 is already of order O(h0), the upper limit of the integral can be approx-
imated with the flat metric roundtrip time t2 = t0 + 2Lx/c. Exploiting the trigonometric expression
sin(α + 2β)− sin(α) = 2sin(β) cos(α + β), the following expression is obtained:

t2 − t0 =
2Lx

c
+

1

2

∫ t0+2Lx/c

t0

dth0 cos(ωgwt) =

=
2Lx

c
+

h0Lx

c

sin(ωgwLx/c)

ωgwLx/c
cos

(
ωgw(t0 + Lx/c)

)
=

=
2Lx

c
+

Lx

c
h+

(
t0 +

Lx

c

) sin(ωgwLx/c)

ωgwLx/c

(3.11)

where, in the last identity, Eq.3.5 was used to simplify the expression. The above equation shows
that the flat-metric photon roundtrip travel time along an arm (2Lx/c) is modified by the passage of
a Gravitational Wave with a term that is proportional to the value of the GW amplitude at the instant
when the photon reaches the arm mirror (t0+Lx/c) and to the arm length Lx. Moreover, the roundtrip
travel time modification is proportional to the function:

sinc
(ωgwLx

c

)
≡ sin(ωgwLx/c)

ωgwLx/c
(3.12)

the behaviour of which is shown in Fig.3.2. The sinc function approaches 1 for ωgwLx/c << 1 and
the travel time modification simplifies to h+(t1)Lx/c, while it get suppressed for ωgwLx/c >> 1. This
behaviour has a simple physical interpretation: if the detector arm is made too long, then ωgwLx/c >>
1 and the GW metric perturbation changes sign many times along the roundtrip, so that its overall
effect gets averaged out; on the contrary, if the interferometer arm is made too short, then it is the
Lx factor that inhibits the dector sensibility to detect variations in the metric, as there is not enough
time for the photon that is travelling along the arm to integrate the Gravitational Wave effect. Then
the interferometer lenght must be ideally optimized to maximize the signal in the possible frequency
range of the target source.
An analogous computation can be performed for the y-arm case. Comparing the roundtrip travel
time in the two orthogonal arms the total phase difference introduced by a Gravitational Wave in the
Michelson interferometer output beam is obtained:

∆ϕMich ≈ ωl

(
2
Lx − Ly

c
+

2L

c
h0 cos(ωgwt+ α) sinc

(ωgwL

c

))
= ∆ϕ0 +∆ϕgw (3.13)

where the first order in h0 approximation Lx ≈ Ly ≈ L was performed, as the usual experimental
configuration for a Michelson Interferometer is nearly symmetrical1. Substituting back this result

1More specifically, the ∆ϕ0 term contains two contributions that are properly tuned by experimentalist to build the
optimal conditions for GW detection in the interferometer. In particular, the first one is a microscopical asymmetry term
to control the interferometer working point, that is the intensity of the recombined beam directed to the output port that,
for various reasons, it is not null; the second one is a macroscopic term, named Schnupp Asymmetry, that is needed for
allowing the GW frequency sidebands (see Eq.3.16) to leak out at the output port.
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Figure 3.2: Left: Sinc function (blue) compared to 1/x (dashed) in the positive domain. Right:
(From left to right) Antenna Pattern of a Michelson Interferometer in the +, ×, and generic

polarization cases [15].

in Eq.3.4, it is shown how the intensity of the recombined beam in a Michelson Interferometer is
modulated by the passage of a Gravitational Wave:

IOut = E2
0 sin

2(∆ϕ0 +∆ϕgw). (3.14)

Specifically, the ideal interferometer arm length for detecting a Gravitational Wave of given frequency
can be explicitely computed by maximising the GW induced phase in the recombined beam ∆ϕgw,
giving the following result result (fgw = ωgw/2π):

L ≈ 750 km
(100Hz

fgw

)
(3.15)

It can also be noted that, extending the computation to a generic arm and analyzing the result with the
complex field notation, the following expression at first order in h0 for the amplitude of the recombined
beam that is directed toward the output port is obtained:

EOut1 =
E0

2
e−iωl

(
t− 2L

c

)
e+iωl

L
c
h+

(
t−L

c

)
sinc

(
ωgwL

c

)
≈

≈E0

2
e−iωl

(
t− 2L

c

)(
1 + iωl

L

c
sinc

(ωgwL

c

)ei(ωgwt+α) + e−i(ωgwt+α)

2

)
=

=
E0

2
e2iα

(
e−iωlt + βe−iαe−i(ωl−ωgw)t + βe−iαe−i(ωl+ωgw)t

) (3.16)

where α = −ωgwL/c is the generic flat-metric halftrip phase and β which contains the gravitational
wave amplitude. Then, Eq.3.16 shows that the passage of a Gravitational Wave has the effect of gen-
erating two symmetrical frequency sidebands in the output beam that are spaced by a frequency ωgw

from the carrier laser frequency ωl.
By instead considering the general case of a Gravitational Wave that is generated by a source located
at a θ zenith angle and ϕ azimuthal angle respect to the detector plane:

h(t) =
1

2

(
1 + cos2(θ)

)
cos(2ϕ)h+(t) + cos(θ) sin(2ϕ)h×(t), (3.17)

the complete antenna pattern of a Michelson Interferometer is obtained. An illustration of the antenna
pattern of a Michelson Interferometer in the case of a +-polarized and ×-polarized Gravitational
Wave, along with a generically polarized GW, is shown in Fig.3.2, where color indicates increasing
sensitivity from indigo to red.
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3.2 Real Gravitational Wave Interferometers
In Sec.3.1 it was carried out a discussion on the effect of a Gravitational Wave on a basic Michelson
Interferometer and in Eq.3.15 the optimal arm length for detecting a Gravitational Wave of given
frequency has been computed. A plot representing the frequency ranges in wich various GW source
types are expected to be emitting and the correspondent ranges in wich various detecting methods
peak their sensitivity2 is shown in Fig.3.3. The current generation of ground-based interferometers
are sensible to Gravitational Waves in the acoustic band, generated by Black Holes Binaries, Neutron
Star Binaries Mergers and by Stellar Supernovae.

Figure 3.3: Expected Gravitational Wave Spectrum of main sources and detection methods [16].

The required arm length to optimize the detection of [10 − 100]Hz Gravitational Waves obtained
from Eq.3.15 is L ≈ 103 km. This is in apparent contradiction with the fact presented in Sec.1 that
the LIGO and VIRGO interferometers have an arm length of 4 km and 3 km respectively. In fact
the current generation of interferometers has already approached the limit length for a ground-based
interferometer and even with the technological advancements that will be implemented in the next

2The only method that, at the time of writing, has been succesful in detecting Gravitational Waves is the one of ground-
based Interferometers. The LISA mission is a (proposed) 2.5 million km arm triangular space interferometer that aims at
detecting GW emitted in the processes related to Supermassive Black Holes in the sub-Hz band and its launch is planned
for 2034 [17]. In order to detect sub-µHz GWs associated with Supermassive Black Holes it is instead proposed the
Pulsar timing method, that attemps to detect anomalies in the extremely stable pulsar spinning periods as a consequence
of the passage of a GW between Earth and the neutron star [18]. GWs are expected to be produced also by Quantum
Fluctuations during the Cosmic Inflation period and their effect should be detectable analyzing the polarization of the
Cosmic Microwave Background radiation [19].
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generation of Earth-bound detectors, the arm lengths of the instrument will not exceed the 10 km
order of magnitude.
The conflict is resolved if one analyzes a realistic model for a ground-based GW interferometer, that
makes use of several optical cavities to effectively increase the storage time of a photon inside the arms,
while the initial estimate presented in Sec.3.1 refers to the simple Michelson Interferometer case.
An optical cavity is an arrangment of mirrors that allows for a closed path for a light beam. The photon
is trapped between two or more mirrors for a certain amount of time of reflections (on average) before
being eventually transmitted through one of the mirrors, thus increasing the beam optical path inside
the interferometer arm.
As said, several types of cavities are implemented in a single ground-based interferometer, each one
of which has its own peculiarities and specific aims. The most important cavities that are present
in the current generation of GW interferometers are Fabry-Perot Cavities, that fold the beam path
multiple times inside the interferometer arms, the Power Recycling Cavity, that reconveys the light
that is leaking toward the input port back into the interferometer arms, the Input and Output Mode
Cleaner Cavities, that exploit the narrow bandpass filtering property of resonant cavities to reject the
unwanted normal modes that are present in the beam, and the Signal Extraction Cavity, that is tuned to
enhance GW sidebands to improve the instrument sensitivity in a desired frequency range. A scheme
showing the arrangement of the various cavities inside a GW interferometer can be seen in Fig.3.4.

Figure 3.4: Advanced VIRGO optical configuration. BS: beam splitter; NI,WI: input test masses;
NE,WE: end test masses; SRM: signal reciclying mirror. PRM: power reciclying mirror; POP: pick-
off plate; CP: compensation plate.

A complete discussion of optical cavities requires the modelization of a laser beam with the paraxial
approximation, that allows to decompose it in a superposition of ortho-normal modes, and performing
computations of the cavity electrical field using the Circulating Field Approach [22], and it is not the
scope of this work to present it in detail. As a general result it could be noted here that the effective
increase of the optical path length thanks to the implementation of an optical cavity is quantified by
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the average number of reflections to which the photon is subject before being transmitted out of the
cavity N . The average number of reflections is in turn proportional to the cavity Finesse F, defined
by the following equation:

F ≡
π
√
r1r2

1− r1r2
(3.18)

where r1 and r2 are the reflection coefficients of the two mirrors of a Fabry-Perot cavity. The two
quantities are related by the proportionality N ∼ 2F/π, so that for a Michelson interferometer with
Fabry-Perot cavities there is an increase in the phase shift induced by the passage of a Gravitational
Wave:

∆ϕFP ≈ 2F

π
∆ϕMich ≈ 4F

π
h0klL. (3.19)

Anyway the choice of the Fabry-Perot cavities Finesse in a GW interferometer is not solely dictated
by detection frequency optimization based on source predicted properties but several other technical
aspects must be considered in the design.
When developing in full detail the computations of the interaction between the cavities and the Grav-
itational Wave, the transfer function of a Fabry-Perot Interferometer is obtained [13]:

TFP (fgw) =
8FL

λl

1√
1 + (fgw/fp)2

(3.20)

where fp ≡ 1
4πτs

is the Cavity Pole Frequency with τs =
2L
c

1
1−r21

is the Cavity Storage Time.
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3.3 Limits to the sensitivity of gravitational wave detectors
Since the deformation induced by a gravitational wave on an interferometer is very small, in the inter-
ferometric detection it is of vital importance to minimize all the noises that can pollute the signal to
analyze. Some are due to the environment (seismic noise, gusts of wind, temperature of the mirrors),
others to the design of the interferometer and others are related to fundamental physics. Each noise
source is peaked in a specific frequency range.The sum of all the input-refered noise contribution pro-
vide the complete Noise Power Spectrum of the detector (Fig.3.5).

Figure 3.5: Design Sensitivity of the AdV detector [21].

3.3.1 Quantum Noise
The limit to the sensitivity of the interferometer deriving from the quantum nature of light is manifested
through two mechanisms: photon quantization noise and quantum radiation pressure noise. Both are
attributable to the quantum fluctuations of the vacuum electromagnetic field that enter the interferom-
eter from the so-called dark port of the beam splitter, the point at which destructive interference from
recombined beams is observed.

3.3.2 Shot noise
Laser light is composed of discrete quanta, photons, that indipentently interact with the readout pho-
todetector after having travelled in the interferometer. The photodetector acts as an integrator of the
energy E = ℏωl/c that each photon deposit on it in a certain time period T , so that the average output
power measured at the photodetector is:

P0 =
Nγℏωl

T
(3.21)
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where Nγ is the number of photons that interacted with the photodetector in the time interval T . The
probability distribution of the process of counting discrete indepentent events, such as photon arrivals
at the output port, is known to be the Poisson Distribution:

p(Nγ, N̄γ) =
1

Nγ!
N̄γ

Nγe−N̄γ (3.22)

where N̄γ is the average number of photons that are expected to reach the photodiode during T . For
large N̄γ the Poisson Distribution becomes a Gaussian Distribution with σ =

√
N̄γ . Therefore the

photon arrival process in a given time interval has a fluctuation∆Nγ =
√

Nγ that eventually translates
in a power fluctuation at the photodiode:

(∆P )shot =
N

1/2
γ ℏωl

T
=

(ℏωl

T
P0

)1/2

. (3.23)

What was found in the above equation is just the standard deviation of output power fluctuations
(∆P )shot = σP, shot, wich can be expressed by definition with the integral of the Spectral Density
of power fluctuations over all the frequency domain delimited by the time interval T :

(∆P )shot = σP, shot =

∫ 1
T

0

dω SP, shot(ω). (3.24)

Putting together Eq.3.23 and Eq.3.24 the Spectral Density of Output Power Fluctuation caused by Shot
Noise SP, shot(ω) = P0ℏωl is obtained, so that, as the detector output is proportional to P0, the Relative
Output Noise due to Shot Noise becomes:

S
1/2
∆ϕ, shot(ω) =

SP, shot(ω)

P0

=

√
ℏωl

P0

. (3.25)

In order to compare this output noise with the Strain h of a Gravitational Wave of frequency fgw that is
interacting with the interferometer, it is necessary to refer it to the detector input. That is, the Spectral
Density of the Output Noise S

1/2
∆ϕ, shot(ω) must be multiplied by the inverse of the transfer function of

a Fabry-Perot Interferometer TFP that was obtained in Eq.3.20. By accounting also for the fact that in
a real GW interferometer Power Recycling Cavities are implemented to increase the circulating power
inside Fabry-Perot Cavities and the not ideal efficiency of the photodiode, the interferometrical Strain
Sensitivity due to Shot Noise can be expressed as:

S
1/2
h, shot(f) =

S
1/2
∆ϕ, shot(f)

TFP (f)
=

1

8FL

√
4πℏλlc

ηPbs

√
1 +

( f

fp

)2

(3.26)

where Pbs ≡ CP0 accounts for the power enahancement at the beam splitter due to the Power Recy-
cling Cavity (C = O(50− 100)) and η is the photodiode efficiency (η ≈ 0.9− 0.95).

