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Abstract

This thesis studies the extension problem for higher-order fractional powers of the heat operator H = A — 0, in
R**1. Specifically, given s > 0 and indicating with [s] its integral part, we study the following degenerate partial
differential equation in the thick space R**! x Rj ,

[s]41
Ay = (% + ;ay +H> U=0o. (1)

The connection between the Bessel parameter 2 in (1) and the fractional parameter s > 0 is given by the equation
a=1-=2(s—[q).

When s € (0,1) this equation reduces to the well-known relation 2 = 1 — 25, and in such case (1) becomes the
famous Caffarelli-Silvestre extension problem. Generalising their result, in this thesis we show that the nonlocal
operator (—H)’ can be realised as the Dirichlet-to-Neumann map associated with the solution U of the extension
equation (1).

In this thesis we systematically exploit the evolutive semigroup { P} ,~., associated with the Cauchy problem

O,u—Hu=0
#((x,2),0) = flx, t).
This approach provides a powerful tool in analysis, and it has the twofold advantage of allowing an independent

treatment of several complex calculations involving the Fourier transform, while at same time extending to frame-
works where the Fourier transform is not available.
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Introduction

In his visionary papers [17] and [18] Marcel Riesz introduced the fractional powers of the Laplacean in Euclidean
and Lorentzian space, developed the calculus of these nonlocal operators and studied the Dirichlet and Cauchy

problems for respectively (—A)’ and (0,, — A)".

Pseudo-differential operators such as (—A)’, (9, — A)’, (0; — A)’ play an important role in many branches of

the applied sciences ranging from fluid dynamics, to elasticity and to quantum mechanics.

Our objective in this thesis is studying the extension problem for higher-order fractional powers of the heat
operator H = A — 0, in R+, Specifically, given s > 0 and indicating with [s] its integral part, we study the
following degenerate partial differential equation in the thick space R+ x R;",

[+1
AV = (aw + gay +H> U=o. (r.1)

The connection between the Bessel parameter 4 in (1.1) and the fractional non-integer parameter s > 0 is given
by the equation
a=1-2(s—[]).

When s € (0,1) this equation reduces to the well-known relation 2 = 1 — 25, and in such case (1.1) becomes the
famous Caffarelli-Silvestre extension problem. Generalising their result, in this thesis we show that the nonlocal
operator (—H)* can be realised as the Dirichlet-to-Neumann map associated with the solution U of the extension

equation (1.1).

A list of the topics covered by this thesis is provided by the table of contents. Diving deeper into the details:

1. In Chapter 2 we are presenting some of the most basic aspects of the operator (—A)’, a complete intro-



duction of which is available at [11]. In particular we have

* In Section 2.1 we introduce the main pointwise definition of the nonlocal operator (—A)’, see
(2.7) below. In Proposition 2.1.8 we show that the definition (2.7) implies a decay at infinity of the
fractional Laplacean that plays an important role in its analysis.

* Section 2.2 constitutes a brief interlude on two important protagonist of classical analysis which
also play a central role in this chapter: the Fourier transform and Bessel functions. These two classi-
cal subjects are inextricably connected. One the one hand, the Bessel functions are eigenfunctions
of the Laplacean. On the other, they also appear as the Fourier transform of the measure carried
by the unit sphere. In this connection, and since it is a recurrent ingredient in this note, we recall
the classical Fourier-Bessel integral formula due to Bochner, see Theorem 2..2.4 below.

* Section 2.3 opens with the proof of Proposition 2.3.1, which describes the action of (—A)* on the
Fourier transform side. This result proves an important fact: the fractional Laplacean is a pseudo-
differential operator. A basic consequence of Proposition 2.3.1 is the semigroup property in Corol-
lary 2.3.2 and the ”integration by parts” Lemma 2.3.3, which shows that (—A)* is a symmetric
operator. We close the section with the computation in Proposition 2.3.4 of the normalization
constant y(#, 5) in the pointwise definition (2.7).

* In Section 2.4 we want to find the fundamental solution of (—A), i.c., proving Theorem 2.4.4.
This can be done in several ways, but we choose to exploit the tools provided in [11].

* Section 2.5 presents in detail the central theme of the analysis of the fractional Laplacean: the
extension problem of Caffarelli and Silvestre (2.85). We construct the Poisson kernel for the ex-
tension operator, and provide two proofs of (2.86), which characterizes (—A)’ as the weighted
Dirichlet-to-Neumann map of the extension problem. The extension procedure is a very pow-
erful tool which has been applied so far in many different directions, and it is hardly possible to
accurately describe the impact of this paper in the field.

2. In Chapter 3 we study the fractional operators, in particular (—A)* and (9, — A)*, with the systematic
use of the heat semigroup {2;},>¢. The semigroup approach provides a powerful tool in analysis and
has a twofold advantage. On one hand it allows a treatment independent of several complex calculations
involving the Fourier transform and, more importantly, it extends to frameworks in which the Fourier
transform is not available. References on the methods and tools exploited in this chapter can be found at
[10]. In particular we have

* In Section 3.1 we define in (3.2) the heat semigroup and its main properties. The name is justified
by the fact that the function #(x,#) = P,f{x) solves the Cauchy problem for the heat equation
O — Au = 0inR” x RT,

* Section 3.2 opens with the Proposition 3.2.1, which basically shows the ultracontractivity property
of the heat semigroup.

* In Section 3.3 we define the fractional Laplacean according to the formulation of Balakrishnan in
Definition 3.3.1. We then proceed with the proof of some properties of the fractional Laplacean,
similarly to what is done in Chapter 2, but now leveraging the advantages that the heat semigroup
grants.

* In Section 3.4 we show that Balakrishnan’s definition of the nonlocal operator (—A)? coincides
with that introduced by M. Riesz in [17]. Subsequently, we analyse the asymptotic behaviour of
this operator asa * 2 and we show that, unsurprisingly, in the limit we obtain the negative of the
Laplace operator A.



* In semigroup theory a procedure for forming a new semigroup from a given one is that of the
evolution semigroup. In Section 3.5 we exploit this idea to introduce a new semigroup that will be
used as a building block for: (i) defining the fractional powers of the heat operator H = A — Oy
(ii) solving the extension problem for such nonlocal operators.

* In Section 3.6 we define the fractional heat operator (9, — A)? through the evolutive heat semi-
group and we show some of its basic properties, similarly to what we have done in Section 3.3.

* In Section 3.7 we solve the extension problem for the fractional heat operator. In Definition 3.7.1
we define the Poisson kernel for the extension problem, and this allows us to define the following
function

Ulx,y,1) := /0 / P20 (x — 2,9, 7)flz, t — 7) dz dr.

To reach our goal, i.e. to solve the extension problem, we make the crucial observation that U can
be written in the following form using the evolutive heat semigroup P
1 Y B
Ulx,y,1) := ) —e¢ 41Pfﬂx, t)dr.
21=aT ( ) 0o T2

2

3. In Chapter 4 we first want to define and then solve the extension problem for the fractional powers of
higher order of 9, — A. In particular we have

* In Section 4.1 we want to introduce the fractional operators of higher order considered in the
previous chapters. In order to do this, we use the Balakrishnan formulation, which permits to give
a natural generalization to higher order in both cases.

* Our goal in Section 4.2 is to give the statement of the extension problem of higher order and prove
itin Subsection 4.2.1

4. In the concluding remarks 5 we comment on how to generalize the results obtained in Chapter 4, and
specifically we would like to solve the extension problem of higher order for the following class of operators

Hu =t (QV?u) + (BX, Vi) — O,u,

where Q and B are N X N matrices with real, constant coefficients, with Q > 0, Q = Q*.






Fractional Laplacean

2.1 THE FRACTIONAL LAPLACEAN

In this section we introduce the M. Riesz’ fractional Laplacean (—A)’, with 0 < s < 1. Our first goal is to give a

definition of this nonlocal operator.

Our initial observation is the following simple calculus lemma which could be used to provide a probabilistic

interpretation oh the classical Laplacean on the real line.
Lemma 2.1.1. Letf € C*(a, b), then for every x € (a, b) one has

_f//(x) — lim Zﬂx) _ﬂx+}’) _ﬂx_)’)

—0 }l

The expression in the right-hand side in the equation in Lemma 2.1.1 is known as the symmetric difference

quotient of order two. If we introduce the ”spherical” surface and ”solid” averaging operators

x x— .
%yf(x):ﬂ +7) ;f( )}), %ﬂx)zzlj yf‘(t)df7
-

then we can reformulate the conclusion in Lemma 2.1.1 as follows:
fx) — 4, flx)
2

_f”(x) =2 ﬁmw =6lim——~r—Y 7
y—0 Y y—0 Y

where it is easily seen that the second equality follows from the first one and L’'Hopital’s rule. The result that



follows generalizes this observation to z > 2.

Proposition 2.1.2. Let Q € R” be an open set. Forany f € C*(Q) and x € Q we have

) — A, flx)

—Af(x) — znlE})M 2

g =2(n+2) lim

(2.1)

where Afis the operator of Laplace.

In the equation (2.1) we have indicated with

1
0'”_1}""71

1
W, 7"

Mn(x) = / u(y)do(y), u(x)= / u(y) dy, (22)
S(x,7) B(x,r)

the spherical surface and solid mean-value operators. Here, B(x, 7) = {y € R" : [y—x| < r}, S(x,7) = 0B(x, 1),

dois the (n — 1)-Lebesgue measure on S(x, 7), and the numbers ;,_; and w, respectively represent the measure

of the unit sphere and that of the unit ball in R”.

Before proceeding, and in preparation for the central definition of this section, let us observe that it is easy to

recognize that we can write the second identity in (2.1) in the more suggestive fashion:

2u(x) — u(x —u(x —
() =)ty [ 2D I, ) ()

where we have denoted by 1 the indicator function of aset £ C R”.

In the applied sciences it is of great importance to be able to consider fractional derivatives of functions. There
exist many different definitions of such operations, but perhaps the most prominent one is based on the notion
of (Marcel) Riesz’ potential of a function. To motivate such operation let us assume that z > 3, and recall that

in mathematical physics the Newtonian potential of a function f € .%(R”) is given by

- 1 (52) [ e

Now, one recognizes that the convolution kernel ﬁr (";2) M”%Z in the definition of /5 (f) is just the funda-
. ;

mental solution ) )

(n—2)g,—1 |x|~2

E(x) =

of —A. With this observation in mind, we recall the well-known identity of Gauss-Green that says that for any
fe S(R")one has

L(—Af) = .
In other words, the Newtonian potential is the inverse of —A. This important observation leads to the introduc-

tion of M. Riesz’ generalization of the Newtonian potential.

Definition 2.1.3 (Riesz’ potentials). Foranyn € N, let 0 < a < n. The Riesz potential of order a is the operator



whose action on a function f € & (R”) is given by

LipE) = o)

The important reason behind the normalization constant is that such constant is chosen to guarantee the va-
lidity of the following crucial result, a kind of fractional fundamental theorem of calculus, stating that for any
fe . (R") onehasin.’'(R”)

L(-8)if = (~A)ILf (24)

Of course (2.4) makes no sense unless we say what we mean by the fractional operator (—A) 2. The most natural

way to introduce it is by defining the action of (—A)? on the Fourier transform side by the equation
F(~A)iu) = 22l )*F (u), ueS'(R"). (2:5)
The equation (2.4) shows that 7, inverts the fractional powers of the Laplacean, i.c.,
L=(-A)"% 0<a<n. (2.6)

For this reason Z, is also called the fractional integration operator of order .

Since our focus in this section is the fractional Laplacean (—A)’ in the range 0 < s < 1, we will henceforth let
s = a/2 in the above formulas. Although we have formally introduced such operator in the equation (2.5) above,
such definition has a major drawback:it is not easy understand a given function (or a distribution) by prescribing
its Fourier transform. It is for this reason that we begin our story introducing a different pointwise definition of
the fractional Laplacean that is more directly connected to the symmetric difference quotient of order two in the

opening calculus Lemma 2.1.1, and with (2.3).

Definition 2.1.4. Let 0 < s < 1. The fractional Laplacean of a function u € & (R") is the nonlocal aperator in
R” defined by the expression

(—A)u(x) = y(n,s) /” 2u(x) — “(Eﬁfi_ u(x —y) dy, (2.7)

where y(n,s) > 0 is a suitable normalization constant that will be given implicitly in the future.

Itis obvious that (2.7) defines a linear operator since for any #, v € #(R”) and ¢ € R one has
(=AY (x+0) = (A u+ (=A)v,  (=A)(en) = e(=A) .

It is also important to observe that the integral in the right-hand side of (2.7) is convergent. To see this, it suffices



to write

/ 2u(x) —u(x+y) —u(x—y) dy:/ 2u(x) —u(x+y) —ulx—y) "

b}|n+2.r bl<t |y|n+25
2u(x) —u(x+y) —u(x—y)
- "
ly|>1 |)’|”+2J 4

Taylor’s formula for C? functions gives for [y| < 1
2u(x) — ul(x+y) —u(x—y) = = (Val(x)y,y) +o(y*),
where we have indicated with V?# the Hessian matrix of #. Therefore,

dy

piss P20

<C < 00,

2u(x) — (e +y) — ulx—y)
/| e Y

since 0 < 5 < 1. On the other hand, keeping in mind that # € .%/(R") implies in particular that # € L>°(R"),

we have

/ 2u(x) —u(x+y) —u(x—y) d
[y[>1

Py < 4||%||Loo(Rn) / % < 0.
bl bi>1 Dl

We have seen that for every # € .’(R”) definition 2.1.4 provides a well-defined function on R”.

Two basic operations in analysis are the Euclidean translations and dilations

7flx) = flx+ h), heR, Nfx) = fAx), A >0.

The next result clarifies the interplay of (—A)’ with them.

