
DEPARTMENT OF INFORMATION ENGINEERING

Master Degree in Computer Engineering

On the Exact Solution of the
Capacitated Arc Routing Problem

Supervisor
Prof. Roberto Roberti

Candidato
Nicola Farronato

Graduation Date : November 30, 2023
Academic Year: 2022-2023



Summary

Vehicle Routing Problems (VRPs) are fundamental combinatorial optimization
challenges that arise in various real-world applications, encompassing delivery
services, transportation logistics, and supply chain management. These problems
involve efficiently routing a fleet of vehicles to service a set of geographically
dispersed locations while minimizing overall costs, such as travel distance, time,
or fuel consumption. The Capacitated Arc Routing Problem (CARP) is a specific
variant where vehicles are required to traverse predefined arcs to deliver goods or
provide services.

This thesis examines the transformation of the Capacitated Arc Routing Problem
to a modified version of the Capacitated Vehicle Routing Problem (CVRP) formula-
tion, first introduced by Baldacci and Maniezzo [7] in 2006. Capacitated Vehicle
Routing Problem is the most extensively studied version concerning vehicle routing:
its objective is to transport products from a depot to customers while reducing total
transportation expenses, and adhering to capacity constraints on each vehicle.

The exact solution to these complex problems today is addressed to Branch-and-
Cut-and-Price (BCP) algorithms, that integrate a branch-and-cut framework with
column generation techniques, addressing the inherent complexity of the problem
through a decomposition approach. The state-of-the-art Branch-and-Cut-and-Price
algorithms are represented by the VRPSolver framework, by Pessoa et al. [68].

The aim of this study is to modify the Capacitated Vehicle Routing Problem to
model it as a Resource Constraint Shortest Path Problem (RCSPP) and combine it
with features from the capacitated arc routing literature, such as valid inequalities
and branching properties, to adapt it to the VRPSolver.

Computational experiments demonstrate promising results by solving almost all
classical instances from the literature. Furthermore, the efficacy of this solution
could be compared to the cutting-edge approach for the capacitated arc routing
problem proposed by Pecin and Uchoa [63].
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Chapter 1

Introduction

1.1 The Vehicle Routing Problem
The Vehicle Routing Problem (VRP) is a fundamental combinatorial optimization

challenge in the field of operations research and logistics. It deals with efficiently
distributing goods or services from a central depot to a set of geographically dispersed
customers or delivery points using a fleet of vehicles. The objective is to design
optimal routes for each vehicle to minimize the total cost, which is often measured
in terms of distance traveled, time taken, fuel consumption, or other related metrics.

The VRP is paramount in various industries and applications due to its potential
to optimize logistical operations and reduce operational costs. It is a foundational
problem in transportation and distribution, impacting industries such as e-commerce,
retail, waste management, healthcare, and public transportation. By finding efficient
delivery routes, VRP contributes to reduced fuel consumption, lower transporta-
tion costs, improved customer satisfaction through timely deliveries, and overall
enhancement of operational efficiency. Consequently, it serves as a crucial tool for
organizations striving to streamline their supply chain and logistics management.

The VRP is a rich problem with many variations and extensions, each presenting
its own set of challenges. Some common variants include the Capacitated VRP
(CVRP), where each vehicle has a fixed capacity limit; the VRP with Time Windows
(VRPTW), which adds time constraints for customer visits; the Multiple Depot
VRP (MDVRP), involving multiple depots; the VRP with Split Deliveries (SDVRP),
allowing deliveries to be split among multiple vehicles; and the Capacitated Arc
Routing Problem (CARP), that focuses on finding minimum cost set of tours that
services a subset of streets with positive demand under capacity constraints.

Among all VRPs, the CVRP is of primary interest in literature due to its
generality. The next sections will highlight several problems that can be addressed
by the CVRP, including the significant issue of CARP. Despite its different roots,
the exact solution now utilizes many features found in CVRP solvers.
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Introduction

1.1.1 Capacitated Vehicle Routing Problem (CVRP)
The problem was proposed in the 1959 paper developed by Dantzig and Ramser

[28], under the name truck dispatching problem, as the optimal planning of routes for
a fleet of gasoline delivery trucks traveling between a bulk terminal and a multitude
of service stations supplied by the terminal. The paper proposes a mathematical
programming formulation and an algorithmic approach. Clarke and Wright [23]
offered the first successful approach in 1964, utilizing a greedy heuristic to achieve
an approximated solution.

Over the next sixty years, CVRP became one of the most studied problems and
assumed a major role in conferences and papers. For instance, Google Scholar found
728 works published in 2017 containing both “vehicle” and “routing” in the title.
Researchers over the years have proposed both exact and heuristic solutions, solving
increasingly complex problems of different versions of the CVRP. However, despite
the steps taken and the real-world relevance, CVRP can only be solved by exact
algorithms for relatively small instances, on the order of hundreds of customers.

The problem is indeed NP-hard in the strong sense since CVRP is a generalization
of the well-known Travelling Salesman Problem (TSP). Given a list of cities and
the distance between each pair of cities, the TSP [38] aims to find the shortest
route that visits each city exactly once and returns to the starting city; in other
words, it’s about finding the most efficient way for a traveling salesman to visit
all the cities while minimizing the total distance traveled. TSP is an NP-hard
problem [42], that has been widely studied in literature, achieving very complex and
efficient algorithms, reaching to solve exactly a 85900-city tour instance [3] using
Concorde software. The TSP is thus a special case of the CVRP with one vehicle
and no capacity constraints. The CVRP, on the other hand, is a more practical
and realistic problem for many real-world applications and requires more complex
routing strategies and techniques to achieve the solution.

The complexity of CVRP inspired researchers to devise extremely intricate
algorithms: starting from the initial branch-and-bound methods, to the branch-
and-cut algorithms that dominated for several years, now branch-and-cut-and-price
produces optimal outcomes. Such algorithms require resolving intricate sub-problems
via dynamic programming and demand extensive effort to implement.

The reader is invited to consult book The Vehicle Routing Problem by Toth
and Vigo [73], for an overview of the subject, methodologies, and algorithms that
facilitated the current problem-solving solution.

1.1.2 Capacitated Arc Routing Problem (CARP)
The CARP finds its roots in the Arc Routing Problem, which arose from Euler’s

study of the Königsberg Bridge Problem. The problem centered on whether anyone
could discover a closed walk that covered all seven bridges, without retracing any
bridge. Euler devised a graphical representation of the problem and demonstrated
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1.1 – The Vehicle Routing Problem

the infeasibility of locating such a path. He extended his research to other graphs,
identifying the Eulerian cycle as the path in a graph that traverses each edge.

Another closely related problem was introduced by the Chinese mathematician
Meigu Guan [49], who in 1962 described it as "A mailman has to cover his assigned
segment before returning to the post office. The problem is to find the shortest
walking distance for the mailman". The problem is now called the Chinese Postman
Problem (CPP) and aims to find the minimum total distance subset of edges on a
connected undirected graph that, when added to the original graph, results in an
Eulerian graph.

A significant variant of the CPP is the Rural Postman Problem (RPP), introduced
in 1974 by Oroloff [61], in which certain arcs necessitate service while others can
only be used for traversal purposes. The RPP was demonstrated to be NP-hard
[51].

CARP was first described in 1981 by Golden and Wong [45] introducing a demand
for each required arc in an RPP. In the context of the CARP, the goal is to identify
a series of routes for a fleet of vehicles with limited capacity originating from a
central location. Each route must fulfill the demand while adhering to the vehicle’s
specific capacity and minimizing the overall cost.

The application range of such problem includes:

• Street Cleaning - trucks are equipped with a rotating brush, sweeping the
material into the truck that must be emptied;

• Salt Spreading - Special vehicles spread salt on icy roads. The capacity can be
understood as the amount of salt available for each vehicle. Additionally, the
routes can be prioritized based on the level of traffic to determine which areas
are in greatest need of cleaning;

• Road maintenance - In this scenario, a fleet of vehicles has to inspect a
predetermined set of roads to visually assess the operational status of the said
routes, identify any existing damages, and perform any other necessary tasks.
The time available for each vehicle every day is restricted, resulting in the
development of a model based on a CARP, in which the available time dictates
the maximum length of each route.

Regarding the CVRP, the CARP solution employs identical procedures. Addi-
tionally, numerous algorithms include particular cuts and characteristics associated
with the CVRP to resolve the CARP with efficiency, as indicated in chapter 3 for
the reader’s reference. Today, branch-and-cut-and-price algorithms are the most
noteworthy, as they lead to the solution of almost all classical literature instances.

The reader is finally referred to the book [26] for further information regarding
Arc Routing Problems.
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1.2 Contributions
Although their origins lay in different problems, today the solution of CARP is

closely linked to the progress made with CVRP. This work proposes a revisitation
of the transformation from CARP to CVRP, proposed by Baldacci and Maniezzo in
2006 [7]. This transformation, outlined in chapter 5, translates a CARP instance
with |R| required edges in a CVRP one with 2|R| + 1 nodes. The authors created a
Branch-and-cut(BC) algorithm, which was considered the most advanced technique
for the CVRP during that period. The algorithm achieved improved lower bounds
for certain classical instances and managed to solve instances requiring up to 98
edges at optimality.

Nowadays Branch-and-Cut-and-Price(BPC), a technology based on Column-
Generation(CG), is the state-of-the-art technique for solving the CVRP. Since the
transformation of Baldacci and Maniezzo is very general, this study aims to test it
using the BPC technique. To do that, the VRPSolver from Pessoa et al. [68] was
employed. VRPSolver is a generic solver that incorporates all major contributions
developed through the years for the VRPs solution. Extensive experimentation across
various variants has demonstrated that the all-purpose solver has an exceptional
performance overall, surpassing the best specific algorithms in numerous problems.

The proposed solution will be implemented through VRPSolver, tested on all
classical instances, and will be compared to the most successful methods for the
exact solution of CARP.

1.3 Outline
The initial chapter of this paper introduces and explores two related issues,

CVRP and CARP, tracing their origins and revealing their interdependence. In
chapter 2 both issues are formalized using mathematical and integer programming
models. Chapter 3 provides a comprehensive review of essential stages in literature,
from classical branch-and-cut techniques implemented in the CVRP to cutting-edge
methods for addressing CVRP and CARP, i.e. Branch-and-cut-and-Price (BCP).
Chapter 4 presents an outline of the BCP method, showcasing its salient features
and recent advancements. Chapter 5 describes the proposed experiment, detailing
the transformation from CVRP to CARP, and also the details of the implementation
through the VRPSolver. The results are presented in chapter 6, revealing the
overall performance of the proposed experiment along with a comparison with the
state-of-the-art results of CARPs. Finally, Chapter 7 summarises the work by
presenting the conclusion, along with potential future improvements.
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Chapter 2

Problem Statement

Integer Programming (IP) is a mathematical optimization method employed to
resolve decision and allocation issues where some or all of the decision variables
should take on integer values. It expands on the concept of linear programming,
which manages continuous decision variables, by stipulating that certain variables
must be integers. This additional constraint makes integer programming particularly
well-suited for problems requiring whole number decisions, such as determining
the number of items to manufacture, routes for vehicles to take, or projects to
undertake. IP formulation is composed of some fundamental components such as
decision variables, an objective function to optimize, and a set of constraints.

To solve an IP problem, one must discover the best values for the decision
variables that meet all constraints while also achieving the highest(lowest) possible
objective function value. Certain IP solvers and algorithms have been developed
specifically to tackle these types of issues. Some examples of well-known solvers are
CPLEX, Gurobi, and SCIP. These solvers employ techniques such as branch and
bound, cutting planes, and heuristics to address the problem efficiently.

In this chapter, the (Mixed) Integer Programming (MIP and IP) models for
CVRP and CARP will be described, following the basic mathematical description
of these problems.