3.3.3 Radiation pressure
Photons posses a momentum that is proportional to their frequency: p = ℏωl/c. This implies that
for each laser beam photon that collides with a test mass surface the exchange of momentum can be
modeled as an inelastic scattering, so that for a laser beam of power P0 the average force that is acting
on the test mass surface is:

F0 =
2P0

c
=

2Nγℏωl

Tc2
. (3.27)
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Following an analogous reasoning to the Shot Noise paragraph, this force on the mirror surface exhibits
Poissonian fluctuations around its average value due to the quantized nature of the light beam, the
Spectral Density of which can be estimated as:

S
1/2
F, rad = 2

√
2ℏωlP0

c2
. (3.28)

The mirror that acts as a target for the beam is actually free to move in the horizontal plane, so that the
the fluctuating force result in a mirror displacement F = Mẍ, where M is the mirror mass. Taking the
Fourier Transform of the force F̃ (f) = −M(2πf)2x̃, the Spectral Density of the mirror displacement
immediately follows:

S
1/2
x, rad(f) =

2

M(2πf)2

√
2ℏωlP0

c2
. (3.29)

This fluctuating mirror displacement results in a fluctuation of the output signal that must adequately
referred to the input in order to be compared with the Gravitational Wave Strain. To transform the
mirror displacement into a phase shift fluctuation at the output port one must use the Fabry Perot
Interferometer Transfer Function TFP of Eq.3.20, but the following input referincing operation that
must be performed on the output phase shift eliminates the TFP dependency from the final Radiation
Pressure Strain Sensitivity. However, as each photon performs O(N ≈ 2F

π
) bounces between the

cavity mirror, it results that the power inside the cavity is larger by a factor O(N) than the power Pbs

at the beam-splitter. In fact it can be more rigorously shown that [13]:

Pcav ≈
2F

π
Pbs. (3.30)

Therefore a power fluctuation ∆Pbs at the input mirror gets amplified by the same factor inside the
cavity ∆Pcav = ∆Pbs(2F/π).
Nevertheless there are a few more caveats that must be considered in order to correctly refer the mirror
displacement to the input. The photons that arrive at the beam-splitter are randomly scattered into one
of the two arms. As a consequence, the photon distributions in the two arms are two anti-correlated
Poissonian distributions. As the interferometer is sensitive to changes in the differential length of the
two arms, the contributions due to Radiation Pressure in the two arms adds up, so that the final Strain
Sensitivity due to Radiation Pressure must be multiplied by a factor of 2. It can also be shown [13]
that, if the mirror vibrates at a frequency f, the cavity is displaced off resonance, and the power inside
the cavity is reduced by a factor [1 + (f/fp)

2]. Then, the Strain Sensitivity due to Radiation Pressure
results:

S
1/2
h, rad(f) =

16
√
2F

ML(2πf)2

√
ℏPbs

2πλlc

1√
1 + (f/fp)2

. (3.31)

The two Shot Noise and Radiation Pressure contribution quadratically add up to give the total Quan-
tum Noise, also called Optical Readout Noise (Fig.3.6). Shot Noise is the main limiting factor for
the interferometer sensitivity at high frequencies while Radiation Pressure Noise becomes relevant at
lower frequencies. Moreover, it can be noted that the two noise contibutions have different dependen-
cies on the circulating power inside the interferometer arms:

S
1/2
h, shot ∝

1√
Pbs

; S
1/2
h, rad ∝

√
Pbs. (3.32)

What this relations are saying is that, when choosing the circulating power in the design phase of
the interferometer, one cannot reduce an Optical Readout Noise contribution without increasing the
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Figure 3.6: Left: Shot Noise (Red) and Radiation Pressure Noise (Green) contributions to Optical
Readout Noise (Blue); Right: Standard Quantum Limit and power optimization.

other, so that a circulating power optimization process is needed to find the value that minimizes the
sum of the two contributions in the frequency region of intrest. This in fact shows the remarkable
fact that a (macroscopic) Gravitational Wave Interferometer aims at such an extreme accuracy in the
determination of its mirror positions that its sensitivity is limited by Heisemberg Uncertainty Principle.
The GW interferometer is a quantum system in which the test mass position is measured with the use
of quantum particles, photons, which cause a recoil on the test mass that disturbs the measure itself.
Then, upon defining:

f0 =
8F

2π

√
Pbs

πλlcM
(3.33)

the Spectral Density of the Optical Readout Noise can be written as:

S
1/2
h, opt(f) =

(
Sh, shot(f) + Sh, rad(f)

)1/2
=

1

Lπf0

√
ℏ
M

[(
1 +

f 2

f 2
p

)
+

f 4
0

f 4

1

1 + f 2/f 2
p

]1/2
. (3.34)

For a given value of f , the Optical Readout Noise Spectral Density S
1/2
h, opt can be minimized with

respect to f0
3. The optimal value of f0 is the one that makes equal the Shot Noise and Radiation

Pressure Noise contributions, and is given by:

f̄0 = f
(
1 +

f 2

f 2
p

)1/2

. (3.35)

The corresponding set of optimal S1/2
h, opt(f) values defines the Standard Quantum Limit (SQL):

S
1/2
h, SQL(f) =

1

2πfL

√
8ℏ
M

. (3.36)

The Standard Quantum Limit S1/2
h, SQL(f) (Fig.3.6) represents the minimum noise spectral density

which can be obtained, as long as only Optical Readout Noise is concerned, at a given value of f
in a Gravitational Wave Interferometer. Hence, as it is the value of f0 that gets experimentally opti-
mized by a change of the circulating power keeping fixed the value of f , in a GW Interferometer the
Standard Quantum Limit Sensitivity can be reached at best only at a specific frequency.

3That is, it can be minimized with respect to the circulating power inside the interferometer arms, as f0 ∝ F,
√
Pbs.
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3.3.4 Thermal Noise
Thermal noise in test masses and suspension systems is the current limiting factor for the sensitivity
of second generation ground-based interferometer at frequencies below 200Hz4. Thermal noise in the
suspension systems primarily arises from losses in the fused silica fibers that hang the test mass to the
attenuator structure. This contribution needs to be numerically computed with finite-elements models
that include bulk, surface and thermoelastic components of the fibre material and that account for the
specific noise-reducing fibre shape. Thermal noise in test masses on the other hand can be adequately
studied using analytical models.

There are two fundamental origins of thermal noise in optical components. The first is the standard
Brownian Noise, due to the thermal energy of the jittering atoms of the test mass that causes a ther-
mally driven fluctuation of the reflective surface of the element. Thermal energy kbT is present as the
component is operated finite temperature T.
The second component is a less intuitive form of thermal noise that arises from temperature fluctua-
tions. The local microscopic temperature of a component is not a constant value but fluctuates around
an average temperature T . Due to the fact that many material properties, like the coefficient of ther-
mal expansionα or the refractive index n, are temperature dependent, temperature fluctuations induces
phase and position fluctuations. The process that is associated with α is called Thermo-Elastic Noise
whereas other processes are referred to as Thermo-Refractive Noise or Thermo-Optic Noise.

Brownian Thermal Noise Brownian Noise of the Bulk Material of the interferometer mirrors can
be calculated by direct application of the Fluctuation-Dissipation (FD) Theorem. In a Gravitational
Wave Interferometer a laser beam is shining on the surface of the cylindrical test masses. The light
reflected by the mirrors acquires a phase shift that contains information about the displacement of the
test mass surface. Brownian Thermal Noise induces vibrations in the test mass rest position x(t) in the
horizontal plane that gets eventually converted in a phase shift at the output port. Then the first thing
to be done in order to analyze Brownian Thermal Noise in bulk material is to find the Spectral Density
S
1/2
x,Bulk(f) of its induced fluctuations in x(t). Throughout the derivation is assumed that the mirror

surface is infinite in size, so that the boundary effects of the beam-test mass interaction are negligible,
and that the test mass is in thermal equilibrium at temperature T .
In its most general form the Fluctuation-Dissipation Theorem states that the Thermal Noise Spectral
Density of a generic readout variable is given by [23]:

S1/2
x (f) =

kbT

π2f 2

∣∣Re[Z(f)]∣∣ (3.37)

where kb is Boltzman’s constant. The complex impedance Z(t) can be computed by applying a gen-
eralized force F (t) to the test mass that will generate a consequent time evolution of the observable
variable x(t). By denoting with F (f) and x(f) the Fourier Transforms of the driving force and the
readout variable respectively, the Fourier Transform of the complex impedance Z(f) is expressed as:

Z(f) = 2πif
x(f)

F (f)
. (3.38)

In the case of thermal noise in the Gaussian Beam-Test Mass system, the arbitrary driving force can be
modelled with an oscillating force which intensity is gaussianly distributed across the mirror surface.
This will result in an oscillating pressure acting on the mirror surface:

P (r̄, t) = F0 cos(2πf t)f(r̄) (3.39)
4There are also other technical noises sources, such as seismic noise, that significantly contribute to the overall noise

in the sub-200Hz region, but they will not be examined in detail in this work.
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where f(r̄) = 1
πr20

e−r2/r20 is the gaussian intensity profile. This oscillating driving force will conse-
quently feed a dissipated power Wdiss in the test mass due to internal frictions. Then it can be shown
[24] that for the above configuration the real part of the Fourier Transform of the system complex
impedance is given by: ∣∣Re[Z(f)]∣∣ = 2Wdiss

F 2
0

. (3.40)

Inserting Eq.3.40 in the FD Theorem 3.37, the following relation is obtained:

S1/2
x (f) =

2kbT

π2f 2

Wdiss

F 2
0

. (3.41)

Then, assuming homogeneous dissipation, the Wdiss power that is absorbed by the mirror can be ex-
pressed as:

Wdiss = 2πfUmaxϕ
Bulk(f). (3.42)

In the above equation ϕBulk(f) is the Mechanical Loss Angle of the mirror material, while Umax is the
elastic deformation energy in the instant when the test mass is maximally contracted or extended under
the action of the oscillatory pressure 3.39. Then, under the above assumptions, an explicit expression
for Umax can be derived for the Gaussian Beam-Test Mass system ([24], [25]):

Umax ≈ F 2
0 (1− ν)

2π1/2Ysr0
(3.43)

where ν and Ys are the Poisson’s Ratio and the Young’s Modulus of the material respectively. Eq.3.43
is valid up to first order corrections O(r0/R), where r0 is the Gaussian Beam Radius and R the Char-
acteristic Size of the cylindrical Test Mass. Substituting Eq.3.42 and Eq.3.43 back into Eq.3.41, it is
finally obtained an expression for the Mirror Displacement Spectrum of Brownian Thermal Noise in
the Test Mass Bulk Material:

S
1/2
x,Bulk(f, T ) = 2kbT

1− ν

π3/2fYsr0
ϕBulk. (3.44)

Figure 3.7: Comparison of the Brownian and Thermo-Elastic noise at room temperature (300K) for
various Advanced Detectors Test Masses candidate materials (Fused Silica, Sapphire, Silicon).

Similar to Brownian Thermal Noise in the bulk materials of the test mass, the coatings also show
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Brownian thermal noise. An analogous computation can be perform to extract the Mirror Displace-
ment Spectrum of Brownian Thermal Noise in Coatings [25]:

S
1/2
x,Coat(f, T ) = 2kbT

1− ν

π3/2fYsr0
ϕCoat
eff . (3.45)

In the above equation ν and Ys still refer to Poisson’s Ratio and Young’s Modulus of the bulk material,
while ϕCoat

eff is an effective Loss Angle for the Coating Stack of Dielectric Materials, the final form of
which has a detailed expression that needs further assumptions and computations to be obtained5 [26].

