
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics of Data

Final Dissertation

Study of performances for

Restricted Boltzmann Machines

Thesis supervisor Candidate

Prof. Marco Baiesi Matteo Bortoletto

Academic Year 2020/2021

To my parents Patrizia and Massimo and to my sister Elisa.

Abstract

Restricted Boltzmann Machines (RBMs) are one of the most relevant unsupervised learning

methods. The aim of this thesis is to study their performances as a function of their parameters.

First, we consider binary-valued RBMs and then we introduce the so-called centering trick, which

is known to solve the absence of invariance to flip transformations. Moreover, centering also

leads to more accurate models. Then, we discuss RBMs with real-valued units. In particular,

we focus on rectified linear units, which are able to achieve better generative performances than

binary units.

i

ii

Contents

1 Introduction 1

2 Probabilistic graphical models 3

2.1 Conditional independence and factorization . 3

2.2 Markov random fields . 4

2.3 Unsupervised Markov random field learning . 6

2.3.1 Gradient ascent . 8

2.3.2 Log-likelihood gradient of MRFs with hidden units 8

2.4 Markov chains and Gibbs sampling . 9

2.4.1 Markov chains . 10

2.4.2 Gibbs sampling . 11

3 Restricted Boltzmann Machines 13

3.1 Binary-binary Restricted Boltzmann Machines 13

3.2 Correlations . 14

3.3 Conditional Distributions . 15

3.4 Block Gibbs sampling . 17

3.5 The gradient of the log-likelihood . 17

3.6 Training Restricted Boltzmann Machines . 19

3.6.1 Contrastive Divergence . 19

3.6.2 Persistent Contrastive Divergence . 22

3.6.3 Parallel tempering . 23

3.7 Practical Considerations . 24

4 Centered Restricted Boltzmann Machines 27

4.1 The centering trick . 28

4.2 Training centered Restricted Boltzmann Machines 29

4.2.1 Centering the gradient . 30

iii

5 Restricted Boltzmann Machines with real-valued units 33

5.1 Gaussian units . 33

5.2 Binomial units . 34

5.3 Rectified linear units . 35

5.3.1 Emergence of compositional representations 36

6 Experiments 37

6.1 Setup . 37

6.1.1 Datasets and setup . 37

6.2 Normal binary-binary RBMs . 38

6.2.1 Comparison between CD, PCD and PT 38

6.2.2 Receptive fields . 39

6.2.3 Generative performances . 40

6.3 Centered binary-binary RBMs . 41

6.4 Binary-ReLU RBMs . 43

7 Conclusions 47

Bibliography 49

iv

1
Introduction

Deep learning, a family of machine learning algorithms based on artificial neural networks, has

dramatically improved state-of-the-art performances in numerous fields, including image process-

ing, natural language processing, speech recognition, intelligent gaming, automated transporta-

tion, healthcare and genomics. These achievements are obtained thanks to the large amount

of data and computational power that is available nowadays. However, the theoretical under-

standing of such deep models evolves much slower than their increasing complexity, so these

networks behave more and more as black-boxes. Using simpler models allows us to give a better

interpretation of their outputs. In this thesis we consider Restricted Boltzmann Machines, which

are much simpler than deep models but still can learn very efficient representations of complex

data.

Restricted Boltzmann Machines (RBMs) are artificial neural networks that represent some of the

most common building blocks of deep probabilistic models. These models can learn, in some way,

probability distributions over multiple variables. In particular, RBMs are a particular kind of

Boltzmann Machines (BM), which are energy-based stochastic recurrent neural networks. With

respect to a BM, an RBM is not recurrent, and this makes its learning procedure particularly

simple and efficient.

In this work we present the theoretical framework to which RBMs belong and we study the

performances of various types of models. Chapter 2 provides an overview of probabilistic graph-

ical models. In particular, we focus on Markov random fields, of which RBMs are a particular

kind. Then, we discuss how such models are able to learn a probability distribution in an unsu-

pervised way and how to draw samples from it. In Chapter 3 we introduce RBMs with binary

units and we analyse their properties, which mainly follow from the absence of intra-layer con-

nections. Finally, we discuss how to train RBMs by presenting the main techniques: contrastive

divergence, persistent contrastive divergence and parallel tempering. In Chapter 4, following

the work of Melchior et al. [26], we discuss the so-called centering trick, which makes RBMs

flip-invariant and also improves their performances. Next, in Chapter 5, starting from the work

of Nair and Hinton [28], we introduce RBMs with real-valued units. In particular, we focus

on rectified linear units, which are known for improving learning and generative performances.

1

Chapter 6 presents some experiments that study RBMs performances. First we consider normal

binary-binary RBMs, then we move on to centered binary-binary RBM and lastly we analyse

binary-ReLU RBMs.

2

2
Probabilistic graphical models

Probabilistic Graphical Models (PGMs) are a rich framework that use a graph-based repre-

sentation as the basis for compactly encoding a complex distribution over a high-dimensional

space [19]. In this graphical representation the nodes correspond to the variables in our domain,

and the edges correspond to probabilistic interactions between them. An example is shown in

Figure 2.1.

PGMs offer several useful properties. First, they provide a simple way to visualize the structure

of probabilistic models and can be used to design and motivate new ones. Then, by inspecting

the graph, we can get information about properties of a model. Lastly, complex computations

can be expressed in terms of graphical manipulations which ease the mathematical treatment.

2.1 Conditional independence and factorization

An important property for probability distributions over multiple variables is that of condi-

tional independence [3]. Consider three variables x, y and z and suppose that the conditional

probability distribution of x given y and z is independent of y. Then, we can write

p(x|y, z) = p(x|z), (2.1)

and we say that x is conditionally independent of y given z. This can also be expressed in the

form

p(x,y|z) = p(x|y, z)p(y|z) = p(x|z)p(y|z). (2.2)

This means that the joint distribution of x and y (conditioned on z) factorizes into the product

of the marginal distribution of x and the marginal distribution of y (conditioned on z). Thus,

given z, x and y are statistically independent.

An elegant feature of graphical models is that conditional independence properties of the joint

distribution can be read directly from the graph without having to perform any analytical

3

a

b

c

d

Figure 2.1: Example of probabilistic graphical model.

manipulations [3]. In fact, suppose to have an undirected graph with three sets of nodes A, B

and C. If we want to verify if A is independent of B we just have to consider all possible paths

that connect nodes in A to nodes in B. If all such paths pass through one or more nodes in C,

then the conditional independence property holds. Another important feature is that the graph

defines a skeleton for compactly representing a high-dimensional distribution: we can “break

up” the distribution into independent factors and then define the overall joint distribution as a

product of these factors [19]. For example, the factorization of the distribution associated with

the graph in Figure 2.1 is p(a, b, c, d) = 1
Zψ1(a, b)ψ2(b, c)ψ3(c, d)ψ4(a, d). These two features

are deeply connected. Indeed, the independence properties of the distribution are precisely

what allow it to be represented in a factorized form. Conversely, a particular factorization of

the distribution guarantees that certain independencies hold. These properties allow complex

computations (e.g., marginalization) to be derived efficiently by using algorithms that exploit

the graph structure.

Different types of graphical models are associated with different kinds of graph structures. For

example, Bayesian networks are associated with directed graphs, i.e. graphs in which the edges

have a direction. Markov random fields, also known as Markov networks, are associated with

undirected graphs, where edges are bidirectional. Restricted Boltzmann Machines are a partic-

ular kind of Markov random field, hence we will focus on this graph structure. In the following,

we adopt the notation used by Fischer and Igel in their article on training Restricted Boltzmann

Machines [12].

2.2 Markov random fields

An RBM is a particular kind of Markov random field, which is an undirected graph. An undi-

rected graph is an ordered pair G = (V,E), where V is a finite set of nodes and E is a set

of undirected edges [13]. An edge consists of a pair of nodes from V and the neighborhood

Nv = {w ∈ V : {w, v} ∈ E} of a node v is defined by the set of nodes connected to v. An

example of undirected graph is shown in Figure 2.2.

A clique is a subset of V such that there exists a link between all pairs of nodes in the subset

[3]. A clique is called maximal if no node can be added such that the resulting set is still a

clique. In the undirected graph in Figure 2.2, both {v1, v2} and {v1, v2, v3} are cliques but only

the latter is maximal. We denote by C the set of all maximal cliques of an undirected graph.

In this section, we show that the factors in the decomposition of the joint distribution over the

4

graph can be defined as functions of the variables in the cliques.

A sequence of nodes v1, v2, . . . , vm ∈ V , with {vi, vi+1} ∈ E for i = 1, . . . ,m − 1 defines a path

from v1 to vm and we say that a set V ⊂ V separates two nodes v /∈ V and w /∈ V if every path

from v to w contains a node from V. For example, in Figure 2.2 V = {v4, v5} separates v1 and

v8.

Given an undirected graph G = (V,E), we associate each node v ∈ V to a random variable Xv

taking values in a state space Λv. For simplicity, we assume Λv = Λ for all v ∈ V . The set of

random variables X = (Xv)v∈V is called a Markov random field (MRF) if the joint probability

distribution p fulfills the local Markov property with respect to the graph [13].

Definition 1 (Local Markov property). The joint probability distribution of a set of random

variables X = (Xv)v∈V is said to fulfill the local Markov property with respect to a graph G =

(V,E) if for all v ∈ V the random variable Xv is conditionally independent of all other variables

given its neighborhood (Xw)w∈Nv . That is, for all v ∈ V and all x ∈ Λ|V |, one has that

p(xv|(xw)w∈V \{v}) = p(xv|(xw)w∈Nv). (2.3)

If the probability distribution of the MRF is strictly positive, the local Markov property is

equivalent to other two types of Markov property [13].

Definition 2 (Global Markov property). The MRF is said to have the global Markov property

with respect to a graph G = (V,E) if for any three disjunct subsets A,B, S ⊂ V , such that

all nodes in A and B are separated by S, the variables (Xa)a∈A and (Xb)b∈B are conditionally

independent given (Xs)s∈S, i.e., for all x ∈ Λ|V | one has that

p((xa)a∈A|(xt)t∈S∪B) = p((xa)a∈A|(xt)t∈S). (2.4)

Definition 3 (Pairwise Markov property). The MRF is said to have the pairwise Markov

property with respect to a graph G = (V,E) if any two non-adjacent variables are condi-

tionally independent given all other variables: if {v, w} /∈ E, then p(xv, xw|(xt)t∈V \{v,w}) =

p(xv|(xt)t∈V \{v,w})p(xw|(xt)t∈V \{v,w}) for all x ∈ Λ|V |.

We know that conditional independence of random variables and factorization properties of

the joint probability distribution are closely related, but we still have to formally express their

connection. The following theorem shows that if the Markov property is satisfied there exists a

general factorization of MRF distributions [7].

Theorem 1 (Hammersley-Clifford). A strictly positive distribution p satisfies the Markov prop-

erty with respect to an undirected graph G if and only if p factorizes over G.

A distribution is said to factorize over an undirected graph G with maximal cliques C if there

5

v1

v2

v3

v4

v5

v6

V

Figure 2.2: Example of undirected graph. Here the neighborhood of node v4 is {v2, v5, v6}. Both
{v1, v2} and {v1, v2, v3} are cliques but only the latter is maximal. V = {v2, v3} separates v1 and
v6.

exists a set of non-negative functions {ψ ∈ C}C⊂C , called potential functions, satisfying

∀xC , x̂C ∈ Λ|V | : (xc)c∈C = (x̂c)c∈C ⇒ ψC(xC) = ψC(x̂C), (2.5)

and

p(x) =
1

Z

∏
C∈C

ψC(xC), (2.6)

where the normalization constant Z is called partition function [3]. If p is strictly positive, also

the potential functions are strictly positive. Thus, we can write

p(x) =
1

Z

∏
C∈C

ψC(xC) =
1

Z
exp

(∑
C∈C

lnψC(xC)

)
=
e−E(xC)

Z
, (2.7)

where E =
∑

C∈C lnψC(xC) is called the energy function [3]. Therefore, the (strictly positive)

joint probability distribution of every MRF can be written as product of potentials using Equa-

tion (2.7) – which is referred to as the Gibbs distribution – for which the total energy is obtained

by adding the energy of each of the maximal cliques.

In an undirected graph, the potentials do not have a specific probabilistic interpretation [3]. This

is in contrast to directed graphs in which each factor represents the conditional distribution

of the corresponding variable. One consequence is that their product will in general not be

correctly normalized. This gives flexibility in choosing the potential functions, but it raises

the question of how to motivate a choice of potential function for a particular application. A

possible interpretation is to see the potential function as expressing which configurations of the

local variables are preferred to others [3].

2.3 Unsupervised Markov random field learning

In unsupervised learning we want to learn an unknown distribution q from unlabeled data. The

hope is that, through mimicry, the machine is forced to build a compact internal representation

of its world and then generate imaginative content. If we assume that the structure of the

6

graphical model is known and that the energy function is parameterized by θ, unsupervised

learning of a data distribution with an MRF means adjusting the parameters θ. Therefore, we

adapt the notation p(x|θ) to emphasize the dependency of a distribution on its parameters.

