
Università degli Studi di Padova

Dipartimento di Ingegneria dell'Informazione, Padova.
Department of Information Technology and Electrical

Engineering, ETH Zürich.

Corso di Laurea in Ingegneria delle Telecomunicazioni

Tesi di Laurea

Identification of Wireless Systems

Laureando

Irene Pappalardo

Relatore

Prof. Michele Zorzi

Correlatori

Prof. Helmut Bölcskei, Ing. Reinhard Heckel

Anno Accademico 2011/2012



Ai miei fantastici genitori

ii



Sommario

La presente tesi si propone di studiare il problema dell'identi�cazione di tre modelli di
sistemi tempo varianti. Tale problema consiste nel ricostruire i parametri di sistema
a partire da misurazioni ingresso-uscita. Inoltre sono oggetto di studio le condizioni
su�cienti che permettono l'identi�cazione del sistema. Nella prima parte della tesi si
studia l'identi�cazione di sistemi a banda larga (wideband systems). Viene presentata
una caratterizzazione discreta del modello continuo del sistema. A questo scopo
viene utilizzata la trasformata di Mellin che fornisce una rappresentazione del segnale
in termini delle sue componenti di scaling. Nella seconda parte dell'elaborato, si
considerano i sistemi la cui risposta consiste in una sovrapposizione pesata di versioni
del segnale di ingresso, traslate nel tempo e in frequenza. Si assume inoltre che tali
sistemi siano sparsi, ovvero che introducano solamente alcune traslazioni in tempo
e frequenza, ignote. Si sono confrontati tramite simulazioni due diversi approcci di
ricostruzione. Tali approcci di�eriscono sia in termini di segnale di ingresso che per
l'algoritmo usato per la ricostruzione. Secondo il primo approccio, la formulazione
dell'identi�cazione viene ricondotta a un problema di tipo multiple measurement
vector, mentre nel secondo approccio rispecchia un problema di tipo block-sparse.
Per ciascun approccio viene usata una particolare versione di un algoritmo greedy
di ricostruzione, più precisamente l'orthogonal matching pursuit. Le simulazione
non solo dimostrano che i due approcci hanno prestazioni diverse, ma evidenziano
anche, dal punto di vista quantitativo, come il secondo approccio abbia più successo
rispetto al primo, in termini di probabilità di ricostruzione (recovery probability).
Gli stessi risultati si ottengono nella condizione in cui il segnale ricevuto è corrotto
dal rumore. Per ultimo, si sono analizzati dei particolari sistemi a banda stretta
(narrowband systems), detti parametric underspread linear systems, che introducono
sul segnale in ingresso un numero limitato di traslazioni in tempo e frequenza. Si
sono estesi i risultati trovati in (Bajwa, 2011) al caso di sistemi a più ingressi e singola
uscita. Più precisamente si sono trovate le condizioni su�cienti per l'identi�cazione
e l'implementazione della ricostruzione di sistemi a ingressi multipli.
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Abstract

We consider the problem of identifying three di�erent models of linear time-varying
systems. The identi�cation problem is to reconstruct the system parameters from
an input-output measurement. Furthermore, we are interested in �nding su�cient
conditions that allow identi�cation. Firstly, we consider identi�ability of wideband
systems. To this end, we present a discrete characterization of the continuous model.
In order to the derive that characterization, we use the Mellin transform that pro-
vides a representation of the signal in terms of its scale components. Secondly, we
consider a system, where the output consists of a weighed superposition of time and
frequency shifted versions of the input signal. We assume the system is sparse, in
the sense that it induces only few, however unknown, time and frequency shifts.
Two di�erent recovery approaches are compared using simulations. The approaches
di�er in the probing signal and in the algorithm used for the recovery. For the
�rst approach, the recovery problem is reduced to a multiple measurement vector
problem, for the second to a block-sparse problem. For both problems, adaptations
of a greedy algorithm, namely orthogonal matching pursuit, are used. The numeri-
cal experiments not only demonstrate that the approaches perform di�erently, but
also provide the quantitative improvement of the second approach to the �rst one
in terms of recovery probability. The same results are achieved for the noisy case
when the received signal is corrupted by noise. Finally, we investigate on particu-
lar narrowband systems, called parametric underspread linear systems, that induce
only �nitely many time and frequency shifts on the input signal. We extend the
results found in (Bajwa, 2011), i.e., su�cient conditions for identi�ability and the
implementation, to the multiple input single output case.
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Chapter 1
Introduction

System identi�cation is an important problem in engineering and it has many
practical applications. These include channel identi�cation in wireless communica-
tion or underwater communication, control engineering and radar imaging. In this
thesis we consider the identi�cation of wireless systems.

A wireless channel is usually modeled as a linear time-varying system [1]. The
simpli�ed characterization of a wireless channel is given by the multipath approxima-
tion: the electromagnetic �eld from the transmitter to the receiver is described by
individual waves that travel along speci�c propagation paths and undergo di�erent
e�ects, like di�raction, re�ection and absorption. At every point in space and time,
the individual waves interfere with each other and form the overall electromagnetic
�eld. Furthermore, since the terminals of a wireless system are often mobile and the
objects in the environment move as well, the resulting electromagnetic �eld is also
time-varying [2], i.e., the received signal consists of the superposition of time- and
frequency- shifted versions of the transmitted signal, weighted by a spreading func-
tion sH that characterizes the environment in which the communication takes place.
Under the approximation of in�nite multipath components, the received signal can
be represented as [3]

y(t) =

∫
τ

∫
ν

sH(τ, ν)x(t− τ)ej2πνt dνdτ. (1.1)

This characterization implicitly assumes that signals involved are narrowband. That
is, during the transmission of the signals, the motions in the system are slow com-
pared to the signal propagation speed and the objects in the environment do not
change position relative to the positional resolution of the signal (slowly �uctuating
objects) [4]. Suppose the transmitted signal has duration T and that the object
velocity is v, then the narrowband condition on the signal bandwidth B is given by

2v

c
� 1

TB
(1.2)

where c is the medium propagation speed. In an environment with fast moving
objects or if the signals have large time-bandwidth product, the requirement (1.2)
is violated. In these systems, the delay-Doppler shift approximation (1.1) is not
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1. Introduction

precise and a wideband model is needed to account for the e�ects caused by high
speed motion [6]. In the wideband signal model, the received signal is given by
a superposition of the time shifted and time scaled versions of the input signal,
weighted by a wideband spreading function χH . Letting a the scale parameter, the
input-output relation of a wideband system can be modeled as [6]

y(t) =

∫
a

∫
τ

χH(a, τ)
√
a x(a(t− τ)) dτda. (1.3)

The identi�cation problem, which is depicted in Fig. 1.1, can be stated as de-
termining the parameters of the operator H, which models the channel/system, by
input-output operations on the system response y(t) to a known probing signal x(t).
The crucial point is to select a suitable probing signal and make appropriate compu-
tations on the output in order to recover the parameters that completely characterize
the system H. In particular, in order to recover an operator of the form (1.1), we
need to recover sH ; and to recover an operator of the form (1.3), we need to recover
χH .

x(t)

(known)

H
y(t)

(measured)

Figure 1.1.: Identi�cation problem.

If we consider the particular case of a linear time-invariant system, we have
sH(τ, ν) = h(τ)δ(ν) for narrowband systems and χH(a, τ) = g(τ)δ(a) for wideband
systems, where h(t) and g(t) are the impulse responses of the respective systems.
Since the output of the system to the input probing signal x(t) = δ(t) is exactly
its impulse response, which fully characterizes H, linear time-invariant systems are
always identi�able. The situation is fundamentally di�erent for linear time-variant
systems, where the response to the input x(t) = δ(t) is not equal to the impulse
response and does not allow a complete characterization of the system. We require
then to investigate on some conditions of the operator H, for which identi�cation is
possible. These requirements are often expressed in terms of the spreading functions
support, which in both narrowband and wideband representations is supposed to be
�nite according to some physical limitations. In fact, due to physical restrictions on
the system, time delays, Doppler shifts and scale shifts cannot take any real value
but they are bounded within some ranges. For narrowband systems (1.1) Kailath [7]
found that linear time-varying systems with spreading function sH compactly sup-
ported on a rectangle are identi�able if and only if the spreading function's support
area is not larger than 1. This result is generalized by allowing any shape of the
support region, provided that the total area is not larger than 1 [8].
Analogous results are not yet provided in the case of wideband systems (1.3).

In the �rst part of the thesis, we consider the problem of identifying a wideband
system. Our initial idea was to gain intuition by �rst considering the discrete case of
(1.3). To this end, we try to adopt the proof Kailath [7] did for systems of the form
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(1.1) to wideband systems. In order to discretize (1.3), we assume the input signal is
band- and scale-limited and apply the sampling theorem both in the Fourier and in
the scale domain. In this context the Mellin transform becomes relevant for dealing
with the scale parameter.
Di�culties arose because to apply a similar argument as Kailath did, we would

need a result that speci�es the approximate number of degrees of freedom of a scale
and band limited signal, paralleling the 2WT theorem [9]. Therefore, the problem
remains open.

In the second part of this thesis, we analyze the identi�cation of sparse systems.
Sparsity is an important property which has wide applications in many communi-
cation channels. Practical examples are given by underwater environment, radar
imaging and mobile communication. We consider a discretized version of (1.1) and
assume the spreading function is sparse in a sense made precisely later. As for the
case of wideband systems, some constraints on the input and output signals are
needed in order to use the sampling theorem to derive a discrete representation of
the system. In particular, we consider band limited input signals and assume the
output is observed for a �nite time duration. We focus on the possible procedures
for recovery the samples of the spreading function, starting from the discrete repre-
sentation of (1.1) developed in [15]. This allows to state the identi�cation problem
as solving a linear system of equations, i.e.,

Y = XS (1.4)

where X is the matrix of the known input samples, while Y and S contain, re-
spectively, the samples of the output, measured from the system response, and the
samples of the spreading function to be recovered.
The necessary conditions for identi�ability are connected with the notion of com-

pressive sensing. The central idea is to identify the system, i.e., reconstruct the
spreading function samples in S, assuming S has only a few nonzero entries. In
this case the spreading function is referred to sparse and, as long as the system of
equations (1.4) is underdetermined, it can admit a unique solution.
We analyze and compare two approaches that di�er in the choices of the input

signal and the algorithms used for recovery. The �rst approach allows to formu-
late the problem as a multiple measured vector (MMV) problem [16] where both
Y and S in (1.4) are matrices whose columns constitute single measurements. The
main property of the model is that the collection of sparse vectors share a common
sparse support set, i.e., the positions of the nonzero samples in the columns of S are
unchanged. The second approach is to formulate the recovery as a block-sparse prob-
lem. In this case, the sparse vector of the spreading function has nonzero samples
occurring in clusters, i.e., blocks. The algorithms we use for recovery are adap-
tions of the orthogonal matching pursuit (OMP) algorithm which is the canonical
greedy algorithm for sparse approximation [18]. The simultaneous OMP (S-OMP)
algorithm [19] is used for the �rst approach, while the block-sparse OMP (B-OMP)
algorithm [20] is used for the second approach.
We compare the performances of the approaches in terms of the empirical recovery

probability, for the noiseless case, and of the root mean square error, for the noisy
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1. Introduction

case. The main result is that the �rst approach is superior to the second one,
especially when the number of the samples of the discrete spreading function is
large, i.e., the approximation of the continuous spreading function to be recovered
is more precise.

As the third part of this thesis, we study the identi�cation of a particular multiple
input narrowband system, supposing always the communication channel is sparse.
An interesting question on system identi�cation is whether the spreading function
can be identi�ed when dealing with multiple input multiple output (MIMO) systems.
In this situation, each output can be represented as a superposition of the responses
of di�erent subsystems applied to each input. Given that the spreading functions of
the subchannels are independent, to characterize the identi�ability of MIMO systems
we can without loss of generality consider multiple input single output (MISO)
systems. We consider the extension to multiple inputs of a particular narrowband
system, called parametric underspread linear system (ULS) [23], whose spreading
function is described by a �nite set of delays and Doppler-shifts, as expressed in the
following. The input-output relation is given by

y(t) =

∫
τ

∫
ν

∑
i

s̃Hi(τ, ν)xi(t− τ)ej2πνtdνdτ (1.5)

where the spreading function s̃Hi of the i-th subchannel is given by

s̃Hi(τ, ν) =

Ki∑
k=1

αi,kδ(τ − τi,k)δ(ν − νi,k). (1.6)

In (1.6) the parameters αi,k, τi,k and νi,k represent the attenuation factor, the time
delay and the Doppler-shift,respectively, associated with the i-th subchannel, while
Ki is the number of delay-Doppler pairs involved in s̃Hi . The crucial di�erence to
the model considered in the second part of this thesis is that, in order to identify the
system, we need to specify all the parameters above, for every subsystem s̃Hi . The
condition for identi�ability of a MIMO channel is provided in [21], given that the
supports of the subsystems are known and in [15] given the support is unknown. The
spreading functions s̃Hi in (1.6) are identi�able if and only if the sum of the areas
of the support regions of s̃Hi is not larger than 1. We generalize the results of [22]
and [23] for SISO systems to MISO systems. In particular, with some adjustments
we adopt the multiple inputs problem to a single input problem, applying then the
same recovery procedure.

We derive su�cient conditions on the bandwidth and temporal support of the
equivalent input signal that ensure identi�cation of the parametric ULS in (1.5) and
(1.6). It can be shown that the system is identi�able as long as the time-bandwidth
product of the input signal is proportional to the total number of the delay-Doppler
pairs in the entire system. The recovery procedure is based on the ESPRIT algorithm
([22] and [24]) for the time delay estimation. The recovery of the frequencies and of
the attenuation factors follows directly from the delay recovery and concludes the
identi�cation problem.
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The organization of the thesis is as follows. In Chapter 1 we analyze the identi-
�cation of the wideband system, using the Mellin transform and the corresponding
sampling theorem, and we derive the equivalent discrete characterization of the
continuous channel. In Chapter 2 we study the identi�cation of sparse systems
and compare empirically the performances of two di�erent recovery approaches. In
Chapter 3 we extend the identi�cation of the parametric underspread linear sys-
tem to a multiple input single output system and derive su�cient conditions for
identi�cation.

Notations.
Lowercase boldface letters stand for column vectors and uppercase letters designate
matrices. For the matrix A we write its transpose, complex conjugate, Hermitian
(complex conjugate of the transpose) and Penrose pseudo-inverse by AT , A∗, AH

and A†, respectively. The entry in the kth row and lth column of A is denoted by
[A]k,l. For the vector a, the kth element is written [a]k and its Euclidean norm is
denoted by ‖a‖2. Finally, for two functions x(t) and y(t) de�ned for t ∈ R, we write
〈x(t), y(t)〉 M

=
∫ +∞
−∞ x(t)y∗(t)dt for the inner product between x(t) and y(t).
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Chapter 2
Identi�cation of Wideband Time-Varying

Systems

In the �rst part of this chapter (Section 2.1) we introduce the Mellin transform,
which will be useful to obtain a discrete characterization of wideband time-varying
systems. The Mellin transform can be seen as an equivalent representation of the
signal in the scale domain as well as the Fourier transform provides the spectral
representation in the frequency domain. We also discuss a sampling theorem which
enables the exact reconstruction of a scale limited signal from its samples in the
time domain.
In the second part of the chapter (Sections 2.2 - 2.4) we derive the discrete char-

acterization of a wideband channel, using the sampling theorems both in frequency
and scale domains.
We conclude the chapter (Section 2.5) making some remarks about the scale op-

erator and deriving the uncertainty principle for frequency and scale domains.

2.1. Mellin Transform and its Sampling Theorem

All the material in this section can be found in [12].
The Mellin transformMf (β) of a function f(t), whose support in time domain is

(0,+∞), is de�ned [12] as

Mf (β) =

∫ +∞

0

1√
t
f(t)e+j2πβ ln tdt (2.1)

If f(t) is de�ned also on (−∞, 0), the positive and negative parts have to be treated
separately.
The inverse Mellin transform is de�ned as

f(t) =

∫ +∞

−∞

1√
t
Mf (β)e−j2πβ ln tdβ (2.2)

The properties of the Mellin transform, together with its derivation, are exten-
sively studied by Cohen in [11]. We report here two important properties that are
useful for the future analysis.

7



2. Identi�cation of Wideband Time-Varying Systems

1. Scale invariance. Indicating with Mf (β) the Mellin transform of f(t), then
the Mellin transform of f0(t) =

√
c0f(c0t) is given by

Mf0(β) = e−j2πβ ln c0Mf (β) (2.3)

Proof. Applying the de�nition in (2.1) on f0(t),

Mf0(β) =

∫ +∞

0

1√
t

√
c0f(c0t)e

+j2πβ ln tdt(
u = c0t⇒ dt =

du

c0

)
=

∫ +∞

0

c0√
u
f(u)e

+j2πβ ln u
c0
du

c0

= e−j2πβ ln c0

∫ +∞

0

1√
u
f(u)e+j2πβ lnudu

= e−j2πβ ln c0Mf (β)

Note thatMf (β) andMf0(β) have same supports.