In order to properly compare the Brownian Thermal Noise displacement spectra obtained in Eq.3.44
and Eq.3.45 with Gravitational Wave Strain h, they must be refered to the input. This can be easily
made by remembering that the effect of a Gravitational Wave on the length L of a Fabry-Perot Cavity is
to change it by the amount ∆L = hL. This implies that, in order to input refer the mirror displacement
induced by Thermal Noise, it must be divided by the cavity length L so that the effect is equivalent to
a Gravitational Wave of strain h. As opposed to Quantum Noise, the Finesse of the cavity does not
enter here in the input referring operation, as both GW and Thermal Noise effects get amplified by the
same factor O(N) inside the cavity.
Then, the Strain Spectral Density of Brownian Noise in Bulk Materials and Coatings, is simply given
by:

S
1/2
h,Bulk(f, T ) =

2kbT

L

1− ν

π3/2fYsr0
ϕBulk; (3.46)

S
1/2
h,Coat(f, T ) =

2kbT

L

1− ν

π3/2fYsr0
ϕCoat
eff . (3.47)

Thermo-Elastic Noise Thermo-Elastic Noise of the Bulk Material arises from stochastic temper-
ature fluctuations that are translated into displacement noise by means of the coefficient of thermal
expansion α. Its contribution to the total Thermal Noise can be computed by applying the Fluctuation-
Dissipation Theorem, in analogy to the Brownian Thermal Noise estimate in the previous paragraph.
The estimate of the complex impeadance requires lengthier computations in this case, as it must be
derived by solving the system of the thermal conductivity and strain-displacement equations for the
mirror [27], assuming that the only dissipation mechanism in the mirror is thermo-elastic damping

5For completeness, it can be shown the result obtained in [26] for the effective Coating Loss Angle, which is valid for
small Poisson’s Ratio of the coating materials:

ϕCoat
eff =

t√
πr0

( Ys

Y⊥
ϕ⊥ +

Y∥

Ys
ϕ∥

)
where t is the total thickness of the coating layer. The effective Young’s Moduli Y⊥, Y∥ and Loss Angles ϕ⊥, ϕ∥ in the
above expression are defined in terms of the coating materials Young Moduli Yi, Loss Angles ϕi and thicknesses ti (i = 1, 2
indicates the different coating layer materials) as:

Y⊥ =
t1 + t2
t1
Y1

+ t2
Y2

,

Y∥ =
Y1t1 + Y2t2

t1 + t2
,

ϕ⊥ =
Y⊥

t1 + t2

( t1
Y1

ϕ1 +
t2
Y2

ϕ2

)
,

ϕ∥ =
Y1t1ϕ1 + Y2t2ϕ2

Y∥(t1 + t2)
.
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and approximating the mirror as an half space. Refering to [28] for detailed computations, the dis-
placement spectrum of Thermo-Elastic Noise in Bulk Materials is given by:

S
1/2
TE, bulk(f, T ) =

8√
2π

α2(1 + ν)2
kbT

2κ

ρ2c2pf
2r20

(3.48)

where ρ,κ and cp are the density, thermal conductivity and specific heat capacity of the material re-
spectively. The above equation is valid in the ’adiabatic’ regime, that is if the thermal diffusion lenght
of the material lth is smaller than the beam diameter r0. The thermal diffusion length of is defined as:

lth =

√
a2

f
=

√
κ

ρcpf
< r0. (3.49)

Outside of the adiabatic regime the thermo-elastic effect gets weaker. This is because the adiabatic
condition 3.49 corresponds to the requirement that, during one period of oscillation, all temperature
fluctuations that are present at the observation volume stay inside this volume. Then, if thermal con-
ductivity is increased or lower frequencies are considered, lth gets larger and the temperature fluctua-
tions are averaged out faster.
The non-adiabatic regime correction becomes important for low temperature applications, as most
optical materials exhibit a peak in the thermal conductivity at cryogenic temperatures. A detailed cal-
culation can be performed to estimate the displacement noise for Thermo-Elastic Noise incorporating
the non-adiabatic case [29], that can be expressed as:

S
1/2
TE, bulk(f, T ) =

8√
2π

α2(1 + ν)2
kbT

2r0
κ

J [Ω] (3.50)

where J [Ω] is a function of the dimensionless variable Ω = ω/ωc that quantifies the relative frequency
compared to the adiabatic limit frequency ωc = a2/r20:

J [Ω] =

√
2

π3

∫ ∞

0

du

∫ ∞

−∞
dv

u3e−u2/2

(u2 + v2)
(
(u2 + v2)2 + Ω2

) (3.51)

3.3.5 Other Noises
Despite the fact that the noise sources that were analyzed in the previous sections are the dominant
contribution across all the operating frequency range of currently operating interferometers, there are
other noise sources that contribute to the general noise budget of the detector. In fact these alternative
noise contribution are not secondary as they have a significant indirect effect on the overall noise bud-
get, as the effort to minimize them eventually reflects in a Thermal Noise increase or in a financial cost
increase that subtracts precious resources to major noise contributions suppression. Detailed evalua-
tion of all noise sources is crucial during the design phase of an interferometer and in the case of new
generation detectors it will be even more important to extensively account for all possible contributions.

Seismic Noise Earth’s ground is in perpetual motion, with an average vibration amplitude ofO(10−6m).
There are different causes of different nature that contribute to this continual vibration. In the 1−10Hz
region Cultural Noise, that is ground vibration caused by human activities and infrastructures such as
road and train traffic, and wind noise are the main contibutions. This adds up to the micro-seismic
background that affect GW Interferometers in the form of surface waves that ultimately shake test
masses.
The amplitude of the Seismic Noise vibration are more than ten orders of magnitude larger than the
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mirror displacemnt values that a GW interferometer aims to detect, so that there is need for a dedicate
suspension system that is able to decouple the test masses from surrounding oscillations. A typical
suspension chain is obtained cascading a set of passive mechanical filters providing a suited attenua-
tion from seismic and acoustic noise above a certain cut-off frequency. Below this frequency value an
active feed-back control strategy is developed by using sensors and actuators disseminated along the
suspension chain and keeping the interferometer at its working point via feedback systems.

In the VIRGO interferometer, the upper part of the suspension chain is called SuperAttenuator

Figure 3.8: Scheme of VIRGO’s SuperAttenuator.

(Fig.3.8) and it is essentially a N-stage pendulum supported by a three-leg elastic structure, called
Inverted Pendulum. In an N-stage pendulum, at much higher frequencies than its normal modes, the
horizontal displacement of the suspension point is transmitted to the last stage with an attenuation
proportional to f−2N . This exponential attenuation factor allows to reach the desired seismic noise
suppression level in second generation interferometers with a 5-stage pendulum.
The Optical Payload is intead the last suspension stage and it is designed to couple the test mass to
the SA chain, as well as steering the mirror through internal forces exerted from the last Superatten-
uator element to compensate the residual Seismic Noise at lower frequencies. This end structure is
formed by two active components, the Marionette that is used to control the mirror position by means
of coil-magnet actuators acting between the last stage upper part suspension and the marionette arms
itself, and the Recoil Mass that is used to protect and steer the mirror. Particular attention has to be
focused on the mechanical elements which connect the mirror to the last suspension stage as they can
easily degrade the intrinsic mechanical losses of the system. In order to suppress mechanical losses
that happen at interfaces of different materials, the test mass-suspension wire system in the advanced
second generation detector is made from a monolithic element of fused silica.

Newtonian Noise Stochastic fluctuations of the local gravitational field are usually referred to as
Newtonian Noise or Gravity Gradient Noise. Local variations in the gravitational field result in a new-
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tonian force acting on the test masses, in analogy to the ones exerted by Gravitational Wave pertur-
bations. The most important Newtonian Noise contribution comes from micro-seismic noise, which
produces mass density fluctuations, and consequently gravitational field fluctuations, in the Earth’s
ground that surround the detector. Modern GW interferometers are so sensitive that even the changing
gravitational attraction of water clouds due to atmospheric turbulences gives a non negligible contri-
bution to Newtonian Noise.
Gravity Gradient Noise is the most fundamental type of noise, in the sense that there is no way to
shield it. There are different available strategies that can be employed to mitigate the impact of Grav-
ity Gradient Noise. An active strategy consists in deploying a network of sensors to measure ground
displacement and atmospheric pressure variations so that their effect on the mirrors can be modelled
and subtracted from Gravitational Wave signals. A passive strategy for minimizing Newtonian Noise
consists instead in building the interferometer in an underground site to reduce the impact of atmo-
spheric perturbations and superficial seismic waves, as it was done for the Large Scale Cryogenic
Gravitational Wave Telescope (LCGT) located in the Kamioka mine, Japan.

Scattering and n Noise Ambient pressure air exhibits refraction index n fluctuations. Fluctuations
in air density induce fluctuations of n which generate phase fluctuations as the speed of light is c/n
. To minimize the n fluctuations induced noise the light beam in Advanced Gravitational Wave inter-
ferometers travels inside an ultra-high vacuum pipe, with pressure of O(10−9mbar)6. Moreover, the
residual gas must be free of condensable organic molecules, in order to keep the optical surfaces clean.
Also scattered light inside the arms constitutes a relevant noise source in GW interferometers, as it can
interact with the pipe walls, thereby getting modulated by its seismic noise, and then get rediffused
back in the beam by reflection on a mirror. As a consequence, diffusion of circulating light inside the
Fabry-Perot cavities must be kept below few parts per million. For this purpose, cavity mirrors are
polished to a 0.5Å rms micro-roughness over a diameter of O(20 cm).

6The vacuum pipes enclose all the interferometer arm, so that they are 3−4 km in lenght and around 1.2m in diameter
in order to contain the diffraction-limited laser beam. This results in a total volume of about 9000m3, that is larger than
the LEP particle accelerator at CERN. Pumping such a huge volume to ultra-high vacuum pressure constitutes not only a
technological challenge but also a source of issues and delays in case of incidents inside the arms.



Chapter 4

The Einstein Telescope

The second generation of Gravitational Wave Interferometers has succeded in the first detection of
a Gravitational Wave Signal in 2015 and in the last few years, thanks to periodical improvements in
the detector set-ups and readout systems, the frequency of the claims of new GW signals constantly
increased, bringing the total number of confirmed event detections up to fifty. Despite the huge impor-
tance of this achievement, that ultimately led to the assignment of the 2017 Nobel Prize in Physics to
three scientist that played a key role in the foundation of the LIGO/VIRGO Collaboration (K.Thorne,
R.Weiss, B.C. Barish), the quantity and signal-to-noise ratio of the detections made in second gener-
ation detectors is still too low for precise astronomical studies of the GW sources and for consistently
complementing optical and X–ray observations in the study of fundamental systems and processes in
the Universe. An increase of the Signal-to-Noise Ratio in the detected signal could also be crucial to
investigate over beyond General Relativity theories, as the relativistic description of compact object
mergers breaks down in the last collision and ringdown instants of the event.
Due to these considerations, starting from the late ’00s, the Gravitational Wave community started in-
vestigating a third generation of detectors with a considerably improved sensitivity that will open the
era of routine GW astronomy. The Einstein gravitational wave Telescope (ET) is an European Collab-
oration project for a third generation GW Interferometer that will aim at a sensitivity about a factor 10
better than the current advanced detectors. Research and development on the innovative technologies
that are needed to reach ET ambitious design sensitivity have slowly but steadily evolved in the last
decade and the project is now mature to receive official approval from the institutions for the start of
its construction phase. Moreover another third generation detector, the Cosmic Explorer funded by
the United States of America, is planned to support Einstein Telescope observations.
Einstein Telescope Design encompasses most of the technological features that allowed second gen-
eration interferometers to achieve the first Gravitational Wave detections but will also implement new
solutions to reduce the fundamental and technical noises that currently limit the sensitivity of advanced
LIGO and VIRGO detectors. In these last years that precede construction, research on new candidate
materials and technologies for the ET Interferometers are flourishing and this thesis work wishes to
contribute to the developement by performing an innovative optical absorption measurment in silicon
crystals at cryogenic temperatures. In order to understand why it is crucial for the next generation
interferometers to characterize the properties of optical substrate materials at cryogenic temperatures,
it is necessary to present a brief analysis of the main strategies and technological features that are in-
cluded in the Einstein Telescope design to attempt at improving second generation sensitivity over a
wide range of frequencies.

30
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Figure 4.1: Artist’s view of Einstein Telescope.

4.1 Detector Layout
In Sec.3.3 the main noise contribution that limits the sensitivities of the currently operating ground-
based detectors were discussed and their spectral densities were derived. The main feature of a second
generation dector noise budget were highlighted: thermal noise is the limiting factor for frequencies
below 100 − 200Hz while quantum noise becomes the dominant contribution at higher frequencies.
Einstein Telescope aims at improving second generation performances over the entire detection fre-
quency band from few Hz to 10 kHz, so that it is needed to adress both the main limiting noise contri-
butions in a single detector.
In order to find a strategy to achieve this wideband sensitivity improvement, it is useful to recall the
Brownian Thermal Noise and Shot Noise spectral density that were derived in Eq.3.26 and Eq.3.46:

S
1/2
h, brown(f) =

2kbT

L

1− ν

π3/2fYsr0
ϕ;

S
1/2
h, shot(f) =

1

8FL

√
4πℏλlc

ηPbs

√
1 +

( f

fp

)2

.

(4.1)

In the above expressions it is manifest that the most intuitive approach to reduce both noise contribu-
tions is to elongate the interferometer arms (S1/2

h, brown, S
1/2
h, shot ∝ L−1). This strategy will be followed

in Einstein Teslescope interferometers, as their arms are planned to be 10 km in length. This design
arm length is in fact close to the maximum achievable arm length for a ground-based interferometer,
considering in particular that the third generation of Gravitational Wave interferometers will be built
in underground sites to reduce Newtonian Noise1.
If one then desires to further reduce shot noise, the only viable strategy is to increase the circulating
power inside the interferometer arms, either by increasing the input power at the beam splitter or the
cavity Finesse (S1/2

h, shot ∝ F−1, P
−1/2
bs ). This is however detrimental for the Brownian Thermal Noise

1The arm length limiting factor is not so much the technological aspect of managing a very long armed interferometer,
but rather the economical cost that comes from building and operating an underground facility of such dimensions.
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contribution because raising the circulating power inside the Fabry-Perot Cavities would increase the
temperature of the mirrors (S1/2

h, brown ∝ T ). One could think of preventing this problem by enlarging
the section of the mirror suspensions so to have a better evacuation of the excess absorbed power, but
this would in turn increase the Suspension Thermal Noise, that is the actual limiting factor for the
detector sensitivity below 10Hz, besides spoiling Seismic Isolation. Hence there are no other efficient
strategies that allows to tackle both Thermal Noise and Shot Noise in a single interferometer than
increasing the arm length. For this reason Einstein Telescope follows a different approach respect to
second generation GW interferometers, that is to build a pair of parallel interferometers, one of which
can be optimized for low frequency detection (2−40Hz) while the second can be independently tuned
for higher frequencies observation.

Figure 4.2: The final Xylophone Configuration for Einstein Telescope.

The final construction stage of the Einstein Telescope will consist of three nested detectors, each one
formed by an aligned pair of dual-recycled Michelson Interferometers with Fabry-Perot Cavities, ar-
ranged in a triangular configuration (Xylophone Configuration), as shown in Fig.4.2. It can be shown
that the sensitivity of a triangular configuration is comparable to the one of a right-angled interferom-
eter with same construction parmeters, while offering a more isotropic antenna pattern [30].
The interferometers will be built in an underground location (100 − 200m below surface) to mini-
mize Seismic and Newtonian Noise contributions that would spoil detector sensitivity at frequencies
below 10Hz. Research is ongoing to find a site in Europe that offers an high level of geologic and
seismologic stability, while possibly presenting an already existing infrastructure to cut costs and time
on tunnel and shaft construction. In order to isolate test masses from ground seismic vibrations and
local disturbances, each one of them will be hanged to a suspension system with similar structure to
the ones employed in second generation interferometers.

