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Abstract

Vasculature segmentation and vessel caliber measurements in retinal
images can improve early diagnosis of several diseases, such as diabetes,
retinopathy of prematurity and hypertension. The aim of this thesis is
to present a novel algorithm for improving the vessel contours obtained
from binary vessel maps. This is useful for quantitative evaluations like
width and tortuosity estimation. Two algorithms are described in this
document. Firstly, a simple vessel segmentation strategy filtering the im-
age using a Gaussian kernel and producing a binary vessel mask from the
response image by the application of a thresholding step. Secondly, a pro-
cedure fitting the two contours of each vessel in the binary map with a
cubic spline curve, under a parallelism constraint between the two splines.
The second algorithm is the main focus of this work. The performance
of the algorithm has been evaluated on the publicly available REVIEW
database, which contains a set of images with vasculature showing dif-
ferent characteristics. Images also include several manual measurements
made by three independent observers. The method is implemented in
MATLAB.
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1 Introduction

The analysis of retinal images plays a significant role in the clinical diagnosis of
several pathologies; for instance, arteriosclerosis, hypertension and diabetes. In
fact, Diabetic Retinopathy (DR) is a disease that may cause visual impairments
in patients suffering from diabetes mellitus which, after several years, could even
lead to blindness. Signs include the appearance of lesions and ischemic regions,
areas with poor blood supply, caused by occlusions in retinal vessels. It is then
of primary importance to monitor changes in the retinal vascular structure, in
order to prevent later complications in patients suffering from DR.

In general, retinal images are clinically relevant, as they permit to have
direct access to human vasculature in vivo in a non-invasive manner. Obtaining
a binary vessel map from retinal images proves to be useful for many different
purposes: among others, the evaluation of vessel tortuosity, often regarded as a
symptom of systemic hypertension, and the measurement of vessel calibre as a
biomarker for cardiovascular diseases. Hence, the developing of a computerized
system for retinal vessel segmentation would be of great benefit to improve
the efficacy of ophthalmologists’ work, helping them in the diagnosis of some
degenerative pathologies. However, devising a reliable automatic retinal vessel
detection procedure turns out to be very challenging due, among others, to
the wide range of image resolutions and acquisition modes. For this reason,
semi-automated methods are often used, despite they may be onerous in terms
of time and subject to user errors. In recent years, many vessel segmentation
algorithms were presented. These methods can be differentiated in two classes:
procedures that use supervised learning and procedures that do not.

The former group includes supervised algorithms that train a classifier, start-
ing from a manually-segmented training set of images in which pixels are labeled
as vessel or non-vessel by a human. The classifier is then used to determine
whether a pixel belongs to a vessel or not, according to a feature vector which
is computed for every pixel in the image. A relevant example is the algorithm
by Soares et al.[1], which implements the Gabor wavelet transform to perform
a multiscale analysis on the image and then computes pixel feature vectors as
the maximum response of the Gabor filter over different orientations and scales;
finally, the classification is performed using a Bayesian classifier. In Lupascu et
al.[2] the feature vector is composed of 41 elements, according to many local and
spatial image properties, like the pixel intensity profile along a segment orthog-
onal to a vessel, or the output of several filters; afterwards, a trained AdaBoost
classifier is used for the classification of each pixel.

The latter group include methods that do not use supervised learning for
vessel segmentation. Research results in this field include: exploratory vessel
tracing, as shown in Chutatape et al.[3], in which a first set of pixels (seeds),
found either automatically or manually, is used as a starting point for the vessel
tracking and, as soon as new vessel pixels are found, the set of seed points
is updated; deformable models, also called snakes, which are active contour
models iteratively adapting their shape to locate vessel edges; thresholding of
wavelet coefficients, as the Isotropic Undecimated Wavelet Transform proposed
by Bankhead et al.[4]; other Laplacian or 2D Gaussian kernel approaches, as
suggested by Vermeer et al.[5].

Comparing the supervised learning methods with the others, the former
group leads to better segmentation results on the whole. This is due to the finer
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decision techniques adopted by the classifiers: these procedures are suitable for
detecting the complex retinal vasculature structure, which sometimes could not
be reliably detected by unsupervised procedures. On the other hand, training
methods are very expensive in terms of time: in fact, the classifier needs several
hand-labeled images to be trained, and each of these takes a long time to be
manually segmented. Moreover, human labeling is open to user bias and the
same image could be segmented in multiple ways by different observers. On
the contrary, unsupervised methods are faster and do not need a training set of
images. Nevertheless, these procedures have some drawbacks too: their main
limit is that these algorithms are often tailored just for a particular image type
or resolution and require adaptations to be applied to other images.

All the methods above aim to obtain a binary image in which the distinction
is between pixels belonging or not to the vascular structure. However, the
problem of how to reliably estimate the vessel caliber is not addressed by such
algorithms: in fact, width estimates taken from raw binary vessel maps, even
if taken in locations close to each other, present a relatively high standard
deviation, due to the jagged vessel borders occurring in binary maps.

This thesis describes a novel algorithm smoothing raw vessel contours in
binary retinal vessels masks. Removing vessel boundaries indentations turns
out to be useful to reliably evaluate vascular diameters. For each processed
vessel, after identifying its spline-smoothed centreline, the algorithm finds two
cubic spline curves fitting the jagged contours. The coefficients of these splines
are computed by solving an overconstrained system including both standard
spline formulae and a parallel-tangent constraint, which ensures that the vessel
profile is as similar as possible to a 2-D curvilinear pipe with parallel borders.

The remainder of this thesis is organized as follows: in Section 2.1 a common
vessel segmentation algorithm is described. Section 2.2 provides a mathematical
background on spline interpolation. Sections 2.3 to 2.6 deal with the steps of
the spline-based procedure described in this document. Algorithm performance
evaluated on REVIEW database is discussed in Section 3. Finally, discussion
and conclusions are in Section 4.
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2 Methods

2.1 Vessel segmentation algorithm

Although this thesis focuses on the vessel width measurement issue, this chap-
ter describes a simple algorithm for the vascular segmentation in retinal images.
This generates the binary vessel maps which are regularized by the second al-
gorithm. The vessel segmentation algorithm proposed consists in convolving
the image with a Gaussian sliding window in order to enhance the contrast be-
tween the vessel and non-vessel pixels, and then apply a thresholding step to
the response image.

