
Università degli Studi di Padova

Department of Information Engineering

Master Thesis in Ingegneria Informatica

A Study on Ranking Fusion Approaches

for the Retrieval of Medical

Publications

Supervisor Master Candidate
GiorgioMaria di Nunzio Teofan Clipa
Università degli Studi di Padova

Co-supervisor Date
Gianmaria Silvello Monday, December 16, 2019
Università Degli Studi di Padova

Academic Year 2019/2020

ii

Dedicated to all the people that I care about.

iv

Abstract

In this workwewanted to compare and analyze a variety of approaches in the task ofMedical
Publications Retrieval. We used state-of-the-art models and weighting schemes with differ-
ent types of preprocessing as well as applying query expansion (QE) and relevance feedback
(RF) in order to see how much the results improve. We also tested three different Fusion
approaches to see if the merged runs perform better than the single models. We found that
query expansion and relevance feedback greatly improve the performance while by fusing
the runs of different models the gain is not significant. We also conducted statistical anal-
ysis of the runs and found that by applying QE+RF, the performance of the system does
not depend much on which type of preprocessing is used but on which weighting scheme is
applied.

v

vi

Sommario

In questo lavoro abbiamo comparato e analizzato una varietà di approcci nel task di reper-
imento di pubblicazioni medicali. Abbiamo usato modelli e schemi di pesatura allo stato
dell’arte con diversi tipi di pre elaborazione così come applicando query expansion (QE) e
relevance feedback (RF) per vedere quanto è il beneficio di applicare questi approcci. Ab-
biamo anche testato tre metodi diversi di fusione per vedere se le run così ottenute hanno
prestazioni superiori alle run ottenute da un singolo modello. Abbiamo scoperto che query
expansion e relevance feedback migliorano sensibilmente le prestazioni mentre il guadagno
ottenuto dalla fusione di modelli diversi non è significativo. Abbiamo anche condotto anal-
isi statistiche sulle run e abbiamo trovato che applicando QE+RF, le prestazioni del sistema
non dipende dal tipo di pre elaborazione usata ma risulta strettamente legata a quale schema
di pesatura viene applicato.

vii

viii

Contents

Abstract v

List of figures xi

List of tables xv

1 Introduction 1
1.1 Research questions . 3
1.2 Thesis overview . 3

2 Background 5
2.1 TF-IDF weighting . 6
2.2 IR models . 7

2.2.1 BM25 . 7
2.2.2 DirichletLM . 8
2.2.3 PL2 . 10
2.2.4 Word2Vec . 13

2.3 Query expansion . 16
2.4 Relevance feedback . 17
2.5 Fusions . 18

2.5.1 Combmethods . 18
2.5.2 Reciprocal ranking fusion . 20
2.5.3 Probfuse . 21

2.6 EvaluationMeasures . 22
2.6.1 Precision . 22
2.6.2 Recall . 23
2.6.3 Normalized discounted cumulative gain 23

3 Experimental setup 25
3.1 Datasets . 25
3.2 Terrier . 26

3.2.1 Setup . 28
3.3 Runs . 30

ix

4 Results 31
4.1 Terrier runs baseline . 31

4.1.1 Task1 . 31
4.1.2 Task2 . 33

4.2 Terrier runs with Query Expansion and Relevance Feedback 37
4.2.1 Task1 . 37
4.2.2 Task2 . 40

4.3 Word2vec runs . 44
4.4 Fusions . 46

5 Statistical analysis of the results 51
5.1 Measures . 51
5.2 Best overall run . 52
5.3 Gain of using QE+RF . 55
5.4 NoPorterNoStop vs Word2Vec . 57

5.4.1 Best overall fusion . 59
5.4.2 Best overall fusion vs best single run 62

5.5 Statistical analysis . 68
5.5.1 Statistical difference between different indexes 68
5.5.2 Statistical difference between CombSUM and RR 70

6 Conclusions and future work 73
6.1 Future work . 74

Appendix A Box Plots and tables 75
A.1 Task1 . 75

A.1.1 Task1+QE+RF . 79
A.2 Task2 . 83

A.2.1 Task2+QE+RF . 87
A.2.2 Word2Vec . 91

A.3 Fusions . 92
A.3.1 Task1 . 92

Appendix B Scatter Plots 97

Appendix C Statistical analysis of the runs 105

References 108

Acknowledgments 113

x

Listing of figures

2.1 The two architectures for w2v. 14

3.1 Graph showing the pipeline steps done in order to prepare the indexes and
do the runs. 28

3.2 Graph showing the pipeline steps done in order to do the word2vec runs. . 29

4.1 T1: Box Plots for P@10 of the different models for each index. 32
4.2 T1: Box Plots for P@10 of the different indexes for each model. 33
4.3 T2: Box Plots for P@10 of the different models for each index. 35
4.4 T2: Box Plots for P@10 of the different indexes for each model. 36
4.5 T1: Box Plots for P@10 of the different models for each index, withQE and

RF. 38
4.6 T1: Box Plots for P@10 of the different indexes for each model, with QE+RF. 39
4.7 T2: Box Plots for P@10 of the differentmodels for each index, withQE and

RF. 41
4.8 T2: Box Plots for P@10 of the different indexes for eachmodel, withQE+RF. 42
4.9 Precision: Box Plots of the w2v runs. 44
4.10 T1: Box Plots of P@10 of the fusion methods. 49
4.11 T2: Box Plots of P@10 of the fusion methods. 50

5.1 T1: Scatter Plots for Porter/Dirichlet vs NoPorterNoStop/Dirichlet with
QE+RF. 53

5.2 T2: Scatter Plots for Porter/Dirichlet vs NoPorterNoStop/Dirichlet with
QE+RF. 55

5.3 Scatter plots ofPorter/DirichletwithQE+RFvs the same runwithoutQE+RF. 56
5.4 Scatter plots ofNoPorterNoStop/BM25withQE+RFvs the same runwith-

out QE+RF. 57
5.5 Scatter plots of NoPorterNoStop/TF-IDF vs w2v-si. 58
5.6 T1: scatter plots of P@10 of the fusion of all the models using the same index. 59
5.7 T1: scatter plots of P@10 of the fusion of the models with different indexes. 60
5.8 T2: scatter plots of P@10 and NDCG@10 of Porter/DirichletLM vs RR

fusion of best runs per index with QE+RF. 62
5.9 T1: scatter plots of P@10 and NDCG@10 of Porter/DirichletLM vs RR

fusion of best runs per index with QE+RF. 64

xi

5.10 T2: scatter plots ofP@10 andNDCG@10ofNoPorterNoStop/DirichletLM
vs RR fusion of best runs per model with QE+RF. 64

5.11 T1: Scatter plots of the best run vs the fusion of the two best runs. 66
5.12 T2: Scatter plots of the best run vs the fusion of the two best runs. 67

A.1 T1: Box Plots for P@100 and P@1000 comparison per Index. 75
A.2 T1: Box Plots for NDCG of the different models for each index. 76
A.3 Box plots of P@100 and P@1000 for every model. 77
A.4 T1: Box Plots for NDCG of the different indexes for each model. 78
A.5 T1: Box Plots for P@100 and P@1000 comparison per Index. 79
A.6 T1: Box Plots for NDCG of the different models for each index. 80
A.7 Box plots of P@100 and P@1000 for every model. 81
A.8 T1: Box Plots for NDCG of the different indexes for each model. 82
A.9 T2: Box Plots for P@100 and P@1000 comparison per Index. 83
A.10 T2: Box Plots for NDCG of the different models for each index. 84
A.11 Box plots of P@100 and P@1000 for every model. 85
A.12 T2: Box Plots for NDCG of the different indexes for each model. 86
A.13 T2: Box Plots for P@100 and P@1000 comparison per Index. 87
A.14 T2: Box Plots for NDCG of the different models for each index. 88
A.15 Box plots of P@100 and P@1000 for every model. 89
A.16 T2: Box Plots for NDCG of the different indexes for each model. 90
A.17 NDCG: Box Plots of the w2v runs. 91
A.18 Box plots for Precision of the fusions of themodels usingNoPorterNoStop

and Porter indexes. 92
A.19 Box plots for Precision of the fusions of the models using PorterStop and

Stop indexes. 93
A.20 Box plots for NDCG of the fusions of the models using NoPorterNoStop

and Porter indexes. 94
A.21 Box plots for NDCG of the fusions of the models using PorterStop and

Stop indexes. 95

B.1 T2: Scatter Plots of P@100, P@1000, NDCG@100 and NDCG@1000 that
show the gain with QE+RF. 97

B.2 T2: Scatter Plots of P@100, P@1000, NDCG@100 and NDCG@1000 of
N/TF-IDF vs w2v-si. 98

B.3 T1: Scatter Plots of P@100, P@1000 of the fusions of themodels using same
index. 99

B.4 T1: Scatter Plots of P@100, P@1000of the fusions of the indexes using same
model. 100

B.5 T2: scatter plots of P@100, P@1000, NDCG@100 and NDCG@10000 of
Porter/DirichletLM vs RR fusion of best runs per index with QE+RF. . . . 101

xii

B.6 T1 andT2: scatter plots ofP@100, P@1000,NDCG@100andNDCG@10000
of P/D for T1 and N/D for T2 vs RR fusion of best runs per model with
QE+RF. 102

B.7 T1: Scatter plots of the best run vs the fusion of the two best runs. 103
B.8 T2: Scatter plots of the best run vs the fusion of the two best runs. 104

xiii

xiv

Listing of tables

3.1 Summary of the datasets used. 26
3.2 Summary of all the runs. 30

4.1 NDCG at various cut offs and Recall@R for the different models for T1. . . 34
4.2 NDCG at various cut offs and Recall@R for the different models for T2. . . 37
4.3 DirichletLM+QE+RF for T1: P@10, P@100 and P@1000. 38
4.4 T1: NDCG at various cut offs and Recall@R for the different models with

QE+RF. 40
4.5 DirichletLM+QE+RF for T2: P@10, P@100 and P@1000. 40
4.6 T2: NDCG at various cut offs and Recall@R for the different models with

QE+RF. 43
4.7 T1: scores ofNDCGandR@Rofw2v runs andTerrier withNoPorterNoS-

top index. 45
4.8 T2: scores ofNDCGandR@Rofw2v runs andTerrierwithNoPorterNoS-

top index. 45
4.9 T1: NDCG and Recall@R for the fusion runs. 47
4.10 T1: NDCG and Recall@R for the fusion runs with QE+RF. 47
4.11 T2: NDCG and Recall@R for the fusion runs. 48
4.12 T2: NDCG and Recall@R for the fusion runs with QE+RF. 48

5.1 T1: mdpt of P/D vs N/D and count of the number of topics in which P/D
is better than N/D and viceversa. 54

5.2 T2: mdpt of P/D vsN/D and count of the number of topics in which P/D
is better than N/D and viceversa. 54

5.3 Dirichlet+QE+RF run vs Dirichlet without QE+RF scores. 56
5.4 BM25+QE+RF run vs BM25 without QE+RF scores. 57
5.5 T1: scores to find the best fusion, CombSUM vs RR. 61
5.6 T1: Porter/DirichletLM+QE+RFrunvsRRfusionofDirichletLM+QE+RF

model with the 4 indexes. 63
5.7 T2: Porter/DirichletLM+QE+RFrunvsRRfusionofDirichletLM+QE+RF

model with the 4 indexes. 63
5.8 T1: Porter/DirichletLM+QE+RF run vsRR fusion ofmodels using Porter

Index. 65
5.9 T2: Porter/DirichletLM+QE+RF run vs RR fusion of models using No-

PorterNoStop index. 65

xv

5.10 T1: Comparison of the best run vs the CombSUM fusion of the two best
runs. 65

5.11 T1: Comparison of the best run vs the RR fusion of the two best runs. . . . 65
5.12 T2: Comparison of the best run vs the CombSUM fusion of the two best

runs. 68
5.13 T2: Comparison of the best run vs the RR fusion of the two best runs. . . . 68
5.14 T1: ANOVA test results for the different models and indexes for P@10. . . . 68
5.15 T2: ANOVA test results for the different models and indexes for P@10. . . . 69
5.16 T1: ANOVA test results for the indexes for P@10. 70
5.17 T2: ANOVA test results for indexes for P@10. 70

C.1 ANOVA tests for different measures of the comparisons between RR and
CombSUM for T1 and T2. 105

C.2 T1: ANOVA tests for different measures of the comparisons between mod-
els and indexes. 106

C.3 T2: ANOVA tests for different measures of the comparisons betweenmod-
els and indexes. 107

xvi

1
Introduction

InformationRetrieval (IR) is research area that has seen amassive growth in interest together
with the growth of the internet: since the number of sites and documents began to increase,
there was, and there still is, a need to be able to search for information on the web. Google,
one of the largest andmost famous tech companyworldwide, has shownhow important this
field is.

However, IR is not a new field of research, in fact it existed almost since the dawn of the
computers. The term was coined byMooers in the 1950s:

Information retrieval is the name of the process or method whereby a
prospective user of information is able to convert his need for information into
an actual list of citations to documents in storage containing information use-
ful to him [1].

The field of IR draws its origins from the libraries. When a new book or article was to be
added to a library, a librarian would have to compile, manually, a card and store it. On the
card was written typically title of the document, author, year of publication and the location
in the library. Some libraries wrote also some key-words on the cards about the document
to aid the user or the librarian in judging if the document was relevant or not to the area of
interest.

Thismethodworks reasonablewell on small collections but as library collections increased
it soon became clear that more sophisticated methods were necessary.

1

With the explosion of the computers and the World Wide Web, the catalogues had to be
converted in digital form, providing faster access to the collection. The retrieval was, how-
ever, still done bymeans of data retrieval rather than information retrieval whichmeans that
searches were done based on information about the documents and not on the content of the
books.

To be able to search based on the content, it was necessary to develop a method for com-
puters to be able to store information about the text of every document in the collection and
then to retrieve the IDs of the books and articles relevant to the query of the user.

Following the growth in performance of the computers and the development of ways to
store data and retrieve it from memory, like databases, the field of IR acquired increasingly
importance in the computer scienceworld,which culminatedwith the explosionof theworld
wide web.

IR systems can nowadays store hundreds of billions of documents, which not necessarily
are composed only by text, but also by images, audios, videos etc and are able to retrieve
millions of relevant results to a query in fractions of seconds [2].

The typical IR system allows the user to compose a query which is normally formed by
one or more words that somehow describe the information need. The words of the query
are then used to classify every document in the collection either by relevant/non-relevant
or by assigning to each a score that should represent the likelihood of the document to be
relevant for the query.

One of the first systems represented the query in a Boolean way, which means that the
words of the query were combined by Boolean operators like AND, OR or NOT. Many
IR systems use still today this system of specifying which terms should be present or not
in the documents retrieved, one example is PUBMED * which is an online search tool for
biomedical literature. Most common search engines today, however, allow users to express
queries my means of phrases, just think of how you search on Google.

Usually, an IR system output is composed by a list of of documents from the collection,
ranked by their score to the query. The goal of every IRmodel is to retrieve as many relevant
documents as possible, while retrieving as few non-relevant documents as possible.

Over the years, numerous approaches to IR have been proposed and developed. Some
share some similarities, some are completely different from each other. They can be different
on how they represent a document, on which algorithm they apply to rank the results, on
which steps and in what order to apply the preprocessing of the collection and so on [3].

*https://www.ncbi.nlm.nih.gov/pubmed

2

https://www.ncbi.nlm.nih.gov/pubmed

1.1 Research questions

The goal of the work is to find what is the best approach when dealing with the retrieval
of medical documents. This brings to the three research questions that this work tries to
answer:

1. RQ1: is there a single model that stands out in terms of performance?

2. RQ2: does the use of query expansion and relevance feedback improve the results?

3. RQ3: is there a fusion method that does better retrieval than using a single model?

With RQ1 we wanted to explore the possibility that a model could do better than the
others with different setups, as explained later in section 3.2.1. Since query expansion and
relevance feedback usually give an increase of the performance of a IR system, we wanted to
test if this was the case also in our task, thus with RQ2 we wanted to verify this assumption.
Finally, given the reasons of data fusion that we explain in section 2.5, with RQ3 we com-
pared the single model runs with different kinds of fusions to see if there is actually a gain in
doing them.

1.2 Thesis overview

The thesis is organized as follows: in chapter 2we explain how each of themodels and fusions
used in the thesis work and how they are able to rank the documents. We also introduce the
measures used to compare the runs in the thesis andhow to compute them; chapter 3 presents
the experiments and the experimental setting used to study the research questions; in chapter
4 and 5 we first present the results then we analyze them answering the research questions;
finally in chapter 6 we wrap up all the work done and give our final remarks.

3

4

2
Background

In this chapter we describe themodels used in thismanuscript, how theywork, how they use
the query to rank the documents in the collection.

Traditionally, one way to find out if a document may be relevant with respect to a certain
query is to count howmany times thewords that compose the query appear in the document.
Intuitively, if a document deals with a certain topic, then is very likely that the word which
describes the argument is present more than once.

Tomake an example, let us assume that we are interested in the following query: ‘tropical
fish’. Then, a document to be relevant to this query, should at least contain once these two
words otherwise it’s very unlikely that it could be relevant.

This approach, proposed by Luhn [4], is very simple, yet very powerful. Many models
exploit this property, incorporating the term frequency in their formula that computes the
scores of the documents.

Term frequency alone, however, could not be sufficient. If a document is composed by
more than a few paragraphs, then some words will have a very high count without telling
much about the topic of the document. These words are, for example, prepositions that
do not distinguish a document from another, since both will contain a high frequency of
the same words. At the other side of the spectrum, words that are present just once in the
document might not be very useful as well, since they may be spelling errors or words that
do not possess enough resolving power.

5

The resolving power of a word was defined by Luhn [4] and is the ability of a word to
identify and distinguish a document from another.

Consequently, in the case of IR systems, may be useful to do some preprocessing of the
documents during the indexing of the collection. Queries should also go through the same
processing.

There exist two main approaches to remove the words that do not possess enough resolv-
ing power from a document. The first one is through statistical analysis. Since the most and
the least repeated words are not likely to hold discriminative power, it is sufficient to estab-
lish a low and high frequency of cutoff: words that appear more or less than the cutoffs are
removed from the document. This approachworks well since the cutoffs can be tuned based
on the collection, however it is not easy to find the best values and may be necessary to go
through a long process of tuning. A second approach is by using a word list, which takes the
name of stop-list of themost frequent words and then use it to remove those words from the
documents of the collection [5]. This approach is faster since it does not require any tuning
and works well in practice, it’s the approach that has been used in the thesis.

One of the problems of the approach seen so far is that it counts words twice only if they
are exact matches. So if a word appears in it’s singular and plural forms they are counted as
two different words. This is just an example that highlights the fact that a natural language
can be very expressive and thus the same concept can be communicated in many ways with
different words that usually share a common root from which they derive.

