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A B S T R A C T

In this thesis I explore the processing of 3D data and its industrial applications, utilizing both
traditional computer vision techniques and modern methods based on deep learning. The ability
to sense, perceive, and interpret the surrounding environment by a computer is a challenging
task that requires a mathematical framework. While most research has historically focused on 2D
data, the recent availability of more affordable 3D sensors and the advancement of powerful deep
learning tools have made it possible to tackle tasks that were previously out of reach with standard
2D techniques.

The thesis is divided into three parts. The first part provides an overview of the theory and
methods that form the foundation of the applications developed in the subsequent parts. It begins
with techniques and sensors for acquiring 3D data, followed by a discussion on the different ways
to represent this information. It then delves into high-level 3D computer vision tasks, covering
both traditional approaches as well as modern techniques using deep learning networks.

The second part presents a deep learning application that I developed to address a 3D classi-
fication task. The network architecture is inspired by the Orientation Boosted Voxel Net, where
the network is trained to learn object rotations as an auxiliary task using a combined categorical
cross-entropy loss function. The novelty of my design lies in the complete redefinition of the
architecture, where I employed skip connections to enable a deeper network, thereby avoiding
vanishing gradient problems and facilitating more abstract and effective feature extraction. The
full implementation of the dataset, model, network training, and testing was carried out in Python.

The third part of the thesis demonstrates the application of the methods discussed for the design
of an industrial system that I developed during my internship at Innova Srl. The aim was to create
a general module capable of acquiring point clouds of objects moving on an industrial conveyor
belt, followed a specific processing module. An example application is detecting the 3D pose of
bread on the conveyor to guide a robotic arm in making cuts that improve cooking properties. A
key innovation of the data acquisition module was the replacement of the conventional setup of
multiple static 3D profilometers with a new system that utilizes just two profilometers moving
perpendicularly to the belt’s velocity. This approach significantly reduces costs while introducing
challenges related to distortion caused by the relative movement between the profilometers and the
objects, as well as the stitching of subsequent scans. The processing component of the application
was developed using the MVTec Halcon programming language and was integrated into a unified
solution in C# that also manages communication with the sensors’ controller. Finally, the thesis
illustrates how the processed data from the acquisition module can be used for robotic guidance
applications, where 3D surface matching algorithms detect the target object and its pose within
the scene and transmit this information to a robotic arm to perform a specif action.
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1 I N T R O D U C T I O N

Most of the information humans obtain from the world is in the form of visual data. In fact,
vision plays a crucial role in helping humans understand and interact with their environment. The
task involves two primary processes: sensing the surrounding environment through the response
to light, and perceiving and interpreting the visual information received.

Given the potential of using this type of data, a branch of engineering called Computer Vision has
emerged, focusing on exploiting this data to enable vision in computers. However, unlike humans,
solving vision tasks is complex for computers, as these tasks must be mathematically framed
to be computable. This requires addressing fundamental challenges, such as the mathematical
representation of data and its processing through transformations and gradual abstractions during
continuous analysis. Additionally, the effectiveness of a computer vision system is significantly
influenced by the type of data acquired and the sensors used.

Recent advancements in 3D sensors and 3D data acquisition systems have further increased the
research, building on the success of 2D techniques to solve more complex tasks. The development
and success of deep learning frameworks have also provided powerful tools to process large
amounts of data quickly and with high performance. These advancements are opening up new
possibilities across various industries that I intend to showcase in this thesis.

1.1 computer vision pipeline

The goal of computer vision is to replicate human visual capabilities in order to make meaningful
decisions based on the perceived information from visual data.

The typical engineering approach to this challenge involves using any feasible methods and
techniques to achieve the desired output from the input data. In particular, both the input and
output must be formulated mathematically, allowing any processing to be viewed as a mathemat-
ical transformation and thereby making it algorithmically implementable. A complete computer
vision application is often divided into multiple steps, forming the pipeline illustrated in Figure 1.

The subsequent steps in a computer vision pipeline are as follows:

• Data Acquisition: The first step involves setting up a system to acquire raw data from the
target scene. This includes selecting appropriate sensors, which may provide data directly
usable by the application (e.g. cameras). In some cases, additional techniques might be
necessary to integrate data from multiple sensors to produce a complete 3D information for
the subsequent steps (e.g. stereo vision).

1



2 introduction

• Data Storage and Representation: Once the data is acquired, it must be stored in a computer.
The method of storage and representation depends on the type of raw data and is crucial for
the subsequent analysis and inference stages.In fact, choosing the right representation can
enable high-level techniques used later in the pipeline, as it is particulary important in deep
learning.

• Pre-processing: The stored data must be prepared to be used in the later stages of the pipeline.
This step may involve enhancing the data quality, filtering to remove noise, or highlighting
specific properties to make the data more suitable for analysis. In deep learning applications,
this phase can also include data augmentation to avoid overfitting.

• Inference and Analysis: Algorithms are then applied to understand the content of the data
and solve the initial tasks. This involves the computation and extraction of features from the
data, which are then used by high-level algorithms. This can include traditional methods
or modern machine learning techniques that automate the feature extraction and analysis
process.

• Post-processing: The results from inference and analysis are typically further processed to
take action based on the vision outcomes. This step ensures that the final output of the
system is usable to perform control actions.

Capturing

Storing

Pre-Processing

Inference/Analysis

Post-Processing

Figure 1: Computer Vision Pipeline

1.2 why 3d computer vision: from 2d to 3d

Until recently, most computer vision applications focused on 2D data. This is mostly because
cameras, the most common sensors for acquiring visual data, project 3D information onto a 2D
image plane, losing one dimension. Despite this limitation, 2D vision remains highly useful and
is widely applied in various fields, especially in controlled settings where depth information is not
needed for the task.

However, the spread of cheaper 3D sensors and algorithmic advancements in deep learning have
expanded the possibilities of computer vision. With depth information, 3D computer vision can
solve tasks that were not possible using 2D techniques, such as understanding the spatial position
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of objects and their relationships in space. This capability can significantly improve the accuracy,
as 2D systems can be affected by occlusions and most importantly are more dependent on lighting
conditions.

For industrial applications the spatial knowledge of objects in the environment is crucial for
robotic systems and other automated processes. Nevertheless, the benefits of 3D vision are brought
along with increased complexity and higher costs associated with advanced sensors and solutions.
Therefore, it is essential to evaluate the need for 3D vision techniques at the start of a project.

Advantages Disadvantages

2D • Optimal for planar ob-
jects.

• Cost effective.

• Simpler hence faster.

• Envirnment sensitivity.

• Lack of depth informa-
tion.

3D • Adaptable to non-rigid
objects.

• Robust to illumination
changes.

• Depth information.

• High degree of preci-
sion.

• Complexity.

• Cost.

Table 1: Pros and Cons of 2D and 3D Computer Vision Systems.

1.3 components of a computer vision system

Whether working with 2D or 3D data, the main components of a computer vision system are
generally similar. These systems typically include five key elements:

Lighting

Lighting is of critical importante in the success of a computer vision application. Much like
human vision, objects must be well illuminated and clearly visible to effectively solve vision tasks.
In many systems, lighting is also strategically used to enhance important features of the objects,
making the processing tasks easier. An example of this is illustrated in Figure 2.



4 introduction

In 2D applications, changes in lighting can be detrimental to system performance, as they can
significantly impact the clarity of edges and features. In contrast, 3D systems often use structured
light or laser triangulation, making them more robust to lighting variations.

(a) Front light. (b) Diffuse light. (c) Dark field. (d) Backlight.

Figure 2: Example of lighting tecniques and their effect.

Optical Lens

Optical lenses are used to direct light in vision systems. They focus light onto the image sensor
(Figure 3) in cameras or redirect light into the environment, as with line scan cameras. The choice
of lens significantly impacts the field of view, depth of field, and image resolution, all of which are
crucial for capturing high-quality images.

Image Sensor

Typically, a CMOS or CCD sensor is used to convert light into a digital image. In 3D systems,
the sensor must also capture depth data, which may require specialized techniques such as time-
of-flight or stereo vision.

Figure 3: Lens and Image sensor in a camera system Ngo et al., 2019.

Optical Lens

Image Sensor
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Processing Software and Computational Hardware

The processing software interprets the captured images using vision algorithms that manage
the stages of storing, pre-processing, analysis, and post-processing, which solve tasks specific to
the application like object identification, dimension measurement. In the context of 3D vision,
this software must also address the added complexity of processing depth data. The selection of
hardware should be precisely aligned with the computational demands of the application to meet
the required time constraints.

Communication Interfaces

These interfaces enable communication between the vision system components, such as the
connection between sensors and computational hardware, as well as allow the vision system to
interact with other machines, robots, or control systems.

Sensor 1 Sensor i Sensor n

Sensors Controller

Comm. Interface

Data Acquisition: Lighting + Lens + Image Sensors

Pre-processing

Storing

Inference

Post-processing

Comm. Interface

Controlled System

Processing Software + Hardware

Application Data

System Output

Figure 4: Block diagram illustrating the core components and their connections.
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1.4 thesis outline

The remainder of the thesis is structured as follows:

• In Chapter2 I review the concepts of 3D pose, the camera pinhole model, and calibration,
which are the foundation of the developed applications. 3D data acquisition techniques and
sensors used to capture the environment are then introduced, followed by an overview of
some of the most commonly used representations for storing and processing this data.

• In Chapter 3 I discuss the transition from low-level perception of the scene to high-level
understanding to solve typical tasks that are fundamental in the remainder of the thesis,
such as 3D registration and matching. This step can be based on standard methods involving
the design of handcrafted features or modern deep learning techniques, with examples
provided for both approaches.

These two chapters are fundamental to explain the mathematical framework on which the
applications designed in the following chapters are based.

• In Chapter 4 I present the design of a deep learning network for solving a 3D classification
task. The design pipeline is explained in detail, focusing on the choices made regarding
data augmentation, model architecture, loss function, and optimization algorithms used for
training. Along with the explanation, I have provided key sections of the Python code used
in the design.

The concepts introduced and the deep learning techniques discussed were crucial in the design
of many projects I participated in during my internship at Innova Srl. The combination of these
techniques was employed to design industrial applications. In the last part of the thesis, I present
the end point of my intership with the design of a personal industrial application.

• In Chapter 5 I provide an overview of the MVTec Halcon programming language, which I
utilized in the subsequent chapter. The focus here is on its high-level capabilities for solving
industrial applications in the field of 3D machine vision.

• In Chapter 6 I detail the design of an industrial application for acquiring 3D point clouds
of objects moving on a conveyor belt, followed by processing in an example application for
robot guidance. I present a new design for the acquisition module, along with the challenges
that were addressed. The steps of the application are explained in detail, including key code
snippets used in the implementation.



Part I

F I R S T PA R T: T H E O R E T I C A L B A C KG R O U N D

This part discusses the concepts underlying the subsequent applications. Specifically, it is crucial
to develop models of the data acquisition process and to mathematically frame the vision task.
The first chapter presents the fundamental concepts of 3D pose, the pinhole camera model, and
camera calibration, followed by a discussion of the key techniques for acquiring 3D data. Finally,
the representation of this data in relation to subsequent processing is explored. The second
chapter provides an overview of how to transition from raw data to a high-level understanding
of the content. This is achieved by designing mathematical descriptors of the data that can be
used to solve typical inference applications, such as 3D reconstruction and matching. At last,
some modern deep learning techniques are discussed.





2 3 D S H A P E A C Q U I S I T I O N A N D
R E P R E S E N TAT I O N

The first step of a computer vision application involves data acquisition. In both 2D and 3D cases,
the acquisition setup typically includes a camera, which may be the only device used to acquire
data in the 2D case, or it may be paired with other components or cameras to form 3D sensors in
the 3D case. It is then necessary to understand how to model and calibrate the camera, both to
obtain the best quality data as possible as well as to determine how we can translate the results
referred to an image back to the 3D coordinates of the scene. Before introducing these concepts,
it is important to review the core concepts of 3D transformation and pose, and to standardize the
notation used throughout the thesis.

2.1 3d transformations and poses

Given a 3D point P in space, we can represent it as a vector whose coordinates depend on
the coordinate system we are considering. In many computer vision applications, we typically
consider a world reference system denoted by w, and a camera coordinate system denoted by c
(Figure 5).

Figure 5: 3D coordinates w.r.t. the coordinate systems.

9



10 3d shape acquisition and representation

The 3D point can then be written as:

pc =

⎛⎜⎜⎝
xc

yc

zc

⎞⎟⎟⎠ pw =

⎛⎜⎜⎝
xw

yw

zw

⎞⎟⎟⎠
During the processing of the data, we often need to transform the coordinate system and be able
to change the representation of a point from one coordinate system to another. If we consider
a coordinate system c1 and its translated version c2 from Figure 6, we can see that to obtain the
representation of the point Q2 in the first coordinate system, we can simply add the coordinates
of the second coordinate system with respect to the first to the representation of the point in the
second coordinate system:

qc1
2 = qc1

2 + oc1
c2

Figure 6: Coordinate system translation.

Coordinate systems also have a relative rotation with respect to each other. We might then
consider the rotated version of a system, as shown in Figure 7. Each rotation is represented by a
corresponding rotation matrix. Considering the usual c1 starting coordinate system and its rotated
version c3, the rotation matrix is written as:

Rc1
c3 =

[︂
xc1

c3 yc1
c3 zc1

c3

]︂
where the columns are given by the coordinates of the axes of the rotated system with respect to
the initial system.
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Figure 7: Coordinate system rotation.

A point Q3 can be then represented in the first coordinate system by right-multiplying the
representation in the rotated system by the rotation matrix:

qc1
3 = Rc1

c3 qc3
3

Combining a translation and a rotation, we obtain a rigid transformation. The general expression
for a point Q4 in the transformed system c5 is then

qc1
4 = Rc1

c5 qc5
4 + oc1

c5 (1)

These expressions can become quite complex when combining multiple rigid transformations;
hence, we typically introduce homogeneous coordinates and consider the corresponding homo-
geneous transformations. The key advantage of homogeneous coordinates is that they allow us
to express rigid transformations as linear matrix functions, so that the change in the coordinate
representation of points can be written as a matrix homogeneous linear system. In fact, Equation 1
can be rewritten as: (︄

qc1
4

1

)︄
⏞ ⏟⏟ ⏞

q̃c1
4

=

[︄
Rc1

c5 oc1
c5

0 0 0 1

]︄
⏞ ⏟⏟ ⏞

Hc1
c5

(︄
qc5
4

1

)︄
⏞ ⏟⏟ ⏞

q̃c5
4

(2)

where q̃c1
4 and q̃4c5 represent the homogeneous coordinates of the point with respect to the two

coordinate systems, and Hc1
c5 represents the homogeneous transformation.

Finally, this allows us to express the representation change given by n transformations as

q̃c1 = Hc1
c2 · · · Hc(n-1)

cn⏞ ⏟⏟ ⏞
Hc1

cn

q̃cn
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Each transformation matrix has 12 parameters: 9 parameters for the rotation matrix and 3 param-
eters for the translation vector. However, the rotation matrix is a redundant representation, as a
general rotation can be expressed as a concatenation of three rotations around the axes of the coor-
dinate system. This means that we can represent a rigid transformation using only 6 parameters,
forming the concept of 3D pose.

2.2 camera model and camera calibration

A camera is a device that projects a 3D scene onto a 2D image. The most used ideal model of
this device in computer vision is the pinhole camera model, shown in Figure 8. In this model, the
rays of light coming from the object pass through a point called the pinhole before being captured
by an image sensor that forms the image. Of course, in reality, the pinhole model does not exist
and it is replaced by a lens, but this model provides a fundamental understanding of the image
formation process and its most important parameters.

Figure 8: Pinhole camera model.

The aim here is to describe the model that maps 3D world points in standard metric units to the
pixel coordinates of an image sensor. To achieve this, we use perspective geometry.

2.2.1 Perspective Projection Camera Model

The mapping from 3D coordinates in the world frame to pixel coordinates in the image can be
understood as the concatenation of three successive stages:

1. A rigid transformation that maps points expressed in world coordinates to the same points
expressed in the camera frame.

2. A perspective projection from the 3D camera frame coordinates to the 2D image plane.
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3. A mapping from the metric image coordinates to the discrete pixel coordinates.

With reference to Figure 9, the scene point P must be transformed in sequence as:

pw → pc → qi → (u, v)

where pw, pc are the 3D coordinates of the point in the world and camera frames, respectively, and
qi and (u, v) are the corresponding 2D coordinates of the point in metric and pixel units in the
image plane.

xc

yc

zc

Fc

xw

yw

zw

Ow

P

u

v

xi

yiz =
f

ū

v̄

(u,v)

principal
point

optical
axis

Figure 9: 3D Projection Visualization

The homogeneous coordinates of the scene point with respect to the world frame can be mapped
into the coordinates in the camera frame through a 6-degree-of-freedom rototranslation:

⎛⎜⎜⎜⎜⎝
xc

yc

zc

1

⎞⎟⎟⎟⎟⎠ =

[︄
Rc

w t

0T 1

]︄
⏞ ⏟⏟ ⏞

Hc
w

⎛⎜⎜⎜⎜⎝
xw

yw

zw

1

⎞⎟⎟⎟⎟⎠
p̃c = Hc

w p̃w

where Rc
w represents the rotation and t the translation of the 4× 4 homogeneous matrix Hc

w that
represents the rigid coordinate transformation in the above equation. Observing then the similarity
of triangles we get

xi

f
=
xc

zc ,
yi

f
=
yc

zc
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where (xi,yi) is the position in metric units in the image plane and f is the distance of the image
plane from the camera center and it’s called focal length. We can then write in matrix form

zc

⎛⎜⎜⎝
xi

yi

1

⎞⎟⎟⎠ =

⎡⎢⎢⎣
f 0 0 0

0 f 0 0

0 0 1 0

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

Hi
c

⎛⎜⎜⎜⎜⎝
xc

yc

zc

1

⎞⎟⎟⎟⎟⎠

zc q̃i = Hi
c p̃c

where Hi
c denotes the 3× 4 perspective projection matrix.

Subsequently the image on the image plane is sampled by an image sensor such as a CCD or CMOS
device at the location defined by an array of pixels. We then define the number of pixel per unit
distance in the two camera frame directions asmx andmy and the position of the principal point
is modeled with coordinates [u0, v0]T hence we get⎛⎜⎜⎝

u

v

1

⎞⎟⎟⎠ =

⎡⎢⎢⎣
mx 0 u0

0 my v0

0 0 1

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

Hi

⎛⎜⎜⎝
xi

yi

1

⎞⎟⎟⎠

q̃ = Hi q̃i

where Hi denotes the 3× 3 projective matrix.
Putting everything together we get

zc

⎛⎜⎜⎝
u

v

1

⎞⎟⎟⎠ =

⎡⎢⎢⎣
mx 0 u0

0 my v0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
f 0 0 0

0 f 0 0

0 0 1 0

⎤⎥⎥⎦
[︄
Rc

w t

0T 1

]︄⎛⎜⎜⎜⎜⎝
xw

yw

zw

1

⎞⎟⎟⎟⎟⎠
zc q̃ = Hi Hi

c Hc
w p̃w

zc

homogeneous
image

coordinates⏟ ⏞⏞ ⏟⎛⎜⎜⎝
u

v

1

⎞⎟⎟⎠ =

intrinsic camera parameters⏟ ⏞⏞ ⏟⎡⎢⎢⎣
αx 0 u0

0 αy v0

0 0 1

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

K

extrinsic
camera

parameters⏟ ⏞⏞ ⏟⎡⎢⎢⎣
r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

[R|t]

homogeneous
world

coordinates⏟ ⏞⏞ ⏟⎛⎜⎜⎜⎜⎝
xw

yw

zw

1

⎞⎟⎟⎟⎟⎠ (3)

zc q̃ = P p̃w, P = K [R|t] (4)
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where αx = fmx,αy = fmy and the overall transformation matrix P is called camera matrix.