Such filtering algorithms are widely used in image processing for edge detec-
tion and feature extraction. For retinal vessel segmentation, this methodology
turns out to be effective and easy to implement because it does not require any
previous training step. An approach similar to the one described below was first
proposed by Chaudhuri et al. [6].

In image processing, convolving an image with a mask requires moving the
kernel through all the pixels of the image. Let I be an image of size M ×N and
g the convolution mask of size p × p, where p is an odd integer; then for each
pixel (i, j) in I the filter response at that pixel is

G(i, j) =

a∑
k=−a

a∑
l=−a

g(k, l)I(i+ k, j + l) (2.1.1)

where a =
p− 1

2
and G is the resulting image.

The goal is to devise a convolution mask that is suitable for vessel detection
in retinal images. The key point is to notice that the intensity profiles of the
cross-section perpendicular to a vessel at any point can often be modelled as a
Gaussian curve. Hence, a set of Gaussian-shaped filters turns out to be appro-
priate for vessel segmentation (but see [1,2,5] for a discussion of the limitations
of this approach). The results presented below were obtained using the filter
shown in Figure 1 and described by the function

g(x, y) =
1

σ
√

2π
e
−
x2

2σ2 , −a ≤ x ≤ a, −a ≤ y ≤ a. (2.1.2)

where p is the dimension of the kernel and σ represents the standard deviation
of the Gaussian profile.

Since vessels in retinal images have different amplitudes and orientations, the
kernel has to be rotated by a finite set of angles θ ∈ [0, 180◦] and its spread, σ,
has to be varied as well, in order to capture as many vessel pixels as possible. The
maximum response will be obtained when the filter orientation and amplitude
approximate the propagation direction and the diameter of the vessel in the
considered pixel. Therefore, for all the pixels (i, j) of the input image I, the
maximum absolute value of the filter response over all angles θ and scales σ
is kept. In other words, the pixel (i, j) of the output image, after the filtering
process, will be

Gmax(i, j) = arg max
θ,σ

∣∣∣∣∣
a∑

k=−a

a∑
l=−a

gθ,σ(k, l)I(i+ k, j + l)

∣∣∣∣∣ (2.1.3)
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where gθ,σ is the kernel g rotated by θ and with a spread σ.

y

x

Figure 1: Gaussian kernel with p = 21 and σ = 4.

This procedure will enhance the contrast in the resulting image Gmax be-
tween those pixels belonging to a vessel and those not. Hence, a thresholding
step has to be applied to Gmax in order to obtain a binary vessel mask of the
original image I. This means that if the brightness level of a given pixel in
Gmax exceeds a certain threshold t, that point is classified as belonging to a
vessel. The threshold can be set either automatically or manually; in this work,
the values t used to segment images from REVIEW database are chosen in the
latter way.

The main attraction of this unsupervised method is that it is easy to imple-
ment and it does not need a classifier to produce binary maps of the vascular
structure. Nevertheless, this filter-based algorithm may have strong responses
even to non-vessel structures, e.g. the boundaries of the optic disk or some
lesions. Moreover, in several retinal images, some wider blood vessels have a
bright streak running down the centreline: this central light reflex may be en-
hanced by the filter as well as other edges in the image. Thus, in these cases, a
simple thresholding step may produce some false results in the binary image.

Figure 2: Result of a segmentation procedure. (a) Original image of size
2240×1488. (b) Segmented binary image obtained using a Gaussian filter with
σ set to values from 2 to 4. The threshold value used is t = 48.
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2.2 Mathematical background on spline interpolation

This section provides a theoretical overview on spline data interpolation, a tech-
nique which is widely used in several subjects, as approximation theory and
numerical analysis. A spline is a piecewise polynomial function that is at least
of class C2 at the points where the polynomial pieces join up. These points are
called knots. Cubic splines are one of the most commonly used splines in inter-
polating problems; they are called cubic because their pieces are third-degree
polynomials. This chapter describes how to derive the equations for cubic spline
curves that interpolate a finite set of points.

x

yi−1

yi

yi+1

xi−1 xi xi+1

hi−1 hihi−2 hi+1

Figure 3: Interpolation with cubic spline between three points.

Given the data points (xj , yj) with j = 0, 1, . . . n, consider two consecutive
knots (xi, yi) and (xi+1, yi+1). The general cubic function defined in the interval
between these two points is

y = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di. (2.2.1)

where ai, bi, ci and di are the coefficients of the third-degree polynomial in the
ith interval. Since the cubic must go through at (xi, yi) and (xi+1, yi+1), then

yi = ai(xi − xi)3 + bi(xi − xi)2 + ci(xi − xi) + di = di; (2.2.2)

yi+1 = ai(xi+1 − xi)3 + bi(xi+1 − xi)2 + ci(xi+1 − xi) + di

= aih
3
i + bih

2
i + cihi + di.