With this observation in mind, Lovin [6] developed the first algorithmic stemmer which
is a program able to bring a word to its root and thus increasing the probability of repeated
words.

The most famous and used stemmer, however, is the one developed by Porter [7] in 1980
and is the one used in this thesis during the phase of stemming of the documents.

2.1 TF-IDF weighting

TF-IDF is a statistic used as weighting scheme in order to produce the score by which to
order the documents of a collection given a query.

This score can be computed in different ways, the simplest one being summing all the
TF-IDF of the terms that compose the query.

This statistic is composed by two parts, one being the term frequencywhich has been dis-

6

cussed in the previous section and the inverse document frequency or idf for short.
IDF it’s based on the concept that words that occur in all of the documents in a collection

do not possess much resolving power, thus their weight should be inferior with respect to
the weight of a word that appears only in one document and not in the others.

Inorder toobtain the finalTF-IDFvalue, it is sufficient tomultiply the two terms together.
However, there have been proposed many ways to calculate the values of the two statistics.
In this thesis it has been used the default weighting computed by Terrier (see section 3.2),
which uses the normalized term frequency and the idf proposed by Robertson and Jones
[8].

The term-frequency of a term is computed as:

TF = k1 ∗ tf

tf + k1
(
1 − b + b ∗ doclength

avgdoclength

) (2.1)

where b = 0.75 and k1 = 1.2 are two free parameters.
The inverse document frequency is obtain by:

IDF = log
(

#docs

docfrequency + 1

)
(2.2)

where#docs is the total number of documents present in the collection anddocfrequency

is the frequency of the term in the collection.
Given a query, the score for each term is given by the following formula.

score = keyfrequency ∗ TF ∗ IDF (2.3)

where keyfrequency is the frequency of the term in the query.

2.2 IR models

2.2.1 BM25

The BM25 [8] weighting scheme is a bag-of-words retrieval function that ranks the docu-
ments in the collection based on the query terms that appear in each document, it can be
seen as an evolution of the simpler TF-IDF scheme presented in section 2.1.

Given a query Q composed by the query terms q1, q1, ..., qn and a document D from a
collection, the score of D is calculated as:

7

score(D, Q) =
n∑

i=1
IDF (qi)

f(qi, D)(k1 + 1)
f(qi, D) + k1

(
1 − b + b ∗ |D|

avgdl

) (2.4)

where:

• f(qi, D is the frequency of the term qi in the document D

• |D| is the length of the document in terms of number of words that compose |D|

• avgdl is the average length of a document in the collection

• k1 and b are two free parameters with k1 ∈ [1.2, 2.0] and b = 0.75. Terrier uses
k1 = 1.2

• IDF (qi) is the inverse document frequency of the term qi

The IDF is here computed as IDF (qi) = log
(

N−n(qi)+0.5
n(qi)+0.5

)
where: N is the number of

documents in the collection, while n(qi) is the number of documents that contain at least
once the term qi.

2.2.2 DirichletLM

The DirichletLM is a weighting scheme applied to a language model [9]. To be more pre-
cise, Dirichlet is a smoothing technique applied to the maximum likelihood estimator of
a language model [10]. A language model (LM) is a probability distribution over a set of
words, it assigns a probability to each word in a document.

In IR, the basic idea is to estimate a LM for each documentD in the collection C and then
rank the documents based on the probability that the LM of a document has produced the
query Q.

The use of amaximum likelihood (ML) estimator brings some problems, namely the fact
that this estimator tends to underestimate the probability of unseen words, those that are
not present in the document. To overcome this, there have been proposed many smoothing
techniques that try to assign a non-zero probability to unseen words.

For thismodel, we assume that a queryQ is been produced by a probabilistic model based
on a document D. So, given a query Q = q1, q2, ..., qn and a document D = d1, d2, ..., dm

we want to estimate the probability p(D|Q)which is the probability that the document has
generated the query.

8

Applying the Bayes formula and ditching the constant term, we can write that

p(D|Q) ∝ p(Q|D)p(D) (2.5)

where p(Q|D) is the query likelihood givenD while p(D) is the prior probability that a doc-
ument is relevant to a query and is assumed uniform, therefore it does not affect the ranking
and can be ditched.

Finally, we obtain that p(D|Q) ∝ p(Q|D). Since we are interested in a unigram LM, the
ML estimate is:

p(Q|D) =
∏

i

(qi|D) (2.6)

Smoothing methods use two distributions: one for the seen words, ps and one for the
unseen ones, called pu thus, the log-likelihood can be written as:

log p(Q|D) =
∑

i

log p(qi|D) =
∑

i:f(qi,D)>0
log ps(qi|D)

pu(qi|D)
+
∑

i

pu(qi|D) (2.7)

The probability of the unseen words is usually assumed to be proportional to the fre-
quency of the word in the collection:

pu(qi|D) = αDp(qi|C) (2.8)

where αD is a constant that depends on the document.
With this final derivation, we can write the final formula of the ML estimator:

log p(Q|D) =
∑

i:f(qi,D)>0
log ps(qi|D)

αDpu(qi|C)
+ n log αD +

∑
i

log p(qi|C) (2.9)

The formula is composed by three terms. The last one does not depend on the document
so can be ignored since it does not affect the final ranking of the documents. The second
term can be interpreted as the normalization of the length of the document since it is the
product of n = |Q| and αD, intuitively if a document is longer it is less likely that there are
unseenwords therefore the constant should be smaller, it needs less smoothing than a shorter
document. The first term is proportional to the frequency of the term in the document,

9

similar to the TF seen in section 2.1. The term at the denominator instead, is proportional
to the document frequency of the word in the collection so it is similar to the IDF.

To sumup, wewant to estimate the probability p(w|D), themaximum likelihood estima-
tor leads to:

pML(w|D) = c(w, D)∑
w c(w, D)

(2.10)

where c(w, D) is the count of word w in the document D. This estimate suffers from un-
derestimate the probabilities of unseen words, thus we apply smoothing to the estimator.

Since a Language Model is a multinomial distribution, the conjugate prior for Bayesian
analysis is the Dirichlet distribution, thus the final model is given by:

P (w|d) = c(w, d) + µP (w|C)∑
w c(w, d) + µ

(2.11)

where µ is a free parameter.

2.2.3 PL2

The models seen so far have always some parameters that ideally should be tuned for every
collection and can have a notable influence, in terms of performance, even if they changed
slightly. The goal of the PL2 weighting scheme, is to have a model that does not have any
tunable parameter [11].

PL2 is then amodel without parameters which derives from aweighting scheme thatmea-
sures the divergence from randomness of the actual term from the one obtained by a random
process. This model belongs to a family of models which differ one from the other by the
types of normalization used when computing the score.

Models based on measuring the divergence from randomness do not consider the rele-
vance of a document with respect to a query as a core concept, instead, they rank documents
computing the gain in retrieving a document that contains a term from the query.

The fundamental formula of these models is the following:

w = (1 − P2)(− log2 P1) = − log2 P 1−P2
1 (2.12)

We also define the informative content of a word in a document as:

10

Inf1 = − log2 P1 (2.13)

with P1 being the probability that a term has tf occurrences in the document by chance,
based on the model of randomness adopted. P2 is obtained by observing only the subset of
documents of the collection that contain the the term t. This subset is called elite set. P2

represents the probability that t is present in a document with respect to its elite set and is
correlated to the risk 1 − P2 of accepting a word as a good descriptor when a document is
compared to the elite set. If this probability is low, which means that the frequency of the
term is low in the documentwith respect to the elite set, then the gain in terms of informative
content brought by that term is high and viceversa.

To be able to actually computing this probabilities andweights, we start by assuming that
F is the total number of tokens of an observed word t in a collection C of N documents.
Furthermore, let’s assume that the tokens of a non-specialty word are distributed on the N

documents following the binomial distribution. Non-specialtywords are thosewordswhich
do not possess much discriminative power since they are present in most documents of the
collection, think about terms like the. Given this assumptions, the probability of having tf

occurrences in a document is given by:

P1(tf) = P1 = B(N, F, tf) =
(

F

tf

)
ptfqF −tf (2.14)

where p = 1
N
and q = N−1

N
. Words with a high P1 are the non-specialty words, while those

who have a low P1 are less distributed among the documents and thus is very unlikely that a
random process has generated those words distribution.

To sum up, the probability P1 is obtained by an ideal process called model of random-
ness, the lower this probability the lower the chance that the tf of the term relative to P1 is
generated randomly by the process and thus is very unlikely to obtain that word by accident.

P2 is the conditional probability of success of obtaining an additional token of a certain
word in a document based on statistics of the elite set. This probability is used as a way to
measure the gain of information that a word has in terms of informative content.

The differences between these models are given by themodels used to approximate the bi-
nomial process and the type of normalization applied. The letters in PL2mean that has been
used the Poisson process to approximate P1 and the Laplace law of succession to compute
P2, while the 2 means that it has been applied the second normalization to tf .

11

Assuming that the tokens of a non-specialty word should distribute on theN documents
of the collection following the binomial law, we obtain the equation 2.14, therefore the ex-
pected relative frequency in the collection is given by λ = F

N
, thus we can write:

Inf1(tf) = − log2

((
F

tf

)
ptfqF −tf

)
(2.15)

In order to be able to compute this value, we approximate the binomial process with a
Poisson process, assuming p small and that it decreases to 0whenN increases while λ = pF

remains constant. An approximation is given by:

Inf1(tf) = − log B(N, F, tf)

∼ − log2
e−λλtf

tf !
∼ −tf log2 λ + λ log2 e + log2(tf !)

∼ tf log2

(
tf

λ

)
+
(

λ + 1
12tf

− tf

)
log2 e + 0.5 log2(2πtf)

(2.16)

Moving to the L part of the model, let’s assume that P2(tf) is relative only to the elite
set of the word and that is obtained from the conditional probability P (tf + 1|tf, D) of
having an additional occurrence of the word t given the documentD. Using the Laplace law
of succession, P2 can be seen as the probability of having tf occurrences given the fact that
we have seen tf − 1 occurrences, thus:

P2 = tf

tf + 1
(2.17)

From this equation directly derives:

w(t, D) = 1
tf + 1

· Inf1(tf) (2.18)

In a collection of documents, the tf of a word depends also on the length of the docu-
ment analyzed, thus for collections with documents with different lengths, is necessary to
introduce a normalization of the tf . This operation takes the name of second normalization
and can be computed as:

12

tfn = tf log2

(
1 + avgdl

|D|

)
(2.19)

where avgdl is the average document length in the collection, while |D| is the length of the
document analyzed.

2.2.4 Word2Vec

Word2Vec (fromnow onw2v) is a group ofmodels that are used to produce term embeddings
and has been proposed by Mikolov [12]. An embedding is a representation of an item, in
this case of a word, in a new space such that the properties of the item are respected. In
other words, a w2v model tries to create a vector representation of a word in a distributed
fashion. In input the model takes the collection of documents and in output it gives the
vector representation of each word contained in the collection. Since the model computes
the embedding of a word by considering the words surrounding it, words that have similar
semantic meaning are close one to another in the vector space.

Mikolov [12] proposed two architectures for this model: Continuos-bag-of-words and
Skip-gram. The first tries to predict a word that would fit best given a set of words while the
second does the opposite: it tries to predict words that could be in the surrounding of a given
word. Both models are shallow, two-layer neural networks, the scheme of the architectures
can be seen in figure 2.1 below.

In this theses was used the skip-gram model so next we will concentrate only on this ar-
chitecture. The training goal is to find embeddings of words that are useful to predict the
surroundingwords of the actual term. So, given a sequence ofw1, w2, ..., wT trainingwords
from a training setW , the objective of the network is tomaximize the average log probability

1
T

T∑
t=1

∑
−c≤j≤c : j ̸=0

log p(wt+j|wt) (2.20)

where c is the size of the training window and T is the total number of words in W .
Using a large trainingwindow, the accuracy of the embeddings improves at the expenses of

training time since the number of examples also increases. The usual skip-gram formulation
uses a soft-max definition for the probability p(wt+j|wt):

p(wO|wI) =
exp(v′⊺

wO
vwI

)∑|W |
w=1(v

′⊺
w vwI

)
(2.21)

13

(a) Skip-gram architecture. (b) Continuos bag of words architecture.

Figure 2.1: The two architectures for w2v.

where vw is the input representation of the word while v
′
w is the output representation. This

definition is however impractical since it has a high cost of computing.

There exist many approaches to approximate this probability such as hierarchical soft-
max, negative sampling, sub-sampling of recurring words [13]. Hierarchical soft-max uses
a binary tree representation of the output layer, having a number of leaves equal to the
number of words in the vocabulary (|W |) and having every internal node representing the
relative probability of its child nodes. With this approach the model has only to evaluate
log2(|W |) nodes. The sub-sampling of frequent words has another approach, every time
the model looks at a wordwi ∈ WT , that word has a certain probability to be ignored equal
to p(wi) = 1 −

√
t

f(wi) where t is a threshold and f(wi) is the frequency of the word.

The approach used in this work is the negative sampling (NEG). This approximation is
the simplification of the Noise Contrastive Estimation (NCE), proposed Gutmann and Hy-
varinen [14] which states that a good model should be able to differentiate noise data from
useful data by means of logistic regression. The NEG objective is then the following:

14

log σ(v′⊺
wO

vwI
) +

k∑
j=1

Ewi∼Pn(w)[log σ(−v
′⊺
wj

vwI
)] (2.22)

whereσ(x) = 1
1+e−x ,Pn(w) is the noise distribution andk are the samples drawnasnegative

samples for the model. Using this formula to replace every log(p(wO|wI)) in the skip-gram
objective we get an approximation of the objective. The distribution Pn(w) is a free param-
eter, usually the unigram distribution taken to the power of 3/4 is used.

Until now, we have seen how the embeddings are learned by the model, finally we can
move on and see how we can use this embeddings to do information retrieval.

At this point we only have vector representations of words, so what about documents?
One possibility is to learn representations of entire phrases/paragraphs/documents by an
unsupervised algorithm that tries to predict words in a document [15].

Another possibility is simply to sum the vectors of the words that form a document and
then take the resulting vector as the vector which represents the document. So, given a docu-
ment D composed by d1, d2, ..., dm words, given the vector representations of these words
v1, v2, ..., vm, the vector of the document can be computed as:

v(D) =
m∑

j=1
vj (2.23)

Taking the average of all the word vectors that form the document is also a possibility. We
will call this approach fromnowonw2v-avg and is one of themodels considered in the thesis.

To take into account also statistics as TF-IDF discussed previously. This means that ev-
ery vector that composes a document is weighted by its TF-IDF score and then summed to
compose the representation of the document. This approach makes use of self information
since it uses statistics based on the document and the collection and we will call this model
w2v-si. The representation of the document is:

v(D) =
m∑

j=1
w(vj)vj (2.24)

where the weight is the TF-IDF score of the word.

To be able to rank the documents for a query, first the query needs to be projected into the
vector space. To do that is sufficient to follow the same scheme as for the document vector:
the vector is obtained by averaging the word embeddings that compose the query.

15

The score of a document can then be computed by taking the cosine similarity between
the query and document vector. So, given the query vector q and the document vector d, the
score of the document with respect to the query is computed as:

score(q, d) = q · d

|q||d|
=

∑n
i=1 qidi√∑n

i=1 q2
i

√∑n
i=1 d2

i

(2.25)

where n is the dimension of the vectors.

2.3 Query expansion

So far we assumed implicitly that the query is formulated correctly in the sense that the user
knows exactly what he is searching for. This assumption however is a bit unrealistic. Usually,
queries are formulated in natural language which has a high degree of expressiveness: one
can express the same concept using different words. Another problem could be the fact that
user usually search for very short queries, sometimes formed only by one term, whichmakes
it very difficult for a system to understand what is the information need needed. These are
obviously important problems for an IR model since different formulations of the same in-
formation need can lead to great differences in performance even with the same IRmodel.

Query expansion (QE) is a set of techniques that reformulate the query to improve per-
formance of a IR system [16]. The techniques used can be:

• finding synonyms for words and search also for the synonyms

• finding semantic related words

• finding all the morphological forms of words by stemming the words in the query

• fixing any spelling errors found in the formulation of the query and using the cor-
rected query to search the collection

• re-weighting the terms of the query in the model

Query expansion can be used on top of the preprocessing discussed previously to try to
improve further the performance of the system.

16

2.4 Relevance feedback

Themodels presented in the previous sections implicitly make use only of information avail-
able before actually running the query. These approaches assume that we do not have any
user feedback of the query done by the user. The idea of relevance feedback is to take the
results obtained by running a query, gather user feedback and from this new information,
perform a new query which should lead to a better set of results.

There are three types of relevance feedback: explicit, implicit and blind or pseudo feed-
back.

Explicit feedback means that the results of a query are explicitlymarked as relevant or not
relevant by an assessor. The grade of relevance can be binary, relevant/not-relevant or multi-
graded. Graded relevance rates the documents based on a scale of numbers, letters or descrip-
tions of relevance (for example not relevant, somewhat relevant, relevant, very relevant).

Implicit feedback does not require any explicit judgement from the user, instead it infers
the grade of relevance by observing which documents are viewed most and for longer for
similar queries. This implicit feedback can be measured and then used as a feedback for the
system to try to improve the search results.

Blind feedback does not require any user interaction and also does not track user actions,
instead it retrieves a set of documents using the standard procedure and then it assumes that
the top-k documents in the list are relevant, since it is where they are more likely to appear.
With this information, the model does relevance feedback as if it was provided by the user.

Relevance information can be used by analyzing the relevant documents content to adjust
theweights of thewords in the original query or by expanding the querywith new terms. For
example, a simple approach that uses the blind feedback is the following:

1. perform the retrieval of the query normally

2. assume that the top-k documents retrieved are relevant

3. select top-k1 terms from the documents using some score, like TF-IDF

4. do query expansion by adding these terms to the initial query

5. return the list of documents found with the expanded query

Relevance feedback (RF) is, however, often implemented using the Rocchio algorithm
[17]. The algorithm includes in the search results an arbitrary number of relevant and non

17

relevant documents in order to improve the recall of the system. The number of such rele-
vant or not documents are controlled by three variables, a, b, c in the following formula:

−→
Qm = (a · −→

Q0) +

b · 1
|DR|

·
∑

−→
Dj∈DR

−→
Dj

−

c · 1
|DNR|

·
∑

−−−−−−→
Dk∈DNR

−→
Dk

 (2.26)

where
−→
Qm is the modified vector representation of the query, DR is the set of relevant doc-

uments considered, DNR is the set of non-relevant documents and a is the parameter that
selects how near the new vector should be from the original query, while b and c are respon-
sible for howmuch

−→
Qm will be close to the set of relevant or non-relevant documents.