2. Multiplicative convolution. Indicating with Mf1(β) and Mf2(β) the Mellin
transforms of f1(t) and f2(t) respectively, then the Mellin transform of the
multiplicative convolution of f1(t) and f2(t), given by

f1 ~ f2(t) =

∫ +∞

0

f1(tt′)f ∗2 (t′)dt′ (2.4)

is simplyMf1(β)M∗
f2

(β).

Proof. Applying the de�nition in (2.1) on f(t) = f1 ~ f2(t),

Mf (β) =

∫ +∞

0

1√
t

∫ +∞

0

f1(tt′)f ∗2 (t′)dt′e+j2πβ ln tdt(
u = tt′ ⇒ dt =

du

t′

)
=

∫ +∞

0

∫ +∞

0

√
t′

u
f1(u)f ∗2 (t′)e+j2πβ ln u

t′ dt′
du

t′

=

∫ +∞

0

1√
u
f1(u)e+j2πβ lnudu

∫ +∞

0

1√
t′
f ∗2 (t′)e−j2πβ ln t′dt′

= Mf1(β)M∗
f2

(β)

In the same way as the Fourier transformation is used to reconstruct a band
limited function from its uniformly spaced samples, the Mellin transform can be
used to recover a scale limited function from its samples, exponentially spaced in
the time domain. A function f(t) is said to be scale limited to scale β0 if the support
of its Mellin transform Mf (β) is [−β0, β0]. The scale support width is indicated
with B, B = 2β0.
We follow the same procedure reported in [12] to state and prove the following

theorem. See [13] for a more exhaustive analysis.
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2.1. Mellin Transform and its Sampling Theorem

Theorem 1. Sampling Theorem. A function f(t) ∈ L2(R), scale limited to
β0, can be exactly reconstructed from its samples in time domain if the samples
are exponentially spaced along the time axis, i.e. from {f(τn)}+∞

n=−∞, where τ =

e1/B and B = 2β0.

Proof. Consider a signal f(t), whose Mellin transformMf (β) is scale limited to β0,
and indicate with B = 2β0 the scale support width of Mf (β). Due to the Fourier
series representation, for β ∈ [−β0, β0] Mf (β) can be expressed as

Mf (β) =
+∞∑

m=−∞

ame
j2πm

B
β (2.5)

where am are the coe�cients of the series expansion

am =
1

B

∫ β0

−β0
Mf (β)e−j2π

m
B
βdβ , m ∈ Z (2.6)

Indicating with τ = e1/B = e1/(2β0), the coe�cients am in (2.6) are given by

am = ln τ

∫ β0

−β0
Mf (β)e−j2πβm ln τdβ = ln τ

∫ β0

−β0
Mf (β)e−j2πβ ln τmdβ , m ∈ Z (2.7)

The function f(t) can be expressed as the inverse Mellin transform ofMf (β) and,
using that f(t) is scale limited, (2.2) becomes

f(t) =

∫ β0

−β0

1√
t
Mf (β)e−j2πβ ln tdβ (2.8)

For t = τm, (2.8) becomes

f(τm) =

∫ β0

−β0

1√
τm
Mf (β)e−j2πβ ln τmdβ (2.9)

Comparing (2.7) and (2.9), the relation between the coe�cients am and the function
f(t) is

am = ln τ
√
τmf(τm) , m ∈ Z (2.10)

Now, starting from (2.8) and substitutingMf (β) from the Fourier series represen-

9



2. Identi�cation of Wideband Time-Varying Systems

tation in (2.5) with m
B

= ln τm yields

f(t) =

∫ β0

−β0

1√
t
Mf (β)e−j2πβ ln tdβ

=

∫ β0

−β0

1√
t

+∞∑
m=−∞

ame
j2πβ ln τme−j2πβ ln tdβ

=
1√
t

+∞∑
m=−∞

am

∫ β0

−β0
e−j2πβ ln (τ−mt)dβ

=
1√
t

+∞∑
m=−∞

am
1

j2π ln (τ−mt)

[
ej2πβ0 ln (τ−mt) − e−j2πβ0 ln (τ−mt)

]
=

1√
t

+∞∑
m=−∞

am
sin[π(2β0) ln(τ−mt)]

π ln(τ−mt)

=
1√
t

+∞∑
m=−∞

am
sin[πB ln(τ−mt)]

π ln(τ−mt)

Finally, substituting am from (2.10),

f(t) =
1√
t

+∞∑
m=−∞

ln τ
√
τmf(τm)

sin[πB ln(τ−mt)]

π ln(τ−mt)
(2.11)

= ln τ
+∞∑

m=−∞

f(τm)
sin[πB ln(τ−mt)]

π
√
τ−mt ln(τ−mt)

(2.12)

= ln τ
+∞∑

m=−∞

f(τm)γ(τ−mt) (2.13)

where the function γ(t) is de�ned as

γ(t) =
sin[πB ln t]

π
√
t ln t

=
B√
t

sinc(B ln t) (2.14)

with the sinc function de�ned as

sinc t =
sin(πt)

πt

For the sake of completeness, note that the Mellin transform of γ(t) is exactly the
rectangular function with support [−β0, β0], similarly to the Fourier case. Applying
the de�nition in (2.1) on γ(t),

10



2.2. Input-Output Relation of a Wideband Time-Varying System

Mγ(β) =

∫ +∞

0

1√
t
γ(t)e+j2πβ ln tdt

=

∫ +∞

0

B

t
sinc(B ln t)e+j2πβ ln tdt

(u = ln t⇒ dt = tdu) =

∫ +∞

−∞
B sinc(Bu)e+j2πβudu

= F−1[B sinc(Bu)]

= rect

(
β

B

)
=

= rect

(
β

2β0

)
=

{
1 if |β| ≤ β0

0 elsewhere
(2.15)

where F−1 denotes the inverse Fourier transform and the rect function is de�ned as

rect t =

{
1 if |t| ≤ 1

2

0 elsewhere

2.2. Input-Output Relation of a Wideband

Time-Varying System

In a wideband time-varying system, the received signal y(t) is composed of a
superposition of di�erent versions of the transmitted signal x(t), time shifted and
Doppler scaled ([5] and [6]), whose input-output relation is given by

y(t) =

∫ +∞

0

∫ +∞

−∞
χ(τ, a)

√
ax(a(t− τ))dτda. (2.16)

The propagation delay τ is due to di�erent scattering multipath lengths from
transmitter to receiver and the time scale parameter a is due to relative motion
of transmitter, scatters and receiver (Doppler e�ect). The scale parameter a can
correspond either to a time expansion, if 0 < a < 1, or to a time compression, if
a > 1, depending on whether the scatter is moving away from the receiver or is
approaching it. The wideband spreading function χ(τ, a) represents the strength of
the scatterers.

Due to physical limitations of the system, the support of the spreading function is
assumed to be �nite. χ(τ, a) can be considered e�ectively nonzero only for (τ, a) ∈
[0, Td] × [Al, Au], where Td is the multipath delay spread and As = Au − Al is the
Doppler scale spread. According with this assumption, the input-output relation in
(2.16) becomes

y(t) =

∫ Au

Al

∫ Td

0

χ(τ, a)
√
ax(a(t− τ))dτda. (2.17)

11



2. Identi�cation of Wideband Time-Varying Systems

2.3. Discrete Time-Scale Characterization

We follow the analysis presented in [10], to express (2.16) according to a corre-
sponding discrete representation. The assumptions for the discrete time-scale model
are presented here.

1. The Fourier transform X(f) of the transmitted signal x(t) has bounded sup-
port within f ∈ [−W/2,W/2].

2. The Mellin transformMx(β) of x(t) is band limited within β ∈ [−β0/2, β0/2].

These conditions could violate the uncertainty principle, particularly if the product
of the scale support width and the bandwidth is small (see Section 2.5, Theorem
3). The analysis of the time-scale model is related only to the classes of input and
output signals, for which the uncertainty principle is (approximately) valid.
Due to the assumptions above, it is reasonable to use the sampling theorems in

the Fourier and in the Mellin domain (see Section 2.1), and consider the spreading
function χ(τ, a), sampled both in time delay τ and in Doppler scale a.
Starting from the input-output relation (2.16) and using assumptions 1 and 2

above, a discrete time-scale characterization is derived as follows.

Function θ(τ, t) is de�ned as

θ(τ, t)
M
= χ∗(τ, t)

√
t. (2.18)

Indicating withMθ(τ, β) the Mellin transform of θ(τ, t) with respect to t,M∗
θ(τ, β)

is given by

M∗
θ(τ, β) =

∫ +∞

0

1√
t
θ∗(τ, t)e−j2πβ ln tdt

=

∫ +∞

0

1√
t
χ(τ, t)

√
te−j2πβ ln tdt

=

∫ +∞

0

χ(τ, t)e−j2πβ ln tdt. (2.19)

Using the de�nition (2.18), χ(τ, t) = θ∗(τ, t)/
√
t. Substituting this expression into

(2.16), the input-output relation can be expressed as

y(t) =

∫ +∞

0

∫ +∞

−∞
χ(τ, a)

√
ax(a(t− τ))dτda

=

∫ +∞

0

∫ +∞

−∞
θ∗(τ, a)

1√
a

√
ax(a(t− τ))dτda

=

∫ +∞

−∞

∫ +∞

0

x(a(t− τ))θ∗(τ, a)dadτ

(de�nition (2.4)) =

∫ +∞

−∞
(x~ θ(τ, ·))(t− τ)dτ . (2.20)

12



2.3. Discrete Time-Scale Characterization

Now, applying the inverse Mellin transform (2.2) on function (x ~ θ(τ, ·))(t − τ)
and using the multiplicative convolution property, the input-output relation (2.20)
becomes

y(t) =

∫ +∞

−∞

∫ +∞

−∞

1√
t− τ

Mx(β)M∗
θ(τ, β)e−j2πβ ln (t−τ)dβdτ . (2.21)

Assuming that the support of the Mellin transform of x(t) is bounded to [−β0/2, β0/2],
Mx(β) can be replaced withMx(β)Pβ0(β), where

Pβ0(β) = rect

(
β

β0

)
=

{
1 if |β| ≤ β0

2

0 elsewhere
(2.22)

After this replacement,Mf (τ, β) =M∗
θ(τ, β)Pβ0(β) is a scale limited Mellin trans-

form within [−β0/2, β0/2]. Its inverse Mellin transform f(τ, a) is, by de�nition (2.2),

f(τ, a) =

∫ +∞

−∞

1√
a
M∗

θ(τ, β)Pβ0(β)e−j2πβ ln adβ (2.23)

and, according to the sampling theorem in scale domain (section 2.1, theorem 1), can
be exactly reconstructed from its exponentially spaced samples, {f(τ, em/B)}+∞

m=−∞,
with B = β0. Substituting the de�nitions (2.19) and (2.22) into (2.23) yields

f(τ, a) =

∫ β0
2

−β0
2

1√
a

∫ +∞

0

χ(τ, t)e−j2πβ ln tdt e−j2πβ ln adβ

=

∫ +∞

0

1√
a
χ(τ, t)

∫ β0
2

−β0
2

e−j2πβ ln(ta)dβdt

=

∫ +∞

0

1√
a
χ(τ, t)β0 sinc(β0 ln(ta))dt. (2.24)

From (2.24), the exponentially spaced samples of f(τ, a), with a = em/β0 , m ∈ Z,
are given by

f(τ, em/β0) =

∫ +∞

0

1√
em/β0

χ(τ, t)β0 sinc
(
β0 ln

(
tem/β0

))
dt

=

∫ +∞

0

1√
em/β0

χ(τ, t)β0 sinc (m+ β0 ln t)dt , m ∈ Z. (2.25)

According to the �nal result (2.12) of the sampling theorem in scale domain and
using the samples in (2.25), function f(τ, a) in (2.24) can be expressed as

f(τ, a) = ln(e1/β0)
+∞∑

m=−∞

f(τ, em/β0)
sin
(
πβ0 ln(ae−m/β0)

)
π
√
ae−m/β0 ln(ae−m/β0)

=
1

β0

+∞∑
m=−∞

∫ +∞

0

1√
em/β0

χ(τ, t)β0 sinc (m+ β0 ln t)dt β0

sinc
(
β0 ln(ae−m/β0)

)
√
ae−m/β0

=
+∞∑

m=−∞

∫ +∞

0

χ(τ, t) sinc(m+ β0 ln t)dt
1√
a

sinc
(
β0 ln(ae−m/β0)

)
. (2.26)

13



2. Identi�cation of Wideband Time-Varying Systems

Finally, using the de�nition of the Mellin transform (2.1) on f(τ, a) in (2.26), with
respect to a,Mf (τ, β) =M∗

θ(τ, β)Pβ0(β) becomes

M∗
θ(τ, β)Pβ0(β) =

∫ +∞

0

1√
a
f(τ, a)ej2πβ ln ada

=
+∞∑

m=−∞

∫ +∞

0

χ(τ, t) sinc(m+ β0 ln t)dt

×
∫ +∞

0

1

a
β0 sinc

(
β0 ln(ae−m/β0)

)
ej2πβ ln ada. (2.27)

Using the de�nition (2.14) of γ(t) (with B = β0 in this case) on the last integral in
(2.27),

M∗
θ(τ, β)Pβ0(β) =

+∞∑
m=−∞

∫ +∞

0

χ(τ, t) sinc(m+ β0 ln t)dt

×
∫ +∞

0

1√
a

√
e−m/β0

β0√
ae−m/β0

sinc
(
β0 ln(ae−m/β0)

)
ej2πβ ln ada

=
+∞∑

m=−∞

∫ +∞

0

χ(τ, t) sinc(m+ β0 ln t)dt

×
∫ +∞

0

1√
a

(√
e−m/β0γ(ae−m/β0)

)
ej2πβ ln ada. (2.28)

Using the expression of the Mellin transformMγ(β) in (2.15) and the scale invariance
property (2.3) on the last integral in (2.28),

M∗
θ(τ, β)Pβ0(β) =

+∞∑
m=−∞

∫ +∞

0

χ(τ, t) sinc(m+ β0 ln t)dt e−j2πβ ln e−m/β0 rect

(
β

β0

)

=
+∞∑

m=−∞

∫ +∞

0

χ(τ, t) sinc(m+ β0 ln t)dt ej2πmβ/β0 rect

(
β

β0

)
(

1

β0

= ln a0

)
=

+∞∑
m=−∞

∫ +∞

0

χ(τ, t) sinc

(
m+

ln t

ln a0

)
dt ej2πmβ ln a0 rect

(
β

β0

)
.

(2.29)

From (2.29), with a sign change of variablem, the �nal expression ofM∗
θ(τ, β)Pβ0(β)

is given by

M∗
θ(τ, β)Pβ0(β) =

+∞∑
m=−∞

∫ +∞

0

χ(τ, a) sinc

(
m− ln a

ln a0

)
da e−j2πmβ ln a0 rect

(
β

β0

)
.

(2.30)
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2.3. Discrete Time-Scale Characterization

Substituting (2.30) into (2.21), the input-output relation becomes

y(t) =
+∞∑

m=−∞

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
χ(τ, a) sinc

(
m− ln a

ln a0

)
× 1√

t− τ
Mx(β)e−j2πβ ln (am0 (t−τ))dβdadτ

=
+∞∑

m=−∞

∫ +∞

−∞

∫ +∞

0

χ(τ, a) sinc

(
m− ln a

ln a0

)
×
√
am0

∫ +∞

−∞

1√
am0 (t− τ)

Mx(β)e−j2πβ ln (am0 (t−τ))dβdadτ.

Applying the inverse Mellin transform (2.2) in the last integral,

y(t) =
+∞∑

m=−∞

∫ +∞

−∞

∫ +∞

0

χ(τ, a) sinc

(
m− ln a

ln a0

)√
am0 x(am0 (t− τ))dadτ

=
+∞∑

m=−∞

∫ +∞

−∞

∫ +∞

0

χ(τ, a) sinc

(
ln am0 − ln a

ln a0

)
da a

m
2

0 x(am0 (t− τ))dτ

=
+∞∑

m=−∞

∫ +∞

−∞
χ̃(τ, am0 )a

m
2

0 x(am0 (t− τ))dτ (2.31)

where function χ̃(τ, a) is a scale-smoothed version of the spreading function χ(τ, a)

χ̃(τ, a) =

∫ +∞

0

χ(τ, a′) sinc

(
ln a− ln a′

ln a0

)
da′. (2.32)

The �nal discrete time-scale model results from (2.31), using a similar procedure
as before but based on the Fourier transform, which is detailed as follows.