(2.2.3)

where hi is the width of the ith interval, i.e. hi = xi+1 − xi.
To ensure a smooth fit across the boundary between two consecutive inter-

vals, the continuity of first and second derivatives is enforced at knots. The first
two derivatives of (2.2.1) are:

y′ = 3ai(x− xi)2 + 2bi(x− xi) + ci, (2.2.4)

y′′ = 6ai(x− xi) + 2bi. (2.2.5)

Naming Si and Si+1 the second derivative of the function evaluated at (xi, yi)
and (xi+1, yi+1) respectively, the following equations are obtained:

Si = 6ai(xi − xi) + 2bi = 2bi;

Si+1 = 6ai(xi+1 − xi) + 2bi = 6aihi + 2bi.
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Thus, the coefficients ai and bi can be derived:

ai =
Si+1 − Si

6hi
(2.2.6)

bi =
Si
2
. (2.2.7)

Substituting ai, bi and di, given by (2.2.6), (2.2.7) and (2.2.2), into Equation
(2.2.3) and solving for ci, the last coefficient can be obtained:

ci =
yi+1 − yi

hi
− 2hiSi + hiSi+1

6
. (2.2.8)

Other equations are found enforcing the spline first derivative continuity
constraint at (xi, yi). This means that the curve slope is continuous at the
point where the ith and (i− 1)th intervals join. Equation (2.2.4), computed at
(xi, yi), gives a new formula for ci:

y′i = 3ai(xi − xi)2 + 2bi(xi − xi) + ci = ci.

In the (i− 1)th interval, from xi−1 to xi, the first derivative of the function is

y′ = 3ai−1(x− xi−1)2 + 2bi−1(x− xi−1) + ci−1,

then the slope at the right end of the interval will be

y′i = 3ai−1(xi − xi−1)2 + 2bi−1(xi − xi−1) + ci−1

= 3ai−1h
2
i−1 + 2bi−1hi−1 + ci−1.

(2.2.9)

Since y′i = ci, equations (2.2.8) and (2.2.9) can be set equal to each other:

yi+1 − yi
hi

− 2hiSi + hiSi+1

6
= 3ai−1h

2
i−1 + 2bi−1hi−1 + ci−1. (2.2.10)

The cubic coefficients in the (i− 1)th interval are

ai−1 =
Si − Si−1

6hi−1
, bi−1 =

Si−1
2

, ci−1 =
yi − yi−1
hi−1

−2hi−1Si−1 + hi−1Si
6

and di−1 = yi−1,

and substituting them in (2.2.10), the following equation is obtained after some
simplifications:

hi−1Si−1 + (2hi−1 + 2hi)Si + hiSi+1 = 6

(
yi+1 − yi

hi
− yi − yi−1

hi−1

)
= 6(f [xi, xi+1]− f [xi−1, xi]),

(2.2.11)

where f [xj , xj+1] =
yj+1 − yj

hj
.

These are n − 1 equations in n + 1 unknowns Sj , with j = 0, . . . n. The most
common ways of obtaining two additional relations are either

• set S0 = 0 and Sn = 0, getting the so-called natural cubic spline, or

• extrapolate the value of S0 from S1 and S2 and the value of Sn from Sn−1
and Sn−2.
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The first approach is used hereafter.
Equation (2.2.11) can be written in matrix form for S1, S2, . . . Sn−1 as

Ax = b, where

A =


2(h0 + h1) h1 0 0 0 . . . 0 0

h1 2(h1 + h2) h2 0 0 . . . 0 0
0 h2 2(h2 + h3) h3 0 . . . 0 0
...

. . .
...

...

0 0 . . . hn−2 2(hn−2 + hn−1)

 ,

x =


S1

S2

S3

...
Sn−1

 and b = 6


f [x1, x2]− f [x0, x1]
f [x2, x3]− f [x1, x2]
f [x3, x4]− f [x2, x3]

...
f [xn−1, xn]− f [xn−2, xn−1]


Since A is a tridiagonal matrix, this linear system can be easily solved for x.
Once Sj values are computed, coefficients aj , bj , cj and dj can be derived for
each interval using equations (2.2.6), (2.2.7), (2.2.8) and (2.2.2).

2.3 Vessel centreline computation and refinement

Binary map of retinal vessels

Thinning

Rough centreline

PCA

Centreline co-ordinates in the
rotated reference frame

Spline interpolation

Refined centreline

Figure 4: Flowchart representing the main steps of the algorithm for vessel
centreline extraction and refinement.

This section presents an algorithm extracting and refining the centreline of each
vessel. A flowchart, representing the main steps of this procedure, is shown
above for the sake of clarity.
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Thinning

A first, rough set of centrelines can be easily obtained from a vessel binary map
using a morphological thinning algorithm. This method iteratively erode exte-
rior pixels from the detected vessel structure, until no more erasable pixels exist.
The resulting image is a binary mask of the vessel skeleton, i.e. a connected
chain of pixels 1 pixel thin. It is useful for further processing to separate this
binary structure into individual vessel segments by removing branching points
from the vessel skeleton. These points are pixels belonging to the thinned cen-
treline that have more than two neighbours. After that, segments that are less
than 15 pixels long are removed, as they are considered insignificant for later
analysis.

Before proceeding with centreline refinement, a first estimate of vessel width
can be computed using the distance transform of the binary vessel mask. The
result of this operation is a graylevel image in which pixel intensity values are
the Euclidean distances from the considered pixel and the closest background
pixel. By doubling the distance values along the thinned centreline, a coarse
estimate of vessel diameter in these points is obtained.

PCA

To fit a natural cubic spline to the thinned vessel centreline, it is convenient
to start by transforming the reference frame into the principal directions of
the vessel points. This guarantees that the centreline is well represented as
a function mapping each x value to a single y value. Considering pixel co-
ordinates of a given vessel segment as a collection of data P = {p1,p2, . . . ,pm},
where pj = (xj , yj) are the co-ordinates of the jth segment pixel, the Principal
Component Analysis (PCA) is used to detect the direction along which data
vary the most. These directions are given by the eigenvectors of the data scatter
matrix H which is computed as follows:

H =

[
(x1 − x) (x2 − x) . . . (xm − x)
(y1 − y) (y2 − y) . . . (ym − y)

] [
(x1 − x) (x2 − x) . . . (xm − x)
(y1 − y) (y2 − y) . . . (ym − y)

]T
,

where p = (x, y) is the centre of gravity of the data: p =
1

m

m∑
i=1

pi.