Let us consider a training set S = {x1, . . . ,xl}, in which the samples are unlabeled and assumed

to be independent and identically distributed with unknown distribution q. The common way to

learn the model parameters is maximum–likelihood estimation [13], which in our case corresponds

to finding the MRF parameters θ that maximize the likelihood given the training data, defined

as

L(θ|S) =
l∏

i=1

p(xi|θ). (2.8)

Since the logarithm is a monotonically increasing function, maximizing the likelihood is the

same as maximizing the log-likelihood, which is given by

lnL(θ|S) = ln
l∏

i=1

p(xi|θ) =
l∑

i=1

ln p(xi|θ). (2.9)

From a computational standpoint, maximizing the log-likelihood is less expensive and avoids

numerical errors. However, in general it is not possible to find the maximum likelihood parame-

ters analytically for the Gibbs distribution of a MRF, since it requires to compute the partition

function Z. Thus, we need to use numerical approximations, for example gradient ascent.

Maximizing the likelihood corresponds to minimizing the distance between the unknown dis-

tribution q underlying S and the distribution p of the MRF in terms of the Kullback–Leibler

divergence (KL divergence) [20], which for a finite state space Ω is given by

KL(q||p) =
∑
x∈Ω

q(x) ln
q(x)

p(x)
=
∑
x∈Ω

q(x) ln q(x)−
∑
x∈Ω

q(x) ln p(x). (2.10)

The KL divergence is a (non-symmetric) measure of the difference between two distributions. A

KL divergence of zero indicates that the two distributions in question have identical quantities of

information, i.e. they are the same. In the other cases it is always positive. From Equation (2.10)

we see that the KL divergence can be expressed as the difference between the Shannon entropy

of q and a second term. Only the latter depends on the parameters subject to optimization,

which is the log-likelihood. Therefore, maximizing the log-likelihood corresponds to minimizing

the KL divergence.

Recall that p(x) ∝ e−E(x), therefore the probability of a configuration is inversely proportional

to its energy. Therefore, from a physical perspective, learning can be interpreted as tuning the

model parameters such that the energy corresponding to our input patterns is minimized.

7

2.3.1 Gradient ascent

As mentioned above, in general it is not possible to find parameters by maximizing the log-

likelihood analytically. Thus, numerical approximations are needed. The standard technique is

gradient ascent on the log-likelihood [13, 16, 25]. This corresponds to iteratively updating the

parameters θ(t) to θ(t+1) based on the gradient of the log-likelihood. The complete form of the

update rule is the following:

θ(t+1) = θ(t) + η
∂ lnL(θ(t)|S)

∂θ(t)
− λθ(t) + ν∆θ(t−1). (2.11)

The parameter η ∈ R+ is the learning rate, λ is the weight decay parameter, ν is the momentum

parameter and ∆θ(t−1) is the gradient at step t− 1. If λ ∈ R+
0 and ν ∈ R+

0 are set to zero, we

have the vanilla gradient ascent. In general, it is better to have models with small weights in

absolute value. To achieve this, we can consider an objective function in which we subtract to

the log-likelihood half of the norm of the parameters 1/2‖θ‖2, weighted by λ. This method is

called weight decay, it penalizes weights with large magnitude and it leads to the −λθ(t) term

in the update rule (2.11). The update rule can be further extended by a momentum term [30],

∆θ(t−1), weighted by the parameter ν, which serves as a memory of the direction we are moving

in the parameter space. Using momentum helps against oscillations in the iterative update

procedure and may speed up the learning process.

2.3.2 Log-likelihood gradient of MRFs with hidden units

Let us assume that our goal is to model a m-dimensional unknown probability distribution q.

Usually, X is split into visible (or observed) variables V = (V1, . . . , Vm) corresponding to the

components of the observations and hidden (or latent) variables H = (H1, . . . ,Hn) given by the

remaining n = |X| −m variables. While the visible variables correspond to the components of

an observation, the hidden variables introduce dependencies between the visible variables. For

example, if our data consist of images, the visible variables correspond to the pixels intensity

whereas the hidden variables introduce correlations between them. Thus, using latent variables

we can describe complex distributions over the visible variables by means of conditional distribu-

tions. The joint probability distribution of (V,E) is described by the Gibbs distribution. Usually

we are interested in the probability distribution of V , which can be obtained by marginalizing

over h:

p(v) =
∑
h

p(v,h) =
1

Z

∑
h

e−E(v,h), (2.12)

where Z =
∑
v,h e

−E(v,h).

MRFs learning algorithms are based on gradient ascent on the log-likelihood. For a model of

8

the form (2.12) with parameters θ, the log-likelihood given a single training example v is

lnL(θ|v) = ln p(v|θ) = ln
1

Z

∑
h

e−E(v,h)

= ln
∑
h

e−E(v,h) − lnZ

= ln
∑
h

e−E(v,h) − ln
∑
v,h

e−E(v,h), (2.13)

and the gradient is

∂ lnL(θ|v)

∂θ
=

∂

∂θ

(
ln
∑
h

e−E(v,h)

)
− ∂

∂θ

ln
∑
v,h

e−E(v,h)


= − 1∑

h e
−E(v,h)

∑
h

e−E(v,h)∂E(v,h)

∂θ
+

1∑
v,h e

−E(v,h)

∑
v,h

e−E(v,h)∂E(v,h)

∂θ

= −
∑
h

p(h|v)
∂E(v,h)

∂θ
+
∑
v,h

p(v,h)
∂E(v,h)

∂θ
, (2.14)

where in the last step we used the fact that

p(h|v) =
p(v,h)

p(v)
=

1
Z e
−E(v,h)

1
Z

∑
h e
−E(v,h)

=
e−E(v,h)∑
h e
−E(v,h)

. (2.15)

The last expression of (2.14) is the difference between two expectations: the first is the expected

value of the energy function under the model distribution and the second is the expected value

under the conditional distribution of the hidden variables given the training example. This is a

well-known decomposition into the positive phase and negative phase of learning [16]. Intuitively,

the positive phase can be interpreted as pushing down on the energy of training examples and

the negative phase as pushing up on the energy of samples drawn from the model1.

The drawback of such expression is that, in general, the computation of these sums is exponen-

tial in the number of variables of the MRF and thus for huge models it is not feasible [13, 16].

Therefore, we need to use approximations. The standard procedure to compute these expecta-

tions is by using samples drawn from the corresponding distribution. Such techniques are called

Markov chain Monte Carlo algorithms.

2.4 Markov chains and Gibbs sampling

Markov chains have a key role in MRF training because they provide a method to draw sam-

ples from non-trivial probability distributions such as the Gibbs distribution. In particular,

1Essentially, the negative phase acts to reduce the probability of the samples drawn from the model distribution.
In this sense, these samples can be considered to represent the model “incorrect beliefs about the world” and they
are often referred to as fantasy particles. Actually, the negative phase has been proposed as a possible explanation
for dream sleep [8]. However, neuroscientific experiments do not seem to support this hypothesis.

9

Restricted Boltzmann Machines – the focus of this thesis – are trained by using Gibbs sampling,

which will be discussed in this section.

2.4.1 Markov chains

A Markov chain is a stochastic process describing a sequence of possible events in which the

probability of each event depends only on the state attained in the previous event [4, 19].

Formally, a Markov chain is a family of random variables X = {X(k)|k ∈ N0} taking values in

a (finite) set Ω and for which ∀k ≥ 0 and ∀j, i, i0, . . . , ik−1 ∈ Ω one has

p
(k)
ij = Pr

(
X(k+1) = j|X(k) = i,X(k−1) = ik−1, . . . , X

(0) = i0

)
= Pr

(
X(k+1) = j|X(k) = i

)
. (2.16)

This is also referred to as Markov property, but it considers temporal neighborhood, while the

Markov properties discussed in Section 2.2 consider neighborhood induced by the graph topology.

If for all points in time k ≥ 0 the p
(k)
ij have the same value pij – i.e. the transition probabilities

do not change over time – the chain is called homogeneous and the matrix P = (pij)i,j∈Ω is

called the transition matrix of the homogeneous Markov chain [3].

If the initial distribution µ(0) (the probability distribution of X(0)) is given by the probability

vector µ(0) = (µ(0)(i))i∈Ω, with µ(0)(i) = Pr(X(0) = i), the distribution µ(k) of X(k) is given by

µ(k)T = µ(0)TPk. A distribution π for which πT = πTP is called a stationary distribution or

equilibrium distribution. If the Markov chain at time k has reached the stationary distribution

µ(k) = π, then all subsequent states will have the same distribution π, that is µ(k+n) = π for

all n ∈ N . A sufficient but not necessary condition for a distribution π to be stationary with

respect to a Markov chain described by the transition probabilities pij , i, j ∈ Ω, is that ∀i, j ∈ Ω

π(i)pij = π(j)pji. (2.17)

This is called detailed balance condition and it implies that, around any closed cycle of states,

there is no net flow of probability. A Markov chain that satisfies this property is said to be

reversible [3].

Of particular interest are Markov chains for which there exists a unique stationary distribution.

For a finite state space Ω, this happens if the Markov chain is irreducible. A Markov chain

is irreducible or ergodic if one can go from any state in Ω to any other in a finite number of

transitions or, more formally, if ∀i, j ∈ Ω ∃k > 0 with Pr(X(k) = j|X(0) = i) > 0.

Finally, a chain is called aperiodic if every state can reoccur at irregular times. Formally,

a chain is aperiodic if for all i ∈ Ω the greatest common divisor of all elements in the set

{k ∈ N0|Pr(X(k) = i|X(0) = i) > 0} is 1. It is possible to prove that an irreducible and aperiodic

Markov chain on a finite state space is guaranteed to converge to its stationary distribution.

The theorem requires the notion of distance of variation between two probability distributions.

If α and β are two distributions defined on a finite state space Ω, the distance of variation is

10

defined as [19]

dV (α,β) =
1

2
|α− β| = 1

2

∑
x∈Ω

|α(x)− β(x)|. (2.18)

Now, we can enunciate the following theorem [4].

Theorem 2. Let π be the stationary distribution of an irreducible and aperiodic Markov chain

on a finite state space with transition matrix P. For an arbitrary starting distribution µ

lim
k→∞

dV (µTPk,πT) = 0. (2.19)

Markov chain Monte Carlo methods (MCMC) make use of this convergence theorem for produc-

ing samples. Suppose we want to sample from a distribution q with a finite state space. We just

have to construct an irreducible and aperiodic Markov chain with stationary distribution π = q

and if k is large enough, the state x(k) of X(k) from the constructed chain can be approximately

considered as a sample from q. Gibbs sampling is such a MCMC method.

2.4.2 Gibbs sampling

Gibbs sampling [14] belongs to the broader class of Metropolis-Hastings algorithms, which are

MCMC algorithms that generate the transitions of a Markov chain in two substeps. In the

first substep, a candidate state is picked at random from a so-called proposal distribution. In

the second substep, the candidate state is accepted as the new state of the Markov chain with

an acceptance probability ensuring that detailed balance holds. In particular, Gibbs sampling

constructs a Markov chain by updating each variable based on its conditional distribution given

the state of all the other variables. This is the standard technique that is used to produce

approximate samples from the Gibbs distribution of an MRF.

Let us consider a MRF X = (X1, . . . , XN) represented by an undirected graph G = (V,E),

where to simplify the notation we set V = {1, . . . , N}. Assuming that the MRF changes its

state over time, we obtain a Markov chain X = {X(k)|k ∈ N0}, which takes values in Ω = ΛN .

A new state of the chain is produced as follows [13]:

1. first, we pick at random Xi, i ∈ V with probability q(i) given by a probability distribution

q on V ;

2. then, the new state for Xi is sampled based on its conditional probability distribution

given the state (xv)v∈V \i of all other variables (Xv)v∈V \i, which is π(xi|(xv)v∈V \i) =

π(xi|(xw)w∈Ni) because of the local Markov property of MRFs.

The transition probability pxy for two states x,y of the MRF X with x 6= y is

pxy =

q(i)π(yi|(xv)v∈V \i) if ∃i ∈ V so that ∀v ∈ V with v 6= i : xv = yv

0 otherwise
, (2.20)

11

and in particular the probability that the state of the MRF stays the same is

pxx =
∑
i∈V

q(i)π(xi|(xv)v∈V \i). (2.21)

Following Theorem 2, in order to show that the Markov chain defined by these transition proba-

bilities converges to the joint distribution π of the MRF, we have to prove that π is the stationary

distribution of the Gibbs chain and that the chain is irreducible and aperiodic. To prove that

π is the stationary distribution we just have to verify that the detailed balance condition (2.17)

holds. For x = y this follows directly. If x and y differ in the value of more than one random

variable, then this follows from the fact that, according to Equation (2.20), pyx = pxy = 0.

Finally, if x and y differ only in the state of exactly one variable Xi, i.e., yj = xj for j 6= i and

yi 6= xi, we have:

π(x)pxy = π(x)q(i)π(yi|(xv)v∈V \i)

= π(xi|(xv)v∈V \i)q(i)
π(yi, (xv)v∈V \i)

π((xv)v∈V \i)

= π(yi|(xv)v∈V \i)q(i)
π(xi, (xv)v∈V \i)

π((xv)v∈V \i)

= π(y)q(i)π(xi, (xv)v∈V \i)

= π(y)pyx. (2.22)

Thus, the detailed balance condition is fulfilled and π is the stationary distribution.

