
COAP-OBSERVE FEATURE IMPLEMENTATION ON THINKIP

SOFTWARE

RELATORE: Ch.mo Prof. Michele Zorzi

LAUREANDO: Felix Mendoza

Telecommunication Engineering (Laurea Magistrale)

A.A. 2012-2013

UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Ingegneria dell'Informazione

Corso di Laurea in Ingegneria delle Telecomunicazioni

TESI DI LAUREA

COAP-OBSERVE FEATURE

IMPLEMENTATION ON THINKIP

SOFTWARE

RELATORE: Prof. Michele Zorzi

LAUREANDO: Felix Mendoza

A.A. 2012-2013

To my family

Contents

Abstract 1

1 Introduction 3

2 CoAP (version 08) 6

2.1 Constrained Application Protocol . 7

2.1.1 Messaging Model . 8

2.1.2 Request/Response Model . 8

2.1.3 Intermediaries and Caching . 9

2.2 Message Syntax . 9

2.2.1 Option Format . 10

2.3 Message Semantics . 11

2.3.1 Reliable Messages . 11

2.3.2 Unreliable Messages . 12

2.3.3 Messages Types . 13

2.3.4 Multicast . 14

2.4 Request/Response Semantics . 14

2.4.1 Requests . 14

2.4.2 Responses . 14

2.4.3 Request/Response Matching . 16

2.4.4 Options . 16

2.4.5 Payload . 18

2.4.6 Caching . 18

2.4.7 Proxying . 18

2.4.8 Method De�nitions . 20

2.4.9 Response Code De�nitions . 21

v

INDEX

2.5 CoAP URIs . 23

2.5.1 coap URI Scheme . 23

2.5.2 coaps URI Scheme . 24

2.6 Resource Discovery . 24

2.7 Default Ports . 24

2.8 HTTP Mapping . 25

2.8.1 CoAP-HTTP Mapping . 25

2.8.2 HTTP-CoAP Mapping . 27

3 Observe feature of CoAP (version 03) 31

3.1 Options . 33

3.1.1 Observe . 33

3.1.2 Max-OFE . 33

3.2 Client-side . 34

3.2.1 Request . 34

3.2.2 Noti�cations . 34

3.2.3 Caching . 35

3.2.4 Reordering . 35

3.3 Server-side . 36

3.3.1 Request . 36

3.3.2 Noti�cation . 37

3.3.3 Caching . 38

3.3.4 Reordering . 38

3.3.5 Retransmission . 39

3.4 Intermediaries . 39

3.5 Block-wise Transfers . 40

3.6 Discovery . 40

4 ThinkIP Software 41

4.1 Software Architecture . 41

4.2 Module Interfaces . 42

4.2.1 Hardware Abstraction Layer interface 42

4.2.2 OS interface . 42

4.2.3 System Con�guration Interface 45

4.2.4 Debug Interface . 45

vi

INDEX

4.2.5 Resource Access Interface . 45

4.3 ThinkIP CoAP . 46

4.3.1 Session Allocation . 47

4.3.2 Parse and Formatting . 47

4.3.3 Logic and Control . 47

5 Observe implementation on ThinkIP 53

5.1 Parse Formatting . 54

5.2 Session Allocation . 54

5.3 observe_common.h . 55

5.4 Observe_server.cpp . 55

5.4.1 Client class . 55

5.4.2 Observe_server class . 56

5.5 Observe_client.cpp . 57

5.5.1 Observing_servers class . 57

5.5.2 observing_client class . 58

5.6 Logic Control . 60

5.6.1 Server Side . 61

5.6.2 Subscriber Side . 62

5.7 Numerical Results . 63

6 Conclusion 65

Bibliography 67

List of �gures 69

vii

Abstract

Patavina Technologies ([3]) is a software house that designs telecomunication systems.

It is a spino� of the University of Padua since both founders (Lorenzo Vangelista and

Michele Zorzi) have been teaching in the institute courses related to the telecomunica-

tions and computer science �elds for several years.

One of its current projects (ThinkIP) focuses on INTERNET OF THINGS and

6LOWPAN protocols. The project is presented as a software package de�ned by the

following components:

• Resource Access Module

• OS Abstraction Layer

• Debug Interface

• Hardware Abstraction Layer

• Protocol Stack

� IPv6

� RPL (Routing Protocol over Lossy and Low Power networks)

� TCP and UDP

� Security Mechanisms

� IPv4 e DHCP

� Interfaces for USB, Ethernet and UART for UMTS modules

� Proxy HTTP/CoAP transparency

� CoAP/HTTP gateway

� Power Management

CoAP (Constrained Application Protocol) is a specialized web transfer protocol for

constrained nodes and networks (e.g. low-power, lossy). The nodes often have a 8-

bit microcontroller with small amounts of ROM and RAM, while constrained networks

such as 6LoWPAN often have a high packet error rate and a typical throuhput of

10s of kbits/s. The protocol is designed for machine-to-machine (M2M) applications

such as smart energy and building automation. CoAP provides a request/response

interaction model between application endpoints , supports built-in discovery of services

and resources, and includes key concepts of the Web such as URIs and Internet media

types. CoAP is designed to easily interface with HTTP for integration with the Web

while meeting specialized requirements such as multicast support, very low overhead

and simplicity for constrained enviroments.

The objective of this thesis is implementing Observe on the software package of

Patavina Technologies. Observe is a simple protocol extension that enables CoAP clients

to "keep an eye on" a resource following a best-e�ort approach.

2

Chapter 1

Introduction

The main focus of this thesis will be the CoAP component of ThinkIP, speci�cally its

Observe feature implementation into it.

CoAP is a fairly new protocol under development and it should be considered as

a work in progress. The latest updates comes from Internet-Drafts (Internet-Draft are

working documents, mainly from the IETF). Since the protocol is frequently updated,

Patavina Technologies has been working with CoAP-08 (version 08). CoAP is intended

to provide RESTful services ([9])while reducing the complexity of implementation as

well as the size of packets exchanged in order to make these services useful in a highly

constrained network. A more detailed picture of the CoAP protocol can be found in

Chapter two.

The basic �ow of communication in the CoAP protocol is given by: a resource request

sent from a client to a server, which will return a response with the respresentation of

the resource requested (if possible). However, this model does not suit well the scenario

in which a client needs the current representation of the resource in a period of time,

these continuous polling would signi�cantly generate complexity and overhead, scenario

that must be avoided in a constrained network.

The observe feature in the CoAP protocol is a fair alternative to continuous polling,

once a client makes a request, the server stores the client ID and repeatedly sends

responses to the interested client without the need of further requests. We should

mention that the thesis focuses on the version 03 of the observe feature, since it is the

most time accurate version regarding CoAP-08. The feature also takes into account the

scenario of packet loss or client/service malfunction. There are di�erent ways to treat

this case

3

CHAPTER 1. INTRODUCTION

• Ack-less noti�cations: One solution would be to repeatedly send responses without

the need for the acknowlegde of the noti�cations. Since it is possible for a client

to malfunction and go o�ine (a client could also just lose interest for a resource),

a timer must be established and everytime it expires the server would require a

response from the client to con�rm its interest.

• Acked Noti�cations: The server expects an acknowledgement for every noti�cation

it sends.

It is not simple to determine which of the solutions above is better, at a �rst sight

the Ack-less option would seem to be better since it has less overhead due to the lack

of acknowledgements, but once a client goes o�ine or lose interests in the resource, the

server would continue to send noti�cation until the timer expires. This problem can be

�xed by choosing the right timer, the latter though depends on the network and the

network nodes.

It is also possible for a server malfunction to happen, so each client has a timer that

is reset each time the client receives a noti�cation. If the timer expires the client may

assume that the server has gone o�ine. The value of such timer depends on the Max-

OFE option of the observe feature. However, a more detailed picture of Observe-03 can

be found in Chapter three.

The main focus of this thesis is a practical implementation of the observe feature into

an existing and functioning software (that obviously implements the CoAP protocol).

To achieve our objective we have worked with the ThinkIP software (developed by

Patavina Technologies).

Patavina Technologies is an italian software house that recently focuses on the devel-

opment of telecommunication software and systems, specially on new technologies (new

standards, future standards or promising technologies) such as constrained networks.

Its main product is ThinkIP, a software that relies on well known protocols to enable

the communication between devices and create ad-hoc networks.

It is a portable software package (available to clients via licences) based on the Inter-

net of Things concept and the 6LoWPAN protocol. Furthermore, the work projectss of

Patavina Technologies are very client-speci�c, since every client has di�erent needs such

as hardware and system design, hardware manufacturing, system integration, testing

and forniture contact network. The software package is composed by the following:

• Resource Access Module

4

• OS Abstraction Layer (for Patavina Technology OS support)

• Debug Interface

• Hardware Abstraction Layer

• Protocol Stack

• Power Management

And its Protocol Stack includes:

• IPv6 (with ICMPv6)

• RPL (Routing Protocol ovr Lossy and Low Power Networks)

• TCP and UDP

• Security Mechanisms

• IPv4 and DHCP

• USB, Ethernet and UART interfaces for UMTS modules

• Proxy HTTP/CoAP (transparent)

• CoAP/HTTP gateway

The application �eld for the software package is limitless since it covers all applica-

tions linked to Internet of things such as home automation, monitoring (temperature,

humidity, ecc), actuators (light, air conditioning systems), access control, metering.

ThinkIP is written in C++ and has passed succesfully the 2012 ETSI Plug Test event

for the CoAP protocol.

Patavina Technologies adopted the CoAP protocol into its software package to

handle constrained nodes scenarios (further information about Patavina Technologies

ThinkIP can be found in Chapter four), we will focus on the observe feature imple-

mentation of its CoAP component (Chapter �ve). The feature was added as part of

the application layer but yet external to the existing layers inside of it, mainly because

we wanted to avoid doing major changes to the existing code and reduce the complex-

ity in future updates/modi�cations (the CoAP protocol and observe feature are being

frequently updated).

5

Chapter 2

CoAP (version 08)

CoAP ([6]) is a software protocol that allows resource-constrained internet devices

to interact. It is particularly targeted for WSN (Wireless Sensor Network) nodes.

The protocol is designed to translate the data of such devices to HTTP for simpli�ed

integration with the web, while also meeting specialized requirements such as multicast

support, very low overhead, and simplicity. These specialized requirements greatly

improves the perfomance of embedded devices.

CoAP has the following features:

• Constrained web protocol ful�lling M2M (machine-to-machine) requirement.

• UDP binding with optional reliability supporting unicast and multicast requests.

• Asynchronous messages exchanges.

• Low header overhead and parsing complexity

• URI and Content-type support.

• Simple proxy and caching capabilities.

• A stateless HTTP mapping, allowing proxies to be built providing access to CoAP

resources via HTTP in a uniform way or for HTTP simple interfaces to be realized

alternatively over CoAP.

• Security binding to Datagram Transport Layer Security (DTLS).

6

2.1. CONSTRAINED APPLICATION PROTOCOL

Figure 2.1: CoAP two-layer

2.1 Constrained Application Protocol

The interaction model of CoAP is similar to the client /server model of HTTP. However,

M2M interactions typically result in a CoAP implementation acting in both client and

server (end-points) roles. A CoAP request is equivalent to that of HTTP, and is sent by

a client to request an action (using a method code) on a resource (identi�ed by a URI)

on a server. The server then sends a response with a response code that may include a

resource rapresentation.

Unlike HTTP, CoAP deals with these interchanges asynchronously over a datagram-

oriented transport such as UDP. This is done logically using a layer of messages that

supports optional reliability (with exponential back-o�).

CoAP de�nes four messages types:

• Con�rmable

• Non-Con�rmable

• Acknowledgement

• Reset

The exchange of these messages types are transparent to the request/response in-

teractions. CoAP works between the application and UDP with a two-layer (Messages

and Resquests/Responses) approach and is able to handle the asynchronous nature of

the interactions (see Figure 2.1). Even though the messaging and request/response is

just a component of the CoAP header.