2.2.2 Distortion

Typical camera may not be accurately represented by the pinhole camera model as there might be
lens distortion which disrupts the assumed projective model. The effect of distortion is non-linear
and it must be corrected so that the camera can again be modeled as a linear device.

The distortion modifies the image plane coordinates into their distorted version:

qi → q̃i

Various types of distortion exist, but typically the most significant component is radial distortion
which is radially symmetric and can be modeled using a low-order polynomial such as(︄

x̃i

x̃i

)︄
⏞ ⏟⏟ ⏞

distorted
image

position

=

(︄
xi

yi

)︄
⏞ ⏟⏟ ⏞

undistorted
image

position

+

(︄
xi

yi

)︄
(k1 r

2 + k2 r
4) (5)

with r = ∥(xi,yi)∥, and k1,k2 being the distortion parameters to be estimated for the specific
camera. From this, we can see that distortion increases as we move away from the center of the
image. Based on reports in the literature, such as Z. Zhang, 2000, it has been found that any
more complex model would not be beneficial for estimation, as it would be comparable to sensor
quantization and could also cause greater numerical instability.

2.2.3 Camera Calibration

Camera calibration is an estimation problem that is done to determine the optimal camera
parameters that produced a given set of images. This includes both the extrinsic parameters R and
t, as well as the intrinsic parameters of the matrix K and the distortion parameters k1 and k2. Once
all these parameters are known, the expression of the camera matrix P can be computed and this
allows us to back project any image pixel onto a 3D ray in space using the model of Equation 3.

Pears et al., 2012 presents different types of calibration that differ by precision and usability:

• Photogrammetric calibration is a calibration method that requires precise 3D physical knowl-
edge of a scene object. Several images of this object are taken from different positions (e.g.
along orthogonal planes) using known translations. This method provides very accurate
results but lacks flexibility due to the requirement of the precise knowledge of the scene.

• Self-calibration is a calibration method that does not require a calibration target. It is based
on the principle that finding the correspondences across three views of the same rigid scene
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is sufficient to allow the estimation up to a similarity constraint. This approach is flexible but
not always reliable calibrations can be obtained.

• "Desktop camera calibration" is a calibration method that involves capturing images of
flat calibration grids from various unspecified angles and orientations. This method is an
effective compromise between the precision of photogrammetric calibration and the ease of
use of self-calibration.

Zhang’s calibration method

Zhang’s calibration method Z. Zhang, 2000 provides an easy and efficient calibration procedure
that can be used in many applications and produces good calibration results. It uses only 2D
metric information, unlike photogrammetric methods, and it represents an important step toward
integrating 3D computer vision applications into user environments. It requires a calibration
pattern that must be attached to a planar plate and at least three images must be taken from
different orientations. This can be achieved by freely moving either the camera or the calibration
plate. The procedure is composed by two main steps:

1. For each image of the plate taken from a specific orientation, we don’t know the exact
3D positions of the points. Therefore, we first need to estimate the homography from the
calibration plane to the image plane.

2. Once we have the estimated homographies for each orientation, we can use them to formulate
an estimation problem for the camera parameters. To solve this problem we first formulate
a closed-form solution that we use as initialization for a nonlinear refinement based on the
maximum likelihood criterion.

Starting from the pinhole model in Equation 3, and without loss of generality, we assume that in
the first image, the calibration plate lies on the zw = 0 plane in the world coordinate system. The
expression then simplifies to:

zc

⎛⎜⎜⎝
u

v

1

⎞⎟⎟⎠ = K

⎡⎢⎢⎣
r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

⎤⎥⎥⎦
⎛⎜⎜⎜⎜⎝
xw

yw

0

1

⎞⎟⎟⎟⎟⎠ = K

⎡⎢⎢⎣
r11 r12 tx

r21 r22 ty

r31 r32 tz

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

H

⎛⎜⎜⎝
xw

yw

1

⎞⎟⎟⎠

therefore a point on the model plane and its image point is related by the 3× 3
homography H =

[︂
h1 h2 h3

]︂
defined up to a scale factor:

zcq̃ = H p̃w

[︂
h1 h2 h3

]︂
= λK

[︂
r1 r2 t

]︂
(6)
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where q̃, p̃w denote the homogeneous pixel coordinates and the compressed metric world coordi-
nates, respectively, and λ is an arbitrary scalar.

As mentioned earlier, before proceeding, we first need to estimate the homography between the
considered view and the image plane. This estimate, denoted as Ĥ, can be found by solving the
following minimum log-likelihood problem:

Ĥ = min
H

∑︂
i

(q̃i − H p̃w
i )

T (q̃i − H p̃w
i )

that can be solved using an algorithm such as Newton’s method.

We can then rewrite Equation 6 in terms of the estimated homography:[︂
ĥ1 ĥ2 ĥ3

]︂
= λK

[︂
r1 r2 t

]︂
(7)

We now need to solve for the intrinsic and extrinsic parameters.
Knowing that r1 and r2 are orthonormal, the following conditions must be satisfied:

ĥT
1 K−T K−1 ĥ2 = 0 (8)

ĥT
1 K−T K−1 ĥ1 = ĥT

2 K−T K−1 ĥ2 (9)

which are two basic constraints on the intrinsic parameters for each view.
We then define

B = K−T K−1 =

⎡⎢⎢⎣
B11 B12 B13

B21 B22 B23

B31 B32 B33

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1
α2

x
0

−u0 αy

α2
x αy

0 1
α2

y
− v0

α2
y

−u0 αy

α2
x αy

− v0

α2
y

(uo αy)
2

α2
x α2

y
+

v2
0

α2
y
+ 1

⎤⎥⎥⎥⎥⎦
that is a symmetric matrix that contains the intrinsic camera parameters.

Therefore, if we are able to find an estimate of the vector

b = [B11,B12,B22,B13,B23,B33]
T

we can solve for the estimates of the intrinsic camera parameters.
If we let the i-th column of the estimated homography Ĥ be ĥi = [hi1,hi2,hi3]T we have

ĥi
T B ĥj = vT

ij b

vij = [ĥi1 ĥj1, ĥi1 ĥj2 + ĥi2 ĥj1, ĥi2 ĥj2, ĥi3 ĥj1 + ĥi1 ĥj3, ĥi3 ĥj2 + ĥi2 ĥj3, ĥi3 ĥj3]T
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so that we can write the constrains of Equation 8 - 9 as a system[︄
vT
12

(v11 − v22)
T

]︄
b = 0

Taking multiple images at different orientation and stacking the equations we get

V b = 0, V ∈ R2n×6

that has a unique solution for n ⩾ 3 given by the eigenvector of VT V associated with the smallest
eigenvalue. Given the estimated intrinsic parameters, the extrinsic parameters can be directly
estimated from Equation 7: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 = λK−1 ĥ1

r2 = λK−1 ĥ2

r3 = r1 × r2

t = λK−1 ĥ3

λ = 1
∥K−1 ĥ1∥

= 1
∥K−1 ĥ2∥

The given solution is fundamental for providing a good initialization for the high-dimensional
maximum likelihood non-linear optimization problem that yields the refined solution and requires
a good initialization to converge to the global optimum:

min
K,R,t

n∑︂
i=1

m∑︂
j=1

∥q̃ij − K [R|t] p̃ij∥2
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2.3 3d data acquisition sensors

When we design a 3D computer vision system, we must choose the right sensors based on the
specific application requirements. These requirements may impose constraints on the size of the
objects to be captured, the working distance, the operating conditions for the sensor, as well as the
accuracy of acquisition and the cost of the sensors. The first important distinction is between passive
and active acquisition systems: passive systems rely only on the environment light sources, while
active systems emit waves, typically light, into the environment. This brings some limitations to
passive systems, as they are highly dependent on the lighting conditions, while active sensors are
generally more accurate and robust to changes of the environment even thought this comes with
the drawback of an higher cost. The second main distinction is the operating principle that allows
the 3D reconstruction:

• Triangulation is based on geometric principles, where the 3D position of a point is deter-
mined by finding the intersection of two or more 3D rays coming from different directions,
along which the point must lie.

• Time of Flight is based on precise timing, where the distance from a point is measured by
round trip time that takes a light ray emitted into the environment to be detected with its
reflected energy.

• Deep Learning methods, instead, estimate the depth component from monocular images by
making predictions based on local and global features.

Figure 10 shows a classification of the main 3D data acquisition systems based on their type and
operating principle.

3D Data Acquisition

Active Passive

LidarsSpot Scanners

Stripe Scanners

Area Scanners

Single view image Multi-view

Stereo Vision Structure from Motion

Time of Flight

Triangulation

Deep Learning

Figure 10: Tentative classification of 3D imaging techniques based on the operating principle.
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2.3.1 Passive 3D Imaging Systems

Passive imaging systems rely on ambient light to detect the shape of objects. These systems
typically include the use of one or more cameras and are mainly divided into monocular and
multi-view systems, depending on the number of images used to reconstruct the 3D scene.

Depth from Focus

Depth from focus techniques are based on single-view images and the principle that cameras
have a limited depth of field. Depending on the distance and focus, points in the image appear
more or less sharply. By taking multiple images at different object distances, each point will be
represented with varying focus. The distance of each point from the camera can be estimated
based on the image where the point’s focus is at its highest. This concept is illustrated in Figure 11.

Figure 11: Depth from focus.

Stereo Vision

Stereo vision systems (Pears et al., 2012) are widely used imaging systems that employ two or
more cameras to capture the same scene from different spatial positions as shown in Figure 12. A
stereo system must solve two main problems:

• Correspondence problem: Given a point in one image, what is the corresponding point in
the other images?

• Depth calculation: Given the two or more corresponding points, how can we calculate the
3D position of this projected points?
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Figure 12: Stereo setup with two cameras.

The depth calculation problem is straightforward to solve. If the cameras are calibrated, we have
the pinhole model from Equation 3 for each camera that allows us to calculate the intersection of
the 3D rays where the point must lie through a process called triangulation. The correspondence
problem is much more complex to solve because, in theory, finding the corresponding point in
other images could require searching every pixel, which would be computationally intensive. To
simplify the problem, we need to restrict the search space for each pixel, which can be achieved
using epipolar geometry. This technique restricts the search to a single line in the other image.

Structure from motion SfM

Structure from Motion (SfM) is another reconstruction technique based on triangulation. Unlike
stereo vision, which uses multiple stationary cameras, SfM uses a single camera that moves in the
space. The correspondences of points are then searched between the images captured during the
camera’s movement, as illustrated in Figure 13.
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Figure 13: Structure from motion.

2.3.2 Active 3D Imaging Systems

Active imaging systems project light into the environment, providing the significant advantage
of being more robust to changes in the operating conditions. Depending on the application,
different techniques might be used. For very small objects, interferometry techniques offer high
precision. Triangulation is commonly employed in industrial settings for objects ranging from a
few centimeters to a few meters. Time of Flight systems are suitable for larger objects, that span
from a few meters to several kilometers.

Spot scanners

Spot scanners are 3D sensors that project a ray of light into an object and use triangulation based
geometry to calculate the distance of each point on the surface of the object.

Figure 14: Spot scanners setup Pears et al., 2012

To capture the entire object, a mirror is mechanically rotated to direct the light source in all
directions. Figure 14 shows the structure of this type of sensors.
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Stripe Scanners

Stripe scanners are highly accurate acquisition systems commonly used in industrial settings.
As illustrated in Figure 15, they project a laser stripe into the object’s surface, and an image sensor
measures the intensity of the reflected light. This information is then used to determine the
distance from the object.

Figure 15: Stripe scanner structure Wang and Feng, 2014.

The output of these sensors is an array of values corresponding to the distance information for
each scanned line. Key parameters that define laser scanners include the depth of field and the
width of the scan line. To scan an entire object, either the object or the scanner must be moved.

Area-based structured light systems

Structured light systems simplify the correspondence problem in stereo vision by replacing
one camera with a projector that casts light patterns into the object’s surface. These patterns are
distorted by the object’s geometry (Figure 16). The camera captures the distorted patterns and
analyzes them using the known projected features, making the search for correspondences easier
and, most importantly, more robust, especially for objects with smooth or textureless regions.
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Figure 16: Typical structured light system S. Zhang, 2018.

2.4 3d data representation

After the 3D data acquisition process, data can be represented in various forms, some straight-
forward from the raw data, and others more complex Pears et al., 2012. The choice of this data
representation is fundamental for the entire 3D computer vision application as the selection of
the processing architecture is often highly dependent on the structure of the input data. In fact,
some processing architecture require a specific data representation, as it is typical in deep learning
networks. Therefore, it is important to understand the different ways to represent the 3D data,
the properties of each representation, and the most efficient ways for converting between different
representations.

Out of all the possible representations shown in Figure 17, we can identify three main categories
that are commonly used in applications:

• Raw data include depth maps and point clouds, which are direct representations obtained
from sensors. These typically require further conversion into more structured representa-
tions.

• Surface representation are continuous representations that model the surface of an object,
making them very commonly used in applications for their regularity properties.

• Volumetric representation are used to approximate and model the entire volume of an object
through quantization, similarly to what is done with 2D images.
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Figure 17: Diagram of the main 3D data representations Gezawa et al., 2020.

2.4.1 Raw Data

Raw data refers to representations that are directly derived from the sensor’s output, that
typically include depth maps and point clouds. The main advantage of this representation is its
simplicity, both in visualization and comprehension. However, this simplicity in structure also
brings limitations for many applications as it often requires further processing or transformation
into more complex representations.

Depth Maps

Depth maps are 2D images where each pixel represents the distance from the camera of the
corresponding point in the scene. This representation is compact and easy to visualize and it is
usually derived as the direct output of 3D sensors like LiDARs and optical scanners.

To determine the exact 3D coordinates of a point corresponding to a pixel, the camera parameters
and the resolution ∆x,∆y along the two directions must be known. With this information, the
depth map can be converted into a point cloud, transforming the 2D image into a 3D representation.

Point Clouds

Point Clouds are unordered sets of points P = {v1, . . . , vn} with vi ∈ R3, which can be stored
as an array of n × 3 float values. Point clouds typically come directly from stereo vision and
reconstruction techniques, constituting an initial representation in many applications, before being
transformed into more complex ones.
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(a) Example of depth map. (b) Example of 3D point cloud (Stanford
bunny).

Figure 18: Raw data examples.

An important characteristic of point clouds that must be accounted for by the processing algo-
rithms is the fact that any permutation of the points leaves the cloud unchanged. This lack of
structure presents challenges when using machine learning architectures, as it prevents the use of
convolutional layers, which are fundamental components in deep learning architectures.

2.4.2 Surface Representations

Surface representations are the most commonly used representation by 3D computer vision
processing algorithms and graphics applications. These representations are usually generated
from point clouds or are directly modeled and designed in Computer Aided Design (CAD). Among
these, polygonal meshes are the most widely used, where the surface is approximated by polygons.

Meshes

Meshes, unlike point clouds, are ordered sets of vertices and faces connected together. The faces
are composed of polygons, most commonly triangles, that approximate the surface of the object.

Since the starting point of many applications is a point cloud, but processing algorithms require
meshes, the point cloud is often triangulated into a mesh. There exists various triangulation
algorithms but the most common one is Delaunay Triangulation P. Su and Scot Drysdale, 1997.

2.4.3 Solid-Based Representations

Solid-Based Representations are regular 3D representations that are very useful in many appli-
cations as they allow the discretization of the 3D space and thus enabling the extension of 2D
techniques.
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Voxels

Voxel representations are the most common volumetric representations that approximate the
volume using voxels that are the analogous to pixels in 2D images. These representations are typi-
cally derived from surface representations and point clouds through a process called voxelization.
This type of representation is fundamental in many deep learning applications, as their spatial
structure allows the use of convolutional layers and consequently facilitates the extension of many
algorithms from the 2D case.

(a) Example of different 3D polygonal meshes.

(b) 3D voxel representation.

Figure 19: Meshes and voxel grids examples.





3 3 D S H A P E A N A LY S I S A N D I N F E R E N C E
A P P L I C AT I O N S

After data acquisition, 3D computer vision tasks must be able to perceive and interpret the
information present in the data to perform analysis and decide on control actions. Some typical
applications include object detection, pose estimation and classification within the scene and 3D
scene reconstruction from different views. For all these types of applications, it is necessary to
have descriptors of local keypoints of the objects. These types of local descriptors represent the
transition from low-level processing to high-level understanding of the data.

This chapter begins with an overview of some local features and then demonstrates how they
can be used to solve high-level 3D inference applications such as 3D reconstruction and 3D surface
matching. The remainder of the chapter reviews some of the deep learning methods used to solve
3D computer vision applications.

3.1 3d local features

When analyzing an image or a 3D scene, the first step in understanding its content, beyond the
initial perception of the data, is to detect the most salient points and obtain a description of each
one. By combining all these local descriptors, we can then process this information globally and
match it against known features to achieve a complete understanding. It is therefore essential to
mathematically frame the following tasks:

• Keypoint detection: detect points that contain rich information about the surface and that
are stable, such that the influence of other factors, such as noise, does not impact the detection
of the keypoints.

• Feature description: for each detected keypoints, compute mathematical quantities that
should be descriptive of the local surface and robust to noise.

In the following, I review two methods for solving these tasks that have been widely used in
practice.

29
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3.1.1 Keypoint Detection - 3D Harris Keypoints

In Harris and Stephens, 1988, Harris proposed a point detection algorithm for 2D images based
on the autocorrelation function to measure local changes in intensity. In the 2D case, the local
autocorrelation was defined as:

e(x,y) =
∑︂
xi,yi

W(xi,yi)
[︂
I(xi +∆x,yi +∆y) − I(xi,yi)

]︂2
where I(·, ·) denotes the intensity function, and (xi,yi) are the points that define the local area
around (x,y) where the Gaussian functionW is computed for filtering purposes. Expanding with
a first-order Taylor expansion, we get

I(xi +∆x,yi +∆y) = I(xi,yi) +
∂I
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∆x+
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(︁
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∂y
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⎞⎟⎟⎠ ST = SE(x,y)ST

where S = [∆x,∆y].

He then proposed to consider the eigenvalues of the matrix E, which contain most of the local
information. To further simplify the operations, for each pixel of the image we can calculate:

h(x,y) = det(E(x,y)) − k(tr(E(x,y)))2

which gives a similar metric without having to explicitly compute the eigenvalues. This detector
has been widely used in 2D applications, so the goal is to extend it to the 3D case of a surface
z = f(x,y).

In Sipiran and Bustos, 2011, the authors proposed fitting a paraboloid centered on each vertex v,
of the type:

z = f(x,y) =
p1
2
x2 + p2xy+

p3
2
y2 + p4x+ p5y+ p6

Being interested in the derivatives at the point v, we can directly compute:

fx =
∂f(x,y)
∂x

⃓⃓⃓
x=0

fy =
∂f(x,y)
∂y

⃓⃓⃓
y=0

which should be a good estimate but could be influenced by noise. To address this problem, in
line with the concept of stability of the keypoint, Gaussian filtering of the derivatives has been
proposed, computing:
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A =
1√
2πσ

∫︂
R2

e
−(x2+y2)

2σ2 fx(x,y)2 dxdy

B =
1√
2πσ

∫︂
R2

e
−(x2+y2)

2σ2 fy(x,y)2 dxdy

C =
1√
2πσ

∫︂
R2

e
−(x2+y2)

2σ2 fx(x,y) fy(x,y)dxdy

with σ being the standard deviation of the Gaussian filter. Finally, the autocorrelation matrix
associated with the vertex v can be computed with:

E(v) =

(︄
A C

C B

)︄

and we use the same operator of the 2D case to evaluate the eigenvalues:

h(v) = det(E(v)) − k(tr(E(v)))2

After computing the quantity h(v) for all vertices, the keypoints are chosen from the local maxima
of the operator h.