Since π is strictly positive, so are the conditional probability distributions of the single variables.

This means that every single variable Xi can take every state xi ∈ Λ in a single transition step

and thus every state of the whole MRF can reach any other in ΛN in a finite number of steps.

Thus, the Markov chain is irreducible. Moreover, since pxx > 0 for all x ∈ ΛN , the Markov

chain is aperiodic. Therefore, Theorem 2 assures us that the chain converges to the stationary

distribution π.

12

3
Restricted Boltzmann Machines

3.1 Binary-binary Restricted Boltzmann Machines

Invented under the name harmonium by Paul Smolensky in 1986 [33], Restricted Boltzmann

Machines (RBMs) are MRFs containing a layer of m observable variables V = (V1, . . . , Vm)

and a single layer of n hidden variables H = (H1, . . . ,Hn), which represent the dependencies

between the visible units. The key property of such models is that they have no intra-layer

connections. Figure 3.1 shows the graph structure of an RBM.

In binary-binary RBMs, (V ,H) take values (v,h) ∈ {0, 1}m+n and the joint probability distri-

bution under the model is given by the Gibbs distribution

p(v,h) =
1

Z
exp(−E(v,h)), (3.1)

with energy function

E(v,h) = −vTWh− bTv − cTh = −
n∑
i=1

m∑
j=1

wijhivj −
m∑
j=1

bjvj −
n∑
i=1

cihi, (3.2)

where wij are real-valued weights associated to the links between units Vj and Hi and bj and ci

c1

h1

c2

h2

c3

h3

... cn

hn

b1

v1

b2

v2

b3

v3

... bm

vm

wnm

Figure 3.1: Graph structure of a Restricted Boltzmann Machine with m visible units and n hidden
units.

13

are real-valued bias terms associated with Vj and Hi, respectively.

Specifying a generative model with this bipartite interaction structure has two major advantages

[25]: (i) it enables capturing both pairwise and higher-order correlations between the visible

units, as we will see in Section 3.2, and (ii) it makes it easier to sample from the model using

an MCMC method known as block Gibbs sampling, see Section 3.4, which in turn makes the

model easier to train.

The partition function Z in Equation (3.1) is given by summing over all possible pairs of visible

and hidden vectors:

Z =
∑
v

∑
h

exp(−E(v,h)). (3.3)

From this definition it is clear that the naive method of computing Z summing over all states

could be computationally intractable, unless we find a well-designed algorithm that is able to

exploit regularities in the probability distribution to compute Z faster. In the case of RBMs,

Long and Servedio formally proved that the partition function Z is intractable [23].

Theorem 3 (Long and Servedio). There is a universal constant ε > 0 such that if P 6= NP ,

then there is no polynomial-time algorithm with the following property: given as input an n× n
matrix A satisfying ‖A‖∞ ≤ ψ(n) (where the function ψ grows faster than linearly), the algorithm

approximates the partition function Z to within a multiplicative factor of eεψ(n).

The intractable partition function Z implies that the normalized joint probability distribution

p(v) cannot be evaluated exactly. Therefore, approximations are needed.

3.2 Correlations

Before discussing training, it is worth better understanding the kind of correlations that can be

captured using an RBM. We consider a binary-binary RBM, but the following calculations hold

in general for all types of RBM [25]. The probability that the network assigns to a visible vector

v is given by summing over all possible hidden vectors:

p(v) =
∑
h

p(v,h) =
∑
h

e−E(v,h)

Z
. (3.4)

But we can also define the marginal energy as

p(v) =
e−E(v)

Z
. (3.5)

Combining these equations we get

E(v) = − ln
∑
h

e−E(v,h) = −
m∑
j=1

bjvj −
n∑
i=1

ln
∑
hi

ecihi+
∑m

j=1 wijvjhi . (3.6)

14

Let us introduce the distribution of the hidden units

qi(hi) =
ecihi

Z
, (3.7)

and the cumulant generating function

Ki(t) = ln
∑
hi

qi(hi)e
thi =

∑
r

κ
(r)
i

tr

r!
, (3.8)

where κ
(r)
i = ∂rtKi|t=0 is the r-th cumulant. Then the marginal energy for the visible units can

be re-written as

E(v) = −
m∑
j=1

bjvj −
n∑
i=1

Ki

 m∑
j=1

wijvj


= −

m∑
j=1

bjvj −
n∑
i=1

∑
r=1

κ
(r)
i

(∑m
j=1wijvj

)r
r!

= −
m∑
j=1

bjvj −
m∑
j=1

(
n∑
i=1

κ
(1)
i wij

)
vj −

1

2

m∑
j,l=1

(
n∑
i=1

κ
(2)
i wijwil

)
vjvl + . . . (3.9)

Thus, the marginal energy includes all orders of interactions between visible units, weighted by

the corresponding cumulant. This is the reason why RBMs have such extraordinary represen-

tational power: each hidden unit can encode interactions of arbitrarily high order. Therefore,

by combining many different hidden units, we can encode very complex interactions. Another

strength of such models is that they are able to learn which orders of interactions are important

directly from the data, without the need for a prior specification, like in MaxEnt models.

3.3 Conditional Distributions

The bipartite graph structure of the RBM has the special property of not having intra-layer

connections. Mathematically, this means that its conditional distributions p(h|v) and p(v|h)

factorize:

p(h|v) =

n∏
i=1

p(hi,v), p(v|h) =

m∏
j=1

p(vj ,h). (3.10)

Let us find the expressions for these factors [13]. First, let v−l denote the state of all visible

units except the l-th one and define

αl(h) = −
n∑
i=1

wilhi − bl, (3.11)

15

and

β(v−l,h) = −
n∑
i=1

m∑
j=1,j 6=l

wijvjhi −
m∑

j=1,j 6=l
bjvj −

n∑
i=1

cihi, (3.12)

so that the energy can be written as

E(v,h) = β(v−l,h) + vlαl(h). (3.13)

Then, we have

p(Vl = 1|h) = p(Vl = 1|v−l,h) =
p(Vl = 1,v−l,h)

p(v−l,h)

=
e−E(vl=1,v−l,h)

e−E(vl=1,v−l,h) + e−E(vl=0,v−l,h)
=

e−β(v−l,h)−1·αl(h)

e−β(v−l,h)−1·αl(h) + e−β(v−l,h)−0·αl(h)

=
e−β(v−l,h)e−αl(h)

e−β(v−l,h)e−αl(h) + e−β(v−l,h)
=

e−β(v−l,h)e−αl(h)

e−β(v−l,h)(e−αl(h) + 1)

=
e−αl(h)

e−αl(h) + 1
= σ(−αl(h))

= σ

(
n∑
i=1

wilhi + bl

)
, (3.14)

where σ(x) = 1/(1+e−x) is the sigmoid function. With analogous calculations we can also show

that

p(Hl = 1|v) = σ

 m∑
j=1

wljvj + cl

 . (3.15)

The sigmoid function is one of the main activation functions of artificial neurons. Thus, an

RBM can be interpreted as a stochastic neural network where the nodes correspond to neurons

and edges correspond to synaptic connections. Therefore, the conditional probability of a single

variable being one can be interpreted as the firing rate of a stochastic neuron with sigmoid

activation function.

Now, let us derive the form of the RBM distribution over V . This is done by marginalizing, as

we see in Equation (2.12):

p(v) =
∑
h

p(v,h) =
1

Z

∑
h

e−E(v,h)

=
1

Z

∑
h1

∑
h2

· · ·
∑
hn

e
∑m

j=1 bjvj

n∏
i=1

ehi(ci+
∑m

j=1 wijvj)

=
1

Z
e
∑m

j=1 bjvj
∑
h1

eh1(c1+
∑m

j=1 w1jvj)
∑
h2

eh2(c2+
∑m

j=1 w2jvj) · · ·
∑
hn

ehn(cn+
∑m

j=1 wnjvj)

16

v1 v2 v3 v4

data

h1 h2 h3 h4

t = 0

v1 v2 v3 v4

h1 h2 h3 h4

t = 1

v1 v2 v3 v4

h1 h2 h3 h4

t =∞

p(h|v) p(v|h)

Figure 3.2: Example of block Gibbs sampling for an RBM with four visible units and four hidden
units. Here t indicates the number of steps in the chain.

=
1

Z
e
∑m

j=1 bjvj

n∏
i=1

∑
hi

ehi(ci+
∑m

j=1 wijvj)

=
1

Z

m∏
j=1

ebjvj
n∏
i=1

(
1 + eci+

∑m
j=1 wijvj

)
. (3.16)

This result shows why an RBM can be regarded as a “product of experts” model, i.e. a model

in which multiple “experts” for the individual components of the observations are combined.

3.4 Block Gibbs sampling

The absence of intra-layer connections, which result in the conditional independence between

the variables in the same layer, makes Gibbs sampling particularly efficient. Instead of sampling

new values for all variables subsequently, the states of all variables in one layer can be sampled

jointly, in parallel. Thus, Gibbs sampling results in two steps:

1. sampling a new state h for the hidden units, based on p(h|v);

2. sampling a state v for the visible units, based on p(v|h).

This is referred to as block Gibbs sampling [13, 16]. A schema is shown in Figure 3.2.

3.5 The gradient of the log-likelihood

Equation (2.14) shows that the gradient of a MRF log-likelihood is given by the sum of two

terms: the expectation of the energy gradient over the conditional distribution of the hidden

units given a training sample v, and the expectation of the energy gradient under the RBM

distribution [18]. The first term can be efficiently computed, since it factorizes [13]. We have

−
∑
h

p(h|v)
∂E(v,h)

∂wij
=
∑
h

p(h|v)hivj

=
∑
h

n∏
k=1

p(hk|v)hivj

=
∑
hi

∑
h−i

p(hi|v)p(h−i|v)hivj

17

=
∑
hi

p(hi|v)hivj
∑
h−i

p(h−i|v)

︸ ︷︷ ︸
=1

= p(Hi = 1|v)vj = σ

 m∑
j=1

wijvj + ci

 vj . (3.17)

The computation of the expectation of the energy gradient under the RBM distribution is

intractable for most RBMs because its complexity is exponential in the size the the smallest

layer between the visible and the hidden one. In fact, recalling that p(v,h) = p(v)p(h|v) =

p(h)p(v|h), we can write

∑
v,h

p(v,h)
∂E(v,h)

∂θ
=


∑
v p(v)

∑
h p(h|v)∂E(v,h)

∂θ∑
h p(h)

∑
v p(v|h)∂E(v,h)

∂θ

, (3.18)

and note that the outer sum runs over 2m or 2n terms. Therefore, as discussed in Section 2.3.2,

we approximate this expectation by using MCMC techniques. Using Equation (3.17) we can

compute the derivative of the log-likelihood of a single training pattern v with respect to wij :

∂ lnL(θ|v)

∂wij
= −

∑
h

p(h|v)
∂E(v,h)

∂wij
+
∑
v,h

p(v,h)
∂E(v,h)

∂wij

=
∑
h

p(h|v)hivj −
∑
v

p(v)
∑
h

p(h|v)hivj

= p(Hi = 1|v)vj −
∑
v

p(v)p(Hi = 1|v)vj . (3.19)

Then we can compute the mean over the training set S = {v1, . . . ,vl}:

1

l

∑
v∈S

∂ lnL(θ|v)

∂wij
=

1

l

∑
v∈S

(
−Ep(h|v)

[
∂E(h,v)

∂wij

]
+ Ep(v,h)

[
∂E(h,v)

∂wij

])
=

1

l

∑
v∈S

(
−Ep(h|v) [vjhi]− Ep(v,h) [vjhi]

)
= 〈vjhi〉p(h|v)q(v) − 〈vjhi〉p(v,h)

= 〈vjhi〉d − 〈vjhi〉m , (3.20)

where q denotes the data distribution, 〈·〉d indicates the expectation under the data, i.e. under

p(h|v)p(v), and 〈·〉m indicates the expectation under the model, i.e. under p(v,h). With

analogous calculations we can also get the derivatives with respect to the visible and hidden

biases:

∂ lnL(θ|v)

∂bj
= vj −

∑
v

p(v)vj , (3.21)

∂ lnL(θ|v)

∂ci
= p(Hi = 1|v)−

∑
v

p(v)p(Hi = 1|v), (3.22)

18

v1 v2 v3 v4

data

h1 h2 h3 h4

t = 0

v1 v2 v3 v4

h1 h2 h3 h4

t = 1

v1 v2 v3 v4

h1 h2 h3 h4

t = k

p(h|v) p(v|h)

Figure 3.3: Contrastive divergence approximately samples from the model distribution by termi-
nating the Gibbs sampling after k steps, starting from the data.

so that

1

l

∑
v∈S

∂ lnL(θ|v)

∂bj
= 〈vj〉d − 〈vj〉m , (3.23)

1

l

∑
v∈S

∂ lnL(θ|v)

∂ci
= 〈hi〉d − 〈hi〉m . (3.24)

Getting unbiased samples of 〈vjhi〉m, 〈vj〉m and 〈hi〉m is difficult. These can be obtained by

performing alternating Gibbs sampling for a very long time, making learning very slow. In the

next section we discuss much faster learning procedures.