4.2 Detector Noise Budget
The design sensitivity for a single pair of High Frequency and Low Frequency interferometers of the
Einstein Telescope detector is shown in Fig.4.3, together with the detailed noise budget for both HF
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and LF detectors. Different strategies are employed in the two HF and LF interferometers to adress
the dominant noise contributions in each frequency range of intrest.

Figure 4.3: Design Sensitivity for the Low Frequency (a), High Frequency (b) and LF-HF sum (c)
detectors of Einstein Telescope [31].

Quantum Shot Noise will be the main limiting factor for the High Frequency detector at frequencies
above 200Hz. As shown in the expression for the Shot Noise Spectral Density that was obtained in the
previous chapter (Eq.3.26), for minimizing it the circulating power in the interferometer arms needs to
be increased as much as possible. Design specifications aim at operating the HF interferometer with
a light power of O(106W) inside the Fabry-Perot Cavities2. As a consequence the HF interferometer
must be operated at room temperature, since material and coating technologies are not mature enough
to handle a several MegaWatt power in input to the test masses. The massive circulating power that
acts on the test masses and the high operating temperature cause the High Frequency Detector sensi-
tivity between 40Hz and 200Hz to be limited by mirror thermal noise. Another important implication
of the fact that the HF interferometer will be operated at room temperature is that all the succesful
technological solutions developed for test mass coatings and suspension systems in second generation
detectors can be directly implemented, as the input laser will be operated at usual 1064 nm wavelength
and the mirrors will be built from fused silica.
The crossover frequency of the sensitivities of the LF and HF interferometers is at about 35Hz. For
frequencies below 1.7Hz, the Low Frequency Detector sensitivity will be limited by seismic noise.

2For comparison, the maximum circulating power that is designed to be hold inside aLIGO arm cavities is 750 kW,
five times lower than the 3MW design circulating power for the High Frequency ET detector.
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In order to minimize the Seismic Noise contribution and to push its relevance at the lowest possible
frequencies, a modified version of the VIRGO SuperAttenuatur will be developed to decouple the test
masses from gruond vibration. The Modified SuperAttenuator will consist of 6 mechanical filters for
a total chain height of 17m, compared to the 9m with 5 filters configuration of the VIRGO suspen-
sion system. Newtonian Noise limits the LF detector sensitivity in the [1.7− 6] Hz frquency range.
As already discussed in Sec.3.3, the only possible approach to Newtonian Noise mitigation is post-
processing subtraction. To this purpose a set of displacement sensors will be placed all around the
interferometers arms to monitor for ground mass displacement of seismic origin, in the hope that it
will be possible to correlate the independently recorder ground displacement with mirror displace-
ment detected by the interferometer. The Gravity Gradient Noise subtraction strategy for ET is still
undeveloped at the time of writing, so that the curves shown in Fig.4.3 show a conservative estimate
for the NN contribution. After the sensor array for Newtonian Noise subtractiobn will be completed,
Suspension Thermal Noise will become the limiting factor in the [1.7− 6] Hz frequency band. Ulti-
mately, Quantum Noise will be the limiting factor also in the Low Frequency Detector, at frequencies
above 6Hz.
Quantum Noise will limit the sensitivities of both LF and HF detectors of Einstein Telescope, either
in the form of Shot Noise or Radiation Pressure Noise. Apart from the conventional Quantum Noise
minimization strategies such as the sharp circulating power increase inside the HF Fabry-Perot cavi-
ties, that are capable of decreasing a single QN contribution at the expense of an increase in the second
contribution, a broadband Quantum Noise reduction can be obtained with the injection of squeezed
states of light with a frequency-dependent squeezing angle into the output port of the interferome-
ter [34]. An electro-magnetic field is in a squeezed state if the quantum uncertainty of one of its
quadrature is smaller than the one of a coherent state, at the expense of a larger quantum uncertainty
associated to its conjugated quadrature, to fulfill Heisenberg’s uncertainty principle. Then the squeez-
ing angle can be oriented in a frequency dependent way so that phase fluctuation noise is reduced in
the frequency band where Shot Noise is more relevant, increasing the contribution of the irrelevant
Radiation Pressure noise due to increased amplitude fluctuations, and viceversa, thus overcoming the
Standard Quantum Limit in a wide frequency range. A frequency dependent squeezing source that is
capable of reaching at least 4 dB of broadband quantum noise reduction has been realized both in KA-
GRA and MIT ([35],[36]). An implementation of the FDS technology in all advanced interferometers
is planned for the start of the O4 acquisition run (2022/23).

4.3 Scientific Reach of the Einstein Telescope
A third generation Gravitational Wave Interferometer such as the Einstein Telescope will make it pos-
sible to observe a variety of the most extreme phenomena in the universe, providing a new tool for
expanding our knowledge of fundamental physics, cosmology and relativistic astrophysics. First of
all, Einstein Telescope pledge to detect the same type of events that were observed during the first
data-taking runs of the aLIGO and AdV detectors, but at larger distances, hence dramatically increas-
ing the detection frequency, allowing to build up a solid statistic in compact binary mergers analysis.
The new generation detector is expected to observe BNS up to a redshift of z ∼ 2, stellar-mass BBH
population at the edge of the Universe (z ∼ 15) and intermediate-mass BBH out to a typical redshift
of z ∼ 53. Moreover ET is expected to be sensitive to Gravitational Wave signals of different nature
respect to the ones already observed, such as supernovae collapse out to a distance of 1.5 × 107 ly,
within which the expected event rate is 1/ year. Other important classes of gravitational wave events
that could be detected by an instrument with a sensitivity as the one that was presented in Fig.4.3 are,
for instance, gravitational collapses associated with Gamma Ray Bursts, isolated Neutron Star GW

3For comparison, the most distant events that were identified with the aLIGO and AdV detectors are located at distances
of O(z = 0.1).
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signals or even the Primordial Gravitational Wave Background.
The following section aims at presenting the main scientific objectives of the Einstein Telescope project
and the open issues in physics that could be addressed by enhancing the range of Gravitational Wave
observations.

Figure 4.4: Astrophysical reach of the Einstein Telescope for equal-mass, nonspinning binaries
isotropically distributed in sky location and inclination, compared to one of the aLIGO and Cosmic

Explorer detectors [33].

4.3.1 Fundamental physics and strong field tests of General Relativity
Einstein Telescope will be capable of observing sources in dense enviroments of ultra-strong gravity
and will therefore provide a cosmic laboratory for understanding phenomena and matter in extreme
conditions of density, temperature, and magnetic fields. The detection of such events can potentially
answer astonishing questions in fundamental physics. Moreover, an instrument with improved sensitiv-
ity respect to the currently operating advanced detectors will give a clearer picture of BBH interaction
close to the merger phase, providing an insights into the nature of Black Holes spacetimes and of grav-
ity in ultra-strong fields.

Polarization of gravitational waves According to the theory of General Relativity, Gravitational
Waves have only two polarizations (+,×), as shown in Sec.2.1. However, in scalar-tensor theories of
gravity, such as the Brans-Dicke theory, Gravitational Waves have six physical polarizations. These
additional polarizations could cause motion of test masses longitudinal to the direction of propaga-
tion, conversely to the transverse nature of the Plus and Cross polarization effect, as well as different
oscillation patterns in the transverse plane respect to the relativistic ones. High Signal-to-Noise Ratio
events that are going to be provided by Einstein Telescope will be able to shed light on the presence
of additional polarizations in Gravitational Wave signals, eventually confirming or ruling out a whole
class of alternative theories to General Relativity.

Bounding graviton mass In Einstein’s theory gravitons, the quanta of the gravitational field, are
massless particles. As a consequence, gravitational information and radiation travel at the speed of
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light. Massive graviton theories are natural extensions to General Relativity. In such theories Grav-
itational Waves would not travel at the speed of light and this could be tested throgh multimessenger
observation of distant gravitational wave sources, by measuring the difference in the arrival times of
gravitational and electro-magnetic radiation. The major source of uncertainty in such an estimate of
the graviton mass relies in the complex nature of gravitational collapse in supernovae and coalescing
binaries which makes it difficult to accurately compute the initial retard of EM emission respect to the
GW signal.
There is indeed another method for the determination of the graviton mass that is capable of yeld-
ing more robust results. This alternative method exploits the fact that in massive graviton theories
Gravitational Waves would suffer disperson. More specifically, the graviton speed of propagation vg
will depend on its wavelength λ as vg ≈

(
1 − (λ/λg)

2
)
, where λg is the Compton wavelength of the

graviton4, so that the higher frequency band of the Gravitational Wave will arrive earlier than the lower
frequency part of the signal. The resulting distortion of the signal respect to the relativistic prediction
is proportional to the distance of the GW source respect to the observer. Then, the ability to detect
BBH mergers at the edges of the universe may prove critical for estimates of the graviton mass and
consequently for confirming or ruling out massive graviton extensions to General Relativity.
The first Gravitational Waves observations were already sufficient to put a constraint on the graviton
mass of mg ≤ 1.2× 10−22 eV [37]. This upper bound on the graviton mass will be considerably im-
proved when multimessenger observations and detection of BBH mergers at cosmological distances
will become a routine operation.

Measuring the dark energy equation of state and its variation with z Starting from the late ’90s,
evidence has emerged suggesting that the expansion of the Universe is accelerating. This evidence can
be explained by considering modifications of General Relativity at large length scales or by introducing
a new contributor to the mass/energy content of the Universe, the Dark Energy5. The time evolution of
an homogeneous and isotropic universe is described by the combination of the Friedmann Equations
and an additional Equation of State for the Dark Energy fluid that drives the accelerated expansion of
the cosmic spacetime. The Equation of State links the pressure and density of the Dark Energy fluid
and takes the general form:

pDE = ω(z)ρDE. (4.2)

The traditional model for Dark Energy is the one of an exotic negative pressure fluid (ω = −1). At
present, the most accurate constraints on the Dark Energy Equation of State parameter ω are deter-
mined combining the Planck Mission data on Cosmic Microwave Background with galactic redshift
catalogues built upon Type Ia Supernovae observations and Baryon Acoustic Oscillations measure-
ments [38]: the obtained 1σ bound ω = −1.03 ± 0.03 is compatible with the standard model for the
Dark Energy fluid.
The main source of uncertainty in the above constraint comes from the fact that galactic redshift deter-
mination currently rely on the Cosmic Distance Ladder (see Sec.4.3.3). This problem can be bypassed
with the employment of routine multimessenger observation data, obtaining more reliable measure-
ments of compact binary inspirals redshifts as a function of their luminosity distance and thus more
accurate constraints on ΛCDM parameters such as ω.

4The result is valid at first order approximation in x = (λ/λg)
2.

5The most general form of Einstein’s Field Equation 2.1 can be expressed as:

Rµν − 1

2
gµνR+ Λgµν =

8πG

c4
Tµν

where Λ is the ’Cosmological Constant’ coefficient. The Cosmological Constant has the same effect as an intrinsic energy
density of the vacuum, to which is associated a vacuum pressure governed by the vacuum fluid Equation of State.
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Testing Black Hole Theorems The physicality of Black Holes has been widely demonstrated thanks
to a large number of experimental evidences that emerged in the last fifty years. Despite the evidence
for their existence, most of the features of this extremely compact objects and of the nature of space-
time that surrounds them remains unknown.
Due to the Uniqueness theorem, which states that the Kerr metric is the unique end state of gravitational
collapse, it is generally accepted that rotating Black Holes are described by the Kerr Metric of General
Relativity (see Sec.6.6 of [14] for more details). However, the theorem is based on several assumptions,
namely that the system is stationary and axisymmetric, that there is a spacetime horizon and that there
are no closed timelike curves. If one of these assumptions were violated, then objects that deviate
from the Kerr metric could exist.
These assumptions on the nature of spacetime surrounding a Black Hole can be tested by monitoring
the dynamics of an object that transit in proximity to a BH horizon. This could be enabled by Einstein
Telescope with the detection of Intermediate-Mass-Ratio Inspirals (IMRIs), that are inspirals of a
m ∼ 1M⊙ object into a M ∼ 100M⊙ Black Hole, thanks to its enhanced sensitivity in the [1, 10] Hz
frequency band. In such an asymmetric system, many Gravitational Wave cycles are emitted while the
smaller object is in the strong field region close to the larger object, allowing to obtain information on
the spacetime structure surrounding the more massive BH. Einstein Telescope is expected to detect
IMRIs up to redshifts of ∼ 1 − 5, depending on the mass and spin of the larger Black Hole [39],
translating in an expected detection rate of tens or hundres IMRIs events per year [40].
Einstein Telescope could also allow to test the No-Hair theorem by looking at quasi-normal modes,
the superposition of damped sinusoids that constitutes the Gravitational Wave signal of an asymmetric
Black Hole evolving towards the spherical shape. Informations on quasi-normal modes are buried in
the last instants of a Gravitational Wave signal, when the merger of two compact objects has happened
and the resulting Black Hole rapidly radiates away the residual potential energy stored in its asymmetric
mass distribution, in what is known as the ringdown phase. As a consequence of the No-Hair, which
states that a Black Hole can be completely characterized by just three externally observable variables
(mass, electric charge, angular momentum), the frequencies and time-constants of the quasi-normal
modes depend only on same three observables. The No-Hair theorem could be tested by comparing the
mass and spin parameters of the final Black Hole obtained from quasi-normal modes fitting with the
same parameters inferred from the inspiral and merger dynamics, searching for eventual departurtures.