The integral in (2.31) is the convolution of the functions χ̃(τ, am0 ) and a
m
2

0 x(am0 τ).
Applying the de�nition of the inverse Fourier transform and using the convolution
property of the Fourier transform, the input-output relation in (2.31) becomes

y(t) =
+∞∑

m=−∞

(
χ̃(τ, ·) ∗ a

m
2

0 x(am0 τ)
)

(t)

=
+∞∑

m=−∞

∫ +∞

−∞
Ũ(f, am0 )a

−m
2

0 X(a−m0 f)ej2πftdf (2.33)

where Ũ(f, a) is the Fourier transform of χ̃(τ, a), with respect to τ , and X(f) is

the Fourier transform of x(τ). Note that a
−m

2
0 X(a−m0 f) is the Fourier transform of

a
m
2

0 x(am0 τ).
Assuming that the support of the Fourier transform X(f) is band limited to

[−W/2,W/2], then the Fourier transform a
−m

2
0 X(a−m0 f) is band limited to the range
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2. Identi�cation of Wideband Time-Varying Systems

[−am0 W/2, am0 W/2] and can be replaced with a
−m

2
0 X(a−m0 f)Pam0 W (f), where

Pam0 W (f) = rect

(
f

am0 W

)
=

{
1 if |f | ≤ am0 W

2

0 elsewhere
(2.34)

After this replacement, G(f, am0 ) = Ũ(f, a)Pam0 W (f) is a band limited Fourier
transform. Its inverse Fourier transform is

g(t, am0 ) =

∫ +∞

−∞
Ũ(f, a)Pam0 W (f)ej2πftdf (2.35)

and, according to the sampling theorem in Fourier domain, can be exactly recon-
structed from its uniformly spaced samples, {g(n/(am0 W ), am0 )}+∞

n=−∞. Substituting
the de�nitions of Ũ(f, a) and Pam0 W (f) into (2.35) yields

g(t, am0 ) =

∫ am0
W
2

−am0
W
2

∫ +∞

−∞
χ̃(τ ′, am0 )e−j2πτ

′fdτ ′ej2πftdf

=

∫ +∞

−∞
χ̃(τ ′, am0 )

∫ am0
W
2

−am0
W
2

e−j2π(τ ′−t)fdfdτ ′

=

∫ +∞

−∞
χ̃(τ ′, am0 )am0 W sinc(am0 W (τ ′ − t))dτ ′. (2.36)

From (2.36), the uniformly spaced samples of g(t, am0 ) are given by

g

(
n

am0 W
, am0

)
=

∫ +∞

−∞
χ̃(τ ′, am0 )am0 W sinc

(
am0 W

(
τ ′ − n

am0 W

))
dτ ′

=

∫ +∞

−∞
χ̃(τ ′, am0 )am0 W sinc(n− am0 Wτ ′)dτ ′ , n ∈ Z. (2.37)

According to the sampling theorem in Fourier domain, function g(t, am0 ) can be
expressed as

g(t, am0 ) =
+∞∑

n=−∞

g

(
n

am0 W
, am0

)
sinc

(
am0 W

(
t− n

am0 W

))

=
+∞∑

n=−∞

∫ +∞

−∞
χ̃(τ ′, am0 )am0 W sinc(n− am0 Wτ ′)dτ ′

× sinc

(
am0 W

(
t− n

am0 W

))
. (2.38)
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2.3. Discrete Time-Scale Characterization

Finally, applying the Fourier transform in (2.38), with respect to t, G(f, am0 ) =
Ũ(f, a)Pam0 W (f) becomes

Ũ(f, a)Pam0 W (f) =

∫ +∞

−∞
g(t, am0 )e−j2πftdt

=
+∞∑

n=−∞

∫ +∞

−∞
χ̃(τ ′, am0 ) sinc(n− am0 Wτ ′)dτ ′

×
∫ +∞

−∞
am0 W sinc

(
am0 W

(
t− n

am0 W

))
e−j2πftdt

=
+∞∑

n=−∞

∫ +∞

−∞
χ̃(τ ′, am0 ) sinc(n− am0 Wτ ′)dτ ′

× e
−j2π nf

am0 W rect

(
f

am0 W

)
. (2.39)

Substituting (2.39) into (2.33), the input-output relation becomes

y(t) =
+∞∑

m=−∞

+∞∑
n=−∞

∫ +∞

−∞

∫ +∞

−∞
χ̃(τ ′, am0 ) sinc(n− am0 Wτ ′)dτ ′

× e
−j2π nf

am0 W a
−m

2
0 X(a−m0 f)ej2πftdf

=
+∞∑

m=−∞

+∞∑
n=−∞

∫ +∞

−∞
χ̃(τ ′, am0 ) sinc(n− am0 Wτ ′)dτ ′

×
∫ +∞

−∞
a
−m

2
0 X(a−m0 f)e

j2πf

(
t− n

am0 W

)
df

=
+∞∑

m=−∞

+∞∑
n=−∞

∫ +∞

−∞
χ̃(τ ′, am0 ) sinc(n− am0 Wτ ′)dτ ′a

m
2

0 x
(
am0 t−

n

W

)
(substituting the expression of χ̃(τ ′, am0 ) from (2.32))

=
+∞∑

m=−∞

+∞∑
n=−∞

∫ +∞

0

∫ +∞

−∞
χ(τ, a′) sinc

(
ln a− ln a′

ln a0

)
sinc(n− am0 Wτ ′)dτ ′da′

× a
m
2

0 x
(
am0 t−

n

W

)
=

+∞∑
m=−∞

+∞∑
n=−∞

χ̂

(
n

am0 W
, am0

)
a
m
2

0 x
(
am0 t−

n

W

)
(2.40)

where χ̂(τ, am0 ) is a time-smoothed version of χ̃(τ, am0 )

χ̂(τ, am0 ) =

∫ +∞

−∞
χ̃(τ ′, am0 ) sinc(am0 W (τ − τ ′))dτ ′. (2.41)

This result is summarized in the following theorem.
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2. Identi�cation of Wideband Time-Varying Systems

Theorem 2. In a wideband time-varying system, if the transmitted signal x(t)
is band limited and scale limited, i.e. its Fourier transform X(f) ≡ 0 if f /∈
[−W/2,W/2] and its Mellin transform Mx(β) ≡ 0 if β /∈ [−β0/2, β0/2], the
received signal y(t) is decomposed into discrete time shifts and Doppler scalings
on the input signal x(t), weighted by a smoothed and sampled version of the
wideband spreading function.

y(t) =
+∞∑

m=−∞

+∞∑
n=−∞

χ̂

(
n

am0 W
, am0

)
a
m
2

0 x
(
am0 t−

n

W

)
(2.42)

where

χ̂(τ, am0 ) =

∫ +∞

0

∫ +∞

−∞
χ(τ ′, a′) sinc

(
ln a− ln a′

ln a0

)
sinc(am0 W (τ − τ ′))dτ ′da′

(2.43)

The relation (2.43) is obtained combining (2.32) and (2.41).

2.4. Finite Approximation

Both summations in (2.42) involve in�nitely many terms. However, due to the
physical system restrictions described in section 2.2, the support of spreading func-
tion χ(τ, a) is bounded in both time and scale domains, as expressed in (2.17).
Speci�cally, if χ(τ, a) is nonzero only when Al ≤ a ≤ Au, than χ̃(τ, am0 ) de�ned in
(2.32) can be expressed as

χ̃(τ, am0 ) =

∫ Au

Al

χ(τ, a′) sinc

(
ln am0 − ln a′

ln a0

)
da′

(γ = ln a′ ⇒ da′ = eγdγ) =

∫ lnAu

lnAl

χ(τ, eγ) sinc

(
ln am0 − γ

ln a0

)
eγdγ

=

∫ lnAu

lnAl

χ(τ, eγ) sinc

(
m− γ

ln a0

)
eγdγ. (2.44)

Considering the approximation that the sinc function in (2.44) is nonzero only in
the mainlobe, values of m corresponding to nonzero coe�cients of χ̃(τ, am0 ) are

−1 ≤ m− γ

ln a0

≤ 1

γ

ln a0

− 1 ≤ m ≤ γ

ln a0

+ 1 (2.45)

From the integral in (2.44), substituting maximum and minimum values of γ, the
condition (2.45) becomes

lnAl
ln a0

− 1 ≤ m ≤ lnAu
ln a0

+ 1
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2.4. Finite Approximation

or, since m assumes only integer values,⌊
lnAl
ln a0

⌋
≤ m ≤

⌈
lnAu
ln a0

⌉
(2.46)

Similarly, if χ(τ, a) is nonzero only when 0 ≤ τ ≤ Td, than χ̂(n/(am0 W ), am0 ) de�ned
in (2.41) can be expressed as

χ̂

(
n

am0 W
, am0

)
=

∫ Td

0

χ̃(τ ′, am0 ) sinc(n− am0 Wτ ′)dτ ′. (2.47)

Applying in (2.47) the sinc approximation as before, values of n corresponding to
nonzero coe�cients of χ̂(n/(am0 W ), am0 ) are

−1 ≤ n− am0 Wτ ′ ≤ 1

am0 Wτ ′ − 1 ≤ n ≤ am0 Wτ ′ + 1 (2.48)

From the integral in (2.47), substituting maximum and minimum values of τ ′ in
(2.48), it results that

−1 ≤ n ≤ am0 WTd + 1

or, approximately,
0 ≤ n ≤ dam0 WTde (2.49)

Combining the approximations (2.46) and (2.49) due to the limited system sup-
port, the input-output relation in (2.16) admits the following �nite-dimensional rep-
resentation

y(t) ≈
M1∑

m=M0

N(m)∑
n=0

χn,mxn,m(t) (2.50)

where M0 = blnAl/ ln a0c, M1 = dlnAu/ ln a0e, N(m) = dam0 WTde,

χn,m = χ̂

(
n

am0 W
, am0

)
(2.51)

and xn,m(t), a time shifted and scaled version of x(t),

xn,m(t) = a
m
2

0 x
(
am0 t−

n

W

)
. (2.52)

The number of nonzero coe�cients in (2.50) are given by

M =

M1∑
m=M0

(N(m) + 1)

= (M1 −M0 + 1) +

M1∑
m=M0

N(m)

= (M1 −M0 + 1) +

M1∑
m=M0

dam0 WTde (2.53)
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2. Identi�cation of Wideband Time-Varying Systems

or, without considering the ceil function in the right hand side of (2.53),

M ≈ (M1 −M0 + 1) +

M1∑
m=M0

am0 WTd

= (M1 −M0 + 1) +WTd

M1∑
m=M0

am0

= (M1 −M0 + 1) +WTd
aM1+1

0 − aM0
0

a0 − 1
(2.54)

From (2.54), approximating M0 = lnAl/ ln a0 and M1 = lnAu/ ln a0

M ≈
(

lnAu
ln a0

− lnAl
ln a0

+ 1

)
+WTd

a
lnAu
ln a0

+1

0 − a
lnAl
ln a0
0

a0 − 1

(change of base formula) =

(
ln Au

Al

ln a0

+ 1

)
+WTd

a0Au − Al
a0 − 1

=

(
ln Au

Al

ln a0

+ 1

)
+WTdAl

a0
Au
Al
− 1

a0 − 1
(2.55)

2.5. Uncertainty Principle for Frequency and Scale

Operators

In this section we express the constraints intrinsically related to a signal with
bounded Fourier and Mellin transforms, since our discrete model in section 2.3 is
based on these assumptions. At �rst we state the uncertainty principle for two
arbitrary operators, as given in [11] and [14], and then derive the results for frequency
and scale operators.

Some important notions are provided as a preliminary to the uncertainty principle.
For a physical quantity a, there is always an operator A associated to. For two

physical quantities a and b, with operators A and B, the operator AB means to
operate �rst with B and then with A.
The commutator of two operators A and B is an operator de�ned as

[A,B]
M
= AB−BA. (2.56)

If [A,B] = 0 or, equivalently, if AB = BA, the two operators commute.
The anticommutator is de�ned as

[A,B]+
M
= AB + BA. (2.57)

There is an uncertainty principle for any two quantities which are represented by
operators which do not commute.
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2.5. Uncertainty Principle for Frequency and Scale Operators

Given a signal f(a) with unitary energy, i.e.
∫
|f(a)|2da = 1, the average or mean

of a is

〈a〉 =

∫
a|f(a)|2da. (2.58)

In the above de�nition, function |f(a)|2 can be considered as the density function
of a. The variance σ2

a of a is de�ned as the average of (a− 〈a〉)2

σ2
a =

∫
(a− 〈a〉)2|f(a)|2da

=

∫
a2|f(a)|2da+

∫
〈a〉2|f(a)|2da− 2

∫
a〈a〉|f(a)|2da

= 〈a2〉+ 〈a〉2 − 2〈a〉2

= 〈a2〉 − 〈a〉2. (2.59)

The standard deviation σa is de�ned as the square root of the variance.
Suppose to represent signal f(a) in a di�erent domain, through an unitary trans-

formation that associates to f(a) a new signal s(t). Then, the operator A is associ-
ated to the variable a if the following relation is satis�ed

〈A〉 M
=

∫
s∗(t)As(t)dt = 〈a〉. (2.60)

Depending on the signal s(t) and on the domain where it is de�ned, the same
operator A can be expressed in di�erent forms, as it will be clari�ed later for time
and frequency operators.
The operator A associated to a is used in (2.60) to express the mean 〈a〉 in

(2.58), but it can also be used to express the variance σ2
a in (2.59) as the average of

(A− 〈A〉)2, according to

σ2
a =

∫
s∗(t)(A− 〈A〉)2s(t)dt

=

∫
s∗(t)A2s(t)dt+

∫
s∗(t)〈A〉2s(t)dt− 2

∫
s∗(t)A〈A〉s(t)dt

= 〈A2〉+ 〈A〉2 − 2〈A〉2

= 〈A2〉 − 〈A〉2. (2.61)

Given two operators A and B, associated to the variables a and b respectively,
then the covariance Covab between a and b is de�ned as

Covab =
1

2
〈AB + BA〉 − 〈A〉〈B〉

=
1

2
〈[A,B]+〉 − 〈A〉〈B〉. (2.62)

An operator A is Hermitian if for any pair of functions f(t) and g(t)∫
f ∗(t)Ag(t)dt =

∫
g(t){Af(t)}∗dt. (2.63)

If the operator A is Hermitian, then the following properties hold.
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2. Identi�cation of Wideband Time-Varying Systems

1. The mean 〈A〉 is real, as

〈A〉 =

∫
s∗(t)As(t)dt

(Hermitian def. (2.63)) =

∫
s(t){As(t)}∗dt

=

{∫
s∗(t)As(t)dt

}∗
= 〈A〉∗ (2.64)

2. The operator A− 〈A〉 is also Hermitian, as∫
f ∗(t)(A− 〈A〉)g(t)dt =

∫
[f ∗(t)Ag(t)− f ∗(t)〈A〉g(t)] dt

((2.64) and Hermitian def. (2.63)) =

∫
[g(t){Af(t)}∗ − f ∗(t)〈A〉∗g(t)] dt

=

∫
[g(t){Af(t)}∗ − g(t){〈A〉f(t)}∗] dt

=

∫
g(t){(A− 〈A〉)f(t)}∗dt (2.65)

3. The mean of the operator A2 is

〈A2〉 =

∫
s∗(t)A2s(t)dt =

∫
|As(t)|2dt (2.66)

〈A2〉 =

∫
s∗(t)A(As(t))dt

(Hermitian def. (2.63) on s(t) and As(t)) =

∫
As(t){As(t)}∗dt

=

∫
|As(t)|2dt

The adjoint A† of an operator A is another operator for which the following
equality holds ∫

f ∗(t)Ag(t)dt =

∫
g(t){A†f(t)}∗dt. (2.67)

If A† = A, then condition (2.67) becomes the de�nition of a Hermitian operator,
and A is called self adjoint operator. The adjoint of a product of operators is given
by

(AB)† = B†A†. (2.68)

For an arbitrary operator A, the following decomposition in Hermitian operators
holds

A =
1

2
(A + A†) +

1

2
j(A−A†)/j. (2.69)
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2.5. Uncertainty Principle for Frequency and Scale Operators

In fact, operators A + A† and (A−A†)/j are Hermitian whether A is Hermitian or
not.

The anticommutator of two Hermitian operators A and B is also Hermitian, as

[A,B]†+ = (AB + BA)†

= (AB)† + (BA)†

(property (2.68)) = B†A† + A†B†

(A† = A and B† = B) = BA + AB

= [A,B]+ (2.70)

Having [A,B]†+ = [A,B]+, the anticommutator is Hermitian. The product of two
Hermitian operators AB is not necessarily Hermitian. However, using the decom-
position (2.69), the operator AB can be also expressed as

AB =
1

2
(AB + (AB)†) +

1

2
(AB− (AB)†)

(property (2.68)) =
1

2
(AB + B†A†) +

1

2
(AB−B†A†)

(A† = A and B† = B) =
1

2
(AB + BA) +

1

2
(AB−BA)

(def. (2.56) and (2.57)) =
1

2
[A,B]+ +

j

2
[A,B]/j (2.71)

Theorem 3. Uncertainty Principle. For any two quantities a and b repre-
sented by the respective Hermitian operators A and B, which do not commute,
the uncertainty principle is

σaσb ≥
1

2
|〈[A,B]〉| (2.72)

where σa and σb are the standard deviations of a and b, respectively, and 〈[A,B]〉
is the mean of the commutator of A and B.