3.1.2 3D Local Descriptors - Spin Images

The authors in Johnson and Hebert, 1999 proposed a local descriptor called Spin Images that is
widely used in applications. The name refers to the fact that the 3D meshes are described by a set
of 2D grids that are rotated around the keypoint normal. The images are obtained by projecting
the 3D vertices. Given an keypoint v and its normal n they define the local quantities:

α =
√︂
∥x− v∥2 − (nT (x− v))2 β = nT (x− v)

where x represent the local vertices to project onto the grid. Hence for each keypoint v the spin
image is defined by the map

Sv : R3 → R2

Sv(x) → (α,β) =
(︂√︂

∥x− v∥2 − (nT (x− v))2, nT (x− v)
)︂

The selection of the projected vertices is controlled by the width of the spin image and by the angle
between the normal of the vertex and the normal of the keypoint. After this computation, the
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local quantities (α,β) are discretized into bins and a bilinear interpolation is performed to ensure
robustness to noise.

3.2 3d shape registration

In the acquisition process of data from a 3D scene, multiple sensors might be used, each with
its own coordinate system, and multiple views of the scene from different perspectives might be
produced. 3D shape registration is a fundamental problem in 3D computer vision that aims to
bring together all the data into a single coordinate system. Several solutions to this problem have
been presented, and the state-of-the-art algorithms for this type of problem are variants of the
classical Iterative Closest Point (ICP) algorithm, which will be presented in the section below. This
type of algorithm serves as a tool in various high-level applications such as model reconstruction,
model fitting, and object recognition.

3.2.1 Registration of Two Views

A general registration problem of n views can be solved by registering two views at a time, one
being the current registration of the first i views, and the second being the i+ 1 view. Hence, the
registration problem of two views is a fundamental building block for the solution.

Given two partial 3D views D and M (typically point clouds or triangulated meshes) of the same
object, with the first representing the data view and the second the model view, the registration
problem consists in estimating the parameters a of the transformation T that best aligns D to M.

All registration methods differ in the choice of three main aspects (Pears et al., 2012):

1. The transformation function, which is typically a rigid transformation determined by a
rotation matrix R and a translation vector t. These can generally be defined by a parameter
vector a, as in the case of the three rotation angles around the principal axes and the three
coordinates of the translation vector.

2. The error function, which must be designed such that minimizing this function provides
the best parameter vector that solves the registration problem.

3. The optimization method, which is used to numerically minimize the error function. General
optimization methods might be used, such as Newton’s methods, but the state-of-the-art
algorithm for the registration specific case is ICP.

Once these aspects are defined, the registration problem is then framed as an optimization
problem:

a∗ = arg min
a

E (T(a, D), M) (10)

where E is the error function that measures the registration error.
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Figure 20: Registration of two views.

The Iterative Closest Point (ICP) Algorithm

The ICP is an iterative algorithm that keeps the model view fixed while transforming the data
view by applying a rigid transformation composed of a rotation matrix R and a translation vector
t. The two views are assumed to be available in the form of point clouds M = {m1, . . . , mNm

} and
D = {d1, . . . , dNd

}, which is one of the simplest 3D representations. The error function considered
is the sum of squared errors between the model points and the transformed data points:

EICP(a, D, M) =

Nd∑︂
i=1

∥( R di + t⏞ ⏟⏟ ⏞
transformed data point

) − mj∥2

a = (R, t), R =

⎛⎜⎜⎝
a11 a12 a13

a21 a22 a33

a31 a32 a33

⎞⎟⎟⎠ , t =

⎛⎜⎜⎝
t1

t2

t3

⎞⎟⎟⎠
where di and mj are two corresponding points of the model and data clouds.

The optimization problem becomes

arg min
R,t

Nd∑︂
i=1

∥(R di + t) − mj∥2 (11)

The optimization problem in Equation 11 is actually a nested optimization since the corresponding
points of the two clouds are not defined a priori, otherwise the problem could be solved ana-
lytically. Hence, the procedure fixes a transformation for each iteration, and given the current
transformed data view, for each point in this cloud, it calculates the closest point in the model view
by minimizing the Euclidean distance between the two points:

j = arg min
k∈{1,...,Nm}

∥(Rdi + t) − mk∥2
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Once the correspondences are found, the problem in Equation 11 can be solved in closed form. It
can be shown that the optimal transformation is the one that aligns the centroid of the model view
with the centroid of the data view:

dc =
1

Nd

Nd∑︂
i=1

di, mc =
1

Nm

Nm∑︂
i=1

mi, d
′
c = R̂dc + t̂ = mc

We can then rewrite the optimization problem as a minimization with respect to only the rotation
matrix R:

arg min
R

Nd∑︂
i=1

∥(R (di − dc⏞ ⏟⏟ ⏞
d ′
i

) + (mc − mj)⏞ ⏟⏟ ⏞
m ′

j

∥2 (12)

The last formulation can be solved in closed form using the Singular Value Decomposition (SVD)
of the cross-covariance matrix:

C =

Nd∑︂
i=1

d
′
i (m

′
j)

T USVT = C Singular Value Decomposition

where U, V are two orthogonal matrices and S is the diagonal matrix of the singular values. The
optimal solution of Equation 12 is then given by:

R̂ = V S UT S =

⎧⎨⎩I if det(U)det(V) = 1

Diag(1, 1, . . . , 1,−1) if det(U)det(V) = −1

Finally, the calculation of the optimal translation is given directly by

t̂ = mc − R̂dc

3.3 3d shape matching

Many applications require the capability to automatically locate an object in a 3D scene and
determine its coordinates. This capability is useful in many industrial applications where robots
must be guided in 3D space to perform actions, but also in social applications, such as guiding
blind people, and in autonomous vehicles to recognize road signs, pedestrians, and other vehicles.

In the general setting, we have a 3D template of the object being searched for and a 3D scene
where instances of the object might be found multiple times and possibly be partially occluded.
The solution to this problem should robustly find the occurrences of the object in the scene, even
under conditions that differ from the ideal template, and determine the pose of the found objects.
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3.3.1 Least Square Matching

A first solution to the problem is proposed in Akca, 2007. In this case, the 3D matching problem is
posed as a least squares problem that can be solved without calculating any 3D features. We assume
that we have two surfaces with intensity values f(x,y, z) and g(x,y, z), which are, respectively, the
template surface and another instance of the same object. The problem consists of finding the
correspondences of the template surface in the searched surface. In the ideal case, we would have

f(x,y, z) = g(x,y, z)

but due to measurement errors and noise, we need to add a stochastic error component e(x,y, z):

f(x,y, z) − e(x,y, z) = g(x,y, z) (13)

To solve the problem, we need to frame it as an optimization problem with a cost function to
be minimized by a solver. In this specific case, we want to minimize the Euclidean distances
between the points on the template and the searched surface. To estimate the location, we find a
transformation from an initial position g0(x,y, z), as we would do in a registration problem.

For this purpose, we expand Equation 13 using the first-order Taylor expansion:

−e(x,y, z) =
∂g0(x,y, z)

∂x
dx+

∂g0(x,y, z)
∂y

dy+
∂g0(x,y, z)

∂z
dz− (f(x,y, z) − g0(x,y, z))

with
gx =

∂g0(x,y, z)
∂x

, gy =
∂g0(x,y, z)

∂y
, gz =

∂g0(x,y, z)
∂z

which are the first-order derivatives, and dx,dy,dz are the differential components of the 3D
transformation.

Expanding further, in general, we get a 3D similarity transformation of the type:

−e = A x − l, P (14)

where A is the design matrix, P = P11 is the associated a priori weight matrix, x is the vector
of parameters of the transformation to be estimated, and l = f(x,y, z) − g0(x,y, z) represents the
distance between corresponding points on the two surfaces, with the corresponding model of the
noise:

e ∼ N(0,σ0 Q11), σ0 Q11 = σ0 P−1
11 = K11 = E[e eT ]

The parameters are introduced into the system as observable:

−eb = I x − lb, Pb (15)
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where Pb is the associated weight matrix and lb is the observation vector.
The solution to the system of Equations 14–15 is given by the least squares solution:

x̂ = (AT P A + Pb)
−1(AT P l + Pb lb), solution vector

σ̂20 =
vT P v + vT

b Pb vb

r
, variance factor

v = A x̂ − l, residual vector for surface observations

vb = I x̂ − lb, residual vector for additional observations

that is estimated with the covariance matrix:

Kxx = σ̂20 Qxx = σ̂20 N−1 = σ̂20 (A
T P A + Pb)

−1

3.3.2 Surface Matching through 3D Features

Another solution to the 3D surface matching problem is presented in Drost et al., 2010, where
the proposed algorithm extracts 3D feature points from the template and the search surfaces.
During runtime, the features are efficiently queried and compared, and a voting approach is used
to estimate the pose, followed by an ICP refinement. This algorithm represents the foundation of
state-of-the-art methods to solve this problem and it’s the one that will be used in the industrial
application of this thesis. The block diagram of the algorithm is shown in Figure 21.

Load / Generate
3D Template Model

Load
3D Search Scene

PPF Feature
Extraction

Compute
Hashtable

Hashtable
Lookup

& Vote for Pose

Trained
Model

Pose
Clustering

ICP Refinement
& Final Pose

Runtime

Training

Figure 21: Block scheme of the algorithm.

The algorithm assumes that both the template and the scene object are represented as sets
of points with their associated normals, which can be computed from any point cloud or mesh
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representation. We denote the points in the scene as si ∈ S and the points in the template model
as mi ∈ M. In the offline training phase, the goal is to build a global descriptor of the template
that we can use to find matches. To construct this descriptor, the algorithm calculates a feature for
each pair of points that describes their relative positions and orientations. Given two points, m1

and m2, and their corresponding normals, n1 and n2, with d = m2 − m1, the feature F is defined
as:

F(m1, m2) =
(︂
∥d∥, (n1, d), (n2, d), (n1, n2)

)︂
(16)

where (a, b) ∈ [0,π] denotes the angle between the two vectors.

Figure 22: Feature of a point pair. Each feature is given by four components Fi as represented in the figure.

To build the global descriptor, the feature vector F is calculated for all point pairs mi, mj ∈ M on
the template model surface. The distances and angles are then sampled in steps of ddist, dangle =

2π/nangle, and the identical discretized feature vectors are grouped together. The global descriptor
is a mapping from the sampled point pair feature space to the model:

L : Z4 → A ⊂ M2

where the feature vectors from Equation 16 are mapped to the setA of all pairs (mi, mj) ∈ M2 that
have an identical feature vector. Figure 23 illustrates this mapping with an example.

Figure 23: Global model descriptor implemented with a hash table.



38 3d shape analysis and inference applications

In the algorithm, this mapping is implemented using a hash table that efficiently queries the
features of a scene point pair and responds in constant time with the set of template model point
pairs that have a similar feature.

In the ideal case, for any point sr ∈ S, there should be a corresponding point mr ∈ M in the
template model. Once this correspondence is found, aligning the two objects would be achieved by
aligning the two points and then rotating the scene around the normal of sr by an angleα. The pair
(mr,α) is referred to as the local coordinates of the model with respect to sr. After constructing
the hash table, the algorithm matches two pairs (sr, si) ∈ S2 and (mr, mi) ∈ M2 that share the
same discretized feature vector F. The alignment transformation from the model coordinates to
the scene coordinates is given by (Figure 24):

si = T−1
s→g Rx(α) Tm→g mi (17)

Figure 24: Transformation of template-scene coordinates.

Given a point sr, the algorithm tries to find the best local coordinates that maximize the number of
points in the scene that align with the model using a voting scheme. Once the optimal coordinates
are identified, the global pose of the object can be determined. To achieve this, for each scene
pair (sr, si), the corresponding pair feature Fs(sr, si) is computed and used as a query to the hash
table to find all template model pairs that share the same discretized feature. For each of these
correspondences, the local coordinate α is computed by solving Equation 17. After α is calculated,
a vote is cast and collected in the accumulator space. Each reference point then returns the peak
of its accumulator array, representing a set of possible object poses.
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Figure 25: Voting scheme for determining object poses.

Finally, to enhance the robustness of the algorithm, these poses are filtered using pose clustering,
and the final pose is refined through an ICP stage.
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3.4 deep learning on 3d data

Deep learning is a branch of machine learning that, compared with traditional machine learning
methods, avoids the need for manually designing features. The current main deep learning
methods are based on neural networks, which have the ability to directly learn patterns from
training data without manually designing the features to be extracted. This takes advantage of
large amounts of data and can provide an end-to-end solution for many computer vision tasks.
In recent years, deep learning has shown state-of-the-art results in tasks that use various types of
data such as images, text, and audio. This success, coupled with the growth of available 3D data,
has led to the rise of a new field that aims to apply deep learning to 3D data. Fundamental to
this rise was the fact that 3D sensors became progressively cheaper, leading to the availability of
large-scale 3D datasets with annotated data.
However, unlike traditional data that has a unique or dominant representation, 3D data has many
representations (point clouds, volumetric, polygonal meshes, etc.).

Figure 26: Unique representation of 2D images.

This represents a fundamental issue, as the most common type of neural network uses convolu-
tional layers that exploit the regularity of the data. Therefore, we cannot directly utilize the full
power of conventional neural networks for the most common types of 3D data, such as point clouds
and meshes. On the other side, regular structures for 3D data, such as volumetric representations
like voxels, can be directly used with 3D kernels. However, this presents further challenges in
terms of computational demands.

This inspires two main branches of methods to consume and analyze 3D data using neural
networks. One branch first converts the irregular structures into regular structures and then
applies convolutional-based neural networks with 3D kernels. The other branch directly uses the
irregular data, taking advantage of the permutation invariance of the points in the cloud.
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Figure 27: Regular vs Irregular representations for 3D data Ahmed et al., 2019.

3.4.1 Deep learning tasks

Deep learning can be used to solve a lot of applications that use 3D data. We can divide these
applications into:

1. 3D analysis where the 3D data is fed to the neural network to analyze its properties. Some
typical tasks include classification, semantic segmentation, and detection of objects within a
scene.

2. 3D synthesis where the neural network is used to generate 3D data from lower-dimensional
representations or from embeddings produced by an encoder network. Some typical tasks
include shape completion and shape modeling.

3. 3D assisted image understanding where the 3D data is not directly used as input to the
network but is instead used as additional information to assist tasks that would be difficult
to solve otherwise.

In this thesis, I will concentrate as an example on the 3D analysis case, in particular to solve
classification tasks.

3.4.2 Deep Learning on Regularly Structured Data

Sensor data typically arrives in the form of point clouds or depth maps, which can be transformed
into meshes through triangulation techniques. To utilize convolutional neural networks (CNNs) for
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learning deep features from this type of irregular data, it first needs to be converted into a regular
structure. The two main methods to operate this conversion are the projection or rendending of
the 3D object from multiple viewpoints to generate 2D images and the voxelization process. In
the projection or rendering method, the 3D object is taken from various angles and the 2D craeted
images can be used as inputs to traditional CNNs, and finally the outputs from each viewpoint
can then be combined using a view pooling technique to infer properties of the original 3D model.

The second method, voxelization, involves quantization of 3D point clouds or meshes into a
volumetric grid. The simplest form of voxelization creates a binary occupancy grid, where each
voxel is assigned a value of zero or one that indicates the absence or presence of points within the
voxel’s space. Once the voxel grid is created, CNNs can be applied directly using 3D kernels.

Multi-view CNN

Before the spread of 3D sensors, a big challenge in computer vision was inferring 3D object
properties from 2D images. With access to 3D data, one effective approach is to voxelize the data
and use volumetric CNNs or employ neural networks that can process irregular data directly.
Another proven method is rendering the 3D object from multiple viewpoints to create a set of 2D
images, which can then be analyzed using conventional 2D CNNs.

This approach has shown good results due to the relative efficiency of 2D representations
compared to 3D ones H. Su et al., 2015. In order to actually use voxel grids and train deep
neural networks with reasonable computational power, it’s usually necessary to use a coarse
grid. Instead, a single viewpoint can utilize much higher resolution images and still require less
training time. In addition, the 2D image representation allows us to leverage the wide research on
image descriptors, access very large labeled image datasets, and use numerous pre-trained CNN
architectures designed for images.

While the advantages of 2D image representation are less evident when we have available large
volumes of 3D data and substantial computational power, it remains a viable option in many
scenarios.

The general pipeline of a multi-view CNN (Figure 28) begins with the generation of multiple
views of a 3D shape using a rendering engine. Each of these views is then processed by a
CNN to extract features and produce a 2D descriptors for each view. These view descriptors are
subsequently passed to a view pooling layer, which combines the features from the different views
to create a compact representation of the 3D shape. This descriptor can then be used as input to
a neural network to process the global information and afterwards the output of this network is
flattened and fed to a classifier, which in the simplest case is a dense layer with a softmax output
function.
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Figure 28: Multi view CNN Yang et al., 2018

Volumetric CNN

Volumetric CNN are an alternative way of using the 3D data as input to the neural network. In
order to exploit the power of convolutional layers for feature extraction, the irregular data coming
from sensors must be first turned into a regular grid through a process called voxelization. There
are many ways of creating a voxel grid depending on the input data:

1. discrete "deterministic" hit grids are the simplest form of voxelization, which is done by
computing a binary grid based on whether or not there is a point in a voxel. If we also know
the pose of the sensor (for example, a LiDAR or a depth camera) that produced the point
cloud, we can encode the voxel as free, occupied, or unknown through 3D ray tracing.

2. discrete "probabilistic" hit grids refers to the case in which the occupancy grid is computed
using a probabilistic model.

3. continuos density grids consider each voxel to have a continuous density, representing the
likelihood that the voxel would obstruct a sensor beam.