2.5 Fusions

Ranking fusion is a method used to combine different ranking list into one. The idea be-
hind this approach can be drawn from the fact that some IR models are better in specific
queries than others, thus the sets of retrieved documents of two different models can be very
different, therefore by fusing together the two runs, the overall recall is very likely to increase.
Another observation that can be made is the fact that, if a document is retrieved by two or
more different IRmodels, the probability that the document is relevant is very high. Indeed,
it has been shown that by combining different lists of retrieved documents improves the ac-
curacy of the final system [18].

In the following sections, three different kinds of fusions are analyzed and considered in
this work.

2.5.1 Comb methods

Among the first methods to combining evidence from multiple models are the ones devel-
oped by Belkin et al. [19]. These approaches are very simple and can obtain very good perfor-
mances. In the original paper, the authors proposed six different methods to fuse the data
together, in this section we will see only the first three.

The setup is the following: we have n lists of retrieved documents by n different mod-
els, each list contains m retrieved documents for each query. Each list of retrieved docu-
ments contains also the score that the model assigned to each document for the given query.

18

So, given a query q, the most simple way of combining the lists is by using the CombSUM
method.

The score of a document in the final list is simply obtained by summing all the scores of
the document for each model:

scoreCombSUM(d) =
∑

m∈Dm

score(d) (2.27)

where Dm are all the models used and d is the actual document.
Anothermethod, calledCombANZ is to take the score of CombSUMand divide it by the

number of models for which the document appeared in the top-1000 for the given query:

scoreCombANZ(d) = 1∑
m∈Dm: d ∈ topm(1000) (1)

∑
m∈Dm

score(d) (2.28)

where topm(1000) represents the top-1000 documents retrieved by model m.
CombMNZ multiplies the sum of the scores by the number of models for which the doc-

ument appears in the top-1000:

scoreCombMNZ(d) =
∑

m∈Dm: d ∈ topm(1000)
1 ·

∑
m∈Dm

score(d) (2.29)

We used CombSUM later in the thesis, thus we will concentrate on this approach from
now on.

The score computed in equation 2.27 works well if the scores of the models use similar
values, however, if the values of the scores are very different that would mean that the final
score would be biased towards the system which has higher score. In order to prevent this,
the score is normalized before being summed.

There exist many kinds of normalizations, althoughwe used themin-max one, wewill see
also the sum normalization and zero mean unit variance normalization.

The simplest of the three normalizations is min-max. With this approach the score of a
document is rescaled between 0 and 1: the minimum score is re-scaled to take the value of 0
while the maximum score will take value 1. normalized score for every document d is thus
computed as:

scoreminmax(d) = sL(d) − mind′ ∈LsL(d′)
maxd′ ∈LsL(d′) − mind′ ∈LsL(d′)

(2.30)

19

where sL(d) is the non-normalized score of the current document, L is the list with the doc-
uments and maxd′ ∈LsL(d′) and mind′ ∈LsL(d′) are respectively the maximum and mini-
mum score of a document in the list L.

A second possible normalization is to impose that the sum of all the scores to be equal to
1while the minimum value should be 0. This approach is called sum normalization and the
normalized score for each document d in the list L can be computed as:

scoresumnorm(d) = sL(d) − mind′ ∈LsL(d′)∑
d′ ∈L(sL(d′) − mind′′ ∈LsL(d′′))

(2.31)

Another possible normalization is to impose themean of the scores to be 0 whit variance
equal to 1. The score in this case is calculated as:

scorenorm(d) = sL(d) − µ

σ
(2.32)

where µ = 1
|L|
∑

d′ ∈L sL(d′) and σ =
√

1
|L|
∑

d′ ∈L(sL(d′) − µ)2, with |L| being the length
of the list of documents.

All these normalizations can be usedwith all the rules of combining thatwe’ve seen before.
We used the CombSUMwithmin-max normalization as it yielded better performance than
the other rules and normalizations for the task of the this work.

2.5.2 Reciprocal ranking fusion

The fusion methods seen in the previous section used the scores of the documents assign to
them by tha variousmodels, this lead to the need to introduce some sort of normalization of
the scores. Reciprocal ranking fusion (RR), introduced by Cormack [20], does not look to
the scores of the documents but takes into account only the positions occupiedby adocument
in the various lists to bemerged by assigning a score to a document by summing the reciprocal
of the position occupied by the document d in the set of rankingsR, with each object of this
set being a permutation on 1, ..., |D|, where |D| is the total number of documents in the
lists.

The score for RR is then computed as:

scoreRR(d) =
∑
r∈R

1
k + r(d)

(2.33)

where k = 60 is a constant that was used by the author and that we have not changed.

20

2.5.3 Probfuse

Probfuse is a supervised probabilistic data fusion method that ranks the documents based
on the probability that they are relevant for a query [21].

The fusion is composedby twophases: a trainingphase and the fusionphase. Themethod
takes into account the performance of every system to be fused, assigning a higher or lower
probability to the documents retrieved by that model.

More precisely, the training phase takes in input the results retrieved by the different IR
systems for the same set of queries Q. The list of the retrieved documents is then divided
into x segments and for each segment it is computed the probability that a document in
the segment has to be relevant. This probability is then averaged on the total of the queries
available for the training.

Therefore, in a training set of |Q| queries, the probability that a document d retrieved in
the k-th segment is relevant, being part of the list of retrieved documents of the model m is
computed as:

P (dk|m) = 1
|Q|

·
|Q|∑
q=1

|Rk,q|
|k|

(2.34)

where |Rk,q| is the number of relevant documents in the k-th segment for the query q and
|k| is the total number of documents retrieved in the k-th segment.

To compute this probability, non-judged documents are assumed to be non-relevant.
The authors proposed also a variation of this probability by only looking at judged docu-
ments in a segment. In this case, the probability is be computed as:

P (dk|m) = 1
|Q|

|Q|∑
q=1

|Rk,q|
|Rk,q| + |Nk,q|

(2.35)

where |Nk,q| is the total number of documents that are judged to be non-relevant in the k-th
segment for the query q.

With the all the sets of probabilities computed for each input system, a fused set is built
by computing a score score(d) for each document for a given query q:

scoreprobfuse(d) =
M∑

m=1

P (dk|m)
k

(2.36)

whereM is the number of systems to fuse, k is the segment inwhich the document d appears

21

for the model m and P (dk|m) is the probability computed in equation 2.34 or 2.35 and k

is the segment that d appears in. If a document is not retrieved by all of the models, its
probability for the systems that did not return it is assumed to be 0.

Probfuse has x as a free parameter. We used x = 20 in our experiments later in the thesis.

2.6 EvaluationMeasures

In IR, there are many ways to measure the performance of a system and compare the effec-
tiveness of different models and approaches. In this section, we will present the three main
measures used in this work to assess the performance of the different experiments.

2.6.1 Precision

Precision (P) is one of the simplest measures available. It measures the ability of a system
to avoid retrieving non relevant documents. More precisely, given a list L of documents
retrieved by a model for a given query, the precision is computed as:

P = |RelL|
|L|

(2.37)

where RelL is the set of the relevant documents in the list L, |L| is the total number docu-
ments retrieved.

This measure is a good indicator on how good a system is but it looks only at the system
in its entirety. To better understand how the system performs, it is possible to compute
the precision at different thresholds, in order to see how the precision of the system evolves
scrolling down through the results.

In order to do so, it is sufficient to extract a subset Lcutoff ∈ L which is composed only
by the documents which position in the list are within a cutoff threshold. Doing so it is pos-
sible to compute the precision at different cutoffs. The notation becomes then P_k which
denotes the precision of the system in the first k documents. Precision at document cutoff
k is computed as:

P_k = 1
k

k∑
i=1

ri (2.38)

where ri ∈ 0, 1 is the relevance judgement of the i-th document in the list L.

22

2.6.2 Recall

Another widely used measure is Recall (R), it measures the proportion of relevant docu-
ments retrieved by the system. So, given a list L of retrieved documents for a given query
q and the list R of all relevant documents for q, the recall of the system is computed as:

Recall = |RelL|
|RB|

(2.39)

where RelL is the set of the relevant documents in the list L, and |RB| is the total number
of relevant documents for the query q.

As in the case of Precision above, Recall is usually computed at a cutoff. In this later case
the notation will change slightly, becoming for example R_k for the Recall of the first k

documents in the list L.
Recall at document cutoff k is computed as:

Recall_k = 1
|RB|

n∑
j=1

rj (2.40)

where rj ∈ 0, 1 is the relevance judgement for the j-th document in the list L.

2.6.3 Normalized discounted cumulative gain

Recall and Precision, although widely used, have an important flaw in their formulation:
they threat non-graded and multi-graded relevant judgements indistinctly. This can bring
to a somewhat distorted vision of the results: if a system retrieves less relevant documents
than another system but the retrieved documents are all very relevant to the query then it is
arguably a better system than the other, yetwith only Precision andRecall, the second system
would be favored. Another problem is the fact that very relevant documents retrieved later
in the list, do not hold the same value to the user as the relevant documents retrieved in the
first positions.

To tackle these problems, Järvelin and Kekäläinen [22] proposed a novel type of measure-
ment: cumulative gain. The cumulative gain is computed as the sumof the gain that a system
obtains by having retrieved a document. More precisely, given a list of resultsL, denotingLi

as the document in the i-th position of the list we can build a gain vectorGwhich represents
the relevance judgements of the documents of the list L. Given all of above, the cumulative
gain (CG) is defined recursively by the following:

23

CG[i] =

G[1], if i = 1

CG[i − 1] + G[i], otherwise
(2.41)

where CG[i] denotes the cumulative gain at position i in the list.

The CG tackles the first problem, but does not take into account the fact that relevant
documents retrieved early are more important than relevant documents retrieved later. This
can be justified by the fact that a user is unlikely to scroll trough all of the results, due to lack
of time, effort and cumulated information from documents already seen early in the list.

Thus, a discounting factor has been introduced to progressively reduce the gain of a rele-
vant document as its rank in the list increases. This discounting, however, should not be very
steep to allow for user persistance to also be taken into account.

The proposed discounting function is the logarithmic function: by dividing the gain G

by the logarithm of the rank of a document, the gain decreases with the increase of relevant
documents ranks but it does not decrease too steeply. The discounted cumulative gain is
computed then by:

DCG[i] =

CG[i] if i < b

DCG[i − 1] + G[i]
logb i

if i ≥ b
(2.42)

where b is thebase of the logarithmand i the rankof thedocument. Notehowthedocuments
that are retrieved in the first b positions are not discounted: this makes sense since the higher
the base, the lower the discount. By changing the base of the logarithm, it is possible to
model the behavior of a user: the higher the base, the more the user is patient and looks at
more documents and viceversa.

TheDCG computed in equation 2.42 is an absolutemeasure: it is not relative to any ideal
measure which makes it difficult to compare two different systems by their DCG. We thus
introduce of a normalization of the measure: every element of the DCG vector is divided
by the relative ideal DCG counterpart, iDCG, which is built by ordering the documents in
decreasingly order of relevance. The elements of the resulting vector, called NDCG, will
take value in [0, 1] where 1 means that the system has ideal performance. Thus, given the
DCG and iDCG vectors, the NDCG is computed, for every k by:

NDCG(k) = DCG(k)
iDCG(k)

(2.43)

24

3
Experimental setup

In this section, we describe the setting of our experiments for the comparison of the different
models. In Section 3.1, we describe the experimental collection used; then, in Section 3.2 the
Terrier software that implements the IRmodels studied in thiswork; finally, each experiment,
also known as run in the IR community, is described in Section 3.3.

3.1 Datasets

In order to conduct our experiments we used the topics of the different tasks of the CLEF
e-Health tracks (link: http://clef-ehealth.org/). We choseTask1 (T1) of the 2018 and
2019 tracks and the Task2 (T2) of the 2017, 2018 and 2019 tracks.

• T1 uses as dataset all the articles present on PUBMED (title + abstract);

• T2’s tracks are constructed upon the results of a boolean search on PUBMED for each
topic.

Thus we differentiated between T1 and T2 by constructing different datasets. First, we
merged the topics of the two T1 tracks, then we downloaded all the articles on PUBMED
Medline, which can be done in different ways *, and we used this dataset for the topics.

For T2, since every track used different datasets, we downloaded only the documents
which appeared as results of the boolean search done by CLEF for each track. In order to

*https://www.ncbi.nlm.nih.gov/home/download/

25

http://clef-ehealth.org/
https://www.ncbi.nlm.nih.gov/home/download/

do so, we used the Biopython [23] python library with a custom script that extracts all the
PMIDs from the files provided by the tracks and then proceeds to download and save them
to plain text files. We executed the retrieval separately for the three tracks and then merged
them into one final result. This has been possible since the topics were different for each
track so no overlapping of results happened.

Finally, table 3.1 shows a summary of the datasets used with respectively the total number
of topics.

Task Tracks Dataset # topics
Task1 2018 and 2019 All articles of PUBMED 60
Task2 2017 and 2018 and 2019 Result of boolean search on PUBMED 90

Table 3.1: Summary of the datasets used.

All the topics, qrels and list of PMIDs of the various tracks, can be found at the following
link: https://github.com/CLEF-TAR/tar.

3.2 Terrier

Terrier is an open source IR platform, written in Java, that implements state of the art in-
dexing and retrieval functionalities. It is developed by the University of Glasgow [24] and it
implements many IR models †. Terrier allows indexing and retrieval of a collection of docu-
ments and it is also fully compatible with the TREC requirements. It also allows for query
expansion and relevance feedback to be used with the models to improve the performance of
the systems.

In this work we used Terrier with the BM25, DirichletLM, PL2 and TF-IDF weighting
schemes as well for the runswith query expansion and relevance feedback. For BM25,Terrier
multiplies the score computed in equation 2.4 by (k3+1)f(qi,Q)

k3+f(qi,Q) , where k3 = 8 and f(qi, Q)
is the frequency of the term qi in the query Q. Thus, the score computed by Terrier for the
BM25 weighting scheme is:

score(D, Q) =
n∑

i=1
IDF (qi)

f(qi, D)(k1 + 1)
f(qi, D) + k1

(
1 − b + b ∗ |D|

avgdl

) (k3 + 1)f(qi, Q)
k3 + f(qi, Q)

(3.1)

For DirichletLM, in Terrier, the score of a term qi ∈ Q is given by:
†http://terrier.org/download/

26

https://github.com/CLEF-TAR/tar
http://terrier.org/download/

score(qi, D) = log

1 + TF

µ f(qi,C)
#oftokens

+ log
(

µ

|D| + µ

)
(3.2)

where parameter µ = 2500.

Finally, for the PL2 model, putting all the equations presented in Section 2.2.3, in Terrier
the PL2 score is computed as:

s = kf

1 + tfn

·
(

tfn log2

(
1
tf

)
+ tf

ln 2
+ log2 (2πtfn)

2
+ tfn

(
log2(tfn) − 1

ln 2

))
(3.3)

where kf is the frequency of the term in the query, tfn is the normalized tf computed in
equation 2.19 and tf is the non normalized term frequency of the word.

For the runs with QE+RF, Terrier uses the Bo1 algorithm, proposed by Amati [25]. The
model operation is similar to the simple one described for the pseudo relevance above, of
which this algorithm is a variant: the algorithm extracts themost informative terms from the
top-k documents retrieved as expanded query terms. These terms are then weighted using a
particular divergence from randomness term weighting scheme. The one used in this work is
Bo1 which stands for Bose-Einstein 1 and is parameter free.

The algorithm assigns a weight to each term based on a measure of informativeness w(t)
of the term t. This value is given by:

w(t) = tf · log2

(1 + Pn

Pn

)
+ log2(1 + Pn) (3.4)

where tf is the frequency of the terms in the pseudo relevant set of documents selected and
Pn is given by F

N
which are the same parameters as those discussed in section 2.2.3, F is the

term frequency of t in the collection while N is the number of documents in the collection.
Amati suggests to use the first three documents as relevant set fromwhich to take the top-10
most informative terms, in this work we followed the advice and leaved the default parame-
ters for the QE+RF.

27

3.2.1 Setup

The setup used for Terrier is the following. We first wrote one property file ‡ for each model,
for each different index used and for each Task. Then we created all the different indexes
that we wanted to test, and run the retrieval for the different topics. Of course, since T2
uses different datasets, we executed the retrieval for each track and then merged the results
into one result file, for a total of 90 topics. For T1 instead, we first merged the all the topics,
obtaining 60 different topics, and subsequently run the retrieval with Terrier.

In figure 3.1 we show a graph with all the steps done in order to evaluate the various in-
dex/models combinations with Terrier.

Figure 3.1: Graph showing the pipeline steps done in order to prepare the indexes and do the runs.

To fuse the topics and the results, we used the trectools [26] python library. For conve-
nience, we also wrote a bash script that takes in input the directory of the Terrier properties
files and then is able to create the index and execute the retrieval with or without query ex-
pansion and relevance feedback.

We did not adjust any of the tuning parameters available for the various models since we
preferred to see how the default worked. As parameters for query expansion and relevance
feedback, we also left the Terrier defaults, which means that were used th first 3 documents
as relevant, from which were taken the 10 most influent words to expand the query.

For the word2vec runs, we used pre-trained vectors [27] with 200 dimensions trained on
the full PUBMED article set of titles and abstracts §.

Wewrote a python script that created the average or the self-information representation of
all the documents in the collection, see section 2.2.4 formore details on these representations,
using the same pre-processing as the one used before the training of the word embeddings.

‡see configuration of Terrier here: http://terrier.org/docs/v5.1/configure_general.html
§The vectors can be downloaded at the following link: https://github.com/RaRe-Technologies/

gensim-data/issues/28, see also https://ia802807.us.archive.org/21/items/pubmed2018_
w2v_200D.tar/README.txt for the details about the collection and preprocessing

28

http://terrier.org/docs/v5.1/configure_general.html
https://github.com/RaRe-Technologies/gensim-data/issues/28
https://github.com/RaRe-Technologies/gensim-data/issues/28
https://ia802807.us.archive.org/21/items/pubmed2018_w2v_200D.tar/README.txt
https://ia802807.us.archive.org/21/items/pubmed2018_w2v_200D.tar/README.txt

With the representations of all documents, we created a script that computes the similar-
ity between a given topic and all the documents in the collection, compiling a ranked list of
scores and document ids which then is stored on disk as the result list. We created the rep-
resentations of the documents for each different dataset. The queries underwent the same
pre-processing as the documents creating firstly a vector representationof the topics and then
computing the cosine similarity between query and document.

In figure 3.2 there is a graphical representations of the procedure described above. It is
similar to the Terrier runs.

Figure 3.2: Graph showing the pipeline steps done in order to do the word2vec runs.

Finally, in order to do the fusions, we also used the trectools [26] which provide all the
Comb fusions and the Reciprocal Ranking (RR) fusion, with default parameter k = 60.
However, we implemented the min-max normalization, see equation 2.30, for Comb since
it was not developed in the library.

We wrote a simple script that reads two or more result files of different runs and then
merges thembymeans of CombSUM-normorRR into a single file, which can then be saved
locally on the disk.