Figure 4.5: ET Accuracy of the NS mass determination in a NSBH merger as a function of the BH
mass and for different redshifts. The Neutron Star mass is assumed to be MNS = 1.4M⊙.
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Limits on the maximum mass of a compact star There exist several theoretical upper limits on the
mass of a compact system before it encounters instability due to the fact that the gravitational pressure
overcomes the degeneracy pressusure of stellar fluid. The most known examples are the Chandrasekar
limit for White Dwarfs (MChand ≈ 1.4M⊙) that are sustained by electron degeneracy pressure and the
Tolman–Oppenheimer–Volkoff limit for Neutron Stars (MTOV ≈ 2.2− 2.9M⊙) that are sustained by
neutron degeneracy pressure. This limits this limits are also dependent on the stellar fluid Equation of
State, the conditions of which cannot be reproduced and studied with current experimental techniques.
The direct observation of BNS or NSBH mergers by the Einstein Telescope could provide a valuable
insight on the properties of compact astrophysical objects.
Fig.4.4 shows the maximum distance to which compact binary inspirals are expected to be seen in
Einstein Telescope for systems with two equal mass companions6. In particular Eintein Telescope is
expected to observe NSBH merger events up to several units of redshift, translating in a 105−106 yr−1

detection rate. In addition, the diagram in Fig.4.5 shows the accuracy with which the mass of a Neutron
Star can be determined in an NSBH inspiral as a function of the companion mass and redshift, for an
instrument with the sensitivity of Einstein Telescope. As the large majority if the confirmed mergers
events in the advanced detectors host Black Holes with masses M ≥ 4M⊙, it is expected that ET could
determine Neutron Star masses with few percent accuracy up to z = 3 redshift.

4.3.2 Astrophysics
Einstein Telescope will be a unique observatory to study Neutron Stars and Black Holes dynamics,
compositions and distribution as it will be sensitive to a large variety of relativistic phenomena in
addition to the many compact binary mergers that are already revealed by the second generation de-
tectors. Examples include quakes in Neutron Stars, Supernovae, Proto-Neutron Stars formation and
Gamma-Ray Burst sources. In the following section it is presented what the Einstein Telescope can
unveil about this compact objects and their enviroments.

Neutron Star Physics The detection of Gravitational Waves from BNS mergers will provide a wide
variety of physical information on the progenitor stars. It is particularly important to gain an insight on
the Equation of State of bulk stellar matter in the extreme pressure and temperature conditions that are
reached in the core of Neutron Stars and even more during the BNS merger phase. The behaviour of
nuclear matter in this enviroments is currently not well understood and measurements of Gravitational
Wave signals from NS sources can usefully constrain its Equation of State.
The Neutron Star Equation of State leaves its signature not only in BNS and BHNS merger signals

but also in the peak frequencies of supernova waveforms, in the magnitude and damping time of NS
crust mountains or in NS glitches and other oscillation mode excitations. Fig.4.6 illustrates the differ-
ences in the Power Spectral Density of a BNS merger signal in the case the two components have a
cold (blue solid) or hot (red dashed) Equations of State, comparing them to sensitivities of different
generation detectors. Despite the fact that this are the two extremal cases for the EoS of neutral matter,
it is clear that the observation of several high-SNR BNS signals with the Einstein Telescope could
provide decisive evidence to discriminate between different models.
Einstein Telescope data could also be crucial to shed light on the Neutron Star glitches enigma.
Glitches are events in which a Neutron Star is seen to suddenly spin-up, followed by a relaxation
period towards stable secular spin-down. Hundreds of single glitches have been observed in the radio
emission of pulsar and magnetars, while some Neutron Stars, like the Vela pulsar, exhibit regular large
glitches with a fractional frequency change amplitude of the order of O(10−6). The mechanisms that

6For a binary system with symmetric mass ratio η = m1m2

(m1+m2)2
, the maximum expected observable distance would be

smaller by a factor
√
4η.
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Figure 4.6: Gravitational wave spectra of BNS mergers compared to sensitivities of Virgo, aLIGO
and ET, in the case the two components have a cold (blue solid) or hot (red dashed) Equations of
State. Also shown for comparison is the corresponding spectrum of an equal-mass, non-spinning

BBH (orange solid). Simulations from [41].

originate this phenomena remains a mistery to this day7. Einstein Telescope could provide an insight
on the phenomena if Neutron Star sourced signals are detected in coincidence with an EM glitch, or
it could set upper limits on the asymmetry of the process in alternative.
Rotating Neutron Stars may also suffer several instabilities that are associated with unstable modes
of oscillations. Of special intrest are GW driven instabilities such as f-modes which deform the star
into a bar-shape and r-modes which radiate predominantly through the current multipoles. Upon bet-
ter understanding of the Neutron Star interior and consequent modelization, waveforms associated
with glitches and instabilities can be obtained, enabling direct observation of the phenomena in the
[10− 100] Hz frequency band of the Einstein Telescope.

Gamma-Ray Burst progenitors Gamma-Ray Bursts are the most energetic electromagnetic events
that have been observed in the universe. They are classified either as short-hard or long-soft bursts
depending on their duration and spectra. Long GRBs are associated with supernovae in late-type star-
forming host galaxies while short GRBs are observed at lower redshifts inside a variety of galaxy types
including early-type elliptical and lenticular galaxies without active star forming regions, so that it is
thought that the progenitors of the latter type of events are BNS and BHNS mergers. A longer-lived
optical afterglow is usually emitted at longer wavelengths, which allows to locate the host galaxy of
the event.
Then the detection of BNS and BHNS mergers by the Einstein Telescope, in coincidence with electro-
magnetical GRB events, could give a clearer picture of the mechanisms at the core of short Gamma-
Ray Bursts. Predicting the Gravitational Wave emission of core-collapse supernovae associated with
long GRBs is instead more difficult and involves modelling the complicated internal dynamics of the

7The favoured hypotesis is that glitches are associated to transfer of angular momentum between superfluid components
of the star and/or the star crust and charged core [42]. Still the hydrodinamics and instabilities of this quantum superfluid
system remain unmodelled.
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collapsing star. In the absence of proper modeling of long GRB sourced Gravitational Wave signals,
a less effective unmodelled source can be performed.
A significant fraction (∼ 15%) of short GRBs may instead be associated with flaring activity in Soft
Gamma-Repeaters. As the name suggests, these sources periodically emits long GRBs signals with
luminosities of L ∼ 1041 erg s−1 and photon energies in the range [10− 30] keV, accompanied by
sporadic short GRBs with luminosities that can reach L ∼ 1047 erg s−1. It is hypotized that SGRs are
associated with sudden violent reconfigurations of complex magnetic field topologies inside magne-
tars, or alternatively to impacts of neutron stars with fossil disks around them.
Observations of quasi-periodic shear mode oscillations in Gravitational Wave signals in the [10− 40] Hz
frequency band, without an accompanying inspiral signal, could provide decisive evidence for the SGR
model. Current models for SGRs indicate that they will emit less than 1046 erg in Gravitational Waves
[43]. Fig.4.7 shows the 90%-confidence level limits on the distances to which the ET detector will
be sensitive to GW bursts with such energy. It can be noted as Einstein Telescope could enable the
detection of extra-galactic SGR events.

Figure 4.7: 90%-confidence lower limit on the observation range of various detectors for SGR
sources with 1046 erg enegry radiated as GWs. The solid horizontal black lines show the distances to

various galactic locations (centre of Milky Way, Large Magellanic Cloud, M31 galaxy).

4.3.3 Cosmology and Cosmography
As stated in the introduction to Sec.4.3, Einstein Telescope could observe coalescence GW signals
up to the edge of the Universe. By properly identifying the host galaxy of such events one can ob-
tain reconstruct the evolution of the distributions of variuos GW emitting phenomena throughout the
history of the universe. Einstein Telescope interferometers will also be sensitive to stochastic back-
ground radiation from primordial processes, thus providing an useful tool to investigate unanswered
cosmological questions.

Compact Binary Coalescences as Standard Sirens Estimates of astronomical distances are a non
trivial task and rely on the elaborate Cosmic Distance Ladder system, which correlates short-range
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methods, like parallax, with middle- and long-range methods that rely on various types of standard
candles. There are several issues affecting these techniques, the most relevant of which regard standard
candles, astronomical objects with known absolute magnitude: the theoretical debate on the ’standard-
ness’, that is the level of constancy of the absolute magnitude between different objects of the same
type, is open for many candle candidates and beside this calibration and correct identification issues,
especially in the case of object and galaxies at cosmological redshifts, add a significant contribution
to the overall uncertainty of the estimate.
Accurate measurements of Gravitational Wave signals coming binary system inspirals could provide
an independent method for estimating astronomical distances that does not suffer the main issues af-
fecting the Cosmic Distance Ladder. Chirping signals from the coalescence of compact stars are then
named Standard Sirens, as their amplitude depends only on a number of source parameters that can be
directly inferred by looking at the waveform signature and on the luminosity distance. It is necessary
to have system of at least three independent interferometers to fully disentangle the angular depen-
dency of the Gravitational Wave signal, allowing for a correct sky location of the event and leaving
the luminosity distance as the only free parameter left in the system.
The only contributions to the uncertainty of this kind of distance estimate come from detector calibra-
tion issues and SNR of the detected signal, plus systematic errors due to weak gravitational lensing.
Moreover, there is no way to infer the redshift of the source from a Gravitational Wave signal.Then
an accurate sky location of the signal is needed to identify the host galaxy of the event, the redshift of
which can be extracted from electromagnetical observations.
Not only Standard Sirens would offer a powerful tool for cosmography, but they would also provide
an independent technique to estimate the Hubble Constant H0. This is because, at small redshifts
(z << 1), the Hubble Law DL = c z/H0 that links the luminosity distance to the redshift of a spe-
cific source is valid, offering a new method to infer the Hubble constant by combining GW and EM
observations of mergers event in our cosmic neighborhood. Other cosmological parameters, such as
ΩΛ, ΩM and ω could be estimated starting from large catalogues of distant objects multimessenger
observations, like GRBs progenitors discussed in Sec.4.3.2.

Cosmological evolution of compact object populations and coalescence rates Coalescence rate
of compact objects is expected to be dependent on redshift. There are various features that contribute to
the overall shape of the dependency and each one of them can be investigated with unprecedented depth
with the Einstein Telescope. For instance the compact objects coalescence rate evolution throughout
the history of the universe is affected by the following factors: the star formation rate history SFR(z),
the binary fraction fb(z), the formation efficiency of a given type of binary and their distribution of
merger times. Einstein Telescope will be able to distinguish between coalescence rate predictions
from different SFR models hence providing evidence for history of star formation, expecially at high
redshifts where electromagnetical investigation becomes problematic.

Intermediate Mass Black Holes and Supermassive Blach Hole Seeds The Virgo and LIGO Sci-
entific Collaboration have recently announced the first detection of a BBH merger that resulted in
the formation of an Intermediate Mass Black Hole [44]. IMBHs are Black Holes with masses in the
[102 − 105]M⊙ range, that is significantly more than the few solar masses black holes directly formed
in the star life-ending explonsion and at the same time many orders of magnitude less than the Super-
massive Black Holes at the center of the galaxies ([102 − 105]M⊙). The GW190521 event observed
in the aLIGO and AdV detectors is the first direct evidence for the existence of IMBHs. Still the mech-
anisms that lead to the formation of IMBHs remain debated. An in depth understanding of IMBHs
abundancy and distribution throughout the history of the universe is also crucial to understand the
mechanisms that lead to the formation of SMBHs.
Einstein Telescope will be the most efficient tool to investigate the nature of Intermediate Mass Black
Holes. In particular, exploiting the cooperation of the Einstein Telescope with the LISA space-based
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detector, an IMBH binary system coalescence event could be fully reconstructed from the inspiral
phase, which Gravitational Wave emission is peaked in the sub-Hz band, to the final merger in-
stants, which signal will instead enter the low-frequency detection band of the Einstein Telescope
([1− 10] Hz), as can be seen in fig.4.8.

Figure 4.8: Power spectra of the inspiral, merger and ringdown signal from different types of binary
IMBH at redshift z = 0.5, compared to the design sensitivity of the main space- and ground-based

third generation detectors [45].