7

CHAPTER 2. COAP (VERSION 08)

2.1.1 Messaging Model

The CoAP messaging model is based on the exchange of messages over UDP between

end-points. It uses a short �xed-length binary header (four bytes) that may be followed

by compact binary options and a payload. Such message format is shared by the requests

and the responses. Each message contains a Message ID (MID) used to detect duplicates

and optional reliability.

Reliability is provided by marking a message as Con�rmable (CON). A Con�rmable

message is retransmitted using a default timeout and exponential back-o� between

retransmissions, until the recipient sends an Acknowledgement message (ACK) with

the same Message ID from the corresponding end-point. When a recipient is not able

to process a Con�rmable message, it replies with a Reset (RST) instead of an ACK.

Such reliability is not necessary when dealing with Non-Con�rmable (NON) messages,

since these messages will not be needing an ACK. Even though NON messages are not

acknowledged, they still have a message ID for duplicate detection.

As CoAP is based on UDP, it supports multicasts, enabling multicast CoAP re-

quests.

2.1.2 Request/Response Model

CoAP request and response semantics are carried in CoAP messages, which include

either a method code or response code, respectively. Optional (or default) request and

response information, such as the URI and payload content-type are carried as CoAP

options. A Token Option is used to match responses to requests independently from

the underlying messages.

A request can be either a CON or NON message, and if immediately available, the

response to a request can be delivered in the resulting ACK message (piggy-backed

response).

If a server is not able to reply immediately to a request carried in a CON message, it

simply responds with an empty ACK message so that the client can stop retransmitting

the request. When the response is ready, the server sends it in a new CON message (an

ACK will be needed to such new message). This is called a separate response.

8

2.2. MESSAGE SYNTAX

Figure 2.2: Message Format

2.1.3 Intermediaries and Caching

The protocol supports the caching of responses in order to e�ciently ful�ll requests.

Simple caching is enabled using freshness and validity information carried with CoAP

responses. A cache could be located in an end-point or an intermediary.

Proxying is useful in constrained networks for several reasons, including network

tra�c limiting, to improve performance, to access resources of sleeping devices or for

security reasons. The proxying of requests on behalf of another CoAP end-point is

supported in the protocol. The URI of the resource is included in the request, while

the destination IP address is set to the proxy.

2.2 Message Syntax

CoAP messages are encoded in a simple binary format. A message consists of a �xed-size

CoAP Header followed by options in Type-Length-Value (TLV) format and a payload.

The number of options is determined by the header. The payload is determined by the

bytes after the options (if any) and its length is calculated from the datagram length.

The �elds in the header are de�ned as follows:

• Version (Ver): 2-bit unsigned integer. Indicates the CoAP version number. Imple-

mentations of this speci�cation must set this �eld to 1. Other values are reserved

for future versions.

• Type (T): 2-bit unsigned integer. Indicates the nature of the message type. CON

(0), NON (1), ACK (2) or RST(3).

• Option Count (OC): 4-bit unsigned integer. Indicates the number of options after

the header. If set to 0, there are no options and the payload (if any) immediately

follows the header.

9

CHAPTER 2. COAP (VERSION 08)

Figure 2.3: Message Option Format

• Code: 8-bit unsigned integer. Indicates if the message carries a request (1-31) or

a response (64-191) or is empty (0). All other values are reserved.

• Message ID: 16-bit unsigned integer. Used for the detection of message duplication

and for reliability.

While speci�c link layers make it bene�cial to keep CoAP messages small enough

to �t into their link layer packets, this is a matter of implementation quality. The

CoAP speci�cation itself provides only an upper bound to the message size. Messages

larger than an IP fragment result in undesired packet fragmentation. A CoAP message,

appropriately encapsulated, should �t within a single IP packet (avoiding IP fragmen-

tation) and must �t within a single IP datagram. If the Path MTU is not known for

a destination, an IP MTU of 1280 bytes should be assumed; if nothing is known about

the size of the headers, then good upper bounds are 1152 btes for the mesage size and

1024 bytes for the payload size.

2.2.1 Option Format

Options must appear in order of their Option Number. A delta encoding is used between

options, with the Option Number for each Option calculated as the sum of its Option

Delta �eld and the Option Number of the preceding Option in the message, if any, or

zero otherwise. Multiple options with the same Option Number can be included by

using an Option Delta of zero. Following the Option Delta, each option has a Length

�eld which speci�es the length of the Option Value, in bytes. The length �eld can be

extended by one byte for values longer than 14 bytes. The Option Value immediately

follows the Length �eld (see �gure 2.3.

The �elds in an option are de�nes as follows:

• Option Delta: 4-bit unsigned integer. Indicates the di�erence between the Option

Number of this option and the previous option (or zero for the �rst option). In

10

2.3. MESSAGE SEMANTICS

other words, the Option Number is calculated by simply summing the Option

Delta �elds of this and previous options before it. The Option Numbers 14, 28,

42, ... are reserved for no-op options when they are sent with an empty value

(they are ignored) and can be used as "fenceposts" if deltas larger than 15 would

otherwise be required.

• Length: Indicates the length of the Option Value, in bytes. Normally, Length is

a 4-bit unsigned integer allowing value lengths of 0-14 bytes. When the Length

�eld is set to 15, another byte is added as an 8-bit unsigned integer whose value

is added to the 15, allowing option value lengths of 15-270 bytes.

2.3 Message Semantics

CoAP messages are exchanged asynchronously between CoAP end-points. They are

used to transport CoAP requests and responses. As CoAP is bound to non-reliable

transports such as UDP, CoAP messages may arrive out of order, appear duplicated, or

go missing without notice. For this reason, CoAP implements a lightweight reliability

mechanism, without trying to re-create the full feature set of a transport like TCP. It

has the following features:

• Simple stop-and-wait retransmission reliability with exponential back-o� for CON

messages.

• Duplicate detection for both CON and NON messages.

• Multicast support.

2.3.1 Reliable Messages

The reliable transmission of a message is initiated by marking the message as CON in

the CoAP header. A recipient must acknowledge such a message with an ACK message

(or a RST message if the recipient lacks context to process the message). The sender

retransmits the CON message at exponentially increasing intervals, until it receives an

ACK or RST message, or runs out of attempts.

Retransmission is controlled by two things that a CoAP end-point must keep track of

for each CON message it sends while waiting for an ACK (or RST): a timeout and a

retrasmission counter. For a new CON message, the initial timeout is set to a random

11

CHAPTER 2. COAP (VERSION 08)

number between RESPONSE-TIMEOUT and

RESPONSE_TIMEOUT∗RESPONSE_RANDOM_FACTOR, and the retrasmission

counter is set to 0. When the timeout is triggered and the retrasmission counter is less

than MAX_RETRANSMIT, the message is retransmitted, the retransmission counter

is incremented, and the timeout is doubled. If the retransmission counter reaches

MAX_RETRANSMIT on a timeout, or if the end-point receives a RST message, then

the attempt to transmit the message is canceled and the application process a failure.

On the other hand, if the end-point receives and ACK message in time, transmission is

considered successful.

An ACK or RST message is related to a CON message by means of a Message ID along

with additional address information of the corresponding end-point. The Message ID

is a 16-bit unsigned integer that is generated by the sender of a CON message and

included in the CoAP header. The Message ID must be echoed in the ACK or RST

message by the recipient.

Several implementation strategies can be employed for generating Messages IDs. In

the simplest case a CoAP end-point generates Message IDs by keeping a single Mes-

sage ID variable, which is changed each time a new CON message is sent regardless

of the destination address or port. End-points dealing with large numbers of transac-

tions could keep multiple Message ID variables, for example per pre�x or destination

address. The same Message ID must not be re-used within the potential retransmis-

sion window:RESPONSE_TIMEOUT ∗ RESPONSE_RANDOM_FACTOR ∗
(2MAX_RETRANSMIT − 1)+ the expected maximum round trip time.

A recipient must be prepared to receive the same CON message multiple times (the

ACK message could have gone missing or did not reach the sender before the timeout).

The recipient should acknowledge each duplicate copy of a CON message using the same

ACK or RST message, but should process any request or response in the message only

once. This rule may be relaxed in case the CON message transports a request that is

idempotent.

2.3.2 Unreliable Messages

As a more lightweight alternative, a message can be transmitted less reliably by marking

the message as NON. A NON message must not be acknowledged by the recipient. If a

recipient lacks context to process the message properly, it may reject the message with

a RST message or otherwise must silently ignore it.

12

2.3. MESSAGE SEMANTICS

There is no way to detect if a NON message was received or not at the CoAP-level.

A sender may choose to transmit a NON message multiple times which, for this purpose,

speci�es a Message ID as well. The same rules for generating the Message ID apply.

A recipient must be prepared to receive the same NON message multiple times. As

a general rule that may be relaxed based on the speci�c semantics of a message, the

recipient should silently ignore any duplicated NON message, and should process any

request or response in the message only once.

2.3.3 Messages Types

Separate from the message type, a message may carry a request, a response, or be

empty. This is signaled by the Code �eld in the CoAP header and is relevant to the

request/response model.

An empty message has the Code �eld set to 0. The OC �eld should be set to 0

and no bytes should be present after the Message ID �eld. The OC �eld and any bytes

trailing the header must be ignored by any recipient.

• Con�rmable (CON): Message that requires acknowledgement. When no packets

are lost, each CON message elicits exactly one return message of type ACK or

RST.

• Non-con�rmable (NON): Message that does not require acknowledgement. This

is particularly true for messages that are repeated regularly for sensor application

requirements, such as repeated readings from a sensor where eventual arrival is

su�cient. A NON message always carries either a request or response, and must

not be empty.

• Acknowledgement (ACK): An ACK message acknowledges that a speci�c CON

message (identi�ed by its Message ID) arrived. It does not indicate success or

failure of any encapsulated request. The ACK message must echo the Message ID

of the CON message, and must carry a response or be empty.

• Reset (RST): A RST message indicates that a speci�c CON message was received,

but some context is missing to properly process it. This condition is usually caused

when the receiving node has rebooted and has forgotten some state that would

be required to interpret the message. A RST message must echo the Message ID

of the CON message, and must be empty.

13

CHAPTER 2. COAP (VERSION 08)

2.3.4 Multicast

CoAP supports sending messages to multicast destination addresses. Such multicast

messages must be NON messages.

2.4 Request/Response Semantics

CoAP operates under a similar request/response model as HTTP: a CoAP end-point

in the role of a client sends one or more CoAP requests to a server, which services

the requests by sending CoAP responses. Unlike HTTP, requests and responses are

not sent over a previously established connection, but exchanged asynchronously over

CoAP messages.

2.4.1 Requests

A CoAP request consists of the method to be applied to the resource, the identi�er of

the resource, a payload and Internet media type (if any), and optional meta-data about

the request.

CoAP supports the basic methods of GET, POST, PUT, DELETE, which are easily

mapped to HTTP. They have the same properties of safe (only retrieval) and idempotent

(you can invoke it multiple times with the same e�ects) as HTTP. The GET method

is safe, therefore it must not take any other action on a resource other than retrieval.

The GET, PUT and DELETE methods must be performed in such a way that they

are idempotent. POST is not idempotent, because its e�ect is determined by the origin

server and dependent on the target resource; it usually results in a new resource being

created or the target resource being updated.

A request is initiated by setting the Code �eld in the CoAP header of a CON or

NON message to a Method Code and including request information.

2.4.2 Responses

After receiving and interpreting a request, a server responds with a CoAP response,

whch is matched to the request by means of a client-generated token.

A response is identi�ed by the Code �eld in the CoAP header being set to a Response

Code. Similar to the HTTP Status Code, the CoAP Response Code indicates the result

of the attemp to understand and satisfy the request.

14

2.4. REQUEST/RESPONSE SEMANTICS

Figure 2.4: Response

The upper three bits of the 8-bit Response Code number de�ne the class of response.

The lower �ve bits do not have any categorization role; they give additional detail to

the overall class. There are three classes:

• 2- Success: The request was successfully received, understood, and accepted.