Lemma 2.1.5. Forevery function n € ./ (R”) we bave for every b € R”
(~a () = (-4,
and every L > 0
(=AY (9y2) = 2%, ((—A)u).

A fundamental property of the Laplacean A is its invariance with respect to the action of the orthogonal group
O(n) on R”. This means thatif # is a function in R”, then for every 7€ O(z) onehas A(x 0 T) = Au o T. The

following lemma shows that (—A)’ enjoys the same property.

Lemma 2.1.6. Let u(x) = f(|x|) be a function with spherical symmetry in C*(R™) N L (R*). Then, also (—A)'n
has spherical symmetry.

Proof. This follows in a simple way from (2.7). In order to prove that (—A)‘u is spherically symmetric we need

to show that for every 7' € O(n) and every x € R” one has

(=A)u(Tx) = (—A) u(x).



We have

(—syatry = 1) [ PUBD AT ) ALt )

2 [yl
_ s / 2Ax]) = Alx + T%) ﬂ\x—Tyl)
2 Jr [yl

If we make the change of variable z = 7"y, we conclude

(~8yu(T) = 1) / A=At “ =),

2 szIn-‘rZ;
_yms) [ 2f1x) — fllx + 2]) — fllx — 2])
== / |z|n+lr dz

= (=4)u(x),

And we are done. O]

Before proceeding we note the following alternative expression for (—A)’ that is at times quite useful in the

computations.

Proposition 2.1.7. Foranyu € ./ (R”) one bas

(=AY u(x) = y(n,s) PV/RH wx u(y dy, (2.8)

X — y|n+25

where now the integral is taken according to Cauchy’s principal value sense

[ M)y gy [ s),

X y|n+2; e—0F ly—x[>e ‘x y|n+25

Proof. The expression (2.8) follows directly from (2.7) above as follows

1/ 2u(x) —u(x+y) —u(x—y) 1 / Zu(x)—u(x+y)—u(x—y)d

— dy = = lim
2 Jo b P72 s b 4
,lim/ %(x)—%gﬂ)d + L im %(x)—u&—y)d
220 |y\>8 > 220 J5e |
= lim _ %O/

€0 ly|>e |x }’|n+2J

However, it is now necessary to take the principal value of the integral since we have eliminated the cancellation
of the linear terms in the symmetric difference of order two, and #(x) — #(y) in only O(Jx — y|). Thus, the

smoothness of # no longer guarantees the local integrability, unless we are in the regime 0 < s < 1/2. O



Before proceeding we recall that . (R”) is the space C*°(R”) endowed with the metric topology

I = lly

da): 277 )
0= L2 S

generated by the countable family of norms

A, = sup sup (1 + \x|2)’%|aa x)|, peNU{0}. (2.9)
|| <p xER”

Now, we can prove that (—A)’x suitably decays at infinity:

Proposition 2.1.8. Leru € ./ (R"). Then, for every x € R” with |x| > 1, we have
|(=A)u(x)| < Cu,n,x|x|7(x+2r)7
where with ||x||, as in (2.9), we have let

Cu,n,: = Cn,x(

[ellta + el + [l 2 gery)-

Proof. To see this we write

2 Jpi<tt = !
7(7175)/ 2u(x) —u(x+y) —u(x—y)
+ d
2 > bl |)"n+b 4

Taylor’s formula gives

2u(x) — u(x+y) —ulx—y) = —% (V2u(y")y,y) — % (V2u(y*)3,7)

where y* = x + y*, y** = x + y**, for t*, #* € [0,1]. We now observe that on the set where |y| < |x]/2 we
have by the triangle inequality
el <27 Jxl < 2p (2.10)

Using (2.10) and the definition (2.9) of the norm |#|,, 4, in .#(R”), we find

2
<= d
e ) e bI*dy

/ 2u(x) —u(x+y) —ulx—y) 4y
i<kl

1 / [V2uly)| + [V ()]
<4

gwmw</ bl [ bl* ,@>
o<t (1 P E e P T s Wt ) Bl

e d
< Ol 2ulosa [ )

- 7 |2725
i<l 2

= Clluflnalal =0+,

= Cld ™" ull 2l

where C = C, , > 0.

I0



Next, we estimate

2u(x) —u(x+y) —ulx—y)
/yl e dy

%

<of | lerpaal,

We have

() -_ dy
L < sup (1 + ) ”')/w;(

—

pi> kL Dl €R" L+ [xf2)2 [yt
b dy Cllall.
< sup ((1+ |x*)7|x ”/ <
xeRPﬂ(( %) 2 |«] ot DPFE S

where C = C, ; > 0. Finally, we have trivially

|2t (2 + )/)| ont2s / ont2s I ||L1(R")
dy < ulx+9y)|dy < —————~=
/ e VS G N S T

x x
2 2

This completes the proof. O

Proposition 2.1.8 has the following non trivial consequence.

Corollary 2.1.9. Letu € . (R").Then, (—A)'u € C°(R") N L'(R").

The estimate in Proposition 2.1.8 can be written
_ u,n,x‘x|7(n+25) S _(_A)Su(x) S C”7n75‘x|7(n+25) )

Let us notice that on a nonnegative bump function the estimate from below can be made stronger, a fact that
reflects the nonlocal character of (—A)*. Suppose for instance that # € C3°(R”), with0 < # < 1,# = lon
B(0,1) and supp # C B(0,2). Then, forx € R” \ B(0,3) one has from (2.7)

—(=AYu(x) = 7(n,3) /n ux+y) +ulx—y) dy

2 P
dz
> (n,:)/ —dz.
4 B(0,1) v — 2"+

Since |x —z| > 2, for |z| < 1 weinfer |x| > |x—z| — |z| > |x— 2| —1 > |x—z|/2. This gives some C(n,s) > 0
—(=AYu > Cln,s)|x| =+ > 0,

which shows that (—A)‘x needs not to vanish even far away from the support of #. This is clearly impossible for

local operators P(x, 0,), for which one has the obvious property supp P(x, Oy)# C supp «.

II



2.2 A BRIEF INTERLUDE ABOUT VERY CLASSICAL STUFF

To proceed with the analysis of the nonlocal operator (—A)* we will need some basic properties of two important,
and deeply interconnected, protagonist of classical analysis: the Fourier transform and Bessel functions. Since
they both play a pervasive role in these thesis, as a help to the reader in this section we recall their definition along
with some elementary facts. Before we do that, however, we introduce the ever present Euler’s gamma function

(see e.g. chapter 1 in [16]):
I(x) = / £l dr x> 0.
0

The well-known identity I'(1/2) = /7 is simply a reformulation of the famous integral

/ e dy = V.
R

Of course, I'(z) can be equally defined as holomorphic function for every z € C with Rz > 0. It easy to check
that for such z, one has
I'(z+1) = 2I'(z). (2.11)

This formula, and its iterations, can be used to meromorphically extend I'(z) to the whole complex plane having

simple poles at z = —k, £ € N U {0}, with residues (—1)*. In particular, when 0 < s < 1, one obtains from

(2.11)
I'(1—ys) = —sI'(—s). (2.12)

Furthermore, one has the following basic relations:

T(z)T(1 - 2) = —

(2.13)

. ’
N2 4

22710()T (z + ;) _ J/T(22). (2.14)

Stirling’s formula provides the asymptotic behavior of the gamma function for large positive values of its argu-

ment

[(x) = V2mx 77" (1 +0 (i)) ,  asx — +o0. (2.15)

We close this brief prelude with a very classical formula which connects the gamma functions to the (z — 1)-

dimensional Hausdorff measure of the unit sphere S*~1 ¢ R?”, and the #-dimensional volume of the unit ball

27t Tp_1 7t (2.16)
, Wp=—— = - 2.1
r(3) no T(5+1)

One identity that we will use is the following

/ w1 —e ") du ! / u e du = ra _S). (2.17)
0 0

Tn—1 =




Deeply connected with the gamma function is Euler’s beta function which for x, y > 0 is defined as follows

[SIEY

B(x,y) = 2/ (cos 8)*(sin )21 db.
0

It is an easy exercise to recognize that

(2.18)

1 1
=2 [y [0
0 0

(2.19)
The link between the beta and the gamma function is expressed by the following equation

b = T -

see e.g. (1.5.6) on p. 14 in [16]. A useful integral which is expressed in terms of the beta, or gamma function is
contained in the following proposition.

Proposition 2.2.1. Letb > —nanda > n + b, then

/ o DT () (221)
e (L4 [2]2)3 r(s) 1<)

In particular, if b = 0 and a = n + 1, then

/ dx 72'71_;1 ( )
pue — - 2.22
R (1+ ]2 T(%57)

Proof. Let us observe preliminarily that the assumption b > —# serves to guarantee that the integrand belongs
to L}, (R”), whereasitisin L!(R”) if and only if 2 — & > 7. Under these hypothesis we have

/ |x|b J , /OO ;,.b+n—1
T oz AX = 0,— T
e (1+[2]2)% Yo (4R

3 b+n—1 3
_ / (tanf) — df: U'n—l/ (sinf)bJr”*l(cos f)afbfnfl df
o (14+tan2é= 0
_ FnlB<b+ﬂ,ﬂ—b—ﬂ> 7
2 2 2

If we now apply formulas (2.16) and (2.20) we obtain (2.21). To obtain (2.22) it suffices to keep in mind that
r(1/2) = /=

O

We are ready to introduce the queen of classical analysis: given a function # € L'(R"), we define its Fourier
transform as

Fw) &) =& = | 7 u(x)dx.

R»

13



We notice that the normalization that we have adopted in the above definition is the one which makes .# an
isometry of L*(IR") onto itself, see [20]. We recall next some of the basic properties of .Z. If 7ju(x) = u(x + b)

and dyu(x) = u(Ax) are the translation and dilation operators in R”, then we have

nu(f) = gzmg’”a(f)a (2.23)

and

sty =2 (5)). (224)

The Fourier transform is also invariant under the action of the orthogonal group O(7). We have in fact for every

T e O(n)

nol=17n0T. (2.25)

Formula (2.25) says that the Fourier transform of a spherically symmetric function is spherically symmetric as

well.

Another crucial property is the Riemann-Lebesgue lemma:
ue LI(R”) = |7(&)] = 0as |§ — oo. (2.26)

This result has important consequences when combined with the following two formulas. Let # € L'(R") be
such that for 2 € NZ also 9*x € L'(R"). Then,

(@) = (2m) (9. (2.27)

In particular, (2.26) and (2.27) give: |£||7(£)| — 0 as |f] — oco. Furthermore, if # € L'(R") is such that for
a € N2 one has x — x*u(x) € L'(R"), then,

a(®) = (—2m) ()ru(®). (2.28)

In particular, (2.26) and (2.28) imply that: 0% € C(R") and |0*%(£)| — O as |£§] — oo.

Combining these observations one derives one of the central properties of .%: it maps continuously .’ (R”)

onto itself and is an isomorphism. Its inverse is also continuous, and is given by Fourier inversion formula

T ) () = / 2758 dE.

We next introduce the second main character of this section: the Bessel functions. The book [16] provides a
rewarding account of this beautiful classical subject.

Definition 2.2.2. Foreveryv € Csuch that Rv > — % we define the Bessel function of the first kind and of complex
order v by the formula

1 2\ [ izt 2
Jo(z) = T (et) (E) /_16’ (1—7)" dr, (2.29)

where I'(x) denotes the Euler gamma function.
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The function/,(z) in (2.29) derives its name from the fact that it solves the linear ordinary differential equation
known as Bessel equation of order v
24 d]

== +z

a 2 2y
pEin + (2" =" =0. (2.30)

An expression of J, as a power series for an arbitrary value of v € C is provided by

(z/z)v+2k
(k+1)I(k+v+1)

M8

L(z) = (—l)kr |z] < o0, |arg(z)| < =, (2.31)

a~
I

0

see e.g. (5.3.2) on p. 102 in [16]. When v ¢ Z, another linearly independent solution of (2.30) is provided by the
function /_,(z). When z € Z the two functionsJ, and /_, are linearly dependent, and in order to find a second

solution linearly independent from /, one has to proceed differently.

The observation that follows is very important in most concrete applications of the theory. Suppose that ¢(z)

be a solution to the Bessel equation (2.30), and consider the function defined by the transformation

u(y) = y'¢(By). (232)

Then, one easily verifies that #(y) satisfies the generalized Bessel equation
7" (y) + (L= 2a)pd () + 877 + (& = *p)]uly) = 0. (233)

Returning to Definition 2.2.2, from (2.29) and (2.19) we immediately find

_ 270+1 1 5 20—1d 270+1 11
R r<;>r<v+;>/o“““ “r<;>r<v+;>5(”*z’z>'

From this asymptotic relation and (2.20) one obtains

271}
I'(v+1)

z’, asz — 0. (2.34)

Jo(z) =
Unlike the simple expression of the asymptotic of /,(z) as z — 0, the behavior at infinity of /,(z) is more delicate

to come by. We have the following result, see (5.11.6) on p. 122 in [16].

Lemma 2.2.3. Let Rv > —%. One has
2 T T 3
w(2) =A/ —cos(g— — —— ) +0(z 2
@) 7z ( 2 4) ("2 (2.35)
aslz] = 00, —wH+d<argz<mw—o.

In particular,
1

J(z) =0(z72), asz— 00, 2>0. (2-36)
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Along with the Bessel equation (2.30), in Sections 2.4 and 2.5 below we will need the modified Bessel equation

of orderv € C,

¢ dg
27 —_—
N dz? +zdz

Two linearly independent solutions of (2.37) are the modified Bessel function of the first kind,

— (2 + vz)¢ =0. (2.37)

e 2 v+2k
L(z) = /; T +(1z)/F()/e g | < 00, |arg(z)| < 7, (2.38)

and the modified Bessel function of the third kind, or Macdonald function, which for order v # 0, £1, £2, . ..,
is given by
Z[—v(z) —1,(2)

K =
v (Z) 2 sin 7v

, larg(a)] < 7. (239)
Notice that K, (z) = K_,(2).