Proof. De�ne operators A0 = A − 〈A〉 and B0 = B − 〈B〉. From property (2.65),
they are Hermitian and their mean is zero. The commutator of A0 and B0 is equal
to that of A and B, as

[A0,B0] = A0B0 −B0A0

= (A− 〈A〉)(B− 〈B〉)− (B− 〈B〉)(A− 〈A〉)
= AB−BA = [A,B]. (2.73)

The anticommutator of A0 and B0 is

[A0,B0]+ = A0B0 + B0A0

= (A− 〈A〉)(B− 〈B〉) + (B− 〈B〉)(A− 〈A〉)
= AB + BA− 2〈B〉A− 2〈A〉B + 2〈A〉〈B〉
= [A,B]+ − 2〈B〉A− 2〈A〉B + 2〈A〉〈B〉. (2.74)
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2. Identi�cation of Wideband Time-Varying Systems

Taking the expectation of both sides of (2.74) and using the de�nition (2.62) yields

〈[A0,B0]+〉 = 2

{
1

2
〈[A,B]+〉 − 〈A〉〈B〉

}
= 2 Covab . (2.75)

Using the de�nition of variance in (2.61),

σ2
aσ

2
b =

∫
s∗(t)(A− 〈A〉)2s(t)dt×

∫
s∗(t)(B− 〈B〉)2s(t)dt

(def. of A0 and B0) =

∫
s∗(t)A2

0s(t)dt×
∫
s∗(t)B2

0s(t)dt

(property (2.66)) =

∫
|A0s(t)|2dt×

∫
|B0s(t)|2dt

(Schwarz inequality) ≥
∣∣∣∣∫ {A0s(t)}∗{B0s(t)}dt

∣∣∣∣2
(Hermitian def. (2.63) on B0) =

∣∣∣∣∫ s∗(t)A0B0s(t)dt

∣∣∣∣2
(def. (2.60)) = |〈A0B0〉|2 . (2.76)

Expressing the product A0B0 as in (2.71)

A0B0 =
1

2
[A0,B0]+ +

j

2
[A0,B0]/j (2.77)

and taking the expectation of both sides of (2.77) yields

〈A0B0〉 =
1

2
〈[A0,B0]+〉+

j

2
〈[A0,B0]/j〉

(prop. (2.75)) = Covab +
j

2
〈[A0,B0]/j〉. (2.78)

Note that Covab and 1
2
〈[A0,B0]/j〉 are the real and imaginary parts of 〈A0B0〉.

Substituting (2.78) into (2.76) yields

σ2
aσ

2
b ≥

∣∣∣∣Covab +
j

2
〈[A0,B0]/j〉

∣∣∣∣2
= Cov2

ab +
1

4
|〈[A0,B0]〉|2

(prop. (2.73)) = Cov2
ab +

1

4
|〈[A,B]〉|2 . (2.79)

Equation (2.79) is equivalent to

σaσb ≥
1

2

√
4 Cov2

ab + |〈[A,B]〉|2.

which is a more general result of the uncertainty principle. Since Cov2
ab is non

negative, it can be dropped to obtain the more standard uncertainty principle in
(2.72).
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The uncertainty principle holds in particular for frequency and scale operators.
Before applying the theorem in this particular case, the time T, frequency F and
scale C operators are here de�ned.
Assume that s(t) is an arbitrary function de�ned in time domain and S(f) is its

Fourier transform. According to de�nition (2.58), the mean time 〈t〉 is

〈t〉 =

∫
t|s(t)|2dt =

∫
s∗(t)ts(t)dt. (2.80)

Comparing (2.80) with (2.60), the time operator T, expressed in time domain, is
simply

T = t. (2.81)

Starting from (2.80) and expressing s∗(t) as inverse Fourier transform yields

〈t〉 =

∫ ∫
S∗(f)e−j2πftdf ts(t)dt

=

∫
S∗(f)

∫
ts(t)e−j2πftdtdf

(derivative property) =

∫
S∗(f)

1

−j2π
dS(f)

df
df

=

∫
S∗(f)

j

2π

d

df
S(f)df (2.82)

=

∫
S∗(f)TS(f)df. (2.83)

Comparing (2.82) and (2.83) with (2.60), the time operator T in frequency domain,
is given by

T =
j

2π

d

df
. (2.84)

In the same way, the frequency operator F in frequency domain is

F = f (2.85)

as, according to the frequency mean 〈f〉 in Fourier domain

〈f〉 =

∫
f |S(f)|2df =

∫
S∗(f)fS(f)df. (2.86)

Starting from (2.86) and expressing S∗(t) as Fourier transform yields

〈f〉 =

∫ ∫
s∗(t)e+j2πftdt fS(f)df

=

∫
s∗(t)

∫
fS(f)e+j2πftdfdt

=

∫
s∗(t)

1

j2π

∫
(j2πf)S(f)e+j2πftdfdt

(derivative property) =

∫
s∗(t)

1

j2π

d

dt
s(t)dt (2.87)

=

∫
s∗(t)Fs(t)dt. (2.88)
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2. Identi�cation of Wideband Time-Varying Systems

From (2.87) and (2.88), the frequency operator F in time domain is

F =
1

j2π

d

dt
= − j

2π

d

dt
. (2.89)

Summarizing, the time T and frequency F operators in both time and frequency
domains are

T = t ; F = − j

2π

d

dt
(time domain) (2.90)

T =
j

2π

d

df
; F = f (frequency domain) (2.91)

Note that the time and frequency operators are Hermitian. To prove this, consider
frequency operator in time domain F = 1

j2π
d
dt
and substitute it into (2.63). For any

two functions f(t) and g(t), with �nite energy, left hand side of (2.63) becomes∫
f ∗(t)Fg(t)dt =

∫
f ∗(t)

1

j2π

d

dt
g(t)dt

(integration by parts) =
1

j2π
f ∗(t)g(t)

∣∣∣∣−∞
+∞
− 1

j2π

∫
g(t)

d

dt
f ∗(t)dt

(�nite energy assumption) =

∫
g(t)

(
1

j2π

d

dt
f(t)

)∗
dt

=

∫
g(t) (Ff(t))∗ dt (2.92)

which is the condition (2.63) for operator F. An equal proof can be done for time
operator T in frequency domain.

The scale operator C is de�ned as

C
M
=

1

2
[T,F]+ =

1

2
(TF + FT) (2.93)

and its representations in both time and frequency domains are

C =
1

4πj

(
t
d

dt
+
d

dt
t

)
(time domain) (2.94)

C =
j

4π

(
f
d

df
+

d

df
f

)
(frequency domain) (2.95)

The operator C is also Hermitian because the anticommutator of two Hermitian
operators is Hermitian (property (2.70)).

The uncertainty principle can be applied for frequency and scale operators, as
they do not commute. In fact, the commutator of F and C is given by

[F,C] = FC− CF =
1

2
(FTF + FFT − TFF − FTF) =

1

2
(FFT − TFF). (2.96)
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To evaluate [F,C], the operator in the right hand side of (2.96) is applied on an
arbitrary function s(t), using the de�nitions of T and F in time domain (2.90).

[F,C]s(t) =
1

2
(FFT − TFF)s(t)

=
1

2

[
− j

2π

d

dt

(
− j

2π

d

dt
(s(t)t)

)
− t
(
− j

2π

d

dt

(
− j

2π

ds(t)

dt

))]
=

1

2

[(
− j

2π

)2
d

dt

(
t
ds(t)

dt
+ s(t)

)
− t
(
− j

2π

)2
d2s(t)

dt2

]

=
1

2

(
− j

2π

)2 [
t
d2s(t)

dt2
+
ds(t)

dt
+
ds(t)

dt
− td

2s(t)

dt2

]
=

(
− j

2π

)2
ds(t)

dt

= − j

2π
Fs(t) (2.97)

Substituting the operator [F,C] = − j
2π
F into (2.72), the uncertainty principle for

frequency and scale operators is

σfσc ≥
1

2
|〈[F,C]〉| = 1

4π
|〈F〉|. (2.98)

Condition (2.98) implies some restrictions on the signals involved in the discrete
time-scale model of sections 2.3 and 2.4. In particular, for an input signal x(t), with
given variances σ2

f and σ2
c , in frequency and scale domains respectively, the mean

frequency of x(t) is upper limited by 4πσfσc.
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Chapter 3
Identi�cation of Narrowband

Time-Varying Sparse Systems

In this chapter we study and compare two approaches for the identi�cation of a
sparse narrowband time-varying system.
In Section 3.1 we derive a discrete characterization of the system and describe the

corresponding model for the discrete spreading function to be identi�ed.
In Section 3.2 we formulate the recovery according to two di�erent approaches,

reducing the identi�cation problem both to a MMV problem and to a block-sparse
problem, providing also the matrix representation in both cases.
The algorithms used for recovery are described in detail in Section 3.3, while in

Section 3.4 we provide numerical results to compare the performances of the two
approaches.
In the following, we refer to the two approaches simply as approach 1 and approach 2,

respectively.

3.1. Discrete Time-Frequency Characterization

The output y(t) of a narrowband time-varying system can be represented as a
weighted superposition of time-frequency shifted versions of the input signal x(t)

y(t) =

∫
τ

∫
ν

sH(τ, ν)x(t− τ)ej2πνtdνdτ (3.1)

where sH(τ, ν) is the spreading function of the operator H, which describes the
system. Indicating with Tτ and Mν the time- and frequency-shift operators on the
signal x(t),

(Tτx)(t)
M
= x(t− τ) (3.2)

(Mνx)(t)
M
= ej2πνtx(t) (3.3)

the operator H is the continuous weighted superposition of time-frequency shift
operators, i.e., the input-output relation can be expressed as

y(t) = (Hx)(t) =

∫
τ

∫
ν

sH(τ, ν)(MνTτx)(t)dνdτ . (3.4)
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Due to physical limitations of the system (see e.g. [17]), the support of the spread-
ing function is assumed to be �nite, i.e., sH(τ, ν) ≡ 0 for (τ, ν) /∈ [0, τmax)× [0, νmax).
In order to study the discrete characterization of (3.4), we base on the model pre-
sented in [15], where the region [0, τmax) × [0, νmax) is divided in rectangular cells,
that are either active, if sH is nonzero on these cells, or null. More precisely, suppose
to choose L ∈ R and T ∈ R such that the area [0, τmax)× [0, νmax) of the (τ, ν)-plane
can be divided in L2 rectangular cells of the same area 1/L, partitioning the τ -axis
in L parts of length T and the ν-axis in L parts of length 1/(TL), as shown in Fig.
3.1.
Consequently,

τmax = TL , νmax =
1

T
(3.5)

and
τmaxνmax = L. (3.6)

Then the arbitrary, possibly fragmented, support of the spreading function of op-
erator H, indicated as MΓ, can be expressed as the union of a particular subset of
these cells

MΓ
M
=

⋃
(k,m)∈Γ

(
U +

(
kT,

m

TL

))
(3.7)

where U
M
= [0, T )× [0, 1/(TL)) is the fundamental cell in the (τ, ν)-plane and, con-

sequently, U + (kT,m/(TL) is the cell with the below-left corner at (kT,m/(TL)).
Γ speci�es the active cells that identify the support of the spreading function,

Γ ⊆ Σ
M
= {(0, 0), (0, 1), . . . , (L− 1, L− 1)} (3.8)

and |Γ| is the number of active cells.

Starting from the continuous input-output relation (3.1), a discrete characteriza-
tion of the system can be derived, using the following assumptions.

1. The probing signal x(t) is bandlimited to [−B,B].

2. The signal y(t) is observed for the �nite time interval [−V, V ]. The truncated
version of the system response y(t) on [−V, V ] is indicated as y(t).

We report here the basic steps in [15] in order to have an intuition of the discrete
model we use in the following analysis, and refer to [15] for more details.
We de�ne sH(τ, ν) as the e�ective spreading function of the system, obtained

from sH(τ, ν) after considering the assumptions 1 and 2 above. It can be shown that
sH(τ, ν) is a smoothed version of sH(τ, ν), both in time and frequency domain and
is given as

sH(τ, ν) = 4BV sH(τ, ν) ∗ sinc(2Bτ) ∗ sinc(2V ν). (3.9)

From (3.9), sH(τ, ν) is not supported on [0, τmax) × [0, νmax) but, considering the
approximation that the sinc functions are nonzero only in their mainlobes, most of
the volume of sH(τ, ν) is supported on [−1/(2B), τmax+1/(2B))× [−1/(2V ), νmax+
1/(2V )). It can be seen that the continuous output signal y(t) is approximately
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τ

ν

T

1
TL

TL

1
T

L cells

L cells

U

Figure 3.1.: Model for the support of the spreading function.

bandlimited within [−B,B+ νmax], hence it can be sampled at rate fs = 2B+ νmax,
yielding the discrete output y[n]. We de�ne then function sH [m, l] as a sampled
version of sH(τ, ν), given by

sH [m, l]
M
= sH

(
m

fs
,
l

2V

)
e−jπl. (3.10)

Relation (3.10) suggests the model for the support of the discrete spreading func-
tion of the system, where the (τ, ν)-plane is discretized both in τ -direction, with
resolution of 1/fs, and in ν-direction, with resolution 1/(2V ), i.e., the spreading
function is uniformly sampled in the (τ, ν)-plane.
Finally, the integer parameters E and D are set such that

τmax =
EL

fs
, νmax =

DL

2V
. (3.11)

According to de�nition (3.11), E and D are the number of samples taken on an
active cell of sH(τ, ν) in τ and ν direction, respectively, as indicated in Fig. 3.2.
The continuous input-output relation in (3.1) is then equivalent to the following

discrete characterization of the system

y[n] =
∑
m∈Z

∑
l∈Z

sH [m, l]x[n−m]ej2π
ln

DEL , n = 0, . . . , DEL− 1 (3.12)

where the discrete signal x[n] is a sampled version of x(t).

From the approximation sH(τ, ν) ≡ 0 for (τ, ν) /∈ [−1/(2B), τmax + 1/(2B)) ×
[−1/(2V ), νmax + 1/(2V )) and from the de�nitions of τmax and νmax in (3.11), the
discrete spreading function sH [m, l] is nonzero only for (m, l) ∈ {0, 1, . . . , EL− 1}×
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τ

ν

Ek
fs

E(k+1)
fs

Dm
2V

D(m+1)
2V

E samples

D samples

Figure 3.2.: Model for the support of the discrete spreading function.

{0, 1, . . . , DL − 1} and, consequently, the two summations in (3.12) involve only
�nitely many terms.

y[n] =
EL−1∑
m=0

DL−1∑
l=0

sH [m, l]x[n−m]ej2π
ln

DEL , n = 0, . . . , DEL− 1. (3.13)

Furthermore, if most of the volume of sH(τ, ν) is approximately supported on MΓ,
given in (3.7), then the samples of the spreading function in (3.13) satisfy

sH [m, l] ≡ 0 for

(
m

fs
,
l

2V

)
/∈MΓ. (3.14)

3.2. Matrix Representations

In the following we compare two approaches to identify a system with input-
output relation (3.13). The approach 1 allows to formulate the problem as a multiple
measured vectors (MMV) problem, in which equation (3.13) admits the following
matrix representation

Z = AcS. (3.15)

The matrices Z ∈ CL×DE, Ac ∈ CL×L2
and S ∈ CL2×DE depend on y[n], x[n]

and sH [m, l], respectively. In particular, Z contains the discrete Zak transform of
y[n], Ac translates in time and frequency the input samples x[n] and each row of
S contains the samples sH [m, l] inside each active cell. The precise de�nitions are
presented later. A graphical representation of (3.15) is presented in Fig. 3.3. This
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Z Ac

S

=L

DE L2
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DE
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Figure 3.3.: Model for the MMV problem.

problem involves a particular probing signal x[m], given as a train of Dirac impulses

x[m] =

{
c−k if m = Ek

0 otherwise
(3.16)

with the additional property that

ck = ck+L. (3.17)

The coe�cients ck, k = 0, . . . , L − 1 are independent and uniformly at random,
chosen on the complex unit disc.

The approach 2 leads to a matrix representation as a Block-Sparsity model, given
by

y = Xs. (3.18)

The vectors y ∈ CDEL×1 and s ∈ CDEL2×1 contain samples of the output y[n]
and of the spreading function sH [m, l], respectively, while matrix X ∈ CDEL×DEL2

depends on the probing signal x[m], which is a sequence of independent symbols
with distribution CN (0, 1). A graphical representation of (3.18) is presented in Fig.
3.4.
The two models are detailed below.