In Thrun, 2003 the author shows how to acquire occupancy grids with mobile robots.
Let m be the occupancy grid map that is estimated from the sensor measurements. Let z1, . . . , zT
be the measurements from time 1 to time T . Each measurement carries information about the
occupancy of many grid cells.
The problem becomes:

How can we find the probability of occupancy of each cell m p(m|z1, . . . , zT ) given the
measurements z1, . . . , zT ?
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The one dimensional problem corresponds to the estimation p(mx,y|z1, . . . , zT ).
For numerical reasons we estimate instead the log-odds:

lTx,y = log
p(mx,y|z1, . . . , zT )

1− p(mx,y|z1, . . . , zT )
⇒ p(mx,y|z1, . . . , zT ) = 1− [el

T
x,y ]−1

Using Bayes rule we can estimate the log-odds at any time t:

p(mx,y|z1, . . . , zT ) =
p(zt|z1, . . . , zt−1,mx,y)p(mx,y|z1, . . . , zt−1)

p(zt|z1, . . . , zt−1)
(18)

Using the common static world assumption

p(zt|z1, . . . , zt−1,m) = p(zt|m)

so that we can simply Equation 18

p(mx,y|z1, . . . , zT ) =
p(zt|mx,y)p(mx,y|z1, . . . , zt−1)

p(zt|z1, . . . , zt−1)

Applying once again Bayer we get the probability thatmx,y is occupied

p(mx,y|z1, . . . , zT ) =
p(mx,y|zt)p(zt)p(mx,y|z1, . . . , zt−1)

p(mx,y)p(zt|z1, . . . , zt−1)
(19)

Analogously we can get the cell is free denoted by m̄x,y

p(m̄x,y|z1, . . . , zT ) =
p(m̄x,y|zt)p(zt)p(m̄x,y|z1, . . . , zt−1)

p(m̄x,y)p(zt|z1, . . . , zt−1)
(20)

We can eliminate some term by dividing Equation 19 by Equation 20

p(mx,y|z1, . . . , zT )
p(m̄x,y|z1, . . . , zT )

=
p(mx,y|zt)

p(m̄x,y|zt)

p(m̄x,y)

p(mx,y)

p(mx,y|z1, . . . , zt−1)

p(m̄x,y|z1, . . . , zt−1)

and using the normalization property of probability distributions we can rewrite as follows:

p(mx,y|z1, . . . , zT )
1− p(mx,y|z1, . . . , zT )

=
p(mx,y|zt)

1− p(mx,y|zt)

1− p(mx,y)

p(mx,y)

p(mx,y|z1, . . . , zt−1)

1− p(mx,y|z1, . . . , zt−1)

taking the logarithm we get the target log-odds:

log
p(mx,y|z1, . . . , zT )

1− p(mx,y|z1, . . . , zT )
= log

p(mx,y|zt)

1− p(mx,y|zt)
+ log

1− p(mx,y)

p(mx,y)

+ log
p(mx,y|z1, . . . , zt−1)

1− p(mx,y|z1, . . . , zt−1)
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Substituting the log-odds we get the recursive formulation:

ltx,y = log
p(mx,y|zt)

1− p(mx,y|zt)
+ log

1− p(mx,y)

p(mx,y)
+ lt−1

x,y

with initialization
l0x,y = log

p(mx,y)

1− p(mx,y)

Finally solving in closed form

lTx,y = (T − 1) log
1− p(mx,y)

p(mx,y)
+

T∑︂
t=1

p(mx,y|zt)

1− p(mx,y|zt)
(21)

where p(mx,y|zt) requires an inverse sensor model that maps the sensor measurements to its
causes.
Once the voxel grid is obtained, it is relatively straightforward to extend 2D convolutional network
techniques to 3D data. However, it is not obvious which architecture will yield optimal perfor-
mance, and the volumetric representation can become computationally intensive. This must be
taken into condiration for the design of the architecture.

One of the most knows architectures that uses voxel grids for shape classification is VoxNet
Maturana and Scherer, 2015.

This architecture fundamentally focuses on extracting hierarchical features from the 3D grid
input to obtain a global descriptor that can be used by the classification network.
The network (Figure 29) takes an input point cloud and transforms it into a low resolution occu-
pancy grid with dimensions of 32x32x32. It then applies rotation and translation augmentation.
The baseline architecture consists of a convolutional layer with 3D filters followed by max pooling.
The output is then flattened and passed to a feedforward layer for classification. The softmax
function with categorical cross-entropy loss is used as the output function.

In Chapter 4, I will present the end-to-end implementation of a modified VoxNet structure.

3.4.3 Deep Learning on Point Clouds

The majority of 3D data from sensors or 3D acquisition techniques is produced in the form of
point clouds. Therefore, point clouds represent a particularly important type of representation for
3D data. As discussed in previous sections, many neural networks convert the irregular structure
of point clouds into a regular format. However, this approach imposes constraints on the resolution
and computational power that has led to the development of a new type of neural network that
directly uses point clouds and takes into consideration their permutation invariance. One of the
most used architectures of this type is PointNet Charles et al., 2017, which provides a unified
framework for classification and part segmentation.
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Figure 29: VoxNet structure Maturana and Scherer, 2015

Even if point clouds are a straightforward representation, designing a neural network architec-
ture that can utilize them in a efficient way presents three main challenges:

1. The model must be designed to account for the fact that a point cloud is a set of points that
remains invariant under permutations.

2. The points belong to an Euclidean space with a defined distance metric. This means that they
are not isolated, and the relationships between adjacent points are important. The network
should then be able to capture these local structures.

3. Since point clouds are geometric objects, the model must produce labels that are invariant to
transformations of the input, such as rotations and translations.

The key design element for this approach is the symmetric function, max pooling. The network
learns to select important parts of the point clouds and encodes that information into features,
which are then processed by fully connected layers.

A point cloud is represented by a subset of 3D Euclidian points {Pi|i = 1, . . . ,n} where each
point Pi is a vector of at least three coordinates (x,y, z). To create a transformation invariant to



3.4 deep learning on 3d data 47

permutation the idea of the authors Charles et al., 2017 is to approximate a function applied to a
set of points with a symmetric function on transformed elements in the set:

f({x1, . . . , xn}) ≈ g(h(x1), . . . ,h(xn))
f : 2RN → R, h : RN →RK, g : RK × · · · × RK⏞ ⏟⏟ ⏞

n

→ R

where g(·) is a symmetric function.
The core component of PointNet tries to approximate the function h using a multi-layer percep-

tron network, while the function g is approximated using a combination of a univariate function
and a max pooling operation.

To achieve invariance to transformations, PointNet uses a spatial transformer network to convert
the data into a canonical form for processing. By training the T-net along with the main network, it
learns to apply geometric transformations that align point clouds with good accuracy, resulting into
much easier subsequent classification tasks. This concept can be extended to the alignment in the
feature space by using another alignment network that predicts a feature transformation matrix to
align features from different input point clouds. However, the feature space transformation matrix
has a much higher dimension, making the optimization more challenging. Therefore, PointNet
includes a regularization term that constrains the feature transformation matrix to remain close to
an orthogonal matrix:

Lreg = ∥I−AAT∥2F

where A is the feature transform learned by the network. This regularization is proven to make
the optimization faster and more stable.

In Figure 30 we can see the full architecture of PointNet.

Figure 30: PointNet structure Charles et al., 2017





Part II

S E C O N D PA R T: D E E P L E A R N I N G A P P L I C AT I O N U S I N G 3 D DATA

This part shows the design of a deep learning application for 3D classification. The design is
inspired by the Orientation Boosted Voxel Net, but the entire architecture of the network has
been changed and skip connections were introduced. The implementation in Python from the
augmentation of the data, the creation of the dataset, the model and the training and evalution
of the network is provided in its key parts.





4 R E S I D U A L O R I E N TAT I O N - B O O S T E D C N N F O R
3 D C L A S S I F I C AT I O N

In this chapter I present a novel 3D classification network architecture inspired by the Orienta-
tion Boosted Voxel Net (ORION), in which I incorporate skip connections similar to the 2D ResNet
architecture. Utilizing the ModelNet10 dataset, the network processes aligned 3D CAD models,
which are augmented by rotating each mesh and voxelizing them into binary grids. The archi-
tecture is designed to classify both the object and its rotation, utilizing a combined categorical
cross-entropy loss for both tasks. Skip connections are chosen to enable deeper network design
without vanishing gradient problems, leading to more abstract and effective feature extraction.
During testing, a voting approach is used, where each input is rotated multiple times, and the final
classification is based on the label with the highest overall sum class probability from these rota-
tions. This strategy is used to enhance the network’s robustness against challenging perspectives.
The experimental results demonstrate that the proposed architecture achieves 92.3% accuracy on
the test set, surpassing both my implementation of the original and extended ORION models. This
improvement shows the efficacy of using skip connections in 3D data processing and serves as a
study for future more elaborated networks.

This project was implemented in PyTorch using the torch and Open3D libraries. It is organized
into files to follow a scalable approach. Specifically, I provide a class file for dataset creation and
a class file for the models definition. Additionally, I provide three executable files to be run in
sequence: one file to voxelize and augment the initial dataset offline, one file to train the model,
and one file to evaluate its performance.

4.1 introduction and related work

In recent years, deep learning has demonstrated state-of-the-art results in tasks involving var-
ious types of data such as images, text, and audio. This success, combined with the increasing
availability of 3D data, has led to the emergence of a new field focused on applying deep learning
to 3D data. A key factor in this development has been the decreasing cost of 3D sensors, result-
ing in very large 3D datasets with annotated data becoming more accessible. However, unlike
traditional data with a unique or dominant representation, 3D data comes in multiple forms (e.g.,
point clouds, volumetric data, polygonal meshes), some of which are irregular. This represents a
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primary challenge, as the most common type of neural network uses convolutional layers that rely
on the regularity of the data.

This challenge has given rise to two main approaches for processing and analyzing 3D data with
neural networks:

• One approach converts the irregular structures into regular structures and then applies
convolutional neural networks with 3D kernels.

• The other approach directly uses the irregular data such as point clouds, taking into account
the permutation invariance of the points in the cloud.

Even if point clouds are a straightforward representation, designing a neural network architec-
ture that can effectively utilize them presents many challenges, as the model must be invariant
to permutations of the points as well as transformations such as rotations and translations of the
point cloud. On the other side, converting these irregular structures into a regular grid allows
the extension of 2D convolutional network techniques to 3D data in a relatively simple manner.
However, it is not clear which architecture will yield optimal performance, and the volumetric
representation can become computationally intensive.

In this thesis, I present a novel approach for 3D object classification that draws inspiration
from the Orientation Boosted Voxel Net network Sedaghat et al., 2017, while implementing a new
architecture that incorporates skip connections similar to those used in the 2D ResNet He et al.,
2016 architecture.

I start by using the ModelNet10 dataset, composed of aligned 3D CAD models divided into 10
classes, and I perform data augmentation by rotating each mesh 12 times in steps of 30◦. Each
rotated mesh is then voxelized into a 32x32x32 binary grid and fed to the network, which outputs
both the class label and the rotation class through a softmax output function with a combined
categorical entropy loss for both tasks. The expectation is that forcing the network to also learn the
orientation of the object will help the classification task, and by using skip connections, the network
can be made deeper without encountering the vanishing gradient problem and thus producing
more abstract features that can improve the network’s accuracy.

After this, during test time, each input is rotated multiple times and fed to the network, producing
multiple output labels for the same object. The chosen label is the one that maximizes the class sum
probability according to the softmax output function. This approach has the goal to provide the
network with the full view of the object to avoid misclassifications due to challenging perspectives.
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4.2 processing pipeline

Figure 31: Processing pipeline

Pre-processing

Data plays a crucial role in the accuracy of a machine learning model. In particular, the data must
be as representative as possible of the entire input distribution, and the samples should be drawn
independently from each other whenever possible. For this study, the input data consisted of 3D
meshes taken from the ModelNet10 dataset. The meshes for each class were manually aligned
around the z-axis by the authors. The first preprocessing step was to take each mesh and create
rotated copies around the z-axis with fixed increments. This is useful for both:

• Ensuring that the input rotation distribution is well-sampled across the entire dataset, creat-
ing the labels to solve the rotation task.

• Augmenting the initial dataset with more data, which can also help with the class label task.

Each rotated mesh is then normalized to make it fit the unit cube, helping to avoid the input
covariance shift, making the training more robust and faster. The normalized meshes are then
voxelized and saved separately in a voxelized dataset that will be used for the training. This helps
to reduce the memory occupation and speeds up the training since the transformation process is
done offline. The data is then sampled randomly in batches to make each batch as i.i.d. as possible.

Models, Training and Evaluation

The model architecture consists of input transformation layers that end with a max pooling layer
to help with invariance with respect to the translation of the objects inside the grid. The feature
maps are then processed by a 3D residual network with skip connections, further processed with
average pooling, and then flattened to be fed to an orientation boosted classification network that
produces both the class and rotation labels. To prevent overfitting, dropout layers were used.
During testing, I implemented a voting approach where each input is rotated to different angles
around the z-axis, and the label corresponding to the highest sum of outputs across all orientations
is taken.
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4.3 dataset

Input Dataset

The starting point dataset I used is ModelNet10, which contains 4,899 synthetic CAD models
from 10 different classes. The dataset is split into 3,991 (80%) shapes for training and 908 (20%)
shapes for testing. All the objects within a class are manually aligned by the authors. The provided
objects are in OFF files that can be read and encapsulated in a mesh model using Open3D functions.

(a) Bathtub object. (b) Chair object.

Figure 32: Example of input meshes taken from ModelNet10.

Data Augmentation

From each input mesh, I created 12 rotations around the z-axis with increments of 30◦. This
procedure produces the orientation labels used for training and augments the initial dataset while
maintaining the same class proportions. During training, the imbalance in the number of points
for each class is compensated by using different weights for each class in the loss function.

Figure 33: Augmentation of the chair object.
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Voxelization

Each rotated mesh is then normalized to fit the unit cube to avoid input covariance shift. The
normalized mesh is then voxelized. There are many ways to perform this process, depending on
the nature of the input data. These methods are mainly:

• Discrete "deterministic" hit grids: This is the simplest form of voxelization, done by comput-
ing a binary grid based on whether or not there is a point in a voxel.

• Discrete and continuous "probabilistic" grids: In this case, a probabilistic model is used to
produce either a binary grid or a continuous grid. For example, with sensor data, each voxel
could be considered to have a continuous density, representing the likelihood that the voxel
would obstruct a sensor beam.

In this case, using synthetic data, I employed a deterministic approach with Open3D functions,
creating binary grids.

4.4 learning framework

This section presents all the details of the network implementation, beginning with the architec-
ture and including the activation functions used, as well as the training loss and the optimization
algorithm used. Figure 34 illustrates the entire architecture, and Table 2 lists all the hyperparame-
ters of the layers.

4.4.1 Skip connections

Deep neural networks have constituted a big breakthrough for many applications for their ability
to automatically extract meaningful features from large amounts of data and process them in short
time obtaining good results. Building on this success, we would like to implement even deeper
neural networks for several reasons:

• Deeper networks have greater capacity and hierarchical structure.

• Features computed by deeper layers are more abstract and, therefore, generally more effective
at discriminating complex structures.

• The efficacy of deeper networks is supported by empirical evidence.

Given the significance of depth, we aim to stack more layers. However, this leads to the problem
of vanishing gradients, as the network is trained using backpropagation and the gradient must
be propagated through all the activation functions of the layers. This makes the training of deep
neural networks challenging to the point where the addition of more layers and the increase of
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network depth instead of constituting an improvement can negatively impact the performance of
the network.

This is evident in Figure 35, where the authors He et al., 2016 have shown that the training loss
and accuracy become worse when identity layers are added to a network to increase its depth.
These identity layers, which theoretically should not affect the network’s output, instead lead to a
decline in the performance.
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Figure 35: Vanishing gradient with deeper neural networks He et al., 2016.

Several solutions have been shown to help with this problem, such as:

• The choice of the nonlinearity of the activation functions.

• Batch normalization.

• Proper initialization of the weights.

Even if these techniques are helpful, they are not sufficient to completely solve the problem.

Recently, a breakthrough for solving the vanishing gradient problem was proposed with the
introduction of skip connections He et al., 2016. This approach forces the network to learn the
residual with respect to the input, which is typically a small quantity:

F(x) = o − x

Figure 35 shows the proposed residual unit.
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Figure 36: Residual block He et al., 2016.

Each residual unit can be expressed as:

xl+1 = f
(︂
F(xl,Wl) + h (xl)

)︂
where xl is the input to the l-layer, Wl is the set of weights of the l-layer, xl+1 is the input to the
(l+ 1)-layer and

f(·) = ReLU(·), h(x) = x, F(xl,Wl) = network layer

Further studies have shown that bringing the nonlinearity inside the network layer can further
improve the gradient flow. The best choice of the function is then obtained by setting f(·) and h(·)
to the identity function, so the layer can be written as follows:

xl+1 = F(xl,Wl) + xl

From the equation above, one can derive the expression of the output of the network xL as a
function of the input to layer l:

xL = xl +
L−1∑︂
i=l

F(xi,Wi)

from which the expression of the derivative of the loss computed at layer L with respect to xl is

∂L

∂xl
=
∂L

∂xL
∂xL
∂xl

=
∂L

∂xL

(︃
1 +

∂

∂xl

L−1∑︂
i=l

F(xi,Wi)

)︃
From the red-highlighted term, we can see that it is unlikely for a minibatch to completely cancel
out the gradient. This implies that the gradient of the layer l does not vanish, even when the
weights are small.
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In Figure 37 we can see that using residual blocks reverses the behavior observed in Figure 35.
With residual blocks, deeper networks not only fit the training set better but also achieve improved
accuracy during inference.
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Figure 37: Improved accuracy with skip layers He et al., 2016.

4.4.2 Model Architecture

Conv1 Pool1 ConvRes1 IdRes1 ConvRes2 IdRes2 Pool2 fc1 fc2 fc3

# of filters 64 (64,64,128) (64,64,128) (64,64,128) (64,64,128)

kernel size (3,3,3) (2,2,2) (3,3,3) (3,3,3) (3,3,3) (3,3,3) (2,2,2)

# of repetitions 1 2 1 3

stride 1 2 2

padding 0 0 0

batch norm ✓ × × × × ×

# of outputs 1024 10 120

dropout ratio × × 0.2 × 0.2 × × 0.1 × ×
Table 2: Details of the architecture.

Layers, output function and voting

The network takes as input a voxel grid, which is first transformed by a convolutional layer and a
max pooling layer. These layers render the architecture invariant to small translations of the input
within the grid. The novelty of the architecture is the use of skip layers. There are two main blocks
used:

• Identity residual block: The main path consists of three convolutional layers that output
activation maps of the same size as the input, allowing them to be added in a sum block to
learn the residual and favor gradient propagation through the network. To achieve the same
size as the input, the first and third kernels are of dimension 1× 1× 1 with unitary stride,
while the second kernel has a dimension that can be changed using padding of half the input
dimension and stride equal to one.
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IxIxI

+

1x1x1
conv1

3x3x3
conv2

1x1x1
conv3

IxIxI

• Convolutional residual block: The main path remains the same as the identity block, with
the only difference being that the first kernel now has a stride of two, so that the output
dimension is the integer division of the input size by two.

O =

⌊︃
I− 1

2
+ 1

⌋︃
The shortcut path also has a one-dimensional kernel with stride two, so the two outputs can
be summed in the usual manner.

IxIxI

+

1x1x1
conv1 3x3x3

conv2

1x1x1
conv3

OxOxO

1x1x1 conv

The output of the residual network is then further processed with average pooling and at last
flattened to be fed as input to a feedforward classification network with an orientation boost. This
means that the output of the initial feedforward layers is given as input to two separate feedforward
layers, which produce the final output of the network through the softmax function:

σ(z)i =
ezi∑︁K
j=1 e

zj

During inferce time, each input is rotated 12 times and we take as output label:

cfinal = arg max
k∈classes

∑︂
r∈rot

yk(xr)
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This makes the output more robust to misleading views of the input.

Activation function

The activation function used for the training is the Leaky ReLu function with parameter 0.1 to
avoid dying neurons due to bad initialization or bias.

LeakyReLu(x) =

⎧⎨⎩x if x > 0,

αx if x ⩽ 0.

−2 −1 1 2

−1

1

2

x

LeakyReLu(x)

α = 0.5
α = 0.3
α = 0.2
α = 0.1

Regularization

Given the large number of parameters in the network, it is important to avoid overfitting to
prevent the network from following the noise in the training data as if it was part of the useful
features, which can lead to bad generalization to new data. A very common countermeasure to
prevent overfitting is dataset augmentation, which enlarges the dataset and that I implemented
during the voxelization process. On top of that, model validation was used to detect overfitting
at each epoch by plotting the training-validation curves. The main regularization strategy used
in the network was model ensembling through the implementation of dropout layers. During
training, dropout layers randomly removes some neurons along with their incoming and outgoing
connections at each epoch, as illustrated in Figure 38. This is done by dropping each neuron with
a probability p, which can be tuned.
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Input Layer

Hidden Layer Dropout Layer

Output Layer

Figure 38: Dropout layer for regularization during training.