• 4- Client Error: The request contains bad syntax or cannot be ful�lled.

• 5- Server Error: The server failed to ful�ll an apparently valid request.

The response codes are designed to be extensible: Response Codes in the Client

Error and Server Error class that are unrecognized by an end-point must be treated

as being equivalent to the generic Response Code of that class. However, there is no

generic Response Code indicating success, so a Response code in the Success class that

is unrecognized by an end-point can only be used to determine that the request was

successful without any further details.

As a human readable notation for speci�cations and protocol diagnostics, the nu-

meric value of a response code is indicated by giving the upper three bits in decimal,

followed by a dot and then the lower �ve bits in a two-digits decimal. E.g., "Not found"

is written as 4.04.

Responses can be sent in multiple ways:

• Piggy-backed: In the most basic case, the response is carried directly in the ACK

message that acknowledges the request (piggybacking).

• Separate: It may not be possible to return a piggy-backed response in all cases. For

example, a server might need longer to obtain the representation of the requested

resource than it can wait sending back the ACKmessage, without risking the client

to repeatedly retransmit the request message. Responses to requests carried in a

NON message are always sent separately.

15

CHAPTER 2. COAP (VERSION 08)

• Non-Con�rmable: If the request is a NON message, then the response should be

returned in a NON message as well. However, an end-point must be prepared

to receive a NON response in reply to a con�rmable request, or a con�rmable

response in reply to a NON message request.

2.4.3 Request/Response Matching

Regardless of how a response is sent, it is matched to the request by means of a token

that is included by the client in the request as one of the options along with additional

address information of the corresponding end-point. The token must be echoed by the

server in any resulting response without modi�cation.

The exact rules for matching a response to a request are as follows:

• For requests sent in a unicast message, the source of the response must match

the destination of the original request. This is determined by the security mode

used: with NoSec, the IP address and port number of the request destination and

response source must match. With other security modes, in addition to the IP

address and UDP port matching, the request and response must have the same

security context.

• In a piggy-backed response, both the Message ID of the con�rmable request and

the acknowledgement, and the token of the response and original request must

match. In a separate response, just the token of the response and original request

must match.

The client should generate tokens in a way that tokens currently in use for a given

source/destination pair are unique (a client can use the same token for any request if

it uses a di�erent source port number each time). An end-point receiving a token must

treat it as opaque and make no assumptions about its format.

In case a CON message carrying a response is unexpected (a client might not be

waiting for a response with the speci�ed address and/or token), the con�rmable response

should be rejected with a RST message and must not be acknowledged.

2.4.4 Options

Both request and response may include a list of one or more options. For example, the

URI in a request is transported in several options, and metadata that would be carried

in an HTTP header in HTTP is supplied as options as well.

16

2.4. REQUEST/RESPONSE SEMANTICS

Figure 2.5: CoAP Options.

CoAP de�nes a single set of options that are used in both requests and responses

that can be seen in �gure2.5.

Critical/Elective

Options fall into one of two classes: "critical" or "elective". The di�erence between these

is how an option unrecognized by and end-point is handled (neither class is mandatory):

• Upon reception, unrecognized options of class "elective" must be silently ignored.

• Unrecognized options of class "critical" that occur in a CON request must cause

the return of a 4.02 (Bad Option) response.

• Unrecognized options of class "critical" that occur in a CON response should

cause the response to be rejected with a RST message.

• Unrecognized options of class "critical" that occur in a NON message must cause

the message to be silently ignored.

17

CHAPTER 2. COAP (VERSION 08)

2.4.5 Payload

Both requests and responses may include payload, depending on the method or response

code respectively. Methods with payload are PUT and POST, and the response codes

with payload are 2.05 (Content) and the error codes.

The payload of PUT, POST and 2.05 (Content) is typically a resource represen-

tation. Its format is speci�ed by the Internet media type given by the Content-Type

Option. No default value is assumed in the absence of this option.

2.01 (Created), 2.02 (Deleted), 2.04 (Changed) may include payload that is de-

scribing the result of the action. Again, the format of this payload is speci�ed by the

Internet media type given by the Content-Type Option; no default value is assumed in

the absence of this option.

A response with a code indicating a Client or Server Error should include a brief

human-readable diagnostic message as payload, explaining the error situation.

2.4.6 Caching

CoAP end-points may cache responses in order to reduce the response time and network

bandwidth consumption on future, equivalent requests.

The goal of caching in CoAP is to reuse a prior response message to satisfy a current

request. In some cases, a stored response can be reused without the need for a network

request, reducing the latency and network round-trips; a "freshness" mechanism is used

for this purpose.

Freshness Model

When a response is "fresh" in the cache, it can be used to satisfy subsequent requests

without contacting the origin server to provide an explicit expiration time in the future,

using the Max-Age Option. The Max-Age Option indicates that the response is to be

considered not fresh after its age is greater than the speci�ed number of seconds.

2.4.7 Proxying

CoAP distinguishes between requests to an origin server and a request made through

a proxy. A proxy is a CoAP end-point that can be tasked by CoAP clients to perform

requests on their behalf. This may be useful, for example, when the request could

18

2.4. REQUEST/RESPONSE SEMANTICS

otherwise not be made, or to service the response from a cache in order to reduce

response time and network bandwidth or energy consumption.

CoAP requests to a proxy are made as normal CON or NON requests to the proxy

end-point, but specify the request URI in a di�erent way: The request URI in a proxy

request is speci�ed as a string in the Proxy-URI Option, while the request URI in a

request to an origin server is split into the URI-Host, URI-Port, URI-Path and URI-

Query Options.

When a proxy request is made to an end-point and the end-point is unwilling or

unable to act as proxy for the request URI, it must return a 5.05 (Proxying Not Sup-

ported) response. If the authority (host and port) is recognized as identifying the proxy

end-point, then the request must be treated as a local request.

Unless a proxy is con�gured to forward the proxy request of another proxy, it must

translate the request as follows: The IP address and port of the origin server are deter-

mined by the authority component of the request URI, and the request URI is decoded

and split into the URI-Host, URI-Port, URI-Path and URI-Query Options.

All options present in a proxy request must be processed at the proxy. Critical

options in a request that are not recognized by the proxy must lead to a 4.02 (Bad

Option) response being returned by the proxy. Elective options not recognized by the

proxy must not be forwarded to the origin server. Similarly, critical options in a response

that are not recognized by the proxy server must lead to a 5.02 (Bad Gateway) response.

Again, elective options that are not recognized must not be forwarded.

If the proxy does not employ a cache, then it simply forwards the translated request

to the determined destination. Otherwise, if it does employ a cache but does not have

a stored response that matches the translated request and is considered fresh, then it

needs to refresh its cache.

If the request to the destination times out, then a 5.04 (Gateway Timeout) response

must be returned. If the request to the destination returns a response that cannot

be processed by the proxy, then a 5.02 (Bad Gateway) response must be returned.

Otherwise, the proxy return the response to the client.

If a response is generated out of a cache, it must be generated with a Max-Age

Option that does not extend the Max-Age originally set by the server, considering the

time the resource representation spent in the cache.

19

CHAPTER 2. COAP (VERSION 08)

2.4.8 Method De�nitions

In this section each method is de�ned along with its behavior. A request with an

unrecognized or unsupported Method Code must generate a 4.05 (Method Not Allowed)

response.

GET

The GET method retrieves a representation for the information that currently corre-

sponds to the resource identi�ed by the request URI. If the request includes one or

more Accept Options, they indicate the preferred content-type of a response. If the

request includes an ETag Option, the GET method requests that ETag be validated

and that the representation be transferred only if validation failed. Upon success a 2.05

(Content) or 2.03 (Valid) response should be sent.

The GET method is safe and idempotent.

POST

The POST method requests that the representation enclosed in the request be processed.

The actual function performed by the POST method is determined by the origin server

and dependent on the target resource. It usually results in a new resource being created

or the target resource being updated.

If a resource has been created on the server, a 2.01 (Created) response that includes

the URI of the new resource in a sequence of one or more Location-Path Options and/or

a Location-Query Option should be returned. If the POST succeeds but does not result

in a new resource being created on the server, a 2.04 (Changed) response should be

returned. If the POST succeeds and results in the target resource being deleted, a 2.02

(Deleted) response should be returned.

POST is neither safe nor idempotent.

PUT

The PUT method requests that the resource identi�ed by the request URI be updated

or created with the enclosed representation. The representation format is speci�ed by

the media type given in the Content-Type Option.

If a resource exists at the request URI the enclosed representation should be con-

sidered a modi�ed version of that resource, and a 2.04 (Changed) response should be

20

2.4. REQUEST/RESPONSE SEMANTICS

returned. If no resource exists then the server may create a new resource with that URI,

resulting in a 2.01 (Created) response. If the resource could not be created or modi�ed,

then an appropriate error response code should be sent.

PUT is not safe, but idempotent.

DELETE

The DELETE method requests that the resource identi�ed by the request URI be

deleted. A 2.02 (Deleted) response should be sent on success or in case the resource did

not exist before the request.

DELETE is not safe, but idempotent.

2.4.9 Response Code De�nitions

Success 2.xx

This class of status code indicates that the clients request was successfully received,

understood and accepted.

• 2.01 Created: Used in response to POST and PUT requests. If the response

includes one or more Location-Path Options and/or a Location-Query Option,

the values of these options specify the location at which the resource was created.

Otherwise, the resource was created at the request URI. This response is not

cacheable.

• 2.02 Deleted: Like HTTP 204 "No Content". This response is not cacheable.

However, a cache should mark any stored response for the deleted resource as not

fresh.

• 2.03 Valid: Related to HTTP 304 "Not Modi�ed", but only used to indicate that

the response identi�ed by the entity-tag identi�ed by the included ETag Option

is valid. Accordingly, the response must include an ETag Option.

• 2.04 Changed: Like HTTP "No Content", but only used in response to POST

and PUT requests. This response is not cacheable. However, a cache should mark

any stored response for the changed resource as not fresh.

• 2.05 Content: Like HTTP 200 "OK", but only used in response to GET requests.

This response is cacheable.

21

CHAPTER 2. COAP (VERSION 08)

Client Error 4.xx

These response codes are applicable to any request method. The server should include

a brief human-readable message as payload. Responses of his class are cacheable. They

cannot be validated.

• 4.00 Bad Request: Like HTTP "Bad Request".

• 4.01 Unauthorized: The client is not authorized to perform the requested action.

• 4.02 Bad Option: The request could not be understood by the server due to one

or more unrecognized or malformed critical options.

• 4.03 Forbidden: Like HTTP 403 "Forbidden".

• 4.04 Not Found: Like HTTP 404 "Not Found".

• 4.05 Method Not Allowed: Like HTTP 405 "Method Not Allowed", but with no

parallel to the "Allow" header �eld.

• 4.06 Not Acceptable: Like HTTP 406 "Not Acceptable", but with no response

entity.

• 4.12 Precondition Failed: Like HTTP 412 "Precondition Failed".

• 4.13 Request Entity Too Large: Like HTTP 413 "Request Entity Too Large".

• 4.15 Unsupported Media Type: Like HTTP 415 "Unsupported Media Type".

Server Error 5.xx

This class of response code indicates cases in which the server is aware that it has

erred or is incapable of performing the request. These response codes are applicable to

any request method. The server should include a human-readable message as payload.

Responses of this class are cacheable. They cannot be validated.

• 5.00 Internal Server Error: Like HTTP 500 "Internal Server Error".

• 5.01 Not Implemented: Like HTTP 501 "Not Implemented".

• 5.02 Bad Gateway: Like HTTP 502 "Bad Gateway".

22

2.5. COAP URIS

Figure 2.6: coap URI scheme

• 5.03 Service Unavailable: Like HTTP 503 "Service Unavailable", but using the

Max-Age Option instead of the "Retry-After" header �eld.

• 5.04 Gateway Timeout: Like HTTP 504 "Gateway Timeout".