1. MMV model.

To derive the matrix representation (3.15) from the discrete input-output re-
lation (3.13), we calculate �rst the discrete Zak transform of y[n], de�ned as

ZEL,Dy [n, r]
M
=

1

D

D−1∑
q=0

y[n+ELq]e−j2π
qr
D , n = 0, . . . , EL− 1 , r = 0, . . . , D− 1.

(3.19)
Substituting n in (3.19) with n = n′ + Ep, where n′ = 0, . . . , E − 1 and
p = 0, . . . , L− 1 yields
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3. Identi�cation of Narrowband Time-Varying Sparse Systems

ZEL,Dy [n′ + Ep, r] =
1

D

D−1∑
q=0

y[n′ + Ep+ ELq]e−j2π
qr
D

(from (3.13)) =
1

D

D−1∑
q=0

EL−1∑
m=0

DL−1∑
l=0

sH [m, l]x[n′ + Ep+ ELq −m]

× ej2π
l(n′+Ep+ELq)

DEL e−j2π
qr
D

(m = m′ + Ek) =
1

D

D−1∑
q=0

E−1∑
m′=0

L−1∑
k=0

DL−1∑
l=0

sH [m′ + Ek, l]

× x[n′ −m′ + E(p+ Lq − k)]ej2π
l(n′+Ep+ELq)

DEL e−j2π
qr
D

From the de�nition (3.16) of the probing signal and using (3.17)

x[n′ −m′ + E(p+ Lq − k)] =

{
ck−p if m′ = n′

0 if m′ 6= n′
(3.20)

Substituting (3.20) into the equation above yields

ZEL,Dy [n′ + Ep, r] =
1

D

D−1∑
q=0

L−1∑
k=0

DL−1∑
l=0

ck−psH [n′ + Ek, l]ej2π
l(n′+Ep+ELq)

DEL e−j2π
qr
D

(l = l′ +Dh) =
1

D

D−1∑
q=0

L−1∑
k=0

D−1∑
l′=0

L−1∑
h=0

ck−psH [n′ + Ek, l′ +Dh]

× ej2π
(l′+Dh)(n′+Ep+ELq)

DEL e−j2π
qr
D

=
1

D

D−1∑
q=0

L−1∑
k=0

D−1∑
l′=0

L−1∑
h=0

ck−psH [n′ + Ek, l′ +Dh]

× ej2π
(l′+Dh)(n′+Ep)

DEL ej2π
ql′
D e−j2π

qr
D

=
1

D

D−1∑
q=0

L−1∑
k=0

D−1∑
l′=0

L−1∑
h=0

ck−psH [n′ + Ek, l′ +Dh]

× ej2π
(l′+Dh)(n′+Ep)

DEL ej2π
q(l′−r)
D

=
L−1∑
k=0

L−1∑
h=0

ck−psH [n′ + Ek, r +Dh]ej2π
(r+Dh)(n′+Ep)

DEL (3.21)

where the last equality is due to the DFT. De�ne zp[n, r] as

zp[n, r]
M
= ZEL,Dy [n+ Ep, r] =

L−1∑
k=0

L−1∑
h=0

ck−psH [n+ Ek, r +Dh]ej2π
(r+Dh)(n+Ep)

DEL

(3.22)
where n = 0, . . . , E − 1, r = 0, . . . , D − 1 and p = 0, . . . , L− 1.

The p-th entry of the (n, r)th column z[n, r] of Z in (3.15) is de�ned as

[z[n, r]]p
M
= zp[n, r]e

−j2π rp
DL , p = 0, . . . , L− 1. (3.23)
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3.2. Matrix Representations

Parameters n and r identify the columns of Z, which are ordered as follows

(n, r) ∈ {(0, 0), (0, 1), . . . , (E − 1, D − 1)}. (3.24)

The column of matrix S in (3.15), identi�ed by parameters n and r as in (3.24),
is de�ned as

s[n, r]
M
= [s0,0[n, r], s0,1[n, r], . . . , sL−1,L−1[n, r]]T (3.25)

where

sk,m[n, r]
M
= sH [n+ Ek, r +Dm]ej2π

n(r+Dm)
DEL , k,m = 0, . . . , L− 1. (3.26)

From de�nition (3.26), each row of S contains all the samples of sH [m, l] inside
the same active cell (see Fig. 3.2), with the exception of a phase shift. As we
assume that there are only |Γ| active cells, then S has |Γ| nonzero rows.

Finally, matrix Ac in (3.15) is given by

Ac
M
= [Ac,0|Ac,1| . . . |Ac,L−1] (3.27)

with the square L× L submatrices de�ned as

Ac,k
M
= Cc,kF

H (3.28)

where Cc,k
M
= diag{ck, ck−1, . . . , ck−(L−1)} and [F]p,m

M
= e−j2π

pm
L , with p,m =

0, . . . , L− 1.

With the de�nitions above, (3.15) describes exactly the discrete input-output
relation (3.13). Denote the matrix obtained from S by selecting only the rows
corresponding to the active cells of sH [m, l] with SΓ and let AΓ be the matrix
containing the columns of Ac corresponding to the same cells. Then (3.15) is
equivalent to

Z = AΓSΓ. (3.29)

2. Block-Sparsity model.

The matrix representation of this problem follows directly from the input-
output relation (3.13). With a change of variablesm = m′+Ek and l = l′+Dr,
(3.13) becomes

y[n] =
E−1∑
m=0

L−1∑
k=0

D−1∑
l=0

L−1∑
r=0

sH [m+ Ek, l +Dr]x[n− (m+ Ek)]ej2π
(l+Dr)n
DEL ,

n = 0, . . . , DEL− 1. (3.30)

The column vector y in (3.18) contains the DEL samples of the output y[n],
n = 0, . . . , DEL− 1. De�ne the column vector s in (3.18) as

s
M
=
[
s0,0
H

T
∣∣∣s0,1
H

T
∣∣∣ . . . ∣∣∣sL−1,L−1

H

T
]T

(3.31)
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X̃k,r

Figure 3.4.: Model for the B-sparsity problem.

where each subvector sk,rH ∈ CDE×1, k, r = 0, . . . , L−1, contains all the samples
of the spreading function sH [m, l] on the same cell of Fig. 3.2,

sk,rH
M
= [sk,rH (0, 0), sk,rH (0, 1), . . . , sk,rH (E − 1, D − 1)]T (3.32)

with sk,rH (m, l)
M
= sH [m+Ek, l+Dr]. Assuming that the number of active cells

is |Γ|, only |Γ| blocks are nonzero, so that s is block-sparse.

Finally, matrix X is given by

X = [X̃0,0|X̃0,1| . . . |X̃L−1,L−1] (3.33)

where the submatrices X̃k,r ∈ CDEL×DE, k, r = 0, . . . , L− 1, are de�ned as

X̃k,r M
= [x̃k,r(0, 0)|x̃k,r(0, 1)| . . . |x̃k,r(E − 1, D − 1)] (3.34)

with the n-th entry of vector x̃k,r(m, l) ∈ CDEL×1 , m = 0, . . . , E − 1, l =
0, . . . , D − 1 given by

[x̃k,r(m, l)]n
M
= x[n− (m+ Ek)]ej2π

(l+Dr)n
DEL , n = 0, . . . , DEL− 1. (3.35)

Denote the vector obtained from s by selecting only the blocks corresponding
to the active cells of sH [m, l] by sΓ and let XΓ be the matrix containing the
columns of X corresponding to those cells. Then (3.18) is equivalent to

y = XΓsΓ. (3.36)
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3.3. Recovery Algorithms

3.3. Recovery Algorithms

The goal of the two algorithms described in this section is to recover both the
support Γ and the samples sH [m, l] of the spreading function in (3.13), given the
input signal x[n] in both cases. The algorithms are adaptions of the orthogonal
matching pursuit (OMP) algorithm [18]. Before starting the detailed description of
the two algorithms, some practical observations are presented. It can be shown that
the identi�cation of a system of the form (3.13) fails if the value of sparsity satis�es
|Γ| ≥ L, since in this case there are more unknowns than knowns. The simulations
performed in section 3.4 are applied under the necessary condition |Γ| ≤ L. The
recovery depends on Ac and X. In particular, the more the samples of the spreading
function are well approximated by the same set of elements in Ac and X, the more
successful the recovery is. In the case of high recovery probability, matrices Ac and
X are well-conditioned.

1. Simultaneous Orthogonal Matching Pursuit (S-OMP).

Recovery of S from Z obtained as Z = AcS, when we assume that the columns
of S share the same sparsity pattern, is a MMV problem. The S-OMP algo-
rithm is one approach to solve it, i.e., to reconstruct S from Z, obtained as
Z = AcS. The S-OMP algorithm deals with the approximation of several
signals at once (column vectors s[n, r] of matrix S) using di�erent linear com-
binations of the same elementary signals (columns of matrix Ac) [19].

Algorithm 1. S-OMP

Input:

� Matrix Z of the observed samples.

� Matrix Ac (dictionary).

� Value of sparsity |Γ| of matrix S (number of nonzero rows of S).

Output:

� Matrix S of the samples of the spreading function.

Procedure:

a) Initialize the residual matrix R0 = Z and the index set Λ0 = ∅. The
iteration counter is t = 1.

b) Find an index λt that solves the optimization problem

λt = arg max
i=1,...,L2

∥∥RH
t−1(Acei)

∥∥
2

(3.37)

where ei is the i-th canonical basis column vector in CL2
and, conse-

quently, Acei is the i-th column of Ac.

c) Set Λt = Λt−1 ∪ λt.

37



3. Identi�cation of Narrowband Time-Varying Sparse Systems

d) Determine matrix Ã , selecting from Ac the columns with indexes in
Λt.

e) Calculate the new approximation of S and the new residual matrix

S̃t = Ã†Z (3.38)

Rt = Z− S̃t (3.39)

f) Increment t. If t = |Γ|, stop; otherwise return to step (b).

g) Set SΓ = S̃|Γ|. Matrix S is obtained from SΓ adding zero rows, corre-
sponding to indexes in {1, . . . , L2} not included in Λ|Γ|.

Since the matrix S has a sparsity of |Γ|, the algorithm is performed for |Γ|
times, so that AΓ in (3.29) contains the |Γ| columns of Ac that best approxi-
mate the spreading function.

Step (b) is referred to as the greedy selection of the algorithm. Maximizing
the `2-norm in (3.37) means �nding the element of the dictionary that can
contribute a lot of energy to every column of the matrix S.

2. Block-sparse Orthogonal Matching Pursuit (B-OMP).

Because of the structure of vector s in (3.18), where nonzero entries appear in
blocks, one approach for identi�cation of the B-sparsity model is the B-OMP
algorithm [20]. Since a MMV model is a special case of a block-sparse model,
S-OMP algorithm is equivalent to B-OMP algorithm if MMV is formulated as
a block-sparse model. That makes the two approaches comparable.

Algorithm 2. B-OMP

Input:

� Vector y of the observed samples.

� Matrix X (dictionary).

� Value of sparsity |Γ| of vector s (number of nonzero blocks of s).

Output:

� Vector s of the samples of the spreading function.

Procedure:

a) Initialize the residual vector r0 = y and the block index set E0 = ∅.
The iteration counter is t = 1.

b) Find an index λt that solves the optimization problem

λt = arg max
i=1,...,L2

∥∥∥X̃H [i]rt−1

∥∥∥
2

(3.40)
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where X̃[i] ∈ CDEL×DE is the i-th block of X. X̃[i] = X̃k,r in (3.33)
for some proper values of k and r.

c) Set Et = Et−1 ∪ λt.
d) Determine matrix X̃ , selecting from X the blocks with indexes in Et.

e) Calculate the new approximation of s and the new residual vector

s̃t = X̃†y (3.41)

rt = y − s̃t (3.42)

f) Increment t. If t = |Γ|, stop; otherwise return to step (b).

g) Set sΓ = s̃|Γ|. Vector s is obtained from sΓ adding zero blocks, corre-
sponding to indexes in {1, . . . , L2} not included in E|Γ|.

3.4. Simulation Results

The two approaches presented above are compared in the noiseless and noisy cases.

1. Noiseless case. The identi�cation of the spreading function from the observed
samples is performed without introducing noise. The two models are com-
pared in terms of recovery probability. Recovery is regarded as successful if the
relative error between the recovered spreading function ŝH and the original
one sH is less than a �xed tolerance, admitted because of limited precision in
the simulations, i.e.,

‖sH − ŝH‖2

‖ŝH‖2

≤ 10−5 (3.43)

The recovery probability is the average of the successful recoveries upon 1000
trials.

2. Noisy case. In this case the observed samples are corrupted by complex addi-
tive white Gaussian noise, with a SNR of 20 dB. The two models are compared
in terms of the root mean square error, sqrt-MSE, of the recovered spreading
function ŝH . The average of the relative error de�ned in (3.43) is evaluated
upon 1000 trials.

Some parameters are set before the simulation is performed:

- Parameter L is �xed and set to L = 19 and, consequently, the number of cells
on the (τ, ν)-plane is L2 = 361.

- The cardinality |Γ| of the support set of the spreading function is varied from
1 to 19.

- The product DE assumes four di�erent values: DE = {1, 7, 13, 19}. In fact,
the identi�cation depends on DE, rather than on D and E individually.
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3. Identi�cation of Narrowband Time-Varying Sparse Systems

- For each pair (DE,|Γ|), 1000 trials are performed to obtain the recovery prob-
ability and the root MSE.

Spreading functions are generated by choosing uniformly at random a support set
Γ with cardinality |Γ|, which corresponds to an area of ∆ = |Γ|/L in the continuous
setting. Samples sH [m, l] are then chosen independently with distribution CN (0, 1).
In Fig. 3.5 and 3.6 we report the results, for the noiseless and the noisy case,

respectively.

From Fig. 3.5, it can be seen that the approach 2 performs signi�cantly better
than the approach 1, especially for large values of DE. The choice of taking iid
symbols as the probing signal for the approach 2 guarantees that submatrices of X
in (3.18) are much more well-conditioned than submatrices of Ac in (3.15). For
DE = 1 the approaches perform almost equal.
The same results are obtained for the noisy case of Fig. 3.6, where the approach 2

is superior especially for large values of |Γ|. It can be seen that for small values of
|Γ|, the plots lie on a linear slope, indicating that the support set has been correctly
identi�ed, but the recovery of the samples of the spreading function is corrupted by
noise. When |Γ| increases, the support set is not identi�ed any more and the plots
deviate from the linear slope.
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Figure 3.5.: Recovery probability in the noiseless case.
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(a) MMV model, S-OMP
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(b) B-sparsity model, B-OMP

Figure 3.6.: Sqrt-MSE in the noisy case, with a SNR of 20 dB.
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Chapter 4
Identi�cation of Parametric Underspread

Linear Systems

In this chapter we study the identi�cation of a particular class of narrowband
systems, called parametric underspread linear systems. The identi�cation conditions
seen for a narrowband system in general hold also in this case. We extend the analysis
presented for a single input system to a multiple input system, using some ideas as
in [23].
In Section 4.1 we provide the characterization of a parametric ULS. In Section 4.2

we formalize the problem of identi�cation and give the system assumptions.
A matrix formulation of the problem is given in Section 4.4. In Sections 4.3 and

4.5 we propose a recovery procedure of the parameters that describe the system,
while in section 4.6 we discuss on the implementation of the recovery procedure.
In Section 4.7 we specify the su�cient conditions on the input signal needed to

guarantee the unique identi�cation using the proposed procedure.
Finally, in Section 4.8 we extend the results [23] found previously for the system

identi�cation with a single input, to multiple inputs.

4.1. System Characterization

The general input-output relation of a linear time-varying system, as seen in
chapter 3, is given by

y(t) =

∫
τ

∫
ν

sH(τ, ν)x(t− τ)ej2πνtdνdτ (4.1)

where the received signal y(t) consists of the continuous superposition of time- and
frequency-shifted versions of the transmitted signal x(t), weighted according to the
spreading function sH(τ, ν).
We consider systems with spreading function characterized by a �nite set of delays

τk and Doppler-shifts νk (Fig. 4.1), i.e.,

sH(τ, ν) =
K∑
k=1

αkδ(τ − τk)δ(ν − νk) (4.2)
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(τK , νK)

Figure 4.1.: Spreading function of a parametric ULS.

where parameters αk ∈ C are the attenuation factors associated with the delay-
Doppler pairs (τk, νk) and the delays τk are assumed to be distinct. Relation (4.1)
can be expressed, using (4.2), as

y(t) =
K∑
k=1

αkx(t− τk)ej2πνkt. (4.3)

Systems described by (4.3) are referred to as parametric underspread linear systems
in [23]. The term underspread is referred to as systems, whose spreading function is
supported within a region in the delay-Doppler plane of area smaller than 1. Such
systems are identi�able as noticed in Kailath's work [7].
The identi�cation of (4.3) involves �nding a probing signal x(t) that guarantees

the system parameters to be recovered from the observed signal y(t). The parameters
that completely characterize the system are the triplets (τk, νk, αk), for k = 1, . . . , K.
In the following, we give conditions on the probing signal that ensure the identi�ca-
tion of (4.3) and derive a recovery procedure that estimates the parameters above.