3.6 Training Restricted Boltzmann Machines

RBMs are trained using Maximum Likelihood Estimation (MLE), in which the log-likelihood

gradient is approximated using Gibbs sampling and gradient ascent is performed on this approx-

imation. The most common techniques, which will be discussed in this section, are contrastive

divergence, persistent contrastive divergence and parallel tempering.

3.6.1 Contrastive Divergence

One drawback of Gibbs sampling is that it may take many back and forth iterations to draw

an independent sample. For this reason, called Contrastive Divergence (CD) was introduced as

an approximate Gibbs sampling technique [9]. In CD-k, we just perform k iterations of block

Gibbs sampling, with k often taken to be as small as 1.

The Gibbs chain is initialized with a training example v(0) and is terminated after k steps,

yielding a sample v(k). Each step t consists of a step of block Gibbs sampling, in which h(t)

is sampled from p(h|v(t)) (positive phase) and then v(t+1) is sampled from p(v|h(t)) (negative

phase), see Figure 3.3. The gradient of the log-likelihood with respect to a parameter θ for the

training sample v(0) is then approximated by the following expression:

CDk(θ,v
(0)) = −

∑
h

p(h|v(0))
∂E(v(0),h)

∂θ
+
∑
h

p(h|v(k))
∂E(v(k),h)

∂θ
(3.25)

19

Clearly, this comes at a price. Truncating the Gibbs sampler prevents sampling far away from

the starting point, which for CD-k are the data points in the batch. In other words, the

approximation given by Equation 3.25 is biased. Therefore, our generative model will be much

more accurate around regions of feature space close to our training data. Thus, as is often the

case in machine learning, CD-k sacrifices the ability to generalize to some extent in order to

make the model easier to train. The following theorem gives a good understanding of the CD

approximation and the corresponding bias by showing that the log-likelihood gradient can be

expressed as a sum of terms containing the k-th sample [2].

Theorem 4 (Bengio and Delalleau). For a converging Gibbs chain

v(0) ⇒ h(0) ⇒ v(1) ⇒ h(1) ⇒ . . .

starting at data point v(0), the log-likelihood gradient can be written as

∂ ln p(v(0))

∂θ
=−

∑
h

p(h|v(0))
∂E(v(0),h)

∂θ
+

+ Ep(v(k)|v(0))

[∑
h

p(h|v(k))
∂E(v(k),h)

∂θ

]
+ Ep(v(k)|v(0))

[
∂ ln p(v(k))

∂θ

]
(3.26)

and the final term, i.e. the bias, converges to zero as k goes to infinity.

The approximation error depends on the number k of sampling steps as well as on the rate of

convergence or the mixing rate of the Gibbs chain. This rate describes how fast the Markov chain

approaches the equilibrium distribution and is determined by the transition probabilities of the

chain [13]. The mixing rate of the Gibbs chain of an RBM depends on the magnitude of the

model parameters [9]. In fact, recall that the conditional probabilities p(vj |h) and p(hi|v) are

given by activating
∑n

i=1wijhi+bj and
∑m

j=1wijvj+ci using the sigmoid function. Therefore, if

the absolute values of the parameters are high, the sigmoid function saturates and the conditional

probabilities get close to one or zero. When this happens, the states of the Gibbs chain get more

and more “predictable”, and thus the equilibrium distribution is more difficult to reach.

An upper bound on the expectation of the CD approximation error is given by the following

theorem [11].

Theorem 5 (Fischer and Igel). Let p denote the marginal distribution of the visible units of

an RBM and let q be the empirical distribution defined by a set of samples v1, . . . ,vl. Then

an upper bound on the expectation of the error of the CD-k approximation of the log-likelihood

derivative with respect to some RBM parameter θa is given by∣∣∣∣∣Eq(v(0))
[
Ep(v(k)|v(0))

[
∂ ln p(v(k))

∂θ

]]∣∣∣∣∣ ≤ 1

2
|q − p|

(
1− e−(m+n)∆

)k
(3.27)

20

Algorithm 1 Contrastive divergence with k steps [13].

Input: RBM, training batch S
Output: ∆wij , ∆bj , ∆ci for i = 1, . . . , n, j = 1, . . . ,m

1: Set ∆wij = ∆bj = ∆ci = 0 for i = 1, . . . , n, j = 1, . . . ,m
2: for all v ∈ S do
3: v(0) ← v
4: for t = 0, . . . , k − 1 do
5: for i = 1, . . . , n do

6: sample h
(t)
i ∼ p(hi|v(t))

7: for j = 1, . . . ,m do

8: sample v
(t+1)
j ∼ p(vj |h(t))

9: for i = 1, . . . , n, j = 1, . . . ,m do

10: ∆wij ← ∆wij + p(Hi = 1|v(0))v
(0)
j − p(Hi = 1|v(k))v

(k)
j

11: for j = 1, . . . ,m do

12: ∆bj ← ∆bj + v
(0)
j − v

(k)
j

13: for i = 1, . . . , n do
14: ∆ci ← ∆ci + p(Hi = 1|v(0))− p(Hi = 1|v(k))

with

∆ = max

{
max

l∈{1,...,m}
ϑl, max

l∈{1,...,n}
ξl

}
(3.28)

where

ϑl = max

{∣∣∣∣∣
n∑
i=1

1wil>0wil + bl

∣∣∣∣∣,
∣∣∣∣∣
n∑
i=1

1wil<0wil + bl

∣∣∣∣∣
}

(3.29)

and

ξl = max

{∣∣∣∣∣∣
m∑
j=1

1wlj>0wlj + cl

∣∣∣∣∣∣,
∣∣∣∣∣∣
m∑
j=1

1wlj<0wlj + cl

∣∣∣∣∣∣
}

(3.30)

Note that the bound on the error depends on the absolute values of the RBM parameters, on

the size of the RBM, and on the distance in variation between the modeled distribution and the

starting distribution of the Gibbs chain.

The bias can lead to a distortion of the learning process: after a certain number of iterations

the likelihood can start to diverge, in the sense that it systematically decreases if the number

of sampling steps k is not large enough [12]. This is a severe problem because the log-likelihood

is not tractable for most RBMs, and therefore this misbehavior can not be displayed and used

as a stopping criterion. Since the bias depends on the magnitude of the weights, weight decay

can help to prevent this problem. However, the weight decay parameter λ, see equation (2.11),

is difficult to tune. If it is too small, weight decay has no effect. If it is too large, learning

21

v1 v2 v3 v4

v(k) of the previous step

h1 h2 h3 h4

t = 0

v1 v2 v3 v4

h1 h2 h3 h4

t = 1

v1 v2 v3 v4

h1 h2 h3 h4

t = k

p(h|v) p(v|h)

Figure 3.4: Persistent contrastive divergence approximately samples from the model distribution
by terminating the Gibbs sampling after k steps, starting from the visible state of the previous
update step.

converges to models with low likelihood (see Section 6.2.1) [12].

A batch version of CD-k is shown in Algorithm 1. In this case, in each step the gradient is

computed using the complete training set. This is referred to as batch learning. However, when

dealing with large datasets it is often more efficient to use only a subset S′ ⊂ S – called mini-

batch – in every iteration, reducing the computational burden. This is referred to as online

learning.

3.6.2 Persistent Contrastive Divergence

In Persistent Contrastive Divergence (PCD) [36], rather than restarting the Gibbs sampler from

the data at each step – which is the essence of CD – Gibbs sampling starts from the visible state

in the previous step. In other words, we keep “persistent” chains that are run for k Gibbs steps

after each parameter update, in which the initial state of the current Gibbs chain is equal to

v(k) from the previous update step. A schema is shown in Figure 3.4. The idea behind PCD is

that, if the learning rate is sufficiently small, one could assume that the chains stay close to the

stationary distribution and thus the model parameters evolve slowly. The number of persistent

chains used for sampling is a hyper parameter of the algorithm. In the canonical form, there

exists one Markov chain per training example in a batch.

There also exists a variant of PCD called Fast Persistent Contrastive Divergence (FPCD), which

tries to reach a faster mixing of the Gibbs chain by introducing additional parameters wfij , b
f
j , c

f
i

– referred to as fast parameters – to the conditional distributions used for Gibbs sampling:

p(Hi = 1|v) = σ

 m∑
j=1

(wij + wfij)vj + (ci + cfi)

 , (3.31)

p(Vj = 1|h) = σ

(
n∑
i=1

(wij + wfij)hi + (bj + bfj)

)
. (3.32)

The learning procedure is the same as for PCD, but it requires larger learning rates and the

weight decay parameter to change faster. However, this variant seems not to lead to major

improvements [12].

22

3.6.3 Parallel tempering

In Parallel Tempering (PT) we introduce multiple Gibbs chains that sample from more and more

smoothed replicas of the original distribution [10, 31]. Given an ordered set of M temperatures

1 = T1 < T2 < · · · < TM , we define a set of M Markov chains with stationary distributions

pr(v,h) =
1

Zr
exp

(
−E(v,h)

Tr

)
, r = 1, . . . ,M (3.33)

where Zr =
∑
v,h e

−E(v,h)
Tr . Note that p1 is the model distribution. Chains with higher temper-

atures have more distributed probability density and therefore their mixing rate is larger. In

particular, for T →∞ we get the uniform distribution, where the samples are independent and

the stationary distribution is reached immediately.

Algorithm 2 Parallel tempering with k steps and M Markov chains [13].

Input: RBM, minibatch S
Output: ∆wij , ∆bj , ∆ci for i = 1, . . . , n, j = 1, . . . ,m

1: Set ∆wij = ∆bj = ∆ci = 0 for i = 1, . . . , n, j = 1, . . . ,m
2: for all v ∈ S do
3: for r = 1, . . . ,M do

4: v
(0)
r ← vr

5: for i = 1, . . . , n do

6: sample h
(0)
r,i ∼ p(hr,i|v

(0)
r)

7: for t = 0, . . . , k − 1 do
8: for j = 1, . . . ,m do

9: sample v
(t+1)
r,j ∼ p(vr,j |h(t)

r)

10: for i = 1, . . . , n do

11: sample h
(t+1)
r,i ∼ p(hr,i|v(t+1)

r)

12: vr ← v
(k)
r

13: for r ∈ {s|2 ≤ s ≤M and s mod 2 = 0} do

14: swap (v
(k)
r ,h

(k)
r) and (v

(k)
r−1,h

(k)
r−1) with probability given by (3.35)

15: for r ∈ {s|3 ≤ s ≤M and s mod 2 = 1} do

16: swap (v
(k)
r ,h

(k)
r) and (v

(k)
r−1,h

(k)
r−1) with probability given by (3.35)

17: for i = 1, . . . , n, j = 1, . . . ,m do

18: ∆wij ← ∆wij + p(Hi = 1|v)vj − p(Hi = 1|v(k)
1)v

(k)
1,j

19: for j = 1, . . . ,m do

20: ∆bj ← ∆bj + vj − v(k)
1,j

21: for i = 1, . . . , n do

22: ∆ci ← ∆ci + p(Hi = 1|v)− p(Hi = 1|v(k)
1)

Algorithm 2 shows the pseudo-code of PT. In each step of the algorithm we run k Gibbs sam-

pling steps in each Markov chain, obtaining the samples (v
(k)
1 ,h

(k)
1), . . . , (v

(k)
M ,h

(k)
M). Then, two

neighbouring Gibbs chains Tr and Tr−1 may exchange particles (v
(k)
r ,h

(k)
r) and (v

(k)
r−1,h

(k)
r−1) with

23

probability based on the Metropolis ratio

ω = min

{
1,
pr

(
v

(k)
r−1,h

(k)
r−1

)
pr−1

(
v

(k)
r ,h

(k)
r

)
pr

(
v

(k)
r ,h

(k)
r

)
pr−1

(
v

(k)
r−1,h

(k)
r−1

)}, (3.34)

which for the RBM becomes

ω = min

{
1, exp

((
1

Tr
− 1

Tr−1

)(
E
(
v(k)
r ,h(k)

r

)
− E

(
v

(k)
r−1,h

(k)
r−1

)))}
. (3.35)

If ω > r, where r ∼ U(0, 1) is an uniformly distributed random number, the swap is done. After

these swaps we take v1 as a sample from the RBM distribution. This procedure is repeated L

times, yielding the samples v1,1, . . . , v1,L which are used for the approximation of the expected

value under the model distribution in the log-likelihood gradient. Usually, L is set to the number

of samples in the mini-batch of training data.

Compared to CD and PCD, PT introduces computational overhead but leads to more mixed

Markov chains and thus less biased gradient approximations.

3.7 Practical Considerations

In this chapter we reviewed the main aspects of training RBMs. However, it is impossible to

provide an exhaustive guide that deals with all the possible parameters and procedures. A brief

summary of useful tricks and heuristics has been compiled by Geoffrey Hinton [18]. Here we

report the key points:

Size of the mini-batches. For datasets that contain a small number of equiprobable classes,

the ideal mini-batch size is often equal to the number of classes. Moreover, each mini-batch

should ideally contain one example of each class to reduce the sampling error when estimating

the gradient for the whole training set. For other datasets, first randomize the order of the

training example and then use mini-batches of size about 10.