2.1 CVRP Problem Description
The CVRP requires to transport of goods from a single depot, denoted as point

0, to a set of N costumers described by n points, N = {1, . . . , n}. Each customer
i ∈ N requires a given amount or weight of goods called demand, formulated as
qi ≥ 0. The fleet is composed by M = {1, . . . , m} identical vehicles; each vehicle
has a fixed capacity Q > 0. A vehicle that satisfies a customer set S ⊆ N , would
start at the depot, visit each customer in the set S and finally return to the depot.
Each move from i to j has a cost dij.
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Problem Statement

Therefore the CVRP can be described as follows. An undirected graph G =
(V ′, E), where V ′ = {0,1, . . . , n} is the set of n + 1 vertices and E is the set of edges.
The depot is represented by node 0 while the costumers are described by the set
V = V ′ \ {0}. G is complete, with edge set E = {e = (i, j) = (j, i) : i, j ∈ V, i /= j},
and edge cost dij for {i, j} ∈ E. An instance of CVRP is thus defined by the
weighted graph G = (V, E, dij, qi).

A route is defined as a least-cost elementary cycle R = (0, i1, . . . , ih,0), in which
the set S = {i1, . . . , ih} ⊆ N of costumers is visited. A route requires that the
total demands of the customers visited do not exceed the vehicle capacity i.e.
q(S) = ∑︁

i∈S qi ≤ Q; moreover, no customer is visited more than once.
Finally, the CVRP aims to design M least-cost routes, one for each vehicle, such

that all customers are visited exactly once.
Many mathematical formulations have been proposed for the CVRP, but only

a few of them were used for implementing exact algorithms. In this section, after
introducing fundamental notation, the most important formulations are explained.
It is possible to divide the formulations, depending on the exact algorithm to solve
the problem, between branch-and-cut algorithms and set partitioning formulation
algorithms.

As example, in Figure 2.1 instance E-n51-k5 is depicted. This instance has
51 nodes and 5 vehicles. In the image, the five optimal routes are highlited with
different colors. The paths from and to the depot node are denoted by dashed lines.

Notation

Let S ⊆ V be a subset of vertices. Given an undirected graph, a cutset is defined
as the set of edges with exactly one (both) endpoint(s) in S, δ(S) = {{i, j} ∈ E :
i ∈ S, j /∈ S||i /∈ S, j ∈ S}. For a customer subset S ⊆ N , let r(S) be the minimum
number of vehicle routes needed to serve S. In the CVRP the number r(S) can be
computed solving a bin packing problem, with N items of weight qi, i ∈ N and bins
of size Q.

2.1.1 Two-Index Vehicle Flow Formulations
The first formulation is the two-index vehicle flow introduced by Laporte,

Mercure, and Nobert in 1985 [50]. This formulation has a polynomial number of
variables with respect to n = |N | and an exponential number of constraints. The two-
index vehicle flow is suited to solve simple VRPs with mathematical programming
techniques i.e. using a direct MIP solver and/or branch-and-cut algorithms.

Let S = {S : S ⊆ V, |S| ≥ 2}, and let q(S) = ∑︁
i∈S qi be the total demand of

costumers in S ∈ S and k(s) the minimum number of vehicles of capacity Q needed
to service all costumers in S.

Let xij be an integer variable that takes value {0,1} ∀{i, j} ∈ E \{{0, j} : j ∈ V }
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2.1 – CVRP Problem Description

Figure 2.1: CVRP instance E-n51-k5 solution, with 51 nodes and 5 vehicles.

and value {0,1,2} ∀{0, j} ∈ E, j ∈ V . Note that x0j = 2 when a route including the
single customer j is selected in the solution.

The two-index vehicle flow formulation for the CVRP can be described as the
following integer programming (IP).

zF1 = minimize
∑︂

ij∈E

dijxij (2.1a)

subject to
∑︂

ij∈δ({h})
xij = 2, ∀h ∈ V, (2.1b)

∑︂
ij∈δ(S)

xij ≥ 2k(S), ∀S ∈ S, (2.1c)
∑︂
j∈V

= 2m, (2.1d)

xij ∈ {0, 1}, ∀{i, j} ∈ E \ {{0, j} : j ∈ V }, (2.1e)
x0j ∈ {0, 1, 2}, ∀{0, j}, j ∈ V (2.1f)
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Problem Statement

The objective value to minimize is given by (2.1a). Constraints (2.1b) are the
degree constraints stating that each customer is connected to a predecessor and
a successor. (2.1c) serves at the same time as capacity constraints and Subtour
Elimination Constraints (SECs) which, for any subset S of costumer that does
not include the depot, impose that r(S) vehicles enter and leave S. For instance,
consider an infeasible route over set S ⊆ S, with demand q(S) > Q. Since r(S) > 1
at least two routes must connect S with the complement V \ S; in such a way any
infeasible route is excluded. Moreover, any subtour over S ⊆ S has no connection
with the complement and due to r(S) > 1 this tour is also eliminated. Note that
the formulation remains valid if r(S) is replaced by the lower bound given by:

r(S) = ⌈q(S)/Q⌉. (2.2)

In this case (2.1c), using (2.2), takes the name rounded capacity constraints.
Constraint (2.1d) states that M vehicles must leave and return to the depot.

Finally (2.1e) and (2.1f) are the integrality constraints.
Laporte at al. [50] replaced constraint (2.1c) of F1 with the following constraint,

obtained from combining (2.1b) and (2.1c):∑︂
i∈S

∑︂
j∈S
i<j

xij ≤ |S| − r(S) ∀S ∈ S (2.3)

In all cases, the number of constraints grows exponentially with the number of
vertices. A basic technique used to handle this number of constraints is the Branch-
and-Cut(BC). The first step is to exclude SECs from the problem and solve the
linear relaxation, i.e. relaxing the integrality constraint (2.1e) and (2.1f). Therefore
the optimal solution obtained by an LP solver, zLP , will be a lower bound value
of the optimal value zF 1, i.e. zLP ≤ zF 1. The linear relaxation is then solved by
cutting plane technique, adding at each iteration the violated SEC identified, until
no more violated SEC are found. For a more extensive discussion about BC, the
reader is invited to read section (3.1) for a literature review.

2.1.2 Set Partitioning Formulation
The Set Partitioning (SP) formulation for CVRP was first proposed by Balinsky

et al. in 1964 [9] and is based on an extended set partitioning or set covering model.
Different from the formulations proposed in section (2.1.1), SP formulation employs
a small number of constraints and an exponential number of variables.

Let Ω be the index set of all feasible routes and aij a binary coefficient that is
equal to 1 if costumer i belongs to route j ∈ Ω, and takes value 0 otherwise. Each
route r ∈ Ω has an associated cost ĉr which corresponds to the sum of the edges
traversed. Let δ be a binary variable which is equal to 1 if and only if route j ∈ Ω
is in the optimal value. The SP formulation is then:
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2.2 – CARP Problem Description

zSP = minimize
∑︂
r∈Ω

ĉrδr (2.4a)

subject to
∑︂
r∈Ω

airδr = 1, ∀i ∈ V, (2.4b)
∑︂
r∈Ω

δr = m, (2.4c)

δr ∈ {0,1}, ∀r ∈ Ω (2.4d)

In (2.4a) the selected routes are minimized. (2.4b) are the set partitioning
constraints stating that each customer is visited exactly once. Constraint (2.4c)
requires that each vehicle is utilized.

Due to the exponential number of variables, model SP, cannot be used directly
to solve instances of large size. However, model SP is highly versatile and can
consider various route constraints, such as time windows. This is due to the implicit
consideration of route feasibility in defining the route set Ω. Moreover, as pointed
out in [19], the linear relaxation provides excellent lower bounds.

Although an outdated model, SP formulation is utilized by the state-of-the-art
CVRP solvers, the Branch-and-cut-and-price method, as described in Chapter 4.

2.2 CARP Problem Description
The CARP can be modeled as an undirected graph G = (V, E). V = {0, . . . , n}

is the set of |V | = n + 1 nodes, where node 0 is the depot. E is the set of edges with
endpoints in V . Each edge e ∈ E has an associated demand qe ≥ 0 and a travel cost
ce ≥ 0. The set of edges that require service is called required edges and denoted by
ER ⊆ E. Be m = |ER| the number of required edges and assume that the demand
is strictly positive while is zero for each non-required edges e ∈ E \ ER. Denote by
ie,je the two endpoints of each edge e and by A = {(ie, je), (je, ie) : e ∈ E} the set
of arcs associated with E. Conversely given a = (ie, je) ∈ A, the mapping e(a) gives
the corresponding edge e ∈ E. AR ⊆ A is then the set of arcs associated with the
required edges ER.

A walk R = (v0, e0, v1, e1, . . . , vp) in G is an alternating sequence of vertices
v0, . . . , vp ∈ V and edges ek = {vk, vk+1} ∈ E, k = 0, . . . , p − 1. The edges traversed
in a walk R are denoted by E(R). A CARP route is a walk R, where v0 = vp = 0
that serves a subset S(R) ⊆ E(R)∩ER of required edges such that the total demand
does not exceed Q. An edge that is traversed by a route but does not receive service,
or an edge that is traversed multiple times, is considered deadheaded by that route.
Likewise, a path that corresponds to a sequence of edges that are deadheaded by
the same route is also considered deadheaded by that route.

The objective of CARP is to identify K routes within Graph G such that each
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Problem Statement

necessary edge is serviced by precisely one route, minimizing the total cost of all
edges traversed during the corresponding walks.

2.2.1 Set Partitioning Formulation
Similarly, as 2.1.2 CARP can be formulated as an SP model. Let R be the index

set of all routes and αle the number of times that edge e ∈ ER is serviced by route
Rl, l ∈ R and βle the number of times that edge e ∈ E is traversed by route Rl.
Let Sl the set of required edges serviced by route Rl and dl = βle − αle the number
of times that route Rl deadheads edge e ∈ E. Define cl = ∑︁

e∈E βlece as the cost of
route Rl, l ∈ R. Let ξl be a binary coefficient equal to 1 if and only if route Rl is in
the solution. The set partitioning model can be formulated as an IP model:

zCARPCARP = minimize
∑︂
l∈R

clξl (2.5a)

subject to
∑︂
l∈R

αleξl = 1, ∀e ∈ ER, (2.5b)
∑︂
l∈R

ξl ≥ K, (2.5c)

ξl ∈ {0,1}, ∀l ∈ R (2.5d)

In the CARP literature, K is either fixed, free or bounded above. Similarly to
CVRP is possible to use a lower bound K = ⌈∑︁e∈ER

qe/Q⌉ as in (2.2). Constraint
(2.5b) specifies that each required edge is serviced by exactly one route and constraint
(2.5c) imposes the lower bound on the number of routes needed to service all required
edges.

SP formulation (2.5) is very general and is given to the reader in order to formalize
the problem. However, differently from CVRP, for the CARP the formulations in
literature are more specific to the type of algorithm proposed. Among the others,
notable formulations are:

1. The one-index formulation was first considered independently by Letchford
[52] and Belenguer and Benavent [12]. The method can generate lower bounds,
proven to be optimal or very precise for small and medium-sized instances.
However, the one-index formulation is considered a relaxation of the CARP,
due to the integer polyhedron associated with it generally containing infeasible
solutions.

2. Transformations to the CVRP as in Pearn, Assad, and Golden [62], Baldacci
and Maniezzo [7]; Longo, Poggi de Aragão and Uchoa [55] and Foulds, Longo,
and Martins [40]. These transformations exploit both formulations (2.1),(2.4)
and are explained in chapter 3.
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2.2 – CARP Problem Description

3. Pecin and Uchoa [63] developed a flow formulation by amalgamating a
selection of features derived from the CARP literature with some features
adjusted from the most accomplished contemporary algorithms for node routing.

4. Pessoa et al. [68] modeled the CARP as a Resource Constraint Shortest
Path problem (RCSP) over a directed graph. The general transformation in
RCSP is suited for the proposed VRPSolver.

CARP Example

8 16

4

12 20

1

2 3

4

(a) CARP with costs on edges.

1 3

3

1 1

1

2 3

4

(b) CARP with demands on edges.

Figure 2.2: Example of a CARP, with 4 nodes and 5 required edges.