• 5.05 Proxying Not Supported: The server is unable or unwilling to act as a proxy

for the URI speci�ed in the Proxy-URI Option.

2.5 CoAP URIs

CoAP uses the coap and coaps URI schemes for identifying CoAP resources and provid-

ing means to locate the resource. Resources are organized hierarchically and governed

by a potential CoAP origin server listening for CoAP requests (coap) or DTLS-secured

CoAP requests (coaps) on a given UDP port. The CoAP server is identi�ed via the

authority of the generic syntax component, which includes a host identi�er and op-

tional UDP port number. The remainder of the URI is considered to be identifying a

resource which can be operated on by the methods de�ned by the CoAP protocol. The

coap and coaps URI schemes can thus be compared to the http and https URI schemes

respectively.

2.5.1 coap URI Scheme

If the host is provided as an IP-literal or IPV4 address, then the CoAP server is located

at that IP address. If the host is a registered name, then that name is considered an

indirect identi�er and the end-point might use a name resolution service, such as DNS,

to �nd the address of that host. The host must not be empty. The port subcomponent

indicates the UDP port at which the CoAP server is located. If it is empty or not given,

then the defaul 5683 is assumed.

The path identi�es a resource within the scope of the host and port. It consists of

a sequence of path segments separated by a slash character (U+002F SOLIDUS "/").

The query serves to further parameterize the resource. It consists of a sequence of

arguments separated by an ampersand character (U + 0026 AMPERSAND "&").

23

CHAPTER 2. COAP (VERSION 08)

Figure 2.7: coaps URI scheme

The coap URI scheme supports the path pre�x "/.wellknown/". This enables dis-

covery of policy or other information about a host.

Application designers are encouraged to make use of a short, but descriptive URIs.

As the environments where CoAP is used in are usually constrained for bandwidth and

energy, the trade-o� between these two qualities should lean towards the shortness,

without ignoring descriptiveness.

2.5.2 coaps URI Scheme

All of the requirements listed for coap URI Scheme are also requirements for coaps URI

Scheme. Unlike the coap scheme, responses to coaps identi�ed requests are never public

and thus must not be reused for shared caching. They can, however, be reused in a

private cache if the message is cacheable by default in CoAP.

Resources made available via the coaps scheme have no shared identity with the

coap scheme even if their resource identi�ers indicate the same authority (the same host

listening to the same UDP port). They are distinct name spaces and are considered to

be distinct origin servers.

2.6 Resource Discovery

The discovery of resources o�ered by a CoAP end-point is extremely important in

machine-to-machine applications where there are no humans in the loop and static

interfaces result in fragility. A CoAP end-point should support the CoRE Link Format

of discoverable resources. It is up to the server which resources are made discoverable

(if any).

2.7 Default Ports

The CoAP default port number 5683 must be supported by a server for resource dis-

covery and shoul be supported to provide access to other resources. The DTLS-secured

CoAP default port number may be supported by a server for resource discovery and to

24

2.8. HTTP MAPPING

provide access to other resources. In addition, other end-points may be hosted in the

dynamic port space.

2.8 HTTP Mapping

CoAP supports a limited subset of HTTP functionality, and thus a mapping to HTTP is

straighforward. There might be several reasons for mapping between CoAP and HTTP.

for example when designing a web interface for use over either protocol or when realizing

a CoAP-HTTP proxy.

There are two possible mapping via a forward proxy:

• CoAP-HTTP Mapping: Enables CoAP clients to access resources on HTTP

servers through an intermediary. This is initated by including the Proxy-URI

Option with an http or https URI in a CoAP request to a CoAP-HTTP proxy.

• HTTP-CoAP Mapping: Enables HTTP clients to access resources on CoAP

servers through an intermediary. This is initiated by specifying a coap or coaps

URI in the Request-Line of an HTTP request to an HTTP-CoAP proxy.

Either way, only the Request/Response model of CoAP is mapped to HTTP. The

underlying model of CON or NON messages, etc., is invisible and must have no

e�ect on a proxy function. The following sections describe the handling of requests

to a forward proxy. Reverse proxies are not speci�ed as the proxy function is

transparent to the client with the proxy acting as if it was the origin server.

2.8.1 CoAP-HTTP Mapping

This section speci�es for any CoAP request the CoAP response that the proxy should

return to the client. How the proxy actually satis�es the request is an implementation

detail, although the typical case is expected to be the proxy translating and forwarding

the request to an HTTP origin server.

Since HTTP and CoAP share the basic set of request methods, performing a CoAP

request on an HTTP resource is not so di�erent from performing it on a CoAP resource.

The meaning of the individual CoAP methods when performed on HTTP resources are

explained below.

If the proxy is unable or unwilling to service a request with an HTTP URI, a 5.05

(Proxying Not Supported) response should be returned to the client. If the proxy ser-

25

CHAPTER 2. COAP (VERSION 08)

vices the request by interacting with a third party (such as the HTTP origin server) and

is unable to obtain a result within a reasonable time frame, a 5.04 (Gateway Timeout)

response shold be returned; if a result can be obtained but is not understood, a 5.02

(Bad gateway) response should be returned.

• GET: The GET method requests the proxy to return a representation of the

HTTP identi�ed by the request URI. Upon success, a 2.05 (Content) response

should be returned. The payload of the response must be a representation of the

target HTTP resource, and the Content-Type Option be set accordingly. The

response must indicate a Max-Age value that is no greater than the remaining

time the representation can be considered fresh. If the HTTP entity has an entity

tag, the proxy should include an ETag Option in the response and process ETag

Options in requests as described below.

A client can in�uence the processing of a GET request by including the following

option:

� Accept: The request may include one or more Accept Options, identifying

the preferred response content-type.

� ETag: The resquest may include one or more ETag Options, identifying

responses that the client has stored. This requests the proxy to send a 2.03

(Valid) response whenever it would send a 2.05 (Content) response with an

entity tag in the requested set otherwise.

• PUT: The PUT method requests the proxy to update or create the HTTP resource

identi�ed by the request URI with the enclosed representation.

If a new resource is created at the request URI, a 2.01 (Created) response must

be returned to the client. If an existing resource is modi�ed, a 2.04 (Changed)

response must be returned to indicate successful completion of the request.

• DELETE: The DELETE method requests the proxy to delete the HTTP resource

identi�ed by the request URI at the HTTP origin server.

A 2.02 (Deleted) response must be returned to client upon success or if the resource

does not exist at the time of the request.

• POST: The POST method requests the proxy to have the representation enclosed

in the request be processed by the HTTP origin server. The actual function per-

26

2.8. HTTP MAPPING

formed by the POST method is determined by the origin server and is dependent

on the resource identi�ed by the request URI.

If the action performed by the POST method does not result in a resource that can

be identi�ed by a URI, a 2.04 (Changed) response must be returned to the client.

If a resource has been created on the origin server, a 2.01 (Created) response must

be returned.

2.8.2 HTTP-CoAP Mapping

If a HTTP request contains a Request-URI with a coap or coaps URI, then the receiving

HTTP end-point (called the proxy henceforth) is requested to perform the operation

speci�ed by the request method on the indicated CoAP resource and return the result

to the client.

This section speci�es for any HTTP request the HTTP response that the proxy

should return to the client. How the proxy actually satis�es the request is an imple-

mentation detail, although the typical case is expected to be the proxy translating and

forwarding the request to a CoAP origin server. The meaning of the individual HTTP

methods when performed on CoAP resources are explained below.

If the proxy is unable or unwilling to service a request with a CoAP URI, a 501

(Not Implemented) response should be returned to the client. If the proxy services

the request by interacting with a third party (such as the CoAP origin server) and is

unable to obtain a result within a reasonable time frame, a 504 (Gateway Timeout)

response should be returned; if a result can be obtained but is not understood, a 502

(Bad Gateway) response should be returned.

• GET: The GET method requests the proxy to return a representation for the

CoAP resource identi�ed by the Request-URI.

Upon success, a 200 (OK) response should be returned. The payload of the

response must be a representation of the target CoAP resource, and the Content-

Type Option set accordingly. The response must indicate a Max-Age value that is

no greater than the remaining time such that the representation can be considered

fresh. If the CoAP entity has an entity tag, the proxy should include an ETag

Option in the response.

A client can in�uence the processing of a GET requet by including the following

option:

27

CHAPTER 2. COAP (VERSION 08)

� Accept: Each individual Media-type of the HTTP Accept header in a request

is mapped to a CoAP Accept option. HTTP Accept Media-type ranges, pa-

rameters and extensions are not supported by the CoAP Accept option. If

the proxy cannot send a respone which is acceptable according to the com-

bined Accept �eld value, then the proxy should send a 406 (not acceptable)

response.

� Conditional GETs: Conditional HTTP GET requests that include an If-

Match or If-None-Match request-header �eld can be mapped to a correspond-

ing CoAP request. The If-Modi�ed-Since and If-Unmodi�ed-Since request-

header �elds are not directly supported by CoaP, but should be implemented

locally by a caching proxy.

• HEAD: The HEAD method is identical to GET except that the server must not

return a message-body in the respone.

Although there is no direct equivalent of the HEAD method of HTTP in CoAP,

an HTTP-CoAP proxy responds to HEAD requests for CoAP resources, and the

HTTP headers are returned without a mesage-body.

• POST: The POST method requests the proxy to have the representation enclosed

in the request be processed by the CoAP origin server. The actual function

performed by the POST method is determined by the POST method is determined

by the origin server and dependent on the resource identi�ed by the request URI.

If the action performed by the POST method does not result in a resource that

can be identi�ed by a URI, a 200 (OK) or 204 (No Content) response must be

returned to the client. If a resource has been created on the origin server, a 201

(Created) response must be returned.

• PUT: The PUT method requests the proxy to update or create the CoAP resource

identi�ed by the Request-URI the enclosed representation.

If a new resource is created at the Request-URI, a 201 (Created) response must be

returned to the client. If an existing resource is modi�ed, either the 200 (OK) or

204 (No Content) response codes should be sent to indicate successful completion

of the request.

• DELETE: The DELETE methods request the proxy to delete the CoAP resource

identi�ed by the Request-URI at the CoAP origin server.

28

2.8. HTTP MAPPING

A successful response should be 200 (OK) if the response includes an entity de-

scribing the status or 204 (No Content) if the action has been enacted but the

response does not include an entity.

• CONNECT: This method cannot currently be satis�ed by an HTTP-CoAP proxy

function as TLS to DTLS tunneling has not been speci�ed. It is however ex-

pected that such a tunneling mapping will be de�ned in the future. A 501 (Not

Implemented) error should be returned to the client.

29

CHAPTER 2. COAP (VERSION 08)

30

Chapter 3

Observe feature of CoAP (version

03)

Observe ([8]) is a feature of the CoAP protocol that aims to reduce the overall overhead

in constrained networks caused by continous polling in some scenarios. The thesis

focuses on Observe v.03 protocol, since it is the most time-accurate to CoAP v.08.

The protocol is based on the observer design pattern ([7]). In this design pattern,

components, called observers, register at a speci�c, known provider, called the subject,

that they are interested in being noti�ed whenever the subject undergoes a change in

state. The subject is responsible for administering its list of registered observers. If

multiple subjects are of interest, an observer must register separately for all of them.

The pattern is typically used when a clean separation between related components is

required, such as data storage and user interface.

The observer design pattern is realized in CoAP as follows:

• Subject: In the context of CoAP, the subject is a resource in the namespace of

a CoAP server. The state of the resource can change over time, ranging from

infrequent updates to continuous state transformations.

• Observer: An observer is a CoAP client that is interested in the current state of

the resource at any given time.

• Registration: A client registers its interest by sending an extended GET request

to the server. In addition to returning a representation of the target resource, this

request causes the server to add the client to the list of the resource observers.

31

CHAPTER 3. OBSERVE FEATURE OF COAP (VERSION 03)

Figure 3.1: Observe design pattern

• Noti�cation: Whenever the state of a resource changes, the server noti�es each

client registered as an observer for such resource. Each noti�cation is an additional

CoAP response sent by the server in reply to the GET request and includes a

complete representation of the new resource state.