This strategy approximates the optimal Bayesian model ensembling

y =

∫︂
F(x,W)p(W|D)dW

by considering different networks with shared weights that are trained for only one iteration.

Another regularization term is given by the use of skip connections. In fact, the authors in Xu
et al., 2024 demonstrated that skip connections can help to smooth the loss function, facilitating
the converge to the minima proving once again their benefits in the training of a neural network.

(b)Without skip connections(a)With skip connections

Figure 39: Loss surface of ResNet-56 with and without skip connections Xu et al., 2024.
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4.5 optimization algorithms and backpropagation

After defining the architecture of the network, training is framed as an optimization problem
where a loss function must be minimized numerically. To achieve this, it is first necessary to choose
an optimization algorithm with good convergence characteristics, and secondly, to efficiently com-
pute the gradient of the network at each step.

Stochastic Gradient Descent

One of the most used optimization algorithms in the past is Stochastic Gradient Descent, which
has been proposed as a modification of the Gradient Descent algorithm to ease computation and
introduce stochasticity to possibly escape local minima. For this type of algorithm, a random batch
of training samples is used to compute an unbiased estimate of the gradient, and the weights are
updated according to:

wi+1 = wi −
η(i)

K

K∑︂
k=1

∇L(xk, tk; wi)

Over the years, SGD has shown many problems such as ill-conditioning, long training times for
neural networks, and high dependence of the results on the learning rate, as shown in Soydaner,
2020. To address these issues, modifications of this algorithm were introduced to reduce the
oscillations of the update.

Stochastic Gradient Descent with Momentum (Nesterov)

The concept of Momentum was introduced to make the updates more stable and to accelerate
convergence to a minimum, especially along flat surfaces. In this case, a new quantity v is
introduced to accumulate the contributions of past gradients towards the mean direction, so
that radical changes in direction due to particular batches can be dampened. A parameter α ∈
[0, 1) is introduced to tune the decay of past contributions. A Nesterov momentum refers to
the computation of the gradient of the loss already previewing the future update based on the
momentum, further increasing the convergence speed. The update rules are given by:

vi+1 = αvi −
η(i)

K

K∑︂
k=1

∇L(xk, tk; wi +αvi)

wi+1 = wi + vi+1

Adaptive Learning Rate: AdaGrad and RMSprop

Another type of optimization algorithm dynamically changes the learning rate across iterations
and also applies different learning rates to each weight. The two main algorithms of this type are
AdaGrad and RMSprop. These algorithms reduce the learning rate for weights frequently updated
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in past iterations while increasing the learning rate for weights that have had only small changes.
In order to quantify the changes in the gradient, the mean of the gradient over the batch at each
iteration i is first computed, and two quantities α(i)

m , r(i)m are introduced to memorize the gradient
changes for each weight:⎧⎪⎪⎪⎨⎪⎪⎪⎩

α
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AdaGrad
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g
(i)
m

)︂2
RMSprop

The two quantities have a similar meaning, with the difference that RMSprop introduces a
moving average with parameter β to control the decay of the contributions from earlier iterations.
These quantities are then used to compute the dynamic learning rates for each parameter:

⎧⎪⎪⎨⎪⎪⎩
η
(i)
m = η√

α
(i)
m +ϵ

AdaGrad

η
(i)
m = η√

r
(i)
m +ϵ

RMSprop

These learning rates are then used for the update rule:

w
(i+1)
m = w

(i)
m − η

(i)
m g

(i)
m

Both algorithms are effective in many applications, but RMSprop typically addresses the problem in
AdaGrad where the weights decrease monotonically, causing learning to stop after many iterations.

Adaptive Moment Estimation (Adam)

Adam is one of the most commonly used optimization algorithms in deep learning. The al-
gorithm uses both momentum updates from estimates of the first-order moment of the gradient
and learning rate updates from the second-order moment of the gradient. The two moments are
computed as: ⎧⎪⎪⎨⎪⎪⎩

ξ
(i)
m = β1 ξ

(i−1)
m + (1−β1)g

(i)
m First order moment

ψ
(i)
m = β2ψ

(i−1)
m + (1−β2)

(︂
g
(i)
m

)︂2
Second order moment

Since the initialization of the moments is typically set to zero, these are biased estimates. While this
bias diminishes after several iterations due to the decay in the moving average, it can be significant
in the first few iterations. Adam compensates for this bias by using unbiased estimates:

ξ̂
(i)
m =

ξ
(i)
m

(1−β
(i)
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(i)
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2 )
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The weights are then updated according to the usual rule:

w
(i+1)
m = w

(i)
m − η

ξ̂
(i)
m

ψ̂
(i)
m + ϵ

g
(i)
m

Adam has demonstrated many advantages and is known for its superior convergence properties
in many deep learning applications. In particular, it requires little tuning of the initial learning
rate and is computationally efficient.

Figure 40 shows an example of trajectories of some of the mentioned algorithms on a loss surface
with a saddle point. In particular, we can see the problems of Gradient Descent, which gets stuck
in the saddle point, and the efficiency of the Adam optimizer, which is able to avoid the saddle
point directly, moving towards the minimum.

Figure 40: Comparison of the trajectory of some of the most used optimization algorithms.

Backpropagation

All the optimization algorithms include the calculation of the gradient over a batch of the loss
function of the network with respect to all weights in the definition of the update rule. Since
the number of weights in a network is typically very large, it is crucial to compute the gradient
efficiently. The best way to do this is through numeric differentiation, which in the context of neural
networks is called Backpropagation. The main idea here is to recursively relate the calculation
of the gradient with respect to one weight to the calculation of the gradient of the weights in the
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subsequent layers. Specifically, an error message is propagated from the end of the network to the
first layers. In a feedforward network, this leads to:

δ
(l)
j ≜

∂L

∂a
(l)
j

=
∑︂
k

∂L

∂a
(l+1)
k

∂a
(l+1)
k
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(l)
j

So that the error message can be recursively computed as:

δ
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′
(a

(l)
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And the gradient is efficiently updated by:
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4.6 model training

The network is then trained using a loss function that incorporates the orientation-boost that
forces the network to learn the object’s orientation as a secondary task. This can be done using a
combination of categorical cross-entropy loss for each task, weighted by the parameter γ:

L(D,W) = −

N∑︂
n=1

[︄
10∑︂
q=1

tclass
n,q log yclass

n,q + γ

120∑︂
p=1

trot
n,p log yrot

n,p

]︄

In this specific case, I chose γ = 0.5 and observed that the accuracy of the class label was not greatly
influenced by this specific value.

After this, several optimization algorithms were tested using different learning rates. The
algorithm that produced the best and most stable results was the Adam optimizer with an initial
learning rate of 10−3.

4.7 results

The final architecture of the model was built starting from an implementation of the ORION
network, which was used as a baseline. Extending the ResNet concept to 3D data was not straight-
forward, as I had to account for relatively small voxel grids and limited computational power.
Particularly important was the choice of the activation function that I changed from the ReLU func-
tion to the Leaky ReLU function. This was helpful to avoid the dying neurons problem that was
affecting the convergence of the model. I also found that the model achieved similar performance
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within a discrete range of hyperparameters, such as learning rate, batch size, and the parameter γ.
I experimented with different types of optimizers, confirming that the Adam optimizer provided
the most stable updates and converged the fastest overall.
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Figure 41: Train-validation class loss plot.

Even with the large number of layers used, the model was able to converge very quickly within
10 epochs to achieve the best accuracy on the validation set. Training even more the model was
slower and did not improve the validation accuracy, as I checked by testing the validation loss
and accuracy at the end of each epoch to update the best model. This showed that the model
successfully avoided overfitting despite the large number of parameters, thanks to the extended
augmented dataset and the use of dropout layers, whose impact grows the deeper the layer is
placed within the network.

Figure 42 shows the confusion matrix of the residual model on the test set provided by the
ModelNet10 dataset. The matrix is almost diagonal and this indicates that most of the predicted
objects are correctly classified.

As expected, the network had the greatest difficulty to distinguish between similar object shapes,
such as desks and tables and dressers and nightstands.

During testing, the voting approach was shown to significantly improve the accuracy of the
network across all designs by almost 2%. The accuracies of all the trained models were compared,
beginning with the baseline ORION model, passing through the extended ORION model from
the paper, and concluding with my implementation incorporating skip layers. The trained model
achieved an accuracy of 92.3% on the ModelNet10 test dataset, surpassing both my original ORION
network and the modified implementation, therefore demonstrating the potential of skip layers
for 3D data.
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Figure 42: Confusion matrix on the ModelNet10 test dataset

4.8 concluding remarks and future work

The solution proposed in this thesis shows good accuracy and presents several advantages. Even
more importantly of the achieved accuracy, various new approaches were implemented starting
from the baseline model that showed constant accuracy improvements and this provides a tested
basis for future architectures. In particular, the use of skip layers can be explored more, where
interesting research can be done for long skip connections and alternative implementations of
the convolutional and identity blocks. For example, a technique the was proven useful in the 2D
domain and that could be a possible extension was placing the activation function before the sum
block. Additionally, more advanced voxelization and augmentation techniques could be tested,
such as also adding translations and rotations around the x-axis. Exploring different numbers of
rotations for each class could also prove beneficial, as certain classes may gain from a larger or
smaller range of possible rotations.

Finally, the initial resolution of the voxel grid and the number of layers can be tuned based on
the memory and computational capacity of the hardware used for training.
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A A P P E N D I X

In the following I present the key parts of the code that I developed to implement the proposed
deep network architecture. Only key parts are shown that represent the main ideas. The whole
code was written in Python using Pytorch libraries.

Voxelization and Augmentation

1 '''

2 1. open the .off files and use the open3d function to read the mesh

3 2. create #augmentation_factor rotated meshes, making sure that the

4 rotations are random but still unique for the same mesh

5 3. voxelize all the rotated meshes choosing the voxel_size

6 4. save all the voxel grids into a .ply file concatenating in the name

7 the degrees of the rotation. Also save this file in the corresponding

8 folder of the rotation (if not existant, just create it)

9 '''

10 def augment_and_voxelize_o3d(input_address, output_address, augmentation_factor,

11 num_rotation_classes, voxel_grid_size = 32, padding = 0) :

12 #open off file of the mesh and create the mesh

13 mesh = o3d.io.read_triangle_mesh(input_address)

14 #pick #augmentation_factor random but unique numbers for the rotations

15 rand_rotation_class_list = random.sample(range(num_rotation_classes), augmentation_factor)

16 #the list of the random rotations sampled

17 theta_list = [((2*i)/num_rotation_classes) * math.pi for i in rand_rotation_class_list]

18 #---------creation of the folder for the rotation class------------

19 #split the output address into folder address and file name

20 head_tail_address = os.path.split(output_address)

21 #create the #num_rotation_classes folders if non existant

22 for i in range(num_rotation_classes):

23 angle = i * int(360/num_rotation_classes)

24 output_address_directory = head_tail_address[0] + '/' + str(angle)

25 if not os.path.exists(output_address_directory):

26 os.makedirs(output_address_directory)

27 #--------end creation of the folder for the rotation class---------

28 for theta in theta_list:

29 #-----apply the random rotation---------

30 rot_matrix = np.array([[ math.cos(theta), -math.sin(theta), 0],

31 [ math.sin(theta), math.cos(theta), 0],

32 [0, 0, 1]])

33 mesh.rotate(rot_matrix)
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34 #------normalize the mesh---------------

35 mesh.scale(1/np.max(mesh.get_max_bound()-mesh.get_min_bound()),center=mesh.get_center())

36 #-------------------------voxelize--------------------------

37 #the voxelization procedure is based on the open3d tutorial

38 VOXEL_SIZE = 1/(voxel_grid_size - (1 + padding*2))

39 #voxelize the normalized mesh using open3d function

40 voxel_grid = o3d.geometry.VoxelGrid.create_from_triangle_mesh(mesh,

voxel_size=VOXEL_SIZE)↪→

41 #----------------------save results--------------------------

42 #rotation degrees

43 degrees_rotation = int((theta / (2*math.pi)) * 360)

44 #final output address of the file

45 output_address_rotated = head_tail_address[0] + '/' + str(degrees_rotation) + '/' +

head_tail_address[1] + "_" + str(degrees_rotation) + ".ply"↪→

46 #save the voxel grid in a .ply file

47 o3d.io.write_voxel_grid(output_address_rotated, voxel_grid, write_ascii=False, compressed

= False)↪→

48 #-----------------------------------------------------------

49 ''' read an open3d grid object and return a binary voxel grid as a tensor

50 1. retrive all the voxels in the voxel grid using voxel_grid.get_voxels()

51 2. map(function, iterable) applies the function to each element in the

52 iterable and returns a map object

53 3. choose as function the lambda function lambda x: x.grid_index to

54 extract the 'grid_index' attribute from each voxel object

55 4. list(map(....)) transform the returned map object into a list -->

56 output is a list of 'grid_index' values for all voxels

57 5. np.array(list(...)) transform the returned list into a np.array for

58 efficient operations '''

59 def read_voxel_grid(grid, voxel_grid_size = 32):

60 np_voxels = np.array(list(map(lambda x: x.grid_index, grid.get_voxels())))

61 np_voxelGrid = np.zeros((voxel_grid_size, voxel_grid_size, voxel_grid_size))

62 for j in range(len(np_voxels)):

63 x = np_voxels[j][0]

64 y = np_voxels[j][1]

65 z = np_voxels[j][2]

66 np_voxelGrid[x,y,z] = 1

67 return torch.from_numpy(np.array([[np_voxelGrid]])).float()

Definition of the residual blocks

1 #------------------------------DEFINITION OF THE RESIDUAL BLOCKS--------------------------------

2 '''this is the general processing path of both the identity and the convolutional layers'''

3 class MainPath(nn.Module):

4 def __init__(self, in_channels, filters, kernel_size, stride=1):

5 super().__init__()

6 #dimension of the filters
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7 F1, F2, F3 = filters

8 self.main_path = nn.Sequential(

9 #1x1x1 filter

10 nn.Conv3d(in_channels, F1, kernel_size=1, stride=stride),

11 nn.BatchNorm3d(F1),

12 nn.LeakyReLU(0.1),

13 #middle convolution with tunable dimension

14 nn.Conv3d(F1, F2, kernel_size=kernel_size, padding=kernel_size//2),

15 nn.BatchNorm3d(F2),

16 nn.LeakyReLU(0.1),

17 #1x1x1 filter

18 nn.Conv3d(F2, F3, kernel_size=1),

19 nn.BatchNorm3d(F3),

20 )

21 self.apply(self._init_weights)

22 '''weights initialization function'''

23 def _init_weights(self, module):

24 if isinstance(module, torch.nn.Linear):

25 #xavier initialization

26 torch.nn.init.xavier_uniform_(module.weight)

27 if module.bias is not None:

28 module.bias.data.zero_()

29 if isinstance(module, torch.nn.Conv3d):

30 torch.nn.init.xavier_uniform_(module.weight)

31 if module.bias is not None:

32 module.bias.data.zero_()

33 def forward(self, x):

34 y = self.main_path(x)

35 return y

36 '''identity block that keeps the same dimension of the input'''

37 class IdentityBlock(MainPath):

38 def __init__(self, in_channels, filters, kernel_size):

39 #the input size is preserved using stride = 1 (as default in the main path)

40 super().__init__(in_channels, filters, kernel_size)

41 self.activation = nn.LeakyReLU(0.1)

42 def forward(self, x):

43 y =self.activation(self.main_path(x) + x)

44 return y

45 '''this set-up gives as ouput dimension floor(in_dimension - 1/2) + 1'''

46 class ConvolutionalBlock(MainPath):

47 def __init__(self, in_channels, filters, kernel_size):

48 super().__init__(in_channels, filters, kernel_size, stride=2)

49 self.relu = nn.ReLU()

50 #shortcut path that uses a convolution to half the size of the input

51 self.shortcut_path = nn.Sequential(

52 nn.Conv3d(in_channels, filters[2], kernel_size=1, stride=2),

53 nn.BatchNorm3d(filters[2])
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54 )

55 self.apply(self._init_weights)

56 '''weights initialization function'''

57 def _init_weights(self, module):

58 if isinstance(module, torch.nn.Linear):

59 torch.nn.init.xavier_uniform_(module.weight)

60 if module.bias is not None:

61 module.bias.data.zero_()

62 if isinstance(module, torch.nn.Conv3d):

63 torch.nn.init.xavier_uniform_(module.weight)

64 if module.bias is not None:

65 module.bias.data.zero_()

66 def forward(self, x):

67 y = nn.LeakyReLU(0.1)(self.main_path(x) + self.shortcut_path(x))

68 return y

69 #-----------------------------------------------------------------------------------------------

Definition of the architecture of the deep network

1 class ResidualNet(nn.Module):

2 def __init__(self):

3 super().__init__()

4 self.network = nn.Sequential(

5 #input (1,32,32,32)

6 nn.Conv3d(1, 64, kernel_size=3, stride=1),

7 #output(64, 30,30,30)

8 nn.BatchNorm3d(64),

9 #output(64, 30,30,30)

10 nn.MaxPool3d(kernel_size=2, stride=2),

11 #output(64, 15,15,15)

12 ConvolutionalBlock(64, [64, 64, 128], kernel_size=3),

13 #output (128, 8,8,8)

14 nn.Dropout(0.2),

15 IdentityBlock(128, [64, 64, 128], kernel_size=3),

16 #output (128, 8,8,8)

17 IdentityBlock(128, [64, 64, 128], kernel_size=3),

18 #output (128, 8,8,8)

19 ConvolutionalBlock(128, [64, 64, 128], kernel_size=3),

20 nn.Dropout(0.2),

21 #output (128, 4,4,4)

22 IdentityBlock(128, [64, 64, 128], kernel_size=3),

23 #output (128, 4,4,4)

24 IdentityBlock(128, [64, 64, 128], kernel_size=3),

25 #output (128, 4,4,4)

26 IdentityBlock(128, [64, 64, 128], kernel_size=3),

27 #output (128, 4,4,4)
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28 nn.AvgPool3d(kernel_size=2, stride=2)

29 #output (128, 2,2,2)

30 )

31 self.classification_layer = nn.Linear(128*(2**3), 128)

32 self.fc2 = nn.Linear(128, 10)

33 self.fc3 = nn.Linear(128, 120)

34 self.apply(self._init_weights)

35 def forward(self, x):

36 #y = self.network(x).reshape((x.shape[0], -1))

37 y = nn.Flatten()(self.network(x))

38 y = nn.LeakyReLU(0.1)(self.classification_layer(y)) #LeakyReLU(0.1)

39 return (self.fc2(y), self.fc3(y))

40 def _init_weights(self, module):

41 if isinstance(module, torch.nn.Linear):

42 torch.nn.init.xavier_uniform_(module.weight)

43 if module.bias is not None:

44 module.bias.data.zero_()

45 if isinstance(module, torch.nn.Conv3d):

46 torch.nn.init.xavier_uniform_(module.weight)

47 if module.bias is not None:

48 module.bias.data.zero_()

Training loop

1 for epoch in range(EPOCHS):

2 running_loss = 0

3 total_loss = 0

4 total_class_loss = 0

5 #set model to training mode

6 model.train(True)

7 #iterate the validation dataloader

8 for i, data in enumerate(train_dataloader):

9 #get data sample and split it into input binary grid and label

10 inputs, labels = data

11 #split the label into class label and rotation label

12 labels_class, labels_rot = labels

13 labels_class = labels_class.int()

14 labels_rot = labels_rot.int()

15 '''the labels class and label rotation and two integer numbers, one

16 from 0 to (#numclasses - 1) and one from 0 to (#numrotations - 1).