4.2. Assumptions for Identi�cation

The �rst assumption, already mentioned above, is that the delays of the spreading
function are distinct. This could seem a restrictive property but it is largely veri�ed
in practical situations.
The probing signal x(t) is chosen as a �nite train of pulses, i.e.,

x(t) =
N−1∑
n=0

xng(t− nT ) (4.4)

where
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Figure 4.2.: Example of the prototype pulse g(t).
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Figure 4.3.: Example of the probing signal x(t).

� g(t) is a prototype pulse, supported on [0, T ] and with unit energy,
∫
|g(t)|2dt = 1

(an example is depicted in Fig. 4.2);

� {xn ∈ C} is an N -length probing sequence.

An example of the probing signal x(t) is shown in Fig. 4.3. The temporal support of
x(t), indicated as T , is de�ned as T = NT , while its two-sided bandwidth, indicated
as W , is the same as that of g(t).
Since for an arbitrary pulse g(t) the bandwidth and the temporal support are

related to each other as W ∝ 1/T , the parameter N is proportional to the time-
bandwidth product of x(t),

N =
T
T
∝ T W (4.5)

which is according to the 2WT -Theorem [9] the number of temporal degrees of
freedom available for estimating the system.
The following assumptions are made in order to have some restrictions on the

support of the spreading function sH(τ, ν).

A) The support of the spreading function sH(τ, ν) in (4.2) lies within a rectangular
region of the delay-Doppler plane, i.e., (τk, νk) ∈ [0, τmax] × [0, νmax], for k =
1, . . . , K. The parameters τmax and νmax are referred to as delay spread and
Doppler spread of the system, respectively.
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B) The delay spread is strictly smaller than the temporal support of g(t), or
τmax < T .

C) The Doppler spread is much smaller than the bandwidth of g(t), νmax � W .
Noting that W ∝ 1/T , this assumption is equivalent to νmaxT � 1.

The main result for the identi�cation of a ULS with a single input is summarized
in the following theorem.

Theorem 4. Identi�cation of Parametric Underspread Linear Systems.

Suppose that a parametric ULS is completely described by K triplets (τk, νk, αk),
where delays τk are distinct. Then the system can be identi�ed as long as it
satis�es assumptions A), B), C), the probing sequence {xn} is nonzero for all
n = 0, . . . , N − 1 and the time-bandwidth product of the known input signal x(t)
satis�es the condition

T W ≥ 4K (4.6)

The probing signal that guarantees identi�cation is not arbitrary but needs to be
of the form of (4.4), as it will be clear in the following.

Before describing the recovery procedure in detail, a proper expression for the
response signal y(t) is derived. According to the probing signal in (4.4), the input-
output relation in (4.3) can be expressed as

y(t) =
K∑
k=1

N−1∑
n=0

αkxne
j2πνktg(t− τk − nT ) (4.7)

≈
K∑
k=1

N−1∑
n=0

αkxne
j2πνknTg(t− τk − nT ) (4.8)

=
K∑
k=1

N−1∑
n=0

ak[n]g(t− τk − nT ) (4.9)

where the sequences ak[n], k = 1, . . . , K in (4.9) are de�ned as

ak[n] = αkxne
j2πνknT , n = 0, . . . , N − 1 (4.10)

The approximation in (4.8) follows from the assumptions B) and C), which is seen
as follows. Since g(t) is compactly supported on [0, T ], then g(t− τk − nT ) = 0 for
t /∈ [nT + τk, (n + 1)T + τk]. First of all, due to the assumption B), τk < T ∀k and
g(t−τk−nT ) = 0 for t /∈ [nT, (n+2)T ]. Therefore, for each value of k and n in (4.7),
ej2πνktg(t − τk − nT ) = ej2πνk[(n+1)T+t̃]g(t − τk − nT ), where t̃ ∈ [−T, T ]. Secondly,
due to the assumption C), νkT � 1 ∀k and then ej2πνkT ≈ 1 and ej2πνk t̃ ≈ 1. As
a consequence, the largest error committed by approximating ej2πνknT ≈ ej2πνkt in
(4.8) is very small, given by ej2πνmax2T ≈ 1.
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Figure 4.4.: Sampling stage for the identi�cation procedure.

The procedure used for identi�cation of the system (4.9) can be divided into two
stages, the sampling stage and the recovery stage. In the �rst one the observed
signal y(t) is sampled and processed in a suitable form, while in the second one the
estimation of the triplets (τk, νk, αk) is performed.

4.3. Recovery Procedure: The Sampling Stage

The operations performed in the sampling stage are reported in Fig. 4.4.
The output of the system y(t) is �rst processed through a lowpass �lter (LPF) and

then sampled by an uniform sampler. The LPF is required before the sampler as
an anti-aliasing �lter and it also rejects the noise outside the working spectral band.
The impulse response of the LPF is given by s∗(−t) and its frequency response S∗(f)
has the following frequency support,

F =
[
− p

2T
,
p

2T

]
. (4.11)

Parameter p is assumed to be even and to satisfy the condition p ≥ 2K.
The signal c(t), returned by the LPF, is sampled at times {t = mT/p}, m ∈ Z,

which yields the discrete signal c[m]. A serial-to-parallel conversion (S/P) is then
applied to obtain the subsequences {cl[m]}, l = 1, . . . , p. The mth sample of the lth
sequence is given by

cl[m] = c (mT + (l − 1)T/p)

= (y(t) ∗ s∗(−t)) (mT + (l − 1)T/p)

=

∫ +∞

−∞
y(t)s∗

(
mT + (l − 1)

T

p
+ t

)
dt

=

〈
y(t), s

(
t+mT + (l − 1)

T

p

)〉
. (4.12)

The sequences {cl[m]}, l = 1, . . . , p correspond to periodically splitting the samples
at the output of the sampler, which are generated at a rate of p/T , into p sequences
at a rate of 1/T each.
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4. Identi�cation of Parametric Underspread Linear Systems

In the next section, we express the relationship between the sequences {cl[m]},
l = 1, . . . , p, obtained from (4.12) and the unknown sequences {ak[m]}, k = 1, . . . , K,
given in (4.10). We show that it is possible to formulate the following system of
equations, given in the matrix form as

d[m] = N(τ)b[m] , m ∈ Z (4.13)

where the p-length column vectors d[m] depend on the sequences {cl[m]}, the K-
length column vectors b[m] depend on the sequences {ak[m]} and the p×K matrix
N(τ) depends only on the unknown delays τk, k = 1, . . . , K. In fact, N(τ) is a
generalized Vandermonde matrix, de�ned as

N(τ) =


στ11 στ21 · · · στK1

στ12 στ22 · · · στK2
...

...
. . .

...
...

...
...

στ1p στ2p · · · στKp

 (4.14)

where 
σ1

σ2
...
σp

 =


e−j

2π
T (− p2)

e−j
2π
T (− p2+1)

...

e−j
2π
T ( p2−1)

 (4.15)

4.4. Matrix Formulation

Before describing the recovery step, we derive the matrix formulation (4.13) of
the identi�cation problem.
De�ne the p-length column vector c(f), whose lth element is the discrete-time

Fourier transform (DTFT) Cl(e
j2πfT ) of {cl[m]}. Similarly, de�ne the K-length

column vector a(f), whose kth element is the DTFT Ak(e
j2πfT ) of {ak[m]}, de�ned

in (4.10). The relation between these two vectors is expressed as follows.

Cl(e
j2πfT )

M
=

∑
m∈Z

cl[m]e−j2πfmT

(from (4.12)) =
∑
m∈Z

〈
y(t), s

(
t+mT + (l − 1)

T

p

)〉
e−j2πfmT

(from (4.9)) =
K∑
k=1

N−1∑
n=0

ak[n]
∑
m∈Z

〈
g(t− nT − τk), s

(
t+mT + (l − 1)

T

p

)〉
e−j2πfmT

=
K∑
k=1

N−1∑
n=0

ak[n]
∑
m∈Z

(ĝ ∗ ŝ)(mT )e−j2πfmT (4.16)

where the functions ĝ(t) and ŝ(t) are de�ned as

ĝ(t)
M
= g(t− nT − τk) (4.17)

ŝ(t)
M
= s∗

(
−t− (l − 1)

T

p

)
(4.18)
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4.4. Matrix Formulation

According to the Poisson summation formula, equation (4.16) becomes

Cl(e
j2πfT ) =

K∑
k=1

N−1∑
n=0

ak[n]
1

T

∑
i∈Z

Ĝ

(
f +

i

T

)
Ŝ

(
f +

i

T

)
(4.19)

where Ĝ(f) and Ŝ(f) are the continuous Fourier transforms of ĝ(t) and ŝ(t), respec-
tively. According to (4.17) and (4.18), they are given by

Ĝ(f) = G(f)e−j2πf(nT+τk) (4.20)

Ŝ(f) = S∗(f)e+j2πf(l−1)T
p (4.21)

where G(f) is the continuous Fourier transform of g(t). Substituting (4.20) and
(4.21) into (4.19) yields

Cl(e
j2πfT ) =

K∑
k=1

N−1∑
n=0

ak[n]
1

T

∑
i∈Z

G

(
f +

i

T

)
S∗
(
f +

i

T

)
ej2π(f+ i

T )((l−1)T
p
−nT−τk)

=
K∑
k=1

e−j2πfτk

[
N−1∑
n=0

ak[n]e−j2πfnT

]∑
i∈Z

Gl,iNi,k

=
K∑
k=1

e−j2πfτkAk(e
j2πfT )

∑
i∈Z

Gl,iNi,k (4.22)

where Gl,i and Ni,k are de�ned as

Gl,i
M
=

1

T
G

(
f +

i

T

)
S∗
(
f +

i

T

)
ej2π(f+ i

T )(l−1)T
p (4.23)

Ni,k
M
= e−j2π

i
T
τk (4.24)

Now, since Cl(e
j2πfT ) and Ak(e

j2πfT ) are 1/T periodic, assume that f ∈ [0, 1/T ].
As a consequence, f + i/T ∈ [ i

T
, i+1
T

], i ∈ Z. Comparing this interval with the
support of S∗(f) in (4.11), the values of i that make [ i

T
, i+1
T

] �t into F are i =
{−p/2, . . . , p/2− 1}, since S∗(f + i

T
) = 0 for i < p/2 and for i > p/2− 1. Therefore

the last summation in (4.22) involves only p nonzero terms, i.e.,

Cl(e
j2πfT ) =

K∑
k=1

e−j2πfτkAk(e
j2πfT )

p/2−1∑
i=−p/2

Gl,iNi,k. (4.25)

With the change of variable i′ = i + p/2 + 1, if i = {−p/2, . . . , p/2 − 1} then
i′ = {1, . . . , p}, which can be used as a row/column index. The relation (4.25) can
be expressed in the following matrix form

c(f) = W(f)N(τ)D(f, τ)a(f) (4.26)

where
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4. Identi�cation of Parametric Underspread Linear Systems

� The (l, i′)th element of the p× p matrix W(f) is given by Gl,i in (4.23), with
i = i′ − p/2− 1.

� The matrix N(τ) is a p × K generalized Vandermonde matrix with (i′, k)th
element given by Ni,k in (4.24), with i = i′ − p/2 − 1; note that N(τ) is the
same matrix involved in the �nal formulation, already de�ned in (4.14).

� The matrix D(f, τ) is a K ×K diagonal matrix whose kth diagonal element
is given by e−j2πfτk .

Assuming that matrix W(f) is invertible, (4.26) can be written as

W−1(f)c(f) = N(τ)D(f, τ)a(f). (4.27)

The conditions under which matrix W(f) is invertible are given in section 4.7. Now,
denoting the p-length column vector d(f) and the K-length column vector b(f) as
follows

d(f)
M
= W−1(f)c(f) (4.28)

b(f)
M
= D(f, τ)a(f) (4.29)

(4.27) becomes simply

d(f) = N(τ)b(f). (4.30)

Since N(τ) is not a function of f , the inverse DTFT can be applied to both the
left and right hand sides of (4.30) yielding

d[m] = N(τ)b[m] , m ∈ Z (4.31)

where the set of the lth elements of each vector d[m], m ∈ Z, indicated as {dl[m]},
forms the inverse DTFT of the lth element of d(f), indicated as Dl(e

j2πfT ), l =
1, . . . , p,

dl[m] = T

∫ 1/T

0

Dl(e
j2πfT )ej2πfmTdf , m ∈ Z. (4.32)

In the same way,

bk[m] = T

∫ 1/T

0

Bk(e
j2πfT )ej2πfmTdf , m ∈ Z (4.33)

where Bk(e
j2πfT ) is the kth element of b(f), k = 1, . . . , K, and the sequence {bk[m]}

is its inverse DTFT, given by the set of the kth elements of each vector b[m], m ∈ Z.

Note that the vectors d[m] can be reconstructed from the system response y(t) as,
from (4.28), they depend only on the samples {cl[m]} and on the structure of Fig.
4.4. On the other hand, N(τ)b[m] in (4.31) depends on the unknown parameters
(τk, νk, αk).
In the next section, we show how to recover the triplets (τk, νk, αk) from the in�nite

set of measurement vectors d[m] in (4.31).
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Figure 4.5.: Recovery stage for the identi�cation procedure.

4.5. Recovery Procedure: The Recovery Stage

The recovery stage consists of three steps.
In the �rst step, the measurement vectors d[m], or equivalently the sequences
{dl[m]}, are obtained from the sequences {cl[m]}, according to (4.28). In the second
step, the ESPRIT algorithm is used to recover the unknown delays τk from d[m].
Finally, in the third step, the recovered delays are used to obtain the Doppler-shifts
νk and the attenuation factors αk associated with each delay. The architecture of
the recovery stage is shown in Fig. 4.5, while the three steps are discussed in detail
below.

4.5.1. First step: recovery of the measurement vectors.

From the relation in (4.28) and according to the de�nition in (4.32) the measure-
ment vectors d[m] can be expressed as

d[m] = IDTFT {d(f)} [m] = IDTFT
{
W−1(f)c(f)

}
[m]. (4.34)

The direct relationship between the sequences {dl[m]} and {cl[m]} is here derived,
while the implementation of IDTFT {W−1(f)c(f)} is reported in the next section.
Denoting with Wlj(f) the (l, j)th element of the matrix W−1(f), the lth entry of
d[m] in (4.34) becomes

dl[m] = IDTFT
{
Dl(e

j2πfT )
}

[m]

= IDTFT
{
Wl1(f)C1(ej2πfT ) + . . .+Wlp(f)Cp(e

j2πfT )
}

[m]

= IDTFT
{
Wl1(f)C1(ej2πfT )

}
[m] + . . .+ IDTFT

{
Wlp(f)Cp(e

j2πfT )
}

[m]

= IDTFT {Wl1(f)} [m] ∗ c1[m] + . . .+ IDTFT {Wlp(f)} [m] ∗ cp[m]. (4.35)
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c1[m]

c2[m]
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+

+

+

dl[m]

Figure 4.6.: Recovery of the sequences {dl[m]} from {cl[m]}.

Each sample cj[m], j = 1, . . . , p, is �ltered with a �lter whose frequency response
is given by Wlj(f). The outputs are then summed to obtain the sample dl[m]. A
graphical representation of (4.35) is reported in Fig. 4.6.

4.5.2. Second step: ESPRIT algorithm and recovery of the

delays

Once the measurement vectors d[m] are reconstructed, relation (4.31) is used to
obtain the unknown delays τk. In fact, (4.31) describes an in�nite set of measure-
ment vectors d[m], m ∈ Z, each obtained by the same measurement matrix N(τ),
which has a �xed structure and is completely determined by the unknown delays τk,
according to (4.14) and (4.15). The same situation has been studied in the �eld of
direction-of-arrival estimation (DOA) and a method used for this type of problem is
the ESPRIT algorithm [24]. This algorithm belongs to a class of techniques, known
as subspace methods, which are based on separating the space generated by the mea-
surement vectors into two subspaces, the signal and the noise subspaces. Although
the ESPRIT algorithm needs the system to have the rotational invariance property,
which is satis�ed in our case, it is one of the most e�cient subspace method for this
type of problem. Before describing in detail the ESPRIT algorithm, we give an idea
of the rotational invariance property. It requires that the subsystems that recover
the sequences {dl[m]} are related by a proper phase shift, as it will be clear in the
following. In our case, the structure of the Vandermonde matrix N(τ) guarantees
the rotational invariance property.