The client is removed from the list of observers when it is no longer interested in the

observed resource. The server can determine the client's continued interest from the

con�rmable noti�cations acknowledgements. If a client wants to receive noti�cations

after it has been removed from the list of observers, it needs to register again. The

client can determine that it is still on the list of observers from the fact that it receives

noti�cations. The protocol includes clear rules of what to do when a client does not

receive a noti�cation for some time, or a server does not receive acknowledgements.

32

3.1. OPTIONS

Figure 3.2: Observe feature option

3.1 Options

3.1.1 Observe

The Observe Option, when present, modi�es the GET method so it does not only

retrieve a representation of the current state of the resource identi�ed by the request

URI, but also requests the server to add the client to the list of observers of the resource.

The exact semantics are de�ned in the sections below. The value of the option in a

request must be zero on transmission and must be ignored on reception.

In a response, the Observer Option identi�es the message as a noti�cation, which

implies that the client has beed added to the list of observers and that the server will

notify the client of further changes to the resoure state. The value of the option is a

sequence number that can be used for reordering detection.

Since the Observe Option is elective, a GET request that includes the Observe

Option will automatically fall back to a normal GET request if the server does not

support the feature.

The Observe Option must not occur more than once in a request or response.

3.1.2 Max-OFE

The freshness of a noti�caiton for caching purposes is determined by the Max-Age

Option. However, a server may want to enable a cache to continue to optimistically use

a cached representation even when the freshness indicated by the Max-Age Option has

expired.

The time span for which this optimissm is justi�ed is under control of the server:

it can use the Max-OFE Option to indicate a desired optimistic freshness extension.

This is also a promise by the server that it intends to send another noti�cation within

this time period. The exact semantics are de�ned in the sections below. The value

33

CHAPTER 3. OBSERVE FEATURE OF COAP (VERSION 03)

of this option is a time span in seconds, measured from the Max-Age expiration time.

The option is elective and defaults to zero (which means that no optimistic freshness

extension is granted).

3.2 Client-side

3.2.1 Request

A client can register its interest in a resource by issuing a GET request that includes an

empty Observe Option. If the server returns a 2.xx response that includes an Observe

Option as well, the server has added the client successfully to the list of observers of

the target resource and the client will be noti�ed of changes to the resource state for as

long as the server can assume the client's interest.

3.2.2 Noti�cations

Noti�cations are additional responses sent by the server in reply to the GET request.

Each noti�cation includes an Observe Option with a sequence number, a Token Option

that matches the token speci�ed by the client in the GET request, and a payload in the

same representation format as the initial response.

A noti�cation can be CON or NON. If a client does not recognize the token in a

CON noti�cation, it must not acknowledge the message and should reject it with a RST

message. Otherwise, the client must acknowledge the message with an ACK message

as usual.

An acknowledgement signals to the server that the client is alive and interested in

receiving further noti�cations; if the server does not receive an acknowledgement in

reply to a con�rmable noti�cation, it will assume that the client is no longer interested

and will eventually remove it from the list of observers.

Noti�cations will have a 2.05 (Content) response code in most cases. They may also

have a 2.03 (Valid) response code, if the client includes an ETag Option in its request.

In the event that the state of an observed resource is changed in a way that would cause

a normal GET request to return an error, the server will send a noti�cation with an

error response code and empties the list of observers of the resource.

34

3.2. CLIENT-SIDE

3.2.3 Caching

A client may store a noti�cation like a response in its cache and use a stored response/no-

ti�cation that is fresh without contacting the origin server. A noti�cation is considered

fresh while its age is not greater than its Max-Age and if it has not been invalidated by

a newer noti�cation or as the request result.

Ideally, the server will provide a new noti�cation exactly when the freshness of the

latest noti�cation expires. This may not always be possible though, due to network

latency and/or resources that change their state in unpredictable intervals. In this case,

the client may optimistically use a stale (non-fresh) noti�cation while the noti�cation's

age is not greater than Max-Age plus Max-OFE and the noti�cation has not been

invalidated.

If the client does not receive a noti�cation before Max-Age plus Max-OFE expires,

the client can assume it has been removed from the list of observers. In this case, it

needs to re-register by issuing a new GET request with an Observe Option.

To make sure it has a fresh representation and/or it is on the list of observers, a

client may issue another GET request with an Observe Option at any time. The new

GET request should specify a new token to avoid ambiguity. It is recommended that the

client does not issue the request before the Max-Age of the latest noti�cation expires.

When a client has one or more noti�cations stored, it can use the ETag Option

in its request to give the server an opporunity to select a stored response to be used.

The client may include an ETag Option for each stored response that is applicable. It

needs to keep those responses in the cache until it is no longer interested in receiving

noti�cations for the target resource or it issues a new GET request with a new set of

entity-tags. When the observed resoure changes its state to a representation identi�ed

by one of the ETag Options, the server can send a 2.03 ("Valid") noti�cation instead

of a 2.05 ("Content") one.

3.2.4 Reordering

Messages that carry noti�cations can arrive in a di�erent order than the original one.

Since the goal is eventual consistency, a client can safely skip a noti�cation that arrives

later than a newer noti�cation. For this purpose, the server sets the value of the Observe

Option in each noti�cation to a sequence number.

A client may treat a noti�cation as outdated under the following conditions:

35

CHAPTER 3. OBSERVE FEATURE OF COAP (VERSION 03)

(V1 − V2)%(2 ∗ ∗16) < (2 ∗ ∗15) (3.1)

T2 < (T1 + (2 ∗ ∗14)) (3.2)

where V1 is the value of the Observe Option of the latest valid noti�cation re-

ceived, V2 the value of the Observe Option of the present noti�cation, T1 a client-local

timestamp of the latest valid noti�cation received (in seconds), and T2 a client-local

timestamp of the present noti�cation.

The �srt condition ver�es that V2 > V1 holds in 16-bit sequence number arithmetic.

The second condition checks that the time expired between the two incoming messages

is not so large that the sequence number might have wrapped around and the �rst

check is therefore invalid. (In other words, after about 2 ∗ ∗14 seconds elapse without

any noti�cation, the client does not need to check the sequence numbers in order to

assume an incoming noti�cation is new) . The constants of 2 ∗ ∗14 and 2 ∗ ∗15 are

non-critical, as is the even speed or precision of the clock involved.

3.3 Server-side

3.3.1 Request

A GET request that includes an Observe Option requests the server not only to return

a representation of the resource identi�ed by the request URI, but also to add the client

to the list of observers of the target resource. If no error occurs, the server must return

a response with the representation of the current resource state and must notify the

client of subsequent changes to the state as long as the client is on the list of observers.

A server that is unable to add the client to the list of observers of the target resource

may silently ignore the Observe Option and process the GET request as usual. The

resulting response must not include an Observe Option, the absence of which signals to

the client that it will no be noti�ed of changes to the resource state and needs to poll

the resource instead.

If the client is already on the list of observers, the server must not add it a second

time but must replace or update the existing entry. If the server receives a GET request

that does not include an Observe Option, it must remove the client from the list of

observers.

36

3.3. SERVER-SIDE

Two requests relate to the same list entry if both the request URI and the source of

the requests match. The source of a request is determined by the security mode used.

Any request with a method other than GET must not have a direct e�ect on a list

of a resource observers. However, such a request can have the indirect consequence of

causing the server to send an error noti�cation which a�ects the list of observers.

3.3.2 Noti�cation

A client is noti�ed of a resource state change by an additional response sent by the

server in reply to the GET request. Each such noti�cation response must include an

Observe Option and must echo the token speci�ed by the client in the GET request. If

there are multiple clients, the order in which they are noti�ed is not de�ned; the server

is free to use any method to determine the order.

A noti�cation should have a 2.05 (Content) or 2.03 (Valid) response code. However,

in the event that the state of a resource changes in a way that could cause a normal

GET request to return an error (for example, if the resource is deleted), the server

should notify the client by sending a noti�cation with an appropriate error response

code (4.xx/5.xx) and must empty the list of observers of the resource.

The representation format/media type used in a noti�cation must be the same

format used in the inital response to the GET request. If the server us unable to

continue sending noti�cations in this format, it should send a 5.00 (Internal Server

Error) noti�cation and must empty the list of observers of the resource.

A noti�cation can be sent as a CON or NON message. The message type used is

typically application-dependent and may be determined by the server for each noti�ca-

tion individually. For example, for resources that change in a somewhat predictable or

regular fashion, noti�cations can be sent in NON messages; for resources that change

infrequently, noti�cations can be sent in CON messages. The server can combine these

two approaches depending on the frequency of state changes and the importance of

individual noti�cations.

The acknowledgement of a CON noti�cation implies the client's continued interest

in being noti�ed. If the client rejects a CON noti�cation with a RST message, the

server must remove the client from the list of observers.

37

CHAPTER 3. OBSERVE FEATURE OF COAP (VERSION 03)

3.3.3 Caching

The Max-Age Option of a noti�cation should be set to a value that indicates when the

server will send the next noti�cation. For example, if the server sends a noti�cation

every 30 seconds, a Max-Age Option with value 30 should be included. The server may

send a new noti�cation before Max-Age ends. The server should also include a Max-

OFE option so the client can continue to use a noti�cation in case the next noti�cation

arrives a bit later due to network latency. If the client does not receive a new noti�cation

before Max-Age plus Max-OFE ends, it will assume that it was removed from the list

of observers and may issue a new GET request to re-register its interest.

It may not always be possible to predict when the server will send the next noti�-

cation, for example, when a resource does not change its state in regular intervals. In

this case, the server should set Max-Age to a good approximation and Max-OFE to a

time span for which the server is willing to keep the client in the list of observers.

Setting the values for Max-Age and Max-OFE is a trade-o� between increased usage

of bandwidth and the risk of stale information. Smaller values lead to more noti�cations

and more GET requests, while greater values result in network or device failures being

detect later and data becoming stale.

When the observed resource changes its state and the origin server is about to send

a 2.05 ("Content") noti�cation, then, whenever that noti�cation has an entity-tag in

the set of entity-tags speci�ed by the client, it may send a 2.03 ("Valid") response with

an appropriate ETag Option instead. The server must not assume that the recipient

has any response stored other than those identi�ed by the entity-tags in the most recent

GET request.

3.3.4 Reordering

Because messages can get reordered, the client needs a way to determine if a noti�cation

arrived later than a newer noti�cation. For this purpose, the server must set the value

of the Observe Option in each noti�cation to the 16 least-signi�catn bits of a strictly

increasing sequence number. The sequence number may start at any value. the server

must not reuse the same option value with the same client, token and resource wthin

approximately 2 ∗ ∗16 seconds.

38

3.4. INTERMEDIARIES

3.3.5 Retransmission

In CoAP, CON messages are retransmitted in exponentialy increasing intervals for a

certain number of attempts until they are acknowledged by the client. In the content

of observing a resource, it is undesirable to continue transmitting the representation of

a resource state when the state has changed in the meantime.

When a server is in the process of delivering a CON noti�cation and is waiting

for an acknowledgement, and it wants to notify the client of a state change using a

new CON message, it must stop retransmitting the old noti�cation and should attempt

to deliver the new noti�cation with the number of attempts remaining from the old

noti�cation. When the last attempt to retransmit a CON message with a noti�cation

for a resource times out, the server should remove the client from the list of observers

and may additionally remove the client from the lists of observers of all resources in its

namespace.

The server should use a number of retransmit attempts such that removing a client

from the list of observers before Max-Age plus Max-OFE ends is avoided.

A server may choose to skip a noti�cation if it knows that it will send another

noti�cation soon (e.g. a state may be changing frequently). Similarly, it may choose to

send a noti�cation more than once. For example, when state changes occur in bursts,

the server can skip some noti�cations, send noti�cations in NON messages, and make

sure that the client observes the latest state change after the burst by repeating the last

noti�cation in a CON message.