Regarding Probfuse, we implemented all the algorithm from scratch in python. Since
CLEF e-Health tracks come together with some test and train topics, we used the training
topics for the train part of the fusion and then executed the fusion on the results of the test
topics, which are the ones used in T1 and T2.

We chose to ignore the documentswithout a relevance judgement andusedx = 20, which
means that we had a total of 20 segments each containing 50 documents.

All the software and property files used in this work is available at the following git repo:
https://gitlab.com/chaosphere/master-thesis.

29

https://gitlab.com/chaosphere/master-thesis

3.3 Runs

To be able to answer to RQ1, we constructed four different types of indexes:

1. NoPorterNoStop (N): in this index we did not applied any type of preprocessing

2. Porter (P): an index built applying the Porter Stemmer to the documents

3. PorterStop (P+S): an index built applying th Porter Stemmer and using a Stop-list
for the removal of the words with less resolving power

4. Stop (S): an index built only by using a Stop-list, removing the words with less resolv-
ing power

For each of these indexes, we used the TF-IDF weighting scheme, PL2, Dirichlet_LM
and BM25 models. Thus, each index yields four different results list, one for each weight-
ing scheme/model. In addition, we also wanted to test this models against word2vec, conse-
quently we also did the retrieval of the same topics using the w2v model.

RQ Runs Total per task
RQ1 BM25, Dirichlet, PL2, TF-IDF, w2v-avg, w2v-si 18
RQ2 QE+RF of BM25, Dirichlet, PL2, TF-IDF 16
RQ3 RQ1, RQ2, N, P, P+S, S 18

Table 3.2: Summary of all the runs.

Since RQ2 is about query expansion and relevance feedback, and since Terrier allows the
usage of QE+RF simply by passing a further parameter, we used exactly the same indexes
also to answer to RQ2.

To see if doing the fusion of the results of different IR systems improves the overall per-
formance,RQ3, we decided to fuse all the following runs, using all the three fusionmethods
presented:

1. Per index: we fused all the runs using the same index, so for example we fused all the
runs of the N index together

2. Per model: we fused all the runs of the same IRmodel, for example all the runs of the
PL2 model using the different indexes

Since we worked with two different tasks, we created the runs for both T1 as well as T2.
The final count of runs and their composition is summed in table 3.2, per task.

30

4
Results

In this chapter we analyze the results of the different runs per task. In Section 4.1, we analyze
the simplest runs produces withTerrier; in Section 4.2 and Section 4.3 we describe the results
using QE + RF and word2vec, respectively.

All the runs have been evaluated using the trec_eval software, developed by the US Na-
tional Institute of Standards and Technology (NIST) *.

In the next sections we reported a subset of all the plots, which can be found in Appendix
A.

4.1 Terrier runs baseline

4.1.1 Task1

Starting with Task1 (T1), we first investigate if there is a model that has an appreciable better
performance than the others across the different indexes used. In figure 4.1 are presented the
Box Plots of the different models with the different indexes.

From the plots, it is clear that there there is little difference between the models with the
same index and as it can be seen in figure 4.2, there is a significant advantage in using some
form of preprocessing, regardless of what type it is.

This result can be observed constantly across differentmeasurements, whichmeans that it

*https://trec.nist.gov/trec_eval/

31

https://trec.nist.gov/trec_eval/

(a) NoPorterNoStop index. (b) Porter index.

(c) PorterStop index. (d) Stop index.

Figure 4.1: T1: Box Plots for P@10 of the different models for each index.

is not only one type of performance which benefits from using a stemmer or a stop-list, but
instead the overall performance of the system increases.

In table 4.1 we report the various measures ofNDCG and Recall@R which is the Recall
computed at document cutoff equal toR that is the total number of documents judged rele-
vant by the assessors for a certain topic. We also highlighted the best value for each measure.

From the scores obtained by the systems, it follows that the combination of Porter Stem-
mer with Dirichlet weighting, although not significant better than the other models, has a
better NDCG score later in the result list, while Porter Stemmer with TF-IDF weighting
does well in the first part of the results. This behavior is true also for Precision: the score
of P@10 and P@100 is higher for Porter/TF-IDF, 0.15 vs 0.1367 and 0.1048 vs 0.1025 re-
spectively, while the overall precision being slightly better for Porter/DirichletLM, 0.0365
vs 0.0361.

32

(a) Precision for BM25 with different indexes. (b) Precision for DirichletLM with different indexes.

(c) Precision for PL2 with different indexes. (d) Precision for TF-IDF with different indexes.

Figure 4.2: T1: Box Plots for P@10 of the different indexes for each model.

In conclusion of this first part, for T1, our findings show that the use of a type of prepro-
cessing increases significantly the overall performance of a systems, regardless of the model
used. Furthermore, it seems that the best scores are obtained by models using the Porter
index, specifically with TF-IDF weighting scheme even if there is no clear winner.

4.1.2 Task2

Task2 (T2) are results obtained on a dataset of documents after an initial boolean search on
PUBMED (see the Section 3.1 for more information). Like in the previous section, we start
by comparing the results of the systems with the same index, then we compare the models
using different indexes.

Coherently with the findings for T1, we can see in figure 4.3 that even for T2 there is no
systems that stands out from the others. However, we can observe that theNoPorterNoStop

33

Index/Model NDCG@10 NDCG@100 NDCG@1000 R@R
NoPorterNoStop/BM25 0.0443 0.0389 0.082 0.0244
NoPorterNoStop/Dirichlet 0.0167 0.0238 0.065 0.0169
NoPorterNoStop/PL2 0.0454 0.0387 0.0782 0.0243
NoPorterNoStop/TF_IDF 0.0448 0.0393 0.0821 0.0248
Porter/BM25 0.1346 0.1538 0.2549 0.1045
Porter/Dirichlet 0.1276 0.1652 0.2749 0.1088
Porter/PL2 0.1257 0.1495 0.2462 0.0985
Porter/TF_IDF 0.1451 0.1682 0.2692 0.1077
PorterStop/BM25 0.1316 0.1559 0.2597 0.1004
PorterStop/Dirichlet 0.1217 0.1612 0.2662 0.1003
PorterStop/PL2 0.1297 0.1461 0.2426 0.0928
PorterStop/TF_IDF 0.1306 0.1551 0.258 0.1001
Stop/BM25 0.1186 0.1458 0.2374 0.0911
Stop/Dirichlet 0.1243 0.1538 0.2496 0.1017
Stop/PL2 0.1209 0.1396 0.2238 0.0851
Stop/TF_IDF 0.1172 0.1464 0.237 0.0911

Table 4.1: NDCG at various cut offs and Recall@R for the different models for T1.

index produces better results than for T1, probably thanks to the pre-boolean search which
restricted the document collection as a whole.

Similarly to T1, also for T2 there is little different between models using the same type of
index, however, when comparing the same models with different indexes things change.

In figure 4.4we can see that some indexes benefitmore amodels thanothers, this is evident
for each model. Let’s take BM25 as an example. From the graphic it is clear that PorterStop
and Stop indexes yield the best scores when compared to the other two indexes. This is true
in general for each model, there is always at least one index that achieves significant better
score than the rest. It also can be seen that the indexNoPorterNoStop, although achieving
noticeable better scores for T2 than for T1, it remains inferior to the others.

Another interesting observation that can be made is that not always the combination of
Porter Stemmer and a Stop-list achieves better performance than just using the Porter Stem-
mer or the Stop-list alone. Nevertheless, overall it seems that with the combination of the
two yields more constant scores regardless of themodel in use, as it can be see from figure 4.3
by comparing the variation of the mean scores of the models using the PorterStop index and
the others.

34

(a) NoPorterNoStop index. (b) Porter index.

(c) PorterStop index. (d) Stop index.

Figure 4.3: T2: Box Plots for P@10 of the different models for each index.

To sum up, for T2 the models behavior is similar to the one for T1. The use of preprocess-
ing increases noticeably the scores of the systems but this time, although essential, improves
less the performance of a system. The fact that the dataset is significantly smaller helps in this
regard since the probability that a document is seen and thus judged by an assessor is higher.
More considerations on this will be made in the next chapter.

Coherently with T1, also for T2 there seems to be a combination of index/model that is
obtains constantly better scores than the rest of the combinations, as it can be seen in table
4.2. The TF-IDF weighting scheme with the Porter index holds the best overall scores in
terms of NDCG, at all the different cutoffs, as well as for Recall@R and Precision.

This is the same combination as the best one for T1, which indicates that it could be the
index/model thatwe search for inRQ1. Wewill analyze better theperformanceof thismodel
in the next chapter, as well as keep this combination in mind when we will see the results of

35

(a) Precision for BM25 with different indexes. (b) Precision for DirichletLM with different indexes.

(c) Precision for PL2 with different indexes. (d) Precision for TF-IDF with different indexes.

Figure 4.4: T2: Box Plots for P@10 of the different indexes for each model.

the systems with the usage of query expansion and relevance feedback in the next section.

Differently fromT1, in T2 there is somemuchmore difference between models using the
same index. Looking at the plots in figure 4.3 and the at the table 4.2 there is a more obvious
preference of some models towards some specific types of indexes.

This is obvious in the case of thePorter index,where theBM25model has amedian score fo
Precision@10 noticeably lower than the other models. This phenomenon can be observed
also for the Stop index: the difference between the BM25 and Dirichlet median score with
respect to the PL2 and TF-IDF score is evident. Interestingly for this index, this fact is not
reflected for the various mean scores, which are very similar.

The last observation can be extended also for the other indexes: in general themean scores
are more similar one from another than the median scores.

36

Index/Model NDCG@10 NDCG@100 NDCG@1000 R@R
NoPorterNoStop/BM25 0.1861 0.2406 0.3737 0.166
NoPorterNoStop/Dirichlet 0.1786 0.2526 0.3878 0.1707
NoPorterNoStop/PL2 0.2052 0.2525 0.3929 0.1803
NoPorterNoStop/TF_IDF 0.2075 0.2665 0.4031 0.1835
Porter/BM25 0.2162 0.2654 0.4127 0.1814
Porter/Dirichlet 0.2662 0.3165 0.459 0.2067
Porter/PL2 0.2565 0.2969 0.4464 0.2041
Porter/TF_IDF 0.2761 0.3202 0.4716 0.2156
PorterStop/BM25 0.26 0.3144 0.4682 0.2062
PorterStop/Dirichlet 0.2438 0.3032 0.4456 0.1959
PorterStop/PL2 0.2584 0.3058 0.4608 0.2037
PorterStop/TF_IDF 0.2618 0.3148 0.4683 0.2072
Stop/BM25 0.2396 0.2967 0.4501 0.2004
Stop/Dirichlet 0.2363 0.2977 0.4373 0.1981
Stop/PL2 0.2387 0.2933 0.4455 0.196
Stop/TF_IDF 0.2391 0.2987 0.451 0.2015

Table 4.2: NDCG at various cut offs and Recall@R for the different models for T2.

4.2 Terrier runs withQuery Expansion and Relevance Feedback

4.2.1 Task1

In figure 4.5 we reported the results of the different models for each index considered. From
the results, it emerges that by doing QE+RF the performance of all of the models increased
significantly. Even the performance of some models using the NoPorterNoStop index are
very high and comparable to the rest of the indexes, which suggests the fact that QE+RF
efficacy is index independent.

This fact can also be observed by looking at figure 4.6, from which is evident how much
better themodels using theNoPorterNoStop index dowith respect to the performance of the
runs without QE+RF. For the DirichletLM weighting scheme, the scores obtained are very
similar for each index, strengthening the aforementioned idea that doing QE+RF is index
independent.

Another thing that can be observed, is that within the same index, some models benefit
a lot more than the others from QE+RF. For instance, the DirichletLM weighting scheme,
outperforms every other model for each index considered, thus suggesting that this model

37

(a) NoPorterNoStop index. (b) Porter index.

(c) PorterStop index. (d) Stop index.

Figure 4.5: T1: Box Plots for P@10 of the different models for each index, with QE and RF.

benefits heavily from this type of postprocessing.

Index P@10 P@100 P@1000
NoPorterNoStop 0.36 0.1782 0.0557
Porter 0.3633 0.1842 0.0558
PorterStop 0.345 0.1773 0.0549
Stop 0.3333 0.1853 0.0553

Table 4.3: DirichletLM+QE+RF for T1: P@10, P@100 and P@1000.

In table 4.4 we summed up, as usual, the results of the different models for each index.
From the table we can see that our previous observationmade on theNoPorterNoStop index
for P@10 is true also for themeasures ofNDCGandR@R: the scores obtained by the various
models are very similar no matter the index used.

38

(a) Precision for BM25 with different indexes. (b) Precision for DirichletLM with different indexes.

(c) Precision for PL2 with different indexes. (d) Precision for TF-IDF with different indexes.

Figure 4.6: T1: Box Plots for P@10 of the different indexes for each model, with QE+RF.

Furthermore, not doing preprocessing is, for some models, the best approach and for the
DirichletLMweighting scheme is the best approach in terms of NDCG andR@R. Looking
also at the Precision values, however, theNoPorterNoStop index is not the best choice. This
can be seen from table 4.3: although the scores are very similar, NoPorterNoStop is never
the best index to use. It is interesting to notice how the performance, in terms of Precision,
is worse around the cutoff of 100 to then recover to the end of the list.

The best combination of index/model for T1 with query expansion and relevance feed-
back seems to be Porter/DirichletLM and NoPorterNoStop/DirichletLM. In terms of Pre-
cision, is better to choose the first one, while in terms of NDCG and R@R the better choice
is the second one.

39

Index/Model NDCG@10 NDCG@100 NDCG@1000 R@R
NoPorterNoStop/BM25 0.2313 0.227 0.3382 0.1471
NoPorterNoStop/Dirichlet 0.3792 0.339 0.4687 0.2332
NoPorterNoStop/PL2 0.1987 0.2003 0.3101 0.1282
NoPorterNoStop/TF_IDF 0.2162 0.2182 0.3297 0.1385
Porter/BM25 0.2417 0.2603 0.3872 0.1728
Porter/Dirichlet 0.3778 0.3397 0.4684 0.2329
Porter/PL2 0.2114 0.2433 0.372 0.1549
Porter/TF_IDF 0.2404 0.2576 0.3855 0.1624
PorterStop/BM25 0.2397 0.2484 0.3763 0.1584
PorterStop/Dirichlet 0.3498 0.3256 0.4558 0.2252
PorterStop/PL2 0.2237 0.2337 0.3609 0.1485
PorterStop/TF_IDF 0.233 0.2453 0.3736 0.1571
Stop/BM25 0.2201 0.239 0.3619 0.1586
Stop/Dirichlet 0.3436 0.3273 0.4551 0.2372
Stop/PL2 0.2112 0.2234 0.3443 0.1503
Stop/TF_IDF 0.2139 0.2354 0.3575 0.1573

Table 4.4: T1: NDCG at various cut offs and Recall@R for the different models with QE+RF.

4.2.2 Task2

In figure 4.7 we reported the Box Plots of the runs done for T2 with query expansion and
relevance feedback. Similarly to T1, the NoPorterNoStop index is not the worst choice, on
the contrary the scores are very good for each model that uses this index.

Index P@10 P@100 P@1000
NoPorterNoStop 0.5056 0.2412 0.0602
Porter 0.5 0.2412 0.0601
PorterStop 0.5089 0.2337 0.0593
Stop 0.5011 0.2351 0.0599

Table 4.5: DirichletLM+QE+RF for T2: P@10, P@100 and P@1000.

This can also be seen in figure 4.8, where it emerges that it does not matter too much
which type of index is used, the performance of a model is similar, in general, regardless of
the index.

As in the section above, the model that achieves the best scores is DirichletLM. This is dif-
ferent from the runs withoutQE andRFwhere the best weighting scheme was TF-IDF.We
suppose that this is due to the fact that QE+RF brings much more performance to Dirich-

40

(a) NoPorterNoStop index. (b) Porter index.

(c) PorterStop index. (d) Stop index.

Figure 4.7: T2: Box Plots for P@10 of the different models for each index, with QE and RF.

letLM than to TF-IDF, especially for T1. For T2 this fact is less evident, but it is still evident
from the box plots in figure 4.7.

In table 4.6 we reported the NDCG and R@R measurements for the runs. Like for the
runs for T1, the best combination of index/model result to be NoPorterNoStop/Dirichlet
and Porter/Dirichlet, with the DirichletLM obtaining significant higher scores than the rest
of the models tested.

Table 4.5 shows the Precision scores of the runs. We can see that, although the best index
for P@10 is PorterStop, it suffers a decrease in performance and loses ground to NoPorter-
NoStop and Porter indexes. Combining the scores of NDCG, Precision and Recall@R, we
can safely say that the best index/model combinations are NoPorterNoStop/Dirichlet and
Porter/Dirichlet. In chapter 5 we analyze and compare the two runs to see if there is some
difference between the two or not.

41

(a) Precision for BM25 with different indexes. (b) Precision for DirichletLM with different indexes.

(c) Precision for PL2 with different indexes. (d) Precision for TF-IDF with different indexes.

Figure 4.8: T2: Box Plots for P@10 of the different indexes for each model, with QE+RF.

To summarize this first part of the results, we can draw some conclusions. The preprocess-
ing of the collection seems more necessary if query expansion and relevance feedback is not
used. It does not matter too much what type of preprocessing is done, but the best scores
are achieved by models which use the Porter and PorterStop indexes.

Comparing the runs done with and without query expansion and relevance feedback, we
can see that QE+RF do improve significantly every model performance, regardless of the
index used. However this comes at the cost of a noticeable higher query time, which increases
with the dimension of the document collection.

The combination of preprocessing and QE+RF is not necessary a better approach than
just doing plainQE+RF, this is a somewhat surprising finding. We have no conclusive expla-
nation on this phenomenon andmore work it is probability needed to understand why this
fact happens.

42

Index/Model NDCG@10 NDCG@100 NDCG@1000 R@R
NoPorterNoStop/BM25 0.4449 0.474 0.6113 0.3321
NoPorterNoStop/Dirichlet 0.5231 0.5359 0.6644 0.3857
NoPorterNoStop/PL2 0.42 0.4581 0.6019 0.3239
NoPorterNoStop/TF_IDF 0.4325 0.4681 0.6092 0.3175
Porter/BM25 0.3966 0.434 0.5815 0.3007
Porter/Dirichlet 0.5213 0.5367 0.6648 0.3877
Porter/PL2 0.3939 0.4398 0.5878 0.3097
Porter/TF_IDF 0.4182 0.4557 0.603 0.3125
PorterStop/BM25 0.4045 0.4484 0.5981 0.3066
PorterStop/Dirichlet 0.52 0.5231 0.6525 0.3741
PorterStop/PL2 0.3801 0.4356 0.5864 0.3013
PorterStop/TF_IDF 0.3958 0.443 0.5931 0.3017
Stop/BM25 0.3868 0.4329 0.5829 0.3046
Stop/Dirichlet 0.5149 0.5231 0.6544 0.3691
Stop/PL2 0.3616 0.4225 0.574 0.2955
Stop/TF_IDF 0.3776 0.4272 0.5781 0.2985

Table 4.6: T2: NDCG at various cut offs and Recall@R for the different models with QE+RF.