We refer to the procedure described in [22], summarized also in [27].
Consider the matrix N(τ), given in (4.14). Create now two subsystems where

p− 1 sub channels upon the p sequences {dl[m]} are considered. In particular, the
�rst subsystem has {d1[m]}, {d2[m]},. . . , {dp−1[m]} and the second subsystem has
{d2[m]}, {d3[m]}, . . . , {dp[m]}. We denote with N↓(τ) and N↑(τ) the matrices that
relate the p − 1 outputs of the �rst and the second subsystem, respectively, with
the input vectors b[m] in (4.31). In particular, N↓(τ) is de�ned as the submatrix
extracted from N(τ) by deleting the last row (referred to {dp[m]}), while N↑(τ) is
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4.5. Recovery Procedure: The Recovery Stage

the submatrix extracted from N(τ) by deleting the �rst row (referred to {d1[m]}).
Since N(τ) is a Vandermonde matrix, it satis�es the rotational invariance property,
as

N↑(τ) = N↓(τ)R(τ) (4.36)

where R(τ) is a diagonal K ×K matrix, given by

R(τ) = diag
{
e−j

2π
T
τ1 , . . . , e−j

2π
T
τK
}
. (4.37)

In order to recover the unknown delays τk, the goal of the ESPRIT algorithm is to
recover matrix R(τ) from vectors d[m]. De�ne the (p− 1)× p selection matrices J↓
and J↑ such that

N↓(τ) = J↓N(τ) (4.38)

N↑(τ) = J↑N(τ) (4.39)

It is easy to see that

J↓ = [Ip−1|0p−1] (4.40)

J↑ = [0p−1|Ip−1] (4.41)

where Ip−1 is the identity matrix of size p − 1 and 0p−1 is a (p − 1)-length column
vector of zero elements. Substituting (4.38) and (4.39) into (4.36) yields

J↑N(τ) = J↓N(τ)R(τ). (4.42)

We compute now the signal space, i.e., the vector space spanned the measurement
vectors d[m], reconstructed in the previous step. To this end, calculate the p × p
correlation matrix of d[m], as

Rdd
M
=
∑
m∈Z

d[m]dH [m]. (4.43)

Substituting (4.31) into (4.43) yields

Rdd =
∑
m∈Z

(N(τ)b[m])(N(τ)b[m])H

= N(τ)

(∑
m∈Z

b[m]bH [m]

)
NH(τ)

= N(τ)RbbN
H(τ) (4.44)

where Rbb is the K ×K correlation matrix of b[m].
Because of its Vandermonde structure, the columns of N(τ) are all linearly inde-

pendent. Since N(τ) and NH(τ) have full column- and row-rank, respectively, from
relation (4.44) matrices Rdd and Rbb have the same rank. We assume for simplicity
that matrix Rbb is nonsingular, i.e. it has full rank. This assumption is satis�ed if
all the sequences {bk[m]} de�ned in (4.33) are uncorrelated or partially correlated.
We analyze later the case of singular matrix Rbb. From the observations above

rank(Rdd) = rank(Rbb) = K. (4.45)
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According to the relation in (4.45), matrix Rdd is singular and has p − K zero
eigenvalues. Indicating with Λs the K ×K diagonal matrix containing the nonzero
eigenvalues of Rdd, the eigenvalue decomposition of Rdd becomes

Rdd = EsΛsE
H
s (4.46)

where the columns of the p × K matrix Es are the K eigenvectors corresponding
to the nonzero eigenvalues of Rdd. The columns of Es constitute the signal space,
the space spanned by vectors d[m]. We show now that Es and N(τ) have the same
column span. Indicating with En the p × (p − K) matrix whose columns are the
eigenvectors corresponding to the zero eigenvalues of Rdd, the column span of Es

is the orthogonal complement of the column span of En. Since the eigenvectors
in En are orthogonal to the columns of N(τ), as we prove in the following, the
eigenvectors in Es span the same spaced spanned by the columns of N(τ). In fact,
from the de�nition of En and from (4.44)

RddEn = 0p×(p−K) (4.47)

N(τ)RbbN
H(τ)En = 0p×(p−K) (4.48)

NH(τ)En = 0K×(p−K) (4.49)

where the step in (4.49) is due to the fact that the p ×K matrix N(τ)Rbb has full
column rank and therefore (N(τ)Rbb)

†(N(τ)Rbb) = IK .
Since Es and N(τ) have the same column span, there exists an invertible K ×K

matrix T such that
N(τ) = EsT. (4.50)

Substituting (4.50) into (4.42) yields

J↑EsT = J↓EsTR(τ) (4.51)

J↑Es = J↓EsTR(τ)T−1 (4.52)

J↑Es = J↓EsΦ (4.53)

where the K ×K matrix Φ is de�ned as

Φ
M
= TR(τ)T−1. (4.54)

From the de�nition of selection matrices in (4.40) and (4.41), equation (4.53) be-
comes

Es↑ = Es↓Φ (4.55)

where the (p− 1)×K matrices Es↑ and Es↓ are the submatrices extracted from Es

by deleting the last and the �rst row, respectively. Since Es has full column rank,
also Es↓ has full column rank and matrix Φ can be recovered from (4.55) as

Φ = E†s↓Es↑. (4.56)

The recovery of the unknown delays τk is completed since equation (4.54) rep-
resents the eigenvalue decomposition of matrix Φ and thus the delays τk in the
diagonal of matrix R(τ) can be recovered from the eigenvalues of matrix Φ, which
are equal to the eigenvalues of R(τ).
The ESPRIT algorithm steps are reported below.
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Algorithm 3. Delay Recovery Algorithm: ESPRIT algorithm
Input:

� Measurement vectors d[m], m ∈ Z.

Output:

� The cardinality K of the set of unknown delays.

� The delays τk, for k = 1, . . . , K.

Procedure:

(a) Construct the correlation matrix Rdd as

Rdd =
∑
m∈Z

d[m]dH [m]. (4.57)

(b) Recover K as the rank of Rdd.

(c) Perform an eigenvalue decomposition of Rdd and construct the matrix Es

consisting of the K eigenvectors corresponding to the K nonzero eigenval-
ues of Rdd as its columns.

(d) Compute the matrix Φ as
Φ = E†s↓Es↑ (4.58)

where Es↓ and Es↑ denote the submatrices extracted from Es by removing
its �rst row and its last row, respectively.

(e) Compute the eigenvalues of Φ, denoted by λk, k = 1, . . . , K.

(f) Recover the unknown delays as

τk = − T

2π
arg(λk) , k = 1, . . . , K. (4.59)

Before describing the third step of the recovery procedure, we analyze the case of
singular matrix Rbb. In this case the ESPRIT algorithm cannot be applied directly
because the rank of Rdd is smaller than K and its column span is not equal to the
entire signal subspace. An additional stage is then required.

The technique is proposed in [25] and is based on the smoothed correlation matrix
de�ned as follows. De�ne dl[m], l = 1, . . . , p−K, the (K + 1)-length subvectors of
d[m] given by

dl[m] = [dl[m] dl+1[m] . . . dl+K [m]]T , l = 1, . . . , p−K. (4.60)
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The smoothed correlation matrix Rdd is constructed as

Rdd =
1

p−K

p−K∑
l=1

∑
m∈Z

dl[m]dHl [m]. (4.61)

Since p ≥ 2K, then p−K ≥ K and according to the following theorem [25] the rank
of Rdd is K regardless of the rank of Rbb.

Theorem 5. If the number of subvectors dl[m] is greater or equal to the number
of the sequences in b[m], i.e., if p−K ≥ K, then the smoothed correlation matrix
Rdd has rank K.

The proof of the theorem is given in the appendix. We apply then the ESPRIT
algorithm on Rdd and refer its column rank as the signal space. The algorithm steps
are the same as before, substituting Rdd with Rdd.

Finally, we de�ne the smoothed correlation matrix Rdd if K is not known at the
recovery stage. In this case, since p ≥ 2K, it su�ces to take M = p/2 subvectors
dl[m] and (4.61) becomes

Rdd =
1

M

M∑
l=1

∑
m∈Z

dl[m]dHl [m] (4.62)

where dl[m] = [dl[m] dl+1[m] . . . dl+M [m]]T .

4.5.3. Third step: recovery of the Doppler-shifts and

attenuation factors

Once τk are known, the matrix N(τ) is recovered from (4.14) and b(f) can be
found from (4.30), as

b(f) = N†(τ)d(f) (4.63)

since N†(τ)N(τ) = IK because of the assumption p ≥ 2K. Finally, vector a(f) can
be recovered from (4.29) as

a(f) = D−1(f, τ)b(f) = D−1(f, τ)N†(τ)d(f) (4.64)

since the diagonal matrix D(f, τ) is always invertible.
The equivalent relations (4.63) and (4.64) in the time domain are given by

b[m] = IDTFT {b(f)} = N†(τ)d[m] (4.65)

a[m] = IDTFT {a(f)} = IDTFT
{
D−1(f, τ)b(f)

}
(4.66)

while the implementation of (4.65) and (4.66) is reported in the next section.
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The sequences {ak[n]} de�ned in (4.10), for n = 0, . . . , N − 1, are obtained from
vectors a[m], considering only m = 0, . . . , N − 1. In particular, for each m, the kth
component of the vector a[m] corresponds to the sample ak[m]. De�ne the N -length
column vector ak, whose nth element is ak[n], for k = 1, . . . , K. Then the relation
(4.10) can be expressed in the following matrix form

ak = αkXr(νk) , k = 1, . . . , K (4.67)

where

� X is an N ×N diagonal matrix whose nth diagonal element is given by xn.

� r(νk) is a N -length column vector whose nth element is given by ej2πνknT .

The matrix X in (4.67) can be inverted under the assumption that the sequence {xn}
is nonzero for n = 0, . . . , N − 1, i.e., |xn| > 0, ∀n. In this case, de�ning ãk = X−1ak,
(4.67) becomes

ãk = αkr(νk) , k = 1, . . . , K. (4.68)

For each value of k, the attenuation factor αk and the Doppler shift νk are given by

αk = ãk[0] (4.69)

ej2πνkT =
1

αk
ãk[1]→ νk =

1

j2πT
ln

(
1

αk
ãk[1]

)
. (4.70)

4.6. Implementation of the Recovery Stage

In this section we show how to implement the blocks indicated with W−1(f),
N†(τ) and D−1(f, τ) in Fig. 4.5.

We refer to the relations in (4.35) and in Fig. 4.6 that express the relationship in
the time domain between the input and the output sequences, whose DTFT vectors
are related by a multiplication of a frequency dependent matrix. According to
(4.35), if the matrix W−1(f) is diagonal, each output sequence is simply obtained
by �ltering only the corresponding input sequence with a �lter whose frequency
response is given in the diagonal of W−1(f).

We compute �rst the implementation of the block W−1(f). To this end, we
express the matrix W(f) as the product of simple matrices, i.e., diagonal or not
frequency dependent matrices, in order to have a simple and e�cient computation
of IDTFT{W−1(f)}.
From the de�nition in (4.23) and substituting the variable i with i′− p/2− 1, the
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4. Identi�cation of Parametric Underspread Linear Systems

(l, i′)th element of W(f) is given by

Gl,i =
1

T
G

(
f +

i

T

)
S∗
(
f +

i

T

)
ej2π(f+ i

T )(l−1)T
p

=
1

T
G

(
f +

i

T

)
S∗
(
f +

i

T

)
ej2πf(l−1)T

p ej
2π
p
i(l−1)

(i← i′ − p/2− 1) =
1

T
G

(
f +

i

T

)
S∗
(
f +

i

T

)
ej2πf(l−1)T

p ej
2π
p

(i′−1)(l−1)e−jπ(l−1)

=
[
(−1)l−1ej2πf(l−1)T

p

] [
ej

2π
p

(i′−1)(l−1)
] [ 1

T
G

(
f +

i

T

)
S∗
(
f +

i

T

)]
= Φl(f)F ∗l,i′Ψi′(f) (4.71)

where

Φl(f)
M
= (−1)l−1ej2πf(l−1)T

p (4.72)

Fl,i′
M
= e−j

2π
p

(i′−1)(l−1) (4.73)

Ψi′(f)
M
=

1

T
G

(
f +

1

T
(i′ − p/2− 1)

)
S∗
(
f +

1

T
(i′ − p/2− 1)

)
(4.74)

From (4.71), the following decomposition for matrix W(f) holds

W(f) = Φ(f)FHΨ(f) (4.75)

where

� The matrix Φ(f) is a p× p diagonal matrix whose l diagonal element is given
by Φl(f).

� The matrix F is a p-point discrete Fourier transform matrix with (l, i′)th ele-
ment equal to Fl,i′ .

� The matrix Ψ(f) is a p× p diagonal matrix whose i′ diagonal element is given
by Ψi′(f).

Assuming that W(f) is invertible and according to the decomposition in (4.75),
the inverse matrix W−1(f) can be expressed as

W−1(f) = Ψ−1(f)FΦ−1(f). (4.76)

As shown in Fig. 4.7, the implementation of IDTFT{W−1(f)} can be done in
three stages, where each stage corresponds to one of the three matrices in (4.76).
The �rst stage involves �ltering the sequences {cl[m]}, l = 1, . . . , p, using the set of
�lters

φl[m]
M
= IDTFT

{
Φ−1
l (f)

}
[m] = IDTFT

{
(−1)l−1e−j2πf(l−1)T

p

}
[m] , m ∈ Z (4.77)
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c1[m]

cp[m]

φ1[m]

φp[m]

c′1[m]

c′p[m]

FFT

c′′1[m]

c′′p[m]

ψ1[m]

ψp[m]

d1[m]

dp[m]

W−1(f)

Figure 4.7.: Implementation of W−1(f).

which return the sequences {c′l[m]}, m = 1, . . . , p. Next, multiplication with the
DFT matrix F can be e�ciently implemented by applying the Fast Fourier Trans-
form (FFT) to {c′l[m]}. Note that the entries of F are not frequency dependent and
the �lters of Fig. 4.6 reduce to simple multiplications by complex constants. The
resulting sequences are {c′′l [m]}, l = 1, . . . , p. Finally, the third step involves �ltering
{c′′l [m]} using the set of �lters

ψl[m]
M
= IDTFT

{
Ψ−1
l (f)

}
[m] , m ∈ Z

= IDTFT

{
T

[
G

(
f +

1

T
(l − p/2− 1)

)
S∗
(
f +

1

T
(l − p/2− 1)

)]−1
}

[m]

(4.78)

which get the desired sequences {dl[m]}, l = 1, . . . , p and compensate for the non-
�atness of the frequency responses of the prototype pulse and the impulse response
of the LPF. For each m, the vector d[m] is given by [d1[m] d2[m] . . . dp[m]]T .

Implementations of N†(τ) and D−1(f, τ) are simpler, since N†(τ) does not depend
on frequency and D−1(f, τ) is a diagonal matrix. In the latter case, each output
sequence {ak[m]} is obtained only from the corresponding sequences {bk[m]}, �ltered
with a �lter whose frequency response is given by ej2πfτk , k = 1, . . . , K. Note that the
frequency response of the kth �lter is the kth element of the diagonal of D−1(f, τ).
The implementation of the block D−1(f, τ) is reported in Fig. 4.8.

4.7. Su�cient Conditions for Identi�ability

In this section we derive the conditions under which the identi�cation of the system
(4.3) is possible and produces a unique solution. These conditions are expressed in
terms of equivalent requirements on the time-bandwidth product T W of the input
signal x(t) in (4.4).
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b1[m]

bK [m]

ej2πfτ1

ej2πfτK

a1[m]

aK [m]

D−1(f, τ)

Figure 4.8.: Implementation of D−1(f, τ).

First of all, we require that matrix W(f) in (4.26) is invertible. We make use of
the decomposition in (4.75) that expresses W(f) as the product of matrices Φ(f),
FH and Ψ(f). It is clear that W(f) is invertible if the three matrices are separately
invertible.
By construction, both the diagonal matrix Φ(f), whose diagonal entries are de-

�ned in (4.72), and FH , whose entries are de�ned in (4.73), are always invertible.
The invertibility of the diagonal matrix Ψ(f) is ensured if its entries in (4.74) are
nonzero, i.e., if the continuous-time Fourier transforms of the prototype pulse g(t)
and of the impulse response s∗(−t) of the LPF are nonzero within the spectral band
F in (4.11). This requirement leads to the following conditions:
Condition 1: a ≤ |G(f)| ≤ b, ∀f ∈ F , for some constants a > 0 and 0 < b <∞.
Condition 2: c ≤ |S(f)| ≤ d, ∀f ∈ F , for some constants c > 0 and 0 < d <∞.