Initialization of the parameters. Make sure that the weights have random initial values to

break the symmetry. Hinton suggests taking the weights wij from a Gaussian with mean zero and

standard deviation σ = 0.01. An alternative initialization scheme proposed by Glorot and Bengio

[15] instead chooses the standard deviation to scale with the size of the layers: σ = 2/
√
Nv +Nh,

where Nv and Nh are number of visible and hidden units respectively. The bias of the hidden

units is initialized to zero while the bias of the visible units is set to ln(pj/(1− pj)) where pj is

the proportion of training vectors in which vj is on, that is pj = 〈vj〉d.

Number of hidden units. First, estimate how many bits it would take to describe each

data-vector if we were using a good model. Then, multiply that estimate by the number of

training cases and use a number of parameters that is about an order of magnitude smaller. If

24

the training cases are highly redundant, use fewer parameters.

Reconstruction error. It can be used but it should not be completely trusted. One good

practice is to visualize the histograms of the weights, visible biases and hidden biases. One can

also consider the histogram of the increments to these parameters.

Monitoring overfitting. After every few epochs, compute the average free energy of a rep-

resentative subset of the training data

〈F (v)〉 =

〈
−

m∑
j=1

vjbj −
n∑
i=1

log
(

1 + e
∑m

j=1 wijvj+ci
)〉

(3.36)

and compare it with the average free energy of a validation set. If the gap starts growing, the

model is overfitting.

Regularization. Use an L1 or L2 penalty, typically only on the weight parameters, not the

biases. Values for the weight-cost coefficient for L2 weight decay typically range from 0.01 to

0.00001. Dropout can also decrease overfitting when training with CD and PCD.

Sparsity. We can encourage sparse activities of the binary hidden units by choosing a proba-

bility p� 1 of being active and by enforcing the actual probability of being active q to be close

to p. q is estimated by using an exponential decaying average of the mean probability that a

unit is active in each mini-batch:

qnew = λqold + (1− λ)qcurrent, (3.37)

where qcurrent is the mean activation of the hidden units on the current mini-batch. The sparsity

target p is set to between 0.01 and 0.1, and the decay rate λ is set to between 0.9 and 0.99.

Momentum. Start with ν = 0.5. Once the large initial progress in the reduction of the

reconstruction error has settled down to gentle progress, increase ν = 0.9. This shock may cause

a transient increase in the reconstruction error. If this causes a more lasting instability, keep

reducing the learning rate by factors of 2 until the instability disappears.

Learning Rates. Typically, it is helpful to reduce the learning rate in later stages of training.

A good rule of thumb is to look at the histogram of the weight updates and at the histogram of

the weights. The updates should be about 10−3 times the weights.

Updates for CD-1 and PCD-1. If the visible units are using probabilities instead of binary

values, there are two ways to collect the positive statistics for contrastive divergence: 〈pjhi〉 or

〈pipj〉, where pi is the probability that hi takes value 1, which is also the expected value of hi.

Using hi is closer to the mathematical model of an RBM, but using pj allows faster learning

because it introduces less noise. However, using hi can create less noise when computing the

25

difference between positive and negative statistics. Hinton suggests to always use states when

the hidden units are being driven by data and to always use probabilities when they are driven

by reconstructions. If the visible units use the sigmoid function, it is better to use probabilities

both for the data and the reconstructions. Finally, when collecting the statistics for learning

weights or biases, use the probabilities.

26

4
Centered Restricted Boltzmann Machines

In the first decade of the 2000s, when RBMs were one of the main focuses of attention in the

deep learning community, two major problems have been reported [26].

The first problem is that the bias of the gradient approximation introduced by using only a

few (usually one) steps of Gibbs sampling may lead to a divergence of the log-likelihood during

training. As discussed in the previous chapter, this problem is solved by using more advanced

techniques that allow a faster mixing of the Gibbs chain, such as parallel tempering.

The second problem is that the learning process is not invariant to the data representation. For

example, if we train an RBM on the MNIST dataset and then on the 1-MNIST dataset – obtained

by flipping each bit in the MNIST [34] (see Figure 4.1) – we obtain different performances. This is

due to missing invariance properties of the gradient with respect to this flip transformation [13].

Such problem was first solved Cho, Raiko and Ilin by introducing the so called enhanced gradient,

which is derived by calculating a weighted average over the gradients one gets by applying any

possible bit flip combination on the data set [6]. Tang and Sutskever found another (simpler)

solution, which consists in subtracting the data mean from the visible variables [34]. This is

known as the centering trick, which was originally proposed for feed forward neural networks

[22, 32]. These techniques lead to a model that reaches similar performances and results both

on the MNIST and the 1-MNIST dataset. More recently, Montavon and Müller extended the

centering trick also to the hidden units [27]. Actually, all these techniques are just particular

cases of a more general centering trick, in which an offset is subtracted both from the hidden

and visible units.

(a) MNIST. (b) 1-MNIST.

Figure 4.1: MNIST and 1-MNIST datasets examples.

27

4.1 The centering trick

The centering trick consists in shifting the visible and hidden variables by some offset parameters

µ = (µ1, . . . , µN) and λ = (λ1, . . . , λM), respectively. The energy for the corresponding centered

binary RBM is given by

E(v,h) = −(v − µ)Tb− cT (h− λ)− (v − µ)W(h− λ). (4.1)

For µ = λ = 0 we recover the normal binary RBM, for µ = 〈v〉d and λ = 0 we obtain the

original centering trick by Tang and Sutskever and for µ = 〈v〉d and λ = 〈h〉d we obtain the

model by Montavon and Müller.

The expressions for the factors of the conditional probabilities (3.10) are now given by

p(Vl = 1|h) = σ

(
n∑
i=1

wil(hi − λi) + bl

)
, (4.2)

p(Hl = 1|v) = σ

 n∑
j=1

wlj(vj − µj) + cl

 . (4.3)

Again, we can find the RBM distribution over V by marginalizing (see Equation (2.12)):

p(v) =
∑
h

p(v,h) =
1

Z

∑
h

e−E(v,h)

=
1

Z

∑
h1

∑
h2

· · ·
∑
hn

e
∑m

j=1 bj(vj−µj)
n∏
i=1

e(hi−λi)(ci+
∑m

j=1 wij(vj−µj))

=
1

Z
e
∑m

j=1 bj(vj−µj)
n∏
i=1

∑
hi

e(hi−λi)(ci+
∑m

j=1 wij(vj−µj))

=
1

Z

m∏
j=1

ebj(vj−µj)
n∏
i=1

(
e−λi(ci+

∑m
j=1 wij(vj−µj)) + e(1−λi)(ci+

∑m
j=1 wij(vj−µj))

)
=

1

Z

m∏
j=1

ebj(vj−µj)
n∏
i=1

e−λi(ci+
∑m

j=1 wij(vj−µj))
(

1 + eci+
∑m

j=1 wij(vj−µj)
)
. (4.4)

Finally, the log-likelihood gradients now take the form:

∂ lnL(θ|v)

∂wij
≡ ∆wij = 〈(vj − µj)(hi − λi)〉d − 〈(vj − µj)(hi − λi)〉m (4.5)

∂ lnL(θ|v)

∂bj
≡ ∆bj = 〈vj − µj〉d − 〈vj − µj〉m = 〈vj〉d − 〈vj〉m (4.6)

∂ lnL(θ|v)

∂ci
≡ ∆ci = 〈hi − λi〉d − 〈hi − λi〉m = 〈hi〉d − 〈hi〉m , (4.7)

28

which in vector form read

∆W =
〈
(v − µ)(h− λ)T

〉
d
−
〈
(v − µ)(h− λ)T

〉
m

(4.8)

∆b = 〈v〉d − 〈v〉m (4.9)

∆c = 〈h〉d − 〈h〉m . (4.10)

These equations show that centering only affects the gradient with respect to the weights. The

important results is that it can be shown that the gradient of a centered RBM is invariant to

flip transformations if a flip of vj to 1 − vj implies a change of µj to 1 − µj and a flip of hi

to 1 − hi implies a change of λi to 1 − λi [26]. This holds for µj = λi = 0.5 but also for the

expectation values of vj and hj under any distribution. Moreover, if the offsets are set to the

expectation values, centered RBMs are also invariant to any shift of variables, not only to flip

transformations [26].

Montavon and Müller have shown that centering improves the conditioning of the underlying op-

timization problem [27]. More precisely, the ratio between the highest and the lowest eigenvalue

of the Hessian matrix is smaller. This ratio is known as condition number of the Hessian and it

encodes how hard a strongly convex problem is to solve. Larger condition numbers imply slower

convergence of gradient descent because in some directions the gradient will change rapidly and

in others it will change very slowly.

4.2 Training centered Restricted Boltzmann Machines

If we set µ and λ to the expected values of the variables, which is the most common choice,

these values may depend on the model parameters and thus they may change during training.

Therefore, we need to adapt the standard learning algorithm so that the offsets are updated

to match the expectations under the new distribution we get after each parameter update.

Moreover, when updating the offsets we need to transform the RBM parameters such that the

probability distribution remains the same. An RBM with offsets µ and λ can be transformed

into an RBM with offsets µ̃ and λ̃ by

W̃ = W, (4.11)

b̃ = b+ W(λ̃− λ), (4.12)

c̃ = c+ WT (µ̃− µ), (4.13)

such that E(v,h|θ,µ,λ) = E(v,h|θ̃, µ̃, λ̃) + const is guaranteed. Clearly, these equations can

be used to transform a centered RBM into a normal one and vice versa, emphasizing that normal

and centered RBMs are just different parametrizations of the same model class.

Algorithm 3 shows the pseudo-code to train a centered RBM. Notice that 〈·〉 denotes the average

over the samples of the current batch. Thus, for example, 〈vd〉 is the average of the samples vd

in the current batch, which is taken as approximation of 〈v〉d. Similarly, 〈hd〉 = 〈p(h = 1|vd)〉

29

is an approximation for 〈h〉d. Note that the offsets are updated using a moving average with

sliding factors ζµ, ζλ ∈ (0, 1) (usually ζ ∼ 0.01). This is done to get a smoother approximation

of the parameter updates in case the approximation of the mean values can be biased. For

example, if we use the model mean or we have small mini-batch sizes the use of the moving

average leads to stabler updates.

Algorithm 3 Training a centered RBM [26].

Input: RBM, data.
Output: Trained RBM.

1: Initialize W, b, c, µ, λ, η (learning rate), ζµ, ζλ (moving average factors).
2: repeat
3: for all batch in data do
4: for all sample v in batch do
5: Compute hd, vm and hm using, for example, PCD or PT;

6: Estimate µbatch = 〈vd〉 and λbatch = 〈hd〉
7: /* Transform the parameters with respect to the new offsets */

8: b← b+ ζλW(λbatch − λ);
9: c← c+ ζµW

T (µbatch − µ);
10: /* Update the offsets using a moving average with factors ζµ and ζλ */

11: µ← (1− ζµ)µ+ ζµµbatch;
12: λ← (1− ζλ)λ+ ζλλbatch;
13: /* Update the parameters according to the gradients */

14: ∆W←
〈
(vd − µ)(hd − λ)T

〉
−
〈
(vm − µ)(hm − λ)T

〉
;

15: ∆b← 〈vd〉 − 〈vm〉;
16: ∆c← 〈hd〉 − 〈hm〉;
17: W←W + η∆W;
18: b← b+ η∆b;
19: c← c+ η∆c;

20: until training is finished;

4.2.1 Centering the gradient

Instead of centering the parameters, we can also center the gradients, obtaining a “centered

parameter update”. This leads to the following updates [26]:

∆cwij = 〈(vj − µ)(hi − λi)〉d − 〈(vj − µj)(hi − λi)〉m (4.14)

∆cbj = 〈vj〉d − 〈vj〉m −∆cwijλi (4.15)

∆cci = 〈hi〉d − 〈hi〉m −∆cw
T
ijλj , (4.16)

which in vector form read

∆W =
〈
(v − µ)(h− λ)T

〉
d
−
〈
(v − µ)(h− λ)T

〉
m

(4.17)

∆b = 〈v〉d − 〈v〉m −∆cWλ (4.18)

∆c = 〈h〉d − 〈h〉m −∆cW
Tµ. (4.19)

30

If we set µ = (〈v〉d + 〈v〉m)/2 and λ = (〈h〉d + 〈h〉m)/2 we recover the enhanced gradient [26].

This confirms the fact that the enhanced gradient gradient is just a particular kind of centering

trick. The pseudocode for training a normal RBM using the centered gradient is shown in

Algorithm 4.

Algorithm 4 Training a normal RBM using the centered gradient [26].

Input: RBM, data.

Output: Trained RBM.

1: Initialize W, b, c, µ, λ, η (learning rate), ζµ, ζλ (moving average factors).