3.4 Intermediaries

A client may be interested in a resource in the namespace of an origin server that is

reached through one or more CoAP-to-CoAP intermediaries. In this case, the client

registers its interest with the �rst intermediary towards the origin server, acting as if

it was communicating with the origin server itself. It is the task of this intermediary

to provide the client with a current representation of the target resource and send

noti�cations upon changes to the target resource state, much like an origin server.

To perform this task, the intermediary should make use of the protocol speci�ed in

this document, taking the role of the client and registering its own interest in the target

resource with the next hop. If the next hop does not return a response with an Observe

Option, the intermediary may resort to polling the next hop or may itself return a

39

CHAPTER 3. OBSERVE FEATURE OF COAP (VERSION 03)

response without an Observe Option. Note that the communication between each pair

of hops is independent (each hop in the server role must determine individually how

many noti�cations to send, of which type, and so on, must generate its own values for

the Observe Option, and must set the values of the Max-Age Option and Max-OFE

Option according to the age of the local current representation).

Because a client (or an intermediary in the client role) can only be once in the list

of observers of a resource at a server (or an intermediary in the server role) as it makes

no sense to observe the same resource multiple times, an intermediary must observe a

resource only once, even if there are multiple clients for which it observes the resource.

3.5 Block-wise Transfers

Resources observed by clients may be larger than what they can be comfortably pro-

cessed or transferred in one CoAP message. CoAP provides a block-wise transfer mecha-

nism to address this problem. The following rules apply to the combination of block-wise

transfer with noti�cations.

As with basic GET transfers, the client can indicate its desired block size in a Block

Option in the GET request. If the server supports block-wise transfers, it should take

note of the block size for all noti�cations/responses resulting from the GET request

(until the client is removed from the list of observers or the server receives a new GET

request from the client).

When sending a 2.05 (Content) noti�cation, the server always sends all blocks of

the representation, suitably sequenced by its congestion control mechanism, even if only

some of the blocks have changed with respect to a previous value. The server performs

the block-wise transfer by making use of the Block2 Option (see [5]) in each block.

When reassembling representations that are transmitted in multiple blocks, the client

must not combine blocks carrygin di�erent Observe Option values, or blocks that have

been received more than approximately 2**14 secons apart.

3.6 Discovery

A web link to a resource accessible by the CoAP protocol may indicate that the server

encourages the observation of this resource by including the target attribute "obs".

40

Chapter 4

ThinkIP Software

The purpose of this chapter is to give an introduction of Patavina Technologies' ThinkIP.

The software is a set of di�erent protocols, generally used in new telecommunication

technologies. The �rst section o�ers a brief description about the software architecture

(see Fig. 4.1) and the second describes the module interfaces of each one of them.

The main interest though, goes to the CoAP protocol and its implementation on the

software package (explained in the third section).

4.1 Software Architecture

• Hardware Layer: This package exposes the Hardware Abstraction Layer interface,

which provides a de�nition of an interface for each kind of peripheral in the system.

It facilitates the porting of the software on other hardware platforms, by explicitly

Figure 4.1: ThinkIP Architecture

41

CHAPTER 4. THINKIP SOFTWARE

de�ning the interactions the peripheral drivers are supposed to support.

• OS: This package exposes a basic operating system interface, capable of schedul-

ing, executing and suspending on semaphores an arbitrary number of dynamically

created tasks.

• System con�guration storage: This package exposes the interface necessary to

store, read, write and reset to factory defaults all the con�guration parameters of

the device.

• Debug utilities: This package provides a tracing utility which allows the developer

to put log points throughout the code, and read out the log messages at run-time

through the USB interface.

• Communication stack: This package provides the Resource Access Interface, which

allows upper layers to register resource request handlers and issue resource re-

quests, by implementing all the protocols required to bootstrap, use, and maintain

secure wireless connectivity.

• Resource access: This package mainly uses the Resource Access Interface and the

Hardware Abstraction Layer providing classes that respond to Resource requests

by mapping them into the actions required on the device peripherals and state in

general.

4.2 Module Interfaces

4.2.1 Hardware Abstraction Layer interface

This interface consists of a series of abstract classes, one for each peripheral type,

de�ning a standard way of interacting with the peripheral.

4.2.2 OS interface

This interface allows a generic application relying on it to run on the di�erent OS that

implements such interface. Any OS implementing this interface is expected to comply

to some some basic de�nitions and allow the minimal set of funtionalities de�ned in the

following paragraphs.

42

4.2. MODULE INTERFACES

De�nition 1 A task is an object that describes a sequence of CPU instructions to be

executed when it is requested to "run".

In general, for any OS implementation we assume the presence of a scheduler based

on a ready list in which ready tasks are enqueued. Tasks are assigned priorities which

speci�es among many which task has the right to run �rst. When the right to run

cannot be resolved by means of priority, it is automatically assigned to the oldest task.

The action of a task starting to execute, as a consequence of having been selected

from the ready list by the OS, is de�ned as a realization of such task.

Given the above de�nitions, the OS Interface models the following functionalities

and objects de�nitions:

• Post function: Allows a user application to inform the OS scheduler about tasks

that need to change state and become ready. If the post function is invoked on a

ready task it has no e�ect.

• Resume function: Allows suspended tasks to be re-inserted into the ready list (to

restart running them from the last executed instruction).

• The information required by a task to be correctly processed by the OS is:

1. An ID property, it uniquely identi�es a realization of the task.

2. A generic data pointer addressing optional data elements required by the

task running routine.

3. A task running routine, it is a function taking as single parameters the task

generic data pointer. The execution of the task function of a given task with a

given task parameter is a realization of that task. No concurrent realizations

of the same task are allowed (e.g. an invocation of a task function with a

given task argument is not allowed if the same task function with the same

task argument is urrently being executed).

4. A auto_free property, which is a boolean indicating wheter the task object

should be freed after being executed.

5. A priority propety. Among a set of ready tasks, the ones with highest priority

run �rst.

6. A suspend method. The suspend is a blocking call that freezes the task

execution until the task is made ready again by someone else invoking the

43

CHAPTER 4. THINKIP SOFTWARE

resume function. After calling the suspend method a task is not ready any-

more until the resume method is not called on that again. Suspension can

only be invoked on a task that is running. As a consequence, for a single-core

architecture the suspension is always invoked by the running task on itself.

As soon as a running task selfsuspends, the scheduler chooses the next task

to execute.

7. A state information describing the current state of a task.

• De�nition of semaphores with the following primitives:

1. Wait: suspends the task execution until a signal is invoked on the semaphore.

If a signal primitive had previously been invoked the wait return without the

task being suspended and the task can proceed straight with code execution.

2. Signal: unlocks the �rst waiting task if a pending one exists or increments

the counter of the signal calls for the future wait calls to run through without

suspending the task that invoked it.

• De�nition of mutexes: when there is no precedence to be managed among tasks

and we just need to protect the access to a shared resource, we can avoid race

conditions through the use of mutexes; the following primitives are de�ned for a

mutex:

1. Acquire: when invoked on a mutex from a task, if the mutex is not locked

by another task, it is acquired (recursively) and a lock counter is increased.

2. Release: when invoked on a mutex from a task that is locking it, a lock is

removed. If the last lock is removed, the mutex can be locked again by the

�rst task trying to acquire it.

• De�nition of task message queues, which are objects characterized by:

1. An enqueue method, taking a message parameter, that will be called by tasks

willing to send a message to the queue.

2. A dequeue method, returning a message value, which will be called by a task

to get and remove a message from the queue.

44

4.2. MODULE INTERFACES

• De�nitions of message objects, which are objects characterized by a type property,

which is an integer containing some task-speci�c value instructing the task on how

to interpreter the message context.

4.2.3 System Con�guration Interface

This interface consists in a class which de�nes the way of interaction with the System

Con�guration Management, which is in charge of storing and providing access to all the

con�guration parameters of the software.

The functionalities that are exposed through this interface are:

• Compile-time allocation of a con�guration area, identi�ed by an ID and initialized

to a factory default value.

• Compile-time de�nition of a callback per con�guration area, that should be in-

voked when the value stored in that area changes.

• Run-time methods providing access to the con�guration areas (volatile memory)

by ID.

• Run-time methods to

� Restore factory defaults.

� Load and save con�guration from/to permanent memory.

4.2.4 Debug Interface

The functionalities that are exposed through this interface are:

• Compile-time de�nition of a log message type, which is a structure containing: ID

and a Payload type

• Compile-time generation of a log method for each message type, taking one pa-

rameter which is a pointer to an instance of the associated payload type. This

method will eventually store the message in a message queue that will be processed

by a task that will output those messages through the USB interface.

4.2.5 Resource Access Interface

This interface de�nes the REST (REpresentational State Transfer) requests and re-

sponse objects, and a process method.

45

CHAPTER 4. THINKIP SOFTWARE

Request

A REST request is de�ned by:

• A method (GET, POST, PUT, DELETE)

• A URI (uniform resource identi�er)

• An optional payload

Response

A REST response is de�ned by

• A status code

• An optional payload with associated content type

The process method takes a request object as input and provides a response object

as output.

A REST client will invoke the process method on the stack object providing the

REST interface. This call is blocking and waits for a response from the stack, that

is in charge of composing the appropriate CoAP request, sending it over the network,

waiting the CoAP response and mapping into a REST response object that will be

�nally returned by the process method.

A REST server will instead implement the process method that will be invoked by

the stack every time it receives a CoAP request, that will be mapped into a REST

request object by the stack before being passed to the process method. The server is

then in charge of composing a REST respose object and returning it to the caller, that

will map it into a CoAP response that will be sent back to the client.

This way, the communication stack takes care of handling the transport of request

and response objects through the network, while the exposed interface usage model is

a simple method invocation.

4.3 ThinkIP CoAP

As said before, ThinkIP uses the version 08 of the CoAP protocol. To handle the proto-

col and divide the workload Patavina Technologies has adopted the following solution.

46

4.3. THINKIP COAP

• Session Allocation

• Parse and Formatting

• Logic and Control

4.3.1 Session Allocation

It has the task to allocate a session between a client and a server without exceeding

the established session limits. This event happens each time a new incoming request is

handled or a new outgoing request is started.

4.3.2 Parse and Formatting

It has the task to retrieve all the necessary information from the CoAP packet that will

be sent to the " logic control". Viceversa, it also retreives all the necessary information

from the "logic control" to create the CoAP packet.

4.3.3 Logic and Control

It manages the information retrieved in the parse and formatting phase. It identi�es

the source (client or server) and it takes the necessary steps to transmit the message to

the other end-point. It also manages scenarios such as waiting for acknowledgement or

losts packets.

ThinkIP uses a state machine diagram to represent the life of a CoAP session in

logic and control.

Client side

The client side of the state machine diagram can be seen in �gure 4.2, it handles the

requests "sent" in CoAP. Once a session is established, the client enters the IDLE state,

it checks the message type and treats it accordingly sending it to the upper layer.

If it is a NON message (NON-Con�rmable), the client sets a timer, sends the request

to the application and enters the WAIT_SVR_RESP_NON state where the possible

scenarios are:

• The timer triggers, the client assumes that the request failed and ends the session.

47

CHAPTER 4. THINKIP SOFTWARE

• The client receives a NON message from the application, meaning that the request

was successful. The client sets a new timer and enters the ENDED state, where

it handles any lost packets until the timer triggers and the session ends.

If it is a CON (Con�rmable) message, the client sets a timer and enters theWAIT_ACK

state, the possibles scenarios are:

• The timer triggers, the client proceeds to retransmit the message and resets the

timer staying on the same state. This event may repeat itself no more than a

established maximum number of retransmissions, if such a number is reached the

request failed and the session ends.

• Empty ACK received: the client receives an empty ACK, meaning that the server

received the message but the application by some reason, was not able to deliver

the expected data (the request is considered successful though). Therefore, the

client sets a new timer and enters the WAIT_SEPARATE state, where it waits

for the application to deliver the data. If the timer triggers the session ends, if

instead it receives the expected data in a con�rmable message the client sets a

timer, transmits an ACK and enters the CACHED state.