In figure (2.2), a CARP network is represented, with 4 nodes and 5 edges, all
required. In the sub-figure (2.2(a)), the costs are pictured on the edges while in
(2.2(b)), the demands are reported. Node 1 is the depot node where the vehicles
must leave and return. Moreover, each vehicle has a capacity of 5.

The two optimal paths are then

1 − 3 − 2 − 1,

1 − 2 − 4 − 3 − 2 − 1

and are reported in figure (2.3) outlined by the two colors. The dashed lines represent
the edges that are deadheaded. Thus, the final cost is 80 as the sum of the edge
costs of the two paths. Note that each edge’s demand is met by only one vehicle,
indicated by the edge’s color. If an edge is deadheaded, the vehicle is not required
to meet the capacity constraint.
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1

2 3

4

Figure 2.3: Solution of CARP example.
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Chapter 3

Literature Review

This chapter details the significant advancements made in exact algorithms for
CPRV and CARP. For the CPRV, there will be two phases:

1. Classical exact algorithms span from problem formulation to the early
2000s. Firstly, the main improvements will be explained, starting from branch-
and-bound (BB) to branch-and-cut (BC) approaches, including the initial
application of the column generation (CG) method.

2. New exact algorithms : from the Early 2000s to Present Day. The focus
will be on the Branch-and-cut-and-price (BCP) algorithms, which represent
state-of-the-art techniques for the exact solution of CVRP.

The literature on the Capacitated Arc Routing Problem (CARP) intertwines with
that of the CVRP, using the same methods up to the present. Today’s state-of-
the-art approach uses the most advanced CVRP techniques to solve the CARP
exactly.

3.1 CPRV Classical Exact Algorithms
After the proposal of the CVRP problem by Dantzig and Ramser [28], numerous

authors sought an exact solution for it. The solution followed hand-in-hand the
progress made in several fields of IP problems. In this context, the advancements
made for the Travel Salesman Problem were fundamental for the success of the first
exact algorithms.

3.1.1 Branch-and-Bound
Branch-and-bound represents one of the first successful techniques employed to

solve exactly the CVRP. The first attempts follow the idea exploited for the TSP
solution. The main contributions are listed:
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1. Christofides et al. [21] developed a BB algorithm relaxing the problem by
dropping the SECs in a resulting Transportation Problem(TP) by following
Little et al. [54] combinatorial relaxation based on the Assignment Problem
(AP) or Shortest Spanning Tree (SST). The authors were able to solve two
small instances with 6 and 13 customers. Similarly Laporte et al. [50]
solved randomly generated Asymmetrical Capacitated Vehicle Routing Problem
(ACVRP) instances up to tens costumer and four vehicles.

2. Fischetti, Toth, and Vigo [36] in 1994 utilized an AP relaxation as a basis
for a bounding process founded on a disjunction of infeasible arc subsets,
improving the ACVRP relaxation bounds. The result was solving random
ACVRP instances up to 300 customers and four vehicles.

3. More sophisticated techniques were proposed by Miller [60] and Fisher [37]
to reinforce the CPRV relaxation by dualizing some relaxed constraints. Fisher
started from his K-tree relaxation and included in the objective function the de-
gree constraints (2.1b) and some SECs (2.1c) as Capacity Cut Constraints(CCC)
(see equation (2.2)). Miller added a set of SECs constraints that were removed
to obtain the relaxation. Since the number SEC/CCC constraints is expo-
nential (see section 2.1.1) both authors proposed to include iteratively only a
limited set of them. This technique allowed to solve a problem with n ≤ 100
costumers within 60,000s on an Apollo Domain 3000 (0.071 Mflops) for Fisher,
and problems with n ≤ 50 costumers within 15,000s on a Sun Sparc 2 (4
Mflops) for Miller.

3.1.2 Column Generation
Using the alternative Set Partitioning (SP) formulation proposed in section 2.1.2

Bramel and Simchi-Levi [19] developed a Column Generation (CG) approach in
order to deal with the exponential number of constraints. Their procedure starts
from a small subset of routes and solves the linear relaxation of the corresponding
reduced model (where constraint (2.4b) is substituted by ∑︁r∈Ω airδr ≥ 1) deriving
the optimal dual variables associated with the constraints. This work inspired
further literature leading to modern Branch-and-cut-and-price algorithms.

The first approach with SP formulation was proposed by Agawal et al. in 1989
[2] where the authors considered an unlimited number of vehicles, by removing
constraint (2.4c). To solve the resulting model, they implemented a CG approach
in which the pricing problem is faced through a dedicated BB algorithm. The
algorithm successfully solved Euclidean CVRP instances up to 25 customers.
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3.1.3 Branch-and-Cut
Most of the works for solving the CVRP from 1980 to the early 2000s were

addressed to Branch-and-Cut algorithms. These works are based on the two-index
formulation (see section 2.1.1) and are presented below.

1. Laporte et al. [50] developed a BC algorithm, not considering SEC constraints
(2.1c) and the integrality constraints (2.1e),(2.1f).From the relaxed model, the
violated SEC constraints were retrieved using a heuristic separation procedure.
All generated constraints were added to the model. Additionally, Gomory cuts
were introduced at the root node and a branching procedure was implemented
when no more constraints were found by the heuristic.

2. Augerat [4] in his PhD thesis separated four families of valid inequalities:
(i) the rounded capacity inequalities; (ii) the generalized capacity constraints;
(iii) the comb inequalities; (iv) the hypotour inequalities. Furthermore, a tabu
search-based heuristic was used to generate an initial upper bound and update
it based on the fractional solutions visited during the course of the algorithm.

3. Ralphs et al. [70], in 2003, proposed a BC algorithm with a new approach.
They first separated the capacity constraints, utilizing three heuristics. If the
heuristics could not detect a violated inequality, they suggested implementing
a decomposition algorithm to establish further constraints.

4. Lysgaard, Letchford and Eglese [57] developed a new BC algorithm in
2004. The authors exploited the family of inequality presented in [4], with the
same branching scheme. Furthermore, they disturbed the present fractional
solution by employing mixed-integer Gomory cuts at the root node.

5. Other significant contributions for BC algorithms were carried out by Achuthan
et al. [1], that developed a heuristic to separate rounded capacity constraints;
Blasum et al. [15] that developed new family of valid inequalities and Bal-
dacci, Hadjiconstantinou and Mingozzi [6] that presented a formulation
based on a two-commodity network flow.

3.2 CVRP New Exact Algorithms
Since Desrosiers, Soumis, and Desrochers [31] conducted their initial work in 1984,

there has been a significant amount of research dedicated to enhancing the efficiency
of Branch-and-Price (BP) and Branch-and-Price-and-Cut (BPC) algorithms, making
them the prominent algorithms for resolving many categories of VRPs.

This section shows a list of major contributions of BC and BPC algorithms that
are all based on CG procedure, using the SP model described in section 2.1.2. The
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concepts pertaining to BPC, as discussed, will be comprehensively addressed in
chapter 4.

1. Fukasawa et al. [41] developed an exact algorithm where the variables
correspond to the set of q-routes, described in [22]. Valid inequalities are
exploited as rounded capacity inequalities, framed capacity, strengthend comb,
multistar, partial multistar, generalized large multistar and hypotour inequalities,
as presented in [57]. This algorithm can achieve optimal solutions for all
instances documented in the literature, up to 135 customers, with significant
improvements compared to previous methods.

2. Baldacci, Christofides, and Mingozzi [5] proposed strengthen capacity
inequalities and clique inequalities in order to strengthen the SP model. The
algorithm does not branch and instead concludes at the root node by listing all
elementary routes with a reduced cost less than the duality gap. This creates an
SP problem that includes all of these routes and is provided to a Mixed-Integer
Programming (MIP) solver. This method solved almost all instances solved by
[41] with less time. However, the algorithm could fail on instances with long
routes.

3. Pessoa, Poggi de Aragão, and Uchoa [67] improved the work from Fuku-
sawa et al. [41] using the concept of basic route enumeration and MIP solving
to complete a node that was adopted from [5]. To prevent premature failure
when the root gap is too significant, a traditional branching approach was
incorporated into the process.

4. Baldacci, Mingozzi, and Roberti [8] proposed the ng-routes, a relaxation
that outperforms the q-routes with no k-cycles. ng-routes are used in the
earlier bounding procedures and also to speed up the pricing/enumeration of
elementary routes. The resulting algorithm was more stable and faster with
respect to [5], solving instances with long routes.

5. Contardo et al. [24] introduced innovations in the application of non-robust
cuts and route enumeration. The authors solved for the first time a hard
instance with 151 vertices and 12 vehicles.

6. Pecin et al. [64] developed a BPC algorithm, including all major improvements
from previous algorithms combined with new enhancements. The algorithm
was able to solve all classical instances from literature up to 200 vertices.

7. Pessoa et al. [68] proposed a generic solver for the vehicle routing problem
and related. The authors developed the state-of-the-art solution for the CVRP.
The VRPsolver found the exact solution for six opened instances of up to
548 customers. This tool can handle various VRPs and has outperformed the
previous state-of-the-art, thanks to extensive development efforts.
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3.3 CARP Major Contributions
This section provides an overview of the most successful exact method for solving

the CARP.

1. Belenguer and Benavent [12] proposed a vehicle-indexed compact for-
mulations. The authors developed a cutting plane algorithm, based on the
aggregation of the deadheaded variables using Odd-Edge-Cutset and CARP
Rounded Capacity as families of cuts. However, the proposed algorithm solved
very small instances with a small number of required edges.

2. Belenguer and Benavent [11] developed a BC algorithm exploiting the
families of cut of [12] and introducing Disjoint-Path inequalities, obtaining
significative lower bounds. Before this study, heuristic algorithms were the
primary method for discovering the best-known lower bounds for the CARP.

3. Several authors developed transformations from CARP to CPRV. Pearn et al.
in 1987 [62] were the first to propose such transformation, resulting in a CPRV
with 3|R| + 1 nodes. Baldacci and Maniezzo [7] and Longo, Poggi de
Aragão, and Uchoa [55] proposed independently, in 2006, a transformation
with 2|R| + 1 nodes. A BC algorithm was used by Baldacci and Maniezzo
and a BPC by Longo, Poggi de Aragão, and Uchoa. The transformation was
beneficial as the literature on the CVRP was more advanced at that time.

4. Bartolini et al. [10] devloped a cut-and-column based technique combined
with a set partitioning approach. The authors solved for the first time an
instance with 140 vertices and 190 edges (159 required edges).

5. Bode and Irnich [17] improved a proposed algorithm that introduced the
so-called follower/non-follower branching scheme [16]. The resulting BPC
solved to optimum 29 opened instances.

6. Pecin and Uchoa [63] reviewed previous formulations in the literature, high-
lighting their advantages and disadvantages. The authors developed a BCP
based on the main contributions of the CARP. This algorithm was successful
in solving nearly all classical instances and claimed a new state-of-the-art.

7. Pessoa et al. [68] modeled the CARP as a Resource Constrained Shortest
Path (RCSP) problem. The generic VRPsolver proposed by the authors was
able to solve almost all Eglese instances [33] as fast as [63].
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Chapter 4

Branch and Price and Cut

This chapter will introduce the Branch-and-Price(BP), Branch-and-Price-and-
Cut (BPC) algorithms and the Column Generation (CG) procedure, which are
fundamental components of contemporary solvers for VRPs. BP algorithms are
a form of BB algorithms where the linear relaxation is solved by CG. CG is an
iterative procedure that can efficiently handle linear programs when the number of
variables is large.

For further readings, the reader is referred to Feillet et al. [34] for a tutorial
on CG and BP for VRPs, Costa et al. [27] for an overview on BCP and the best
techniques developed in the literature, and Desrosiers and Lübbecke [30] for a more
general BP and BPC formulations and description.

In the following section the main components of a BPC will be presented, i.e.
CG (4.1), pricing problem (4.2), cutting planes (4.3) and branching decisions (4.4).