There is no clear better model, neither for T1 nor for T2. If we look at the performance of
models in section 4.1, those without QE+RF, then the best weighting scheme is the classic
TF-IDF. However, when we look at the scores obtained by the runs in this section, then the
better scheme is Dirichlet. Since QE+RF improves performance, the Dirichlet model is the
one that overall achieves the higher scores.

Remembering the RQ2 which stated:

RQ2: does the use of query expansion and relevance feedback improve the re-
sults?

We can answer by saying that QE+RF improve significantly the results, regardless of the
model/combination used to retrieve the documents. We can observe this fact by comparing
the scores of the runs with and without QE+RF, looking at the plots in figures 4.1 and 4.5
for T1 and 4.3 and 4.7 for T2.

In order to answer RQ1 we need to also see the results of the word2vec runs and then to
analyze the best models to see if there is a clear winner.

43

(a) T1: P@10 for w2v_avg and w2v_si. (b) T2: P@10 for w2v_avg and w2v_si.

(c) T1: P@100 for w2v_avg and w2v_si. (d) T2: P@100 for w2v_avg and w2v_si.

(e) T1: P@1000 for w2v_avg and w2v_si. (f) T2: P@1000 for w2v_avg and w2v_si.

Figure 4.9: Precision: Box Plots of the w2v runs.

4.3 Word2vec runs

The plots for the word2vec runs are reported in figure 4.9. For this runs no pre-process has
been done, it has been used only a bioclean † cleaning function before the training process

†Bioasq challenge: http://www.bioasq.org/
44

http://www.bioasq.org/

and the same function has also been applied to the queries.
Comparing the two runs to each other, it results that w2v_si achieves better performance

than the plain w2v_avg, although the difference is not very marked.
As for theTerrier runs, the runs forT2 achieve better scores than the runs ofT1, suggesting

that a first round of boolean search can improve the performance of a model.
From the plots we can observe that the performance of the w2v runs are not very good. In

fact they are comparable to theNoPorterNoStop runs for Terrier without QE+RF since no
pre-processing has been done nor has been applied query expansion and relevance feedback.

Index/Model NDCG@10 NDCG@100 NDCG@1000 R@R
w2v_avg 0.1144 0.1109 0.1692 0.0689
w2v_si 0.1185 0.1123 0.1708 0.0688
NoPorterNoStop/BM25 0.0443 0.0389 0.082 0.0244
NoPorterNoStop/Dirichlet 0.0167 0.0238 0.065 0.0169
NoPorterNoStop/PL2 0.0454 0.0387 0.0782 0.0243
NoPorterNoStop/TF_IDF 0.0448 0.0393 0.0821 0.0248

Table 4.7: T1: scores of NDCG and R@R of w2v runs and Terrier with NoPorterNoStop index.

Index/Model NDCG@10 NDCG@100 NDCG@1000 R@R
w2v_avg 0.2065 0.2228 0.3523 0.1328
w2v_si 0.2104 0.2238 0.3539 0.1347
NoPorterNoStop/BM25 0.1861 0.2406 0.3737 0.166
NoPorterNoStop/Dirichlet 0.1786 0.2526 0.3878 0.1707
NoPorterNoStop/PL2 0.2052 0.2525 0.3929 0.1803
NoPorterNoStop/TF_IDF 0.2075 0.2665 0.4031 0.1835

Table 4.8: T2: scores of NDCG and R@R of w2v runs and Terrier with NoPorterNoStop index.

With respect to this observation, in table 4.7 and 4.8, we reported the scores of NDCG
and Recall@R of the w2v runs and for the runs which use theNoPorterNoStop index.

From the table we can say that for T1, the w2v runs achieve scores comparable to the ones
obtained by the Terrier runs in table 4.1 and 4.2. For T2, w2v does not obtain the same boost
in performance as the Terrier runs and as a result, it achieves worst performance.

Given the improvement that the models achieved with the usage of QE+RF, it would be
interesting to see if the same would apply also for w2v. Also, to better compare the models,
would be necessary to do some preprocessing of the embeddings, which we did not do since
we used pre-trained vectors.

45

To sum up, the w2v runs achieve significant better scores thanmodels which used theNo-
PorterNoStop index for T1. For T2, however, w2v does not keep up with the improvement
that happens for the Terrier runs, achieving worst scores. Since no run w2v+QE+RF has
beendone, itmeans that thew2v results arenot comparablewith the runsofTerrier+QE+RF
which dominates completely the performance.

4.4 Fusions

In this section, we present the results of the three types of fusions that we have performed in
these experiments. We then compare briefly this results with the single models from sections
4.1 and 4.2 before analyzing and answering to the two remaining research questions in the
next chapter, chapter 5.

In figure 4.10 we represented the box plots of the various fusions approaches with the
P@10 measure for T1. As it can be seen, there is not much difference between CombSUM
andRRmethods, while Probfuse achieves poorer performance. As found before, fusions of
the runs with query expansion and relevance feedback have noticeable higher scores than the
runs without as it is expected.

For T2, we can see in figure 4.11 that Probfuse is able to obtain comparable scores to the
other two fusion methods. Of course, starting from systems which have better scores, the
fusion of the runs with QE+RF achieve higher performance than the fusions of the systems
without, getting even double the precision.

In table 4.9 and 4.10 we reported the scores for NDCG and Recall@R of the fusions for
T1. As we observed for P@10, also for this measures Probfuse does not achieve great results,
especially for the runs without query expansion and relevance feedback.

The best fusion approach is not alway the same: it depends on the index used by the
models that aremerged together, for instance for thePorter index, RR seems to be the better
choice,while for theStop index thebetter choice isCombSUM.An interesting thing tonotice
is the fact that RR is able to obtain a higher NDCG@1000 score in 6 out of 8 index/fusion
comparison done for T1.

In table 4.11 and 4.12 we reported also the scores for the fusions of T2. From the table we
can see that the observationmade before still hold, Probfuse is the fusion approach with the
poorer scores, while RR and CombSUM are pretty equivalent.

Unlike the results for T1, the best fusion approach for T2 seems to be CombSUM since it
achieves generally better performance than RR in the majority of the Index/Fusion combi-

46

Index/Fusion NDCG@10 NDCG@100 NDCG@1000 R@R
N/CombSUM 0.0474 0.0439 0.0836 0.0246
N/ProbFUSE 0.0269 0.0378 0.0778 0.0249
N/RR 0.0453 0.0405 0.0794 0.0241
P/CombSUM 0.1438 0.1715 0.2718 0.1095
P/ProbFUSE 0.0552 0.1498 0.2569 0.1013
P/RR 0.1538 0.1701 0.2726 0.1096
P+S/CombSUM 0.1383 0.1628 0.2671 0.105
P+S/ProbFUSE 0.0543 0.1441 0.2499 0.0932
P+S/RR 0.1447 0.1635 0.2649 0.1029
S/CombSUM 0.1198 0.1551 0.242 0.0973
S/ProbFUSE 0.0634 0.1427 0.2368 0.0875
S/RR 0.1264 0.1529 0.2437 0.0973

Table 4.9: T1: NDCG and Recall@R for the fusion runs.

Index/Fusion NDCG@10 NDCG@100 NDCG@1000 R@R
N/CombSUM 0.2861 0.2756 0.3749 0.1813
N/ProbFUSE 0.1995 0.2476 0.3918 0.1702
N/RR 0.2796 0.2588 0.3984 0.1672
P/CombSUM 0.3084 0.3154 0.4278 0.2101
P/ProbFUSE 0.1798 0.269 0.4107 0.1912
P/RR 0.2952 0.2964 0.4341 0.1942
P+S/CombSUM 0.2889 0.2963 0.4135 0.1963
P+S/ProbFUSE 0.1758 0.2499 0.3975 0.1788
P+S/RR 0.2878 0.2801 0.4224 0.1822
S/CombSUM 0.2824 0.2842 0.3956 0.1915
S/ProbFUSE 0.1874 0.248 0.3898 0.1751
S/RR 0.2661 0.2684 0.4039 0.186

Table 4.10: T1: NDCG and Recall@R for the fusion runs with QE+RF.

nation that we analyzed. The difference between the two is not too big. In the next chapter
we conduct an ANOVA test for the fusions to see if there is a statistical difference between
the two fusions or not.

To sum up the findings for the fusion runs, we can say that CombSUM and RR are the
ones that achieve better scores. They are very much equal in terms of performance of the
merged list.

Comparing the best runs from tables 4.12 and 4.6 we can see that there is no fusion ap-
proach that is better than the single rank runs. This could be caused by the less performing

47

Index/Fusion NDCG@10 NDCG@100 NDCG@1000 R@R
N/CombSUM 0.2061 0.2652 0.4028 0.1852
N/ProbFUSE 0.1546 0.2446 0.3844 0.1621
N/RR 0.2117 0.2673 0.4044 0.1815
P/CombSUM 0.2746 0.3189 0.4694 0.213
P/ProbFUSE 0.1831 0.2873 0.4377 0.1913
P/RR 0.2752 0.3158 0.4667 0.2132
P+S/CombSUM 0.2642 0.3175 0.47 0.2064
P+S/ProbFUSE 0.172 0.281 0.4353 0.1789
P+S/RR 0.2612 0.3152 0.4688 0.2063
S/CombSUM 0.242 0.2993 0.4516 0.2018
S/ProbFUSE 0.1674 0.2791 0.4293 0.1765
S/RR 0.246 0.3007 0.4505 0.219

Table 4.11: T2: NDCG and Recall@R for the fusion runs.

Index/Fusion NDCG@10 NDCG@100 NDCG@1000 R@R
N/CombSUM 0.4867 0.5098 0.6407 0.3664
N/ProbFUSE 0.3264 0.4451 0.5814 0.2982
N/RR 0.4708 0.4992 0.6392 0.3512
P/CombSUM 0.4837 0.5056 0.6417 0.3574
P/ProbFUSE 0.3378 0.4413 0.5821 0.2899
P/RR 0.4628 0.4881 0.6332 0.3492
P+S/CombSUM 0.4531 0.4852 0.6236 0.3442
P+S/ProbFUSE 0.3139 0.4281 0.571 0.2868
P+S/RR 0.4353 0.4737 0.6211 0.3346
S/CombSUM 0.4462 0.4738 0.6103 0.339
S/ProbFUSE 0.323 0.4266 0.5691 0.2797
S/RR 0.4311 0.461 0.6103 0.319

Table 4.12: T2: NDCG and Recall@R for the fusion runs with QE+RF.

systems that probably lower the scores. In the next chapterwe fuse the best runs fromeach in-
dex/model and then compare the merged run with the best single model from T2+QE+RF
to see if the fusions are still worse than the single rank run.

48

(a) NoPorterNoStop fusions of the runs. (b) NoPorterNoStop+QR+RF fusions of the runs.

(c) Porter fusions of the runs. (d) Porter+QE+RF fusions of the runs.

(e) PorterStop fusions of the runs. (f) PorterStop+QE+RF fusions of the runs.

(g) Stop fusions of the runs. (h) Stop+QE+RF fusions of the runs.

Figure 4.10: T1: Box Plots of P@10 of the fusion methods.

49

(a) NoPorterNoStop fusions of the runs. (b) NoPorterNoStop+QR+RF fusions of the runs.

(c) Porter fusions of the runs. (d) Porter+QE+RF fusions of the runs.

(e) PorterStop fusions of the runs. (f) PorterStop+QE+RF fusions of the runs.

(g) Stop fusions of the runs. (h) Stop+QE+RF fusions of the runs.

Figure 4.11: T2: Box Plots of P@10 of the fusion methods.

50

5
Statistical analysis of the results

In chapter 4 we presented the results of the single model runs as well as the fusions. We com-
pared the runs in terms of pure score performance, looking only at themean of themeasures
for the whole system while plotting the scores of each topic just in terms of P@10.

5.1 Measures

Before diving into the analysis, firstwe introduce twomeasures used in order to see if a system
is actually better than another. The first one is very simple, one way to tell if amodel is better
than another is to simply count the number of topics for which model 1 has a higher score
than model 2. Intuitively, if a model 1 outscores model 2 in many topics, then is very likely
that model 1 is a better system than model 2.

However, thisway of comparing two systems is not very precise, and sometimes could lead
in choosing the poorer system. As an example, let’s suppose that we have 30 topics and two
models to comparem1 andm2. Suppose that we are interested in which is the better system
in terms of P@10 and suppose that m1 has slightly better scores than m2 in 25 out of the 30
topics, while in the remaining 5 topics m2 outscores m1 by a great margin. In this case, the
intuition says that we should choosem2 since it obtains almost the same performance asm1

in the majority of the topics while being significantly better in the rest. By simply counting
the number of times that a system is better than the other, however, we would choose m1

over m2.

51

In order to avoid this scenario, weuse amean that takes into account the observationmade
and tries to tilt the favor toward m2 in the previous example.

So, given the set containing all the topics Q, the score of each topic q ∈ Q for each of the
model to be compared, then, for each system i, we compute themean difference per topic as:

mdptmi
= 1

|Q|

∑
q∈Q

scoremi
(q) −

|M |∑
j=2

∑
q∈Q

scoremj
(q)

 (5.1)

where |M | is the total number of systems to compare and m1, m2, ..., m|M | ∈ M , with M

being the set of themodels. In the following analysis we always compare two systems to each
other so |M | = 2.

The mdpt score we just introduced, represents the mean score that we loose or gain by
choosing m1 over m2 per topic. The smaller this mean is, the smaller is the difference in
performance between the systems analyzed.

5.2 Best overall run

In chapter 4 we found out that the best results are achieved whenQE+RF are used, thus we
analyze the best runs for T1 and T2 with query expansion and relevance feedback in order to
find which run is the best overall across the different scores we used. All this is done in order
to be able to answer RQ1, which stated:

RQ1: is there a single model that stands out in terms of performance?

Starting with T1, looking at the tables and plots in section 4.2.1, we can see that there are two
combinations of index/model that candidate themselves as the best overall run: NoPorter-
NoStop/DirichletLM (N/D) and Porter/DirichletLM (P/D).

In figure 5.1 we report the scatter plots of the two runs for Precision andNDCGmeasures.
Looking at the plots we cannot say if one system is better than the other. Interestingly, as the
cutoff threshold of the Precision increases, the two runs become increasingly similar and the
points accumulate on the bisector line, whichmeans that the scores obtained by the runs are
the same.

In table 5.1 we reported the mdpt of Porter/Dirichlet vsNoPorterNoStop/Dirichlet and
the respective count of the total number of topics for which one system has a better score
than the other. It results that the better run of the two is Porter/DirichletLM since the

52

(a) NDCG@10. (b) NDCG@100.

(c) NDCG@1000. (d) Precision@10.

(e) Precision@100. (f) Precision@1000.

Figure 5.1: T1: Scatter Plots for Porter/Dirichlet vs NoPorterNoStop/Dirichlet with QE+RF.

count of the topics is often higher for it, furthermore, the mdpt is almost always positive,
which means that on average P/D achieves always a better overall mean score than N/D.

53

Measure mdpt # of outscored topics P/D vs N/D
P@10 0.003 12 vs 11
P@100 0.006 26 vs 21
P@1000 0 23 vs 17
NDCG@10 -0.001 24 vs 29
NDCG@100 0.001 32 vs 27
NDCG@1000 0 32 vs 27

Table 5.1: T1: mdpt of P/D vs N/D and count of the number of topics in which P/D is better than N/D and viceversa.

Thus, the best system for T1 results to be Porter/DirichletLM+QE+RF, although the
difference in performance is very limited.

Let’s move on to T2 to examine the also the runs done to see which is the best system
for this task. Looking at table 4.5 and 4.6 we choose Porter/DirichletLM and NoPorter-
NoStop/Dirichlet as candidates for the best system since they are the ones that achieve better
scores also for T2.

In figure 5.2 we can see the scatter plots of the two runs one against the other. No system
looks obviously better than the other and as before we can see that with higher cutoff values
the systems tend to equate: this is particularly evident from the plots of P@100 and P@1000.

Measure mdpt # of outscored topics P/D vs N/D
P@10 -0.006 21 vs 22
P@100 0 26 vs 21
P@1000 0 13 vs 19
NDCG@10 -0.002 42 vs 39
NDCG@100 0.001 50 vs 38
NDCG@1000 0 53 vs 36

Table 5.2: T2: mdpt of P/D vs N/D and count of the number of topics in which P/D is better than N/D and viceversa.

From table 5.2 it results that the best combination of index/model is N/D. The difference
between the two runs is limited, thus we cannot conclude in a clear way which one of them
is best: for T1 it seems that P/D is better, while for T2 is N/D.

Given the findings above, we can answer to RQ1 and say that for the medical retrieval
task the best single system that can be used is to use the DirichletLM with the Porter and
NoPorterNoStop index and using query expansion and relevance feedback. These systems
achieves the best scores in terms of NDCG, Precision and Recall@R both for T1 and for T2.

54

(a) NDCG@10. (b) NDCG@100.

(c) NDCG@1000. (d) Precision@10.

(e) Precision@100. (f) Precision@1000.

Figure 5.2: T2: Scatter Plots for Porter/Dirichlet vs NoPorterNoStop/Dirichlet with QE+RF.

5.3 Gain of usingQE+RF

In chapter 4we stated that the runswithQE+RFachieve far better performance than thenor-
mal runs. In order to better demonstrate this fact, we now compare 4 runs: Porter/Dirichlet

55

with QE+RF vs Porter/Dirichlet and NoPorterNoStop/BM25 with QE+RF vs NoPorter-
NoStop/BM25. In order to shorten the names, fromnowonwewill call the runs respectively
P/D+QE+RF, P/D, N/B+QE+RF and N/B. We will use the runs for T2 as example.

(a) P@10. (b) NDCG@10.

Figure 5.3: Scatter plots of Porter/Dirichlet with QE+RF vs the same run without QE+RF.

Starting with the DirichletLM runs, we can clearly see in figure 5.3 that the run with
QE+RF has the upper hand. We reported only the plots for P@10 and NDCG@10 but the
plots for the different cutoffs look very similar and they can be found in appendix B.

For completeness we also reported the measures from section 5.1 in table 5.3.

Measure mdpt # of outscored topics P/D+QE+RF vs P/D
P@10 0.234 73 vs 5
P@100 0.087 74 vs 3
P@1000 0.14 66 vs 3
NDCG@10 0.255 79 vs 10
NDCG@100 0.22 81 vs 8
NDCG@1000 0.206 84 vs 6

Table 5.3: Dirichlet+QE+RF run vs Dirichlet without QE+RF scores.