17 The output of the network is a vector of #numclasses

18 +#numrotations float numbers. So in order to create the correct

19 target output I have to create a tensor for the classes of

20 dimension BATCH_SIZE x #numclasses (one vector for each sample in

21 the batch) and one tensor for the rotations and set the correct

22 index corresponding to the label to 1'''
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23 labels_class_tensor = torch.zeros(len(labels_class), NUM_CLASSES).float()

24 labels_rotations_tensor = torch.zeros(len(labels_class), NUM_ROTATIONS).float()

25 for j in range(len(labels_class)):

26 labels_class_tensor[j, labels_class[j]] = 1

27 labels_rotations_tensor[j, labels_rot[j]] = 1

28 #-------------------optimization step----------------------

29 optimizer.zero_grad()

30 #get the full output of the model

31 outputs = model(inputs)

32 #split into output class and output rotation

33 outputs_class, outputs_rot = outputs

34 #calculate loss and gradient voxelnetLoss already applies the

35 softmax the the outputs of the network

36 loss = voxelnetLoss(outputs_class, outputs_rot, labels_class_tensor,

labels_rotations_tensor, weight_class, GAMMA)↪→

37 loss.backward()

38 '''Monitor and log gradients

39 for name, param in model_Orion.named_parameters():

40 if param.grad is not None:

41 writer.add_scalar(f'gradients/{name}',

42 param.grad.norm().item(), epoch * len(train_dataloader) + i) '''

43 '''avoid gradient clipping (opposite of vanishing gradient)

44 max_grad_norm = 4

45 torch.nn.utils.clip_grad_norm_(model_Orion.parameters(), max_grad_norm)'''

46 #update model weights

47 optimizer.step()

48 #----------------------------------------------------------------

49 running_loss += loss.item()

50 total_loss += loss.item()

51 # print statistics every 32 mini-batches

52 if i % 32 == 32 - 1:

53 print('[Epoch: %d, Batch: %4d / %4d], loss: %.3f' %

54 (epoch + 1, i + 1, len(train_dataloader), running_loss / len(labels_class)))

55 running_loss = 0.0

56 #---------------------EVALUATE LOSSES AND PLOT---------------------

57 training_loss.append(total_class_loss/len(train_dataloader))

58 validation_loss.append(helper.calculate_loss(test_dataloader, model_Orion, num_classes =

NUM_CLASSES, num_rot = NUM_ROTATIONS, gamma = 0.5)/len(test_dataloader))↪→

59 helper.plot_losses(training_loss, validation_loss)

60 #-------------------------------------------------------------------

61 current_val = evaluate_validation_accuracy(model, test_dataloader)

62 validation_accuracy.append(current_val)

63 print('Valid accuracy: ' + str(current_val))

64 #-------------------------------------------------------------------

65 #save the model that achieves the best validation loss

66 if current_val > best_val:

67 best_val = current_val



Part III

T H I R D PA R T: I N D U S T R I A L A P P L I C AT I O N

This part integrates all the concepts from the first two parts for the design of an industrial
application. The first chapter provides an overview of the used programming language MVTec
Halcon, highlighting the high-level algorithms used in industrial applications. The second
chapter presents the development of an industrial application designed during my internship at
Innova Srl.





5 B U I L D I N G A 3 D C O M P U T E R V I S I O N
A P P L I C AT I O N U S I N G H A LC O N

MVTec Halcon is a proprietary software that provides interfaces, algorithms, and structures that
can be used to solve end-to-end computer vision tasks. The fact that the many of the algorithms
provided are state-of-the-art algorithms designed for vision applications makes Halcon a powerful
tool to do rapid prototyping and efficient application development in significantly less time com-
pared to using open-source languages like C++ with OpenCV libraries. This makes it a valuable
option for many automated industrial systems that rely on vision technology.

Typically, most Halcon applications are prototyped in the interactive programming environment
HDevelop, which has its own programming language. The code developed in HDevelop can be
exported and automatically translated into other programming languages, or more efficiently
rewritten in the final application language using the Halcon libraries.

Figure 43 shows the Halcon architecture.

Figure 43: Halcon Architecture MVTec, n.d.(b).
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5.1 3d object models

A 3D object model is a data structure used to represent a three-dimensional data. It can be
obtained in various ways and contain different information depending on the type of model. This
is important because, depending on the application, different types of object models might be
needed, as not every operation can be applied to every object.

In particular, 3D object models can be:

• created by specifying the parameters of particular shapes or surface parametrizations, or by
directly specifying the points that lie on the surface;

• obtained from Computer-Aided Design (CAD) data;

• derived directly from sensor data or through a 3D reconstruction approach.

Figure 44 illustrates the various methods for obtaining a 3D model depending on the generation
or acquisition technique used.

Figure 44: Overview of the 3D object models in Halcon.

Object models typically need to be prepared before processing, for example to ensure efficient
data access and to add attributes or convert them into the required representation for the processing
algorithm. Some of these operations include generating point clouds from sensor parameters and
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depth maps, triangulating point clouds to create meshes, and subsequently calculating the surface
normals used in the matching algorithms.

5.2 camera calibration and measurements on a plane

Many computer vision applications require camera calibration, both to accurately reconstruct
the positions of the object points and to make reliable measurements directly from 2D/3D data.

In order to achieve the maximum accuracy, it is very important to precisely determine the
parameters of the camera model for the specific camera that is being used, as even small changes
in the parameters for the same type of camera can have big impact on the quality of the results.

To perform camera calibration in Halcon the following steps are needed:

1. Create a calibration plate descriptor by specifying the pattern and the coordinates of the
marks that have to be detected.

2. Create a calibration model by specifying the number and type of cameras used, and by
defining the parameters in the optimization (for example choosing the distortion model)
while providing initial values for these parameters to initialize the optimization algorithm.

3. Collect the calibration data by moving the calibration plate to different positions and orien-
tations.

4. Locate the calibration plate in the images by extracting the salient points.

5. Perform the actual calibration by running the optimization algorithm.

Figure 45: Example of how to take the calibration images MVTec, n.d.(c).
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The results of the calibration include the intrinsic camera parameters as well as the pose of the
calibration plate in each of the calibration images. To determine the coordinates with respect to the
world reference frame, a further rigid transformation is needed as it is represented in Figure 46.⎛⎜⎜⎜⎜⎝
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Figure 46: Relation between calibration and measurement plane.

To test the results of the camera calibration and perform some measurements on a specified
plane, I implemented the calibration code in Halcon using my personal camera. For testing, I
printed a calibration pattern and attached it to a flat surface. By capturing several images at
different plane orientations, I then performed the calibration with the code below.

1 CalTabDescrFile := 'C:/Users/39348/Desktop/Tesi Halcon/caltab_pcLab.descr'

2 *initialization

3 gen_cam_par_area_scan_division (0.0269743,49.9899,8.28539e-06,8.3e-06,2003.16,1532.15,

4 4032,3024, StartCamPar)

5 *create calibration object



5.2 camera calibration and measurements on a plane 81

6 create_calib_data ('calibration_object', 1, 1, CalibDataID)

7 set_calib_data_cam_param (CalibDataID, 0, [], CamParam)

8 set_calib_data_calib_object (CalibDataID, 0, CalTabDescrFile)

9 list_image_files ('C:/Users/39348/Desktop/Tesi Halcon/images_calibration_phone',

10 'default', [], ImageFiles)

11 for I := 0 to |ImageFiles|-1 by 1

12 read_image (Image, ImageFiles[I])

13 * Find the calibration plate

14 find_calib_object (Image, CalibDataID, 0, 0, I, [], [])

15 get_calib_data (CalibDataID, 'camera', 0, 'init_params', StartCamPar)

16 get_calib_data_observ_points (CalibDataID, 0, 0, I, Row, Column, Index, Pose)

17 get_calib_data_observ_contours (Contours, CalibDataID, 'caltab', 0, 0, I)

18 gen_cross_contour_xld (Cross, Row, Column, 6, 0.785398)

19 endfor

20 calibrate_cameras (CalibDataID, Error)

21 get_calib_data (CalibDataID, 'camera', 0, 'params', CamParam)

22 *measurements part

23 for I := 0 to |ImageFiles|-1 by 1

24 read_image (Image, ImageFiles[I])

25 get_image_size (Image, Width1, Height)

26 * Now, measure the size of the black border of the plate

27 get_measure_positions (Image, PlateRegion, CalibDataID, I, Distance, Phi,

28 RowCenter, ColumnCenter)

29 gen_rectangle2_contour_xld (Rectangle, RowCenter, ColumnCenter,

30 Phi, Distance x 0.52, 8)

31 gen_measure_rectangle2 (RowCenter, ColumnCenter, Phi, Distance x 0.52, 8, Width1,

32 Height, 'nearest_neighbor', MeasureHandle)

33 measure_pos (Image, MeasureHandle, 1, 40, 'all', 'all', RowEdge, ColumnEdge,

34 Amplitude, Distance1)

35 Rows := [RowEdge[0],RowEdge[|RowEdge| - 1]]

36 Columns := [ColumnEdge[0],ColumnEdge[|RowEdge| - 1]]

37 gen_cross_contour_xld (Cross, Rows, Columns, 16, Phi)

38 * Transform the two border points into the world coordinate system

39 get_calib_data (CalibDataID, 'calib_obj_pose', [0,I], 'pose', Pose)

40 image_points_to_world_plane (CamParam, Pose, Rows, Columns, 'm', SX, SY)

41 distance_pp (SY[0], SX[0], SY[1], SX[1], Width)

42 * Now, measure the size of the calibration marks

43 * Extract the ellipses in the image

44 erosion_circle (PlateRegion, ROI, 17.5)

45 reduce_domain (Image, ROI, ImageReduced)

46 edges_sub_pix (ImageReduced, Edges, 'canny', 1, 20, 60)

47 select_contours_xld (Edges, SelectedEdges, 'contour_length', 20, 99999999, -0.5, 0.5)

48 * Fit ellipses to extracted edges

49 fit_ellipse_contour_xld (SelectedEdges, 'fitzgibbon', -1, 2, 0, 200, 3, 2, Row,

50 Column, Phi, Radius1, Radius2, StartPhi, EndPhi, PointOrder)

51 MeanRadius1 := mean(Radius1)

52 MeanRadius2 := mean(Radius2)

53 DevRadius1 := deviation(Radius1)
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54 DevRadius2 := deviation(Radius2)

55 * Transform the ellipses to world coordinates, where they should be circles

56 * and convert the circles from meters to millimeters so that we can see them.

57 contour_to_world_plane_xld (SelectedEdges, WorldCircles, CamParam, Pose, 'mm')

58 * Fit ellipses to the circles in world coordinates

59 fit_ellipse_contour_xld (WorldCircles, 'fitzgibbon', -1, 2, 0, 200, 3, 2, Row,

60 Column, Phi, RadiusW1, RadiusW2, StartPhi, EndPhi, PointOrder)

61 MeanRadiusW1 := mean(RadiusW1)

62 MeanRadiusW2 := mean(RadiusW2)

63 DevRadiusW1 := deviation(RadiusW1)

64 DevRadiusW2 := deviation(RadiusW2)

65 endfor

66 **do measuraments of the circle in the last image

67 read_image (Image, ImageFiles[|ImageFiles|-1])

68 get_image_size (Image, Width1, Height)

69 decompose3(Image, ImageR, ImageG, ImageB)

70 edges_sub_pix (Image, Edges, 'canny', 1, 20, 60)

71 threshold (ImageR, Regions, 140, 141)

72 connection (Regions, ConnectedRegions)

Figure 47 shows the detection of the pattern and the pose of the calibration object.

(a) Printed calibration plate attached to a plate. (b) Results of the calibrated camera and pose of the plate.

Figure 47: Example of calibration in Halcon of my personal phone camera.

After the camera calibration was performed, the parameters were tested by measuring the width
of the calibration plate and the radius of the circles in the pattern directly from the images. The
results were very accurate, as shown in Figure 48.
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(a) Width measurement. (b) Radius measurement.

Figure 48: Example of measurements in Halcon with my calibrated phone camera.

5.3 3d matching and pose estimation

As shown in Section 3.3.2, pose estimation and object identification within 3D scenes are impor-
tant tasks in many industrial applications.

Halcon implements a wide range of state-of-the-art algorithms for matching 3D objects that
differ based on the input data type and method.

The two main types of matching implemented are:

• Shape-based 3D matching, in which the 3D template model is rendered from different views
and then searched within 2D images taken with a calibrated camera.

• Surface-based 3D matching, which is the most advanced type of matching, where the 3D
template model is directly searched in the 3D scene. The scene must be represented as a
surface mesh, which may be the result of the triangulation of a raw point cloud.

Surface-based 3D matching

Surface-based 3D matching is the most powerful type of matching and is the one that has the
biggest impact in industrial applications where, thanks to 3D sensors, there is access to a 3D
representation of the scene. Halcon implements state-of-the-art algorithms based on 3D features,
reviewed in Section 3.3.2. The steps required to actually perform the matching are:

1. Create the template object model by loading the 3D template and computing the point
normals needed for the matching algorithm.
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2. Load the 3D scene and prepare it for matching, optimizing the data for matching and
optionally triangulating and computing the normals if not already done.

3. Perform the matching by running the matching algorithm, finding the occurrences of the
template in the scene along with their pose.

In Chapter 6, I will demonstrate how this is implemented in an industrial application designed
by me.

5.4 robot vision

One of the main industrial applications that uses 3D vision is robot vision, where 3D sensors
are used to guide robotic arms in order to perform actions within the environment. Typically, the
sensor coupled with the robot is a 3D camera, which can either be mounted on the robotic arm and
move with it or be statically mounted at a fixed point. In either case, a special calibration is needed
since it is necessary to translate the coordinates from the camera system into the coordinates of the
robotic system. This type of calibration is called end-eye calibration (Figure 49).

Figure 49: Transformations between frames with a stationary camera.

To perform the calibration, the calibration plate must be moved by the robot during the acquisi-
tion of the 3D camera. During the process, the transformations between the robot and the camera,
as well as between the robot and the calibration object, are estimated:

Hcam
cal = Hcam

base Hbase
tool⏞ ⏟⏟ ⏞

known

Htool
cal
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5.5 some related projects at innova srl

During my internship at Innova Srl, I had the opportunity to participate in various industrial
applications that utilized 3D computer vision. These experiences were important to understand
how to apply the discussed concepts in practice, learning from the expertise of other engineering
colleagues. The methods applied ranged from low-level data acquisition techniques to high-
level inference through standard and deep learning methods. Figure 50 shows some of these
mentioned applications. In particular, Figure 50a illustrates the use of deep learning techniques
to detect defects in the welding of tubes, Figure 50b shows a pick-and-place robotic application
used to move objects from one box to another with the help of a 3D camera to acquire the point
cloud, and Figure 50c shows an application where holes in industrial parts were detected along
with their distance to some reference points.

(a) Welding defect detection. (b) Pick and place application.

(c) Detection of the distance of the circle from the curve in a industrial object.

Figure 50: Some applications at Innova Srl.





6 3 D S Y S T E M F O R R O B OT G U I DA N C E A N D
P R O D U C T S A N A LY S I S

During my internship at Innova Srl, I was presented with an open problem that consisted in the
development of a 3D acquisition system for an industrial application. This application involved
objects moving on a conveyor belt and the subsequent analysis of the registered objects for a general
purpose robot guidance system. The goal was to design a 3D vision system for the acquisition of
the point clouds of general objects on the conveyor belt that needed to as precise, reliable, easy to
set up and cost effective as possible. The designed system would then be applied to various 3D
industrial applications, such as detecting the pose of bread moving on a conveyor for guiding a
robotic arm. This arm would then cut the top surface of the bread before it proceeds through an
industrial oven for better cooking (Figure 51).

I then proceeded to propose my own solution to the problem, implementing and testing all the
components that make up the final application.

6.1 introduction to the application

The application can be fundamentally divided into two main components:

• The data acquisition module, which must handle the unprocessed data from the sensors and
manage the communication of that data from the sensor controller to the PC that integrates
the whole application. This module is general and can be applied to all sorts of objects
moving on a conveyor belt.

• A high-level module dependent on the application for the post-processing of the acquired
3D point clouds. In the example application, this involves detecting the bread and its pose
and guiding a robotic arm on the surface of the detected bread.

In the example application, the detailed steps are:

1. Comparative analysis of commercially available technologies for 3D image acquisition and
choice of the sensors used.

2. Development of an application in C# for the communication of the controller of the sensors
with the PC;

3. Integration of HALCON libraries in C# to create a unified solution, executable on the PC.

87
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4. Low processing of the acquired images in HALCON, removing the undercut and the distor-
tion due to the relative movement of the objects with respect to the conveyor belt and the
reconstruction of the point cloud with the correct coordinates in the coordinate system of the
belt.

5. Triangulation of the obtained point cloud, and pose estimation in HALCON.

6. Communication of the pose to a robot system and movement of the robotic arm in the desired
position.

7. Integration of the solution into a Windows .Net form as a graphics interface that allows
the visualization and the real-time adjustment of the operational parameters, as well as the
preview of the analysis results.

The whole application is represented graphically in Figure 52.
For this particular application, I chose to perform all the computer vision processing using HAL-
CON integrated with the C# language. This setup allows to handle the communication with the
controller using dedicated libraries and to manage the socket communication with the robot.

Figure 51: Layout of the example application
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Figure 52: Visual Representation of the application’s steps



90 3d system for robot guidance and products analysis

6.2 data acquisition

The first part of the application consists of choosing the right sensor to be used in the acquisition
model. This sensor should be selected according to the application context and requirements, also
considering the cost. The main requirements for the target industrial applications are:

• The data acquisition technique should be able to work with objects moving on a conveyor
belt.

• The object’s size to be considered ranges from millimeters to meters.

• The system must be as robust as possible to changes in conditions.

• The system should be easily configurable and require minimal adjustments over time.

• The system should be accurate and have a resolution of at least millimeters.

• The data acquisition should be a fast process.
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Figure 53: Graph showing 3D data acquisition characteristics based on object size and accuracy. Data taken
from Pears et al., 2012.

Based on the given requirements, passive acquisition techniques were not considered since they
cannot be considered reliable and accurate enough, as shown in Table 3.
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Table 3: Differences of active and passive data acquisition sensors.

Advantages Disadvantages

Passive • Can capture complete
images.

• Low cost.

• Cannot capture 3D
structure in smooth,
textureless regions.

• Highly dependent on
illumination conditions.

• Computationally inten-
sive.

Active • Can determine 3D fea-
tures also in smooth,
textureless regions.

• More robust to illumina-
tion changes.

• Good accuracy.

• Higher cost than pas-
sive systems.

• They generally require
multiple acquisitions to
get the full image.

Considering only the active sensors, we need to take into account the working area of each
technique, as illustrated in Figure 53. The best sensor that met all the specifications was the stripe
scanner, which is based on active triangulation techniques. In particular, all tests were conducted
using the Keyence LJ-X8300 profilometer.

(a) Keyence profilometer. (b) Controller and alimentation.

Figure 54: Hardware configuration of the data acquisition module. On the left is the Keyence profilometer,
and on the right is the controller with its connections.



92 3d system for robot guidance and products analysis

This system poses the following main challenges:

• Reconstruct the complete images from the single line scans.

• Reduce the number of profilometers needed to acquire the entire conveyor belt for cost
reasons.

• Minimize the problem of dead zones.

• Remove distortions and accurately reconstruct 3D positions.