4.1 Column Generation
In the SP model, as described in section 2.1.2, the number of variables exhibits

exponential growth with the number of customers n, rendering it unmanageable
by BB approaches. This assessment can alternatively be addressed with a column
generation approach, thereby converting the BB to BP. At the root note of the BB
search tree, the Master Problem (MP) is defined as:

zMP = minimize
∑︂
r∈Ω

ĉrδr (4.1a)

subject to
∑︂
r∈Ω

airδr = 1, ∀i ∈ V, (4.1b)
∑︂
r∈Ω

δr = m, (4.1c)

δr ≥ 0, ∀r ∈ Ω (4.1d)
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(4.1) is the linear relaxation of (2.4), obtained by relaxing the integrality constraint
(2.4d). An optimal solution to the MP provides a valid dual bound at the root node
of the search tree. The Restricted Master Problem(RMP) is obtained from the MP
replacing Ω with a smaller subset of variables (possibly none) Ω′ ⊆ Ω.

Consider now the dual problem associated with the RMP as the Dual Restricted
Master Problem (DRMP):

zDRMP = maximize mπ0 +
∑︂
i∈V

πi (4.2a)

subject to π0 +
∑︂
i∈V

airπi ≤ ĉr, ∀r ∈ Ω′, (4.2b)

π0 ∈ R, (4.2c)
πi ∈ R, ∀i ∈ V (4.2d)

In each iteration of a CG procedure, an optimal solution of RMP and DRMP
is obtained, named respectively δ∗ and π∗. If the solution is feasible for the
Dual Matster Problem(DMP), then both DMP and MP are solved. If not means
that one or more constraints were violated in Ω \ Ω′. The principle behind the
column generation method is to find one or more of these constraints by solving
an appropriate optimization sub-problem, called Pricing Problem(PP), in order to
integrate the corresponding variables in the set Ω′. The algorithm terminates when
no violated constraint is identified. In a formal way, at each iteration, the following
equation is evaluated:

c̄r = ĉr −
∑︂
i∈V

airπi, (4.3)

when c̄r is negative, then the variable δ and its coefficient column are added to the
RPM, and the process is reiterated. On the contrary, if c̄r is positive, the current
solution δ∗ is an optimal solution for the MP.

4.2 Pricing Problem
The PP aims to find a feasible r ∈ Ω with negative reduced cost c̄r. Let set

π0 = 0 for notation conciseness, then the reduced cost c̄r of variable δr is:

c̄r = ĉr −
∑︂
i∈V

airπi =
∑︂
ij∈A

(ĉij − πi) =
∑︂
ij∈A

c̄ij (4.4)

with c̄ij = ĉij − πi as modified arc cost. PP is often expressed as finding the route
with the least reduced cost: this problem corresponds to an Elementary Shortest
Path Problem with Resource Constraints (ESPPRC). ESPPRC finds the shortest
path from the origin to the origin with the elementary constraint, i.e. each customer
must be visited at most once, and resource constraints as the load.
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The algorithm is shown to be strongly NP-hard [32]. Feillet et al. [35] proposed a
dynamic programming algorithm to solve the basic version of the problem. However,
for pricing the authors used a relaxation known as the (non-elementary) resource
constrained shortest path problem (RCSPP). The RCSPP allows routes with cy-
cles (i.e. multiple visits to customers). The RCSPP can be resolved through a
pseudopolynomial algorithm, as demonstrated in the work by Desrochers et al. [29].

The underlying problem then can be solved using a dynamic programming
algorithm known as labeling algorithm. In this algorithm, partial paths commence
from the depot node and are denoted by multi-dimensional resource vectors, known
as labels. Starting with a label assigned to the depot, resource extension functions
(REFs) are used to propagate labels forwardly through the network graph.

4.3 Cutting Planes
To enhance the lower bound for the MP, a typical technique in BPC includes

utilizing valid inequalities to reinforce the MP. There are two types of cuts, according
to Poggi and Uchoa [69]:

• Robust cuts: these cuts do not change the structure of the pricing problem
and can be expressed as arc-flow variables. Robust cuts are quite effective at
closing the integrality gap but may be not sufficient for hard instances of VRP.

• Non-robust cuts: are defined directly on the MP variables δr. These cuts
increase the problem’s complexity by modifying the pricing problem e.g. adding
additional resources and modifying the dominance rule. Non-robust cuts can
be effective in addressing complex instances, but they must be utilized with
caution.

CVRPs valid inequalities, such as rounded capacity, framed capacities, strength-
ened combs, multistars, and extended hypotours played a significant role in BC
algorithms, e.g. in Lysgaard et al. [57]. However, for BPC, most of the cuts are al-
ready implied through constraints (2.4b) and (2.4c). Letchford and Salazar González
[53] have demonstrated, in fact, that the cited constraints imply all generalized
large multistar cuts. Only rounded capacity cuts(RCC) (2.2) (see section 2.1.1) can
contribute to improving the lower bound at the root node.

In this section, a list of useful valid inequalities is presented. The reader is
referred to [27] for an overview of robust and non-robust cuts used in literature.

1. Strengthened Capacity Cuts(SCCs) introduced by Baldacci, Christofides,
and Mingozzi [5] exhibit greater strength w.r.t. RCC as they remain objective
to routes that may enter and exit set S ⊆ V more than once. On the other
hand, SCCs are non-robust cuts and affect the pricing problem.
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2. Subset Row Cuts(SRCs), developed by Jepsen et al. [48] are non-robust
cuts obtained as a subset of the Chvátal-Gomory rank-1 cuts. These cuts are
defined as: ∑︂

r∈Ω
⌊p
∑︂
i∈C

air⌋δr ≤ ⌊p|C|⌋, (4.5)

where C ⊆ V and 0 < p < 1. These cuts are NP-hard to separate (see
[48]), therefore, the subset C is typically separated through enumeration, with
|C| < 5. When |C| = 3 and p = 1/2 are named 3-SRCs and are the most
popular in literature, used in [25] and [8].

3. Limited-Memory SRCs are a viable solution for reducing the adverse effects
of SRCs on the PP. Pecin et al. [65] proposed these cuts, which are dependent
on a coefficient. The coefficient weakens the impact of SRCs over the pricing.

4.4 Branching Decisions
Branching is the last step in order to obtain an integer solution if the CG ends

with a duality gap. A first direction could be to choose δr as the variable for
branching, however, this solution would complicate the PP, generating an ESPPRC
with forbidden paths [74]. Moreover, such a branching procedure would result in a
completely unbalanced search tree.

A possible solution is to branch on the edge variables of the two-index formulation
(2.1.1). This solution can be implemented by branching either on the single edges
e ∈ E, such that xe ≤ 0 or xe ≥ 1, otherwise over sets S ⊆ V . In Fukasawa et
al. [41] the authors developed a BPC that branches on the sets. To enhance the
selection of the branching set, BCP implemented a strong branching strategy.
The primary characteristic of strong branching is the assessment through a heuristic
process of the relevant variables to generate a score using some functions. The
set or variable with the highest score is then chosen for branching. This method
can decrease the quantity of nodes to examine in the search tree, at the cost of an
increase in branching time.

This schema was improved by many authors. In Pecin et al. [65], for instance, a
three-step procedure was implemented. The first step (i) involves the candidate’s
construction by a pseudocost and new candidates each time. In the refinement
phase (ii) a lower bound and an upper bound are calculated for each candidate. The
small set of candidates retrieved from the second phase is finally evaluated using a
heuristic CG procedure (iii).

Another branching technique is the Ryan and Foster branching [71]. This
branching rule complicates the PP since is non-robust, on the other hand, results in
a more balanced search tree. Gélinas et al. [43] proposed another strategy, called
branching over the accumulated resource consumption that involves branching on
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resource variables (time for CVRPTW or capacity) rather than on network flow
variables. This solution does not increase the PP difficulty.
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Chapter 5

Experiment

In this chapter, the proposed experiment is exposed. As outlined in section 1.2,
the main idea is to exploit a transformation from CARP to CVRP and implement
it using VRPSolver, which is currently the most advanced tool for exact VRPs
solution.

5.1 CARP to CVRP Transformation
The transformation from CARP to CVRP, employed in this work, was proposed

by Baldacci and Maniezzo [7] in 2006. The authors developed a solution in order
to transform each required edge of a CARP instance into two nodes of a CVRP
network. Before Baldacci and Maniezzo, Pearn et al. [62] proposed to transform
each required edge in a triplet of nodes. However, the large number of nodes and a
network structure not completely connected discourages further developments.

Given a CARP network defined by G = (V, E), where V = {1, . . . , n} is the set
of nodes (plus a node for the depot). Let R be the set of required edges R ⊆ E
and VR ⊆ V be the set of edges containing endpoints of the required edges and the
depot. Finally, the cost of each edge is given by cij and the demand by qij for each
{i, j} ∈ E.

Let define the CVRP graph as Ĝ = (V̂ ′
, Ê). The set of nodes V̂

′ = {0,1, . . . ,2|R|}
corresponds to the endpoint nodes of CARP required edges R. Each node in VR

is replicated as many times a required edge is incident to it. The set of edges Ê
makes the graph complete.

For each edge {i, j} ∈ R, the corresponding edge in the CVRP graph is given by
{sij, sji} ∈ Ê. Let define R̂ as the set of edges in Ĝ corresponding to the set R in
G. Moreover, let the CARP instance have a known upper bound, UB.
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Given two edges in the CVRP graph, named sij ∈ Ê and skl ∈ Ê, the corre-
sponding cost ĉsijskl

with sij, skl /= 0 is given by:

ĉsijskl
=

⎧⎨⎩−UB if {sij, skl} ∈ R̂
1
2cij + dist(i, k) + 1

2ckl otherwise
. (5.1)

The cost ĉ0sij
from the depot node to the node sij is:

ĉ0sij
= dist(0, i) + 1

2cij. (5.2)

The element dist(i, k) is the shortest path from i ∈ V to j ∈ V in the CARP
network. The demand a node sij ∈ V̂ in the CVRP graph is then defined by q̂sij

with value:
q̂sij

= q̂sji
= 1

2qij ∀{sij, sji} ∈ R̂ (5.3)

Using a coefficient β that takes values in 0 ≤ β ≤ 1
2 , equations (5.1) and (5.2)

can be merged into:

ĉsijskl
=

⎧⎨⎩−UB + (1 − 2β)cij if {sij, skl} ∈ R̂

βcij + dist(i, k) + βckl otherwise
. (5.4)

This process does not generate a CVRP instance that is general. Altering the
parameter β and varying the upper bound UB values can result in distinct mappings,
which consequently change the solver’s computational burden. The authors suggested
fixing β = 1

2 , eliminating the upper bound and adding a mandatory edge between
each {sij, skl} ∈ R̂ instead. The final formulation is presented:

ĉsijskl
=

⎧⎨⎩0 if {sij, skl} ∈ R̂
1
2cij + dist(i, k) + 1

2ckl otherwise
. (5.5)

Equation (5.5) was then implemented with a modified two-index vehicle flow
formulation (see section 2.1.1), named Edge CVRP (ECVRP) as follows:

zECVRP = minimize
∑︂

ij∈E

ĉijxij (5.6a)

subject to (2.1b), (2.1c), (2.1d) and xij = 1, ∀{i, j} ∈ R̂, (5.6b)
xij ∈ {0, 1}, ∀{i, j} ∈ Ê (5.6c)

in which (5.6b) introduces the mandatory edges xij = 1, ∀{i, j} ∈ R̂ with zero
cost. Moreover, since each CARP edge is represented by two nodes in the CVRP
graph, there is no possibility of having the situation represented by equation (2.1f).
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Figure 5.1: CARP to CVRP transformation of the graph of Figure 2.2.

Transformation Example

In order to understand deeply this transformation an example is given, starting
from the one explained in section (2.2.1). In figure (5.1) the transformed network
of figure (2.2) is depicted. Each required edge is now represented by two nodes,
named after the two nodes that define the CARP edges, e.g. s12,s21 represent the
original edge e = (1,2). Moreover, near each node the vertex ID of the CVRP
network is reported as V̂

′ = {V0, . . . , V10}. The special node V0, is the depot, where
each vehicle must leave and return. The edges represented in the figure are the
mandatory edges, defined by equation (5.6b). The cost of such edges, as defined
in equation (5.5), is zero. Despite the edges represented, the real CVRP graph is
complete and the cost of the edges is reported as the distance matrix in Table 5.1.