• ACK Received: If the client receives a CON message (piggybacked ACK), the

client sets a timer, transmits an ACK and enters the CACHED state. The other

option is that the client receives a normal ACK (not piggybacked), so as before,

the client sets a timer and enters the CACHED state.

The CACHED state handles any loose ends before ending the session. It manages

any lost messages and retransmits the needed data until the timer triggers the session

ending.

Server side

The server side of the state machine diagram can be seen in �gure 4.3. It handles the

requests "received" in CoAP. Analog to the client side, the server �rst enters the

IDLE state, where it checks the message type, treats it accordingly and transmits it to

the upper layer.

In the case of a NON message, the server sets a timer and enters the

WAIT_APP_RESP_NON state, where it waits for the application to respond.

48

4.3. THINKIP COAP

Figure 4.2: State Machine. Client side

49

CHAPTER 4. THINKIP SOFTWARE

Whether the application responds or not the server stays on the same state until the

timer triggers the session ending.

In the case of a CON message, the server sets a timer and enters the

WAIT_APP_RESP_PB, the possible scenarios are:

• The server receives a response from the application within the time limit,

therefore it transmits a piggybacked ACK to the request, sets a new timer and

enters the CACHED state.

• The timer triggers (not possible to transmit a piggybacked ACK), the server sets

a new timer, transmits an empty ACK (Empty ACK received scenario in the

client side) and enters the WAIT_APP_RESP. If the server receives a CON

message it means that the empty ACK was lost, therefore it resets the timer and

retransmits the empty ACK. If the timer triggers, the request failed and the

session ends. If the application responds, the server sets a new timer and enters

the WAIT_ACK_SEPARATE. The possible scenarios in this state are:

� The timer triggers, the server retransmits the message, resets the timer

staying on the same state. This event may repeat itself no more than an

established maximum number of retransmissions, if such thing happens, the

request fails and the session ends.

� The server receives a CON message, meaning that the message with the

data was lost, so the server proceeds to retransmit it and stays on the same

state.

� The server receives an empty ACK, meaning that the request was

successful. The server sets a new timer and enters the CACHED state.

The CACHED state, as for the client side, handles any loose ends before ending the

session. It manages any lost messages and retransmit the needed data until the timer

triggers the session ending.

50

4.3. THINKIP COAP

Figure 4.3: State Machine. Server side

51

CHAPTER 4. THINKIP SOFTWARE

52

Chapter 5

Observe implementation on

ThinkIP

This chapter focuses on the observe feature implementation for the CoAP protocol in

the ThinkIP (or ThinkIP-CoAP) software. Since ThinkIP uses the version 08 of the

CoAP protocol we have implemented the version 03 of the observe feature.

The devices using this software are constrained devices, it was not possible to use

some of the C++ standard libraries (such as "list" and "vector"). Also, ThinkIP uses

a "timer" to manage events instead of threads since the latter would be a very CPU-

consuming task.

As said before (in Chapter 3), the observe feature can be implemented in two ways,

the �rst where noti�cations are CON responses and the second where the noti�cations

are NON responses, our implementation uses CON responses.

Furthermore, in the observe feature, once a client makes an observe request to a

server, a session is allocated between the end-points until the client loses interest in the

resource or the server is unable to continue with the noti�cations. We have decided for

a di�erent choice that is more e�cient (at least with ThinkIP structure). When the

client makes an observe request a session is allocated between the end-points, but it

ends once the client has received the server response, and each time the server sends

a new noti�cation to the client, a new session is allocated (and it ends once the client

receives the noti�cation).

Therefore, we must interpret the state machine diagram di�erently. When a sub-

scriber makes an observe request, a session is allocated and ends when the subscriber

has received the expected response. Assuming the server added the subscriber success-

53

CHAPTER 5. OBSERVE IMPLEMENTATION ON THINKIP

fully to the list of observers, once it sends a noti�cation, a new session is allocated and

the noti�cation is considered as a request (noti�cations are responses though) by the

"logic control", so the subscriber follows the server side of the state machine diagram.

To implement the observe feature, we had to work with the application layer of

ThinkIP-CoAP alone. the steps taken were the following:

5.1 Parse Formatting

The �rst step taken to implement the observe feature was to add the "observe option" in

the CoAP packet, Observe-03 requires the CoAP packet to have the "Observe option"

(It modi�es the GET method, requesting the server to add the client to the list of

observers) and the "Max-OFE option" (It indicates the freshness of a noti�cation). So

the necessary steps were:

• Add new variables: We added two unsigned integers variables in the interface

of the CoAP packet to represent the observe options and a boolean variable (to

acknowledge an observe option in a CoAP packet).

• Reception: Scenario where a received CoAP packet contains an observe option.

The neccessary code for the option fetching cycle (part of the code in charge of

fetching the diverse options in the CoAP packet) was added, such that ThinkIP-

CoAP could recognize the new options and decode them before sending them to

the "logic control" layer. Also, the boolean variable mentioned above is false by

default, it changes its value once an observe option is identi�ed within the CoAP

packet.

• Transmission: Scenario when a CoAP packet with an observe option must be

transmitted. The necessary code to retreive the information from"logic control"

and encode the observe options into the CoAP packet was added.

5.2 Session Allocation

It is not possible to know a priori if a client is making an observe request, so each

time a new session between a client and a server is established, a subscriber and an

observe server variable must be instantianted to cover the scenario of a possible observe

communication.

54

5.3. OBSERVE_COMMON.H

5.3 observe_common.h

It is a header that contains the class ID used by both the observe server and observe

client. This class contains the required variable to uniquely identify a device. It is

structured in the following way:

• uint16_t port: Instantiates a variable for the port number of the device (client or

server). It is public.

• ipv6_addr_ref_t address: Instantiates an IPv6 address of the device. It is public.

• The class also contains the set/get methods for the previous variables.

5.4 Observe_server.cpp

Before making the step in the logic part of the protocol, certain structures that enables

the Observe feature must be de�ned. The �le Observe_server.cpp concerns the server

side of the observe feature. It de�nes the following classes:

5.4.1 Client class

A class to represent a client object, it contains the data needed for a server to manage

its subscribers list.

• ID id: Instantiates an ID variable.

• uri_t uri: Instatiates a uri variable. It contains a vector with the URI data plus

a variable indicating the length of such vector.

• uint32_t token: Instatiates a uint32_t variable for the token. A necessity because

the observe feature requires the noti�cations to have the same token option of the

�rst observe request made by the client, such token is lost each time the session

ends. Therefore, we store the token value of the observe request in this variable

to use in future noti�cations.

• The class also contains the necessary "get-set" methods to manage the previous

variables.

55

CHAPTER 5. OBSERVE IMPLEMENTATION ON THINKIP

5.4.2 Observe_server class

A class to represent the server object, it contains the data needed for a server to o�er

the observe feature service:

• NOTIFICATION_PERIOD_MS: A constant value for the noti�cations

frequency in miliseconds.

• MAX_CLIENTS: A constant value for the maximum number of subscribers the

server can handle.

• MAX_OFE: A constant value for the value "Max-OFE" option.

• OBSERVE_INCR: A constant value for the "observe sequence" increment in

each noti�cation.

• uint16_t serv_obs_seq: Instantiates a variable for the observe sequence value of

the noti�cations.

• timer_alarm_t serv_alarm: It instantiates a timer_alarm_t variable for the

timer needed to trigger the noti�cations.

• vector_t<Client> Clients: It instantiates a vector_t of "Client" elements to

store the data from each observing client.

• comm_coap_session_alloc_lc_block_t* coap_ext: It creates a pointer to a

comm_coap_session_alloc_lc_block_t variable, needed to create a new

session.

• static void t_server_alarm_cbk(timer_alarm_t* serv_alarm): It assigns a

server_alarm callback to the Observe_server object.

• bool vectorfull(void): It checks if the vector Clients is full.

• void create_client(ID* id, uri_t* uri, uint32_t token): It creates a client with

the given ID, URI and token value.

• bool client_onlist(Client* cl): It checks if the given client is on the vector.

• void send_noti�cation(ipv6_address_t* subscriber_address,uint16_t

subscriber_port, uri_t* uri, uint16_t payload_len, uint8_t* payload,uint16_t

obs_seq, uint32_t token): It creates a noti�cation for the given client with the

requested data.

56

5.5. OBSERVE_CLIENT.CPP

• void t_server_alarm_cbk(): It calls the method above for each of the observing

clients everytime the timer triggers.

• Observe_server(comm_coap_session_alloc_lc_block_t* coap_ext): It is the

constructor for the Observe_server class.

• void start_noti�cations(): It creates and starts the timer for the transmission of

noti�cations.

• void stop_noti�cations(): It stops the timer for the transmission of noti�cations.

• void observe_server_block_receive(comm_pkt_coap_t* pkt_coap,

comm_pkt_udp_t* pkt_udp, comm_pkt_ipv6_t* pkt_ipv6,

comm_receive_cbk_t callback): It is used every time the server receives a

CoAP packet, it checks if it is a packet regarding the observe feature and, if so,

it treats it according to the observe rules and recommendations (??).

• Client* �nd(Client* cl): It checks if the vector contains the given client and if so,

it return a pointer to such client.

• void removeclient(Client* cl): It removes the given client.

• void removeclient(uint16_t port, ipv6_address_t* address): It removes the

given client.

5.5 Observe_client.cpp

The �le Observe_client.cpp concerns the subscriber side of the observe feature, its

structure is very similar to that of the previous �le. It uses the following global

variables and methods:

5.5.1 Observing_servers class

This class is used to represent the servers observed by the subscriber. It contains

• ID id: Instantiates an ID variable to identify the observed server.

• uint32_t token: Instantiates an uint32_t variable for the token. Since our

implementation of the observe protocol creates a new session each time a

noti�cation is transmitted, the token value of the observe request must be stored

in order to link a noti�cation to a previous request.

57

CHAPTER 5. OBSERVE IMPLEMENTATION ON THINKIP

• uint32_t MAX_OFE: Instantiates an uint32_t variable for the value of the

"max-OFE" option.

• uint16_t current_obs_seq: Instantiates an uint16_t variable for the last

"observe-sequence" value obtained from the last noti�cation. It is used to order

the noti�cations sequence (a fresh noti�cation may arrive before an old one due

to network latency).

• uint64_t current_time_stamp: Instantiates an uint64_t variable for the value

of a local "time-stamp". It has a similar purpose to the "current_obs_seq"

variable (noti�cation ordering).

• timer_alarm_t client_alarm: It instantiates a timer_alarm_t variable for the

timer needed to trigger the expiration of an observed resource.

• The class also contains the needed "get-set" methods to obtain and modify the

previous variables.

• void t_client_alarm_cbk(timer_alarm_t* client_alarm): It assigns a

client_alarm callback to the Observing_servers object.

• void start_timer(): It creates and starts a timer for a server to keep track of the

last noti�cation freshness.

• void reset_timer(): It resets the value of the started timer. It is used everytime

a fresh noti�cation is received

5.5.2 observing_client class

This class is used to represent the subscriber object. It contains the data needed for

the subscriber to o�er the observe feature:

• vector_t<Observing_servers> servers: It instantiates a vector containing

"Observing_servers" elements. It stores the servers observed by the subscriber.

• uint16_t request_port: It instantiates a uint16_t variable for the destination

port number in an outgoing observe request. Once the subscriber receives a

response, it checks if the source port in the response matches the one in the

request (to avoid acknowledging responses from a di�erent server).

58

5.5. OBSERVE_CLIENT.CPP

• ipv6_addr_ref_t request_address: It instantiates a ipv6_addr_ref_t variable

for the destination IPv6 address in an outgoing observe request. It has the same

purpose as the "request_port" variable, both variables are needded to uniquely

identify a server.

• void t_client_alarm_cbk: It is invoked if the timer of one of the observed

servers triggers. It removes the servers from the list of observed servers.

• bool server_onlist(Observing_servers* server): It checks if the given server is on

the list of observed servers.