Todemonstrate that this is not due to the index used or due to themodel chosen, we show
the same plots also for N/B+QE+RF and N/B.

In figure 5.4we reported the scatter plots for P@10 andNDCG@10 for the two runs, while
in table 5.4 we reported the numerical analysis of the two runs.

From the plots and table in this section we showed oncemore howmuch the use of query
expansion and relevance feedback improves the performance of a system. We showed two

56

(a) P@10. (b) NDCG@10.

Figure 5.4: Scatter plots of NoPorterNoStop/BM25 with QE+RF vs the same run without QE+RF.

Measure mdpt # of outscored topics N/B+QE+RF vs N/B
P@10 0.236 70 vs 1
P@100 0.095 80 vs 2
P@1000 0.21 69 vs 1
NDCG@10 0.259 76 vs 6
NDCG@100 0.233 85 vs 4
NDCG@1000 0.238 86 vs 3

Table 5.4: BM25+QE+RF run vs BM25 without QE+RF scores.

comparisons between the same index/model combination with and without QE+RF to
demonstrate the advantage gained andwe used two different combinations in order to prove
that the gain is index independent.

5.4 NoPorterNoStop vsWord2Vec

In the previous chapter we found out that the word2vec runs were somewhat similar to the
runs done with the NoPorterNoStop index since they don’t use any preprocessing. In this
sectionwewould like to compare the performance of the two systems by seeing how the best
run for each system contrast with the other.

We chose to compare the runs only for T2 and since the best one is TF-IDF for NoPorter-
NoStop and w2v-si for word2vec we put one against the other in the plots in figure 5.5.

From the plots we can see that the runs are similar, withmany topics for which onemodel
obtains a Precision or NDCG score equal to 0 while the other a score different than 0 and

57

(a) P@10. (b) NDCG@10.

Figure 5.5: Scatter plots of NoPorterNoStop/TF-IDF vs w2v-si.

sometimes even as high as 0.5 or 0.6.
Analyzing which topics are more difficult for one or the other system, we found that 3

of the most difficult topics for the w2v runs, that is the topics for which w2v obtained 0
as score for P@1000 and NDCG@100 where topics CD010860, CD012009 and CD011420.
Looking at the queries we can see that there are a lot of words that are composed by two
words, likeMini-Cog, post-pancreatic andHIV-positive which means that probably they are
out of vocabularywords and this could be the cause of the poor scores.

On the other hand, 3 of the most difficult topics for the N/TF-IDF run were CD012179,
CD012165 and CD012281. One thing that the topics share is the occurrence of the words
non-invasive and the sequence diagnosis of endometriosiswhich probably are not put well in
relation with the other words of the query and thus not being able to be specific enough in
order to retrieve any relevant document.

Furthermore, it is also possible that these systems retrieve some relevant documents not
seen by the assessors and thus assumed non-relevant by trec_eval during the evaluation of the
runs.

The poor scores of the word2vec runs can be explained by the fact that no type of pre-
processing has been used for them. Looking at the most difficult topics for the model we
can see that the major problem are the OOV words. With a preprocessing that reduces the
probability of a word to be OOV it’s very likely that the performance of the model would be
comparable to the ones that create the index in a similar manner.

In order to do that, however, it’s necessary to learn the embeddings of the preprocessed

58

words and thus we would need to re-learn all the vector representations of the words. Since
we used a pre-trained collection of vectors, we haven’t done that.

The use of query expansion and relevance feedback has proved to greatly increase the per-
formance of a model regardless of the index used, thus is legitimate to think that it would
also improve greatly the scores of the w2v runs.

5.4.1 Best overall fusion

In this sectionwe search the best fusionmethod for our tasks. We compare CombSUMwith
RR to see which one is the better approach. We decided to ignore Probfuse since in our tests
it achieved noticeable poorer scores than the other two fusion approaches.

(a) CombSUM vs RR fusion of the Terrier runs using
NoPorterNoStop index.

(b) CombSUM vs RR fusion of the Terrier runs using
Porter index.

(c) CombSUM vs RR fusion of the Terrier runs using
PorterStop index.

(d) CombSUM vs RR fusion of the Terrier runs using Stop
index.

Figure 5.6: T1: scatter plots of P@10 of the fusion of all the models using the same index.

59

In figure 5.6 we reported the scatter plots for P@10 of CombSUMandRR runs. We fused
together all the models using the same index, so every fusion combines BM25, DirichletLM,
PL2 and TF-IDF. The rest of the plots can be found in the appendix B.

(a) CombSUM vs RR fusion of the Terrier runs with BM25
weighting scheme.

(b) CombSUM vs RR fusion of the Terrier runs with Dirich-
letLM weighting scheme.

(c) CombSUM vs RR fusion of the Terrier runs with PL2
weighting scheme.

(d) CombSUM vs RR fusion of the Terrier runs with TF-
IDF weighting scheme.

Figure 5.7: T1: scatter plots of P@10 of the fusion of the models with different indexes.

In figure 5.7 we reported, the scatter plots of the fusions done between the models us-
ing different indexes. For example we fused all the runs done with the TF-IDF weight-
ing scheme, we fused together: NoPorterNoStop/TF-IDF, Porter/TF-IDF, PorterStop/TF-
IDF and Stop/TF-IDF.

From the plots we have no way to say which fusion approach is the best one. Thus, we
reported the measures of mdpt and the count of outscored topics in table 5.5.

The table contains the scores of mdpt and the counts of the number of topics for which

60

Fused Runs Measure P@10 P@100 P NDCG@10 NDCG

NoPorterNoStop mdpt 0 0.002 0.001 0.002 0.004
outscore 0 vs 0 8 vs 4 10 v 3 3 vs 2 26 vs 4

Porter mdpt -0.008 0.003 0 -0.01 -0.001
outscore 4 vs 7 17 vs 4 14 vs 15 12 vs 20 30 vs 29

PorterStop mdpt -0.005 0 0 -0.006 0.002
outscore 5 vs 8 11 vs 10 17 vs 12 12 vs 23 32 vs 26

Stop mdpt -0.012 0.002 0 -0.007 -0.002
outscore 3 vs 9 13 vs 3 17 vs 16 5 vs 23 26 vs 31

BM25 mdpt -0.01 -0.03 0.02 -0.007 0.008
outscore 4 vs 10 7 vs 19 25 vs 11 12 vs 16 42 vs 18

DirichletLM mdpt -0.002 -0.005 -0.001 -0.004 -0.009
outscore 3 vs 5 13 vs 20 16 vs 19 11 vs 11 35 vs 24

PL2 mdpt 0 -0.004 0.001 -0.002 0.001
outscore 6 vs 5 5 vs 20 27 vs 13 20 vs 27 37 vs 23

TF-IDF mdpt -0.012 -0.004 0.002 -0.009 0.004
outscore 4 vs 10 4 vs 22 27 vs 9 15 vs 15 41 vs 19

Table 5.5: T1: scores to find the best fusion, CombSUM vs RR.

CombSUM outscores RR and viceversa of the runs in the plots. We added also the NDCG
measure in this case.

Looking at the table is clear that the majority of the entries are negative which means that
RR is the best fusion approach for this runs. The difference between the two is alwayswithin
1% which probably means that they are not statistically different, we analyze this fact in sec-
tion 5.5.2.

The goal of this section was to find if there is a fusion approach that works best for the
medical retrieval task. We found that CombSUM (with min-max normalization) and RR
achieve almost the same scores.

Having to choose between the two, however, we chooseRR since it is simpler thanComb-
SUM to implement and gives slightly higher scores early on in the ranked list of documents
returned, as it can be seen in table 5.5.

In the next section we search for the best combination of runs to fuse in order to obtain
the highest possible scores. Given what we said above, we will look only to RR as fusion
method. We will try to fuse the best runs of each index, the best runs of each model and the
best runs with comparable scores in the hope of finding the best runs to fuse. Then, we will

61

compare the best fusion of runs to the best single model run to see what is the absolute best
approach.

5.4.2 Best overall fusion vs best single run

In the first part of this section, we analyze theRR fusion of the best runs for index compared
to the best single run. Since we are interested to find the overall optimum approach, we will
fuse the runs with higher scores, which are Terrier+QE+RF, both for T1 and T2. This in
order to find better evidence of the goodness or badness of the fusion.

Starting with the best run for each index, we fused all the runs with QE+RF done with
the DirichletLMmodel. We then compared this fusion with the best single model found in
section 5.2, which is Porter/DirichletLM.

(a) P@10. (b) NDCG@10.

Figure 5.8: T2: scatter plots of P@10 and NDCG@10 of Porter/DirichletLM vs RR fusion of best runs per index with
QE+RF.

In figure 5.8 we reported the scatter plots for P@10 and NDCG@10 of the comparison of
the two plots. Since the best model per index is the DirichletLM model, we fused together
all the 4 runs done.

Looking at the tables 5.6 and 5.7 we can see that for both tasks there is notmuch difference
between the two runs. For T1, the single run has the upper hand, while for T2 it’s the fusion
that achieves better scores. A negative number for mdpt means that the RR run has better
mean score per topic than the single model run.

Overall we do not have a clear answer to the question if the fusion works better than the
single run. When it does, the gain is not that much and since we have to consider that the

62

Measure mdpt # outscore
P@10 0.012 14 vs 11
P@100 -0.004 20 vs 20
P@1000 -0.001 14 vs 21
NDCG@10 0.009 31 vs 19
NDCG@100 -0.006 28 vs 31
NDCG@1000 -0.008 24 vs 35

Table 5.6: T1: Porter/DirichletLM+QE+RF run vs RR fusion of DirichletLM+QE+RF model with the 4 indexes.

Measure mdpt # outscore
P@10 -0.012 18 vs 26
P@100 -0.001 21 vs 26
P@1000 0 10 vs 20
NDCG@10 -0.007 36 vs 41
NDCG@100 -0.002 40 vs 48
NDCG@1000 -0.001 41 vs 48

Table 5.7: T2: Porter/DirichletLM+QE+RF run vs RR fusion of DirichletLM+QE+RF model with the 4 indexes.

RR run needs to fuse 4 runs in order to get a slightly better performance the single model
run is the best choice.

Since the best model for each index proved to be Dirichlet, we now fuse the index/model
combination that achieved the higher scores for each model. Looking at the results in sec-
tion 4.2. for T1 we fused all the runs that used the Porter index, while for T2 the runs that
used the NoPorterNoStop index. We decided to do the RR fusion of the NoPorterNoS-
top/DirichletLM even if it is not the overall best run because all the other models achieved
their best scores using this index and the difference between the two runs are not very high,
as already observed in section 5.2.

We choose to do this fusion since in the previous case we merged always the same model
regardless of the index, thus we want to see if by increasing the diversity of the models helps
the merged run to obtain better scores or not.

In figure 5.9 and 5.10 we reported the scatter plots of the comparison between the best run
and the RR fusion of Porter for T1 and NoPorterNoStop for T2.

In tables 5.8 and 5.9we can see that in this case theRR fusion run nevermanages to prevail
above the best run. Thus, our hypothesis that fusing different models may help the overall
accuracy is disproven.

So far we have not been able to find a merged run that outscores the best single run. We

63

(a) P@10. (b) NDCG@10.

Figure 5.9: T1: scatter plots of P@10 and NDCG@10 of Porter/DirichletLM vs RR fusion of best runs per index with
QE+RF.

(a) P@10. (b) NDCG@10.

Figure 5.10: T2: scatter plots of P@10 and NDCG@10 of NoPorterNoStop/DirichletLM vs RR fusion of best runs per
model with QE+RF.

now try one last time to find it by fusing together only the runs that have the best absolute
performance.

Like before, we chose the runs to be merged by looking at the tables and plots in section
4.2. Given all the results found in this chapter and the plots and tables, we now compare
the fusion of N/D and P/D against the single run P/D. We do this comparison for T1 and
T2 with the use of QE+RF to see if by fusing the top two single runs together is possible to
obtain a list of documents which is more relevant than the best single run.

Starting with T1, in figure 5.11 and tables 5.10 and 5.11 we reported the scatter plots of P@10

64

Measure mdpt # outscore
P@10 0.087 37 vs 12
P@100 0.013 34 vs 22
P@1000 0 26 vs 26
NDCG@10 0.083 40 vs 19
NDCG@100 0.043 45 vs 15
NDCG@1000 0.034 37 vs 23

Table 5.8: T1: Porter/DirichletLM+QE+RF run vs RR fusion of models using Porter Index.

Measure mdpt # outscore
P@10 0.046 44 vs 21
P@100 0.008 39 vs 25
P@1000 -0.001 20 vs 32
NDCG@10 0.051 54 vs 33
NDCG@100 0.037 54 vs 34
NDCG@1000 0.026 47 vs 42

Table 5.9: T2: Porter/DirichletLM+QE+RF run vs RR fusion of models using NoPorterNoStop index.

Measure mdpt # outscore
P@10 -0.012 10 vs 13
P@100 0.001 19 vs 16
P@1000 0 15 vs 10
NDCG@10 -0.011 24 vs 25
NDCG@100 -0.004 29 vs 28
NDCG@1000 -0.003 25 vs 34

Table 5.10: T1: Comparison of the best run vs the CombSUM fusion of the two best runs.

Measure mdpt # outscore
P@10 -0.012 9 vs 14
P@100 0.001 20 vs 18
P@1000 0 16 vs 14
NDCG@10 -0.016 18 vs 30
NDCG@100 -0.006 27 vs 32
NDCG@1000 -0.005 27 vs 31

Table 5.11: T1: Comparison of the best run vs the RR fusion of the two best runs.

andNDCG@10 of the comparison of the runs. From the scores in the table, observing that a
negative mdpt means that the fusions are better, it emerges that the fusions achieve a better
mean score per topic early in the ranked list of documents, while as we move to the end of

65

(a) P@10 for Porter/Dirichlet vs CombSUM. (b) P@10 for Porter/Dirichlet vs RR.

(c) NDCG@10 for Porter/Dirichlet vs CombSUM. (d) NDCG@10 for Porter/Dirichlet vs RR.

Figure 5.11: T1: Scatter plots of the best run vs the fusion of the two best runs.

the results the difference goes down.
The gain of a fusion is, however, relatively low being around 1.2% for P@10 and 1.6% for

NDCG@10.

Moving to T2, we reported the same plots and tables as for T1 in figure 5.12 and tables 5.12
and 5.13.

From the values in the table we can say that, also in this case, the gaining of the fusions
is relatively small, around 1.6% maximum, being higher early on and decreasing with the
increase of the cutoff.

For T2, however, the fusions are never beaten by the single run, at most they tie, which
implies that for T2 the fusion is a better approach than for T1.

Inneither case the fusionhas beenproved tobe a clear better approach, furthermore, given

66

(a) P@10 for Porter/Dirichlet vs CombSUM. (b) P@10 for Porter/Dirichlet vs RR.

(c) NDCG@10 for Porter/Dirichlet vs CombSUM. (d) NDCG@10 for Porter/Dirichlet vs RR.

Figure 5.12: T2: Scatter plots of the best run vs the fusion of the two best runs.

all the results found in this section, we can say that the fusion increases the retrieved list of
documents by less than 2% in terms of Precision and NDCG which for us is not sufficient
to say that it should be the preferred approach.

Thus, we can answer RQ3:

RQ3: is there a fusion method that does better retrieval than using a single
model?

From our findings, the answer to this question is no. We motivate this answer by arguing
that for an improvement of around one point percentage is not sufficient to justify the in-
creased time complexity of having two ormoremodels to retrieve and thenmerge them into
one single run.

67

Measure mdpt # outscore
P@10 -0.014 8 vs 19
P@100 -0.001 16 vs 26
P@1000 0 7 vs 8
NDCG@10 -0.009 34 vs 35
NDCG@100 -0.001 48 vs 40
NDCG@1000 -0.002 45 vs 42

Table 5.12: T2: Comparison of the best run vs the CombSUM fusion of the two best runs.

Measure mdpt # outscore
P@10 -0.016 11 vs 25
P@100 -0.001 15 vs 25
P@1000 0 10 vs 13
NDCG@10 -0.009 35 vs 39
NDCG@100 -0.004 41 vs 45
NDCG@1000 -0.004 46 vs 42

Table 5.13: T2: Comparison of the best run vs the RR fusion of the two best runs.

5.5 Statistical analysis

From the results found in the previous sections we found that many runs achieved very sim-
ilar performance, with little difference between the scores. For this reason, we now test the
statistical difference between the different indexes and between RR fusion and CombSUM.

5.5.1 Statistical difference between different indexes

The first tests we want to conduct is to see if there is a statistical difference between using
different indexes. We first look at T1.

Model F test p-value
BM25 4.321 0.0055
BM25+QE+RF 0.055 0.9829
Dirichlet 9.343 7.35·10−6

Dirichlet+QE+RF 0.278 0.8413
PL2 4.083 0.0075
PL2+QE+RF 0.283 0.838
TF-IDF 4.584 0.0039
TF-IDF+QE+RF 0.244 0.8658

Model F test p-value
N 0.592 0.6211
N+QE+RF 7.927 4.65·10−5

P 0.198 0.8979
P+QE+RF 8.864 1.37·10−5

P+S 0.026 0.9943
P+S+QE+RF 6.461 0.0003
S 0.046 0.9868
S+QE+RF 5.786 0.0008

Table 5.14: T1: ANOVA test results for the different models and indexes for P@10.

68

In table 5.14 we reported the results of the ANOVA test conducted on the various runs.
We analyzed all the runs done using the same model, thus with a different index, and then
all the runs done using the same index, thus with a different model. We tested the runs both
with and without QE+RF.

Our findings are very interesting. From the values in the table, it results that without
the use of query expansion and relevance feedback, the runs done with the same model but
with a different index are statistically different one from another. When we apply QE+RF,
however, the statistical difference disappears, this means that the usage of a different type of
preprocessing creates different runs while when usingQE+RF it does notmatter which type
of preprocessing is done, the resulting runs are all statistically equivalent.

On the other hand, for the runs done with the same index but with a different model
things are the opposite: if we don’t use QE+RF then it does not matter which weighting
scheme we choose to rank the document collection, they are statistically equivalent while if
we do use it, then the runs become different. This means that our hypothesis which stated
that QE+RF benefits models in different ways was correct and that this was indeed the case.
Therefore some weighting schemes get a more significant gain in terms of Precision (and
also othermeasures) than others and this reflect into the fact that the resulting runs are more
diverse.

To further confirm the findings above, we also run the ANOVA test for T2. In table 5.15
we reported the F score and p-value for the runs.