The solution of such a network is shown in Figure (5.2). The two colors represent
the two vehicles’ paths, where the dashed line means that a vehicle is leaving or
returning to the depot. Finally, as in the example of section 2.2.1, the total cost is
80.
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V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

0 s12 s21 s13 s23 s23 s32 s24 s42 s34 s42

V0 0 − 4 12 8 20 10 14 14 26 22 30
V1 s12 4 − 0 12 24 14 18 18 30 26 34
V2 s21 12 0 − 20 16 6 10 10 22 18 26
V3 s13 8 12 20 − 0 18 22 22 34 30 38
V4 s31 20 24 16 0 − 14 10 18 30 18 34
V5 s23 10 14 6 18 14 − 0 8 20 16 24
V6 s32 14 18 10 22 10 0 − 12 24 12 28
V7 s24 14 18 10 22 18 8 12 − 0 20 28
V8 s42 26 30 22 34 30 20 24 0 − 32 16
V9 s34 22 26 18 30 18 16 12 20 32 − 0
V10 s42 30 34 26 38 34 24 28 28 16 0 −

Table 5.1: Distance matrix for the example of Figure 5.1.

V1 V3

V2

V5

V7

V4

V6

V9

V8 V10

V0

Depot

Figure 5.2: Solution of the example of Figure 5.1.
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5.2 VRPSolver
Pessoa et al. in 2020 presented their work "A Generic Exact Solver for Vehicle

Routing and Related Problems" [68]. The exact solver named VRPSolver aims to
find a solution for multiple VRPs using the BCP technique. The main idea was to
incorporate the best methodologies in the literature as ng-path relaxation, rank-1
cuts with limited memory, path enumeration, and rounded capacity cuts. These
features are all generalized through the concepts of packing set and elementarity set.

5.2.1 Basic Model Formulation
In the VRPSolver a generic model can be implemented as a Resource Constrained

Shortest Path (RCSP) problem. The basic model is now described, for more
information the reader is referred to the author’s paper [68].

Define a set R of resources, divided into main resources RM and secondary
resources RN . Let K be the set of subproblems, then for each k ∈ K define direct
graphs Gk = (V k, Ak). For each sub-problem, there are two special vertices, named
vk

source and vk
sink that represent the first and last vertices visited in the path. Note

that vertex vk
source can be equal to vk

sink. For each r ∈ Rk and for each a ∈ Ak, qar ∈ R
is the consumption of resource r in arc a. Moreover, assume that qar is non-negative
for r ∈ RM and unrestricted for r ∈ RN . There are finite accumulated resource
consumption intervals [lar, uar] for each r ∈ Rk and a ∈ Ak. The consumption
can also be defined on vertices instead of arcs. Define finally V = ⋃︁

k∈K V k and
A = ⋃︁

k∈K Ak.
A Path p = (vsource = v0, a1, v1, . . . , an, vn = vsink) over Gk is a Resource

Constrained Path if and only if for every r ∈ R, the accumulated resource
consumption Sjr at visit j, 0 ≤ j ≤ n, where S0r = 0 and Sjr = max{lajr, Sj−1,r +
qajr} does not exceed uajr.

Let P k for each k ∈ K be the set of all resource-constrained paths in Gk, and
P = ⋃︁

k∈K P k. Then the variables of the problem can be defined as either integer
and/or continuous. There are two types of variables:

• Mapped x variables : each variable xj, 1 ≤ j ≤ n1 is mapped into a non-empty
set M(xj) ⊂ A. The inverse mapping of arc a is M−1(a) = {j|a ∈ M(j)}.

• Additional non-mapped y variables.

For all a ∈ A and p ∈ P , let hp
a indicate how many times arc a appears in path

p. Given c ∈ Rn
1 , f ∈ Rn

2 , α ∈ Rm×n1 , β ∈ Rm×n2 and d ∈ Rm, the model is then
defined.
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minimize
n1∑︂

j=1
cjxj +

n2∑︂
s=1

fsys (5.7a)

subject to
n1∑︂

j=1
αijxj +

n2∑︂
j=1

βisys ≥ di, i = 1, . . . , m, (5.7b)

xj =
∑︂
k∈K

∑︂
p∈P k

⎛⎝ ∑︂
a∈M(j)

hp
a

⎞⎠λp, j = 1, . . . , n1, (5.7c)

Lk ≤
∑︂

p∈P k

λp ≤ Uk, k ∈ K, (5.7d)

λp ∈ Z+, p ∈ P, (5.7e)
xj ∈ N, yj ∈ N, j = 1, . . . , n̄1, s = 1, . . . , n̄2 (5.7f)

Equation (5.7a) is the objective function to minimize, with c and f cost vectors.
The inequalities (5.7b) define m general linear constraints over those variables, α
and β are the coefficient matrices, and d the right-hand side vector. (5.7b) may
contain an exponential number of constraints, provided that suitable separation
routines are given.

Then substituting x variable and relaxing integrality:

minimize
∑︂
k∈K

∑︂
p∈P

⎛⎝ n1∑︂
j=1

cj +
∑︂

a∈M(j)
hp

a

⎞⎠λp +
n2∑︂

s=1
fsys, (5.8a)

subject to
∑︂
k∈K

∑︂
p∈P

⎛⎝ n1∑︂
j=1

αij +
∑︂

a∈M(j)
hp

a

⎞⎠λp +
n2∑︂

s=1
βisys i = 1, . . . , m, (5.8b)

Lk ≤
∑︂

p∈P k

λp ≤ Uk, k ∈ K, (5.8c)

λp ≥ 0, p ∈ P (5.8d)
Master LP (5.8) is solved by column generation. Denote the dual variables of

(5.8b) as πi, 1 ≤ i ≤ m and the dual variables of (5.8c) as νk
+ and νk

−, k ∈ K. Then
the reduced cost of arc a ∈ A:

c̄a =
∑︂

j∈M−1(a)
cj −

m∑︂
i=1

∑︂
j∈M−1(a)

αijπi. (5.9)

The reduced cost of path p = (v0, a1, v1, . . . , an, vn) ∈ P k is:

c̄p =
m∑︂

i=1
c̄aj

− νk
+ − νk

−. (5.10)

The pricing sub-problem corresponds to finding, for each k ∈ K, a path p ∈ P k

with minimum reduced cost. The basic model leads to a standard BP algorithm, or
to a robust BCP if some constraints in (5.7b) are separated.
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Packing Sets and Elementarity Sets

One of the main contributions of this work is a generalization of the key additional
concepts found in those state-of-the-art algorithms, leading to the construction of
a powerful and still quite generic BCP algorithm. In order to do that, the new
concepts of packing sets and elementarity sets are introduced.

Let P ⊂ 2A be a collection of mutually disjoint subsets of A such that the
constraints: ∑︂

p∈P

(︄∑︂
a∈S

hp
a

)︄
λp ≤ 1 S ∈ P , (5.11)

are satisfied by at least one optimal solution (x∗, y∗, λ∗) of formulation (5.7). Then
P is a collection of packing sets. The arcs in each S ∈ P must not appear more
than once in any of the paths that form an optimal solution. The packing set’s
definition is integral to the problem’s modeling. Note that packing sets can be also
defined on vertices as follows. Let Pν ⊂ 2V ′ be a collection of mutually disjoint
subsets of V ′ such that the constraints:

∑︂
p∈P

(︄∑︂
v∈S

hp
v

)︄
λp ≤ 1 S ∈ Pν , (5.12)

are satisfied by at least one optimal solution x∗, y∗, λ∗ of formulation (5.7).
Let E ⊂ 2A be a collection of mutually disjoint subsets of A such that the

constraints: ∑︂
a∈S

hp
aλp ≤ 1, S ∈ E , p ∈ P (5.13)

are satisfied by at least one optimal solution (x∗, y∗, λ∗) of formulation (5.7). Each
element in E is then an elementarily set. That condition can be expressed as the
arcs in each S ∈ E must not appear more than once in any of the paths that form
an optimal solution.

Generalizing ng-paths

The bounds obtained by linear relaxation (5.8) can often be improved by only
working with elementary paths. However, the resulting pricing problems may be
intractable. The ng-paths [8] (see section 4.2) obtain a good compromise between
the bound quality and pricing difficulty.

For each arc a ∈ A, let NG(a) ⊆ P denote the ng-set of a. An ng-path may
use two arcs belonging to the same packing set S, but only if the subpath between
those two arcs passes by an arc a such that S /∈ NG(a). This concept represents
Generalized ng-paths.
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Limited Memory Rank-1 Cuts

Pecin et al. [65] proposed the Rank-1 Cuts (R1C) that are a generalization of the
Subset Row Cuts proposed by Jepsen et al. [48] in 2008 (see section 4.3). VRPsolver
further generalizes the concept as follows.

Consider a collection of packing sets P and multiplier ρS ∈ R+, for each S ∈ P .
A Chvátal-Gomory rounding of constraints (5.11) produces a generalized R1C:∑︂

p∈P

⌊︄∑︂
S∈P

ρS

∑︂
a∈S

hp
a

⌋︄
λp ≤

⌊︄∑︂
S∈P

ρS

⌋︄
. (5.14)

R1C cuts are very effective, on the other hand are not robust, so can impact on
the pricing problem. Limited memory technique is used to mitigate the negative
impact.

Path Enumeration

Path Enumeration is a technique proposed by Baldacci et al. [5] and improved
by Contardo and Martinelli [25]. It involves enumerating all possible paths within a
set P k that could be part of an improved solution. Subsequently, the related pricing
sub-problem k can be efficiently solved through inspection, resulting in time saved.
VRPSolver tries to enumerate all paths p ∈ P k

elem such that c̄(p) ≤ UB − LB where
UB is the best-known integer solution cost, and LB the value of the current linear
relaxation.

Branching

VRPSolver suggests branching over x and y in order to not change the structure
of the pricing subproblem. This solution may work in many models. However, if
it is not sufficient, the solver offers two ways to branch over λ variables, based on
packing sets:

• A generalization of Ryan and Foster branching rule [71] (see section 4.4) can
provide a balanced branching tree making the PP harder.

• The second strategy is branching over the accumulated consumption of a
resource, introduced by Gélinas et al. [43]. It does not increase the difficulty of
pricing, and it could be successful in practice by delaying (or even preventing)
the need for a branching approach that complicates pricing.