2: repeat

3: for all batch in data do

4: for all sample v in batch do

5: Compute hd, vm and hm using, for example, PCD or PT;

6: Estimate µbatch = 〈vd〉 and λbatch = 〈hd〉
7: /* Update the offsets using a moving average with factors ζµ and ζλ */

8: µ← (1− ζµ)µ+ ζµµbatch;

9: λ← (1− ζλ)λ+ ζλλbatch;

10: /* Update the parameters using the centered gradient */

11: ∆cW←
〈
(vd − µ)(hd − λ)T

〉
−
〈
(vm − µ)(hm − λ)T

〉
;

12: ∆cb← 〈vd〉 − 〈vm〉 −∆cWλ;

13: ∆cc← 〈hd〉 − 〈hm〉 −∆cW
Tµ;

14: W←W + η∆cW;

15: b← b+ η∆cb;

16: c← c+ η∆cc;

17: until training is finished;

31

32

5
Restricted Boltzmann Machines with real-valued units

RBMs were initially developed using binary visible and hidden units, for which the probability

of being active is given by the sigmoid function, see (3.14) and (3.15). However, there are many

other types of units that can be used, in particular when dealing with data that take real values

and that are modeled by continuous distributions. In general, it is possible to have continuous

valued variables by extending the definition of RBM to a MRF for which the energy is such

that Equations (3.10) hold. As follows from Hammersley-Clifford theorem (Theorem 1), this

happens for any energy function of the form

E(v,h) =

n∑
i=1

m∑
j=1

ψi,j(hi, vj) +

m∑
j=1

gj(vj) +

n∑
i=1

Ui(hi), (5.1)

where ψi,j , gj and Ui are potentials such that the partition function Z is finite. In this chapter

we present Gaussian, binomial and rectified linear units.

5.1 Gaussian units

When dealing with data such as natural images or if we want to represent data with high fidelity

we can replace binary visible units by linear units with independent Gaussian noise. The energy

function contains a quadratic potential:

E(v,h) = −
n∑
i=1

m∑
j=1

wijhi
vj
σj

+
m∑
j=1

(vj − bj)2

2σ2
j

−
n∑
i=1

cihi, (5.2)

where σj is the standard deviation for visible unit vj . One of the main difficulties with this kind

of model is learning the variance parameters σj , which are constrained to be positive. Therefore,

in many applications, each visible unit is normalized to have zero mean and unitary variance.

Then, one uses noise-free reconstructions, in which σj = 1 ∀j, given by the input from the hidden

units plus its bias,
∑

iwijhi + bj . A different approach was taken by Cho, Ilin and Raiko, who

33

introduced an energy function which facilitates learning [5]:

E(v,h) = −
n∑
i=1

m∑
j=1

wijhi
vj
σ2
j

+

m∑
j=1

(vj − bj)2

2σ2
j

−
n∑
i=1

cihi. (5.3)

Under this modified energy function, the expressions for the conditional probabilities and the

update rules for the parameters contain only σ2
j . Furthermore, they re-parametrize the variance

parameters as σ2
j = ezj , so that they are naturally constrained to stay positive.

When using Gaussian units, particular attention must be paid to the value of the learning

rate. It should be one or two orders of magnitude smaller than the one used with binary units,

since there is no upper bound to the components of the reconstruction (i.e. the visible units).

Therefore, if one component is very large, its corresponding weights will get a very large update.

This makes RBMs with Gaussian visible units less stable with respect to binary ones. If both

visible and hidden units are Gaussian, the instability problem becomes even worse. We can

also use Gaussian hidden units with binary visible units. In this case p(v,h) is Gaussian in the

hidden units and p(v) can be exactly computed [1]. The result is the equilibrium distribution of

a Hopfield model, which is known for modelling only pairwise interactions. However, in general

it is well known that non-linear activation functions produce better results. In fact, as we

discussed in Section 3.2, non-linear activation functions (e.g. the sigmoid or the ReLU) produce

high order (> 2) interactions between units.

5.2 Binomial units

Another way to allow each unit to express more information was introduced by Teh and Hinton

when dealing with images of faces, for which binary pixels are far from ideal [35]. They intro-

duced binomial units, which are obtained by making N separate copies of each binary unit, all

sharing the same bias and weights. In this way, each pixel can have N + 1 different intensities.

The nice side effect of shared weights is that all copies receive the same total input and therefore

they have the same probability pi of being active, meaning that we have to perform the com-

putation only once. During the reconstruction of the image from the hidden activities, we can

select n replicas to be active with probability
(
N
n

)
npi(N−n)1−pi . The expected number of active

replicas is Npi and the variance is Npi(1 − pi). For small pi we get a Poisson distribution and

the growth in pi is exponential in the total input, making learning less stable. Conversely, for

pi → 1 the variance becomes small, which is not desirable. Another nice feature deriving from

weights-sharing is that the mathematics underlying binary-binary RBMs remains the same. In

particular, the gradient of the log-likelihood (3.20) is unaffected, except that vj and hi are now

the number of active replicas.

This “replica trick” is a cheap way of simulating an ensemble of neurons. Alternatively, it can

be seen as a way of simulating a single neuron over a time interval in which it may produce

multiple spikes.

34

5.3 Rectified linear units

Rectified linear units are a variant of binomial units that brings new interesting features. Let us

consider a set of binomial units, where each copy has shared weights and biases. Now, we add

different fixed offsets to the biases of duplicated units: the first duplicate bias is offset by −0.5,

the second by −1.5, the third by −2.5, and so on, up to −(N − 0.5). Whereas in the binomial

case the sum of the duplicated units follows a binomial distribution, here it is possible to prove

that the sum of the probabilities of the duplicated units approximately follows a distribution

given by

∞∑
n=1

σ (Ii − n+ 0.5) ≈ log
(
1 + eIi

)
(5.4)

where Ii =
∑

j wijvj + ci [28]. This is a smoothed version of a rectified linear unit function

ReLU(x) = max(0, x). A nice feature of ReLU units is that, unlike Bernoulli units, they preserve

information about the magnitudes of their inputs above threshold. This property is expected

for real neurons, in fact ReLU functions were first introduced in the context of theoretical

neuroscience [37].

The downside of using a different bias for each copy is that to get the probabilities required

for sampling integer values we need to evaluate the logistic function N times. However, Nair

and Hinton showed that we can drop the constraint on the rectified linear unit values to be

integers and approximate the states as max(0, Ii + N (0, σ(Ii))), where N (0, V) is Gaussian

noise with zero mean and variance V [28]. An unit that uses this kind of approximation is

called Noisy Rectified Linear Unit (NReLU), and it has been shown that it works well with

CD-1 [28]. However, this sampling heuristic does not suggest the parametric form of the joint

binary-NReLU distribution. This means we cannot evaluate it using methods such as Annealed

Importance Sampling. In fact, only strictly monotonic activation functions can derive feasible

joint and conditional distributions and NReLU is not strictly monotonic [29].

If both visible and hidden units are rectified linear, we may need a smaller learning rate to avoid

instability [18]. In fact, if the weight between two rectified linear units is greater than 1 then

there is no upper bound to the energy that we can obtain by giving high values to the units.

Nevertheless, RBMs composed of rectified linear units are more stable than RBMs composed of

Gaussian units because the rectification avoids oscillations between very high positive activity

for one mini-batch and very high negative activity for the next one [18].

ReLU units non-linearity allow very good discriminative and generative properties. Nair and

Hinton gave an approximate probabilistic interpretation for the max(0, I) non-linearity [28].

Consider using rectified linear units with zero noise to model data that lies on the surface of an

unit hypersphere. Each ReLU unit corresponds to a plane through the centre of the hypersphere

and the activity is zero on half of it and on the other half it increases linearly with the distance

from that plane. In this way with N units we get 2N regions on the surface of the hypersphere

(which is assumed to be at least N -dimensional). In each of these regions we have different

35

active units, but their number does not change. Therefore, we have a different linear model in

each region.

5.3.1 Emergence of compositional representations

Once the parameters of an RBM are trained, each hidden unit becomes selectively activated by a

specific data feature. Multiple combinations of features, with varying degrees of activation of the

corresponding hidden units, allow for efficient generation of a large variety of new data samples.

Tubiana and Monasson showed that ReLU hidden units allow RBMs to enter a compositional

representation regime, in which each hidden unit encodes a limited set of features and the

representation of sample is defined by a small set of hidden units with strong activations [39].

The existence of such encoding seems to depend on the values of the RBM parameters, such as

the size of the hidden layer [13] and the weights sparsity [39]. However, Tubiana and Monasson

use a slightly different variant of ReLU activation, which is associated with the potential

UReLU(hi) =


h2i
2 + cihi if hi ≥ 0

+∞ if hi < 0,
(5.5)

so that the bias of the hidden units act as a threshold. Therefore, starting from the heuristic pro-

posed by Hinton and Nair, we now approximate the states as max(0,
∑

j wijvj−ci+N (0, σ(Ii))).

36

6
Experiments

6.1 Setup

6.1.1 Datasets and setup

We consider two benchmark problems. The Bars & Stripes (B&S) [24] data set consists of

patterns of size D × D generated according to the following procedure. First, the pixels of

each row are either set to zero or to one with equal probability. Then, with probability 1/2 the

pattern is rotated by 90 degrees. This leads to N = 2D+1 patterns where the completely uniform

patterns occur twice as often as the others. In particular, we will consider the 3 × 3 and the

4× 4 patterns, see Figure 6.1.

The MNIST dataset [21] is a database of handwritten digits which is composed of a training

set of 60,000 examples and a test set of 10,000 examples. It is a subset of a larger set available

from NIST. The digits have been size-normalized and centered in a fixed-size grey-scale image

of 28 × 28 pixels. The pixels take values in [0, 255], but usually they are normalized to lie in

[0, 1]. Then, we can directly use these normalized values as input for our model. Alternatively,

we can binarize the values using a threshold of 0.5, so that all values below it are set to 0

and all the values above it are set to 1. Another alternative is to treat pixel values in [0, 1] as

probabilities of a binary event and use binomial units [17]. In this thesis we binarize the pixels

values. Moreover, we will also consider the dataset which is obtained by flipping all the binary

values of the MNIST, which is referred to as 1-MNIST. Some examples are shown in Figure 4.1.

If not stated otherwise, we use RBMs with 4 hidden units in the case of 3×3 B&S, 9 hidden units

in the case of 4× 4 B&S and 400 hidden units in the case of MNIST. These models are trained

Figure 6.1: Patterns from the 4× 4 B&S dataset.

37

0 20 40 60 80 100
Epoch

−190

−180

−170

−160

−150
L

og
-l

ik
el

ih
oo

d

CD-1

PCD-1

PT10

(a) MNIST.

0 50000 100000 150000 200000 250000
Epoch

−160

−140

−120

−100

−80

−60

L
og

-l
ik

el
ih

oo
d

CD

PCD

PT

(b) B&S.

Figure 6.2: Evolution of the average log-likelihood over 10 runs for CD, PCD and PT trainers
on MNIST and 3 × 3 B&S datasets. In the case of B&S 4 hidden units are used, whereas for
MNIST 16 hidden units are used.

with standard batch learning for B&S and with mini-batches of 100 examples for MNIST. The

weights are initialized using Xavier initialization [15], wij = U [−
√

6/(n+m),+
√

6/(n+m)],

the initial hidden bias are set to zero and the initial visible bias are set to ln
(
〈vj〉d /(1− 〈vj〉d)

)
,

following Hinton recipe (see Section 3.7). The learning rate is set to η = 0.1 for B&S and to

η = 0.01 for MNIST. To obtain unbiased comparisons between normal and centered RBMs no

annealing learning rate, momentum or weight decay are used (ν = λ = 0). Moreover, for a

lighter notation, every time we write CD and PCD we mean CD-1 and PCD-1, and with PT we

mean PT10. The number of PCD chains is set by default to the same value of the mini-batch

size.

6.2 Normal binary-binary RBMs

6.2.1 Comparison between CD, PCD and PT

First, we consider normal (i.e. non-centered) RBMs with binary units for both layers and we

test the different trainers discussed in Section 3.6. We use RBMs with few units, so that the

likelihood is tractable and we can monitor it. In particular, we use 4 hidden units for the 3× 3

B&S and 16 hidden units for MNIST.

Figure 6.2 shows the comparison between the three types of trainer. The results are obtained by

averaging over 10 trials. As we can see, CD shows divergence both for B&S and MNIST. That

is, after an initial phase in which the log-likelihood increases, the likelihood starts to decrease.

For the B&S, this happens also when using PCD. Such behaviour is due to the fact that during

learning the weights tend to increase in magnitude. In fact, recall that the mixing rate of the

Gibbs chain decreases as the magnitude of the RBM parameters increases, and hence the CD

approximation gets more biased. Following Theorem 4, we can reduce the bias by increasing

the number of Gibbs steps k. Indeed, the results obtained for different values of k clearly show

that as k increases the divergence effect vanishes (Figure 6.3a). [ht] A better approach would

be to gradually increase the number of Gibbs sampling steps as training proceeds. For example,

38

0 10000 20000 30000 40000 50000
Epoch

−120

−110

−100

−90

−80

−70

−60
L

og
-l

ik
el

ih
oo

d

k = 1

k = 2

k = 5

k = 10

k = 20

k = 100

(a) Effect of CD-k for different values of k.

0 10000 20000 30000 40000 50000
Epoch

−120

−110

−100

−90

−80

−70

−60

L
og

-l
ik

el
ih

oo
d

λ = 0.05

λ = 0.0005

λ = 0.00005

(b) Effect of weight decay

Figure 6.3: Average log-likelihood evolution over 10 runs of training on the B&S (a) with CD-k
for different values of k and (b) with CD-1 for different values of the weight decay parameter λ.

one could start training with k = 1 and then gradually increase it to k = 3, 10, . . . as the

weights grow. During this procedure it may be necessary also to reduce the learning rate, as the

difference between the pairwise statistics that is used for learning will increase. However, as far

as we know there are no fixed criteria that tell us when to change k, hence the only way is to

proceed by trial and error.