Model F test p-value
BM25 1.015 0.386
BM25+QE+RF 0.743 0.527
Dirichlet 1.938 0.1231
Dirichlet+QE+RF 0.027 0.9939
PL2 0.563 0.6398
PL2+QE+RF 0.712 0.5452
TF-IDF 0.933 0.4247
TF-IDF+QE+RF 0.566 0.6379

Model F test p-value
N 0.352 0.7876
N+QE+RF 2.404 0.0672
P 0.781 0.5051
P+QE+RF 4.066 0.0073
P+S 0.094 0.9633
P+S+QE+RF 5.64 0.0009
S 0.014 0.9977
S+QE+RF 5.664 0.0008

Table 5.15: T2: ANOVA test results for the different models and indexes for P@10.

Unlike T1, for T2 there is less evidence that runs without QE+RF with different indexes
are statistically different since the p-value is always above α = 0.05. Like T1, however, the
usage ofQE+RFuniforms the runs andmakes them statistically equivalent. Thismeans that

69

by doing first a boolean search, which type of preprocessing is done to the collection does not
matter as much as the model chosen to actually rank the documents.

Whenwe look at the test done for different models using the same index we find the same
thing as for T1: withoutQE+RF theweighting scheme used to rank the documents does not
determine the performance of the run as much as the type of preprocessing applied. Things,
however, are reversed when applying QE+RF: in this case, also for T2, which model is used
determines the goodness of the final results since it favorsmore some schemes than the others.

To sum up, in this section we argued that the use of QE+RF evens the runs done with
the same model while it statistically differentiates runs done with the same index but with
the same index. Also, if the collection is pre-filtered by a boolean search, then the type of
preprocessing applied to the list of documents does not influence the performance of a run
as much as the choice of the model which scores the documents.

We run the ANOVA test for P@10, in appendix C we reported other ANOVA tests done
for different measures.

5.5.2 Statistical difference between CombSUM and RR

We now want to test if there is a statistical difference between applying CombSUM and
Reciprocal Ranking fusions. Since in the previous section we found that runs done with
QE+RF with different models are statistically different, we test if it is different to fuse them
with CombSUM or RR.

Model F test p-value
NoPorterNoStop+QE+RF 0.09 0.76
Porter+QE+RF 0.26 0.61
PorterStop+S+QE+RF 0.17 0.68
Stop+QE+RF 0.47 0.49

Table 5.16: T1: ANOVA test results for the indexes for P@10.

Model F test p-value
NoPorterNoStop+QE+RF 0.24 0.62
Porter+QE+RF 0.11 0.74
PorterStop+S+QE+RF 0.31 0.58
Stop+QE+RF 0.11 0.74

Table 5.17: T2: ANOVA test results for indexes for P@10.

In table 5.16 and 5.17 we reported the scores of the ANOVA test for the runs withQE+RF

70

for T1 and T2, comparing the fusion of the models using the same index.
From the results we can see that there is no statistical difference between using Comb-

SUM or RR as fusion approach, neither for T1 nor for T2, despite starting from statistically
different models.

We hereby reported only the test for P@10 as, likewe have already seen in chapter 4, higher
the cutoff less the difference between the runs. The appendixC contains the remaining scores
of the different measures.

71

72

6
Conclusions and future work

In this work we focused on the task of Retrieval of Medical Publications, using the CLEF
e-Health tracks as our tasks. In chapter 2 we presented the different models and different
types of preprocessing chosen to test which the system achieves better performance.

We then took a look to the usage of query expansion and relevance feedback in order to
further improve the scores obtained by the runs and finally, we tried three different fusion
approaches to see if by merging different runs into on single run, the performance improves
further. We presented all the setup in chapter 3.

After reporting the experimental results in chapter 4, we analyzed them in chapter 5.
In section 1.1 we posed the following research questions:

1. RQ1: is there a single model that stands out in terms of performance?

2. RQ2: does the use of query expansion and relevance feedback improve the results?

3. RQ3: is there a fusion method that does better retrieval than using a single model?

For RQ1, we found out that the model that achieves better overall scores is DirichletLM
with QE+RF. This model, regardless of the preprocessing applied to the collection, is the
one that stands out in terms of performance. We also found that the best combinations of
index/model are DirichletLM with NoPorterNoStop and Porter indexes, although we did
not find statistical difference between the four runs with the different indexes.

73

The answer to RQ2 is a certain yes, QE+RF improves greatly all of the models tested
by us. A model with QE+RF sometimes even doubles the scores obtained for a particular
measure.

Looking at the fusion approaches, we discovered that the usage of a fusion approach im-
proves slightly the scores of the final run when compared to the best single model run. This
improvement is higher in the first part of the document list and decreases as we look to the
end of the list. Thus the answer to RQ3 is that yes, there are fusion approaches that retrieve
more relevant documents than the single runs, however this improvement is relatively small
and it needs to be studied if the increased complexity is justified by the gain in performance.

For the word2vec runs we did not apply any type of preprocessing nor QE+RF and as a
matter of fact, this runs did not achieve great scores. We did not apply any preprocessing due
to the fact that we used pre-trained embeddings while the best approach would be to use the
same preprocessing as the other runs and then compare them.

6.1 Future work

The immediate extension of this work could be to test the queries for query difficulty and to
see if there are some topics more difficult for some systems than others. If this should be the
case, then it would be interesting to build a system that recognizes the difficulty of the query
to then execute the query with the system that has a higher probability of retrieving more
relevant documents. This system could be a single model run or a fusion of more runs.

To further improve this system, it would be interesting to see if it is possible to tune it in
order to maximize one particular score that could benefit most to the user, for example, if a
user is interested in finding all the relevant documents in a collection, then it would be better
to use the model or fusion that maximizes the Recall.

In this work we only had access to Title and Abstract of the publications, thus it would
be interesting to compare the results found in this work with the same runs but done on the
dataset of the complete articles and not just the abstracts.

In our experiments, Probfuse did not obtain good results when compared to CombSUM
and RR. By increasing or decreasing the number of runs to fuse as well as tuning the x pa-
rameter of the fusion it should be possible to achieve better results.

To maximize the performance of all the systems used in this work, tuning the various pa-
rameters of the models would be the necessary thing to do in order to develop a complete
system which makes use of the findings in this work.

74

A
Box Plots and tables

A.1 Task1

(a) NoPorterNoStop: P@100. (b) NoPorterNoStop: P@1000. (c) Porter: P@100.

(d) Porter: P@1000. (e) PorterStop: P@100. (f) PorterStop: P@1000.

(g) Stop: P@100. (h) Stop: P@1000.

Figure A.1: T1: Box Plots for P@100 and P@1000 comparison per Index.

75

(a) NoPorterNoStop: NDCG@10. (b) NoPorterNoStop: NDCG@100. (c) NoPorterNoStop: NDCG@1000.

(d) Porter: NDCG@10. (e) Porter: NDCG@100. (f) Porter: NDCG@1000.

(g) PorterStop: NDCG@10. (h) PorterStop: NDCG@100. (i) PorterStop: NDCG@1000.

(j) Stop: NDCG@10. (k) Stop: NDCG@100. (l) Stop: NDCG@1000.

Figure A.2: T1: Box Plots for NDCG of the different models for each index.

76

(a) BM25: BoxPlots for P@100. (b) BM25: BoxPlots for P@1000. (c) DirichletLM: BoxPlots for P@100.

(d) DirichletLM: BoxPlots for
P@1000. (e) PL2: BoxPlots for P@100. (f) PL2: BoxPlots for P@1000.

(g) TF-IDF: BoxPlots for P@100. (h) TF-IDF: BoxPlots for P@1000.

Figure A.3: Box plots of P@100 and P@1000 for every model.

77

(a) BM25: NDCG@10. (b) BM25: NDCG@100. (c) BM25: NDCG@1000.

(d) DirichletLM: NDCG@10. (e) DirichletLM: NDCG@100. (f) DirichletLM: NDCG@1000.

(g) PL2: NDCG@10. (h) PL2: NDCG@100. (i) PL2: NDCG@1000.

(j) TF-IDF: NDCG@10. (k) TF-IDF: NDCG@100. (l) TF-IDF: NDCG@100.

Figure A.4: T1: Box Plots for NDCG of the different indexes for each model.

78

A.1.1 Task1+QE+RF

(a) NoPorterNoStop: P@100. (b) NoPorterNoStop: P@1000. (c) Porter: P@100.

(d) Porter: P@1000. (e) PorterStop: P@100. (f) PorterStop: P@1000.

(g) Stop: P@100. (h) Stop: P@1000.

Figure A.5: T1: Box Plots for P@100 and P@1000 comparison per Index.

79

(a) NoPorterNoStop: NDCG@10. (b) NoPorterNoStop: NDCG@100. (c) NoPorterNoStop: NDCG@1000.

(d) Porter: NDCG@10. (e) Porter: NDCG@100. (f) Porter: NDCG@1000.

(g) PorterStop: NDCG@10. (h) PorterStop: NDCG@100. (i) PorterStop: NDCG@1000.

(j) Stop: NDCG@10. (k) Stop: NDCG@100. (l) Stop: NDCG@1000.

Figure A.6: T1: Box Plots for NDCG of the different models for each index.

80

(a) BM25: BoxPlots for P@100. (b) BM25: BoxPlots for P@1000. (c) DirichletLM: BoxPlots for P@100.

(d) DirichletLM: BoxPlots for
P@1000. (e) PL2: BoxPlots for P@100. (f) PL2: BoxPlots for P@1000.

(g) TF-IDF: BoxPlots for P@100. (h) TF-IDF: BoxPlots for P@1000.

Figure A.7: Box plots of P@100 and P@1000 for every model.

81

(a) BM25: NDCG@10. (b) BM25: NDCG@100. (c) BM25: NDCG@1000.

(d) DirichletLM: NDCG@10. (e) DirichletLM: NDCG@100. (f) DirichletLM: NDCG@1000.

(g) PL2: NDCG@10. (h) PL2: NDCG@100. (i) PL2: NDCG@1000.

(j) TF-IDF: NDCG@10. (k) TF-IDF: NDCG@100. (l) TF-IDF: NDCG@100.

Figure A.8: T1: Box Plots for NDCG of the different indexes for each model.

82

A.2 Task2

(a) NoPorterNoStop: P@100. (b) NoPorterNoStop: P@1000. (c) Porter: P@100.

(d) Porter: P@1000. (e) PorterStop: P@100. (f) PorterStop: P@1000.

(g) Stop: P@100. (h) Stop: P@1000.

Figure A.9: T2: Box Plots for P@100 and P@1000 comparison per Index.

83

(a) NoPorterNoStop: NDCG@10. (b) NoPorterNoStop: NDCG@100. (c) NoPorterNoStop: NDCG@1000.

(d) Porter: NDCG@10. (e) Porter: NDCG@100. (f) Porter: NDCG@1000.

(g) PorterStop: NDCG@10. (h) PorterStop: NDCG@100. (i) PorterStop: NDCG@1000.

(j) Stop: NDCG@10. (k) Stop: NDCG@100. (l) Stop: NDCG@1000.

Figure A.10: T2: Box Plots for NDCG of the different models for each index.

84

(a) BM25: BoxPlots for P@100. (b) BM25: BoxPlots for P@1000. (c) DirichletLM: BoxPlots for P@100.

(d) DirichletLM: BoxPlots for
P@1000. (e) PL2: BoxPlots for P@100. (f) PL2: BoxPlots for P@1000.

(g) TF-IDF: BoxPlots for P@100. (h) TF-IDF: BoxPlots for P@1000.

Figure A.11: Box plots of P@100 and P@1000 for every model.

85

(a) BM25: NDCG@10. (b) BM25: NDCG@100. (c) BM25: NDCG@1000.

(d) DirichletLM: NDCG@10. (e) DirichletLM: NDCG@100. (f) DirichletLM: NDCG@1000.

(g) PL2: NDCG@10. (h) PL2: NDCG@100. (i) PL2: NDCG@1000.

(j) TF-IDF: NDCG@10. (k) TF-IDF: NDCG@100. (l) TF-IDF: NDCG@100.

Figure A.12: T2: Box Plots for NDCG of the different indexes for each model.

86

A.2.1 Task2+QE+RF

(a) NoPorterNoStop: P@100. (b) NoPorterNoStop: P@1000. (c) Porter: P@100.

(d) Porter: P@1000. (e) PorterStop: P@100. (f) PorterStop: P@1000.

(g) Stop: P@100. (h) Stop: P@1000.

Figure A.13: T2: Box Plots for P@100 and P@1000 comparison per Index.

87

(a) NoPorterNoStop: NDCG@10. (b) NoPorterNoStop: NDCG@100. (c) NoPorterNoStop: NDCG@1000.

(d) Porter: NDCG@10. (e) Porter: NDCG@100. (f) Porter: NDCG@1000.

(g) PorterStop: NDCG@10. (h) PorterStop: NDCG@100. (i) PorterStop: NDCG@1000.

(j) Stop: NDCG@10. (k) Stop: NDCG@100. (l) Stop: NDCG@1000.

Figure A.14: T2: Box Plots for NDCG of the different models for each index.

88

(a) BM25: BoxPlots for P@100. (b) BM25: BoxPlots for P@1000. (c) DirichletLM: BoxPlots for P@100.

(d) DirichletLM: BoxPlots for
P@1000. (e) PL2: BoxPlots for P@100. (f) PL2: BoxPlots for P@1000.

(g) TF-IDF: BoxPlots for P@100. (h) TF-IDF: BoxPlots for P@1000.

Figure A.15: Box plots of P@100 and P@1000 for every model.

89

(a) BM25: NDCG@10. (b) BM25: NDCG@100. (c) BM25: NDCG@1000.

(d) DirichletLM: NDCG@10. (e) DirichletLM: NDCG@100. (f) DirichletLM: NDCG@1000.

(g) PL2: NDCG@10. (h) PL2: NDCG@100. (i) PL2: NDCG@1000.

(j) TF-IDF: NDCG@10. (k) TF-IDF: NDCG@100. (l) TF-IDF: NDCG@100.

Figure A.16: T2: Box Plots for NDCG of the different indexes for each model.

90

A.2.2 Word2Vec

(a) T1: NDCG@10 for w2v_avg and w2v_si. (b) T2: NDCG@10 for w2v_avg and w2v_si.

(c) T1: NDCG@100 for w2v_avg and w2v_si. (d) T2: NDCG@100 for w2v_avg and w2v_si.

(e) T1: NDCG@1000 for w2v_avg and w2v_si. (f) T2: NDCG@1000 for w2v_avg and w2v_si.

Figure A.17: NDCG: Box Plots of the w2v runs.

91

A.3 Fusions

A.3.1 Task1

(a) NoPorterNoStop: BoxPlots for
P@10.

(b) NoPorterNoStop: BoxPlots for
P@100.

(c) NoPorterNoStop: BoxPlots for
P@1000.

(d) NoPorterNoStop+QE+RF: Box-
Plots for P@10.

(e) NoPorterNoStop+QE+RF: BoxPlots
for P@100.

(f) NoPorterNoStop+QE+RF: BoxPlots
for P@1000.

(g) Porter: BoxPlots for P@10. (h) Porter: BoxPlots for P@100. (i) Porter: BoxPlots for P@1000.

(j) Porter+QE+RF: BoxPlots for P@10. (k) Porter+QE+RF: BoxPlots for
P@100.

(l) Porter+QE+RF: BoxPlots for
P@1000.

Figure A.18: Box plots for Precision of the fusions of the models using NoPorterNoStop and Porter indexes.

92

(a) PorterStop: BoxPlots for P@10. (b) NoPorterNoStop: BoxPlots for
P@100. (c) PorterStop: BoxPlots for P@1000.

(d) PorterStop+QE+RF: BoxPlots for
P@10.

(e) PorterStop+QE+RF: BoxPlots for
P@100.

(f) PorterStop+QE+RF: BoxPlots for
P@1000.

(g) Stop: BoxPlots for P@10. (h) Stop: BoxPlots for P@100. (i) Stop: BoxPlots for P@1000.

(j) Stop+QE+RF: BoxPlots for P@10. (k) Stop+QE+RF: BoxPlots for P@100. (l) Stop+QE+RF: BoxPlots forP@1000.

Figure A.19: Box plots for Precision of the fusions of the models using PorterStop and Stop indexes.

93

(a) NoPorterNoStop: BoxPlots for
NDCG@10.

(b) NoPorterNoStop: BoxPlots for
NDCG@100.

(c) NoPorterNoStop: BoxPlots for
NDCG@1000.

(d) NoPorterNoStop+QE+RF: Box-
Plots for NDCG@10.

(e) NoPorterNoStop+QE+RF: BoxPlots
for NDCG@100.

(f) NoPorterNoStop+QE+RF: BoxPlots
for NDCG@1000.

(g) Porter: BoxPlots for NDCG@10. (h) Porter: BoxPlots for NDCG@100. (i) Porter: BoxPlots for NDCG@1000.

(j) Porter+QE+RF: BoxPlots for
NDCG@10.

(k) Porter+QE+RF: BoxPlots for
NDCG@100.

(l) Porter+QE+RF: BoxPlots for
NDCG@1000.

Figure A.20: Box plots for NDCG of the fusions of the models using NoPorterNoStop and Porter indexes.

94

(a) PorterStop: BoxPlots for
NDCG@10.

(b) NoPorterNoStop: BoxPlots for
NDCG@100.

(c) PorterStop: BoxPlots for
NDCG@1000.

(d) PorterStop+QE+RF: BoxPlots for
NDCG@10.

(e) PorterStop+QE+RF: BoxPlots for
NDCG@100.

(f) PorterStop+QE+RF: BoxPlots for
NDCG@1000.

(g) Stop: BoxPlots for NDCG@10. (h) Stop: BoxPlots for NDCG@100. (i) Stop: BoxPlots for NDCG@1000.

(j) Stop+QE+RF: BoxPlots for
NDCG@10.

(k) Stop+QE+RF: BoxPlots for
NDCG@100.

(l) Stop+QE+RF: BoxPlots for
NDCG@1000.

Figure A.21: Box plots for NDCG of the fusions of the models using PorterStop and Stop indexes.

95

96

B
Scatter Plots(a) P/D+QE+RF vs P/D: P@100. (b) P/D+QE+RF vs P/D: P@1000.

(c) P/D+QE+RF vs P/D: NDCG@100. (d) P/D+QE+RF vs P/D: NDCG@1000.

(e) N/BM25+QE+RF vs N/BM25:
P@100.

(f) N/BM25+QE+RF vs N/BM25:
P@1000.

(g) N/BM25+QE+RF vs N/BM25:
NDCG@100.

(h) N/BM25+QE+RF vs N/BM25:
NDCG@1000.

Figure B.1: T2: Scatter Plots of P@100, P@1000, NDCG@100 and NDCG@1000 that show the gain with QE+RF.

97

(a) N/TF-IDF vs w2v-si: P@100. (b) N/TF-IDF vs w2v-si: P@1000.

(c) N/TF-IDF vs w2v-si: NDCG@100. (d) N/TF-IDF vs w2v-si: NDCG@1000.

Figure B.2: T2: Scatter Plots of P@100, P@1000, NDCG@100 and NDCG@1000 of N/TF-IDF vs w2v-si.