It easy to verify that if ¢(z) is a solution to the modified Bessel equation (2.37), then the function defined by

the transformation (2.32) satisfies the generalized modified Bessel equation
7 (9) + (1= 2a)y’ (y) + [(@ = %) = B9 |u(y) = 0. (2.40)

As we have stated in the opening of this section the Fourier transform and the Bessel functions are deeply
connected. One important instance of this link is the following result which provides a deeper meaning to the
invariance of the Fourier transform with respect to the action of the orthogonal group O(7). We emphasize that
the presence of Bessel functions in Theorem 2..2.4 below underscores the interplay between curvature (that of the

unit sphere S C R”) and Fourier analysis. For the following result we refer to Theorem 40 on p. 69 in [4].

Theorem 2.2.4 (Fourier-Bessel representation). Lez u(x) = f{|x|), and suppose that
t— fle)]: 4 (¢) € L'(RT),

where we bave denoted by ] the Bessel function of orderv = 5 — 1defined by (2.29). Then,
W8 = 2 F / RN 1 (2(800)
0

To check the integrability assumption in Theorem 2.2.4 we can use the above given asymptotic (2.34) and

(2.36) for the Bessel function /,.

Another family of special functions that will be needed in this paper are the so-called hypergeometric functions.

In order to introduce them we recall the definition of the Pochammer’s symbols

ag =1, a:= =ala+1)...(a+k—1), keN.

16



Notice that since, as we have said,the gamma function has a pole in z = 0, we have

1 if £=0
0 for £>0.

0 =

Definition 2.2.5. Letp,q € No besuchthatp < g+ 1, and letey,. .. apandf,, ... ,/Eq be give parameters such
that 718]. &N forj=1,...,q. Given a nummberz € C, the power series

N (azp)k zk

- YA
qu(dla . 70‘]”181” .. ,ng,z) = kz:; (/gl)k . (ﬂq)/e k!

is called the generalized hypergeometric function. When p = 2 and q = 1, then the function 1 Fi (a1, a2; 8,5 2) is the
Gauss’ hypergeometric function, and it is usually denoted by F(ay, az; B,; 2).

We have
Fa,0;8;2) = F(0,2;8;2) = 1, (2.41)

and (see also p. 275 in [16])
Fla,B;8;—2) = 1Fo(a; —2) = (1+2)7%. (2-42)

It also interesting to observe that the hypergeometric function (£ is in essence a Bessel function, up to powers

and rescaling. One has in fact form (2.38) and Definition 2.2.5,

1

L6) = gy (3) oA+ 1Y), (c49)

2.3 FOURIER, BESSEL AND FRACTIONAL LAPLACEAN

After our brief interlude on the Fourier transform and Bessel functions, we now return to the main protagonist

of this chapter.

Proposition 2.3.1 (Pseudodifferential nature of (—A)*). Lety(n,s5) > 0 be the number identified by the following

formula
1 — cos(z,)
y(n,s) /]Rn W dz =1. (2.44)
Then, for anyu € /' (R") we have
(—Ayu(§) = (2nlu))*a(f). (2.45)

Proof. Let us observe that in view of Corollary (2.1.9) we know that (—A)‘%z € L'(R") and thus we can take its

Fourier transform in the sense of L'. Having said this, if denote by 7%(x) = #(x + b) the translation operator in

17



R”, we can rewrite (2.7) in the following way

(—AYu(x) = y(n,s) / 2u(x) — 7y(x) — 7, (x) &, (2.46)

2 b+

Using (2.23) we easily find

) =yt ([ =2 ) ate = ngace (247

|y‘n+25

where we have let

J&) = y(n.s) / ,, 1—c<|>;(Z;<fy>> 5

We notice that the integral defining /(£) only depends on |£]. For every 7" € O(n) one in fact easily verifies that
J(TE) = J(£). For £ # 0 we can thus write

— cos i, T
1O = o) /nl (<|f| 2 |ﬂy>> oy

|yl

The change of variable 2 = 27|y now gives

— cos i,z
S8 = Cal)ytns) [ E (&),

|z|n+2r

1 — cos ({es,2)) 1— cosz,

_ 2
) FGe dz = (27|8)"y(n,5) /R” PR dz

(2.48)

— (el (o) [

Notice that the integrand in the right-hand side of the latter equation is nonnegative, and that the integral is

convergent. We have in fact

1—cosz, / 1—cosz, / 1—cosz,
———dz = ———dz + ————dz
/" |2|"+2 <t 2t lj>1 [=

d d
o<1 |22 2> 12l

Finally, if we substitute in (2.47) the expression given by (2.48), it becomes clear that if we choose y(7,5) > 0 as
in (2.44), then (2.45) holds. O

Equation (2.45) in Proposition 2..3.1 has the following immediate consequence.

Corollary 2.3.2 (Semigroup property). Let 0 < 5,5’ < 1, withs + s < 1. Then, for anyu € . (R") we have
y group property Ly

()™ = (~A)(=8) = (~a) (-A)w.

18



Proof. It is enough to verify the desired equality on the on the Fourier transform side. Using (2.45) we find

F ((~2y™ 1) = (2alal2 i = (2] (2nfa))> 2

’ /

= Z(=8)(=A) u) = Z((-4)" (=4)u).

O

With Proposition 2.3.1 in hands we can now prove the following important ”integration by parts” formula.

Lemma 2.3.3. Ler 0 < s < 1. Then, foranyu,v € 7 (R") we bhave

/n u(x)(—A)v(x)dx = /n(—A)Iu(x)v(x) dx. (2-49)

Proof.- The case s = 1is well-known, and it is just integration by parts, so let us focus on 0 < s < 1. Since by
Corollary (2.1.9) we know (—A)u, (—A)'v € L'(R"), we can use the following formula, valid for any £, ¢ €
LY(R™),

[ res@ae= [ ropoas (259)
Applying (2.50) and (2.45) in Proposition 2.3.1, we find
[ coruem s = [ (~ayunF(F 0w ds= [ F(-0y0@F u(@) dg
— [ Cara@ 7 e ds= [ a@enn s e dz
R~ R~

Using (2.45) again we have
FH(=8)0)(§) = @ald)>F o(®). (2.51)
Inserting this information in the above equation, and applying (2.45) again, we find

[ Cayumee = [ a@F(-oyo @
- / P @) () (el de = / () (=AY o(x) d.

n

O
We next turn to computing explicitly the constant y(, 5) in (2.44).
Proposition 2.3.4. Let 0 < s < 1. Then, we have
52251* n+2s
Hn,s) = ——— (5 )~ (2.52)



Proof. If we denote by 8 € [0, 7] the angle that the vector z € R” \ {0} forms with the positive direction of the

2,-axis, then Cavalieri’s principle, and Fubini’s theorem, give

— o8 2, 1 — cos(rcos8) )
/n o dz—/ /Snl ey —————=dao" " dr
— cos(rcos @ dd’ dodr,
/ At / ) L

where we have indicated by Ly = {y € S| (y,¢,) = cos 8} the (n — 2)-dimensional sphere in R” with radius

sin § obtained by intersecting S”~! with the hyperplane y, = cos 8. Since with ¢;,_, given by (2.16) above we have

dd = o, _5(sin )" 2,

Ly

we obtain

1— cosz, R -
/ %dz*o’n 2/ 1+2:/ [1 — cos(rcos 8)](sin §)" > dddr
z

=0, 2/ ,J+2.r/ — cos(rcos §))(1 — cos® ) T > sin6dfdr (set # = cosb)

. (2:53)
=0, 2/ ,J+2.r/ —cos(ru)|(1 — u*) = dudr

,2/0 gre [/_1(1—uz)”z*du—/_llcos(m)u—uz)”f du] dr.

From (2.18) and (2.19) we thus find

/1 (1—52)%21dS—Z/Ol(cosﬁ)z”dﬁ_B(0+ 1’1> — w

. 22 T(v+1)

This gives

On the other hand, we have

1 1
[ st = )T du= [ -ty d

-1 —1

From this equation and (2.29) in Definition 2.2.2 we obtain with v = ”;2

/11 cos(ru)(1 — #2)" T du =T <n ; 1> r (;) (i) nz_zjnzz(r).
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Substituting in (2.5 3) above, we find

Lcosz, o TT)T(G) [ 1 2\
/||+d” K)o -1(3) () ()] dr.

Keeping (2.16) in mind, which gives

and /7 = I'(1/2), we conclude that

1 - cosz, N
L. T 4o / m[‘ (5) () fﬂﬂf)] dr.

From this equation and (2.44) above, it is clear that the constant y(#, 5) must be chosen so that

(7,5),-1 /OOO ﬂ% [IF(Z) (i) nzz]n;(f’)} dr=1. (254)

In order to complete the proof, we are thus left with computing explicitly the integral in the right-hand side of
(2-54)-

With v = § — 1, consider now the function

2 v
Y,(r)=1—T(v+1) (r> (7).
From the series expansion of /,(7), see (2.31) above, we have

(G 6 I €

TTw+1) T(v+2)  T(v+3)

This expansion gives for some function »(r) = O(*) asr — 0,

A 2
V,(r) = (1+ h(r)) (E) . (2:55)
On the other hand, (2.36) implies that as » — oo

Y, (r) =14 00~ “+3)), (2.56)
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and thus, in particular, ¥, € L*°[0, +00). We thus find

/000 [1—r(;‘) (i) nzzf";z(”)] dr= /OOO <r__22:)l‘1’u(r)dr

R r—25 4
= lim lim ( ) Y, (r)dr

R—o00e—0+ J, —2s
1 —2s 1 572; o0 },,72; , 4
=— lim —Y,(R im —Y —Y
dim ——¥,(R) + lim ——%¥,(¢) + ey o(r)dr

Since as we have observed ¥, € L]0, 00), we clearly have

-2

Rl;mw T\I’U(R) =0
From (2.55) and the fact that 0 < 5 < 1, we obtain
Ry
ali%lﬁ- 2s \IIU(E) =0

We thus infer that =
> n 2\ 2 Oy
/0 [IF(:Z) <r) ]nzz(r)] dr = i ?‘I’U(r) dr.
On the other hand, the recursion formula for /,, see e.g. (5.3.5) on p. 103 in [16],
(=(2)) = =27 o (2),

gives
Y (r) = =2T(v+ 1) (L, () = 2°T(v + 1)r Jpu1 (7).

We thus find

/000 [1 -T (g) (i) nzzjnzz(r)] dr = 2vr(z2}5+ 1) /000 V%_llw]% (r) dbr.

Recalling that v = % — 1 we can write the right-hand side as follows

2T(v+1 <1 2T(v+1 <1
WD 7 tar =T [T L0

wherey = v +1 = %,andg = 1 — 2s5. We now invoke the following result, which is formula (17) on p. 684 in

[13]: ( )
> I
/0 g e A = T (v—%1+3) (57)
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provided that
1
With the above values of the parameters ¢ and ¢ this condition becomes

n 1
1<l =25 < = — —.
2

[\

Now, the former inequality is satisfied since it is equivalent to s < 1, and the second is also also satisfied since it

is equivalent to s > 177", which is of course true since s > 0, whereas % < 0 In conclusion, we obtain from

(2:57)
2T(w+1) [~ 1 _T(3) Tr1-v)
25 /0 V”‘*‘Zf]U—H(V) dr= 252 25T (2 +5)

Returning to (2.54), and keeping the first identity in (2.16) in mind, we reach the conclusion that the constant

y(n, s) is given by the equation

2 T3 0
TG e By

which finally gives
S2%T (2 +5
7(”75) = n (2 ) .
72I(1—y3)

This proves (2.52), thus completing the proposition. O

2.4 FUNDAMENTAL SOLUTION

In this section we compute the fundamental solution of the fractional Laplacean operator.

Before we turn to the proof of the main results we pause for a moment to recall that there exist spaces larger
than . (R"), or L= (R") N C*(R")), in which it is still possible to define the nonlocal Laplacean either pointwise
or as a tempered distribution. Following Definition 2.3 in [19], given 0 < s < 1 we can also consider the linear

space of the functions # € C>°(R”) such that for every multi-index 2 € Nj

[#], = sup(1+ | T%)|0%u(x)| < oo.
x€R”

We denote by .Z;(R”) the space C*°(R”) endowed with the countable family of seminorms [-],, and by ./ (R”)

its topological dual. We clearly have the inclusions
C°(R") = L (R”) — A(R") — C(R"), (2-58)
with the dual inclusions give by

&'R") = F/(R") = 7' (R") = Z'(R"), (2.59)
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where we recall that &’ (R”) indicates the space of distributions with compact support. The next lemma justifies

the introduction of the space .7 (R”).

Lemma 2.4.1. Letu € 7 (R*). Then, (—A)'u € Z(R?).
Proof. From Proposition 2.1.8 we know that

[(=A)u]o = sgﬂgﬂ(l + ") (=) ()| < 0.

Suppose now that « € N and |«| = 1. We can write « = ¢, where ¢; indicate one the vectors of the standard
basis of R”. Applying (2.45) in Proposition 2.3.1 and (2.28), we have

(=AY ulx) = 0T (“AVu(@) = (~2m).F " (&(-AVx) (1)
(—2m).F7 " (§(22|£)*2()) by (2.27)
F! ((zﬂm)%@(a) by (2.45) again
FEF (=AY Opn) = (=AY Oy

Since Oy € .’(R”), again by Proposition 2.1.8 we conclude that

[u]e, = sup (1+ [o]" ) |Opu() | < 0.
x€ER”

Proceeding by induction on ||, for all 2 € N, we reach the desired conclusion. O

With Lemma 2.4.1 in hands we can now extend the notion of solution to distributional ones.