Rounded Capacity Cut Separators

Laporte and Norbert [50] proposed RCC cuts in 1986 as valid inequalities for
the CVRP. VRPSolver implements those cuts by exploiting the heuristic separation
routines developed in the library CVRPSEP by Lysgaard [56]. The RCC separator
feature can be used only if packing sets are defined on vertices.
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5.3 Additional robust cuts
The initial formulation was not robust enough to solve multiple instances. There-

fore, an additional valid inequality was embedded through a callback function as
Lifted Odd Edge Cutset. Odd Edge Cutset was introduced by Belenguer et al.
[12],[11] and are described as follows. Given a feasible solution ξ to the SP CARP
model (2.5), let ze, e ∈ E be an integer variable that represents the number of time
edge e is deadheaded:

ze =
∑︂
l∈R

dleξl. (5.15)

Define for each set of nodes S ⊆ V , δR(S) = δ(S) ∩ ER, where δ(S) is a cutset, as
defined in section 2.1. Define S = {S ⊆ V : |δR(S)| is odd}. Then odd edge cutset
inequalities are defined as: ∑︂

e∈δ(S)
ze ≥ 1, ∀S ∈ S. (5.16)

Equation (5.16) states that if |δR(S)| is odd then at least one edge incident to S
must be deadheaded. This is due to the fact that any feasible solution induces an
Eulerian graph. In order to strengthen the formulation let’s define the aggregate
variable yij representing the number of times that both shortest paths Pij and Pji

between i, j ∈ V are deadheaded:

yij =
∑︂
l∈R

ζ l
ijξl, ∀i, j ∈ V. (5.17)

Lifted odd edge cutset inequalities are then defined by:∑︂
i∈S

j∈V \S

yij ≥ 1, ∀S ∈ S. (5.18)

Since |δR(S)| is an odd number, every route will cross S an even number of times,
and each necessary edge will be serviced by only one route. As a result, there must
be at least one path-crossing node set S that needs to be deadheaded. Graph G is
symmetric so Pij = Pji, then ze can be expressed in terms of yij as:

ze =
∑︂

i,j∈V
i<j

e∈E(Pij)

yij, ∀e ∈ E. (5.19)

Finally, equations (5.16) and (5.19) can be formulated as:∑︂
i,j∈V
i<j

E(Pij∩δ(S)) /=∅

yij ≥ 1, ∀S ∈ S. (5.20)
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5.4 Implementation
The proposed algorithm was coded in order to exploit the VRPSolver. At

the website https://vrpsolver.math.u-bordeaux.fr/, VRPSolver can be down-
loaded only for academic use. The solver back-end is coded in C++ and given
as an extension of BaPCod a generic BCP solver [72]. The authors developed
a Julia interface in order to facilitate the implementation while not losing effi-
ciency. For this purpose, the code is written in Julia v1.4.2, available at the website
https://github.com/NicolaFarronato/CVRP_CARP. Moreover BaPCod employs
CPLEX 12.10 as MIP solver.

The machine used for the implementation is a 3.2GHz Intel Core i9-12900K, with
32GB of RAM and Ubuntu 22.04.2 LTS OS. All tests are performed using a single
core.

5.4.1 VRPSolver model
The implementation follows the considerations done in section 5.2. The proposed

CVRP is modeled as a single graph G = (V̂ ′
, Â), where A = {(i, j), (j, i) : (i, j) ∈ Ê},

vsource = vsink = 0. Only a main resource RM = {1}: the resource consumption
is defined as qa1 = (di + dj)/2, where di, i ∈ V̂

′ is the demand of a node. The
consumption interval is then defined as li1 = 0 for the lower bound and ui1 = Q for
the upper bound for i ∈ V . Moreover, in order to embed equation (5.6b), a secondary
resource RN = {2} that will be explained in section 5.4.2 was implemented. Finally,
xe, e ∈ E is the integer variable. The model formulation is:

minimize
∑︂
e∈E

cexe (5.21a)

subject to
∑︂

e∈δ(i)
xe = 2 i ∈ V, (5.21b)

xe ≤ 1 e ∈ E (5.21c)

Equation (5.21a) is the objective function that defines equation (5.7a). The degree
constraints, by equation (5.21b) define (5.7b). Note that xe cannot be more than
1 since every CARP edge is mapped into two nodes of the CVRP. Moreover the
mapping of x is given by M(xe) = {(i, j), (j, i)}, e = (i, j) ∈ Ê and defines constraint
(5.7c). The lowerbound L = ⌈∑︁n

i=1 di/Q⌉ and the upper bound U = n on the number
of vehicles define constraint (5.7d). Variables λ are implicitly defined by the set
of resource-constrained paths in G. The packing sets are defined on vertices as
Pν = Eν = ⋃︁

i∈V {{i}}.

42

https://vrpsolver.math.u-bordeaux.fr/
https://github.com/NicolaFarronato/CVRP_CARP


5.4 – Implementation

5.4.2 CARP to CVRP Transformation Details
The CARP instances are transformed into CVRPs one using the procedure in

section 5.1. The fundamental steps in the implementation are now listed:

• In order to calculate the shortest distance, required for each node, the Floyd-
Warshall algorithm [39],[47] was implemented. Two dictionaries are produced
as output: the distance dictionary shows the cost of the shortest path for two
given nodes, while the next dictionary provides an array as value, containing
the path from one node to the other, for a given pair of nodes as the key.

• Two functions, called v and v−1, have been introduced for the purpose of
enabling a straightforward change of problem domain from CARP to CVRP
and vice versa. These functions have been implemented as dictionaries, with
the keys for v being a tuple consisting of two nodes of the CARP graph and
the direction of the path as the source node. The value will be the node ID in
the CVRP graph. Conversely, v−1 keys refer to node IDs in the CVRP graph,
and their values are the two vertices and the direction in the CARP domain.

• The additional Lifted Odd Edge Cutset inequalities are implemented using the
Gomory-Hu tree algorithm [46] for separate the cuts. At the end of each CG
phase, the CVRP instance is mapped to the CARP instance, calculating the
number of times in which an edge is deadheaded. After the separation of the
cuts, using function v, the new cuts are obtained as CVRP constraints.

• A direct implementation of (5.6b) as a constraint for model (5.21) leads to a
very high time for the CG procedure. Therefore, in order to embed constraint
(5.6b), a secondary resource RN = {2} was used. The secondary resource
consumption is defined for each arc a = (i, j) ∈ A as:

qa,2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1.5 ∀{i,0} ∈ A

−1 ∀{i, j}, {j, i} ∈ R̂, i /= 0, j /= 0
1 ∀{i, j}, {j, i} /∈ R̂, i /= 0, j /= 0
1.5 ∀{0, i} ∈ A

. (5.22)

The consumption intervals are then defined

li,2 =

⎧⎨⎩0.5 ∀i ∈ V

0 otherwise
ui,2 =

⎧⎨⎩1.5 ∀i ∈ V

0 otherwise
. (5.23)

The idea is to model constraint (5.6b) as a modified Pickup and Delivery(PD)
problem. The PD problem involves transporting goods from a set of vertices
known as pickup nodes to another set known as delivery nodes. Every pickup
node has a corresponding delivery node that must be reached before returning
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to the depot. In this scenario, vertices i, j ∈ V , s.t. {i, j} ∈ R̂ can serve as
both pickup or depot nodes, depending on which node is reached first in the
current path. Therefore, after reaching the first node, it can be identified as
pickup and the following node must be the second node, recognized as delivery.

• A strong branching procedure is employed using two types of branching with
the same priority:

1. Branching on the CVRP x variables that is the original CVRP branching.
This type of branching does not affect the PP and is very effective, especially
deeper in the BB tree when other types of branching variables can be not
available.

2. Branching on the degree of vertices i ∈ V of the CARP network. This type
of branching was successfully employed in [68], [63], [17]. The PP is not
impacted, and these types of branching variables are generally preferred in
the initial nodes of the BB tree.
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Chapter 6

Results

6.1 Instances
Several standard benchmarks are employed to assess the efficacy of the algorithms

put forward by the authors. The website of Prof. S. Irnich proposes all classical
instances with the associated optimal values found in several literature works. The
instances adhere to a standard format that specifies the number of vertices, the
count of required and non-required arcs, the depot node, the number of vehicles
required, and a list of arcs that include associated costs and demands (if applicable)1.
The following instances are used to evaluate the proposed solution:

• Eglese Instances with 24 problems [33], based on real-world data of streets in
Lancashire (UK). The set was originally built for a gritting issue. The graphs
contain between 98 and 190 edges, with the required number of edges varying
between 51 and 190. This specific set of instances appears consistently in all
recent literature on CARP.

• BBCM Instances a.k.a. VAL Instances were introduced by Benavent et
al. [13] in 1992. Every CARP instance is defined over a randomly generated
graph with a number of vertices between 24 and 50 and a number of edges
between 39 and 97, all required.

• BMCV Instances with 100 problems [14], based on a partitioning of the
inter-city road network of Flanders (Belgium) into two districts, for solving a
winter gritting problem. The instances are divided into four groups C, D, E,
and F of 25 problems each. C and E present a capacity of Q = 300 while D,
and F have a capacity of Q = 600. Moreover, all the costs are multiple of 5,
thus the solutions will be multiples of 5.

1For further information about the standard format for CARP instances consult https://www.
uv.es/~belengue/carp/READ_ME
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Three other classes of instances are not reported: KSHS [58] and GDB [44] are
the easiest instances and are solved in a fraction of a second, while Egl-large [20]
are too hard for an exact solver.

6.1.1 Implementation Setup
For the algorithm that was implemented and described in Chapter 5, two param-

eter settings were given:

1. For the Eglese, the parameters include the use of Rank-1 Cuts with 50 cuts
per round, 120 candidates for the first strong branching phase, and 3 for the
second stage. The R1C is necessary for solving these hard instances even if the
PP is penalized.

2. For C, E from BMCV Rank-1 Cuts with 20 cuts per round are implemented,
then 100 candidates for the first strong branching phase and 2 for the second
stage. In this case, the R1C has more impact on the PP with respect to Eglese
instances and since the problems are easier, the number in each round was
reduced.

3. For Val, D, and F the Rank-1 Cuts are disabled. Since the routes in these
categories are lengthier, the Limited Memory R1Cs may not be as efficient
and could significantly prolong the pricing process. The strong branching was
reduced with respect to the other setting, using 50 candidates for the first stage
and 2 for the second in order to speed up the process.

The evaluations occur with a time limit of 14,400 seconds (4 hours) for the most
straightforward instances and 130,000 seconds for the most challenging ones. More-
over, no Ryan and Foster branching rule or branching over the accumulated con-
sumption of a resource was used.

Finally, the initial upper bounds for each experiment were chosen as the best
available bounds in the literature.

6.2 Empirical Results
6.2.1 Other Benchmarks

To facilitate comparison of the results obtained, a list of several algorithms that
were previously discussed in Chapter 3 is given. Each algorithm is accompanied by
its corresponding abbreviation and algorithm type.

• Longo, Poggi, and Uchoa [55] [LPU06] : BCP

• Bode and Irnich [16] BI12 : Cut-First Branch-and-Price
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• Bartolini, Cordeau, Laporte [10] BLC13 : Cut and column generation

• Bode and Irnich [18] BI14 : Cut-First Branch-and-Price Second

• Foulds, Longo, Martins [40] FLM15 : BCP

• Bode and Irnich [17] BI15 : Cut-First Branch-and-Price Second

• Martinelli, Malta, Poggi [59] MMP16 : Cut and column generation

• Diego Pecin, Eduardo Uchoa [63] PU19 : BCP

6.2.2 Summary of CARP instances
A summary comparison of the cited instances is now given. The tables contain

columns RGap that represent the average percent gap in the root node. This is
calculated based on the root lower bounds and in relation to the same upper bounds
that are best known. The table shows the average root times (in seconds) for each
processor listed as RT. To provide an idea of the processors’ relative speed, the
scores from the PassMark site are listed in table 6.1. The Opt columns indicate the
number of instances that the algorithm solved to optimality using either branching,
enumeration, or both methods. The count always encompasses situations wherein
the algorithm discovers a lower bound that demonstrates the present upper bound’s
optimality.

The results illustrate how the proposed algorithm solved nearly all classical
instances to the optimum. Additionally, among the solutions for the Eglese, C, and
E instances, the RGap column displays the lowest values. However, the remaining
three categories of instances demonstrate difficulties in solving the examples that
are conventionally viewed as easier, with high values for the root node evaluation
and root node gap. The forthcoming section, section 6.2.3, will elaborate on the
findings to address the encountered challenges.

6.2.3 Detailed CARP Instances
Tables (6.3),(6.4),(6.6),(6.5),(6.7),(6.8) show the details for each instance pre-

sented in section 6.1. The tables focus on the notable contribution of Pecin and
Uchoa’s PU19 work, as it presently dominates as the leading CARP algorithm.
Therefore, the key parameters for each instance are presented for comparison with
those obtained by the proposed algorithm. For the other authors described in section
6.2.1 only the total time is given. The following list describes those parameters:

• IUB : best upperbound available. The value was used to run the algorithm,
as the upper bound.

• OPT : value obtained at the end of the execution of the algorithm.
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Table 6.1: Processors used in the experiments.