The scatter matrix H is a 2-by-2 positive-definite and symmetric matrix, hence
its eigenvalues are always real valued and positive. The eigenvector e1 with the
largest eigenvalue is the direction of greatest data variation; the other eigenvec-
tor e2 is orthogonal to e1 given the above properties of H. Thus, the x and y
axes are centred in p and rotated into e1 and e2 directions. The co-ordinates
of pj ∈ P in the new reference frame are

p′j = (pj − p) · Λ,

where Λ is the matrix that has e1 and e2 as columns.
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Spline interpolation

A natural cubic spline is then fitted to p′j points obtaining a smooth centreline
of the selected vessel. Different choices of spline knots among p′j points lead to
slightly different centrelines. Results presented later in this work are obtained
using a natural cubic spline with uniform intervals: a reliable interpolation in
all tested images has been obtained setting the length of each interval to 10
pixels. Some steps of the centreline refinement process are shown in Figure 5.

Figure 5: Vessel centreline refinement process. (a) Vessels from the binary
mask. (b) Thinned centrelines. (c) Refined centrelines plotted on the binary
vessel mask.

2.4 Vessel edge extraction

The next step is to extract vessel border points from the binary retinal maps
starting from the spline-smoothed centreline and the preliminary vessel widths
already computed. The goal is to identify vessel edges using the information
given by pixel intensity profile along vessel cross-sections. The refined centreline
is smooth enough to compute reliably, most of the times, orthogonal segments
that do not intersect each other. Hence, for each centreline pixel Cj , the per-
pendicular dj is computed. To ensure that segment dj will be long enough to
pass even through the widest vessels, its length is set to wj , where wj is the
preliminary vessel width at Cj , estimated from the distance transform described
above.

The image pixel intensity profile along dj is computed using linear inter-
polation. Since the image is binary, vessel edge points are those pixels where
intensity profile changes value. These points are detected finding the two peaks
into the first derivative of the binary profile.
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l

Intensity

Figure 6: Pixel intensity profile along dj (a) and its derivative (b). The horizon-
tal axis represent the curvilinear co-ordinate l along the centreline-orthogonal
segment.

Thereby, scanning each segment d1, d2, . . . dm, where m is the pixel length
of the considered centreline, 2m coupled contour points, qA,j and qB,j , are
found; these can be arranged in two lists, QA = {qA,1, qA,2, . . . , qA,m} and
QB = {qB,1, qB,2, . . . , qB,m}, so that in the jth position of the lists are the two
vessel edge points detected along dj . Before proceeding to vessel border points
interpolation, QA and QB must contain points belonging to the same vessel
contour. To ensure that, a simple procedure checking whether all the points
either in QA or in QB lie on the same side of the centreline is applied:

Algorithm

input:

Two lists QA and QB of detected vessel edge points.

steps:

For each pair of consecutive points in QA, qA,j = (xA,j , yA,j) and qA,j+1 =

(xA,j+1, yA,j+1), compute λ =
axA,j + byA,j + c

axA,j+1 + bxA,j+1 + c
, where a, b and c are the

coefficients of the line r : ax+ by + c = 0 tangent to the centerline at Cj .

if λ > 0 then qA,j and qA,j+1 lie in the same side of the line r, hence they
belong to the same vessel contour;

else they are located on the opposite sides of r. Thus, it is necessary to swap
qA,j and qB,j :

Temp← qA,j
qA,j ← qB,j
qB,j ← Temp

where Temp is a temporary variable.

output:

QA and QB lists, both containing points belonging to the same vessel contour.
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Figure 7: Vessel edge points detection along dj .

2.5 Contours refinement using a coupled spline-based method

This section deals with the main focus of the thesis: a novel algorithm, based
on spline interpolation, fitting points of the two vessel borders detected above.
Assuming that retinal vessel boundaries run approximately aligned, a parallel-
tangent constraint between the two interpolating splines is enforced at each
knot.

The first step is to obtain spline knots as subsampled lists QA and QB
of coupled edge points. The sampling period is chosen as the radius of the
smallest vessel bend (fastest turn), expressed in pixel, that we want to detect
by interpolating edge points. After subsampling QA and QB , two spline knots
lists LA and LB are obtained:

LA =


(xA,0, yA,0)
(xA,1, yA,1)

...
(xA,n, yA,n)

 and LB =


(xB,0, yB,0)
(xB,1, yB,1)

...
(xB,n, yB,n)


Naming yA the interpolating spline for one vessel border and yB for the other,
the two splines equations for intervals [xA,i, xA,i+1] and [xB,i, xB,i+1] respec-
tively are:

yA = ai(x− xA,i)3 + bi(x− xA,i)2 + ci(x− xA,i) + di (2.5.1)

yB = αi(x− xB,i)3 + βi(x− xB,i)2 + γi(x− xB,i) + δi (2.5.2)

The parallelism constraint is enforced at the right end of each pair of cou-
pled intervals [xA,i, xA,i+1] and [xB,i, xB,i+1]: the slopes of the tangents to
the splines at yA(xA,i+1) and yB(xB,i+1) must be equal. Thereby, grouping
Equations (2.5.1) and (2.5.2) with the parallel-tangent constraint, the following
overconstrained system is obtained:
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yA = ai(x− xA,i)3 + bi(x− xA,i)2 + ci(x− xA,i) + di

yB = αi(x− xB,i)3 + βi(x− xB,i)2 + γi(x− xB,i) + δi

y′A(xA,i+1) = y′B(xB,i+1)

The last equation in the system leads to

3aih
2
A,i + 2bihA,i + ci = 3αih

2
B,i + 2βihB,i + γi, (2.5.3)

where hA,i = xA,i+1−xA,i, hB,i = xB,i+1−xB,i and coefficients ai, bi, ci, αi, βi, γi
can be substituted using standard formulae for spline coefficients (2.2.6),(2.2.7)
and (2.2.8). Hence Equation (2.5.3) becomes