Definition 2.4.2. Let T € /' (R”). Wesay that a distribution u € ! (R") solves (—A)'u = T'if for every test
Sfunction ¢ € . (R") one has

In the special case in which 7" = J, the Dirac delta, then Definition 2.4.2 leads to the following.

Definition 2.4.3 (Fundamental solution). Wesay that a distribution E, € .7 (R") is a fundamental solution of
(=AY if (—AYE, = 0. This means that for every ¢ € . (R”) one has

It is clear from Definition 2.4.3 that if £, € .#/(IR”) is a fundamental solution of (—A)’, then one has
(—AYE, = 0in 2'(R” \ {0}). The following result establishes the existence of an explicit fundamental solution
E, € C°(R*\ {0}) of (—A)".

Theorem 2.4.4. Letn > 2and 0 < s < 1. Denote by

E(x) = a(n,s)|x "7, (2.60)
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where the normalizing constant in (2.60) is given by
Z—s
a(n,s) = 27) (2.61)
Then, E, is a fundamental solution of (—A)".

The proof of Theorem 2..4.4 will be given after Lemma 2..4.6 below.

Lemma 2.4.5. Suppose that eithern > 2, 0rn = land 0 < s < 1/2. For everyy > 0 consider the regularized

fundamental solution
Ey (%) = a(n,s) (P + %)) 7. (2.62)
Then,

—_ 2

E (&= mm K (2myl4), (2.63)

where we have denoted by K, the modified Bessel function of the third kind, see (2.39) above. From (2.63) we obtain

forevery & # 0 R
E(f) = lim E,, (&) = (2z|xd|) 7. (2-64)

}/*}0Jr

Proof. 'To prove (2.63) it suffices to show that for every f € .7(R”) we have

(Eof) = sty [ WKl a (265

To establish (2.65) we use the heat semigroup and Bochner’s subordination. The idea is to start from the observa-

tion that for every L > 0 and ¢ > 0 one has

< _;dt T(a)
tL o —
/o et " I (2.66)

Using Fubini and (2.66) with L = |§]* 4 »*, we obtain for any & > 0

/Oool.w (/ D df) d
9 ( /0 pro 1+ ”ff) dg

= 1@ | o +) s

The above assumptions z > 2,0rz = land 0 < s < 1/2,imply thate = 5 —s5 > 0. If we thuslete = 5 —sin

the latter formula we find

>, 2, 2\~ dt n
38 —(1&°+r7) a
[ (L) § =x(
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On the other hand, (2.50) above gives for any f € ./(R”) and y > 0

n Rr/

Multiplying both sides of this equation by £275 and integrating between 0 and oo with respect to the dilation
invariant measure % we obtain

/ s / Frg () Ao ar - / st / AT @8 s ™.

We next recall the following notable Fourier transform in R”: for every # > 0, and every £ € R”, one has

exp <—7zz|ﬂt2) . (2.68)

—

CE

Nl

T

ol

t

Substituting (2.68) in the preceding formula, we find

° 2,2 dt
i | F (e W) deZ
f [ me et p e
oo 2
77:%/ tﬂefyzz/ exp <—7zz|éj>ﬂf) df%
0 R~

[0 ([ () )

We now use the following formula that can be found in 9. on p. 340 of [13]

/ T i g (ﬂ ) " K2, (2.69)

0 y
provided 233, Ry > 0. Applying (2.69) with
v=—s, B=m|8, y=y,

and keeping in mind that, as we have already observed, K, = K_, (see 5.7.10in [16]), we find

oS} , 2 d N
/0 e exp (—7r2|§j> 7[ 2 <7ry§’]) K (2my|4). (2.70)

Substituting (2.70) in the above integral, we conclude

/ e [ SRR % = 2nty | 18K Caiaine & (271)
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Since the integral in the left-hand side of (2.71) equals that in the left-hand side of (2.67), we finally have

s [ FOQR+7) ) = a0 Fs [ KGR G2

R~

r(5-)
2273 I(s)

Recalling (2.61), which gives a(7,5) = , we infer from (2.72) that

(n.5) / e+ dg= %ﬂ() / K (2mEAY dE (273)

Keeping (2.62) in mind, we can rewrite (2.73) as follows

(B} = sty [ K mieAg df

Since by definition < 5. f> < 5> f> we conclude that (2.65) holds, thus completing the proof. O

We next prove a remarkable result concerning the function £; , defined by (2.60) and (2.61) above.

Lemma 2.4.6. Foreveryy > 0 the function E, , satisfies the equation

(ZA)E;,(x) = ( ) (3'2 + [x?) 7+, (2.74)

Proof. In order to establish (2.74) we begin by computing the function

F,y (x) == (_A)JEJ,)/ (x).

With this objective in mind we appeal to (2.45), which gives

Ey(H = (FAYE,(§) = (2#14)*E, (&) (2.75)

We now use (2.63) in Lemma 2.4.5. Inserting such equation in (2.75) we obtain

F38) = @rlf)* iy K 2] = T 2. (276)

Using Theorem 2.2.4 we find from (2.76)

4yt *
AR / K 2y s 1 (2lxle) (277)
T(s) 0

Fiylx) =

If we now let



then we can wirte the integral in the right-hand side of (2.77) in the form

/ h K, (ar)],(br) dt,

with

a=2my, b=2nlx|.

Under the assumption v — A + 1 > |u|, that is presently equivalent to z + s > s, which is obviously true, we can

appeal to formula 3. in 6.576 on p. 693 in [13]. Such formula states that

/ Oot‘ll(ﬂ(at)[u(bt) dr =

o [ 0= At v—d—p+l (2.78)
719F< R )F( R )F<vl+y+1 v—A—u+1 bz)
N 2 ’ 2 at)’

22_;'_140_1_;’_11—‘(1 ¥ 1)) U + 1, R

where, we recall, F(a, 8;7;z) indicates the hypergeometric function »F(«, 8; 7; z), see Definition 2.2.5 above.

Since

vfl+,u+1_ﬁ+ v—2Ad—p+1l =n
2 270 2 —

from (2.77) and (2.78) we obtain

/ K (2t 1 (2elle) dt =
0

B (27z'|x‘)%71r(% +5) (n . _|x|2) (2.79)
- 2*%*£+1(27fy)n+5 '

n n
Sy 555
277272

We now apply (2.42) to find

n non o |x? |x|? ~(5+)
o (PP i iy O i .
Greis5) =05

Inserting this information into (2.79) we have

o, Qa2 +5) (0 ) )
/0 tz+1{j(27z’yt)/g,1(27f‘?€|t) dt = 2*%*1+1(27z},2)ﬂ+5 1+ }}T . (2..80)
From (2.77) and (2.80) we finally conclude
L(3+9) (o, B2\ 0 _ 2T (3+9) s
= DO (L B2 e
2®) Yzl (s) ( + 52 7iT(s) "+ ll)
This establishes (2.74), thus completing the proof. O

We are now ready to provide the
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Proof of Theorem 2.4.4. Our objective is establishing

[ EG)-ayp6)di=o(0) (281)

for every test function ¢ € #(R”). We begin by observing that, since we are assuming that z > 2, we auto-
matically have that 0 < s < 7. Fory > 0 we now consider the regularization E; , of the distribution £; defined
by (2.60) and (2.61) above. Notice that E, , € C>°(R") and decays at 0o like |x|~(*=). Since for p € .7 (R")
we know from Lemma 2.4.1 that (—A)’p € #(R"), it should be clear that Lebesgue dominated convergence

theorem gives

| Eowaypwds— [ EG)(-ayelds

R~

asy — 0. On the other hand, Lemma 2..3.3 (which continues to be valid in the present situation) gives

/E,,y(x)(fA)@(x)dx:/ (—A)'E;,(x)p(x) dx. (2.82)
R” n

Therefore, in view of (2.82), in order to complete the proof it will suffice to show thatasy — 07

/ (AVE, (2)p(x) ds — p(0). (2.83)

To establish (2.83) we use (2.74) in Lemma 2.4.6 which gives

[ (CayE ) s = m | (1 " ';f) ) s

fw L2 —(2+s) o) dod’
T A() /n(H' ) pO) d
- ﬂo)m [ aswpy o,

where in the last equality we have used Lebesgue dominated convergence theorem. To complete the proof of

(2.83) it would be sufficient to prove that

r(%—’_'f) N2\—(5+s /I __
7;51“(;)/n(1+x|) (5+) g’ = 1. (2.84)

Now, the validity of (2.84) follows from a straightforward application of Proposition 2.2.1 with the choice a =
n+256=0. O
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2.5 TRACES OF BESSEL PROCESSES

When dealing with nonlocal operators such as (—A)* a major difficulty is represented by the fact the they do not
act on functions like differential operators do, but instead through nonlocal integral formulas such as (2.7). Asa
consequence, the rules of differentiation are not readily available. In this perspective it would be highly desirable
to have some kind of procedure that allows to connect nonlocal problems to ones for which the rules of differential

calculus are available. Exploring this connection is the principal objective of this section.

During the past decade there has been an explosion of interest in the analysis of nonlocal operators such as
(2.7) in connection with various problems from the applied sciences, analysis and geometry. The majority of these
developments has been motivated by the remarkable 2007 “extension paper” [7] by Caffarelli and Silvestre. In that
paper the authors introduced a method that allows to convert nonlocal problems in R” into ones that involve a
certain (degenerate) differential operator in R’fl. Precisely, it was shown in [7] thatif foragiven 0 < 5 < 1
and # € . (IR”) one considers the function U(x;, y) that solves the following Dirichlet problem in the half-space
Rf‘l:

L,U(x,y) = div,,(y* Ve, U) =0 x € R,y >0,

(2.85)
Ulx,0) = u(x),
where now 4 = 1 — 25, then one can recover (—A)’#(x) by the following “trace” relation
22710(s) _,,0U s
- k) T (x,9) = (—A)u(x). (2.86)

I'(l—ys) y—l>r(r)l+y Oy
Thus, remarkably, (2.86) provides yet another way of characterizing (—A)’x(x) as thw weighted Dirichilet-ro-
Neumann map of the extension problem (2.85).

One key observation is that the second order degenerate elliptic equation in (2.85) can also be written in non-

divergence form in the following way

—A U= AB,U, (x,y) € RAH!
Ulx,0) = u(x), x € R, (2.87)
Ulx,y) = 0, asy > 00, x€RY

where we have denoted by

”? a0
%a = 87)12 + ;5)} (2.88)

the generator of the Bessel semigroup on (R, y* dy).

Theorem 2.5.1. Letu € . (R"). Then, the solution U to the extension problem (2.85) is given by

Ulx,y) = P(-,y) xu(x) = / Pi(x — z,y)u(z) dz, (2.89)

R»
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(2.90)

where ( ) .
I+
Px(xv,y) = zz > ) n+25
7iLs) (52 + [xf?)
is the Poisson kernel for the extension problem in the balf-space R™H, For Uas in (2.89) one bas
: 27711(s) LoU
(—A)u(x) = TTa=s) e By (x,)- (2.91)

Proof. Consider the extension problem (2.85), written in the form (2.87). If we take a partial Fourier transform
of the latter with respect to the variable x € R”, we find
2/0 a /(\] 77 n
G E0) +155(5) — 42| PUEY) =0 inRY (2.92)
U,y) > 0,asy - 00, x€ R,

U£,0) = a(8),

where we have denoted
o) = [ U
Ye(y) = , we write (2.92) as

In order to solve (2.92) we fix £ € R” \ {0}, and with ¥(y) =
(2.93)

Y'() + @Y () — 47227 Y() = 0

Y(0) = u(§,9),
Y(y) = 0, asy — oo.

Comparing (2.93) with the generalized modified Bessel equation in (2.40) above we see that the former fits into

B =274

the general form of the latter provided that
v=s,

Thus, according to (2.40), two linearly independent solutions of (2.93) are given by

() =yLQ27lEy),  w(y) = yK(2=ldy).

It ensues that, for every £ # 0, the general solution of (2.92) is given by
Ulé.y) = 4y L(271€]y) + By K, (27|d]y)-

The condition U(£,y) — 0asy — oo forces 4 = 0 (see e.g. formulas (5.11.9) and (5.11.10) on p. 123 of [16]
(2.94)

for the asymptotic behavior at 0o of K and ;), and thus

U(¢.y) = ByK,(27|£ly).
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Next, we use the condition U(£, 0) = 7(£) to fix the constant B. When y — 07 we have
Br2! s
(2718)~,

7r)f I_,(27|8y) — 27[\5]}/
By'K,(2
Ulg.y) = ByK.(2nlfy) = sin 7zs F(l—x) sin 7zs
Now from formula (5.7.1) on p. 108 of [16], we have asz — 0
1 Z\* 1 2\~
s LY e L ()7
) ( ) (2) I(1—s) (2

1(2)

Using this asymptotic, along with the formula (2.13) above, we find that as y — ot
Br2! o —s
(27]8) ™ = B2 7'T(5)(27]4))

I'(s+1

@(f,}’) = By K,(2z|dly) — I'(1—ys)sinzs

In order to fulfill the condition U(£,0) = %(£) we impose that the right-hand side of the latter equation equal

#(£). For this to happen we must have
L Ca)ae
2-1T(s)

Substituting such value of B in (2.94), we finally obtain
~ 27|8)%
0. = 2 i argy). (259)

At this point we want to invert the Fourier transform in (2.95). In fact, it is clear from the latter equation that the
(2.96)

function U(x, y) will be given by (2.89), with P;(x, ) as in(2.90), if we can show that
T+ »
FIE (P 1 )

2711 (s)

F—x

. ( (27f|ﬂ)5),51<5(27,ﬂ},)) _

) .
ORI (2.97)

In view of Theorem 2..2.4, the latter identity is equivalent to
n

_ I

T

K51

2272’rJrl
ey / FHK, (2myt)]s 1 (2elale) de

We are thus left with proving (2.97). Remarkably, this identity has been already been established in (2.80) above

Therefore, (2.97) does hold and, with it, (2.89) and (2.90) as well
In order to complete the proof of the theorem we are thus left with establishing (2.91). With this objective in
mind we note that in view of (2.45) in Proposition 2.3.1, proving (2.91) is equivalent to showing
22.r71r( )
22|18)%4(9) = - lim 98
o = -2 i Ol e (2.9%)

Keeping in mind thatz = 1 — 25, and usind the formula
s
K(e) = K (0) ~ Ko (2)
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(see (5.7.9) on p. 110 of [16]), we obtain

U, )T 2
T RN (P

K(27|&y) — K1 (271E]y)

Since

2K (e) ~ Konale) = —Ka(e) = —Ki (&)

(again, by (5.7.9) on p. 110 of [16]), we finally have

(27" a ()

VA 8)/ (fa ) = W}’I ‘K (27|&]y)-

Now, as before, we have as y — ot,
Y K (27]dy) — 27T - 5)(274)
We finally reach the conclusion that,as y — 0,

ra—s em
7 O0E 0 — P ey

This proves (2.98), thus completing the proof. O

Remark 2.5.2. Using Proposition 2.2.1 with the choice b = 0 and a = n + 2s, it is easy to recognize from (2.90)
that

2ol ey = / Pi(x,y)dx =1, Sforeveryy > 0. (2.99)
RW

Remark 2.5.3. Notice that when s = 1/2 we havea = 1 — 25 = 0, and the extension operator L, becomes the
standard Laplacean L, = A, + aj in R**L. From formula (2.90) we obtain in such case

I (%) y
7T (2 + )

P (x’y) =

1
2

which s in fact the standard Poisson kernel for the upper half-space RT‘I.