Reconstruction of the Depth Image and Point Cloud from Single Line Scans

The chosen profilometer provides, at each sampling time tk, an array of integer values using 16
bits that correspond to the z distance of the surface point from the profilometer. The first bit is
used as a flag for dead zone detection, so to convert each of these values V(i) into a metric distance,
we use:

ztk(i) = V(i) × Zs

215 − 1⏞ ⏟⏟ ⏞
z-resolution rz

(22)

where Zs is the depth field of the profilometer used and V(i) is the integer value of the sampled
point. This calculation must be repeated for each cell in the output array at each sampling time.
To reconstruct the entire object, the profilometer must be moved in a direction while sampling the
object. To calculate the resolution along the axis of movement, an encoder is needed to provide
the velocity of the profilometer at each instant:

• If we keep the sampling frequency f constant, the resolution along the axis of movement x is
not constant. Given the velocity measure of the encoder vk between two sampling instants,
the xk position at the sampling instant k is given by

xk = xk−1 +
vk
f

(23)

• Given the velocity measurements from the encoder, we can set a constant resolution rx
along the x-axis by adjusting the sampling frequency over time, taking into account that the
profilometer can achieve up to a maximum frequency. In this case, the position xk is given
by:

xk = xk−1 + rx

This second approach is the most effective because it ensures uniform sampling of the object
along the direction of movement, preventing distorted portions caused by variations in velocity
and reducing the likelihood of poor results.

To achieve this, we must first consider the characteristics of the encoder. Specifically, the encoder
sends pulses to the profilometer, and we need to calculate the moving distance corresponding to
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each pulse, which depends on the number of encoder ticks, the diameter of the pulley installed
on the encoder, and the sampling specifications (Figure 55). Once the moving distance per pulse
is determined, we can calculate the number of pulses to wait before triggering the line scan to
maintain a constant resolution. Naturally, the number of pulses received by the encoder within a
given time period will depend on the movement’s velocity. Uniform sampling is achievable up to
the point where the maximum frequency of the profilometer is reached.

Figure 55: Encoder phases and relationship between sampling and direction detection Keyence, n.d.

Chosen the sampling factor k, and given the length of the encoder’s pulley Lenc and the number
of stepsNenc in the encoder for a full spin we first calculate the moving distance ∆x per pulse that
is given by:

∆x =
Lenc

Nenc × k

so the number of pulses Npulses to wait for the target resolution rx is given by

Npulses =
rx

∆x

Along the line scan direction y, the resolution ry is constant and is given by the field of view of
the profilometer L and the number of pointsN for each scan, so the position yk(i) of the i-th pixel
at time k is given by:

yk(i) = i ×
L

N⏞⏟⏟⏞
y-resolution ry

The characteristics of the Keyence profilometer used can be found in the datasheet, as partially
shown in Figure 56.
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Figure 56: Profilometer LJ-X8300 by Keyence used for the data acquisition Keyence, n.d.

To reconstruct the point cloud efficiently, we create three support images, one for each metric
coordinate. To obtain the z-image, we simply stitch together the profilometer’s line scan output
and apply the transformation from Equation 22. For the y-image, we generate a gradient with a
constant resolution ry. The x-image can be created similarly to the y-image in the case of constant
resolution rx, by generating a gradient in the opposite direction. However, in the case of varying
frequency, each row must be computed separately using Equation 23.

Number of profilometers reduction

The chosen profilometer sensor meets all the requirements for the application, but it comes with
a high cost. This issue is even more alarming in the target application, where the conveyor belt
width typically ranges from 4 to 5 meters, while most profilometers on the market have a field of
view of only up to 1 meter. Consequently, the most common approach would be to use multiple
profilometers fixed along the direction perpendicular to the belt’s velocity, with each covering a
small portion of the belt. Although this approach is effective and easy to implement, it significantly
increases the overall cost due to the need for multiple sensors.
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To reduce the number of profilometers, we could use a single profilometer with a scanning
direction parallel to the velocity of the conveyor belt, moving along an axis perpendicular to the
belt’s velocity. However, this approach introduces several challenges:

• While the profilometer moves perpendicular to the belt, the objects on the belt continue
moving forward. As a result, the stitching of the scan lines produces depth images that are
temporally distorted due to the relative movement between the objects and the profilometer.
These distorted images must be processed and corrected before applying the previously
described procedure, otherwise the resulting coordinates will be inaccurate.

• Consecutive scans must overlap on a portion of the conveyor belt to ensure that all objects
are captured. Additionally, stitching these scans together to produce a final image is a non
trivial task.

The proposed setup is illustrated in Figure 57.
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Figure 57: Subsequent scan area taken by the profilometers in relation to time t0.

One important consideration is that the conveyor belt generally moves at a uniform velocity,
which is monitored by an encoder. The area covered by a single scan, relative to a fixed position
of the object on the belt, forms a trapezoidal shape, with the inclination of its edges depending
on the relative proportions of the conveyor belt’s velocity and the profilometer’s velocity if the
profilometer moves at a uniform speed. However, if the profilometer’s velocity is not uniform,
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the shape of the covered area becomes more complex, making the reconstruction of accurate
coordinates more challenging. In such cases, the velocity of the profilometer at each instant must
be known, which requires another encoder on the profilometer’s axis.

To address this, it is crucial to control the profilometer’s velocity over the target area, allowing
for a longer axis of movement outside the belt to accelerate and decelerate the profilometer. If this
is not feasible, the procedure outlined in this thesis must be applied at each encoder tick, effectively
linearizing the behavior over short time intervals and applying the proposed method.

To test all the designs in this thesis, I used a batch of Pavesini biscuits as the test objects, which
were easily available and had long shapes that effectively showcased the results. As previously
mentioned, this module is designed to be reproducible in various applications of different natures,
making the choice of the test object irrelevant.
Figure 58 shows the result of the simple stitching of the scan lines using the proposed design. The
need for further processing is evident, particularly in addressing distortions and dead zones.

(a) Depth image (b) Intensity image

Figure 58: Images generated by stitching all the scan lines of a profilometer without processing. The
distortion of the shape due to the relative movement is clearly visible.

Profilometers setup to remove dead zones

Although the proposed design significantly reduces the number of profilometers needed, using
only one can present problems, as evidenced by the results shown in Figure 58. In particular,
dead zones are evident at the borders of the objects, where depth and intensity data are missing.
This occurs because part of the light emitted by the sensor is intercepted by the object’s surface
(Figure 59), preventing it from reaching the receiver.
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Figure 59: Illustration of the dead zone problem.

This can be ameliorated using another profilometer that is rotated of 180 degrees that scans the
same area of the first one as in Figure 60.
Using this design, when one profilometer encors in dead zones, the other one is most likely able
to detect the surface. The data coming from the two profilometer must then be processed in the
application and the two images must be matched and the data must be combined to produce a
final output that excludes the dead zones.

PROFILOMER 1 PROFILOMETER 2

Figure 60: Profilometers setup to avoid dead zones.

Figure 61 shows the result of processing that combines the images from the two profilometers
and removes the dead zones in the direction of movement. The same processing is applied to the
depth maps.
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(a) Left profilometer. (b) Right profilometer. (c) Processed image to remove the dead zones.

Figure 61: Removal of the dead zones.

6.3 pc communication with the controller

The profilometers used are connected to and controlled by a controller unit (Figure 62), which
is primarily responsible for triggering data acquisition and buffering the data. The data from the
sensors must be integrated into a C# application running on a PC, where processing will be carried
out using HALCON software. Therefore, it is necessary to develop a communication software that
manages the transfer of the depth data from the controller unit to the PC application.

Figure 62: System configuration Keyence, n.d.

Figure 63 shows the data flow.



6.4 low processing of the images using halcon 99

Controller Unit

Profilometer

Communication Software PC Application

Trigger

D
at

a
St

or
ed

Data Transfer Data to PC

Figure 63: Data flow in the system with the communication application.

The communication software is built on the native functions of the Keyence libraries for the
controller. When high-speed communication is initiated, the profile data is stored in the internal
buffer until a predefined number of profiles are accumulated, triggering a callback function that
stores the data within a thread internal to the application. The entire communication software
is quite extensive, and in the appendix I present the core function responsible for acquiring the
profile data using the mentioned functions.

6.4 low processing of the images using halcon

Once the raw data is acquired and integrated into the PC application, HALCON is used to
process it and address the challenges that arised from the acquisition design, in particular:

1. Removing the distortion of the depth image caused by the relative movement between the
conveyor belt and the object, and subsequently reconstructing the correct point cloud of the
single scan with accurate metric positions.

2. Stitching the point clouds from consecutive scans and creating a continuous mesh through
triangulation, which will be used for the inference and analysis stages of the application.

6.4.1 Removal of the time distortion

To undistort the image, each profile acquired at a given time t must be corrected with an offset
that increases as the profilometer moves closer to the end of the belt. This adjustment accounts
for the fact that the object observed at time t+∆t has moved, so simply stitching the line scans
together would place it in a forward position. However, we aim to determine the correct positions
of the entire belt scan area as they were at the initial time of the scan. By establishing these correct
initial positions and knowing the start time, we can accurately predict the objects’ positions at any
given time, using the belt’s velocity provided by the encoder.
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To compute the offset, we first consider that this distortion primarily affects the y-coordinates,
assuming uniform velocities. In this case, the offset between two consecutive scans remains
constant. Therefore, to calculate the offset for the i-th scan, we simply determine the offset
between two scans and then multiply this offset by i to obtain the correct y-coordinates.
Since the x-resolution rx is fixed by the procedure described above, and the profilometer velocity
vx is known, we can calculate the fixed time interval between two line scans as:

∆t =
rx

vx

During this time interval ∆t, the conveyor belt moves with a constant velocity vy, allowing us to
calculate the offset ∆y between two scans:

∆y = vy∆t = vy
rx

vx

Thus, the offset to be added to the i-th scan in metric units is:

offsetim = i ∆y = i vy
rx

vx
= i rx

vy

vx⏞⏟⏟⏞
tan(α)

(24)

Here, the velocities vx and vy can be interpreted as the components of a relative velocity v between
the objects and the belt, with α representing the angle formed between the v and the vx component.
This interpretation also allows to test the design without a moving conveyor belt, by simply moving
the profilometer over a fixed arrangement of objects at a given angle.
If we also want to adjust the depth and intensity images to visually verify that this procedure
works, we can calculate the y-offset for the i-th column as follows:

offsetipix = i ∆y = i vy
rx

vx
= i

rx

ry

vy

vx

After the point cloud is processed, it is further transformed into a mesh through triangulation for
the subsequent steps of the application.

Figure 64 shows the result of this processing. In the appendix, I provide the code for both the
correction of the depth/intensity images and the point cloud.
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(a) Raw depth data with dead zones removed. (b) Processed depth data with position cor-
rection.

(c) 3D triangulated mesh result.

Figure 64: Result of processing starting from the raw data to the triangulated mesh.

6.4.2 Time Stitching and Creation of the Point Cloud

In general, a single scan can cover an area with full objects and only partial objects at the borders.
Therefore, it is necessary to stitch together data coming from two consecutive scans to fully detect
all the objects throughout the entire process. This can be achieved by directly using the corrected
point clouds from the two scans and modifying the second scan to align every position with the
initial starting instant of the first scan. This is done by adding a constant offset to the y-coordinates
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of the second point cloud. The offset depends on the constant velocity of the belt and the time
taken by the profilometer to complete one scan and return to the initial position.

Given the time Tc of one cycle of the profilometer, and the belt velocity vy this is simply given
by:

offsett = vy Tc

I now present the full results of the entire process in Figure 65. To recap the entire process, the
following images are shown:

• The raw depth images of two subsequent scans from the left profilometer, obtained by
stitching together the line scans (Figure 65a).

• The raw depth images of two subsequent scans from the right profilometer, obtained by
stitching together the line scans (Figure 65b).

• The reconstructed intensity image (that is used for visualization) after removing the dead
zones, correcting the coordinates, and stitching the two subsequent scans with the computed
offset (Figure 65c).

• The final triangulated mesh that is the result of all the processing steps and that is used as
the starting point of the next phases of the application (Figure 65d).
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(a) Raw depth data from left profilometer. (b) Raw depth data from right profilometer.

(c) Reconstructed intensity image after all the processing.

(d) Final 3D mesh of the two subsequent scans.

Figure 65: Result of time stitching.
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6.5 high processing using halcon

The developed data acquisition module is general and independent of the specific application,
making it applicable to a wide range of cases involving objects of different natures. Once the
point cloud or triangulated mesh is obtained, the subsequent steps in the application depend on
the specific goals of the application. However, in many of these applications, such as picking
objects from a conveyor belt and performing actions on their surfaces, it is necessary to recognize
and locate the objects on the belt, including determining their pose. This allows to analyze the
characteristics of the objects in terms of conformity or defects and/or guiding a robotic arm to
perform actions such as picking or cutting the surface of the object, as in the example application
involving bread. Finally, I will show how the results of this process can be communicated to a
robotic arm to perform specific actions.

Here, I shows the implementation of the most interesting part of identifying the objects on
the belt along with their pose, continuing with the test case of the Pavesini objects to maintain
the continuity. Additional analyses of the objects can always be incorporated, depending on the
specific targets of the application.

To achieve this, I apply surface matching in HALCON with the obtained mesh. The necessary
steps are:

• Creation of a triangulated template of the object to be used for searching correspondences
within any mesh produced by the scans at any given time.

• Determination of the keypoints on the template and the mesh where the object is being
searched, followed by matching to find the correspondences and locate the objects.

It is worth noting that this process could also be performed using other techniques, such as deep
learning. However, the time requirements of the application and the well established efficacy of
the chosen method led to the decision to use this approach.

6.5.1 Creation of the Surface Model

In order to locate the object within the search area, it is first necessary to create a template
that will be used as a reference for this object. This can be done accurately using CAD models
or by scanning and triangulating a single object. Alternatively, we can use a full scan from the
profilometers as a reference and extract the template from it. To do this, we first need to remove
the background and segment the mesh by computing the connected regions. The results of this
segmentation are shown in Figure 66.
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Figure 66: Segmentation.

6.5.2 3D surface matching and Pose Estimation

Once the template is obtained, we need to compute the keypoints in both the template and the
search mesh. This step is essential to sample the important features of the object that identify it
and to calculate the pose of the object by determining the relative positions of these keypoints.
Figure 67 shows the results of the keypoint calculation on a sample mesh.

Figure 67: Keypoints detection.
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Subsequently, keypoint matching is performed. For each matching keypoint, the optimal pose
is computed by pairing the sampled points that have similar distances and relative orientations. A
matching score is then output to define the accuracy of the matching. Given the rigid transforma-
tion Tk between the template and the k-th matched object, we can represent the template within
the search mesh by performing for each match:

Hk =

(︄
Rk tk

0⊤ 1

)︄ ⎛⎜⎜⎝
xscene
k

yscene
k

zscene
k

⎞⎟⎟⎠ = Hk

⎛⎜⎜⎝
xtemp

ytemp

ztemp

⎞⎟⎟⎠ Rk ∈ R3×3, tk ∈ R3

Figure 68 shows the results of the surface matching.

Figure 68: 3D surface matching results. The full target objects inside the mesh are recognized and located
with good accuracy.

6.6 communication with the robotic arm

After the 3D matching, the target objects are detected within the triangulated mesh, along with
their pose in the profilometer’s reference system. To translate these results into the robotic arm’s
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coordinate system, a known rigid transformation must be applied, which is computed based on
the mechanical setup of the application:⎛⎜⎜⎝

xrob

yrob

zrob

⎞⎟⎟⎠ = Hrob
prof

⎛⎜⎜⎝
xprof

yprof

zprof

⎞⎟⎟⎠
Once the coordinates are transformed into the robotic system, they can be communicated to the
robotic arm controller so that we can compute the robot’s trajectory and perform the required
action. The communication is done through a socket connection. This connection was tested with
a Staubli robotic arm shown in Figure 69.

73 *open the connection with the specified port at the given IP

74 open_socket_connect ('192.168.0.50', 1111, 'protocol', 'TCP', Socket)

75 *send the pose as a string

76 send_data (Socket, 'z', PoseToSend, [])

(a) Robotic arm. (b) Joints.

Figure 69: TX2-60 L Staubli robotic arm used at Innova Srl.

6.7 conclusions, future work and extensions

The project presented was entirely designed by myself and it represents a design idea that has
been implemented in parts to verify its applicability. The main innovation is represented by the
acquisition module, where the reduction of the number of profilometers needed can significantly
help to reduce the overall cost of the application. To make an idea of the scale of this improvement,
typically, at the current date of writing this thesis, the cost of a single profilometer required for
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this project is around 20,000 euros. Hence, reducing the number from 5-6 to 2-1 profilometers can
be significant, especially for the fact that this acquisition system is designed to be as general as
possible and applicable to a variety of application in a industrial setting with conveyor belts. The
individual components of the design were tested during the internship and the next step is the
mechanical production of the system and its final testings. This mechanical design has already
been started according to the design idea proposed in this thesis, and Figure 70 shows a rendered
image of the top part of the 3D CAD model of the prototype of the presented profilometers setup,
with the moving axis mounted above the conveyor belt.

Figure 70: Mechanical project of the proposed data acquisition module with the moving axis at Innova Srl.
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The first application in which this design will be used, is the cited application for the bread
cutting before cooking. In this case the high-processing module proposed in this thesis with the
3D matching and the pose estimation is ready for use. The only necessary modification is of course
the replacement of the template model with a 3D scan of the specific bread used. Additional
needed analysis can be added in the same framework of the C# application. I have also shown in
this thesis how to communicate the pose of the object to the robotic arm. Further work will be
needed for the trajectory planning.

On top of this, I have already started the design of a simple graphics interface to preview in real
time the results of the analysis, as well as to change the operating parameters. This interface is
designed to be integrated in the same C# application, using the .NET Windows Form framework.
All the added analysis will have to be incorporated into the provided baseline form.





B A P P E N D I X

In the following I present snippets of the code that I developed for the industrial application
of Chapter 6. The goal of this is to show how to reproduce the results that were obtained in this
thesis, as well as the actual sofware implementation of the proposed design. Of course, this does
not entirely constitute the whole application, but only small key parts are presented. In particular,
the two different displays indicate code written in Halcon or C#.

Removal of dead zones

77 read_image (IntensityNotFlipped, 'C:/Users/39348/right.png')

78 read_image (IntensityFlipped, 'C:/Users/39348/left.png')

79 ******************************************ALIGN IMAGES************************************************

80 *get the coordinates of all points in the image

81 get_region_points (IntensityFlipped, Rows, Columns)

82 *retrieve the corresponding grayvalue of all pixels

83 get_grayval (IntensityFlipped, Rows, Columns, Grayval)

84 *invert the rows indices (this will allow to flip the image)

85 tuple_inverse (Rows, Rows)

86 get_image_size (IntensityFlipped, Width, Height)

87 *set the flipped value of the pixels

88 set_grayval (IntensityFlipped, Height-1-Rows, Width-1-Columns, Grayval)

89 ***************************************DEAD ZONES REMOVAL*********************************************

90 *set the two mechanical offsets

91 Offset1 := 70, Offset2 := 12

92 gen_rectangle1 (Rectangle, 0, 0, Height-Offset2, Width-Offset1)

93 gen_rectangle1 (Rectangle2, Offset2-1, Offset1-1, Height, Width)

94 *retrieve the grayvalues of the pixel inside the rectangles

95 reduce_domain (IntensityFlipped, Rectangle, ImageReduced1)

96 reduce_domain (IntensityNotFlipped, Rectangle2, ImageReduced2)

97 get_region_points (ImageReduced1, Rows1, Columns1)

98 get_region_points (ImageReduced2, Rows2, Columns2)

99 get_grayval (ImageReduced1, Rows1, Columns1, GrayvalNotFlipped)

100 get_grayval (ImageReduced2, Rows2, Columns2, GrayvalFlipped)

101 *pick the maximum between each pair of grayvalues to remove the dead zone

102 tuple_max2 (GrayvalNotFlipped, GrayvalFlipped, Max)

103 *and set the chosen values in the correct position

104 set_grayval (MatchedMax, Rows2, Columns2, Max)

111
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Communication with the controller in C#

This code represents the main function to start the acquisition of the data from the controller to
the PC application and it’s part of a much bigger class that handles the communication.