Primordial gravitational waves Electromagnetical observations can directly probe the universe
only up to to Recombination, as before this moment the primordial universe was populated by an
hot ionized H-He plasma that was opaque to light. Gravitational radiation does not suffer screen-
ings of any type so that it can freely propagate to us from the very first cosmic instants, potentially
carrying direct informations on the early phases of the Big Bang up to the GUT scale of 1016GeV.
Various inflation models predict an almost scale-invariant Gravitational Wave spectrum, the amplitude
of which is directly correlated to the scalar perturbation of the Cosmic Microwave Background via the
Tensor-to-Scalar Ratio coefficient r. Combining the observed amplitude of the CMB electromagnetic
spectrum and the more recent constraint on various inflation parameters that determine the final pri-
mordial GW spectrum [46], it is possible that a primordial GW background signal could overcome
Einstein Telescope sensibility in the f ≤ 10Hz frequency band.
There are also other phenomena happening the very early universe that contributes to the generation
of a primordial Gravitational Wave background, such as Cosmic String evolution or phase transition
reheating and colliding bubbles. Einstein Telescope could also allow to empirically investigate for the
first time all this new physics topics that are currently subject just to theoretical debate.
There is another important Gravitational Wave background that superimposes to the primordial one.
That is a stochastic background originating from a large number of unresolved sources since the be-
ginning of stellar activity. The main contributions to this astrophysical background come from BNS
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coalescences, core collapse Supernovae, rotating Neutron Stars instabilities and triaxial emission.
The detection of such a stochastic Gravitational Wave background with the Einstein Telescope would
provide an unprecedented insight on the initial mass function and star formation history, along to cos-
training physical properties of compact objects, but it could also constitute a noise source hiding the
primordial GW background.
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Chapter 5

The Thermal Noise Issue in a Cryogenic
Interferometer

As seen in Ch.4, the Einstein Telescope will achieve a wider band sensitivity respect to second gener-
ation Gravitational Wave antennae by employing two interferometers for each one of its three planned
detectors, separately optimizing each component of the pair for Low Frequancy or High Frequency
detection (HF and LF, respectively). Different noise contributions affect the sensitivity of an inter-
ferometer across its frequency domain, so that different issues must be addressed to maximize the
sensitivity in the two LF and HF interferometers.
The aim of this thesis work is to contribute to the research that is being carried out to improve the Low
Frequency interferometer sensitivity in third generation Gravitational Wave detectors. The main noise
contributions in the sub-101Hz band comes from Seismic Noise, Thermal Noise and Newtonian Noise.
While the latter is a fundamental noise that requires post-processing correlation of the interferometric
signal with informations coming from arrays of independent detectors, the first two contributions are
technical noises that can be lowered by means of better performing substrate materials, anti-reflection
coatings and suspension systems for the test masses.
The Einstein Telescope design requires that, in order to tackle the Thermal Noise problem the Low
Frequency detector will be operated at cryogenic temperatures. Considering the technological chal-
lenge related to cooling large volumes and masses to cryogenic temperatures, avoiding to inject back in
the system mechanical noise due to cryocolers vibrations, the operating temperature designed for the
LF detector is 10K. This feature will drastically reduce Brownian Thermal Noise and Thermo-Elastic
Noise in the test masses bulk and coatings, as manifestly shown in Eq.3.44 and Eq.3.48 where it was
derived that the two contributions are respectively proportional to S

1/2
x ∝ T and S

1/2
TE ∝ T 2. On the

other hand this would have no direct effect on the Seismic Noise contribution.
The downside of operating an interferometer at cryogenic temperatures is instead indirect. In a low
temperature detector, the last suspension stage is crucial in the determination of the total Thermal
Noise not only for its mechanical losses but also because it needs to extract the thermal load that is put
into the optical component by the laser beam. Unfortunately fused silica, the standard material em-
ployed in second generation GW detectors, has a very small thermal conductivity at low temperatures.
It is also important to consider the temperature dependence of the Q factor of the canditate materials
for a cryogenic operated detector. If the Q factor of a substrate or coating material lowers consider-
ably for decreasing temperature, operating in a cryogenic environment will not result in thermal noise
minimization, due to the fact that the thermal noise scales as T/Q.
On the contrary, crystalline materials have a very high thermal conductivity at low temperatures which
makes them ideal substrate candidate for cryogenic detector suspension fibers. A comparison between
the thermal conductivities of crystalline (Silicon, Sapphire) and amorphous (Fused Silica) materials
can be seen in fig.5.1. A qualitative explanation for the low temperature thermal conductivity increase
of crystalline materials can be given as follows. At high temperature the finite value of thermal con-
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Figure 5.1: Thermal conductivities of various ET-LF detector test mass substrate candidates ([47],
[48]).

ductivity is due to scattering of phonons amongst themselves via Umklapp processes. U-scattering
cross section decreases exponentially with decreasing temperature. Then phonon mean free path in-
creases and as a consequence thermal conductivity rises at low temperatures, reaching a maximum at
around 0.05θD, where θD is the Debye temperature of the crystal. At lower temperatures the thermal
conductivity falls as T 3, mirroring the temperature dependence of specific heat, due to the fact that
the phonon mean free path becomes comparable to the crystal dimensions.
Crystalline materials thermal conductivity depends not only on the sample geometry and dimensions
but also on the density of impurities and imperfections. Impurities and imperfections acts as scattering
centers for the phonons, decreasing thermal conductivity. Their effect is most important where ther-
mal conductivity peaks, as phonon-phonon U-processes and boundary scattering are relatively weaker
in this temperature region (see Fig.5.2). Also the presence of different isotopes spoils the symmetry
of the cristalline structure, affecting the final thermal conductivity of the sample.
There are also other parameters that must be considered in the choice for a ET-LF test masses and sus-
pensions substrate besides thermal conductivity. Thermo-Elastic Noise is proportional to the square
of the thermal expansion coefficient of the material S1/2

TE ∝ α2 (Eq.3.48) while mechanical losses
of the substrate increase Brownian Thermal Noise in the suspensions. Another factor that plays a
key role in the substrate material choice is the availability of large enough samples of the material to
serve as interferometric mirror and recoil mass. Silicon is then the favored canditate for ET-LF test
masses substrate as Sapphire is currently not available in large enough samples. Then Silicon should
be preferred also as suspension substrate candidate, due to the fact that silicon-silicon bonds based
on hydroxid-catalysis-bonding are stronger than sapphire-silicon bonds; furthermore a different ther-
mal expansion coefficient between the two materials would cause further stress in the connection and
bonding imperfections would contribute to increase the overall mechanical losses of the system.
Aside from the general motivations for substrate material choice in a cryogenic detector that were
carried out in previous paragraph, additional care must be taken to assure that Silicon, the favoured
candidate so far, could satisfy all the specific requirements of the Einstein Telescope Low Frequency
interferometer.
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Figure 5.2: Thermal conductivity of polycrystalline Silicon compared to monocrystalline Silicon
with different isotope fractions (Natural: (92.2% 28Si, 4.7% 29Si, 3.1% 30Si); Enriched:(100%28Si)).

Data from [47], [49].

The main design parameters for the High and Low Frequency interferometers of the Einstein Telescope
are summarized in Tab.5.1. The reasons for the differences between the two interferometer have been
explained in previous chapters. It should be noted that the shift to Silicon as mirror substrate material
would require a shift also in the laser wavelength to λ = 1550 nm, due to the fact that crystalline Sil-
icon is not transparent to λ = 1064 nm light currently used in second generation interferometers. As
a consequence, Erbium-Fiber lasers will replace Nd:Yag lasers in the Low Frequency interferometers.
Of particular intrest for Thermal Noise computations are the circulating power inside the LF-interferometer
arms and its mirror size. That is because in a real optical element, the Reflectance and Trasmittance
do not sum up to unity due to a net optical absorption in the substrate that is proportional to the inci-
dent light power1. The larger the total absorbed optical power inside the mirror, the higher the stress
that is put on the suspension fibers which are designed to extract the excess heat from the test mass
system. This is a crucial issue in third generation cryogenic detectors, as Suspension Thermal Noise is
expected to be one of the dominant noise contributions in the sub-101Hz frequency region (Fig.4.3).
Moreover the total heat capacity of the test mass system, that is proportional to the mirror mass, will
determine the operating temperature of the mirror at a given absorption level, directly contributing to
the total mirror thermal noise.
It is then of primary importance to obtain not only a characterization but also a deep understanding
of the optical absorption process in candidate materials for the Einstein Telescope Low Frequency
interferometer test masses at cryogenic temperatures. Still a detailed analysis of optical absorption in
crystalline Silicon at cryogenic temperatures is lacking to this day.
Two different research groups investigated Silicon optical absorption at λ = 1550 nm in the last decade
obtaining somehow conflicting results, the first based at Leibniz University and Max Planck Institute
in Hannover ([51], [52], [53]) and the second being a collaboration between scientists of the Labora-
toire des Matériaux Avancés in Lyon and the Friedrich Schiller University in Jena ([54], [55]). While
the first analysis pointed out that bulk absorption in crystalline Silicon substrates could reach values

1Or to the incident light power raised to an arbitrary power in the more general case of non-linear absorption.
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Parameter ET-HF ET-LF

Arm Length 10 km 10 km
Input Power (after IMC) 500W 3W

Arm Power 3MW 18 kW
Temperature 290K 10K

Mirror Material Fused Silica Silicon
Mirror Mass 200 kg 211 kg

Mirror Diameter / Thickness 62 cm/30 cm min 15 cm/8 cm
Laser Wavelength 1064 nm 1550 nm

Beam Shape TEM00 TEM00

Beam Waist 12 cm 9 cm
Scatter Loss per Surface 37.5 ppm 37.5 ppm

Filter Cavities 1× 500m 2× 1000m
Quantum Noise Suppression 10 dB FDS 10 dB FDS

Seismic Isolation SA, 8m tall mod SA, 17m tall

Table 5.1: Main design parameters for ET-HF and ET-LF interferometers (SA= SuperAttenuator,
FDS=Frequency Dependent Squeezing). The parameters refer to the most recent ET-D design ([50]).

as low as α ≤ 5 ppm/cm [54], subsequent studies agreed on a different attenuation coefficient of
α ≈ 300 ppm/cm, attributing the optical absorption to bulk [55] and surface [52] effects. It must
be also noted that only [55] measurements are performed at cryogenic temperatures. This last result
should be then given more importance, as the fragmentary evidences make it impossible to formulate a
comprehensive theory that is capable to extend the room temperature values to cryogenic enviroments.
This thesis work then aims at refining the present knowledge on crystalline Silicon optical absorption
at λ = 1550 nm thanks to an independent direct measurement of the absorption coefficient, enabling
the formulation of a coherent theoretical framework that is capable to explain Silicon optical absorp-
tion processes at various temperature scale and providing deciding elements for the substrate material
choice in a third generation Gravitational Wave interferometer test masses.



Chapter 6

Experimental Set Up Design and
Characterization

A cryogenic detetector such as Einstein Telescope Low Frequency interferometer requires very low
overall absorptions in its optical elements. Test masses substrate candidates must ideally posses an ab-
sorption coefficient of few ppm/cm. Measuring such a low levels of optical absorption is a non trivial
operation: accuracies of commercially available powermeters reach at best few percentage points so
that a direct measurment of a ppm power absorption in the sample is practically impossible. More-
over there exist no ready-to-use facilities or instrumentation that can provide a high accuracy optical
absorption measurment in a cryogenic enviroment.
In the following chapter, we’re going to present a technique for measuring crystalline Silicon optical
absorbtion at λ = 1550 nm and cryogenic temperatures.

6.1 The technique: calorimetric absorption measurements
The fraction of power absorbed by silicon α∗ is given by the following relationship:

Pabs = α∗
SiPin (6.1)

wherePabs is the power absorbed by the sample, whilePin is the total optical power input to the sample.
The power balance for a system like the one in fig. 6.1 is:

Figure 6.1: Schematic of the system

κ[T − TCu]− σ∗[T 4
sc − T 4] +Mcp

dT

dt
= Pabs (6.2)
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where Mcp is the thermal capacity of the sample, σ∗ = A ∗ ϵ ∗ σ (with A=sample surface, ϵ=Silicon

emissivity and σ = 5.76 ∗ 10−8 W

m2K4
is the Stefan-Boltzmann constant), Tsc is the temperature of

a thermal screen surrounding the sample and TCu is the temperature of the sample holder, which is
thermally linked to the sample with a thermal conductivity κ.
When the beam is off and the system is in equilibrium dT

dt
= Pabs = 0. The values at equilibrium of

the sample, sample holder and thermal screen T0, T0−sc, T0−Cu correspondent to this case, satisfy the
equation

κ[T0 − T0−Cu]− σ∗[T 4
0−sc − T 4

0 ] = 0 (6.3)

Supposing that starting from this state, the sample is illuminated with a laser that is suddenly switched
on, a power P (t) = θ(t)Pabs is injected, where θ(t) is the Heavyside step function. This will induce a
variation of the three temperatures T, Tsc, TCu . Two assumptions can be made:

•
TCu(t) = T0−sc

• The temperature variation induced by P (t) is small compared to the equilibrium temperatures
from which we started. In other words{

T (t) = T0 +∆T (t) ∆T (t) << T0

Tsc(t) = T0−sc +∆Tsc(t) ∆Tsc(t) << T0−sc
(6.4)

In this limit, the equation 6.2 can be linearized in ∆T and becomes

κ[∆T −∆TCu]− 4σ∗[T 3
sc∆Tsc − T 3

0∆T ] +Mcp
d∆T

dt
= Pabsθ(t) (6.5)

in another fashion equation 6.5 becomes

κ′∆T +Mcp
d∆T

dt
= Pabsθ(t) + 4σ∗T0−sc∆Tsc (6.6)

where κ′ = κ+ 4σ∗T 3
0

Experimentally we know that
∆Tsc(t) = ∆T0−sc[1− e

−t
τsc ]

and typically ∆Tsc ≈ 1K and τ0−sc ≈ 2000s. Considering the homogeneous version of equation 6.6,
the solution is

∆Thomog = Ae
−t
τ

with τ = Mcp
κ′ As particular solution we can use

∆Tpart = ∆T1 +∆T2e
−t
τsc

and substituting it in eq.6.6 gives{
∆T1 = [Pabs + 4σ∗T 3

0−sc∆T0−sc]/κ
′

∆T2 = [4σ∗T 3
0∆T0−scτsc]/[Mcp − κ′τsc]

(6.7)

Summing the homogeneous and the particular solution we have the final solution:

∆T (t) = ∆T1 +∆T2e
−t
τsc − (∆T1 +∆T2)e

−t
τ (6.8)



52 CHAPTER 6. EXPERIMENTAL SET UP DESIGN AND CHARACTERIZATION

where A was determined by the initial condition ∆T (t = 0) = 0.
Let us now consider the derivative of ∆(T ) at t=0. By deriving both sides of eq 6.8 we get(

d∆T

dt

)
t=0

= −∆T2

τsc
+

T1 + T2

τ
(6.9)

Substituting from eq.6.1 and neglecting higher order terms we finally get:(
d∆T

dt

)
t=0

=
Pabs

Mcp
=

α∗
Si

Mcp
Pin (6.10)

Note that cp, the specific heat of the silicon, depends on the temperature, especially at cryogenic tem-
peratures. Since the variations in temperature to which our sample is subjected during irradiation are
of the order of a few degrees in the first instance it was decided to neglect this variation. Therefore the
total fraction of absorbed power is given by:

α∗
Si = mMcp (6.11)

To obtain the absorption coefficient of the silicon we can consider the Lambert-Beer law:

Pabs = Pin[1− eαSi∗l

where l is the optical path lenght of the beam inside the sample. Since in our case the absorption is
very weak, we can linearize this equation, so that

Pabs

Pin

= α∗ =Si ∗l

Finally we have the simple equation:

αSi =
m ∗M ∗ cp

l

6.2 Experimental setup
The aim of this work is to obtain a direct estimate of the crystalline Silicon optical absorption coeffi-
cient at cryogenic temperatures and for λ = 1550 nm light. In order to achieve this goal it is required
to place a crystalline Silicon sample in a cryogenic environment, allowing for a 1550 nm laser beam
to pass through the test material while recording temperature changes of the sample. All the technical
specifications of the analyzed Silicon sample are summarized in Tab.6.1.
All the technical specifications of the cryogenic system will be given in Sec.6.2.1 in addition to an
in-depth account of calibration and characterization of cryogenic equipement (Sec.6.2.3, Sec.6.2.2)
will present in detail the design process of the support system inside the cryogenic chamber, explor-
ing the various thermodinamical and spatial constraints that had to be met in order to accomodate the
sample above the cryocooler cold head. Design and characterization of the optical line are described
in Sec.6.2.4. The presentation of the experimental set up will end with a brief outline of the Labview
program that allowed to calibrate our setup and acquire the data.