Remark 2.5.4. Ifwe compare the expression of the Poisson kernel in (2.90) with (2.74) in Lemma 2.4.6, we conclude

that, remarkably, we bave shown that
Py(x,y) = (A)E; (%), (2.100)

where fory > 0 the function E, , = c(n,s)(y* + |x|*)~ 7 s the y-regularization of the fundamental solution of

(—AY. If we combine (2.100) with (2.83) above, we see that we can reformulate (2.83) as follows

lim 2(-,y) =9  in ' (R"),

y—>0
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or, equivalently, for any ¢ € ' (R")

im [ P0)p(x) ds = p(0).

y~>0Jr

If we ler p(x) = p(—x), then we obtain from the latter limit relation

Po(ery) % o) = /R B(ap)rle) d — 7p(0) = plx). (2.101)

Remark 2.5.5 (Alternative proof of (2.91)). Usiin the property (2.101) of the Poisson kernel P(x, y) we can provide
another “short” proof of (2.91) along the following lines, see Section 3.1 in [7]. Letu € 7 (R*) and consider the
solution U(x,y) = Py(-,y) * u(x) to the extension problem (2.85), see (2.89). Using (2.99) we can write

I

T

+ 25
‘) J — dz + u(x).
I(s) Jre (52 + |x — 22)*5

el SIS

U(x7}’) =

Differentiating both sides of this formula with respect to 'y and keeping in mind that a = 1 — 2s, we obtain that as
Y — ot

—dz+ O 2).
v 7t ey Y

f%lyj(x,y) = z;rgrz)f) u(z) — u(x)

Letting y — 0t and using Lebesgue dominated convergence theorem, we thus find

Lou T (5+s) u(z) — u(x)
yirg+y Jy (ry) =2 72I(s) P / z — x|t de
I‘(% +;) 1 5
=25 W%F(J) 7(”75) (_A) ”(x)a

where in the second equality we have used (2.8) above. If in the latter equation we now replace the expression (2.52)

of the constant y(n, s), we reach the conclusion that (2.91) is valid.
U

The Poisson kernel 2;(z, y) is of course a solution of L,P, = 0 in Rfrl. What is instead not obvious is that
the y-regularization E; , of the fundamental solution E; of (—A)* introduced in (2.62) in Lemma 2.4.5 is also a
solution of the extension operator L,. It was shown in [7] that, up to a constant, such function is in fact the
fundamental solution of Z,. The heuristic motivation behind this is that, with x € R”, and € R**1,if y = ||
then the operator

VL, =A+ iz + ﬁg (2.102)
Ay Oy
ca be thought of as the Laplacean in the fractional dimension N = 7 4 4 + 1 acting on functions U(x, || ). Such

heuristic is confirmed by the following result.
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n—2

Proposition 2.5.6. Fory € R consider the function G(x,y) = (|x[* + y*)~ 2 , see (2.62). Then, for every
(x,y) € Ry, witha =1 — 25 we have
L,G(x,y) = 0.

Proof. Itis convenient to use the expression of (2.102) on functions depending on » = |x| and y

—ar _872+L_1g+672+£2
Joe T 9 ro Or Oy yoy

Then, the proof becomes a simple computation. Abusing the notation we write

n—2s

Glx,y) = G(ry) = (P +y")" 7.

We have
_nta=l_

G =—(nta-1)"+y)" = ',

G = (n+a—1)(7+7)""F X(n+a)? =),

This gives

n—1

G, + G.=(n+a—1)0" +y2)7”+;_172((1+a)r2—nyz).

7

On the other hand, a similar computation gives

Gy + 26, = (- a =)0+ (1 +0)? — )

Adding the latter two equations gives the desired conclusion L,G = 0. O
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Fractional calculus

3.1 THE HEAT SEMIGROUP

Given a set X, a dynamical system is a family {T(¢) } ;>0 of mappings 7(#) : X — X such that

o T(t+43s5) = T(1)T(s) forallz,s > 0,

° (0) = [X'

One can interpret X as the set of all states of a system, ¢ € [0, 00) as time, and 7(#) as the map describing the
change of a state x € X at time # = 0 into the state 7(#)x at time # > 0. When the state space X is a vector space
and each 71(7) is a linear operator on X, then { 7(#) },>( is called a (one-parameter) semigroup of operators. When

Xis a normed space, we say that it is a semigroup of contractions on X if for every £ > 0
[7()xl| < [l«f,  x€X

When the normed space X is a Banach space we say that a semigroup of bounded linear operators { 7(¢) },>0 on X

is strongly continuous if for every x € X its orbit map
t— T(t)x

is continuous from [0, 00) into X. Strongly continuous semigroups are important because they represent a gen-
eralisation of the exponential function r — ¢4 of amatrix A € M,,,(C). Just as exponential functions provide

a solutions of a scalar linear constant coefficient ordinary differential equations, strongly continuous semigroups
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provide solutions of linear constant coeflicient ordinary differential equations in Banach spaces. Typically, such

differential equations in Banach spaces arise from PDEs.
We begin our discussion by considering the ubiquitous Gaussian

B

K(x) = (471’)7%677
Obviously, K € L'(R") and we easily have

K(x)dx=1.
R~

We next consider the following approximate identity associated with such kernel K

x|

> —(m) i >0 (3.1)

X

NG

The inquisitive reader might winder why we have scaled by /7 and not just z. This is due to the fact that the

G(x,2) := tZK(

function G(x, ¢) introduced in (3.1) is the fundamental solution of the heat operator 9,— A, and for such operator

the correct scaling is provided by the non-homogeneous (parabolic) dilations 2 — (Ax, 2%¢).

The next proposition contains an elementary but very important property of the function defined by (3.1).

Proposition 3.1.1 (Chapman-Kolmogorov equation). Foreverys,t > 0, x,y € R” one has

G(x—y,t+s):/ G(x — 2,£)G(z — y,5) dz.

n

Proof- We note that, by translation, it suffices to prove such identity when y = 0. We thus need to show that for
every x € R” and #,5 > 0 we have

G(x,t+ ) :/ G(x — z,t)G(z,5) dz,

or equivalently

|x]2

(4n(t +5))"3e 00 = (dat) "% (dms)~

(NI

[

We now perform some elementary manipulations in the exponential in the integral in the right-hand side to find

e—2® P V(4% o n |2
lel” 1 o)+ Py
4¢ + 45 4(t+5) + 4t \ 4(z 4+ ) bel” + 12 (2) + 4s
J?

1 1 2
4s E 4(t+5)\?
+ x— z
424(t + 5) 4ths
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This gives

[N

(4mt) ™2 (4ms) ™

[

2

dz.

1
(st ) To— (2422) 22

. w2 -
— (drt)~ 3 (dr)~Be / ;

B 4 \: i(r+9)\
it <4f4(t+s)> x_( 4ths ) @

(4 +) :
df—'(ly4;> dz

The change of variable

for which we have

now gives

2
|

(4m‘)_%(4m)_%/ e_<%+‘z" )dz

n

n

|x]2

__ 7> 18 g — )" ie 1
=y L = e )i

which finally proves the desired conclusion. O

The next result expresses a fundamental property of the function G(x, £).

Lemma 3.1.2. Foreveryx € Rnandt > 0 one has
0,G(x,t) — AG(x,£) = 0.
Proof. From the definition (3.1) it is immediate too verify that
VG(x,t) = ——G(x,1)
x,t) = ——G(x, ).
) 21_ 9

Then we find

I n |x[?
AG(x,t) = _Zdlv (G(-,t)x) = —Z‘G(x, ?) + ZG(x, 7).

On the other hand, differentiating in # we easily find

n Jof?
@G(x, t) = _Z‘G(Jﬁ t) + TtG(x, t).

The desired conclusion follows. [

For reasons that will become clear subsequently we now introduce a special notation for the convolution with

G('J)
ww:awﬁw:/awwwww (3:2)

n
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where f'is a measurable function on R” for which the integral (3.2) makes sense. We can see that, as a linear
operator, P; : IZ(R”) — L’(R”) for1 < p < 0o and moreover

1 2A| 2 ey < WAl e ey (3-3)

Furthermore, we have the following.

Proposition 3.1.3. Letz,s > 0. Forevery f € I (R") we have
Py f = Pi(Pyf).
Proof. In view of (3.3) and Proposition 3.1.1 we have
Pif) = [ Ga—nirifdy= [ [ Gl dflr)dy
- / Gl — 2, )P f(z) dz = Po(Pf) ().

O
Theorem 3.1.4. Let1 < p < 0. Iff € L (R") we have
lim ||Pf— ) = 0. .
lim [[Pf = fllr ey (3.4)

If instead f € L™ (R"), then we have
lim PAx) = flx) (35)

t—0+t

at every point x € R” of continuity for f.

As a consequence of Proposition 3.1.3, (3.3) and Theorem 3.1.4 we obtain the following basic result.

Proposition 3.1.5. Forecveryl < p < 00 the one-parameter family { P, };>¢ is a semigroup of contractions on

L2 (R™). The semigroup is strongly continunous when 1 < p < o0.

The family of operators { P, },>¢ is called the beat semigroup in R”. The name is justified by the fact that the
function #(x, £) = P,f{x) solves the Cauchy problem for the heat equation d,# — Au = 0in R” x R™. Denote
the semigroup P, with the symbol ¢*. Clearly, if we formally let # = 0 we find #(x, 0) = fA(x). Furthermore, by

differentiating formally in # one has

u,(x,2) = A Ax) = Au(x, 1), (3-6)

therefore u(x, ) = Pf(x) satisfies the heat equation d,# — Ax = 0in R* x R™T.

Proposition 3.1.6. Givenf € C(R”)NL>®(R"), the function u(x,t) = PA(x) isa solution of the Canchy problem
for the beat equation
Ou—Au=0 inR" xR,

u(x,0) = flx).
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Another fact suggested by (3.6) is the commutation property A = AP,. The next proposition establishes
this.

Proposition 3.1.7. Forevery f € C3°(R”) one bas foranyx € R* and t > 0
PAAA) = AP ().
Moreover in general, if f € 7 (R") and § € Nj one bas

PO (x) = & (Pf) ().

Proof. Letf€ C3(R") and fix R > 0 so large that supp £ C B(0, R). Then

_b=a?

PAB) = 42 [ MR oL
— (4mt)"? /B o (e b >
= (4mr)"3 /B » A, (8_ u;;z) ) dy

= (471 7%Ax e W d
(4t) / o T
— AN ).

O
The following result is a simple but useful consequence of the commutation property in Proposition 3.1.7.

Lemma 3.1.8. Lerl < p < oo. Givenany f € & (R”) forany ¢ € [0,1] we bave

12 = Alp < 1811l
Proof. By proposition 3.1.6 and 3.1.7 we have for any f € . (R”),

t d t t
Pflx) — flx) = / d—PTf(x) dr = / AP f(x)dr = / P Aflx) dr.
0 4t 0 0
This gives forany 0 < ¢ <1,
t t
127 ~fly < [ 120 de < |, [ de = e

where in the second inequality we have used (3.3). O
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3.2 ULTRACONTRACTIVITY

We next establish a basic property of the semigroup {2, },>0.

Proposition 3.2.1 (Ultracontractivity). Lerl < p < oo and f € L(R”). Foreveryx € R* and t > 0 we have

c(n,
Pl < L2y, (7
for a certain constant c(n, p) > 0 (when p = 1 one bas c(n,1) = (47) ™2 ). In particular, for any f € L7 (R") and
x € Rn one has

lim |Pfx)| = 0. (3.8)

Proof. Applying Holder’s inequality to (3.2) we find

1
o

o _ P l—? /%
= Al (4) "2 </R b dy) ,

n

with1/p+1/p’ = 1. By the change of variable z = \/%(y—x), for whichdz = (‘%) : dy, the desired conclusion

2 < W ([ 6t )

n

immediately follows with ¢(7, p) = ( ;) v (47) "%, 0

Combining Proposition 3.1.7 and 3.2.1 we now establish the following remarkable instance of the subordina-

tion principle of Bochner.