• Observing_servers* �nd(Observing_servers* server): It controls if the given

server is on the list of the observed servers, if so, it returns a pointer to such

server.

• Observing_servers* �nd(ID* id): It controls if there is a server with the given

ID on the list of observed servers, if so, it returns a pointer to such server.

• void add_server(Observing_servers* serv): It adds the given server to the list of

observed servers.

• void remove_server(Observing_servers* serv): It removes the given server from

the list of observed servers.

• void observing_client_block_send(comm_pkt_coap_t* pkt_coap,

comm_pkt_udp_t* pkt_udp, comm_pkt_ipv6_t* pkt_ipv6): It checks each

outgoing request of a client. If it contains an observe option, it means is an

observe request (and the client is also a subscriber), so the destination port and

IPv6 address are stored in order to control the expected response. The URI

value is also stored for the scenario in which the outgoing request does not

contains an observe option, the subscriber checks if the destination server is on

the list of observed servers, if so, it means the subscriber is not interested in the

resource anymore and the entry for the server linked to the stored URI is

removed from the subscriber lists.

• void observing_client_response_receive(comm_pkt_coap_t* pkt_coap,

comm_pkt_udp_t* pkt_udp, comm_pkt_ipv6_t* pkt_ipv6): It checks if the

received response contains an observe option and matches a previous observe

request, if so, it means the server successfully added the subscriber to its list of

59

CHAPTER 5. OBSERVE IMPLEMENTATION ON THINKIP

observers, therefore, it adds the server to the list of observed servers. It also

stores the value of the token in the response needed to match future noti�cations.

• void manage_noti�cations(comm_pkt_coap_t* pkt_coap,

comm_pkt_udp_t* pkt_udp, comm_pkt_ipv6_t* pkt_ipv6, uint64_t

tstamp, comm_receive_cbk_t callback): It checks if the noti�cation matches

any of the observed servers, if so, it then controls if it is a fresh noti�cation, if

so, it updates the values of the "current_obs_seq", "current_time_stamp" and

"MAX_OFE" variables and transmits the CoAP packet to the application.

5.6 Logic Control

Once the packet has been parsed, the data is passed to the "logic control" layer. The

behaviour of a CoAP packet can be represented by ThinkIP CoAP state machine dia-

gram. Such diagram can be divided in two parts, the client and the server side, before

entering either of them, we are interested in knowing the source of a packet (client or

server). Before the observe feature implementation, such knowledge was unnecessary

since the state machine did not take into account such scenario, therefore we must �rst

identify the nature of the source by checking the previous state of the packet source.

In the observe feature, once a client makes an observe request to a server, a session

is allocated between the end-points until the client loses interest in the resource or the

server is unable to continue with the noti�cations. We have decided for a di�erent

choice that has a better memory-e�ciency (at least with ThinkIP structure). When

the client makes an observe request, a session is allocated between the end-points, but

it ends once the client has received the server response and each time the server sends

a new noti�cation to the client, a new session is allocated (and it ends once the client

has received the noti�cation message).

Therefore, we must interpret the state machine diagram di�erently. When a sub-

scriber makes an observe request, a session is allocated and ends when the subscriber

has received the response. Assuming the server added the subscriber successfully to the

list of observers, once it sends a noti�cation, a new session is allocated and the noti�-

cation is considered as a request (noti�cations are responses) by the "logic control", so

the subscriber follows the server side of the state machine diagram.

Furthermore, we had to modify the state machine diagram since it did not consider

the scenario of a CON response (nature of the observe noti�cations), therefore the

60

5.6. LOGIC CONTROL

Figure 5.1: Modi�ed State Machine Diagram

"server-side" diagram was modi�ed (see Fig. 5.1) in order to manage these noti�cations.

5.6.1 Server Side

In this section, we will mention the "logic control" parts that have been altered to

implement the observe feature for the server component. Even though the server acts

as a client when transmitting the noti�cations, it was not necessary to modify the

current code.

Block reception

It handles any request in reception, process the data and changes the state machine to

the next logical state. With the observe feature, each request is analyzed to verify if

it has "observe" data, if so, it is treated accordingly to the observe documentation. In

our implementation, the subscriber also acts as a server when handling responses, so

the needed code to identify the nature of the source was included.

61

CHAPTER 5. OBSERVE IMPLEMENTATION ON THINKIP

Timer triggers

There are di�erent points in the state machine (WAIT_APP_RESP,

WAIT_ACK_SEPARATE state and WAIT_APP_RESP_PB) where it is possible

for the timer to trigger and end the session. Since the absence of an ACK indicates

the disinterest of a client for a resource, the code was modi�ed such that when these

events trigger, the server removes the subscriber from the observe entry list.

Responses

Noti�cations are managed by the "Observe_server" class and treated accordingly by

the state machine. However, further consideration must be taken with the response to

the "observe request", such response is a normal response to a GET request with the

observe option included, so the code that builds the CoAP response to a GET request

was modi�ed in order to add the observe request response.

5.6.2 Subscriber Side

In this section, we will mention the "logic control" parts that have been altered in order

to implement the subscriber side of the observe feature. The subscriber implementation

regarding the server component is very similar to the previous server component, so it

did not bring much complexity to the observe implementation.

Requests

Once the subscriber makes an observe request, it checks if the response contains an

observe option, if so, the observe request was successful and the subscriber adds the

server to the list of observed servers. This is the only component altered in the client

side of the protocol to implement the observe feature.

ACKs

Similar to the server, once a subscriber receives a CoAP message, it checks if it is

an observe response linked to one of the observed servers, if so, the data is handled

accordingly to the observe documentation and the subscriber transmit an ACK for the

noti�cation. The current state machine diagram does not handles this scenario very

well, so it was modi�ed in order to treat with this scenario.

62

5.7. NUMERICAL RESULTS

Once a subscriber receives a CON noti�cation, it checks if it is linked to one of its

observed servers, if so, it sends the data to the application, returns an ACK message

and enters the CACHED state. If it is not linked to one of itss observed servers, it

discards the packet, returns an RST message and enters the CACHED state.

5.7 Numerical Results

In this section, we present the new memory usage with the addition of the new code.

• Before:

� ROM: 214342 (207342 + 7000) Bytes.

� RAM: 10618 (7000 + 3618) Bytes.

Where 207342 bytes is due to the ROM usage, 7000 bytes for RAM usage and

3618 bytes by the bss section.

• After:

� ROM: 219928 (212802 + 7126) Bytes.

� RAM: 10801 (7126 + 3675) Bytes.

Therefore, we have 5460 more bytes from ROM usage, 126 bytes for RAM usage

and 57 bytes for the bss section due to the observe feature implementation.

The whole code was written in the C++ language using "Eclipse" ([2]) java IDE.

Moreover, in order to test it, we have used the following software:

• Copper ([1]): It is a Firefox plug-in that serves as a CoAP client simulator.

• Wireshark ([4]): Software that analyze packets, needed for the packets transmit-

ted in the simulation.

63

CHAPTER 5. OBSERVE IMPLEMENTATION ON THINKIP

64

Chapter 6

Conclusion

In this thesis we have illustrated the CoAP (version 08) protocol and the observe feature

(version 03) implementation of it in the �rst two chapters. It is a fairly new protocol

that could have great successl if the �eld of constrained networks continues to extend

its market. The observe feature is an extension to CoAP that solves some shortcomings

in certain scenarios (such as polling) eliminating unnecessary GET requests to nodes,

reducing the overall network overhead and therefore improving the network e�ciency.

We have also illustrated the implementation of the CoAP protocol (version 08) in the

ThinkIP software of Patavina Technologies. Currently, such implementation is working

as expected by the documentation (in Chapter 3).

To be more memory-e�cient (at least in ThinkIP software), each noti�cation creates

a new session between the subscriber and the server.

Currently, ThinkIP implements CoAP version 08. The protocol is still under devel-

opment and there is not yet a �nal version, once the CoAP protocol presents a �nal

version or its current version has major changes, ThinkIP plans to update its CoAP

version and consequently update its observe feature too.

Regarding the observe feature in the current ThinkIP code, it is more memory-

e�cient to create a new session for each noti�cation. In our implementation, responses

are treated similar to request, therefore, the client acts like a server when dealing with

noti�cations, furthermore, we had modi�ed the state machine diagram in the "logic

control" to deal with this scenario (responses must be treated di�erently to requests).

In future works, ThinkIP will try to �nd an alternative solution to the current session

memory allocation method, such that only one session will be needed when initiating

an observe communication. This change would not only be more faithful to the current

65

CHAPTER 6. CONCLUSION

observe documentation, but it would also help the code indipendency of observe within

CoAP (e.g. we can avoid the new state included in the "logic control" component of

CoAP).

66

Bibliography

[1] Copper. http://people.inf.ethz.ch/mkovatsc/copper.php.

[2] Eclipse. http://www.eclipse.org/.

[3] Patavina technologies. http://www.patavinatech.com/.

[4] Wireshark. http://www.wireshark.org/.

[5] C. Bormann and Z. Shelby. Blockwise transfers in coap, draft-ietf-core-block-04

(work in progress). Technical report, July 2011.

[6] Sensinode K. Hartke Universitaet Bremen TZI B. Frank SkyFoundy C. Bormann,

Z. Shelby. Constrained application protocol (coap), draft-ietf-core-coap-08 (work in

progress). Technical report, November 2011.

[7] R. Johnson E. Gamma, R. Helm and J. Vlissides. Design patterns: Elements of

reusable object-oriented software, November 1994.

[8] Z. Shelby Sensinode K. Hartke, Universitaet Bremen TZI. Observing resources in

coap, draft-ietf-core-observe-03 (work in progress). Technical report, October 2011.

[9] L. Richardson and S. Ruby. Restful web services, May 2007.

67

http://people.inf.ethz.ch/mkovatsc/copper.php
http://www.eclipse.org/
http://www.patavinatech.com/
http://www.wireshark.org/

Bibliography

68

List of Figures

2.1 CoAP two-layer . 7

2.2 Message Format . 9

2.3 Message Option Format . 10

2.4 Response . 15

2.5 CoAP Options. 17

2.6 coap URI scheme . 23

2.7 coaps URI scheme . 24

3.1 Observe design pattern . 32

3.2 Observe feature option . 33

4.1 ThinkIP Architecture . 41

4.2 State Machine. Client side . 49

4.3 State Machine. Server side . 51

5.1 Modi�ed State Machine Diagram . 61

69

List of �gures

70

	Abstract
	Introduction
	CoAP (version 08)
	Constrained Application Protocol
	Messaging Model
	Request/Response Model
	Intermediaries and Caching

	Message Syntax
	Option Format

	Message Semantics
	Reliable Messages
	Unreliable Messages
	Messages Types
	Multicast

	Request/Response Semantics
	Requests
	Responses
	Request/Response Matching
	Options
	Payload
	Caching
	Proxying
	Method Definitions
	Response Code Definitions

	CoAP URIs
	coap URI Scheme
	coaps URI Scheme

	Resource Discovery
	Default Ports
	HTTP Mapping
	CoAP-HTTP Mapping
	HTTP-CoAP Mapping

	Observe feature of CoAP (version 03)
	Options
	Observe
	Max-OFE

	Client-side
	Request
	Notifications
	Caching
	Reordering

	Server-side
	Request
	Notification
	Caching
	Reordering
	Retransmission

	Intermediaries
	Block-wise Transfers
	Discovery

	ThinkIP Software
	Software Architecture
	Module Interfaces
	Hardware Abstraction Layer interface
	OS interface
	System Configuration Interface
	Debug Interface
	Resource Access Interface

	ThinkIP CoAP
	Session Allocation
	Parse and Formatting
	Logic and Control

	Observe implementation on ThinkIP
	Parse Formatting
	Session Allocation
	observe_common.h
	Observe_server.cpp
	Client class
	Observe_server class

	Observe_client.cpp
	Observing_servers class
	observing_client class

	Logic Control
	Server Side
	Subscriber Side

	Numerical Results

	Conclusion
	Bibliography
	List of figures