98

(a) CombSUM vs RR NoPorterNoStop: P@100. (b) CombSUM vs RR NoPorterNoStop:
P@1000.

(c) CombSUM vs RR Porter: P@100. (d) CombSUM vs RR Porter: P@1000.

(e) CombSUM vs RR PorterStop: P@100. (f) CombSUM vs RR PorterStop: P@1000.

(g) CombSUM vs RR Stop: P@100. (h) CombSUM vs RR Stop: P@1000.

Figure B.3: T1: Scatter Plots of P@100, P@1000 of the fusions of the models using same index.

99

(a) CombSUM vs RR BM25: P@100. (b) CombSUM vs RR BM25: P@1000.

(c) CombSUM vs RR DirichletLM: P@100. (d) CombSUM vs RR DirichletLM: P@1000.

(e) CombSUM vs RR PL2: P@100. (f) CombSUM vs RR PL2: P@1000.

(g) CombSUM vs RR TF-IDF: P@100. (h) CombSUM vs RR TF-IDF: P@1000.

Figure B.4: T1: Scatter Plots of P@100, P@1000 of the fusions of the indexes using same model.

100

(a) P@100. (b) NDCG@100.

(c) P@1000. (d) NDCG@1000.

Figure B.5: T2: scatter plots of P@100, P@1000, NDCG@100 and NDCG@10000 of Porter/DirichletLM vs RR fusion
of best runs per index with QE+RF.

101

(a) T1: P@100. (b) T1: NDCG@100.

(c) T1: P@1000. (d) T1: NDCG@1000.

(e) T2: P@100. (f) T2: NDCG@100.

(g) T2: P@1000. (h) T2: NDCG@1000.

Figure B.6: T1 and T2: scatter plots of P@100, P@1000, NDCG@100 and NDCG@10000 of P/D for T1 and N/D for T2
vs RR fusion of best runs per model with QE+RF.

102

(a) P@100 for Porter/Dirichlet vs CombSUM. (b) P@100 for Porter/Dirichlet vs RR.

(c) NDCG@100 for Porter/Dirichlet vs Comb-
SUM. (d) NDCG@100 for Porter/Dirichlet vs RR.

(e) P@1000 for Porter/Dirichlet vs Comb-
SUM. (f) P@1000 for Porter/Dirichlet vs RR.

(g) NDCG@1000 for Porter/Dirichlet vs
CombSUM. (h) NDCG@1000 for Porter/Dirichlet vs RR.

Figure B.7: T1: Scatter plots of the best run vs the fusion of the two best runs.

103

(a) P@100 for Porter/Dirichlet vs CombSUM. (b) P@100 for Porter/Dirichlet vs RR.

(c) NDCG@100 for Porter/Dirichlet vs Comb-
SUM. (d) NDCG@100 for Porter/Dirichlet vs RR.

(e) P@1000 for Porter/Dirichlet vs Comb-
SUM. (f) P@1000 for Porter/Dirichlet vs RR.

(g) NDCG@1000 for Porter/Dirichlet vs
CombSUM. (h) NDCG@1000 for Porter/Dirichlet vs RR.

Figure B.8: T2: Scatter plots of the best run vs the fusion of the two best runs.

104

C
Statistical analysis of the runs

Measure N+QE+RF P+QE+RF P+S+QE+RF S+QE+RF
T1 T2 T1 T2 T1 T2 T1 T2

NDCG@10 F test 0.02 0.19 0.1 0.34 0.001 0.24 0.17 0.16
p value 0.89 0.66 0.75 0.56 0.98 0.63 0.68 0.69

NDCG@100 F test 0.2 0.11 0.33 0.3 0.26 0.13 0.24 0.15
p value 0.65 0.74 0.57 0.58 0.61 0.72 0.62 0.7

NDCG@1000 F test 0.41 0.003 0.04 0.12 0.08 0.01 0.07 0
p value 0.53 0.95 0.85 0.73 0.78 0.92 0.8 0.999

Recall@R F test 0.3 0.3 0.45 0.09 0.42 0.13 0.05 0.5
p value 0.59 0.58 0.51 0.76 0.52 0.72 0.82 0.48

P@100 F test 0.24 0.014 0.25 0.03 0.39 0.03 0.09 0.03
p value 0.63 0.91 0.62 0.87 0.53 0.87 0.77 0.86

P@1000 F test 0.17 0.016 0.05 0.01 0.04 0.01 0.08 0.02
p value 0.68 0.9 0.83 0.93 0.84 0.92 0.77 0.89

Table C.1: ANOVA tests for different measures of the comparisons between RR and CombSUM for T1 and T2.

105

M
odel

N
D
CG

@
10

N
D
CG

@
100

N
D
CG

@
1000

R
ecall@

R
P@

100
P@

1000
F
test

p-value
F
test

p-value
F
test

p-value
F
test

p-value
F
test

p-value
F
test

p-value
BM

25
4.1

0.0073
11.09

7.7·10
−

7
17.02

4.8·10
−

10
9.8

4·10
−

6
6.18

0.0005
5.7

0.0009
BM

25+Q
E+R

F
0.13

0.94
0.39

0.76
0.75

0.53
0.41

0.75
0.18

0.91
0.06

0.98
D
irichlet

8.8
1.5·10

−
5

17.9
1.8·10

−
10

26
1.3·10

−
14

14.7
8.3·10

−
9

11.4
5.4·10

−
7

7.9
4.7·10

−
5

D
irichlet+Q

E+R
F

0.42
0.74

0.11
0.96

0.12
0.95

0.11
0.96

0.07
0.98

0.003
0.99

PL2
3.8

0.01
9.9

3.6·10
−

6
15

6·10
−

9
8.8

1.4·10
−

5
5.4

0.001
5.3

0.001
PL2+Q

E+R
F

0.15
0.93

0.68
0.57

1.2
0.31

0.52
0.67

0.38
0.77

0.13
0.94

T
F-ID

F
4.4

0.005
12.1

2.1·10
−

7
18

1.4·10
−

10
10

2.8·10
−

6
6.7

0.0002
5.9

0.0006
T
F-ID

F+Q
E+R

F
0.23

0.87
0.54

0.65
0.97

0.41
0.4

0.75
0.22

0.88
0.07

0.98
N
oPorterN

oStop
0.68

0.56
0.54

0.66
0.27

0.85
0.28

0.84
0.47

0.71
0.12

0.95
N
+Q

E+R
F

7.5
8.4·10

−
5

6.6
0.0002

7.5
7.7·10

−
5

7.5
7.7·10

−
5

1.9
0.13

0.44
0.72

Porter
0.17

0.92
0.24

0.87
0.37

0.77
0.12

0.95
0.07

0.98
0.05

0.99
P+Q

E+R
F

8.5
2.1·10

−
5

3.95
0.009

3.7
0.012

5
0.0023

0.92
0.43

0.11
0.96

PorterStop
0.05

0.99
0.12

0.95
0.22

0.88
0.09

0.97
0.05

0.99
0.03

0.99
P+S+Q

E+R
F

5.3
0.0014

3.7
0.0127

3.5
0.016

5.4
0.0013

1.1
0.3428

0.15
0.93

Stop
0.02

0.99
0.095

0.96
0.23

0.88
0.297

0.83
0.047

0.99
0.058

0.98
S+Q

E+R
F

5.7
0.0008

4.6
0.0038

4.6
0.0036

6.7
0.0002

1.4
0.2475

0.2
0.89

Table
C.2:T1:ANO

VA
testsfordifferentm

easuresofthe
com

parisonsbetween
m
odelsand

indexes.

106

M
od

el
N
D
CG

@
10

N
D
CG

@
10
0

N
D
CG

@
10
00

R
ec
all
@
R

P@
10
0

P@
10
00

F
te
st

p-
v a
lu
e

F
te
st

p-
v a
lu
e

F
te
st

p-
v a
lu
e

F
te
st

p-
v a
lu
e

F
te
st

p-
v a
lu
e

F
te
st

p-
v a
lu
e

BM
25

1.
54

0.
20
36

1.
78

0.
15
03

3.
24

0.
02
23

0.
94

0.
43
79

0.
78

0.
50
82

0.
64

0.
59
24

BM
25
+Q

E+
R
F

0.
86

0.
46

0.
6

0.
62

0.
48

0.
7

0.
47

0.
7

0.
17

0.
92

0.
00
2

0.
99
9

D
iri
ch
let

2.
44

0.
06
45

1.
42

0.
23
81

1.
97

0.
11
75

0.
72

0.
53
88

0.
83

0.
47
61

0.
3

0.
82
43

D
iri
ch
let
+Q

E+
R
F

0.
02

0.
99

0.
14

0.
94

0.
16

0.
92

0.
31

0.
82

0.
06

0.
98

0.
00
4

0.
99
9

PL
2

0.
9

0.
44
06

0.
95

0.
41
64

1.
66

0.
17
56

0.
34

0.
79
75

0.
45

0.
71
71

0.
39

0.
75
85

PL
2+

Q
E+

R
F

0.
81

0.
49

0.
35

0.
79

0.
32

0.
81

0.
36

0.
78

0.
14

0.
94

0.
00
1

0.
99
99

T
F-
ID

F
1.
34

0.
26
25

0.
99

0.
39
98

1.
95

0.
12
06

0.
5

0.
68
19

0.
56

0.
64
03

0.
42

0.
74
27

T
F-
ID

F+
Q
E+

R
F

0.
8

0.
5

0.
52

0.
67

0.
48

0.
7

0.
19

0.
9

0.
16

0.
93

0
0.
99
99

N
oP

or
te
rN

oS
to
p

0.
32

0.
81
09

0.
19

0.
91

0.
24

0.
86
73

0.
18

0.
90
71

0.
09

0.
96
44

0.
04

0.
99

N
+Q

E+
R
F

2.
92

0.
03

2.
26

0.
08

2.
29

0.
08

2.
63

0.
05

0.
44

0.
73

0.
00
4

0.
99
9

Po
rte

r
1.
07

0.
36

1.
11

0.
34

1.
3

0.
27

0.
6

0.
62

0.
32

0.
81

0.
08

0.
97

P+
Q
E+

R
F

5.
17

0.
00
16

4
0.
00
79

3.
9

0.
00
95

4.
3

0.
00
54

0.
81

0.
48
89

0.
00
6

0.
99
9

P o
rte

rS
to
p

0.
1

0.
96

0.
06

0.
98

0.
24

0.
87

0.
07

0.
97

0.
08

0.
97

0.
1

0.
96

P+
S+

Q
E+

R
F

5.
96

0.
00
06

2.
98

0.
03
15

2.
68

0.
04
71

3.
31

0.
02

0.
63

0.
59
94

0.
00
1

0.
99
99

St
op

0.
00
3

0.
99
9

0.
00
9

0.
99
8

0.
08

0.
97

0.
02

0.
99
7

0.
02

0.
99
7

0.
07

0.
97

S+
Q
E+

R
F

7.
28

9.
4·

10
−

5
4.
04

0.
00
77

3.
88

0.
00
95

3.
06

0.
02
83

0.
85

0.
47

0.
00
4

0.
99
9

Ta
bl
e
C.
3:
T2
:A
NO

VA
te
st
sf
or
di
ffe
re
nt
m
ea
su
re
so
ft
he

co
m
pa
ris
on
sb
et
we

en
m
od
el
sa
nd

in
de
xe
s.

107

108

Bibliography

[1] C. N.Mooers, “Information retrieval viewed as temporal signaling,” in Proceedings of
the international congress of mathematicians, vol. 1, 1950, pp. 572–573.

[2] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval: The Concepts
and Technology Behind Search, 2nd ed. USA:Addison-Wesley PublishingCompany,
2008.

[3] B. Croft, D. Metzler, and T. Strohman, Search Engines: Information Retrieval in
Practice, 1st ed. USA: Addison-Wesley Publishing Company, 2009.

[4] H. P. Luhn, “The automatic creation of literature abstracts,” IBM Journal of research
and development, vol. 2, no. 2, pp. 159–165, 1958.

[5] N. Ferro and G. Silvello, “Toward an anatomy of IR system component per-
formances,” JASIST, vol. 69, no. 2, pp. 187–200, 2018. [Online]. Available:
https://doi.org/10.1002/asi.23910

[6] J. B. Lovins, “Development of a stemming algorithm,”Mech. Translat. & Comp. Lin-
guistics, vol. 11, no. 1-2, pp. 22–31, 1968.

[7] M. Porter, “Porter stemmer algorithm,” vol, vol. 14, pp. 1980–1980, 2006.

[8] S. E.Robertson andK. S. Jones, “Relevanceweighting of search terms,” Journal of the
American Society for Information Science, vol. 27, no. 3, pp. 129–146, 1976. [Online].
Available: https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.4630270302

[9] J.M.Ponte andW.B.Croft, “A languagemodeling approach to information retrieval,”
inACM SIGIR Forum, vol. 51, no. 2. ACM, 2017, pp. 202–208.

[10] C. Zhai and J. Lafferty, “A study of smoothing methods for language models applied
to information retrieval,” ACM Trans. Inf. Syst., vol. 22, no. 2, pp. 179–214, Apr.
2004. [Online]. Available: http://doi.acm.org/10.1145/984321.984322

109

https://doi.org/10.1002/asi.23910
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.4630270302
http://doi.acm.org/10.1145/984321.984322

[11] G. Amati and C. J. Van Rijsbergen, “Probabilistic models of information retrieval
based on measuring the divergence from randomness,” ACM Trans. Inf. Syst.,
vol. 20, no. 4, pp. 357–389, Oct. 2002. [Online]. Available: http://doi.acm.org/10.
1145/582415.582416

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre-
sentations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[13] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Advances in neural
information processing systems, 2013, pp. 3111–3119.

[14] M. U. Gutmann and A. Hyvärinen, “Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics,” Journal of Machine
Learning Research, vol. 13, no. Feb, pp. 307–361, 2012.

[15] Q. V. Le and T.Mikolov, “Distributed representations of sentences and documents,”
CoRR, vol. abs/1405.4053, 2014. [Online]. Available: http://arxiv.org/abs/1405.4053

[16] H. K. Azad and A. Deepak, “Query expansion techniques for information retrieval:
A survey,” Information Processing & Management, vol. 56, no. 5, pp. 1698 –
1735, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0306457318305466

[17] J. J. Rocchio,Relevance Feedback in Information Retrieval. Englewood, Cliffs, New
Jersey: Prentice Hall, 1971.

[18] B. T. Bartell, G. W. Cottrell, and R. K. Belew, “Automatic combination of multiple
ranked retrieval systems,” in SIGIR ’94, B. W. Croft and C. J. van Rijsbergen, Eds.
London: Springer London, 1994, pp. 173–181.

[19] N. J. Belkin, P. Kantor, E. A. Fox, and J. A. Shaw, “Combining the evidence of multi-
ple query representations for information retrieval,” Information Processing &Man-
agement, vol. 31, no. 3, pp. 431–448, 1995.

[20] G. V. Cormack, C. L. Clarke, and S. Buettcher, “Reciprocal rank fusion outperforms
condorcet and individual rank learning methods.” in SIGIR, vol. 9, 2009, pp. 758–
759.

110

http://doi.acm.org/10.1145/582415.582416
http://doi.acm.org/10.1145/582415.582416
http://arxiv.org/abs/1405.4053
http://www.sciencedirect.com/science/article/pii/S0306457318305466
http://www.sciencedirect.com/science/article/pii/S0306457318305466

[21] D. Lillis, F. Toolan, R. Collier, and J. Dunnion, “Probfuse: A probabilistic
approach to data fusion,” in Proceedings of the 29th Annual International ACM
SIGIR Conference on Research andDevelopment in Information Retrieval, ser. SIGIR
’06. New York, NY, USA: ACM, 2006, pp. 139–146. [Online]. Available:
http://doi.acm.org/10.1145/1148170.1148197

[22] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of ir techniques,”
ACMTransactions on Information Systems (TOIS), vol. 20, no. 4, pp. 422–446, 2002.

[23] P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke,
I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski, and M. J. L. de Hoon,
“Biopython: freely available Python tools for computational molecular biology and
bioinformatics,” Bioinformatics, vol. 25, no. 11, pp. 1422–1423, 03 2009. [Online].
Available: https://doi.org/10.1093/bioinformatics/btp163

[24] C. Macdonald, R. McCreadie, R. L. Santos, and I. Ounis, “From puppy to maturity:
Experiences in developing terrier,” Proc. of OSIR at SIGIR, pp. 60–63, 2012.

[25] G. Amati, “Probability models for information retrieval based on divergence
from randomness ph thesis,” Glasgow University, June, 2003. [Online]. Available:
https://theses.gla.ac.uk/1570/

[26] J. Palotti, H. Scells, and G. Zuccon, “Trectools: an open-source python library for
information retrieval practitioners involved in trec-like campaigns,” ser. SIGIR’19.
ACM, 2019.

[27] R.McDonald, G.-I. Brokos, and I. Androutsopoulos, “Deep relevance ranking using
enhanced document-query interactions,” arXiv preprint arXiv:1809.01682, 2018.

111

http://doi.acm.org/10.1145/1148170.1148197
https://doi.org/10.1093/bioinformatics/btp163
https://theses.gla.ac.uk/1570/

112

Acknowledgments

I would like to thank my family, myMother, Father and Sister for support-
ing me in all these years, my friends and roommates for all the fondmemo-
rieswe created during our time living together, my best friendMattia, my
girlfriendwhich has always been onmy side even thoughwewere far away
from each other. Last but not least, I would like to thank professors Si-
monetti andNatale frommyhigh school for teachingmenotions andhow
to grow as an engineer and a human being.

Thank you all.

113

	Abstract
	List of figures
	List of tables
	Introduction
	Research questions
	Thesis overview

	Background
	TF-IDF weighting
	IR models
	BM25
	DirichletLM
	PL2
	Word2Vec

	Query expansion
	Relevance feedback
	Fusions
	Comb methods
	Reciprocal ranking fusion
	Probfuse

	Evaluation Measures
	Precision
	Recall
	Normalized discounted cumulative gain

	Experimental setup
	Datasets
	Terrier
	Setup

	Runs

	Results
	Terrier runs baseline
	Task1
	Task2

	Terrier runs with Query Expansion and Relevance Feedback
	Task1
	Task2

	Word2vec runs
	Fusions

	Statistical analysis of the results
	Measures
	Best overall run
	Gain of using QE+RF
	NoPorterNoStop vs Word2Vec
	Best overall fusion
	Best overall fusion vs best single run

	Statistical analysis
	Statistical difference between different indexes
	Statistical difference between CombSUM and RR

	Conclusions and future work
	Future work

	Appendix Box Plots and tables
	Task1
	Task1+QE+RF

	Task2
	Task2+QE+RF
	Word2Vec

	Fusions
	Task1

	Appendix Scatter Plots
	Appendix Statistical analysis of the runs
	References
	Acknowledgments