The divergence problem can be solved also by using weight decay with a proper value for the

parameter λ. The results of training with different values of λ are shown in Figure 6.3b. As we

can see, for λ = 5·10−2 and λ = 5·10−4 there is no divergence, whereas for λ = 5·10−5 divergence

is present. However, for λ = 5 · 10−2 the log-likelihood is much lower than for λ = 5 · 10−4. This

indicates that the choice of λ is critical not only for avoiding divergence but also for obtaining

better performances in terms of log-likelihood.

Figure 6.2a also shows that, as expected, PCD and PT outperform CD. More surprisingly, PCD

also performs slightly better than PT for MNIST. Probably this happens because of the learning

parameters. Moreover, Figure 6.2b shows that PT does not suffer from divergence, thanks to

the better mixing of the Gibbs chain.

6.2.2 Receptive fields

Hidden units can be seen as feature detectors. This is especially clear if we consider visible units

that represent the pixels of an image. If we plot the color-coded weights of a hidden unit with

the same shape as the input we can visualize the features that most activate that hidden unit.

By doing so we visualize those that, in biological terms, would be the receptive fields of the

neurons.

Figure 6.4 shows the receptive fields of RBMs with 16 and 400 hidden units. For the RBM

with 16 hidden units, the fields appear quite articulate and sensible to most of the visible layer

(Figure 6.4a). Conversely, the receptive fields of the RBM with 400 hidden units are more

localized (Figure 6.4b): each single field is strongly activated by a circular spot. Thus, the

RBM is able to construct more complex filters by joining units at higher and higher levels. For

39

−4

−2

0

2

4

(a) RBM with 16 hidden units.

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(b) RBM with 400 hidden units.

Figure 6.4: Examples of receptive fields of binary-binary RBMs with 16 and 400 hidden units
trained on MNIST using PCD.

(a) MNIST. (b) 4 × 4 B&S.

Figure 6.5: Examples of reconstructions of a test example, an incomplete example and generation
starting from Gaussian noise (binary-binary RBM). For each row, the first column shows the
initial input and the others show the samples from the Gibbs chain after 10 steps from the
previous one, except for the third row, in which samples are spaced 1000 steps. The RBMs are
trained using PCD.

example, for the generation of a handwritten digit image, it probably joins different units to

obtain filters that respond to the oriented edges that compose the digit. Different combinations

of features can produce different variants of the same digits. Many of those variants are not

even contained in the training set, showing the generative power of RBMs.

6.2.3 Generative performances

RBMs are generative learning models. Therefore, once the RBM has been trained we can use

it to generate new data starting from a given input. The input can be completely random,

partially determined, or completely determined. In the second case, the RBM will hopefully

perform a reconstruction of the input.

First, we start by giving as input some of the test examples. Then, we use an incomplete image

as input and finally we feed the RBM with random Gaussian noise (mean µ = 0.5, standard

deviation σ = 0.1). Some examples of results are shown in Figure 6.5. For the MNIST dataset,

the RBM is able to reproduce the given input but the reconstruction performances for the

incomplete example and the random noise are quite weak. To some extent, the final outputs

resemble a digit, but they are quite noisy and in some cases ambiguous or unclear. For the B&S

dataset, which patterns are less complex than the MNIST ones, the RBM performs quite well

in all tasks.

40

(a) Normal RBM. (b) Centered RBM (dd).

Figure 6.6: Examples of reconstructions of a test example, an incomplete example and generation
starting from Gaussian noise for (a) normal binary-binary RBM; (b) dd-centered binary-binary
RBM. For each row, the first column shows the initial input and the others show the samples
from the Gibbs chain after 10 steps from the previous one, except for the third row, in which
samples are spaced 1000 steps. The RBMs are trained using PCD.

6.3 Centered binary-binary RBMs

The types of centered RBMs we consider are listed in Table 6.1. The original centered RBM

(dd) corresponds to the one introduced by Montavon and Müller [27], the enhanced gradient

RBM is the first centered RBM, introduced by Cho et al. [6], and the data normalization RBM

is the one introduced by Tang and Sutskever [34].

Acronym µ λ Description

00 0 0 Normal RBM
dd 〈v〉d 〈h〉d Original centered RBM
aa 1/2(〈v〉d + 〈v〉m) 1/2(〈h〉d + 〈h〉m) Enhanced gradient RBM
d0 〈v〉d 0 Data normalization RBM

Table 6.1: Types of centered RBM.

First, we show that the centering trick makes RBMs flip-invariant. To this aim, we train two

RBMs with 400 hidden units – one centered and the other not – using PCD on MNIST. We use

a dd-centered RBM with a sliding factor of the moving average ζ = 0.01. The evolution of the

log-likelihood is shown in Figure 6.7a. As we can see, the log-likelihood is much lower in the

case of the normal RBM trained on the 1-MNIST and it is also less stable. This asymmetry is

confirmed also by Figure 6.6, which clearly shows that dd-centered RBM generates much better

1-MNIST samples. However, if we consider a centered RBM the performances on the two dataset

become perfectly equivalent and moreover the likelihood is higher than the one obtained with

the normal RBM. Thus, centering not only makes the RBM flip-invariant, but it also leads to a

higher log-likelihood. Even if we show these facts using a dd-centered RBM, this holds for every

type of centering listed in Table 6.1 [26].

The question that naturally arises is if there is a centering type that is better than the others.

To find the answer to this question, we train all the different types of centered RBMs on the

B&S dataset using all CD, PCD and PT. First of all, Figures 6.7b, 6.7c, 6.7d again show that

41

0 20 40 60 80 100
Epoch

−200

−190

−180

−170

−160

−150
L

og
-l

ik
el

ih
oo

d

normal RBM, MNIST

normal RBM, 1-MNIST

dd-centered RBM, MNIST

dd-entered RBM, 1-MNIST

(a) Centering makes RBMs flip-invariant.

0 10000 20000 30000 40000 50000
Epoch

−110

−100

−90

−80

−70

−60

L
og

-l
ik

el
ih

oo
d

00

dd

aa

d0

(b) CD, η = 0.05.

0 10000 20000 30000 40000 50000
Epoch

−160

−140

−120

−100

−80

−60

L
og

-l
ik

el
ih

oo
d

00

dd

aa

d0

(c) PCD, η = 0.05.

0 10000 20000 30000 40000 50000
Epoch

−110

−100

−90

−80

−70

−60

L
og

-l
ik

el
ih

oo
d

00

dd

aa

d0

(d) PT, η = 0.01.

Figure 6.7: (a) Evolution of the log-likelihood for normal and dd-centered RBMs with 400 hidden
units trained on MNIST and 1-MNIST using PCD. (b,c,d) Evolution of the average log-likelihood
on the 3 × 3 B&S dataset for different trainer types (η is the learning rate). The averages are
computed over 10 runs.

centering leads to better performances – that is, faster learning and higher log-likelihood –

than normal RBMs. Furthermore, centering both the visible and the hidden variables (dd, aa)

compared to centering only the visible variables (d0) accelerates learning and leads to a higher

log-likelihood. Then, note that RBMs trained using CD and PCD show divergence, which can

be more or less severe. Again, this is due to the bias induced by using just one step of Gibbs

sampling. Therefore, in this case PCD seems not to increase the mixing rate sufficiently to avoid

divergence. In fact, divergence is prevented when using PT, which leads to a faster mixing of

the Gibbs chain.

Finally, we study the effect of centering on the RBM parameters. For this purpose, we compute

the average weights and bias norms during training of RBMs with 400 hidden units on MNIST

using PCD. The results are shown in Figure 6.8. Figure 6.8a and Figure 6.8b clearly illustrate

that the row and column average norms of the weight matrix for aa and dd are smaller than

for 00 and d0, meaning that it is not sufficient to center only the visible units. Figure 6.8c and

Figure 6.8d show that the hidden bias for 00 and d0 are bigger than for dd and aa, whereas the

visible bias are smaller and do not change significantly. This kind of behavior suggests that for

00 and d0 the bias values do not evolve properly during training, leaving the weights in charge

of modeling the information.

42

0 25 50 75 100 125 150 175 200
Epoch

0

1

2

3

4

5

6
A

ve
ra

ge
n

or
m

of
th

e
w

ei
gh

t
m

at
ri

x
co

lu
m

n
s

00

dd

aa

d0

(a) Norm of the weight matrix columns.

0 25 50 75 100 125 150 175 200
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
ve

ra
ge

n
or

m
of

th
e

w
ei

gh
t

m
at

ri
x

co
lu

m
n

s

00

dd

aa

d0

(b) Norm of the weight matrix rows.

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50

60

A
ve

ra
ge

n
or

m
of

th
e

h
id

d
en

b
ia

s

00

dd

aa

d0

(c) Norm of the hidden bias.

0 25 50 75 100 125 150 175 200
Epoch

130

140

150

160

170

A
ve

ra
ge

n
or

m
of

th
e

vi
si

b
le

b
ia

s

00

dd

aa

d0

(d) Norm of the visible bias.

Figure 6.8: Evolution of the average norm of normal and centered RBM parameters with 400
hidden units during training on MNIST using PCD. The averages are computed over 10 runs.

6.4 Binary-ReLU RBMs

Our binary-ReLU RBM is initialized following the paper by Tubiana and Monasson [39]. The

weights are randomly initialized at ±
√

0.1/m, the initial hidden bias are set to zero and the

initial visible biases are initialized to ln(〈vj〉 /(1− vj)). Training is performed using PCD with

20 mini-batch size, 100 persistent chains, k = 1 Gibbs step between each update, 200 epochs

and initial learning rate η = 5 · 10−3, which decays geometrically after 60 epochs to η = 5 · 10−4.

Learning is tracked by monitoring two parameters. The first one, referred to as sparsity, is a

proxy for the fraction of non-zero weights:

p̂ =
1

mn

n∑
i=1

[
(
∑m

j=1w
2
ij)

2∑m
j=1w

4
ij

]
, (6.1)

whereas the second one is a proxy for the effective inverse temperature of the RBM distribution:

W2 =
1

m

∑
i,j

w2
ij , (6.2)

so that an estimator of the temperature T in p(v,h) = e−
E(v,h)

T is given by T̂ = p̂/W2. To

43

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(a) Receptive fields. (b) Reconstructions.

Figure 6.9: Examples of (a) receptive fields and (b) reconstructions starting from a test example,
an incomplete example and Gaussian noise of a binary-ReLU RBM. The receptive field structure
clearly illustrates the so called compositional phase, in which only a small subset of hidden units
are active. For each row in (b), the first column shows the initial input and the others show the
samples from the Gibbs chain after 10 steps from the previous one, except for the third row, in
which samples are spaced 1000 steps.

control the weight sparsity p̂, Tubiana and Monasson consider a regularization penalty given by

L(x) =
λx
x

n∑
i=1

 m∑
j=1

|wij |

x (6.3)

The case x = 1 is the usual L1 penalty, which is known to sparse weight matrices. However, this

kind of penalty may lead to hidden units that are completely disconnected from the visible layer,

making them useless. To avoid this, it is better to choose x = 2 or x = 3. This is equivalent

to a “custom” L1 penalty in which hidden units that are strongly coupled with the visible ones

get a stronger regularization, and vice versa. This should promote homogeneity among hidden

units. In particular, we choose x = 2.

Figure 6.9a shows the receptive fields after learning. Each feature looks like an elementary

stroke which is extremely localized around a small portion of the visible layer. Notice the

difference with Figure 6.4b, in which the features are localized as well, but much less than in

this case. These strokes are then combined by the RBM to obtain more complex patterns, i.e.

the digits. Moreover, Figure 6.9a clearly illustrates the fact that the RBM operates in what

Tubiana and Monasson call the compositional phase: most hidden units are silent and only few

ones are strongly activated. Indeed, this particular regime is characterized by two quantities: the

number of silent units hi = 0, denoted by Ŝ, and the participation ratio L̂ = [(
∑

i h
3
i)

2/
∑

i h
6
i],

which gives an estimate of the number of strongly activated units. Looking at Figure 6.10b

and Figure 6.10c, we see that, on average, each generated handwritten digit image is composed

by L̂ ≈ 22 elementary strokes whereas Ŝ ≈ 280 hidden units are silent. The presence of a

compositional phase is also confirmed by Figure 6.10a, which shows that during training the

sparsity parameter p̂ decreases, whereas W2 increases. Sparsity is good because it prevents

overfitting and allows better interpretation of the weights.

Nair and Hinton first found that rectified linear units improve RBMs [28]. This happens because,

unlike binary units, rectified linear units preserve information about the magnitudes of their

inputs above threshold. A comparison between Figure 6.9b and Figure 6.5a clearly confirms

44

0 50 100 150 200
Epoch

0.04

0.06

0.08

0.10

0.12

0.14

0.16
p̂

2

4

6

8

W
2

(a) Sparsity p̂ and effective inverse tempera-
ture W2.

10 15 20 25 30 35
L̂

0.00

0.02

0.04

0.06

0.08

0.10

(b) PDF of participation ratio
L̂.