3
SA,i+1 − SA,i

6hi
h2A,i + 2hA,i

SA,i
2

+
yA,i+1 − yA,i

hA,i
− 2hA,iSA,i + hA,iSA,i+1

6
=

= 3
SB,i+1 − SB,i

6hi
h2B,i + 2hB,i

SB,i
2

+
yB,i+1 − yB,i

hB,i
− 2hB,iSB,i + hB,iSB,i+1

6
,

where SA,i = y′′A(xA,i) and SB,i = y′′B(xB,i) according to notation used in sec-
tion 2.2. After some simplifications, previous equation becomes:

1

3
SA,i+1hA,i+

1

6
SA,ihA,i−

1

3
SB,i+1hB,i−

1

6
SB,ihB,i = fB [xB,i, xB,i+1]−fA[xA,i, xA,i+1],

(2.5.4)

where fA[xA,i, xA,i+1] =
yA,i+1 − yA,i

hA,i
, fB [xB,i, xB,i+1] =

yB,i+1 − yB,i
hB,i

and

i = 0, . . . , n− 1.
Using Equation (2.2.11) for both contours and the parallel-tangent constraint

given by (2.5.4), the system can be written in matrix form Ax = b:

A =

 M1 0
0 M2

M3 M4



x =



SA,1
SA,2
SA,3

...
SA,n−1
SB,1
SB,2
SB,3

...
SB,n−1


and b =



6(fA[x1, x2]− fA[x0, x1])
6(fA[x2, x3]− fA[x1, x2])
6(fA[x3, x4]− fA[x2, x3])

...
6(fA[xn−1, xn]− fA[xn−2, xn−1])

6(fB [x1, x2]− fB [x0, x1])
6(fB [x2, x3]− fB [x1, x2])
6(fB [x3, x4]− fB [x2, x3])

...
6(fB [xn−1, xn]− fB [xn−2, xn−1])

fB [x0, x1]− fA[x0, x1]
fB [x1, x2]− fA[x1, x2]

...
fB [xn−1, xn]− fA[xn−1, xn]
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where

M1 =


2(hA,0 + hA,1) hA,1 0 0 0 . . . 0

hA,1 2(hA,1 + hA,2) hA,2 0 0 . . . 0
0 hA,2 2(hA,2 + hA,3) hA,3 0 . . . 0
...

. . .

0 0 . . . hA,n−2 2(hA,n−2 + hA,n−1)

 ,

M2 =


2(hB,0 + hB,1) hB,1 0 0 0 . . . 0

hB,1 2(hB,1 + hB,2) hB,2 0 0 . . . 0
0 hB,2 2(hB,2 + hB,3) hB,3 0 . . . 0
...

. . .

0 0 . . . hA,n−2 2(hB,n−2 + hB,n−1)

 ,

M3 =



1
3hA,0 0 0 0 . . . 0
1
6hA,1

1
3hA,1 0 0 . . . 0

0 1
6hA,2

1
3hA,2 0 . . . 0

...
. . .

. . .
...

1
3hA,n−2

0 0 0 . . . 0 1
6hA,n−1


,

M4 =



− 1
3hB,0 0 0 0 . . . 0
− 1

6hB,1 − 1
3hB,1 0 0 . . . 0

0 − 1
6hB,2 − 1

3hB,2 0 . . . 0
...

. . .
. . .

...
− 1

3hB,n−2
0 0 0 . . . 0 − 1

6hB,n−1


Since interpolating functions are natural cubic splines, coefficients SA,0, SA,n,
SB,0 and SB,n are null.

Least-squares solution

If a system Ax = b is overdetermined, i.e. it has more equations than unknowns,
it is generally impossible to find an exact solution x. Vector Ax belongs to the
column space of A, also called range of A, which is the space spanned by A
columns. If b /∈ range(A), the right hand of equation Ax = b can be replaced
with the orthogonal projection π of b onto the column space of A. This leads
to equation Ax̂ = π, where x̂ is the least squares system solution i.e. the vector
x̂ that minimizes the norm of the residual ω = Ax− b:

||Ax̂− b|| ≤ ||Ax− b||, for all x.

Since the error vector e = b− π is orthogonal to range(A), it follows that

ATe = AT (b−Ax̂) = 0.

Solving this equation for x̂, the estimated system solution is obtained:

x̂ = (ATA)−1AT b.
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(xA,i, yA,i)
(xA,i+1, yA,i+1)
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hA,i

hB,i

Figure 8: Spline interpolation of two pair of points enforcing the parallel-tangent
constraint. The red curve is the centreline. The curve in the upper part of the
image is the spline fitting vessel contour B. The one in the lower part is fitting
vessel contour A.

Having values SA,i and SB,i from x̂, the coefficients ai, bi, ci, di, αi, βi, γi and δi
are given by standard spline formulae, reported below for the sake of clarity:

ai =
SA,i+1 − SA,i

6hA,i

bi =
SA,i

2

ci =
yA,i+1 − yA,i

hA,i
− 2hA,iSA,i + hA,iSA,i+1

6

di = yA,i

αi =
SB,i+1 − SB,i

6hB,i

βi =
SB,i

2

γi =
yB,i+1 − yB,i

hB,i
− 2hB,iSB,i + hB,iSB,i+1

6

δi = yB,i.
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2.6 Width estimation

The contours refinement method proposed improves vessel width estimations in
binary images since vascular boundaries are smoothed and the typical indenta-
tion of binary edges is removed. Thus, multiple diameter measurements along
the same vessel will not present a high standard deviation any longer. The vessel
width at point Cj lying on the spline-smoothed centreline is estimated comput-
ing the Euclidean distance between points Dj and Ej : these are the points
belonging to the two refined contours and lying on segment dj , orthogonal to
centreline at Cj .

wj = 13.281

Ej

Dj

Cj

Figure 9: The vessel width at Cj is estimated as the Euclidean distance wj
between Dj and Ej .
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3 Experimental Results

3.1 REVIEW database

The diameter measurement performance is evaluated using the REVIEW database
[8], which is publicly available at http://ReviewDB.lincoln.ac.uk. This database
comprises four image sets presenting a good overview of different possible kind
of retinal images: high-resolution (HRIS dataset), central light reflex (CLRIS
dataset), vascular diseases (VDIS dataset) and kickpoints (KPIS dataset). All
the images were assessed by three different experts that manually marked vessel
edge points: the co-ordinates of these hand-selected points are also available
in the database. Therefore, each pair of edge points presents three width esti-
mates, one for each observer; the average of these three diameter measurements
is considered as the ground truth vessel width. REVIEW database contains a
total of 5066 manually marked profiles.