Algorithm Processor Single-thread Score
LPU06 Pentium IV 2.4 GHz -
BI12 i7-2600 3.4 GHz 1740
BLC13 Xeon E5310 1.6 GHz 639
BI14 i7-2600 3.4 GHz 1740
FLM15 Core i3 3.0 GHz 1764
BI15 i7-2600 3.4 GHz 1740
MMP16 i7-3960X 3.3 GHz 1793
PU19 Xeon E5-2637 3.5 GHz 2203
Proposed BPC i9-12900K 3.2 GHz 4189

• RLB : root node lower bound for the proposed algorithm. This lower bound is
achieved by separating robust cuts (RCC and Lifted Odd-Edge-Cutset), and
non-robust R1C if applicable.

• RLBPU19 : root node lowerbound for the PU19 algorithm.

• T1 : time to evaluate the root node for this work in seconds.

• T1PU19 : time to evaluate the root node for PU19 in seconds.

• Nds : number of nodes in the BB tree explored by the proposed algorithm.

• NdsPU19 : number of nodes in the BB tree explored by the PU19 algorithm.

• TT : total time, in seconds, of running for the proposed algorithm.

• TTPU19 : total time, in seconds, of running for PU19 algorithm.

The rightmost columns represent the other algorithms’ results. If a value is present
then the instance is solved. BI15 does not display the total time in seconds but rather
indicates whether the instance was resolved within 4 hours or 12 hours. Moreover,
BI12, BI14, and BI15 do not employ external upper bounds, instead relying on
the algorithm to search for and demonstrate the feasibility and optimization of a
solution within a specified time limit. In cases where the algorithm concludes within
the time limit, the authors note whether the lower bound established is sufficient
to demonstrate the optimality of previously reported solutions. Finally, the bold
values in RLB columns highlight when the algorithm exceeds the value provided in
Pecin and Uchoa’s work.

48



6.2 – Empirical Results

Table 6.2: Summary of CARP benchmarks.

LPU06 BI12 BCL13
Class/NP RGap RT Opt RGap RT Opt RGap RT Opt
Eglese/24 0.57 1,334 2 0.77 582 5 0.30 3,268 10
Val/34 0.23 1,939 26 0.24 11 34 0.16 755 29
C/25 0.41 2,293 14
D/25 0.30 1,629 19
E/25 0.26 2,860 14
F/25 0.10 1,468 19
Total/158 28 39 105

BI14 FLM15 BI15
Class/NP RGap Opt RGap RT Opt RGap RT Opt
Eglese/24 0.61 6 0.96 61 4 0.51 2,601 7
Val/34
C/25 0.88 17 0.83 215 20
D/25 0.44 22 0.41 3,978 23
E/25 0.57 19 0.51 304 23
F/25 0.13 23 0.13 4,610 23
Total/158 87 4 96

MMP16 PU19 Proposed BPC
Class/NP RGap RT RGap RT Opt RGap RT Opt
Eglese/24 0.29 2,228 0.24 2,216 23 0.23 988 19
Val/34 0.18 45 34 0.56 89 34
C/25 0.29 462 25 0.28 173 24
D/25 0.30 74 25 0.66 254 25
E/25 0.17 489 25 0.17 283 25
F/25 0.08 55 24 0.40 378 24
Total/158 156 151
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6.3 – Discussion

Table 6.4: Detailed results for the C instances.

Ins IUB OPT RLB RLBPU19 T1 T1PU19 Nds NdsPU19 TT TTPU19 BCL13 BI14 BI15
C01 4,150 4,150 4,138 4,133 621.97 281.0 5 7 1,889 934 ≤ 12h
C02 3,135 3,135 3,135 3,135 28.81 5.3 1 1 28 5 5 60 ≤ 4h
C03 2,575 2,575 2,566 2,569 73.64 40.0 5 1 185 40 548 252 ≤ 4h
C04 3,510 3,510 3,494 3,494 158.66 95.0 27 5 1,435 188 4,403 ≤ 4h
C05 5,365 5,365 5,365 5,365 118.31 10.0 1 1 118 10 2,462 272 ≤ 4h
C06 2,535 2,535 2,524 2,525 38.01 28.0 5 3 161 63 1,278 196 ≤ 4h
C07 4,075 4,075 4,075 4,033 52.67 239.0 1 13 52 387 827 724 ≤ 4h
C08 4,090 4,090 4,090 4,090 38.56 12.0 1 1 38 12 95 634 ≤ 4h
C09 5,260 5,260 5,239 5,239 177.25 134.0 135 17 6,016 10,343
C10 4,700 4,700 4,666 4,660 48.47 30.0 3 21 60 100 128 1,493 ≤ 4h
C11 4,630 4,593 4,595 584.74 2,570.0 39 22,889
C12 4,240 4,240 4,210 4,209 118.99 137.0 3 3 202 193 ≤ 12h
C13 2,955 2,955 2,940 2,939 55.69 59.0 9 3 209 102 4,200 589 ≤ 4h
C14 4,030 4,030 4,021 4,020 41.48 8.2 3 1 44 8 381 ≤ 4h
C15 4,940 4,940 4,928 4,924 221.42 161.0 69 11 4,939 788
C16 1,475 1,475 1,475 1,475 22.64 1.5 1 1 22 1 24 196 ≤ 4h
C17 3,555 3,555 3,555 3,555 12.05 1.6 1 1 12 1 3 23 ≤ 4h
C18 5,605 5,605 5,580 5,584 626.35 963.0 25 27 3556 9,391
C19 3,115 3,115 3,115 3,115 89.12 31.0 1 1 89 31 6,706 ≤ 4h
C20 2,120 2,120 2,120 2,120 35.24 5.8 1 1 35 5 12 392 ≤ 4h
C21 3,970 3,970 3,962 3,963 232.75 53.0 23 3 5,561 75 3,284 ≤ 4h
C22 2,245 2,245 2,245 2,245 7.56 4.3 1 1 7 4 5 256 ≤ 4h
C23 4,085 4,085 4,040 4,072 786.21 6,214.0 76 7 22,317 7,783
C24 3,400 3,400 3,392 3,392 130.81 227.0 9 3 479 388 2,325 ≤ 4h
C25 2,310 2,310 2,310 2,310 5.15 1.5 1 1 5 1 2 20 ≤ 4h
Solved 24 25 14 17 20

6.3 Discussion
In this section the results presented in tables (6.3)-(6.8) are exposed. It is worth

noting that the only comparable literature results come from the state-of-the-art
algorithm proposed by Pecin and Uchoa in [63]. The other results, particularly for
Eglese instances, are not as effective as the proposed solution in both RLB and final
results.

Eglese Instances

The Eglese instances, table (6.3), are a widely adopted benchmark in literature,
featuring a high volume of nodes, edges, and vehicles. The routes typically span
short to medium paths. The proposed algorithm presents good results in solving
the instances, also outperforming the state-of-the-art PU19 algorithm in some
experiments. The most valuable result is that the RLB is greater than the competitor
in many instances, opening new possibilities for further developments. However, in
some instances e.g. egl-e3-B the total time presents a very high value: this is due to
the non-convergence in some CG iterations. The issue was identified also in the study
by Pessoa et al. [68], who also discovered similar problems in challenging Generalized
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Table 6.5: Detailed results for the E instances.

Ins IUB OPT RLB RLBPU19 T1 T1PU19 Nds NdsPU19 TT TTPU19 BCL13 BI14 BI15
E01 4,910 4,910 4,886 4,886 179 574.0 19 21 1,329 2,053
E02 3,990 3,990 3,990 3,981 59 31.0 1 1 59 31 252 862 ≤ 4h
E03 2,015 2,015 2,015 2,015 12 6.3 1 1 12 6 9 23 ≤ 4h
E04 4,155 4,155 4,152 4,155 154 30.0 3 1 168 30 2,042 2,789 ≤ 4h
E05 4,585 4,585 4,585 4,585 20 7.4 1 1 20 7 61 68 ≤ 4h
E06 2,055 2,055 2,055 2,055 10 4.0 1 1 10 4 4 54 ≤ 4h
E07 4,155 4,155 4,128 4,126 111 135.0 3 9 121 197 319 6,684 ≤ 4h
E08 4,710 4,710 4,706 4,702 58 13.0 3 3 83 5,781 200 198 ≤ 4h
E09 5,810 5,810 5,787 5,787 294 231.0 53 13 14,403 1,712
E10 3,605 3,605 3,605 3,605 4 2.5 1 1 4 2 4 48 ≤ 4h
E11 4,650 4,650 4,645 4,644 865 414.0 7 1 1,731 414 1,440 ≤ 4h
E12 4,180 4,180 4,160 4,161 67 33.0 9 5 150 52 6,585 ≤ 4h
E13 3,345 3,345 3,336 3,334 79 69.0 9 3 337 101 1,362 437 ≤ 4h
E14 4,115 4,115 4,115 4,115 20 5.9 1 1 20 5 67 2,089 ≤ 4h
E15 4,205 4,205 4,190 4,194 747 1,028.0 1 59 77 35,224 ≤ 12h
E16 3,775 3,775 3,771 3,775 249 89.0 3 1 324 89 380 ≤ 4h
E17 2,740 2,740 2,740 2,740 11 2.3 1 1 11 2 3 10 ≤ 4h
E18 3,835 3,835 3,825 3,828 268 2,174.0 15 7 14987 2,648 ≤ 4h
E19 3,235 3,235 3,235 3,235 148 47.0 1 1 148 47 13,935 ≤ 4h
E20 2,825 2,825 2,807 2,807 108 292.0 3 3 329 378 3,112 ≤ 4h
E21 3,730 3,730 3,728 3,730 254 20.0 7 1 612 20 13,935 ≤ 4h
E22 2,470 2,470 2,470 2,470 32 5.8 1 1 32 5 149 74 ≤ 4h
E23 3,710 3,710 3,701 3,710 3,233 1,161.0 69 1 12,275 1,161 ≤ 4h
E24 4,020 4,020 4,009 4,011 113 81.0 53 7 11,955 186 13,135 ≤ 4h
E25 1,615 1,615 1,615 1,615 2 0.7 1 1 2 1 2 ≤ 4h
Solved 25 25 14 19 23

Table 6.6: Detailed results for the D instances.

Ins IUB OPT RLB RLBPU19 T1 T1PU19 Nds NdsPU19 TT TTPU19 BCL13 BI14 BI15
D01 3,215 3,215 3,215 3,215 393.71 90.0 15 1 1,510 90 84 4,117 ≤ 4h
D02 2,520 2,520 2,520 2,520 56.63 12.0 17 1 246 12 19 286 ≤ 4h
D03 2,065 2,065 2,010 2,065 38.31 12.0 4,320 1 16,721 12 49 1,472 ≤ 4h
D04 2,785 2,785 2,785 2,785 133.23 24.0 35 1 451 24 70 9,022 ≤ 4h
D05 3,935 3,935 3,911 3,935 96.7 20.0 17 1 241 20 22 166 ≤ 4h
D06 2,125 2,125 2,095 2,125 32.7 6.8 29 1 222 6 16 1,615 ≤ 4h
D07 3,115 3,115 3,047 3,054 46.23 20.0 211 45 1,599 247 10,446
D08 3,045 3,045 2,995 3,004 44.3 45.0 99 25 683 328 3,730 ≤ 4h
D09 4,120 4,120 4,120 4,120 163.0 52.0 55 1 1,760 52 103 1,654 ≤ 4h
D10 3,340 3,340 3,332 3,333 36.7 15.0 25 1 202 15 107 493 ≤ 4h
D11 3,745 3,745 3,745 3,745 1,086.55 71.0 27 1 9,231 71 123 11,009 ≤ 4h
D12 3,310 3,310 3,310 3,310 234.31 105.0 19 1 1,377 105 78 198 ≤ 4h
D13 2,535 2,535 2,525 2,535 54.41 15.0 13 1 332 15 18 605 ≤ 4h
D14 3,280 3,280 3,225 3,272 63.37 23.0 361 3 7,001 32 1,804 ≤ 4h
D15 3,990 3,990 3,990 3,990 795.5 247.0 3 1 9,214 247 336 602 ≤ 4h
D16 1,060 1,060 1,060 1,060 21.37 161.0 5 1 35 161 9 667 ≤ 4h
D17 2,620 2,620 2,562 2,620 19.76 23.0 7 1 80 23 9 42 ≤ 4h
D18 4,165 4,165 4,165 4,165 834.8 139.0 63 1 3,103 139 455 2,951 ≤ 4h
D19 2,400 2,400 2,392 2,395 89.91 18.0 125 3 2,257 35 13,090 ≤ 4h
D20 1,870 1,870 1,870 1,870 59.81 13.0 19 1 805 13 27 2,004 ≤ 4h
D21 3,050 3,050 2,986 2,988 163.53 61.0 1,235 237 51,108 30,560
D22 1,865 1,865 1,865 1,865 128.61 7.8 7 1 345 7 20 3,200 ≤ 4h
D23 3,130 3,130 3,117 3,120 1,023 249.0 37 17 1,515 13,521 14,399 ≤ 4h
D24 2,710 2,710 2,675 2,676 236.73 385.0 42 15 12,458 2,428 ≤ 12h
D25 1,815 1,815 1,815 1,815 28.87 8.2 9 1 122 8 11 155 ≤ 4h
Solved 25 25 19 22 23
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Table 6.7: Detailed results for the F instances.