230 240 250 260 270 280 290 300
Ŝ

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(c) PDF of the number of
silent hidden units Ŝ.

Figure 6.10: (a) Plots of learning parameters p̂ (sparsity) and W2 (effective inverse temperature)
and PDFs of (b) participation ratio L̂ (c) number of silent hidden units Ŝ for binary-ReLU RBM.
The histograms are obtained by measuring L̂ and Ŝ for the digits generated starting from 1000
samples of Gaussian noise.

this, showing that binary-ReLU RBMs have better generative performances then binary-binary

RBMs in all tasks.

45

46

7
Conclusions

In this thesis we presented the theoretical framework behind RBMs, that is Probabilistic Graphi-

cal Models and Markov Random Fields. Then we discussed different types of RBMs and training

algorithms. First, we studied binary-valued RBMs, finding that in some cases CD and PCD

display divergence, leading to a decrease of the likelihood. In these cases, PT can solve the

problem, but it introduces computational overhead. Other solutions could be to gradually in-

crease the number of Gibbs sampling steps or to use weight decay. We also tested the generative

performances of such models, using RBMs to recreate, reconstruct and generate new examples.

Then we considered centered binary RBMs, showing that – unlike normal binary RBMs – they

are able to reach the same performances on MNIST and 1-MNIST datasets thanks to their

flip-invariance. We also showed that centering not only makes RBMs flip-invariant, but it also

leads to higher likelihood. Moreover, through other tests we showed that RBMs in which both

visible and hidden variables are centered form more accurate models of the data distribution

than normal RBMs and RBMs in which only the visible variables are centered. In particular, it

seems that the best centering type is dd, which computes the offsets as the mean of the variables

over the data.

Afterwards, we introduced binary-ReLU RBMs, showing that by using rectified linear hidden

units and a regularization which promotes homogeneity the RBM operates in the so-called com-

positional phase. In this regime, when a sample is generated most hidden units are silent and

only few ones are strongly activated. These kinds of models allow a good degree of interpretabil-

ity and also show better generative performances.

This work is also intended to show how simple models like RBMs can have huge representational

power while maintaining a good degree of interpretability. An extraordinary example of this

fact is the article by Tubiana, Cocco and Monasson [38], in which they use an RBM with ReLU

potential (more precisely a double-ReLU potential, which consists of the combination of two

ReLUs) to model protein families from sequence data. Moreover, the features inferred by the

RBM are biologically interpretable: they are related to structure, to function or to phylogenetic

identity. In addition, since RBMs are generative models, they are able to design new protein

47

sequences.

RBMs are also the building blocks of Deep Boltzmann Machines (DBMs), deep undirected

graphical models with several hidden layers where successive layers have a bipartite connectivity

structure. Therefore, studying RBMs can be useful to design DBMs with better performances.

In fact, a centering optimization method was proposed by Montavon et al. [27] to make the

learning mechanism more stable and also for the purpose of designing generative, faster and

discriminative models.

48

Bibliography

[1] Adriano Barra et al. “On the equivalence of hopfield networks and boltzmann machines”.

In: Neural Networks 34 (2012), pp. 1–9 (cit. on p. 34).

[2] Y. Bengio and Olivier Delalleau. “Justifying and Generalizing Contrastive Divergence”.

In: Neural computation 21 (Dec. 2008), pp. 1601–21. doi: 10.1162/neco.2008.11-07-647

(cit. on p. 20).

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn: 0387310738 (cit. on pp. 3,

4, 6, 10).

[4] Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues. Vol. 31.

Springer Science & Business Media, 2013 (cit. on pp. 10, 11).

[5] KyungHyun Cho, Alexander Ilin, and Tapani Raiko. “Improved Learning of Gaussian-

Bernoulli Restricted Boltzmann Machines”. In: June 2011, pp. 10–17. isbn: 978-3-642-

21734-0. doi: 10.1007/978-3-642-21735-7_2 (cit. on p. 34).

[6] KyungHyun Cho, Tapani Raiko, and Alexander Ilin. “Enhanced gradient and adaptive

learning rate for training restricted Boltzmann machines”. In: ICML. 2011 (cit. on pp. 27,

41).

[7] Peter Clifford. “Markov random fields in statistics”. In: Disorder in physical systems: A

volume in honour of John M. Hammersley (1990), pp. 19–32 (cit. on p. 5).

[8] Francis Crick and Graeme Mitchison. “The function of dream sleep”. In: Nature 304.5922

(1983), pp. 111–114 (cit. on p. 9).

[9] Geoffrey E. Hinton. “Training Products of Experts by Minimizing Contrastive Diver-

gence”. In: Neural Computation (NECO) 14.8 (2002), pp. 1771–1800 (cit. on pp. 19, 20).

[10] Guillaume Desjardins et al. “Parallel Tempering for Training of Restricted Boltzmann

Machines”. In: 2010 (cit. on p. 23).

[11] Asia Fischer and Christian Igel. “Bounding the Bias of Contrastive Divergence Learning”.

In: Neural Comput. 23.3 (Mar. 2011), pp. 664–673. issn: 0899-7667. doi: 10.1162/NECO_

a_00085. url: https://doi.org/10.1162/NECO_a_00085 (cit. on p. 20).

49

https://doi.org/10.1162/neco.2008.11-07-647
https://doi.org/10.1007/978-3-642-21735-7_2
https://doi.org/10.1162/NECO_a_00085
https://doi.org/10.1162/NECO_a_00085
https://doi.org/10.1162/NECO_a_00085

[12] Asja Fischer and Christian Igel. “Empirical Analysis of the Divergence of Gibbs Sampling

Based Learning Algorithms for Restricted Boltzmann Machines”. In: Sept. 2010, pp. 208–

217. isbn: 978-3-642-15824-7. doi: 10.1007/978-3-642-15825-4_26 (cit. on pp. 4, 21,

22).

[13] Asja Fischer and Christian Igel. “Training restricted Boltzmann machines: An introduc-

tion”. In: Pattern Recognition 47.1 (2014), pp. 25–39 (cit. on pp. 4, 5, 7–9, 11, 15, 17, 20,

21, 23, 27, 36).

[14] Stuart Geman and Donald Geman. “Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images”. In: IEEE Transactions on pattern analysis and machine

intelligence 6 (1984), pp. 721–741 (cit. on p. 11).

[15] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feedfor-

ward neural networks”. In: Proceedings of the Thirteenth International Conference on Arti-

ficial Intelligence and Statistics. Ed. by Yee Whye Teh and Mike Titterington. Vol. 9. Pro-

ceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15

May 2010, pp. 249–256. url: http://proceedings.mlr.press/v9/glorot10a.html (cit.

on pp. 24, 38).

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016

(cit. on pp. 8, 9, 17).

[17] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm for

deep belief nets”. In: Neural computation 18.7 (2006), pp. 1527–1554 (cit. on p. 37).

[18] Geoffrey E. Hinton. “A Practical Guide to Training Restricted Boltzmann Machines”.

In: Neural Networks: Tricks of the Trade: Second Edition. Ed. by Grégoire Montavon,

Geneviève B. Orr, and Klaus-Robert Müller. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2012, pp. 599–619. isbn: 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_32.

url: https://doi.org/10.1007/978-3-642-35289-8_32 (cit. on pp. 17, 24, 35).

[19] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.

MIT press, 2009 (cit. on pp. 3, 4, 10, 11).

[20] Solomon Kullback and Richard A Leibler. “On information and sufficiency”. In: The annals

of mathematical statistics 22.1 (1951), pp. 79–86 (cit. on p. 7).

[21] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Pro-

ceedings of the IEEE 86.11 (1998), pp. 2278–2324 (cit. on p. 37).

[22] Yann A LeCun et al. “Efficient backprop”. In: Neural networks: Tricks of the trade.

Springer, 2012, pp. 9–48 (cit. on p. 27).

[23] Philip Long and Rocco Servedio. “Restricted Boltzmann Machines are Hard to Approxi-

mately Evaluate or Simulate”. In: Aug. 2010, pp. 703–710 (cit. on p. 14).

[24] David JC MacKay and David JC Mac Kay. Information theory, inference and learning

algorithms. Cambridge university press, 2003 (cit. on p. 37).

[25] Pankaj Mehta et al. “A high-bias, low-variance introduction to Machine Learning for

physicists”. In: Physics Reports 810 (May 2019), pp. 1–124. issn: 0370-1573. doi: 10.1016/

j.physrep.2019.03.001. url: http://dx.doi.org/10.1016/j.physrep.2019.03.001

(cit. on pp. 8, 14).

50

https://doi.org/10.1007/978-3-642-15825-4_26
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.1016/j.physrep.2019.03.001
http://dx.doi.org/10.1016/j.physrep.2019.03.001

[26] Jan Melchior, Asja Fischer, and Laurenz Wiskott. “How to center deep Boltzmann ma-

chines”. In: The Journal of Machine Learning Research 17.1 (2016), pp. 3387–3447 (cit. on

pp. 1, 27, 29–31, 41).

[27] Grégoire Montavon and Klaus-Robert Müller. “Deep Boltzmann machines and the cen-

tering trick”. In: Neural networks: tricks of the trade. Springer, 2012, pp. 621–637 (cit. on

pp. 27, 29, 41, 48).

[28] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted boltzmann

machines”. In: Icml. 2010 (cit. on pp. 1, 35, 44).

[29] Siamak Ravanbakhsh et al. “Stochastic neural networks with monotonic activation func-

tions”. In: Artificial Intelligence and Statistics. PMLR. 2016, pp. 809–818 (cit. on p. 35).

[30] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representations

by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536 (cit. on p. 8).

[31] Ruslan Salakhutdinov. “Learning in Markov Random Fields using Tempered Transitions.”

In: vol. 22. Jan. 2009, pp. 1598–1606 (cit. on p. 23).

[32] Nicol N Schraudolph. “Centering neural network gradient factors”. In: Neural Networks:

Tricks of the Trade. Springer, 1998, pp. 207–226 (cit. on p. 27).

[33] Paul Smolensky. Information processing in dynamical systems: Foundations of harmony

theory. Tech. rep. Colorado Univ at Boulder Dept of Computer Science, 1986 (cit. on

p. 13).

[34] Yichuan Tang and Ilya Sutskever. “Data normalization in the learning of restricted Boltz-

mann machines”. In: Department of Computer Science, University of Toronto, Technical

Report UTML-TR-11-2 (2011) (cit. on pp. 27, 41).

[35] Yee Whye Teh and Geoffrey E Hinton. “Rate-coded restricted Boltzmann machines for

face recognition”. In: Advances in neural information processing systems (2001), pp. 908–

914 (cit. on p. 34).

[36] Tijmen Tieleman. “Training Restricted Boltzmann Machines Using Approximations to

the Likelihood Gradient”. In: Proceedings of the 25th International Conference on Ma-

chine Learning. ICML ’08. Helsinki, Finland: Association for Computing Machinery, 2008,

pp. 1064–1071. isbn: 9781605582054. doi: 10.1145/1390156.1390290. url: https:

//doi.org/10.1145/1390156.1390290 (cit. on p. 22).

[37] Alessandro Treves. “Quantitative estimate of the information relayed by the Schaffer col-

laterals”. In: Journal of Computational Neuroscience 2.3 (1995), pp. 259–272. doi: 10.

1007/BF00961437. url: https://doi.org/10.1007/BF00961437 (cit. on p. 35).

[38] Jérôme Tubiana, Simona Cocco, and Rémi Monasson. “Learning protein constitutive mo-

tifs from sequence data”. In: Elife 8 (2019), e39397 (cit. on p. 47).

[39] Jérôme Tubiana and Rémi Monasson. “Emergence of compositional representations in

restricted Boltzmann machines”. In: Physical review letters 118.13 (2017), p. 138301 (cit.

on pp. 36, 43).

51

https://doi.org/10.1145/1390156.1390290
https://doi.org/10.1145/1390156.1390290
https://doi.org/10.1145/1390156.1390290
https://doi.org/10.1007/BF00961437
https://doi.org/10.1007/BF00961437
https://doi.org/10.1007/BF00961437

	Introduction
	Probabilistic graphical models
	Conditional independence and factorization
	Markov random fields
	Unsupervised Markov random field learning
	Gradient ascent
	Log-likelihood gradient of MRFs with hidden units

	Markov chains and Gibbs sampling
	Markov chains
	Gibbs sampling

	Restricted Boltzmann Machines
	Binary-binary Restricted Boltzmann Machines
	Correlations
	Conditional Distributions
	Block Gibbs sampling
	The gradient of the log-likelihood
	Training Restricted Boltzmann Machines
	Contrastive Divergence
	Persistent Contrastive Divergence
	Parallel tempering

	Practical Considerations

	Centered Restricted Boltzmann Machines
	The centering trick
	Training centered Restricted Boltzmann Machines
	Centering the gradient

	Restricted Boltzmann Machines with real-valued units
	Gaussian units
	Binomial units
	Rectified linear units
	Emergence of compositional representations

	Experiments
	Setup
	Datasets and setup

	Normal binary-binary RBMs
	Comparison between CD, PCD and PT
	Receptive fields
	Generative performances

	Centered binary-binary RBMs
	Binary-ReLU RBMs

	Conclusions
	Bibliography