A brief overview about the four image sets follows:

• HRIS: It is composed by 4 high-resolution images (3584 × 2438 pixels)
representing different grades of Diabetic Retinopathy. It contains 90 hand-
selected segments for a total of 2368 profiles. Measurements reported in
REVIEW database refer to HRIS images that are downsampled by a factor
of four, so that estimated widths are known to ±0.25 pixels, leaving out
human error.

• CLRIS: Two images representing early artheriosclerotic changes, often
with the presence of a light streak, known as central light reflex, running
down the central length of the blood vessel. Image resolution is 1440×2169
and 285 profiles from 21 segments are reported.

• VDIS: It consist of 8 images (1360 × 1024 pixels), with the presence of
different type of Diabetic Retinopathy in 6 of them. Manually selected
profiles are 2249. Since images in this dataset are considerably noisy,
vessel measurement algorithms generally perform worse here.

• KPIS: In contrast with previous three datasets, which contain full fundus
images, KPIS consists of two images representing several large and non-
tortuous vessel segments. Images resolution is 760× 570 and the dataset
comprises 164 profiles.

The authors of the database proposed the Extraction of Segment Profiles
(ESP) procedure [9] and they compared its performance with Gregson’s [10],
Half Height Full Width (HHFW) [11], 1D Gaussian [12] and 2D Gaussian [13]
algorithms on the REVIEW database.

3.2 Algorithm performance measures

Naming O1, O2 and O3 the three observers that manually marked vessel profiles
in REVIEW database, the reference standard vessel diameter at ith location
is the mean ψi of width measurement from O1, O2 and O3. For comparison of
different algorithms efficiency, the error χi is defined as

χi = wi − ψi
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Figure 10: Example images from REVIEW database. (a) HRIS. (b) VDIS. (c)
CLRIS. (d) KPIS.

where wi is the width at ith location estimated by the algorithm under exam-
ination. The standard deviation σχ of the error is used to evaluate algorithm
performance. The error mean µχ and the sandard deviation σ and µ of the
measurements w are also reported for the sake of completeness.

A further useful parameter for performance evaluation is the success rate
(SR): it is considered as the number of meaningful measurements returned by
the algorithm over the total number of profile reported in the database. In fact,
vessel segmentation procedures sometimes produce inaccurate binary masks,
with either the lack of some vessel parts or too noisy vessel profiles. Since
the algorithm proposed in this thesis works on a binary image, resulting from
a previous vessel segmentation step, its performance strongly depends on the
quality of the input binary mask. Hence, in the cases mentioned above, diameter
measurements are not reported for algorithm performance evaluation, because
width estimations are meaningless: this affects the algorithm success rate.

In order to compare ψi with the diameter wi, estimated with the spline based
method, the following procedure has to be applied: for each pair of ground
truth vessel edge co-ordinates (xA,O, yA,O) and (xB,O, yB,O) in REVIEW, the
reference standard centreline point CO(xC , yC) is computed, where

xC =
xA,O + xB,O

2
and yC =

yA,O + yB,O
2

.

After that, the method described in section 2.6 to find wi is applied: in this
case, Cj is the point lying on the spline-smoothed centreline which is the closest
to CO.
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Figure 11: Ground truth centreline point CO and the closest point Cj lying on
the spline-smoothed centreline.

Tables 1 to 4 reports the performance of algorithms [9], [10], [11], [12], [13]
and of Xu’s graph-based method [14], [15]. The accuracy of the spline-based
algorithm presented in this document is shown in Tables 6 to 8. These tables
show results of the algorithm applied to different binary images obtained with
several segmentation procedures.

HRIS Dataset:

Algorithm name
Measurement Error

SR %
µ σ µχ σχ

First observer: O1 4.12 1.25 -0.23 0.288 100
Second observer: O2 4.35 1.35 0.002 0.256 100
Third observer: O3 4.58 1.26 0.23 0.285 100
Ground truth: O 4.35 1.26 - - 100

Gregson’s algorithm 7.64 - 3.29 2.841 100
HHFW 4.97 - 0.62 0.926 88.3

1D Gaussian 3.81 - -0.54 4.137 99.6
2D Gaussian 4.18 - -0.17 6.019 98.9

ESP 4.63 - 0.28 0.42 99.7
Xu’s graph 4.56 1.30 0.21 0.567 100

Table 1: Performance of main width measurement methods in HRIS dataset

As it is shown on Table 1, the accuracy σχ of Gregson’s algorithm and of 1D
and 2D Gaussian methods is particularly poor on the High Resolution Image
Set: even though they all score an high SR, the error standard deviation is
inferior compared to other algorithms. On the other hand, ESP and graph-
based method performances are comparable to the observers: 1.52 times the
mean accuracy of the observers in the first case, 2.05 times in the second.
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CLRIS Dataset:

Algorithm name
Measurement Error

SR %
µ σ µχ σχ

First observer: O1 13.19 4.01 -0.61 0.567 100
Second observer: O2 13.69 4.22 -0.11 0.698 100
Third observer: O3 14.52 4.26 0.72 0.566 100
Ground truth: O 13.80 4.12 - - 100

Gregson’s algorithm 12.8 - -1.0 2.841 100
HHFW - - - - 0

1D Gaussian 6.3 - -7.5 4.137 98.6
2D Gaussian 7.0 - -6.8 6.019 26.7

ESP 15.7 - -1.90 1.469 93.0
Xu’s graph 14.05 4.47 0.08 1.78 94.1

Table 2: Performance of main width measurement methods in CLRIS dataset

Due to the bright strip running down some vessels centreline, the detection of
vessel borders for diameter measurements turns out to be tricky in this dataset.
In fact, the central light reflex causes a complicated intensity cross-section and
some border detection methods can interpret one vessel as two different ves-
sels running parallel each other. For this reason HHFW, 1D and 2D Gaussian
algorithms are unstable in this dataset. Even if ESP and Xu’s procedures accu-
racy is not close to the observers, these methods still outperform the other edge
location methods in this dataset.