Ins IUB OPT RLB RLBPU19 T1 T1PU19 Nds NdsPU19 TT TTPU19 BCL13 BI14 BI15
F01 4,040 4,040 3,955 4,040 511 82.0 39 1 7,525 82 88 2,170 ≤ 4h
F02 3,300 3,300 3,300 3,300 53 12.0 11 1 305 12 19 1,957 ≤ 4h
F03 1,665 1,665 1,665 1,665 72 20.0 9 1 297 20 23 507 ≤ 4h
F04 3,485 3,485 3,475 3,476 119 173.0 639 13 13,982 745 9,654 ≤ 4h
F05 3,605 3,605 3,605 3,605 190 47.0 13 1 453 47 28 1,023 ≤ 4h
F06 1,875 1,875 1,830 1,875 22 7.2 25 1 368 7 12 350 ≤ 4h
F07 3,335 3,335 3,335 3,335 32 8.3 7 1 164 8 11 226 ≤ 4h
F08 3,705 3,705 3,691 3,693 38 42.0 17 3 202 54 1,927 ≤ 4h
F09 4,730 4,730 4,730 4,730 553 88.0 29 1 3,721 88 137 526 ≤ 4h
F10 2,925 2,925 2,920 2,925 21 9.5 383 1 8,134 9 8 373 ≤ 4h
F11 3,835 3,835 3,820 3,835 546 122.0 49 1 8,937 122 134 4,889 ≤ 4h
F12 3,395 3,395 3,390 3,390 410 75.0 167 3 4,890 85 2,341 ≤ 4h
F13 2,855 2,855 2,855 2,855 40 12.0 15 1 351 12 14 306 ≤ 4h
F14 3,330 3,330 3,330 3,330 34 36.0 27 1 316 36 26 822 ≤ 4h
F15 3,560 3,560 3,560 3,560 1,017 158.0 245 1 23,591 158 279 277 ≤ 4h
F16 2,725 2,725 2,725 2,725 30 30.0 11 1 88 30 27 543 ≤ 4h
F17 2,055 2,055 2,055 2,055 10 5.4 3 1 27 5 6 90 ≤ 4h
F18 3,075 3,060 3,063 279 74.0
F19 2,525 2,525 2,499 2,504 3,952 87.0 71 9 5,305 6,571
F20 2,445 2,445 2,417 2,445 151 15.0 143 1 10,022 15 42 2,210 ≤ 4h
F21 2,930 2,930 2,930 2,930 396 26.0 35 1 4,084 26 70 3,582 ≤ 4h
F22 2,075 2,075 2,060 2,075 57 5.6 25 1 567 5 18 141 ≤ 4h
F23 3,005 3,005 2,994 3,005 471 135.0 51 1 3,932 135 ≤ 4h
F24 3,210 3,210 3,200 3,210 444 117.0 131 1 8,484 117 146 10,106 ≤ 4h
F25 1,390 1,390 1,390 1,390 7 2.7 5 1 21 2 2 89 ≤ 4h
Solved 24 24 19 23 23
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Table 6.8: Detailed results for the Val instances.

Ins IUB OPT RLB RLBPU19 T1 T1PU19 Nds NdsPU19 TT TTPU19 LPU06 BI12 BCL13
1A 247 247 247 247 11 8.7 37 1 251 8 98 17 5
1B 247 247 247 247 13 5.9 19 1 144 5 55 4 4
1C 319 319 317 319 15 0.8 23 1 47 1 8,917 56 134
2A 298 298 294 298 26 5.1 19 1 110 5 79 10 5
2B 330 330 328 329 20 8.1 13 5 57 18 671 9 290
2C 528 528 528 528 1 0.3 1 1 1 1 1 1
3A 105 105 105 105 8 4.7 21 1 110 4 128 6 5
3B 111 111 111 111 8 3.0 11 1 49 3 134 3 3
3C 162 162 161 161 7 0.3 9 1 20 1 329 2 3
4A 522 522 522 522 177 59.0 57 1 1,686 59 2,475 413 80
4B 534 534 534 534 152 47.0 55 1 1,142 47 1,178 73 50
4C 550 550 550 550 121 40.0 23 1 787 40 825 32 28
4D 650 650 647 648 36 20.0 337 5 1,985 133 716
5A 566 566 566 566 101 31.0 75 1 5,913 31 629 76 34
5B 589 589 587 588 114 40.0 237 5 8,985 65 25
5C 617 617 612 613 55 25.0 1,273 55 23,283 306 406
5D 718 718 714 716 19 7.5 163 9 1,145 27 28 702
6A 330 330 326 330 42 11.0 279 1 8,876 11 159 20 11
6B 340 340 336 337 31 16.0 737 13 6,263 66 209
6C 424 424 419 419 6 1.5 25 125 40 54 4,027 56
7A 382 382 377 382 46 56.0 213 1 7,731 56 319 ≤ 4h 25
7B 386 386 381 386 42 28.0 67 1 2,315 28 164 35 13
7C 437 437 433 433 44 19.0 133 15 2,529 71 132 ≤ 4h 1,760
8A 522 522 522 522 66 24.0 25 1 1,654 24 359 38 21
8B 531 531 531 531 30 18.0 49 1 1,869 18 169 18 16
8C 657 657 653 654 25 6.7 127 19 940 85 25 2,496
9A 450 450 442 450 91 187.0 429 1 9620 187 17,723 685 213
9B 453 453 448 453 78 72.0 373 1 21,876 72 4,520 154 115
9C 459 459 453 459 268 85.0 81 1 7,989 85 1,461 75 63
9D 515 515 509 512 98 21.0 1,219 45 22,718 289 ≤ 4h
10A 637 637 637 637 466 237.0 321 1 25,584 237 13,337 542 215
10B 645 645 640 645 322 204.0 278 1 23,369 204 13,719 7,555 157
10C 655 655 655 655 326 181.0 97 1 3,827 181 5,079 172 97
10D 734 734 733 734 182 68.0 157 1 4,962 68 474 196 61
Solved 34 34 26 34 29
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6.3 – Discussion

Assignment Problem (GAP) tasks. To address this, VRPSolver utilizes stabilization
techniques explained in Pessoa et al.’s previous work [66]. These techniques prove
effective for simpler instances, but they fall short for the most difficult ones. This
problem is preventing the resolution of the five unresolved instances in a lengthy
loop.

C and E Instances

C and E instances, tables (6.4),(6.5), present a moderate level of difficulty, as
they offer mostly medium-length paths with few long ones. For these instances, the
same principles used in Eglese’s case are applied. The RLB value surpasses that of
the PU19 outcomes, although the overall results are similar in most cases. However,
the total time can be considerably greater than that of the competitor. This issue
can be tackled in the branching process. Notably, the number of explored nodes is
significantly higher in these instances, indicating that the proposed algorithm faces
difficulties in demonstrating whether the obtained result is optimal. The proposal
to reduce R1C cuts compared to Eglese instances has been suggested to address the
issue of convergence. This approach has demonstrated encouraging outcomes for
nearly all cases. Furthermore, the only unresolved instance, namely C11, suffers
from the aforementioned non-convergence problem.

D and F Instances

The D and F instances, tables (6.6),(6.7), have double the capacity and approxi-
mately half the vehicles of the C and E instances. Furthermore, their routes are
considerably longer in comparison to those of Eglese, C, and D. Although most of
the instances were resolved, the total time required was significantly high when
compared to PU19. Furthermore, the RLB exhibits inferior values compared to its
competitor, indicating poorer performance. The main issue is that the proposed
model faces difficulties in producing long routes and needs a different implementation
to face such a problem.

Val Instances

Val instances, table (6.8), have a smaller number of arcs, nodes, and vehicles.
Moreover, the routes are considerably longer than those in other instances. In line
with the D and F considerations, the algorithm exhibits limitations in creating long
routes for Val instances. However, the RLB value is almost always comparable to
the optimal value, which is conclusive in confirming the bound’s optimality. On the
contrary, although the optimal bound can be generated in a few seconds, creating
the route itself requires a significant amount of time since a large number of nodes
in the BB tree must be explored before the appropriate columns can be generated.
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Chapter 7

Conclusions

This dissertation presents a study on the exact resolution of the Capacitated
Arc Routing Problem (CARP). To achieve this, an algorithm is proposed that has
its origins in the method established by Baldacci and Maniezzo [7] in 2006. The
transformation technique developed in their research was used to convert the CARP
to a Capacitated Vehicle Routing Problem (CVRP).

The improvements made over time for the CVRP have made it possible to solve
the problem for large instances within a limited timeframe. The implementation
of the Branch-and-Cut-and-Price (BCP) method was instrumental in enabling the
use of exact solvers in real-world scenarios. Numerous studies have focused on the
Branch-and-Cut-and-Price method for Vehicle Routing Problems (VRPs) in the past
two decades. As a result of these efforts, the state-of-the-art tool VRPSolver has
been developed [68].

After recent advancements, the Capacitated Arc Routing Problem was refor-
mulated to a Capacitated Vehicle Routing Problem. It was then modelled as a
Resource Constrained Shortest Path Problem (RCSPP) to make use of the VRP-
Solver. Two dictionaries were used to effectively translate the problem domain and
enable branching over the CARP nodes degree, as well as the implementation of
robust cuts such as Lifted Odd-Cutsets. Furthermore, the utilization of an adapted
Pickup and Delivery problem formulation enabled the integration of additional con-
straints resulting from the transformation, without affecting the Column Generation
Procedure.

Pecin and Uchoa [63] introduced the cutting-edge method for the Capacitated
Arc Routing Problem (CARP) exact resolution. The authors created a solution
that encompasses all the outstanding solutions for CARP up to 2019 and resolved
22 out of 24 unresolved instances. The algorithm proposed in this work exhibits
exceptionally favorable results despite not utilizing all the features of CARP and is
comparable to that of Pecin and Uchoa.

Among the classical literature instances, the Eglese’s one are the most widely
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used in CARP literature, with medium-long paths and high difficulty in the res-
olution. The proposed solution efficiently solved the majority of these problems,
outperforming Pecin and Uchoa’s results in terms of the root lower bound for most
of the results and total time for certain instances.

On the flip side, this solution has several shortcomings. Instances with lengthy
routes, despite being solved, demonstrated considerably long runtimes and inferior
root node lowerbounds when compared to those of other authors. Additionally,
hard instances demonstrate that the column generation procedure does not always
converge, which significantly increases the running time. Lastly, the branching
procedure, particularly when a solution is discovered, lacks balance, resulting in a
lengthy amount of time required to close the duality gap.

Finally, these results are promising and require further research to address the
listed limitations. The ongoing development of the VRPSolver may alleviate some
of these issues, e.g. the convergence problem. Additionally, a reassessment of the
transformation using a more RCSPP approach could improve the solver’s efficiency,
when combined with a suitable branching method.
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