1Normal to the main surface



6.2. EXPERIMENTAL SETUP 53

Material Crystalline Silicon
Growth Technique Float-Zone

Doping Type Intrinsic
Orientation1 (1 0 0)

Polished Surfaces 2
Resistivity > 500Ω/cm

x-axis Dimension (cm) 1.990± 0.005
y-axis Dimension (cm) 1.005± 0.005
z-axis Dimension (cm) 1.020± 0.005

Mass (g) 4.66± 0.01

Table 6.1: Parallelepipedal silicon sample technical specifications.

6.2.1 System Overview
The cryocooling apparatus we disposed of was a CTI-Cryogenics 8300 Compressor that employed a
helium based thermodynamic cycle to perform heat extraction on a cylindrical cold head with diameter
d = 5cm. The cold head was housed inside a CTI-Cryogenics vacuum chamber equipped with two
CF-sealed 1550nm-coated optical windows and various access ports to allocate vacuum feedthroughs
for thermometrical instrumentation and other electrical connections (see Fig.6.2). All the system was
operated in high vacuum. In order to reach high-vacuum pressure inside the 0.1m3 CTI-Cryogenics
chamber we employed a Varian Turbo-V 81-M turbo-molecular pump, in series with a pre-vacuum dry
pump. We also installed a system of vacuum gauges that was able to monitor the chamber pressure.

Figure 6.2: Left: Final set up of the cryogenic chamber interior; Right: Scheme of cryogenic
chamber thermodynamics. Heat flow contributions: radiation heat flow (Prad); conduction heat flow
(Pcond); optical power of the laser beam at the input surface (Plas); optical absorption heat flow (Pin).

Thermometers: in-loop DT-470 (DTin) measuring copper support temperature (Tcu); out-of-loop
DT-470 (DTout) measuring radiadiation shield temperature (Tsh); CX-1050-SD (CX) measuting

silicon sample temperature (Tsi). Chamber parts and materials: cold head (CH); PID resistive heater
(PID); copper (Cu); teflon (PTFE); crystalline silicon (Si).

In Fig.6.2 it can be also found a scheme of the system that was designed to house the Silicon crystal
inside the cryogenic chamber. All the payload is enclosed inside the radiative shield, which is actively
cooled. The supports and sample are mounted above the cold head. The copper support temperature
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is stabilized to a constant value by a PID controlled resistive heater.
To fully monitor the temperature variation of the various system parts, three thermometers are em-
ployed: the in-loop LakeShore DT-470 thermometer is mounted on the copper sample holder to extract
an error signal for the PID control; the out-of-loop LakeShore DT-470 thermometer is coupled to the
radiation shield; the LakeShore CX-1050 thermometer is mechanically clamped on the sample upper
surface to monitor temperature variations of the Silicon crystal by a suitably designed spring-loaded
holder in teflon (PTFE). All the thermometers are wired with a 4-wire connection to the read-out in-
strumentation in order to bypass potential voltage drops that are happening in the wiring and assure to
acquire an unbiased voltage signal.
DT-470 are diode thermometers so that they must be operated with a fixed excitation current to pro-
duce a temperature dependent voltage signal. They have a compact design allowing for easy clamping
with a single M2 screw and they guarantee a fast response time which make them ideal to extract the
error signal for the PID temperature stabilization system. A standard calibration curve for DT-470
thermometers which has < 0.1K accuracy across all the operating temperature range is provided by
the manufacturer. We disposed of two different Lakeshore thermometer reading instruments which
were calibrated to convert the DT-470 voltage signal in a temperature measurement and which pro-
vided the proper excitation current for the thermometers; the Model 820 was employed to read the
out-of-loop thermometer signal; the DR91C was used to acquire the in-loop thermometer signal and
had a built-in anlog PID control system that allowed to stabilize the copper support temperature to the
desired setpoint by sending a controlled current to the resistive heater.
LakeShore CX-1050-SD thermometer is instead an uncalibrated resistive thermometer and its resis-
tance signal is acquired by an HP 3458A 6− 1/2 digit multimeter through a 4 wire connection. CX-
1050-SD is much more compact than DT-470 thermometers, so that it can be directly installed on the
sample. Its purpose is the direct measurement of the sample temperature increase upon absorption
due to the laser beam and is therefore the most important sensor of the apparatus. To thermally couple
the thermometer to the sample we opted for a mechanical clamping provided by a spring aided teflon
cap. However for this thermometer a calibration curve was not available, so we needed to perform a
preliminary calibration of the sensor, as explained below.

DT-470 CX-1050-SD

Type Diode Resistive
Size �7.95× 4.343mm 3.175× 1.905× 1.080mm

Operating Range [1.4− 500]K [0.1− 325]K
Response Time2 0.1 s 0.25 s

Dissipation3 17µW 0.1µW

Table 6.2: LakeShore thermometers technical specifications.

6.2.2 Cryogenic Chamber Design
A fundamental requirement for the creation of a cryogenic environment for the study of Silicon crystal
optical absorption is to set up a cryocooling facility that could accomodate the required sample housing
and the thermometrical instrumentation, while disposing of a window system to allow for laser beam
input and evacuation. The sample housing is specifically designed to partially decouple the Silicon
crystal from the cold head of the cryocooling apparatus, so that the sample temperature can be set by

2At T = 77K.
3At reccomended excitation and T = 4.2K.
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the thermal stage (at a price of a longer cooling time) and yet it is allowed to vary independently from
the cold head temperature variations when heated by an external power source. This is achieved by
inserting a layer of thermal insulating material between the crystal and the cold head wich sharply
reduces the sample conductive heat dissipation; at equilibrium in cryogenic environment the domi-
nant heat flow contributions on the sample becomes heat radiation to the chamber inner surfaces and
thermal conduction to copper through teflon. To lower the sample equilibrium temperature as much as
possible it is then necessary to encapsule the payload inside at least one radiation shield that prevents
the sample to directly see the inner surface of the chamber at room temperature. The cryocooling
apparatus should be properly dimensioned accordingly to the payload total thermal capacitance, to
chamber heat dissipations and to the desired limit temperature on the sample.
The Silicon sample was placed along the optical axis of the chamber by means of a three stages support
as shown in 6.3. The lower stage of the sample support is made of copper to ensure optimal thermal

Figure 6.3: Three stage support and sample

coupling with the cold head. The CAD project with all the dimensions can be found in App.A.
The second stage of the support was made by two separate PTFE (teflon) pieces, a thermal insulating
material which provides thermal decoupling between the silicon crystal and the copper plate. The
stage is formed by an inner cylindric body that is concentrical to an outer toroidal piece; this configu-
ration allows tu tune the orientation of the sample respect to the beam axis, so that the system could be
positioned at Brewster Angle where beam reflections towards the radiation shield are minimized. The
outer teflon support has only a structural function: it allows mechanical clamping of the upper stages
of the sample housing to the copper support and cold head via four perpendicular d = 4mm clearence
holes; it is also equipped with four M2 threaded holes to allow for clamping of the third stage teflon
cap. The inner teflon support instead houses the parallelepipedal crystal inside a dedicated socket.
The area of contact between the sample and the support is reduced as much as possible to minimize
conductive heat flow through teflon.
The third stage of the support consist of a teflon bar structure (teflon cap) which has the aim of keep-
ing fixed the sample orientation respect to the beam axis during cooling phase. The bar is equipped
with four d = 2mm holes for screwing the piece to lower stages of the support. The contact area
between the teflon cap and the sample is kept as small as possible to minimize conductive heat flow
through teflon cap and screws towards copper. During developement phase the teflon cap also took on
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a structural function, allowing for CX-1050-SD clamping to the crystal. This was achieved by placing
the thermometer below the teflon cap contact surface and adding two M2 springs between the screw
heads and the teflon cap upper surface.

6.2.3 CX-1050-SD Thermometer Calibration

Calibration of a resistive thermometer requires to obtain an unique and monotonical T (R) function,
taking advantage of a yet calibrated thermometer. To this purpose we clamped the resistive CX-1050-
SD thermometer directly on thermal contact with the copper sample holder and used the in-loop DT-
470 as a reference. In particular,the CX-1050-SD and DT-470 temperature acquisitions should be
performed in equilibrium conditions after having stabilized the copper support temperature by means
of the PID controlled resistive heater. This calibration technique was performed in the T < 100K
temperature range. In a static calibration acquisition each (TDT±σT ,RCX±σR) data point is computed
in the following way: both the in-loop DT-470 and the CX-1050-SD thermometer are installed on the
copper support and the the copper temperature is stabilized at a given value with the use of the PID
heaters. After equilibrium has been achieved the point (TDT ± σT ,RCX ± σR) is acquired.
With step of 5K the CX-1050-SD thermometer has been calibrated in the range [12-85]K. As a simple
expression able to fit the observed datapoints, it was chosen an hyperbolic model, which was fitted to
the data by performing an orthogonal distance regression method, in order to take into account both
the incertitudes on R and T:

T (R) = p0 +
p1

R− p2
(6.12)

Figure 6.4: Hyperbolic fit of the data set
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Figure 6.5: Residuals between the experimetal points and the fit hyperbolic function

From the residuals plot we decided to assume an a posteriori error of 1.5K for the temperature mea-
surements obtained with the CX-1050-SD.

6.2.4 Optical Line
Optical elements A simple optical line was set up to allow for λ = 1550 nm laser beam alignment
and polarization tuning. The λ = 1550 nm source was provided by a Keopsys CEFL-KILO-05 Er-
bium fiber Laser. The Keopsys laser is equipped a feedback system that allows for < 0.5% RMS
output power stabilization in the [0.5− 5]W range. A Faraday Isolator is installed after the fiber out-
put to prevent beam reflection from reaching back the laser cavity. A Half-Wave plate (HWP) phase
retardating plate is mounted before the Farady Isolator to control the ratio of the transmitted versus
reflected power at Faraday Isolator. A small portion of the optical line is reserved for the insertion
of the IR-photodiode for system calibration purposes. A complete scheme of the optical line can be
found in Fig.6.6.

Figure 6.6: Schematic view of the optical line. λ/2: half waveplate; λ/4: quarter waveplate; FI:
faraday isolator; BD: beam dump; M: mirror; W: window.

In order to properly perform an absorption measurement the optical line must met few crucial con-
straints. First of all we have to make sure that the laser beam enters and exits through the chamber
interacting with anything but the sample, all reflections inside the cryogenic chamber must be mini-
mized, in addition to prevent beam clipping phenomena, as any excess input power contribution would
spoil the system thermodynamics when operated at cryogenic temperatures. In fact the aim of the ex-
periment is to measure few ppm absorption on the silicon crystal, so that parasitic beam power heating
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the chamber wall would increase the screen temperature, indirectly altering the sample temperature.
Thus, alternative sample heating sources could easily dominate the absorption contribution and must
be minimized.To this purpose the beam-sample system will be aligned at Brewster Angle to minimize
the reflected power at sample input surface; a Qarter Waveplate-Half Waveplate system was installed
just before the input window of the cryogenic chamber to control polarization ellipticity and orienta-
tion; the p-polarized beam is then accurately aligned respect to the sample input surface.

Beam characterization Special care must be given to ensure that the beam is entering and exiting
the sample in a central position respect to the sample surfaces, so that beam clipping on the sample
is minimized. In order to further minimize beam clipping on the sample a focalizing lens with focal
length approximately equal to the chamber radius should have been mounted in front of the entrance
window, so to drastically reduce the radius of the beam that is entering the sample; as we did not
dispose of a lens of such focal lenght, the only option to decrease the beam radius inside the sample
was to reduce as much as possible the optical path of the line before the chamber.
It is then of primary importance to obtain informations on the spatial evolution of the beam radius
along the optical line. It should be recalled that the sample input/output surfaces are rectangles of
size 2× 1 cm4 and that the sample is entered at Brewster angle, that for Silicon at λ = 1550 nm light
corresponds to ΘB ≈ 74. In order to comply with the 3σ rule for safe beam interaction with optical
element, the largest beam radius that could be tolerated at input surface, accounting for the non-zero
angle of incidence, is rmax = lx cos(ΘB)

6
≈ 0.9mm. As said, the only option that was available to

reduce the beam radius in the sample region below this threshold was to minimize the optical line
lenght.
It is then crucial to determine the spatial evolution of the beam radius along the line. CEFL-KILO fiber
laser provides an highly collimated output. A knife edge test was performed at ten reference distances
from the output fiber so to retrace the spatial evolution of the beam in between them. An exemplary
edge test data is shown in Fig.6.7 along with a least square fit of the model describing trasmitted power
for a partially shadowed beam:

s(x) =
P

2

[
1− erf

(√2(x− x0)

wz

)]
(6.13)

where x is the position of the scanning knife edge, x0 is the center of the beam, P is the total power
contained in the laser beam, and wz is the 1/e2 beam radius at position z along the optical line.