VDIS Dataset:

Algorithm name
Measurement Error

SR %
µ σ µχ σχ

First observer: O1 8.50 2.54 -0.35 0.543 100
Second observer: O2 8.91 2.69 0.06 0.621 100
Third observer: O3 9.15 2.67 0.30 0.669 100
Ground truth: O 8.85 2.57 - - 100

Gregson’s algorithm 10.07 - 1.22 1.494 100
HHFW 7.94 - -0.91 0.879 78.4

1D Gaussian 5.78 - -3.07 2.110 99.9
2D Gaussian 6.59 - -2.26 1.328 77.2

ESP 8.80 - -0.05 0.766 99.6
Xu’s graph 8.35 3.00 -0.53 1.43 96.0

Table 3: Performance of main width measurement methods in VDIS dataset

Since VDIS dataset is sensibly noisy, algorithms accuracy is comparatively
weaker here. Again ESP have the best accuracy σχ = 0.766 pixels (1.26 times
the mean accuracy of the observers). Also the error standard deviation reported
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by Half Height Full Width is close to the observers, but its SR is quite low, so
HHFW results are not comparable with the others.

KPIS Dataset:

Algorithm name
Measurement Error

SR %
µ σ µχ σχ

First observer: O1 7.97 0.47 0.45 0.233 100
Second observer: O2 7.60 0.42 0.08 0.213 100
Third observer: O3 7.00 0.52 -0.53 0.234 100
Ground truth: O 7.52 0.42 - - 100

Gregson’s algorithm 7.29 - -0.23 0.602 100
HHFW 6.47 - -1.05 0.389 96.3

1D Gaussian 4.95 - -2.57 0.399 100
2D Gaussian 5.87 - -1.65 0.337 100

ESP 6.56 - -0.96 0.328 100
Xu’s graph 6.38 0.59 -1.14 0.67 99.4

Table 4: Performance of main width measurement methods in KPIS dataset

In this low resolution dataset, all the algorithms score high SR and exhibit good
performance. The worse accuracy is reported by the graph-based method: σχ
is 2.96 times the mean standard deviation of the observers and vessel withs are
underestimated (µχ = −1.14 pixels).

Segmentation using a Gaussian filter

This paragraph shows the results of the spline-based contour refinement method
on retinal binary images obtained as described in Section 2.1. Since the size of
the vessels, in terms of pixels, strictly depends on image resolution, the standard
deviation of the Gaussian filter should be finely tuned to each particular image,
in order to detect both narrow and wide vessels. For this reason, the matched
filter scales are adjusted for each dataset and same scales are used for images
with similar resolutions.

HRIS dataset has the highest resolution, but all its images are downsampled
by a factor of 4 before being input into the filtering procedure. It turns out that
the best choice of σ values in Equation (2.1.1) are 2, 3 and 4; in CLRIS σ is set
to values from 4 to 6; in VDIS the filter scales are 3 and 4; in the low resolution
KPIS, σ is set to values 2 and 3. Results reported below are achieved using a
Gaussian shape sliding-window of size 33× 33 pixels. Filtered images are then
thresholded to obtain binary vessel maps, which are input into the spline-based
algorithm for width measurements. The threshold values used in this work are
reported in table 5 and the results, referring to the ground truth observer O
measurements, are shown in Table 6.
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Dataset Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8

HRIS 97 68 60 100 - - - -
CLRIS 54 53 - - - - - -
VDIS 15 23 29 37 50 41 27 31
KPIS 50 56 - - - - - -

Table 5: Threshold values used to obtain binary vessel maps from filtered images.

Dataset
Measurement Error

SR %
µ σ µχ σχ

HRIS 3.935 1.398 -0.425 0.760 95.65
CLRIS 13.808 3.681 -0.159 1.229 90.18
VDIS 8.174 2.819 -0.792 1.381 92.08
KPIS 6.061 0.285 -1.325 0.319 93.90

Table 6: Performance of spline-based method for width measurement, applied to
binary images that obtained after filtering them with Gaussian sliding-window.

The method proposed in this thesis has a performance which is comparable
to the observers in HRIS dataset: σχ = 0.760 pixels (2.75 times the mean
of observers’ σχ). Nevertheless, Xu’s graph-based method and ESP algorithm
perform slightly better. On the contrary, in CLRIS dataset, the spline-based
method reports the best accuracy, despite the central light reflex. It’s success
rate is yet lower than ESP and Xu’s algorithms. On the noisy VDIS dataset
the width measurement by spline-based contours refinement reports the second
best performance after ESP. Finally, in KPIS dataset the spline-based method
reports again the best performance, even though it scores a SR slightly lower
that other algorithms.

Segmentation using 2-D Gabor wavelet transforms

This chapter deals with the results of the spline-based algorithm applied to reti-
nal binary images obtained with another vessel segmentation procedure. The
software used to produce binary masks is VAMPIRE [16]: this is an application
detecting the vessel structure and quantifying vessel features in retinal fundus
images. It implements a version of Soares’s algorithm [1] for the vessel segmen-
tation step. This method is a supervised procedure using a Bayesian classifier,
with class-conditional probability density functions modelled as Gaussian mix-
tures, to label each pixel as vessel or non-vessel. The pixel feature vector in-
cludes multi-scale measurements taken from the 2-D Gabor wavelet transform,
enhancing vessels appearance.