Proposition 3.2.2. Let n > 3. Then the following equation holds in 2’ (R”)
A},/ G(x —y,t)dr = —0d,
0
where d, indicates the Dirac delta at x.

Proof. To establish the proposition we need to show that:

1. foreveryx € R” the functiony — [ G(x — y, ?) dt defines an element of 7’ (R");
2. forevery f € C3°(IR”) one has

</OOC G(x —y,2)dt,Af) = —flx).

Concerning (1), we notice the following remarkable fact

o T
/ G(x—y,t)dt =
0
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lx—y[?
i

t/awwwzwﬁ/ggﬁ%ﬂ
0 0 t2 z

Since the function y — |v — y[*~" belongs to Li, (R"), conclusion (1) follows from (3.9). To prove (2) let
f € CP(R”). We have by Fubini’s theorem

Equation (3.9) follows simply by the change of variable 7 = in the integral

o

<Ay/ (x—y,0)de,f) = / G(x — y, 1) dt, Af)

// (x —y,0) dtAAy) dy = / / (x =y, 0) A y) dy dr
:/0 (AP ) :/0 AP d

where in the last equality we have used (3.8). Since Proposition 3.1.6 gives APf{x) = 0,P,f(x), by the above

computation we find

(4, /OOO G(x—y,t)dr,f) = /OOC 0P flx)dr =  lim /Ta,P,ﬂx) dt

T—o00,:—01 J,
= lim  [Pflx) — PAlx)] = —flx),

T—00,e—0F

where in the last equality we have used (3.5) and (3.20). O

3.3 FRACTIONAL POWERS OF THE LAPLACIAN

In the Chapter 2 we introduced the fractional Laplacian, see (2.7). In this section, we will not follow the original
presentation of the subject, but instead use the semigroup {2, },>¢ and only subsequently recognise the equiva-
lence of the two notions. The next definition was originally set forth by Balakrishnan and can be be deduced from

his seminal works [2], [3].

Definition 3.3.1 (Balakrishnan). Let 0 < a < 2. The fractional Laplacian of order 5 is defined on a function
fe L (R”) by the formula

Our first observation is that Definition 3.3.1 makes sense, i.e., that the integral in the right-hand side is finite.

This will be a consequence of the following result.

Lemma 3.3.2. Thereexistsa constant C(n) > 0suchthat forevery f € C*(R*), with second derivativesin L™ (R"),

we have

|PAx) = flx)] < Cn) ||Vl o -
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Proof. As a first observation we claim that

PAR) ~fis) = 5 | GOfls-+9) + v =) = Al (3.10)

Next, we observe that the C? Taylor formula gives

Fle+9) = ) + (Vf),0) + 5 (VA 00
e =2) = i) = (Vfi).) + 5 (VR0

This implies
Az + ) +Ax = y) = 28| < [Vl ) b1

Substituting this estimate in (3.10) we obtain

1
PA) =] < 519 limiey [ GO dy < CON T lumor

This proves the desired result. O

With Lemma 3.3.2 we can now show that the integral defining (—A) 2 A{x) is finite for every x € Rn. We have

in fact
| e - e
= /O tl%(l),f(x) — flx)) de + /1°° B%(sz(x) — Alx)) dr.

The integral on (0, 1) is finite thanks to Lemma 3.3.2. The integral on (1, 00) is trivially estimated as follows

[ e - po

<1
< 2|m|L°°(]R")/ rlT%dt < 00,
1

where we have used (3.3) to infer || Pf]| oo (rr) < ||fll 200 (r)-

We close this section by establishing an “integration by parts” formula for the operator (—A)?%.

Proposition 3.3.3. Let 0 < a < 2. Foranyf,g € /(R") one has
[ et -0)ig] dw=o
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Proof, We have
/ng(x)(—A)%f(x) dx = _I“(lz—’"/ g(x) /OO tl%(plﬂx) — Ax)) dedx
/ =y /g N Pf(x) — flx)) dxdr

% /0 /ﬂx (Pyg(x) — g(x)) dxdr

O

We note that Proposition 3.3.3 continues to be true if we replace the hypothesis ¢ € .7 (R”) with ¢ € C*(R")

with bounded second derivatives. With this observation we obtain the following.

Corollary 3.3.4. Foranyf e ./ (R") one has

/n(fA)%fdx: 0.

3.4 BALAKRISHNAN MET M. RIESZ

In this section we show that Balakrishnan’s definition of the nonlocal operator (—A)? coincides with that intro-
duced by M. Riesz in [17]. Subsequently, we analyse the asymptotic behaviour of this operator asz * 2 and we

show that, unsurprisingly, in the limit we obtain the negative of the Laplace operator A.

Proposition 3.4.1. Let 0 < a < 2. Forevery f € . (R") one bas

(—A)%f(x) _ 2" T (%) /" Zﬂx) —f(x+)/ f(x }’

7 (1-5) I+
Proof. Using equation (3.10) and Fubini’s theorem we find
2 2 <1
—A)3 =2 — G(y,t —y)—2 dydt
) =gy |, L GO )~ A

a

- za)/w[ﬂxw) +fle =) = 2f1x)] /OOO H%G(y,t)dtdy.

ar(1-4

To complete the proof all is needed at this point is the following elementary computation

* 1 . 1 b1z dt
—G (47)" % ~_ v =
o 2132 0+ A /0 £ z
I (3.11)
= (47)” 2”+“r< 5 )|y|—<”+“>.
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We next analyse the limit of (—A)% asex 7 2.

Proposition 3.4.2. Lerf € ./ (R”). Then for any x € R” one bas

lim (—A) Ax) = —Afx).

a2

Proof. We write

The second term is easily estimated as follows
|II(2)| < 2|z 73 / —1 dr— 0, asa—2
= L= (R*) r (1 ;) ) 1+£ ) ’

since (1 — %) r (1 - %) =1+ o0(1) asa 2. For the first term we argue in the following way. By Lemma 3.3.2

we can integrate by parts obtaining

t

I(e) = —r(l_) / 1 () (PA) — fie)) de

1 1 L' .4
= Fgy —ﬂx))—r(l_g)/o £ Pl dr

2

1 1 1 .
1 1 1 .
= @(Pl x) *ﬂx)) - IM/O t ZP;Aﬂx) dr.

where in the last two equalities we have used Proposition 3.1.6 ans 3.1.7. Since Af € .%(R”), by Lemma 3.3.2

again we can write for ¢ € [0, 1]
P,Af(x) = Afx) + O(2).

Therefore
1 b 1
M/O t 2P Aflx) dr = WA]C(X) +0(1)

asa /' 2. Substituting in the above expression of I(«) we conclude that
I(«) = —Afx), asa N2,
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thus completing the proof. O

3.5 THE EVOLUTIVE SEMIGROUP

In semigroup theory a procedure for forming a new semigroup from a given one is that of evolution semigroup. In
this section we exploit this idea to introduce a new semigroup that will be used as a building block for: (i) defining

the fractional powers of the heat operator H = A —0;; (ii) solve the extension problem for such nonlocal operators.
Let us to introduce the following operator on functions

i) = [ Gl it = 5)dy = PAA-0)(0) (3.12)

n

and call it the evolutive semigroup. The motivation for such name is in the fact that { P}, does in fact define a
semigroup of contractions on L7 (R*1), for 1 < p < oo, where hereafter we use the notation R*** to indicate

the space R” x R with respect the variables (x, ). One has in fact from (3.12) for 7,5 > 0

Pf+¢f(x, t) = pr+a(A—T—qf('7 t))(x)
= Pr(Pzr(Afrfajf('v t)))(x)

(3.13)
= PA(PAA_fT.)() -
= P(Pf)(x,1).

Furthermore, one has
Tl_i>1%)1+ Pfﬂx, 1) = flx, 1). (3.14)

The following two lemmas summarise the semigroup P properties that have already been proved for 2.
Lemma 3.5.1. Foranyt > 0 we bave:

. HZ(R") ¢ L (R and P (7 (R*)) € 7 (R*HY);
2. Foranyf€ . (R"™) and (x,t) € R"™ one has 0, P f(x,t) = HPYf(x,t);
3. Foreveryf€ . (R"™) and (x,t) € R**! the commutation property is true

HPff(x, t) = Pfo(x, 7).

Proof. (1) The first part is obvious. For the second part it suffices to show that P/ECE S (R if fe 7 (R*H),

and this follows from the following formula,
PifE ) = Um0 g ). (3.15)
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(2) Is a consequence of the definition of P
(3) Follows immediately from (3.15) and the fact that

Hf(¢, o) = —(472|8? + 27i0)f1E, o),

or from the commutation property AP, = P,A in Proposition 3.1.7, and from the relations Pf 'f = P(A_f),
HA_, = A_,H. O

Henceforth, we will often use some mixed Lebesgue spaces which represent the appropriate substitute for the
standard I/ spaces when dealing with anisotropic partial differential operators such as the heat operator. Given a
measurable function A, £) on R**1, and exponents 1 < p, g < oo, we will write £ € I/(R, L7(R")) to indicate
the fact that

l%
Al @ zorey) = </]RV( Ll dt) =
with obvious changes when p = co. Itis clear that IZ(R, L1(R")) = L7 (R"*).
Lemma 3.5.2. The following properties hold:

1. Forevery (x,t) € R and v > 0 we have PA1(x,t) = 1;
2. Wehave P2, = P4 o P for every o, v > 0.

3. Letl < p < oo, then P2 o IP(R*Y) — (R with | Py < 1 Therefore, {P},~q isa
semigroup of contractions on LIF (R* 1) when1 < p < 0.

Proof. The proof (1) and (2) have already been given. We only provide the details of (3). If p = o0, then it is

immediate to see

P21 oo oty < (Al oo oty (3.16)

thus we assume that 1 < p < 0o. Using the second equality in (3.12), (3.3) and Tonelli’s theorem we have for any
f cI? (Rﬂ+1)

1Pl = (120D t) < ([0l e )

}%
B <‘/RV‘(’L‘)||];}(R,1) dt) = |m‘U(R”+1)'
O

We conclude this section with the analogue of Lemma 3.1.8 for the semigroup {P?},~( and an important

consequence of it.

Lemma 3.5.3. Forevery f € . (R"™) and (x,t) € R* ™ we have
|PIfx, 1) = flx, )] < | Hfll o oy .
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Proof. We have
T d T T
P, 1) — flxyt) = / d—Pgﬂyg t)do = / HPIfx, 1) do = / PAHA(x, 1) do,
0 4 0 0
where in the last equality we have used the commutation property (3) in Lemma 3.5.1. This gives, using (3.16),
1P fwt) Sl )| < [ VLR Ao < [P ) d
0 0

< / VG, )l oo oy di = [, )] e vy 7
0

Arguing in a similar way one proves the following.

Lemma 3.5.4. Let1 < p < oo. Given any f € .7 (R"™) forany = € [0,1] we bave
prf_ﬂhf(w“) < EH]fl ety 7
Corollary 3.5.5. Let1 < p < oo. Forany f € I (R**') one has

Tﬂ%HPff*ﬂb(Rwl) =0.

As a consequence, {PT}~oisa strongly continunous semigroup of contractions on LP (R +1),

Proof. Since .7 (R"™) is dense in L7 (R"™), for every ¢ > 0 there exists ¢ € . (R**!) such that

£
If = @y < 3

Having fixed ¢ in this way, in view of Lemma 3.5.4 there exists 7p = 7o(¢) > 0 such that for every 0 < 7 < 7

we have

1Py — Yll oy <

W | ™

This gives forevery 0 < 7 < 7

I1P2f = Alp@e+y < NPE(F= D@y + 1PEy — Hp@esy + ¥ — Alp @)

e ¢
<Y =Ap@+y + 3 + 3 <,

where we have used (3) of Lemma 3.5.2. O
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3.6 'THE FRACTIONAL HEAT OPERATOR

With the results of Section 3.5 in hand we are now ready to introduce the fractional powers (9, — A)?%.

Definition 3.6.1. Ler 0 < a < 2. The fractional heat operator of order § is defined on a function f € /' (R**")
by the formula

(0 — A)iflw ) = 1 3 /O°° 711+§ (Pfx, 1) — flx, 1)) d.

1-35)

We observe right-away that, thanks to (3.16) and Lemma 3.5.3 the integral in the right-hand side of (3.6.1) is
finite. It is also worth observing that f{x, £) = f{x), then

(0 = 8)3flx,1) = (=1)*fx).

Next, we observe that if we presently define the parabolic dilations

N fx, 1) = flAx, lzt),

the simple manipulations show that

Pi[(z;gf)(x, t) = Pféﬂlx, lzt). (3.17)
One easily obtains from (3.17)
(0 — D) (9 (x, 1) = 2°(0, — A) 2 f0x, 2%0), (3.18)

which shows that the fractional heat is an operator of order  with respect to the anisotropic parabolic dilations.

We conclude this section with the next result, which is an useful version of Proposition 3.2.1

Proposition 3.6.2 (weak Ultracontractivity). Lerl < g < oo and f € L (R, L1(R")). Forevery (x,t) € R**!

and v > 0 we have (n.0)
c(n,
[P, )] < nq 1Al oo (R 21 (B2 (3.19)

TY

for a certain constant c(n,q) > 0. In particular, for any f € L™ (R, L1(R")) and (x,t) € R" ™ one bas
lim |PYAx, )| = 0. (3.20)

T— 00

Proof. Applying Holder’s inequality to (3.12) we find

Pl < |

< fiest = Dl ( [ oo dy)

< c(n,9)7 % | fll oo (10 (7)) »

Gle=2, 7)1 = 7l dy

n

1
7
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1 1 _
where g + 7= 1. O

3.7 THE EXTENSION PROBLEM

In their seminal 2007 paper [7] Caffarelli and Silvestre introduced the extension problem tor the fractional powers
of the Laplacian, that we have already proved in section 2.5. In line with the spirit of the present chapter we are

going to use the heat semigroup to solve, again, the extension problem.