Condition 2 can be made always satis�ed under a proper design of the LPF S∗(f).
Condition 1 requires that the bandwidth W of the prototype pulse g(t) is larger
than the bandwidth of s∗(−t), supported in F , i.e.,

W ≥ p

T
. (4.79)

If condition (4.79) is not satis�ed, then |S(f)| would be zero for all the frequencies
in F not included in W .

We provide now conditions for the unique recovery of the unknown delays τk. To
this end, equation (4.31) must admit a unique solution on the set of delays τk, given
by the ESPRIT procedure described before, and on the set of vectors b[m], m ∈ Z.
We let

d[Λ] = {d[m] , m ∈ Z} (4.80)

b[Λ] = {b[m] , m ∈ Z} (4.81)

denote the set of vectors d[m] and b[m], respectively. Using this notation, equation
(4.31) becomes compactly

d[Λ] = N(τ)b[Λ]. (4.82)
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We follow the analysis carried out in [22] and make use of the following theorem,
whose proof is given in the appendix, to �nd the conditions for the uniqueness of
the solution in (4.82).

Theorem 6. If (τ̄ , b̄[Λ]) is a solution of equation (4.82), if

p > 2K − dim(span(b̄[Λ])) (4.83)

and if
dim(span(b̄[Λ])) ≥ 1 (4.84)

then (τ̄ , b̄[Λ]) is the unique solution of (4.82).

The notation span(b̄[Λ]) indicates the minimal dimension subspace containing the
unknown vector set b̄[Λ]. The condition (4.84) is needed to avoid the case where
b̄[Λ] = 0.
Theorem 6 suggests that a unique recovery of the set of delays τk is guaranteed

through a proper selection of the parameter p. In particular, since dim(span(b̄[Λ]))
is a positive number, the condition

p ≥ 2K (4.85)

is a su�cient condition for a unique recovery of the unknown delays.
Combining condition (4.85) with (4.79), we �nd the su�cient condition on the

bandwidth of the input signal as

W ≥ 2K

T
. (4.86)

Finally, the recovery of the Doppler-shifts νk and of the attenuation factors αk is
unique if simply the number N of pulses of the input signal x(t) is not less than 2,
i.e.,

N ≥ 2. (4.87)

In fact, from equations (4.69) and (4.70) only 2 samples of vectors ak[m] su�ces
to recover the parameters αk and νk, since 2 equations are needed to recover 2
unknowns in a linear system of equations.
Recalling from (4.5) that the time support T of x(t) is given by N times the time

support T of the prototype pulse g(t), the su�cient condition on the time support
T is

T = NT ≥ 2T. (4.88)

Combining (4.86) and (4.88), the su�cient conditions on the time-bandwidth
product of the input signal that provide a unique identi�cation of the system (4.3)
are given by

T W ≥ 4K (4.89)

already presented in Theorem 4.
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x1(t)

x2(t)

xI(t)

sH1

sH2

sHI

y1(t)

y2(t)

yI(t)

Σ
y(t)

Figure 4.9.: System with multiple inputs.

4.8. Identi�cation for Multiple Inputs

In the previous sections, the identi�cation of the system (4.3) with one input
signal was analyzed. The extension to a multiple inputs system is considered here.
As shown in Fig. 4.9, the response of the system is given by the sum of the responses
yi(t) of the single subsystems, i.e.,

y(t) =
I∑
i=1

yi(t) =
I∑
i=1

∫
τ

∫
ν

sHi(τ, ν)xi(t− τ)ej2πνtdνdτ (4.90)

where I is the number of inputs and sHi(τ, ν) is the spreading function corresponding
to the ith subsystem with input xi(t) and output yi(t). Assuming that each spreading
function sHi(τ, ν) has the same form as in (4.2), i.e.,

sHi(τ, ν) =

Ki∑
j=1

αi,jδ(τ − τi,j)δ(ν − νi,j) (4.91)

the input-output relation in (4.90) becomes

y(t) =
I∑
i=1

Ki∑
j=1

αi,jxi(t− τi,j)ej2πνi,jt (4.92)

where Ki represents the cadinality of the set of delays τi,j and Doppler-shifts νi,j,
associated to the ith input. As shown for the system with one input, the parameters
that completely describe the system are the triplets (αi,j, τi,j, νi,j), for i = 1, . . . , I

and j = 1, . . . , Ki. The number of triplets is indicated with K =
∑I

i=1 Ki.
Now, suppose that the assumption A) is still valid for each subsystem sHi(τ, ν)

and indicate with τmaxi and νmaxi the delay spread and the Doppler spread of the
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ith system, respectively. De�ne parameters τmax and νmax as

τmax
M
= max

i
τmaxi (4.93)

νmax
M
= max

i
νmaxi (4.94)

and consider that each system sHi(τ, ν) has delay spread τmax and Doppler spread
νmax. The probing signals xi(t) are chosen as

xi(t) = x(t− (i− 1)τmax) , i = 1, . . . , I (4.95)

where the signal x(t) is de�ned in (4.4). In other words, the �rst probing signal
is exactly the signal in (4.4), x1(t) = x(t), while each other probing signal xi(t) is
obtained from the previous one xi−1(t) according to a time shift of τmax, xi(t) =
xi−1(t− τmax), for i = 2, . . . , I.
Substituting the inputs (4.95) into (4.92) yields

y(t) =
I∑
i=1

Ki∑
j=1

αi,jx(t− (i− 1)τmax − τi,j)ej2πνi,jt (4.96)

=
I∑
i=1

Ki∑
j=1

αi,jx(t− τ̃i,j)ej2πνi,jt (4.97)

=
K∑
k=1

αkx(t− τ̃k)ej2πνkt (4.98)

where in (4.97) τ̃i,j
M
= (i − 1)τmax + τi,j. Notice that the relation (4.98) in the case

of multiple inputs has exactly the same form as the relation (4.3) for a single input.
This suggests to use the same procedure described before to recover the triplets
(αk, τ̃k, νk), considering y(t) in (4.98) as the response of a single system s̃H , with
the single input x(t). In fact, relations (4.96)-(4.98) can describe the response of a
system with spreading function given by

s̃H(τ, ν) =
I∑
i=1

Ki∑
j=1

αi,jδ(τ − (i− 1)τmax − τi,j)δ(ν − νi,j) (4.99)

=
I∑
i=1

Ki∑
j=1

αi,jδ(τ − τ̃i,j)δ(ν − νi,j) (4.100)

=
K∑
k=1

αkδ(τ − τ̃k)δ(ν − νk). (4.101)

Note that (4.101) is the same as (4.2).
An example of the spreading function s̃H is depicted in Fig. 4.10, starting from a

system with I = 3 inputs. According to the choice (4.95), the equivalent system can
be described by the single spreading function s̃H , obtained from the subsystems sHi
mapping their supports [0, τmax] × [0, νmax] one after the other in the (τ, ν)-plane.
The support of s̃H is given by [0, Iτmax]× [0, νmax] = [0, τ̃max]× [0, νmax].
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Figure 4.10.: Equivalent spreading function of a system with I = 3 inputs.
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Given that the assumptions B) and C) are satis�ed for each single subsystem,
then, if the number of inputs I is approximately small, they still remain valid also
for the equivalent system. In this case, the procedure described in sections 4.3 and
4.5 is used for recovering the triplets (αk, τ̃k, νk) in (4.98).
Finally, the original delays τi,j are recovered from τk or, equivalently, from τ̃i,j in

(4.97), as

if τ̃i,j ∈ [(i− 1)τmax, iτmax]

then τi,j = τ̃i,j − (i− 1)τmax (4.102)
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Appendix A
Proof of Theorem 5

To prove the theorem, we express the smoothed covariance matrix (4.61) in a
proper form. To this end we follow the same steps already seen for the ESPRIT
algorithm, in section 4.5, considering now p−K subsystems given by the sequences
in the subvectors dl[m], l = 1, . . . , p−K. Indicating with N1(τ) the K ×K matrix
whose rows are the �rstK rows of N(τ), the subvector d1[m] in (4.60) can be written
as

d1[m] = N1(τ)b[m]. (A.1)

According to the rotational invariance property, the subvectors in (4.60) are given
by

dl[m] = N1(τ)Rl−1(τ)b[m] , l = 1, . . . , p−K (A.2)

where the K ×K diagonal matrix R(τ) is de�ned in (4.37). For simplicity we omit
the τ dependence and indicate R(τ) simply with R. Substituting (A.2) into (4.61),
Rdd becomes

Rdd =
1

p−K

p−K∑
l=1

∑
m∈Z

(
N1(τ)Rl−1b[m]

) (
N1(τ)Rl−1b[m]

)H
=

1

p−K

p−K∑
l=1

∑
m∈Z

(
N1(τ)Rl−1

)
(b[m]bH [m])

(
N1(τ)Rl−1

)H
=

1

p−K

p−K∑
l=1

(
N1(τ)Rl−1

)(∑
m∈Z

b[m]bH [m]

)(
N1(τ)Rl−1

)H
= N1(τ)

(
1

p−K

p−K∑
l=1

Rl−1RbbR
∗l−1

)
NH

1 (τ)

= N1(τ)RbbN
H
1 (τ) (A.3)

where Rbb is the modi�ed covariance matrix of the sequences in b[m]. Note that
from de�nition in (4.37), RH = R∗. Since N1(τ) has full rank by de�nition of
Vandermonde matrix, from (A.3) Rdd and Rbb have the same rank. Our task is then
to prove that Rbb has rank K.
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Matrix Rbb can be written as

Rbb =
[

IK R · · · Rp−K−1
]

diag

{
1

p−K
Rbb, . . . ,

1

p−K
Rbb

}
IK
R∗

...

R∗(p−K−1)


(A.4)

or, equivalently, as

Rbb =
[

C RC · · · Rp−K−1C
]


CH

CHR∗

...

CHR∗(p−K−1)

 (A.5)

where the K ×K matrix C is de�ned such that

CCH M
=

1

p−K
Rbb. (A.6)

Indicating with G
M
=
[

C RC · · · Rp−K−1C
]
, relation (A.5) becomes Rbb =

GGH . Now, if matrix G has full rank K, also Rbb has rank K. We prove then that
G has rank K.
By a permutation of the columns of G, we construct matrix G̃ that has the same

rank as G.

G̃ =

 c11g1 c12g1 · · · c1Kg1
...

... · · · ...
cK1gK cK2gK · · · cKKgK

 (A.7)

where cij is the (i, j)th element of the matrix C and gi is the (p − K)-length row
vector de�ned as

gi =
[

1 e−j
2π
T
τi · · · e−j

2π
T

(p−K−1)τi
]
, i = 1, . . . , K. (A.8)

From (A.7), it is easy to see that matrix G̃ has full rank if each row of matrix C is
nonzero and if the vectors gi are linearly independent. The former follows from the
de�nition in (A.6). If the kth row of C is zero, the kth element in the main diagonal
of Rbb is zero, which implies that the sequence {bk[m]} in b[m] has zero energy,
which is not possible. The latter follows from the assumption that p −K ≥ K. In
this case, the Vandermonde matrix whose rows are the vectors gi has full rank (K)
by de�nition, i.e., gi are linearly independent.
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Appendix B
Proof of Theorem 6

To prove the theorem, we make use of the following theorem, developed in [26].

Theorem 7. Consider the following system of equations

D = N(τ)B (B.1)

where the p×K matrix N(τ) is the Vandermonde matrix already de�ned in (4.14),
while the K × r matrix B and the p× r matrix D collect r vectors b[m] and d[m],
respectively, in their columns. Parameter r is de�ned as the rank of B.

r
M
= rank B (B.2)

The recovery of matrix N(τ) from the measurement vectors in D has a unique
solution if the following condition holds

p > 2K − r. (B.3)

Proof. In order to prove the theorem, we shall show that if condition (B.3) is true,
then {

D = N(τ)B
D 6= N(τ ′)B′

(B.4)

for every set of K delays τ ′k, di�erent from the set of delays τk at least for one value,
and for every set signals in B′.
We distinguish two di�erent cases, according to the number of pairs of common

delays between the sets τk and τ ′k. Let d indicate the number of pairs such that
τi = τ ′j for some values of i, j = 1, . . . , K. Then,{

0 ≤ d < 2K − p ⇒ case 1)
2K − p ≤ d < p ⇒ case 2)

(B.5)

Note that the �rst case includes also the situation in which τi 6= τ ′j for all the
values of i, j = 1, . . . , K, since this corresponds to d = 0.
Case 1) The system (B.4) can be expressed according to the following equation

N(τ)B−N(τ ′)B′ 6= 0 (B.6)
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or, in the matrix form,

[
N(τ) N(τ ′)

] [ B
−B′

]
6= 0. (B.7)

By de�nition of the null space of a matrix, relation (B.7) holds if no columns of[
B
−B′

]
belong to the null space of [N(τ) N(τ ′)] or, in other words, if the nullity

of the matrix [N(τ) N(τ ′)] is strictly smaller than the rank of the matrix

[
B
−B′

]
.

Denote
ζ = null

[
N(τ) N(τ ′)

]
. (B.8)

According to the Rank-Nullity Theorem,

ζ = 2K − rank
[

N(τ) N(τ ′)
]
. (B.9)

Since N(τ) and N(τ ′) are Vandermonde matrices, the columns of matrix [N(τ) N(τ ′)]
are linearly independent except for d repeated columns. Then,

rank
[

N(τ) N(τ ′)
]

= min{p, 2K − d}. (B.10)

Now, the �rst case in (B.5) implies that p < 2K − d and, consequently, the rank in
(B.10) is equal to p. Relation (B.9) becomes then

ζ = 2K − p. (B.11)

Now, denoting

ν = rank

[
B
−B′

]
(B.12)

it is easy to see that ν can not be smaller than the rank of B, which implies that

ν ≥ r. (B.13)

Combining (B.11), (B.3) and (B.13) yields

ζ = 2K − p < r ≤ ν ⇒ ζ < ν (B.14)

which concludes the proof of the �rst case.
Case 2) In this case, the system (B.4) is equivalent to the following expression

N(τ)B̂− N̂(τ ′)B̂′ 6= 0 (B.15)

or, in matrix form, to [
N(τ) N̂(τ ′)

] [ B̂

−B̂′

]
6= 0 (B.16)

where the p×(K−d) matrix N̂(τ ′) is obtained from N(τ ′) by deleting the d columns
equal to the columns of N(τ), the (K − d) × r matrix B̂′ is obtained from B′ by
deleting the d rows corresponding to the deleted columns in N(τ ′) and the K × r
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Figure B.1.: Graphical representation of the equivalence between (B.7) and (B.16).
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matrix B̂ is obtained from B by adding the deleted rows of B̂′ to the corresponding
ones in B. A graphical example that represents how to obtain (B.16) from (B.7) is
depicted in Fig. B.1.

To prove the theorem, it su�ces to show that the nullity of the matrix
[
N(τ) N̂(τ ′)

]
is strictly smaller than the rank of the matrix

[
B̂

−B̂′

]
. Following the same steps

as before, denote
ζ̂ = null

[
N(τ) N̂(τ ′)

]
. (B.17)

According to the Rank-Nullity Theorem,

ζ̂ = 2K − d− rank
[

N(τ) N̂(τ ′)
]
. (B.18)

As before,
rank

[
N(τ) N̂(τ ′)

]
= min{p, 2K − d} = 2K − d (B.19)

since the second case in (B.5) implies that p ≥ 2K − d. Relation (B.18) becomes
then

ζ̂ = 0. (B.20)

Now, denoting

ν̂ = rank

[
B̂

−B̂′

]
(B.21)

it is easy to see that ν̂ ≥ 1; combining this result with (B.20) yields

ζ̂ < ν̂ (B.22)

which concludes the proof.

Returning back to the proof of the theorem 6, to prove that the solution (τ̄ , b̄[Λ])
is unique for the in�nite set of equations in (4.82) we need to express the system

d̄[Λ] = N(τ̄)b̄[Λ] (B.23)

according to the form (B.1) of the previous theorem. To this end, we denote r
M
=

dim(span(b̄[Λ])). From (4.84) r ≥ 1. Then we can chose r times m ∈ Λ that form
a �nite subset Λ̃ ⊂ Λ such that

dim(span(b̄[Λ̃]) = r. (B.24)

De�ne now the matrices D and B whose columns are the vector sets d̄[Λ̃] and b̄[Λ̃],
respectively. Then, a �nite representation of (B.23) is given by

D = N(τ̄)B. (B.25)

From its construction, the rank of matrix B is r and (4.83) is equivalent to p >
2K − r. According to the theorem 7, the solution (τ̄ ,B) is the unique solution to
(B.25).
Since the set of delays τ̄ is the unique solution to (B.25), it is also the unique

solution to the in�nite set of equations in (B.23). Finally, since N†(τ̄)N(τ̄) = IK
because of the assumption p ≥ 2K, for any set of vectors d̄[Λ], if b̄[Λ] is a solution
of (4.82), it is unique and given by

b̄[Λ] = N†(τ̄)d[Λ]. (B.26)
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