1 public static int Acquire(int deviceId, List<ushort> heightImage, List<ushort> luminanceImage,

SetParam setParam, ref GetParam getParam)↪→

2 {

3 int yDataNum = setParam.YLineNum;

4 int timeoutMs = setParam.TimeoutMs;

5 int useExternalBatchStart = setParam.UseExternalBatchStart;

6 ushort zUnit = 0;

7 _heightBuf[deviceId] = new List<ushort>();

8 _luminanceBuf[deviceId] = new List<ushort>();

9 //Initialize

10 int errCode = NativeMethods.LJX8IF_InitializeHighSpeedDataCommunicationSimpleArray(

11 deviceId, ref _ethernetConfig[deviceId], (ushort)_highSpeedPortNo[deviceId],

12 Callback, (uint)yDataNum, (uint)deviceId);

13 Console.WriteLine(@"[@(Acquire) Initialize HighSpeed](0x{0:x})", errCode);

14 //PreStart

15 var startReq = new LJX8IF_HIGH_SPEED_PRE_START_REQUEST {bySendPosition = Convert.ToByte(2)};

16 var profileInfo = new LJX8IF_PROFILE_INFO();

17 errCode = NativeMethods.LJX8IF_PreStartHighSpeedDataCommunication(deviceId, ref startReq, ref

profileInfo);↪→

18 Console.WriteLine(@"[@(Acquire) PreStart](0x{0:x})", errCode);

19 //zUnit

20 errCode = NativeMethods.LJX8IF_GetZUnitSimpleArray(deviceId, ref zUnit);

21 if (errCode != 0 || zUnit == 0)

22 {

23 Console.WriteLine(@"Failed to acquire zUnit.");

24 return errCode;

25 }

26 //Start HighSpeed

27 _imageAvailable[deviceId] = 0;

28 _lastImageSizeHeight[deviceId] = 0;

29 errCode = NativeMethods.LJX8IF_StartHighSpeedDataCommunication(deviceId);

30 Console.WriteLine(@"[@(Acquire) Start HighSpeed](0x{0:x})", errCode);

31 //StartMeasure(Batch Start)

32 if (useExternalBatchStart > 0) {}

33 else

34 {

35 errCode = NativeMethods.LJX8IF_StartMeasure(deviceId);

36 Console.WriteLine(@"[@(Acquire) Measure Start(Batch Start)](0x{0:x})", errCode);

37 }

38 // Acquire. Polling to confirm complete.

39 // Or wait until a timeout occurs.
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40 Console.WriteLine(@" [@(Acquire) acquiring image...]");

41 DateTime startDt = DateTime.UtcNow;

42 TimeSpan ts;

43 while (true)

44 {

45 ts = DateTime.UtcNow - startDt;

46 if (timeoutMs < ts.TotalMilliseconds)

47 {

48 break;

49 }

50 if (_imageAvailable[deviceId] == 1) break;

51 }

52 if (_imageAvailable[deviceId] != 1)

53 {

54 Console.WriteLine(@" [@(Acquire) timeout]");

55 //Stop HighSpeed

56 errCode = NativeMethods.LJX8IF_StopHighSpeedDataCommunication(deviceId);

57 Console.WriteLine(@"[@(Acquire) Stop HighSpeed](0x{0:x})", errCode);

58 return (int)Rc.ErrTimeout;

59 }

60 Console.WriteLine(@" [@(Acquire) done]");

61 //Stop HighSpeed

62 errCode = NativeMethods.LJX8IF_StopHighSpeedDataCommunication(deviceId);

63 Console.WriteLine(@"[@(Acquire) Stop HighSpeed](0x{0:x})", errCode);

64 //---------------------------------------------------------------------

65 // Organize parameters related to acquired image

66 //---------------------------------------------------------------------

67 _getParam[deviceId].LuminanceEnabled = profileInfo.byLuminanceOutput;

68 _getParam[deviceId].XPointNum = profileInfo.nProfileDataCount;

69 _getParam[deviceId].YLinenumAcquired = _lastImageSizeHeight[deviceId];

70 _getParam[deviceId].XPitchUm = profileInfo.lXPitch / 100.0f;

71 _getParam[deviceId].YPitchUm = setParam.YPitchUm;

72 _getParam[deviceId].ZPitchUm = zUnit / 100.0f;

73

74 getParam = _getParam[deviceId];

75 //---------------------------------------------------------------------

76 // Copy internal buffer to user buffer

77 //---------------------------------------------------------------------

78 heightImage.AddRange(_heightBuf[deviceId]);

79 if (profileInfo.byLuminanceOutput > 0)

80 {

81 luminanceImage.AddRange(_luminanceBuf[deviceId]);

82 }

83 return (int)Rc.Ok;

84 }
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Correction of the depth image and point cloud

105 **************************************DEPTH IMAGE ADJUSTMENT******************************************

106 *in the profilometer settings to decide the resolution

107 number_lines_profilometer := 1200

108 *this is due to interpolation

109 points_per_line := 4

110 *settings of the encoder, how many impulses it outputs over a full spin

111 impulses_per_spin := 10000

112 *how much space is covered over a full spin of the encoder [mm]

113 space_per_spin := 190

114 *how many impulses it takes to get a line (settings of the profilometer)

115 impulses_per_line := 10

116 *how many degrees are spanned over an impulse

117 degrees_per_impulse := 360.0/impulses_per_spin

118 *how much space in [mm] is covered over an impulse

119 space_per_impulse := (space_per_spin x degrees_per_impulse)/360.0

120 *how much space in [mm] is covered to take a line

121 space_per_line := space_per_impulse x impulses_per_line

122 *full space spanned over the all image in the axis of movements of the

123 *profilometer [mm]

124 space_spanned := space_per_line x number_lines_profilometer

125 *resolution over the axis of movement of the profilometer [mm]

126 ResolutionY := (space_per_line)/points_per_line

127 *resolution over axis perpendicular to the conveyor belt [micro m]

128 ResolutionZ := 3.24

129 read_image (Matchedmax, 'C:/Users/39348/matchedmax_heights.png')

130 rotate_image (Matchedmax, Image, 90, 'constant')

131 *******************************PROCEDURE TO ANTI-TRANSFORM THE IMAGE**********************************

132 *[degrees]

133 angle_velocity := 45

134 *the offset in pixel is referred to the resolution at the belt level

135 belt_level_intensity := 0

136 *this is for the lj-x8300 profilometer by Keyence

137 heights_difference := 53

138 FOV := [134,150,160]

139 calculate_resx (belt_level_intensity, heights_difference, FOV, ResolutionZ, ResolutionX_belt)

140 *computation of offset in [mm] (this is constant at each height)

141 offset_mm := ResolutionY x cos(rad(angle_velocity))

142 *computation of offset in pixels (this changes at various heights but here

143 *i consider only the belt level)

144 offset_pixel := offset_mm / ResolutionX_belt

145 *total offset for the last row

146 total_offset_pixels := offset_pixel x number_lines_profilometer x points_per_line

147 gen_image_const(OutputImage, 'byte', number_lines_profilometer x points_per_line,

148 3200+round(total_offset_pixels))

149 get_image_size (OutputImage, Width, Height)

150 Rows := []
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151 Columns := []

152 ColumnGrayval := []

153 for I := 0 to Width-1 by 1

154 gen_rectangle1 (Rectangle, 0, I, Height-1, I)

155 reduce_domain (Image, Rectangle, ImageReduced)

156 get_region_points (ImageReduced, Rows1, Columns1)

157 get_grayval (ImageReduced, Rows1, Columns1, ColumnGrayval1)

158 Rows := [Rows, Rows1 + round(offset_pixel x I)]

159 Columns := [Columns, Columns1]

160 ColumnGrayval := [ColumnGrayval, ColumnGrayval1]

161 endfor

162 set_grayval (OutputImage, Rows, Columns, ColumnGrayval)

163 write_image(Image, 'png', 0, 'not_transformed')

164 write_image (OutputImage, 'png', 0, 'transformed')

165 ***********************************END DEPTH IMAGE ADJUSTMENT*****************************************

166 **************************************POINT CLOUD ADJUSTMENT******************************************

167 read_image (Z_NotTransformed, 'C:/Users/not_transformed_heights.png')

168 *this is for the lj-x8300 profilometer by Keyence

169 ResolutionX := 0.05

170 ResolutionY := 0.0475

171 ResolutionZ := 3.24

172 *heights_difference := 53

173 *FOV := [134,150,160]

174 ******************************CREATION OF THE POINT CLOUD NOT TRANSFORMED*****************************

175 *convert the type of the depth image

176 convert_image_type (Z_NotTransformed, Z_NotTransformed, 'real')

177 *create new image of z coordinates using the ResolutionZ

178 get_image_size (Z_NotTransformed, Width, Height)

179 gen_image_const (ConstImage, 'real', Width, Height)

180 paint_region (ConstImage, ConstImage, ConstImage, 1, 'fill')

181 div_image (Z_NotTransformed, ConstImage, Z_NotTransformed, 0.001, 0)

182 div_image (Z_NotTransformed, ConstImage, Z_NotTransformed, ResolutionZ, 0)

183 *generate the two gradient images for the x and y coordinates

184 gen_image_surface_first_order (X_NotTransformed, 'real', 0, ResolutionX, 0, 0, 0, Width, Height)

185 gen_image_surface_first_order (Y_NotTransformed, 'real', ResolutionY, 0, 0,0, 0, Width, Height)

186 *create cloud point

187 xyz_to_object_model_3d (X_NotTransformed, Y_NotTransformed,

188 Z_NotTransformed, CloudPoint_NotTransformed)

189 *save not transformed point cloud

190 write_object_model_3d (CloudPoint_NotTransformed, 'ply',

191 'NotTransformed_PC', [], [])

192 *visualize obtained point cloud

193 create_pose (0, 0, 0, 0, 0, 0, 'Rp+T', 'gba', 'point', Pose)

194 dev_open_window (0, 0, 500, 500, 'black', WindowHandle)

195 visualize_object_model_3d(WindowHandle,
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196 CloudPoint_NotTransformed, [], [], [], [], [], [], [], PoseOut)

197 *select point only above the belt

198 select_points_object_model_3d (CloudPoint_NotTransformed, 'point_coord_z',

199 0.5, 80, CloudPoint_NotTransformed_Thresholded)

200 *save point cloud with removed belt

201 write_object_model_3d (CloudPoint_NotTransformed_Thresholded, 'ply',

202 'NotTransformed_withoutBelt_PC', [], [])

203 *visualize point cloud without belt level points

204 create_pose (0, 0, 0, 0, 0, 0, 'Rp+T', 'gba', 'point', Pose)

205 dev_open_window (0, 0, 500, 500, 'black', WindowHandle)

206 visualize_object_model_3d(WindowHandle,

207 CloudPoint_NotTransformed_Thresholded, [], [], [], [], [], [], [], PoseOut)

208 *****************************CREATION OF THE POINT CLOUD TRANSFORMED*********************************

209 offset_mm := 0.0335876

210 gen_image_surface_first_order (X_Transformed, 'real', 0, ResolutionX, 0, 0, 0, Width, Height)

211 gen_image_surface_first_order (Y_Transformed, 'real', ResolutionY,

212 offset_mm, 0, 0, 0, Width, Height)

213 *create cloud point

214 xyz_to_object_model_3d (X_Transformed, Y_Transformed, Z_NotTransformed,

215 CloudPoint_Transformed)

216 *select point only above the belt

217 select_points_object_model_3d (CloudPoint_Transformed, 'point_coord_z', 0.5,

218 80, CloudPoint_Transformed_Thresholded)

219 *save point cloud transformed with removed belt

220 write_object_model_3d (CloudPoint_Transformed_Thresholded, 'ply',

221 'Transformed_withoutBelt_PC', [], [])

222 *visualize the transformed point cloud

223 create_pose (0, 0, 0, 0, 0, 0, 'Rp+T', 'gba', 'point', Pose)

224 dev_open_window (0, 0, 500, 500, 'black', WindowHandle)

225 visualize_object_model_3d(WindowHandle, CloudPoint_Transformed_Thresholded,

226 [], [], [], [], [], [], [], PoseOut)

227 *triangulate the point cloud

228 triangulate_object_model_3d (CloudPoint_Transformed_Thresholded, 'greedy',

229 [], [], TriangulatedObjectModel3D, Information)

Temporal Stitching

230 read_image (Z_NotTransformed1, 'C:/Users/not_transformed_heights_1.png')

231 read_image (Z_NotTransformed2, 'C:/Users/not_transformed_heights_2.png')

232 *this is for the lj-x8300 profilometer by Keyence

233 ResolutionX := 0.05

234 ResolutionY := 0.0475

235 ResolutionZ := 3.24

236 ***************************CREATION OF THE POINT CLOUD STICHTED TRANSFORMED**************************

237 *this is calculated according to the procedure in the test case

238 offset_mm := 0.0335876

239 *convert the type of the depth imageS
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240 convert_image_type (Z_NotTransformed1, Z_NotTransformed1, 'real')

241 convert_image_type (Z_NotTransformed2, Z_NotTransformed2, 'real')

242 *create new image of z coordinates using the ResolutionZ for first image

243 get_image_size (Z_NotTransformed1, Width, Height)

244 gen_image_const (ConstImage, 'real', Width, Height)

245 paint_region (ConstImage, ConstImage, ConstImage, 1, 'fill')

246 div_image (Z_NotTransformed1, ConstImage, Z_NotTransformed1, 0.001, 0)

247 div_image (Z_NotTransformed1, ConstImage, Z_NotTransformed1, ResolutionZ, 0)

248 *create new image of z coordinates using the ResolutionZ for second image

249 get_image_size (Z_NotTransformed2, Width, Height)

250 gen_image_const (ConstImage, 'real', Width, Height)

251 paint_region (ConstImage, ConstImage, ConstImage, 1, 'fill')

252 div_image (Z_NotTransformed2, ConstImage, Z_NotTransformed2, 0.001, 0)

253 div_image (Z_NotTransformed2, ConstImage, Z_NotTransformed2, ResolutionZ, 0)

254 *generate the two gradient images for the x and y coordinates(first image)

255 gen_image_surface_first_order (X_Transformed1, 'real', 0, ResolutionX, 0,

256 0, 0, Width, Height)

257 gen_image_surface_first_order (Y_Transformed1, 'real', ResolutionY,

258 offset_mm, 0, 0, 0, Width, Height)

259 *generate the two gradient images for the x and y coordinates(second image)

260 offset_subsequent := 115

261 gen_image_surface_first_order (X_Transformed2, 'real', 0, ResolutionX, 0,

262 0, 0, Width, Height)

263 gen_image_surface_first_order (Y_Transformed2, 'real', ResolutionY,

264 offset_mm, offset_subsequent, 0, 0, Width, Height)

265 **generate X,Y,Z images of the subsequent point cloud

266 concat_obj (X_Transformed1, X_Transformed2, X_concat)

267 concat_obj (Y_Transformed1, Y_Transformed2, Y_concat)

268 concat_obj (Z_NotTransformed1, Z_NotTransformed2, Z_concat)

269 tile_images_offset (X_concat, X, [0, Height], [0, 0], [0,0], [0,0],

270 [Height - 1, Height - 1], [Width -1, Width - 1], Width, Height*2)

271 tile_images_offset (Y_concat, Y, [0, Height], [0, 0], [0,0], [0,0],

272 [Height - 1, Height - 1], [Width -1, Width - 1], Width, Height*2)

273 tile_images_offset (Z_concat, Z, [0, Height], [0, 0], [0,0], [0,0],

274 [Height - 1, Height - 1], [Width -1, Width - 1], Width, Height*2)

275 xyz_to_object_model_3d (X, Y, Z, CloudPoint_Transformed)

276 *select point only above the belt

277 belt_level_mm := 3500*0.001*ResolutionZ

278 select_points_object_model_3d (CloudPoint_Transformed, 'point_coord_z',

279 belt_level_mm, belt_level_mm + 8, CloudPoint_Transformed_Thresholded)

280 *triangulate the point cloud

281 triangulate_object_model_3d (CloudPoint_Transformed_Thresholded, 'greedy',

282 [], [], TriangulatedObjectModel3D, Information)
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3D Matching and Pose estimation

283 read_object_model_3d ('C:/Tesi/mesh.ply', 'mm', [], [], ObjectModel3D, Status)

284 *segment the 3d object

285 connection_object_model_3d (ObjectModel3D, 'distance_3d', 0.002,ObjectModel3DConnected)

286 *cumpute the surface normals needed for the matching

287 surface_normals_object_model_3d (ObjectModel3DConnected[0], 'mls', [], [], ObjectModel3DNormals)

288 * Create the surface model from the reference view

289 create_surface_model (ObjectModel3DNormals, 0.03, [], [], SFM)

290 * compute keypoint, match and get the results

291 find_surface_model (SFM, ObjectModel3D, 0.05, 0.3, 0.2, 'true', 'num_matches', 10, Pose,

292 Score, SurfaceMatchingResultID)

293 ObjectModel3DResult := []

294 for Index2 := 0 to |Score| - 1 by 1

295 if (Score[Index2] < 0.35)

296 continue

297 endif

298 CPose := Pose[Index2 * 7:Index2 * 7 + 6]

299 rigid_trans_object_model_3d (ObjectModel3DNormals, CPose, ObjectModel3DRigidTrans)

300 ObjectModel3DResult := [ObjectModel3DResult,ObjectModel3DRigidTrans]

301 endfor

302 * Visualize matching scene and key points

303 Message := 'Original scene points (white)'

304 Message[1] := 'Sampled scene points (cyan)'

305 Message[2] := 'Key points (yellow)'

306 get_surface_matching_result (SurfaceMatchingResultID, 'sampled_scene', [], SampledScene)

307 get_surface_matching_result (SurfaceMatchingResultID, 'key_points', [], KeyPoints)

308 dev_clear_window ()

309 dev_open_window (0, 0, 1024, 1024, 'black', WindowHandle)

310 visualize_object_model_3d (WindowHandle, [ObjectModel3D,SampledScene,KeyPoints], [], [],

311 ['color_' + [0, 1, 2],'point_size_' + [0, 1, 2]], ['gray', 'cyan', 'yellow', 1.0, 3.0,

312 5.0], Message, [], Instructions, PoseOut)

313 dump_window_image (Result, WindowHandle)

314 * Visualize result(s)

315 Message := 'Scene: '

316 Message[1] := 'Found ' + |ObjectModel3DResult| + ' object(s) '

317 ScoreString := sum(Score$'.2f' + ' / ')

318 Message[2] := 'Score(s): ' + ScoreString{0:strlen(ScoreString) - 4}

319 NumResult := |ObjectModel3DResult|

320 tuple_gen_const (NumResult, 'green', Colors)

321 tuple_gen_const (NumResult, 'circle', Shapes)

322 tuple_gen_const (NumResult, 3, Radii)

323 Indices := [1:NumResult]

324 dev_clear_window ()

325 dev_open_window (0, 0, 1024, 1024, 'black', WindowHandle)

326 visualize_object_model_3d (WindowHandle,[ObjectModel3D,ObjectModel3DResult],[],

327 PoseOut,['color_'+[0,Indices],'point_size_0'],['gray',Colors,1.0],Message,[],Instructions, PoseOut)
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