In what follows we consider the upper half-space RT—I =R} x R;r, with variable X = (x, y), where x € R”
andy > 0. Let 0 < 2 < 2 and introduce what we call the Bessel parameter a = 1 — a € (—1,1). Given a
function £ € . (R"*!) we want to find a function U € C°(R"*! x R™) such that

¥ O,U —divy(y*VxU) =0 inR"™ x RF,

U(.X', z, 0) :f‘(x7 t) (x7 t) c R”—H, (3.21)

When 2 = 1, and therefore 2 = 0, the problem (3.21) was first introduced and solved by Frank Jones in his

beautiful but apparently not so well-known 1968 paper [15]. He also proved the following heat equation

U 1
7y1—i>r(r)l+ aay(xv ta}’) = (af*A)Eﬂxv t)' (3.22)
Let us notice right-away that since the right-hand side of the PDE in (3.21) is zero, we can factor y* out and write

the problem in the equivalent form

BOU=0,U+40,U+AMU-U=0 R xR, (3.3)
3.23
Ulx,t,0) = flx, 1) (x,2) € R*HL,
We call B the extension operator. To find its heat kernel we make the following formal considerations, which
can be justified a posteriori. Denote by w a point in the Euclidean space R**! with fractional dimension 2 + 1.
Never mind for the time being the fact that this really makes no sense. If we denote by y = || (again, this is
purely formal), then the Laplacian in the variable w, restricted to functions having spherical symmetry, takes the
form
a
Ay, =0y + ;8},.

This suggests that we should look at the following PDE in RrTet+l « RT
AU+ AU—0,U=0. (3.24)

The heat kernel for (3.24) is given by by the Gaussian in R* "4 x R*

nta+1

G ((x,w), ) = (4mt)~ > eIl gy — (4mr)

_ P
4t

_ ndatl
2

e (3.25)
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where we have used the “assumption” that y = |w|. Notice that the function (3.25) is nothing but the product of

the heat operator in a product space such as (3.24). Since the Bessel operator on the half-line R;f
. a
B = Oy + ;8},

is self-adjoint with respect to the measure y* dy, and since from (3.25) we have

T (=)
[ 6w dyds = =22,
R7 xR; 2z
we normalise G ((x, w), £) as follows
2T whatl _ Jr—e’ 47
G (x—2,9,1) = NED) (4me)” 2 ¢ # (3.26)
2
In this way we have for every x € R” and z > 0
| 99y =1 (3:27)
v XR,

For reasons that will soon be clear, along with the partial differential operator B in (3.23) we ought to also

consider its intertwined operator in R* 1 x Rt

2 —
BEIU=0,U+ —dByU+ AU - 0,U, (3.28)
’ Y

whose heat kernel in R*137% x R is given by

GO (v, w), 1) = (4me) =5 710y = () =57 (3.29)
The motivation for introducing (3.28) is in the following intertwining equation for the Bessel operators
%(a) (yl—aU) — yl—a{@(Z—a) U, (330)

that the reader can easily verify. The equation (3.30) shows that Usolves % 2=y = 0ifand onlyif # (@) (') =

0. As a consequence, we have the corresponding intertwining relation
%(a)(ylfaU) :ylfa%(Zfa)U (331)

This lead us to introduce the following.

Definition 3.7.x. We define the Poisson kernel of the operator B @) a5 the function

1—
a 2

1 y _r
P (y _ Yy t) = “G(x—z,¢).
(x—z,9,1) 2T (54 /5 e (x —z,1)
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We note right-away that, since up to a constant function

1
(x,y, t) > —G(x— z,¢)
2

is for every fixed x € R” the heat kernel (3.29), it is in particular a solution of the equation BC-IU = 0in
R” x R;' x R;". In view of (3.31) we deduce that for every x € R” the function

(z,9,8) = @) (x—2,9,1)

is a solution of the equation

%(4)@(”)(x—z7y, ) =0 (3.32)

inR? x ]R;‘ X R,‘*‘. Furthermore, we have the following.

Proposition 3.7.2. Foreveryx € R” and y > 0 we have

// P (x — z,y,8) dzdr = 1.
»Jo

Proof. By Definition 3.7.1 and the theorem of Tonelli we have

/n/ @(“)xfzy,)dzdt e "r — = /W/ = 4thfzt)dzdt
1—
il
() o\ O 20%)

(G b

where the reader can easily verify the last equality by the change of variable & = y . O

With Definition 3.7.1 in hands we can now solve problem (3.23). The following is the main result of this

section.
Theorem 3.7.3. Given f € ./ (R"*Y), consider the function defined by the equation

Ulx,y,1) / / (@(“ (x — 2,9, 7)flz,t — 7) dzdr. (3.33)

Then, U € C*(R" ™ x (0,00)), and for any1 < p < oo the function U solves the extension problem in L (R* 1),
in sense that we have B U = 0 in R* x (0, 00), and moreover

yl—i>r<l)l+HU("% ) = Alp@+y = 0. (3.34)
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Furthermore, we also bave in I (R* 1)

_rTyLir&yﬂayU(v% ) =0, — A)3f (3-35)

Proof. Using the Gaussian character of the function & (@) in Definition 3.7.1, it is not difficult to justify differen-
tiating under the integral sign in (3.33). By iteration one thus proves that U € C*>°(R"*!x (0, 00)). Furthermore,
since by (3.33)

B Ulx, y,t) = / %(“)@(‘2)@ — 2,9, 7)flz,t — 7) dzdr
0o Jre

in view of (3.32) we see that

%(“)U(agy, t) =0,
in R**! x (0, 00). Perhaps it is worth noting here that
0, U(x,y,1) / / @(“ (x — 2,9, 7)0f(z, t — 7) dz dr
- / P (x — 2,9,7)0fz,t — 7) dzdr
o Jre

= / 0,2 (x — 2,9, 7)flz, t — 7) dz dr,
o Jre

where in the last equality we have integrated by parts. We are thus left with proving (3.34) and (3.35). To reach

this goal we make the crucial observation that U can be written in the following form using the semigroup P

1 I s B
U(x,y,t)zwyl /0 = = P, 1) dr. (3.36)

To recognise the validity of (3.36) we use (3.33) and Definition 3.7.1 to find
Ulx, y,t) / / f@(“) (x—z,9,7)fz, t — 7) dzdr
1 R B
= W}, —a/o 73%15—47 (/ G(x—z,t)ﬂz,t—z’)dz) dr

1

1 <1 2
=gy e S

which proves (3.36). In view of Proposition 3.7.2 we obtain from (3.36)

1

Ulx — flx, ) N /Oo
2SNy S
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Using the representation (3.37) we thus find

||U a_yv f”[}’ R»+1)
< ; 1—a /1 1
— 21—ﬂ1‘ (1—74))’ 0 Tz—a
1 I R B
Jrﬁ}’l / =) ; Pff(x,t) = flx, ) || oty d.
= 1 72

Pff(x, t) —ﬂx, t) HU(RH»I) dr

2z
e 4t

21—aT

In the second integral we use the contractivity of P on 7 (R"*) to bound

1 _2 1

¢ || PIflx, 1) — flx, Ol pery < 20|Alp @y —= € L'(1,00),
7T 2 T2
since 3%” > 1. In the first integral, instead, we need to crucially use the rate in Lemma 3.5.4

1P, 2) = Az, Ol oty = O(7),

to estimate

1 1
1 ? 1
— e Pff(x, 1) = flx, 1) || p(rori1y d7 < C/ — dr < o0,
0 72 0 72
since 0 < 152 < 1. In conclusion, the right-hand side in (3.37) goes to 0 in Z?(R**!) norm with y' ¢, and since

1—a> O, we have proved (3.34).

In order to complete the proof we are left with establishing (3.3 5). Differentiating with respect to y the repre-

sentation formula (3.37), we find

ar (1lza
2rr1(a2) ))/da},ny,t)
2
1—a R S
=gy |, e e —fle ol (539

Lz/w L P ) — Al ) T
+4r(1+74)}’ - P 1) ﬂx’t)]r

On the other hand, keeping the equation 2 = 1 — « in mind, we can express

— A3 flx,t) = 2r1 (jfﬂ) /Ooo ;é[Pfﬂx, t) — flx, )] dr. (339)
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Subtracting (3.39) from (3.38) we thus find

Hz_;(lgfa)mw-,y, )- - A)ﬂ

< 1—a /°° 1
SaE b
1 , [1 _yjPH dr
—TTa = 1) — fla, t 1y —
by, I s Ol
= 1(y) + IL(5).

To complete the proof of the theorem it suffices to show that both I(y), II(y) — 0asy — 0". We handle II(y)

as follows

I(RH)

% 1\ 1P, ) — fl ) sy e

dr

1 2 d
]I]I(y)zy —¢ & T—i—y/

0 T
= 0(y'™) = 0 sincea € (—1,1).

For I(y) we consider the integrand

1
0<g(7) ==
T2

1/2
e F— 1’||Pff(x7 1) = %, 8) | p(mot1y 5 0 <7< o0

We clearly have g,(7) — 0asy — 0T forevery z > 0. On the other hand, there exist an absolute constant C > 0
and a function ¢ € L'(0,00) such that 0 < g,(7) < Cg(7) for every 7 > 0. In fact, using Lemmas 3.5.2 and

3.5.4 it is not difficult to convince oneself that we can take

= 0<r<l,

g =17}
3= 1 <7< 00.
By Lebesgue dominated convergence we conclude that I(y) — 0asy — 0. O
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Higher order

4.1 FRACTIONAL OPERATORS OF HIGHER ORDER

In this section we want to introduce the fractional operators of higher order considered in the previous chapters,
that is, the fractional Laplacean (—A)’, see also [1], and the fractional heat operator (—H)* fors € R\ Z. In

Chapter 2 we introduced in Definition 2.1.4 the fractional Laplacean with s € (0, 1),

ooy Vnys) [ 2u(x) —u(x+y) —u(x—y)
(~ayul) =122 [ 2 .

n+2s

The limitation s < 1is due to the singularity of the kernel |y|*** and, therefore, the same formula does not carry

overtos > 1.

To introduce the Laplacean of higher order we start from its formulation according to Balakrishnan in Defini-
tion 3.3.1 in which we take s = £,

(V) =~ [ Pats) — e (4)

which is also written as

1 1
An advantage of the formulations (4.1) and (4.2) is that they admit the following natural generalization to higher

powers
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Definition 4.1.1. Foreverys > 0 non-integer we write
s=k+o, wherck = [s] :=max{d € Z:d <s} and o€][0,1)

and we define

N _F(%r—a) /OOO ﬁ(m—amx) — (=0)*u(x)) dr (4.3)

T (141_ 7) /ooo - (=0)" " Pau(x) dr.

This formula easily follows from one of the main properties of the heat semigroup; indeed, for every £ € N we
have (—0,)FPu(x) = (—A)*(Pu)(x) = Pi(—A)*u(x), and from the Definition 4.1.1 it follows that

where (—A)? is defined through (4.2).

Analogously, we can naturally define the fractional heat operator as
Definition 4.1.2. Foreverys > 0 we write
s=k+o, wherck = [s] :=max{d € Z:d <s} and o€][0,1)
and we define
(—H)'u(x,t) = (0, — A 'u(x,2) = (9, — A) ((0, — A)ku) (x,2) = (—1)%(8, — A) ((H)ku) (x,2)

= —(—l)kr(%‘;a) /ODO #(PfHku(x, t) — H'u(x, 1)) dr

(4.4)

4.2 EXTENSION PROBLEM OF HIGHER ORDER

The goal of this chapter is to generalize the Caffarelli-Silvestre extension problem to higher powers of the heat
operator. In the time independent setting, Successful attempts in such direction appeared in[s] (using conformal

geometry techniques), see also [21], [8] and [6].

In accordance with our work in Section 3.7, and differently from the previously mentioned articles, we are

going to focus on the heat counterpart of the extension problem (2.85).

In preparation for the main result of this section, we recall that we write H = A — 0, for the heat operator,

and define
A, = @ﬁgaﬁf[: aﬂ+§ay+A ~ 0,

58



Furthermore, the integer part of a real number s is expressed as follows

[s] ;=max{d € Z : d < s}.

In order to prove the Theorem 4.2.2, we first need to formalize the Poisson kernel for the equation (4.6).

Thereby, following the blueprint of section 3.7, we define the following function:

Definition 4.2.1. fors > 0 non-integer

) 1oy 2
P (x—z,y,1) = mﬁe 7Gx — z,1) (4-5)

The following is the main result of this section.

Theorem 4.2.2. Lets > 0 be some non-integeranda = 1—2(s— [s]). Given f € . (R*™1), consider the function
defined by the equation

Ulx,y,t) = /0 5 P (x — 2,9, 7)f(z,t — 7) dzdr.

Then the function Uin R*™ x (0, 00) solves

[s]+1
%g-ﬁ-l U(JC,}’, f) = (a},}, + ;8), + H> U(xJ/’ t) =0, (4.6)

and for any1 < p < 0o we have
lim || U(-,y,+) — w1y = 0. .
y10+H (7)” ) ﬂ\u(Rﬂ (4.7)

Moreover, for every odd integer k € N such that k < [s], we have

N
}141’)1’%))/ WU(xa.yv t) =0. (4'8)
Furthermore, we also have in I (R*11)
(~H)fl,8) = (0, = A)fl,2) = K(6) lim y* 0,7, U, 3,0), (4.9)

where




4.2.1 PROOF OF THE THEOREM 4.2.2

We want to prove that %gﬂﬁ(‘) = 0. Let us start with the computation of () P, and therefore:

25 0 = BL=26=1) ( 56 _ g , (4.10)
v’ »
452 — 2 8% + 25 452 + 4
ayya@@ _ e S pl) 5; Pt 4 %@(ﬂrz). (4.11)

Summing the (4.10) with (4.11) we have

(‘% n ﬂ@y> 0 = ¥l gy BAHHH) iy | B D pira)
” 7y y ¥ y

Now we compute the heat operator of & ),

HPO — ‘”Uyzﬂ) (20— b)) (4.12)

Thus, we easily obtain:
4
‘%0(4)@(5) = <6yy + iay +H> 2 — g (gz(:) . 9(;+1)> .
J >

Trivially then

—s 4(s — - s—|s s—|s
Hiy PO [DW((@( 1) _ gl [1+1)):0, (4.13)

Our aim is then to compute %ﬂ(g 40N starting from the observation that:

S _
Hig 20 = B pizp, (4.14)

5 —

and iterating

%2)(@(:) _ [‘f (M — 1) HZ(@(:*Z),

s o0 B =D =2) 5 ,0-3
jﬁ“)y()_(5—1)(;—2)(5—3)H@( .