The full set of data is reported in Tab. 6.3. A complete beam profiling was obtained by means of
the software "Gaussian Beam" (6.8) and the the beam characterization is reported in Tab.6.4. As it
can be seen, at the sample position (z ≈ 60cm) the expected beam footprint on the sample surface is
1746± 6µm, si that the 3σ rule is fulfilled.

4The lx = 2 cm side is placed parallel to the optical plane while the ly = 1 cm side is perperndicular.
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Figure 6.7: Transmitted power versus knife edge position for tests performed at z = 89.5 cm distance
from the fiber output.

z ( cm) Beam radius wz (µm)

19.5 791± 3
29.5 805± 3
39.5 811± 3
49.5 830± 3
59.5 873± 3
69.5 833± 3
79.5 865± 3
89.5 874± 3
104.5 936± 3
119.5 990± 3

Table 6.3: Beam profiling

Figure 6.8: Simulation from the software "Gaussian Beam"



60 CHAPTER 6. EXPERIMENTAL SET UP DESIGN AND CHARACTERIZATION

Waist position ( cm) Waist size wz (µm) Rayleigh range zr ( cm)

23.4± 0.1 822± 10 136.9± 0.1

Table 6.4: Beam profiling results

Power characterization After having mounted the optical line, it was performed a characterization
of the power transmitted by the optical windows and entering inside the vacuum chamber.This step was
necessary because once the vacuum chamber is closed it is not possible to measure the power entering
the sample. Given Pout the power output of the laser before the window of the vacuum chamber and
Pin the power entering the sample, we expect:

Pin = p0 + p1 ∗ Pout

. The result is reported in Fig 6.9 and from the fit we obtain a transmission coefficient of (99.2±0.1)%
as expected from the manufacturer’s specs, so that we can consider that the power entering into the
chamber is equal to the one of the beam measured before the entrance window.

Figure 6.9: Power entering the sample calibration

6.2.5 Temperature variation without the sample
For the final absorption measurement, the thermometer will be clamped on the sample and since the
sample is 1 cm high, the CX-1050-SD thermometer will be about 5mm distant from the laser beam axis
given that the beam passes in the center of the crystal.Since our technique assumes that the thermometer
is measuring solely the sample temperature, it is important to ensure that no other phenomena may
induce a parasitic heating of the CX-1050. In particular, given the high beam power and the low thermal
capacity of the thermometer, one could imagine that the beam tails, or other light-driven secondary
heatings are sufficient to change the thermometer temperature of an amount comparable to the quantity
we want to measure. To check the heating induced by the beam tails, we removed the sample from the
holder and we placed the thermometer at about 5 mm from the beam axis. then we switched on the
beam at different powers (measured outside the vacuum chamber). In fig 6.10 an example of the output
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graph of temperature variation at Pin = 5.77W . Two kinetics can be clearly distinguished, a fast one,
with a duration of about 20 seconds and a slower one, which, in the time window of the experiment
can be approximated with a linear growth y = p0 + p1 ∗ x. The p1 parameter represents the rate of
temperature variation in K/s.

Figure 6.10: Temperature variation from the CX-1050-SD when the laser is 5mm distant from the
thermometer

The slope of the slow heating kinetics is proportional to the beam power, as shown in fig. 6.11. This
indicates that the heating is indeed provoked by some spurious illumination of the thermometer with
the light beam. However, the dependency of this spurious heating rate on the laser power is b = (1.24±
0.02) ∗ 10−7 K

s∗mW
. As it will be shown in the next paragraph, the heating rate vs power dependency

measured when the thermometer is in contact with the sample is about one order of magnitude higher.
We thus conclude that light-induced heating of the thermometer can account for about a 10% additional
heating.

Figure 6.11: Rates of temperature variations at different input power
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6.2.6 Experimental estimation of the Brewster angle
As a secondary check, we want to rule out the possibility that some radiation can induce a heating of
the thermal shield inside the chamber. Due to the low temperatures and to the steep dependency of the
Stefan-Boltzmann law on the shield temperature, even a modest temperature increase of the shield can
provoke a measurable increases of the sample temperature. To carry out the absorption measurement,
it was chosen to put the sample at the Brewster angle θBrewster ≈ 74, so that the incident radiation
appropriately polarized in the horizontal direction (p-polarization) was not reflected from the surface
of the sample. The angle was found by manually rotating the sample and checking with the powermeter

Figure 6.12: Scheme of the beam trajectory through the sample

that the reflected power was minimized. The minimum reflected power was about 0.03% of the incident
power, so we proceeded to verify that this small fraction of power did not heat the vacuum chamber,
which in turn would then irradiate the sample and heat it. To acquire this measurement we placed
the sample at Brewster’s angle and left the thermometer free to float, near the sample while laser was
turned on.

Figure 6.13: Temperature variation with floating thermometer near the sample
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From the linear fit in 6.13 we see that the thermometer heats up with a rate of (3.521±0.005)∗10−4K/s
when the input power is Pin = 5.77W .As we can see, the temperature increase is of the same order
of magnitude of the one reported in fig. 6.10. However in that case the sample was not present in the
chamber, while in this case the thermometer was kept well away from the laser beam. Therefore, we
believe that fig. 6.10 and fig. 6.11 are displaying two different heating contributions, which we need
to take into account in our measurements as a systematic overestimation of the sample absorption.

6.2.7 Digital Acquisition System
To carry out measurements through the acquisition electronics, programs were used in LabView. These
programs have guaranteed the reading interface between the instrumentation and the user, via a labo-
ratory PC with a GPIB connection. The diagram of the interface is shown below.

Figure 6.14: Graphic interface of the acquisition program



Chapter 7

Data Acquisition and Analysis

7.1 Impulsive measurement

As described in section 6.1 the optical absorption measurement of the silicon is obtained starting from
the rate of change of the sample temperature immediately after the laser beam is sent through the
sample itself. The measurement was carried out at two different temperatures of the sample ((20 ±
1.5)K and (32±1.5)K) to compare the absorption coefficient, expecting it to be the same thanks to the
fact that the number of free carriers does not vary significantly. The figures below show the curves with
the temperature measured with the CX-1050 thermometer thermally coupled to the sample. As soon
as the beam is activated, an almost linear increase in temperature is observed. After some seconds the
beam is blocked, so that the sample starts to cool again by exchanging heat with the vacuum chamber
and with the cold head.
We proceeded with a linear fit, with the function y = p0 + p1 ∗ x, of the temperature increase over
time, for each different value of input power Pin, which was measured time by time, by checking the
power of the beam outside the chamber. The window transmittance correction has been neglected, as
reported in section 6.2.4. The graphs illustrating the various fits obtained and a summary table of the
parameters of each fit are shown below. The error of the input power was obtained by propagating
the power meter reading error (5% of the measurement) with the fit error for the Pin calibration in
Sec.6.2.4.
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Pin (W) p0 (K) p1( K/s)

0.57± 0.03 19.220± 0.001 0.00344± 0.00001
0.66± 0.03 19.350± 0.001 0.00424± 0.00001
0.91± 0.05 19.230± 0.001 0.00649± 0.00004
1.14± 0.06 19.200± 0.001 0.00844± 0.00005
1.43± 0.07 19.200± 0.001 0.01046± 0.00003
2.7± 0.1 20.760± 0.001 0.01701± 0.00003
3.7± 0.2 22.640± 0.001 0.02138± 0.00004
4.7± 0.2 20.320± 0.001 0.02978± 0.00005
5.8± 0.3 20.28± 0.001 0.03632± 0.00007

Table 7.1: Parameters from the linear fit of the sample temperature variation at different input power
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The same acquisition was made at slightly higher temperatures and below the results are shown.

Pin (W) p0 (K) p1( K/s)

0.57± 0.03 32.250± 0.001 0.00244± 0.00001
1.02± 0.05 32.390± 0.001 0.00413± 0.00001
2.09± 0.08 32.390± 0.001 0.00828± 0.00002
2.9± 0.1 32.440± 0.001 0.01167± 0.00004
4.19± 0.2 32.110± 0.001 0.0171± 0.0001
5.77± 0.3 31.920± 0.001 0.02314± 0.00009

Table 7.2: Parameters from the linear fit of the sample temperature variation at different input power
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7.1.1 Absorption coefficient at 20± 1.5K

For the acquisition done at about 20K is it possible to use the input power Pin and the coefficients p1
shown in Table 7.1, corrected with the correction seen in sec. 6.2.5, to perform a fit of the equation
6.1. Thus performing a linear fit of eq. 6.1 it is obtained the graph shown in fig 7.1. Knowing the

Figure 7.1: Temperature variation rate at different input power Pin

mass of the sample and using the specific heat cp for cryogenic temperatures of the literature [62], it
is possible to relate the p1 coefficient of the fit in fig. 7.1 with the α∗ seen in the eq. 6.12. Namely

α∗
Si = p0Mcp (7.1)

and propagating the errors of the three quantities in the above formula, it is obtained

α∗
Si = (2.86± 0.16) ∗ 10−4 (7.2)

To obtain the optical absorption coefficient of silicon per unit of length, it is sufficient to divide this
value by the length of the optical path of the laser inside the sample l =

y

cos(θrefr)
.

It is possible to obtain θrefr from the Snell’s law:

n1sin(θBrewster) = nSisin(θrefr) (7.3)

where n1 is the refractive index of the vacuum, taken as equal to the unity, θBrewster is the angle of
incidence of the beam entering the sample, nSi is the refractive index of the silicon at the wavelength
of λ = 1550nm and θrefr is the angle that the normal to the internal surface of the sample forms with
the direction of the transmitted beam. For our setup we get:

θrefr = (16.03± 0.08)

In which the error on θrefr is obtained by propagation starting from the error of θBrewster. Finally, the
optical absorption measurement of the silicon at cryogenic temperatures was obtained:

αSi =
α∗
Si

l
= (270± 17)

ppm

cm
(7.4)
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7.1.2 Absorption coefficient at 32± 1.5K

The same analysis was done at a slightly higher temperature using the parameters shown in Tab. 7.2,
corrected with the correction seen in 6.2.5. The temperature variation rates versus the input power
have been fitted with a linear function y = p0 + p1 ∗ x. The fit is shown in the figure below. From

Figure 7.2: Temperature variation rate at different input power Pin

equation 7.1 it is obtained:
α∗
Si = (3.01± 0.19) ∗ 10−4

αSi =
α∗
Si

l
= 284± 18

ppm

cm



Chapter 8

Conclusions

Crystalline silicon is among the most favourite candidates to serve as test mass substrate material in
third generation gravitational wave detectors. A summary of its excellent mechanical and thermal
properties has been presented in Ch.5. Despite the large amount of literature on crystalline silicon
properties that was prompted by a strong interest on the material by the telecommunication industry,
little is known about its absorption spectrum at cryogenic temperatures with the sensitivity level de-
manded by gravitational wave detectors. To our knowledge, the only direct experimental evidence on
silicon optical absorption for λ = 1550 nm light in a cryogenic environment was obtained by [55],
where it was found a nearly temperature independent optical absorption coefficient in the [5− 300]K
range with value: αSi ≈ 300 ppm/cm. Assuming a highly pure, "perfect" material, this evidence
was also in contrast with the existing theoretical expectations for a negligible optical absorption at low
temperatures due to carrier freezeout.
In this thesis work, an apparatus for measuring optical absorption in Si at 1550 nm and in cryogenic
conditions was optimized. The apparatus has been characterized and is able to measure absorption at
the level of a few ppm/cm. This system will allow the study of silicon samples produced by various
manufacturers with different techniques in order to determine the most suitable materials for use in
ET.
The estimate provided of the optical absorption coefficient of the sample under examination is equal
to:

α20K
Si = (270± 17)

ppm

cm

α32K
Si = (284± 18)

ppm

cm

The temperature variation of about 12K between one measurement and another does not involve a
significant variation in the number of free carriers and this led us to think that the absorption coefficient
should not change much between the measurement at 20K and that at 32K. In fact the two absorption
values coincide within the experimental errors, but they are still higher than the expected one. A
reason for which the measurement is higher than the theoretical model could be attributed to the fact
that the sample under analysis has undergone a polishing process that may have deposited on the
sample elements with high absorption such as metal impurities (Fe, W , etc.), thus altering the surface
and necessarily leading to an increase in the optical absorption coefficient. Given its inherently more
defected nature with respect to bulk, the optical absorption component in the silicon due to surface
effects (ref. [53], [52]) could make a major contribution compared to that of volume in the overall
calculation of the optical absorption coefficient. Finally, our estimate of the absorption coefficient is
also strongly influenced by the value of specific heat of the silicon used, so to improve the accuracy
of the next experiments will be crucial to define a reliable estimate of this parameter in the samples
considered.
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8.1 Future prospects
Future prospects for the experiment will be based on a refinement of the already developed technique.
Since the estimate obtained results to have a strong dependence on the specific heat considered, a
refinement of the project under analysis will also pass through the direct measurement of the specific
heat of the silicon samples used.The idea is to add a second laser line collinear with the probe one,
in a range where Si is highly absorbing. In this way the system could be calibrated by comparing the
measured temperature increase with the optical power, knowing that the latter is totally absorbed.
A further aspect that would be interesting to investigate concerns the development of techniques to
isolate the contribution of surface absorption with respect to that of volume. This could be achieved
by implementing the possibility of varying the section of the incident beam for the by keeping the beam
power constant. In this way the surface contribution could be varied, while the volume contribution
would remain constant, providing a way to separate the two contributions. A future prospect of the
instrumental apparatus will also be to proceed with a systematic study of several silicon samples of
the optical absorption coefficient at cryogenic temperatures, always at a wavelength of 1550 nm.
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