The main drawback of this segmentation algorithm is that it requires to
train the Bayesian classifier. Since the Soares’s algorithm version implemented
in VAMPIRE is not trained on images from REVIEW database, the resulting
binary masks are very noisy and inaccurate for the most part. This affects the
width measurement accuracy of the spline-based method, as it can be inferred
by Table 7.
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Dataset
Measurement Error

SR %
µ σ µχ σχ

HRIS 5.304 1.229 1.034 0.666 86.91
CLRIS 13.792 2.527 1.195 1.354 70.18
VDIS 7.980 3.010 -0.901 2.283 74.30
KPIS - - - - -

Table 7: Performance of spline-based method for width measurement applied
to binary images that are obtained using Soares’s algorithm.

The great deterioration of the success rate is due to large number of undetected
vessel pixels in binary images obtained with VAMPIRE. In fact, many locations
in which REVIEW reports width measurements, are not even classified as vessel
pixels by Soares’s algorithm. Nevertheless, at those locations where vessels are
detected properly, the spline-based algorithm reports width measurements that
are comparable with the ground truth: σχ is 2.41 times the mean accuracy
of the observers in HRIS and 2.22 times in CLRIS. Results in VDIS database
are sensibly poorer compared with those reported in Table 3: this is due to
the fact that images in VDIS present an high level of noise that makes the
vessel segmentation harder. Particularly, the first and the last image of this
dataset are such noisy that Soares’s algorithm is not able to detect most of the
locations reported in REVIEW for width measurements. The next paragraph
proposes the results of spline-based algorithm on binary images obtained after
a noise-reduction procedure. Performances in KPIS dataset are not reported,
as VAMPIRE can produce meaningful results just processing fundus retinal
images.

Segmentation with 2-D Gabor wavelet transforms after median filter-
ing

In order to reduce impulsive noise and ”salt and pepper” effect present in several
REVIEW images, a median filtering is applied to each image before input it
into Soares’s algorithm. Median filtering is a non-linear smoothing operation,
often used in image processing, as it turns out to be effective when the goal
is to reduce noise and preserve edges at the same time. In this work, median
filtering is performed moving a 3×3 sliding-window through all the pixels of the
image: each pixel in the centre of the window is replaced with the median of the
brightnesses in its 3×3 neighbourhood. Since the median of brightness values in
the neighbourhood is not affected by individual noise spikes, the resulting image
is free from impulsive noise. Filtered images are then processed using VAMPIRE
software. The resulting binary images are input into the spline-based algorithm
for diameter estimates and the measurements performance against REVIEW is
reported in Table 8.
The removal of impulsive noise leads to an improved success rate in each dataset.
The accuracy σχ in HRIS is even better than those reported in Table 6 and 7:
σχ = 0.639 pixels (2.31 times the observers’ mean accuracy). On the contrary,
in CLRIS and VDIS the standard deviations of the error are slightly worse
compared to those obtained without previously applying a median filtering.
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Dataset
Measurement Error

SR %
µ σ µχ σχ

HRIS 5.18 1.262 0.947 0.639 91.05
CLRIS 13.638 3.425 1.453 1.739 77.89
VDIS 9.211 3.655 0.126 2.323 80.35
KPIS - - - - -

Table 8: Performance of spline-based method for width measurement applied
to binary images that obtained using Soares’s algorithm on median filtered
REVIEW images.

KPIS images are not processed for the same reasons mentioned above.

3.3 Processing times

The algorithm described in this document takes few seconds to find the two
splines refining the boundaries of one single vessel. Timings are related with
the length of the processed segment: the following table gives computation times
required to fit contours of vessels with different lengths.

Vessel centreline length Time
(pixels) (seconds)

57 2.07
97 2.78
209 5.60
362 7.15

Table 9: Mean computation times of the spline-based algorithm applied to four
different vessels.

These processing times are obtained using a MATLAB implementation of the
spline-based algorithm. Tests has been made on an Intel(R) Core(TM)2 Duo
CPU (2.26 GHz) with 3GB RAM memory.
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4 Discussion and conclusion

This thesis has proposed a novel algorithm refining vessel boundaries in reti-
nal binary vessel maps. Since these black-and-white vessel maps often present
jagged edges that are not suitable for width estimations, the spline-based algo-
rithm provides an improved version of the input binary image, in which vessel
contours are smoothed and refined. However, this procedure does not perform
vessel extraction; rather, it refines the boundaries of vessels that have been
already located by previous vascular segmentation methods.

The algorithm is general enough to be applied to any kind of retinal binary
mask, even to black-and-white images not representing a full eye fundus. As it
can be inferred from results reported in Section 3.2, one important drawback of
this approach is that its diameter evaluation performance strictly relies on the
accuracy of the input binary image. In fact, if vessels are not reliably segmented
or not detected at all by the segmentation step, the diameter measurement taken
with the spline-based algorithm will be meaningless. Although this limitation
is significant, the problem may be solved integrating the method with a reliable
segmentation procedure. The method proposed in Section 2.1, convolving the
image with a Gaussian shape filter, and Soares’s algorithm [1] are just two of
several vascular segmentation methodologies. The integration of the spline-
based algorithm with more accurate vessel segmentation procedures, may lead
to an improved performance in width measurements.

Future work Results reported in this thesis are encouraging and suggest that
the spline-based algorithm has a good potential for improving vessel contours
obtained from binary vessel masks. However, some issues must still be solved
by future work.

• Firstly, the choice of spline knots. The set of contour points that are in-
terpolated by the two spline curves depends on how edge points lists QA
and QB of section 2.5 are subsampled. The choice made in this work is
straightforward: the sampling period is set as the smallest vessel bend ra-
dius that has to be detected by the spline interpolation. A more thoughtful
solution, taking into account some vessel parameters, such as the curvature
and length of the centreline, may lead to an improved contours refinement.

• Secondly, a procedure generating more reliable binary vessel masks. Even
if image segmentation is one of the most studied topics in medical image
processing and many innovative solutions are often suggested by scientists,
further research is still needed to find a segmentation procedure suitable
to different kind of retinal images.
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