Thereby, fork € {1,2,. .., [s]}, we have:

HpO—h)

b BlY T —#k)
Ho? = {-m 1w

6o



Consequently, for £ = [5] we get:

HE PO =[5! F(‘FZS)M)HM P, (4.15)

Finally we can directly show that ,}fig“ PE) = . Starting from (4.15) and exploiting (4.13) we have:

B () _ L6 =D 140 1)
H TP = A ([;]! 0 H )

_ [3]!”};)[‘]) HY o, 1D

=0.

Thus we have shown that

AP =0, (4.16)
By virtue of the previous passages, we are ready to prove that:

Ulx, y,t) = / P (x —z,9,7)flz, t — 7) dzdr
0o Jre

is solution of

AP U=0 in R% x R

Ulx,0,2) = flx,t)  per (x,£) € R*TL

Indeed, we have the following relation:
Ky Ulx, y,t) = /000 s %ﬂ)@(ﬂ (x — 2,9, 7)flz, t — 7) dz dr,
which follows from:
0 U(x,9,t) = /OO A P (x — 2,9,7)0(z, t — 7) dz dr
0 :
=— 000 5 P (x — 2,9,7)0fz,t — ) dzdr
= /OO A 9.2 (x — 2,7, 7)flz, t — 7) dz dr,
0 .
and consequently, hinging on (4.16) we easily obtain:
(a)

A U, y.) = /0 / AT PO s — 2y flet — 1) dedr = 0.

Now we show the following Lemma:

61



Lemma 4.2.3. Foreveryx € R”, y > 0and s > 0 we have

// P (x — 2,9, dzdr = 1.
»Jo

Proof. It can be directly shown through:

o} 25 o 2
O (5 — -2 L 60—
/ﬂ/o P (x —z,y,t) dzdt ZZT(J)/O /n pwwly G(x — z,t) dzdr
25

_ [ _ 1z
= 210 /0 (/n G(x — z,?) dz) e dr

Now we want to reformulate the function U as:
Ulx, y, t) =/ / P (x — 2,9, 7))z, t — 7) dzdz
0o Jre

25 oo 5
T L4 _ -
~ 22T(5) /0 A+ ( / G =z afzt—7) dz) de (4.17)

25

_ ) R

Thus, thanks to Lemma (4.2.3), we get:

25 0 2
Ulx,,) = fle, £) = zzflr('() /0 Tllﬂf_% (PAx,t) — flx, 1)) dr. (4.18)

Through the use of (4.18) we manage to prove (4.7); indeed
1UC25) = Alp @y <
25 1 2
< J / ! 67%
= 2%2T(s) J, T

7 / R G
+ e 4
22T(s) fy F

For the second integral we exploit the contractivity of P

Pz[:If_ﬂ|U(Rn+l) dr

P:Iffﬂhf(Rw—l) dr.

1 72
47

Tl+5 ¢

2
P =A@ < g5 F Ao € L1, 00).

For the first integral we avail ourselves of the fact that 7 € (0,1)
1PZf = Al @y = O(2). (4.19)
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Hence, for the first integral we have
2

I 1L
/ 1+e_7 )dTSC/ dr,
0o T o 7

where the last integral with the change of variables w = % we obtain

2
_7 0o )
e 47 _ _r
c = C/ W 2T T dw.
o T 1

Now we call on formula 3.381 of [13], which claims that

(oo} o0
/ ¥l dx = /f”/ e dr peru >0, Rep > 0.
u U

un

Inourcase,wehavey =5 — 1,z = landp = and therefore

41 5 41—s

00 2-25 OO oo I's—1
C/ o 2 —740 dw = Cy / P 1— lda) < Cy / e—ww:—l—l dw = C (5 )y2—2.c.
1 b

2 415
z

Thus, for the first integral we get

25 1 2:
J -% PH a1y d Cr(j_ 1) 2=
22T(s) /0 A+ ” = Al @y dr < 22&1"() = 7
_CIGs—1), +
=3 TG ¥ =0 asy—>0",

and we have shown that

hm”U a}’v ﬂ|1f Rr+1) =

Now we want to prove (4.8), starting from the observation that

9.2 — ) ot
7 2(s—1) ’

and iterating

5 _)’ 1 2 s—2 )’ 1 s—
8332() N 322 (=1 — )H P+ (E) (s—1D(s— 2)(}_3)[{3@( 3)7
S s) Vi 1 s— }’ 1 s—4
Y Py T L AU 7S ooy e TR S
A% 1 (=5)
+(2) T [P AR T I

Thereby, we obtain the following iterative formula for suitable constants ¢;(7) > 0 and with# € {1,2,. ..,
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such that £is odd

x~
|

k—21 s—k ) )
C/e(l')yzkﬂ. r(r(-f) )Hk_’,@(f_k""). (4.21)

[

b op(s) _
@@0—

0

By means of (4.21) we can write

QlfU(x,y, t) = 8;“ </ / P (x — 2,9, 7))z, t — 7) dsz)
: 0o Jre

_ > % 5
—/ 5 ayy()(xfz,y,r)ﬂz,tfr)dzdr

0

~

1

N‘

k—21
NI — k)
)35 I(s)

/ H T p =) ( 2,9, 7)fl5,t — 7) dedr
0o Jre

I
- o

~
|

. C/e(z'));k . (;(:)k)Hk_i ( /0 b / PO — 2y, 2tz e~ ) dzdr>

Ck(ll)y/e—Zi F(J _ /6’) Hkii < yz(-f—k-‘rl') /00 1 7%1):1]((}6, f) d’Z')
) Jo

2/6—1' 1"(5) 22(5—k+z‘)r(". —k 47 Tl+x—k+z‘€

bN
[l
- o

o

&N
rol
- o

k—27 (s — 2(s—k+1) 00 1 2 )
IO A\ i) S ) / — % PAH A, 1) .
0

5

— 2k=1 T(s) 226-FT(s—k+i Ati—kti€
Then for 0 e k)
X Cp\2 s —
%! = ‘ >0
k(l,.f) 23k—3i—2s r(&)r(i —k+ Z.) ’
we have

2 [e%e] 1 2 )
3§U(x,y, t) = ZAk(z',s)yz‘Hk/ 767{7’PfHkﬂ x,t)dr,
} 0
and clearly
2 o]
1 2 .
YO U(x,y,t) = Zﬂk(iaf)}’lﬂm%/o mfﬁ%ﬁmfﬂ% t)dr.

Finally, we can compute

oo 1 2 _
kril. . . 1+2[s]—4 - —i
Hﬂﬂay Ui, )HU(HW]) s — Al7, )y /0 EEl PIH' ﬂ’n(w+l)d7
E—1
- . 5| —k * 1 _z
<Y Bil(i,s)y Y /0 et AT
=0
< Gu(7, 5)y1+2[5]+/e—2:—21' —0 asy—0.

Asamatter of factk +1— 2( +s — [s]) > Oforevery 7 € {0,1,..., 51}
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Thus we have proved that (4.8) for £ odd such that £ < [s].

Now we want to prove (4.9). Exploiting (4.17) we obtain

HY (/ / P (v — 2,9, )1zt — 7) dzdf)
0o Jrr

2(s—[s]) oo 1 )
_ gl Yy _27
=H (22(5[f])r(5 i) /0 pr—rl Pfﬂx,t)dr>

2(1) S
=7 % PRt
22(=EDT(s — [1]) /0 A+’ A 2)d

and consequently

A gt) =AY [ [ 20—y otse =) dsds
Rﬂ
= /0 /R HE PO (v — 2,5, 7)f(z,t — 7) dzde
= [j],W/ / HI P (v — 2,5, 2)flz,t — 7) dzdr
0o Jre
L= ([~ () (422)
= [s]! H / / P (x — 2,9, 7)(5,t — 7) dzdr
I'(s) 0 R*
Is—[]) e / * o1
=[5! 5]
[5]' 1"(5) 22(57[5])]?(,( _ []) o Ats— [5 H{ .f(x ¢
2wl g g
_ )
- [5]!22(1—[5})1"0) /0 Ats— [J PHH{ f(x t)d
Hence
yo, AU (x,y,t

d

=)0

HY (/ /325 [‘ (x— 2,9, 7)lz,t — 7) dzdr))

5[; OO
-, ( e e Pl ) e

0 ¢ (4.23)

= ( - lr()/ TlJrJ ] _7PHH[’f‘(x L‘)
- L /°° ! e_%PfH[j]ﬂx,t)dT

(5 [s] )+11"(A-) 2ts— [s]
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Now we observe that:
) (jiﬂ[f] U( ) %MU _ |r(5 — [JJ)H[;]
Ty )Y\ X0 1)) = ly (a) (2, 9, 2) — [s]! I(s) VACSD)

2-l) e
- 1 -5 s
0, ([5]'22@[1])1“(:) i pep—r ( ﬂx ) — H Ax, t))

and therefore

F 0,0 70) =0, (130G .0) ~ W 0
I I
= 22(:7[5])—1r(5) ‘/0 Tl+5*[f]€ - (P:[H{ ]f(x, t) —H[]f(x7 t)) dr (4.24)

1" Tl g (pagh :
— 226-FDH(s) /0 2t " (PH H'fx,t) — HYf(x, t)) dr

Multiplying (4.24) for the following constant

(4.24) becomes:

K S [5] > 1 _Z s s
- _(_1)“r(1+ [ f;)/o v L (PgHHﬂx’t) _Huﬂx’t)) dr (4.25)

& > * 1 S S
V) e / e (P, 0) — HVfCx,)) de

From the Definition 4.1.2 of the fractional heat operator of higher order, for £ = [s] and 7 = s — [s] we have

—H)flx, 1) = (~1)¥(~H)"~ [J](H[J]f)(xvf):
(1 S [’f] > ;
— 1)[1“1_5“5])/0 e (P, 1) — (s, 0)) de

and finally we can compute:
|k, (#EUC2) = (—HyS

s— 15 <1
@),

TR /OO :
AT(1+[s] —s) Jy 22T b

— () + TN(3).

Lr(Rrt1)

P 1'HPHHHf in

(R+1)

L (R +1)
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Thus we are left with showing that I(y), II(y) — 0 fory — 0.
Indeed, for I(y) we have:

2 ! 1
() ~ y /0 e

+ 2 00; —7
y . 2 ¢

where for the first integral we use the formula (4.19) to obtain the following estimate

1

1
2 . T
Y /0 2ts— [:e G

Now, after the change of variables w = % and using the formula 3.381 of [13] we obtain

]
= H[‘]jﬂ dr,

(R

| 2
p 5] [_[15] 2 - %
H[f fHU(R"“) < Cy /0 71+5—[5]€ dr.

1
1 2 GI(s—1[s]) 5
O RS S e 07 N Clnl U PP {7 [
Cyy /0 pEE— e wdr < = y —0 asr— 0,
since [s] — s+ 1 > 0. Instead, the second integral is finite for 2 + 5 — [s] > 1 and therefore

I(y) = 0 asy— 0.

While for I(y) we consider:

1
0<g(7) = Al

]
e 7 —1 ‘ .
(R H1)

Clearly, we have g,(7) — 0asy — 07 forevery 7 > 0. On the other hand, it exists a constant C > 0 and a
function ¢ € L'(0,00) such that 0 < g,() < Cg(r) for every 7 > 0. Recalling that 1 + 5 — [s] € (1,2), it

suffices to take
% per0 <7 <1

perl < 7 < oo,

and from Lebesgue dominated convergence we conclude that I(y) — 0 fory — 0.
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Conclusion

Considering the proof of the Theorem 4.2.2, we would like to generalize our result to a broader family of hypoel-

liptic operators, namely the one introduced by Hérmander [14]
Hu =t (QV?u) + (BX,Vu) — Ou. (5.1)
It was proven by Hérmander that J# is hypoelliptic if and only if the covariance matrix

K(t) = % /0 ePQe? ds (5.2)

isinvertible, i.e., det K(#) > Oforeveryz > 0. In(s.1) Qand Bare N x N matrices with real, constant coefficients,
with Q > 0, Q = Q*. We have denoted by X the variable in R", and by 4* the transpose of a matrix 4.

The class of operators (5.1) includes several examples of interest in analysis, physics and the applied sciences.
The simplest one is of course the ubiquitous heat equation, corresponding to the nondegenerate case when Q =
In, B = On. When Q = Iy, B = —Iy one has the Ornstein-Uhlenbeck operator, which is of great interest in
the probability literature. Another example is the degenerate Kolmogorov operator in RN*! with N = 27, with
the choices Q = L0, 0. O,

(O)ﬂ (0)71- ]]:7[ @ﬂ
and the theory of gases.

,and B =

] , which arose in the seminal paper [9] on Brownian motion

Then, we would like to establish results analogous (at least on the formal level) to Chapter 4 for the nonlocal
operators (—J¢ )’ for s > 0. In particular, the case 0 < s < 1 has already been proven by Garofalo and Tralli, as

can be seen in [12].
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